xref: /freebsd/sys/arm/arm/pmap-v6.c (revision d93a896e)
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * Copyright (c) 1994 John S. Dyson
4  * Copyright (c) 1994 David Greenman
5  * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
6  * Copyright (c) 2014-2016 Svatopluk Kraus <skra@FreeBSD.org>
7  * Copyright (c) 2014-2016 Michal Meloun <mmel@FreeBSD.org>
8  * All rights reserved.
9  *
10  * This code is derived from software contributed to Berkeley by
11  * the Systems Programming Group of the University of Utah Computer
12  * Science Department and William Jolitz of UUNET Technologies Inc.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
39  */
40 /*-
41  * Copyright (c) 2003 Networks Associates Technology, Inc.
42  * All rights reserved.
43  *
44  * This software was developed for the FreeBSD Project by Jake Burkholder,
45  * Safeport Network Services, and Network Associates Laboratories, the
46  * Security Research Division of Network Associates, Inc. under
47  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
48  * CHATS research program.
49  *
50  * Redistribution and use in source and binary forms, with or without
51  * modification, are permitted provided that the following conditions
52  * are met:
53  * 1. Redistributions of source code must retain the above copyright
54  *    notice, this list of conditions and the following disclaimer.
55  * 2. Redistributions in binary form must reproduce the above copyright
56  *    notice, this list of conditions and the following disclaimer in the
57  *    documentation and/or other materials provided with the distribution.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  */
71 
72 #include <sys/cdefs.h>
73 __FBSDID("$FreeBSD$");
74 
75 /*
76  *	Manages physical address maps.
77  *
78  *	Since the information managed by this module is
79  *	also stored by the logical address mapping module,
80  *	this module may throw away valid virtual-to-physical
81  *	mappings at almost any time.  However, invalidations
82  *	of virtual-to-physical mappings must be done as
83  *	requested.
84  *
85  *	In order to cope with hardware architectures which
86  *	make virtual-to-physical map invalidates expensive,
87  *	this module may delay invalidate or reduced protection
88  *	operations until such time as they are actually
89  *	necessary.  This module is given full information as
90  *	to which processors are currently using which maps,
91  *	and to when physical maps must be made correct.
92  */
93 
94 #include "opt_vm.h"
95 #include "opt_pmap.h"
96 #include "opt_ddb.h"
97 
98 #include <sys/param.h>
99 #include <sys/systm.h>
100 #include <sys/kernel.h>
101 #include <sys/ktr.h>
102 #include <sys/lock.h>
103 #include <sys/proc.h>
104 #include <sys/rwlock.h>
105 #include <sys/malloc.h>
106 #include <sys/vmmeter.h>
107 #include <sys/malloc.h>
108 #include <sys/mman.h>
109 #include <sys/sf_buf.h>
110 #include <sys/smp.h>
111 #include <sys/sched.h>
112 #include <sys/sysctl.h>
113 
114 #ifdef DDB
115 #include <ddb/ddb.h>
116 #endif
117 
118 #include <machine/physmem.h>
119 
120 #include <vm/vm.h>
121 #include <vm/uma.h>
122 #include <vm/pmap.h>
123 #include <vm/vm_param.h>
124 #include <vm/vm_kern.h>
125 #include <vm/vm_object.h>
126 #include <vm/vm_map.h>
127 #include <vm/vm_page.h>
128 #include <vm/vm_pageout.h>
129 #include <vm/vm_phys.h>
130 #include <vm/vm_extern.h>
131 #include <vm/vm_reserv.h>
132 #include <sys/lock.h>
133 #include <sys/mutex.h>
134 
135 #include <machine/md_var.h>
136 #include <machine/pmap_var.h>
137 #include <machine/cpu.h>
138 #include <machine/pcb.h>
139 #include <machine/sf_buf.h>
140 #ifdef SMP
141 #include <machine/smp.h>
142 #endif
143 #ifndef PMAP_SHPGPERPROC
144 #define PMAP_SHPGPERPROC 200
145 #endif
146 
147 #ifndef DIAGNOSTIC
148 #define PMAP_INLINE	__inline
149 #else
150 #define PMAP_INLINE
151 #endif
152 
153 #ifdef PMAP_DEBUG
154 static void pmap_zero_page_check(vm_page_t m);
155 void pmap_debug(int level);
156 int pmap_pid_dump(int pid);
157 
158 #define PDEBUG(_lev_,_stat_) \
159 	if (pmap_debug_level >= (_lev_)) \
160 		((_stat_))
161 #define dprintf printf
162 int pmap_debug_level = 1;
163 #else   /* PMAP_DEBUG */
164 #define PDEBUG(_lev_,_stat_) /* Nothing */
165 #define dprintf(x, arg...)
166 #endif  /* PMAP_DEBUG */
167 
168 /*
169  *  Level 2 page tables map definion ('max' is excluded).
170  */
171 
172 #define PT2V_MIN_ADDRESS	((vm_offset_t)PT2MAP)
173 #define PT2V_MAX_ADDRESS	((vm_offset_t)PT2MAP + PT2MAP_SIZE)
174 
175 #define UPT2V_MIN_ADDRESS	((vm_offset_t)PT2MAP)
176 #define UPT2V_MAX_ADDRESS \
177     ((vm_offset_t)(PT2MAP + (KERNBASE >> PT2MAP_SHIFT)))
178 
179 /*
180  *  Promotion to a 1MB (PTE1) page mapping requires that the corresponding
181  *  4KB (PTE2) page mappings have identical settings for the following fields:
182  */
183 #define PTE2_PROMOTE	(PTE2_V | PTE2_A | PTE2_NM | PTE2_S | PTE2_NG |	\
184 			 PTE2_NX | PTE2_RO | PTE2_U | PTE2_W |		\
185 			 PTE2_ATTR_MASK)
186 
187 #define PTE1_PROMOTE	(PTE1_V | PTE1_A | PTE1_NM | PTE1_S | PTE1_NG |	\
188 			 PTE1_NX | PTE1_RO | PTE1_U | PTE1_W |		\
189 			 PTE1_ATTR_MASK)
190 
191 #define ATTR_TO_L1(l2_attr)	((((l2_attr) & L2_TEX0) ? L1_S_TEX0 : 0) | \
192 				 (((l2_attr) & L2_C)    ? L1_S_C    : 0) | \
193 				 (((l2_attr) & L2_B)    ? L1_S_B    : 0) | \
194 				 (((l2_attr) & PTE2_A)  ? PTE1_A    : 0) | \
195 				 (((l2_attr) & PTE2_NM) ? PTE1_NM   : 0) | \
196 				 (((l2_attr) & PTE2_S)  ? PTE1_S    : 0) | \
197 				 (((l2_attr) & PTE2_NG) ? PTE1_NG   : 0) | \
198 				 (((l2_attr) & PTE2_NX) ? PTE1_NX   : 0) | \
199 				 (((l2_attr) & PTE2_RO) ? PTE1_RO   : 0) | \
200 				 (((l2_attr) & PTE2_U)  ? PTE1_U    : 0) | \
201 				 (((l2_attr) & PTE2_W)  ? PTE1_W    : 0))
202 
203 #define ATTR_TO_L2(l1_attr)	((((l1_attr) & L1_S_TEX0) ? L2_TEX0 : 0) | \
204 				 (((l1_attr) & L1_S_C)    ? L2_C    : 0) | \
205 				 (((l1_attr) & L1_S_B)    ? L2_B    : 0) | \
206 				 (((l1_attr) & PTE1_A)    ? PTE2_A  : 0) | \
207 				 (((l1_attr) & PTE1_NM)   ? PTE2_NM : 0) | \
208 				 (((l1_attr) & PTE1_S)    ? PTE2_S  : 0) | \
209 				 (((l1_attr) & PTE1_NG)   ? PTE2_NG : 0) | \
210 				 (((l1_attr) & PTE1_NX)   ? PTE2_NX : 0) | \
211 				 (((l1_attr) & PTE1_RO)   ? PTE2_RO : 0) | \
212 				 (((l1_attr) & PTE1_U)    ? PTE2_U  : 0) | \
213 				 (((l1_attr) & PTE1_W)    ? PTE2_W  : 0))
214 
215 /*
216  *  PTE2 descriptors creation macros.
217  */
218 #define PTE2_ATTR_DEFAULT	vm_memattr_to_pte2(VM_MEMATTR_DEFAULT)
219 #define PTE2_ATTR_PT		vm_memattr_to_pte2(pt_memattr)
220 
221 #define PTE2_KPT(pa)	PTE2_KERN(pa, PTE2_AP_KRW, PTE2_ATTR_PT)
222 #define PTE2_KPT_NG(pa)	PTE2_KERN_NG(pa, PTE2_AP_KRW, PTE2_ATTR_PT)
223 
224 #define PTE2_KRW(pa)	PTE2_KERN(pa, PTE2_AP_KRW, PTE2_ATTR_DEFAULT)
225 #define PTE2_KRO(pa)	PTE2_KERN(pa, PTE2_AP_KR, PTE2_ATTR_DEFAULT)
226 
227 #define PV_STATS
228 #ifdef PV_STATS
229 #define PV_STAT(x)	do { x ; } while (0)
230 #else
231 #define PV_STAT(x)	do { } while (0)
232 #endif
233 
234 /*
235  *  The boot_pt1 is used temporary in very early boot stage as L1 page table.
236  *  We can init many things with no memory allocation thanks to its static
237  *  allocation and this brings two main advantages:
238  *  (1) other cores can be started very simply,
239  *  (2) various boot loaders can be supported as its arguments can be processed
240  *      in virtual address space and can be moved to safe location before
241  *      first allocation happened.
242  *  Only disadvantage is that boot_pt1 is used only in very early boot stage.
243  *  However, the table is uninitialized and so lays in bss. Therefore kernel
244  *  image size is not influenced.
245  *
246  *  QQQ: In the future, maybe, boot_pt1 can be used for soft reset and
247  *       CPU suspend/resume game.
248  */
249 extern pt1_entry_t boot_pt1[];
250 
251 vm_paddr_t base_pt1;
252 pt1_entry_t *kern_pt1;
253 pt2_entry_t *kern_pt2tab;
254 pt2_entry_t *PT2MAP;
255 
256 static uint32_t ttb_flags;
257 static vm_memattr_t pt_memattr;
258 ttb_entry_t pmap_kern_ttb;
259 
260 struct pmap kernel_pmap_store;
261 LIST_HEAD(pmaplist, pmap);
262 static struct pmaplist allpmaps;
263 static struct mtx allpmaps_lock;
264 
265 vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
266 vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
267 
268 static vm_offset_t kernel_vm_end_new;
269 vm_offset_t kernel_vm_end = KERNBASE + NKPT2PG * NPT2_IN_PG * PTE1_SIZE;
270 vm_offset_t vm_max_kernel_address;
271 vm_paddr_t kernel_l1pa;
272 
273 static struct rwlock __aligned(CACHE_LINE_SIZE) pvh_global_lock;
274 
275 /*
276  *  Data for the pv entry allocation mechanism
277  */
278 static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
279 static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
280 static struct md_page *pv_table; /* XXX: Is it used only the list in md_page? */
281 static int shpgperproc = PMAP_SHPGPERPROC;
282 
283 struct pv_chunk *pv_chunkbase;		/* KVA block for pv_chunks */
284 int pv_maxchunks;			/* How many chunks we have KVA for */
285 vm_offset_t pv_vafree;			/* freelist stored in the PTE */
286 
287 vm_paddr_t first_managed_pa;
288 #define	pa_to_pvh(pa)	(&pv_table[pte1_index(pa - first_managed_pa)])
289 
290 /*
291  *  All those kernel PT submaps that BSD is so fond of
292  */
293 caddr_t _tmppt = 0;
294 
295 struct msgbuf *msgbufp = NULL; /* XXX move it to machdep.c */
296 
297 /*
298  *  Crashdump maps.
299  */
300 static caddr_t crashdumpmap;
301 
302 static pt2_entry_t *PMAP1 = NULL, *PMAP2;
303 static pt2_entry_t *PADDR1 = NULL, *PADDR2;
304 #ifdef DDB
305 static pt2_entry_t *PMAP3;
306 static pt2_entry_t *PADDR3;
307 static int PMAP3cpu __unused; /* for SMP only */
308 #endif
309 #ifdef SMP
310 static int PMAP1cpu;
311 static int PMAP1changedcpu;
312 SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
313     &PMAP1changedcpu, 0,
314     "Number of times pmap_pte2_quick changed CPU with same PMAP1");
315 #endif
316 static int PMAP1changed;
317 SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
318     &PMAP1changed, 0,
319     "Number of times pmap_pte2_quick changed PMAP1");
320 static int PMAP1unchanged;
321 SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
322     &PMAP1unchanged, 0,
323     "Number of times pmap_pte2_quick didn't change PMAP1");
324 static struct mtx PMAP2mutex;
325 
326 static __inline void pt2_wirecount_init(vm_page_t m);
327 static boolean_t pmap_demote_pte1(pmap_t pmap, pt1_entry_t *pte1p,
328     vm_offset_t va);
329 void cache_icache_sync_fresh(vm_offset_t va, vm_paddr_t pa, vm_size_t size);
330 
331 /*
332  *  Function to set the debug level of the pmap code.
333  */
334 #ifdef PMAP_DEBUG
335 void
336 pmap_debug(int level)
337 {
338 
339 	pmap_debug_level = level;
340 	dprintf("pmap_debug: level=%d\n", pmap_debug_level);
341 }
342 #endif /* PMAP_DEBUG */
343 
344 /*
345  *  This table must corespond with memory attribute configuration in vm.h.
346  *  First entry is used for normal system mapping.
347  *
348  *  Device memory is always marked as shared.
349  *  Normal memory is shared only in SMP .
350  *  Not outer shareable bits are not used yet.
351  *  Class 6 cannot be used on ARM11.
352  */
353 #define TEXDEF_TYPE_SHIFT	0
354 #define TEXDEF_TYPE_MASK	0x3
355 #define TEXDEF_INNER_SHIFT	2
356 #define TEXDEF_INNER_MASK	0x3
357 #define TEXDEF_OUTER_SHIFT	4
358 #define TEXDEF_OUTER_MASK	0x3
359 #define TEXDEF_NOS_SHIFT	6
360 #define TEXDEF_NOS_MASK		0x1
361 
362 #define TEX(t, i, o, s) 			\
363 		((t) << TEXDEF_TYPE_SHIFT) |	\
364 		((i) << TEXDEF_INNER_SHIFT) |	\
365 		((o) << TEXDEF_OUTER_SHIFT | 	\
366 		((s) << TEXDEF_NOS_SHIFT))
367 
368 static uint32_t tex_class[8] = {
369 /*	    type      inner cache outer cache */
370 	TEX(PRRR_MEM, NMRR_WB_WA, NMRR_WB_WA, 0),  /* 0 - ATTR_WB_WA	*/
371 	TEX(PRRR_MEM, NMRR_NC,	  NMRR_NC,    0),  /* 1 - ATTR_NOCACHE	*/
372 	TEX(PRRR_DEV, NMRR_NC,	  NMRR_NC,    0),  /* 2 - ATTR_DEVICE	*/
373 	TEX(PRRR_SO,  NMRR_NC,	  NMRR_NC,    0),  /* 3 - ATTR_SO	*/
374 	TEX(PRRR_MEM, NMRR_WT,	  NMRR_WT,    0),  /* 4 - ATTR_WT	*/
375 	TEX(PRRR_MEM, NMRR_NC,	  NMRR_NC,    0),  /* 5 - NOT USED YET	*/
376 	TEX(PRRR_MEM, NMRR_NC,	  NMRR_NC,    0),  /* 6 - NOT USED YET	*/
377 	TEX(PRRR_MEM, NMRR_NC,	  NMRR_NC,    0),  /* 7 - NOT USED YET	*/
378 };
379 #undef TEX
380 
381 static uint32_t pte2_attr_tab[8] = {
382 	PTE2_ATTR_WB_WA,	/* 0 - VM_MEMATTR_WB_WA */
383 	PTE2_ATTR_NOCACHE,	/* 1 - VM_MEMATTR_NOCACHE */
384 	PTE2_ATTR_DEVICE,	/* 2 - VM_MEMATTR_DEVICE */
385 	PTE2_ATTR_SO,		/* 3 - VM_MEMATTR_SO */
386 	PTE2_ATTR_WT,		/* 4 - VM_MEMATTR_WRITE_THROUGH */
387 	0,			/* 5 - NOT USED YET */
388 	0,			/* 6 - NOT USED YET */
389 	0			/* 7 - NOT USED YET */
390 };
391 CTASSERT(VM_MEMATTR_WB_WA == 0);
392 CTASSERT(VM_MEMATTR_NOCACHE == 1);
393 CTASSERT(VM_MEMATTR_DEVICE == 2);
394 CTASSERT(VM_MEMATTR_SO == 3);
395 CTASSERT(VM_MEMATTR_WRITE_THROUGH == 4);
396 
397 static inline uint32_t
398 vm_memattr_to_pte2(vm_memattr_t ma)
399 {
400 
401 	KASSERT((u_int)ma < 5, ("%s: bad vm_memattr_t %d", __func__, ma));
402 	return (pte2_attr_tab[(u_int)ma]);
403 }
404 
405 static inline uint32_t
406 vm_page_pte2_attr(vm_page_t m)
407 {
408 
409 	return (vm_memattr_to_pte2(m->md.pat_mode));
410 }
411 
412 /*
413  * Convert TEX definition entry to TTB flags.
414  */
415 static uint32_t
416 encode_ttb_flags(int idx)
417 {
418 	uint32_t inner, outer, nos, reg;
419 
420 	inner = (tex_class[idx] >> TEXDEF_INNER_SHIFT) &
421 		TEXDEF_INNER_MASK;
422 	outer = (tex_class[idx] >> TEXDEF_OUTER_SHIFT) &
423 		TEXDEF_OUTER_MASK;
424 	nos = (tex_class[idx] >> TEXDEF_NOS_SHIFT) &
425 		TEXDEF_NOS_MASK;
426 
427 	reg = nos << 5;
428 	reg |= outer << 3;
429 	if (cpuinfo.coherent_walk)
430 		reg |= (inner & 0x1) << 6;
431 	reg |= (inner & 0x2) >> 1;
432 #ifdef SMP
433 	ARM_SMP_UP(
434 		reg |= 1 << 1,
435 	);
436 #endif
437 	return reg;
438 }
439 
440 /*
441  *  Set TEX remapping registers in current CPU.
442  */
443 void
444 pmap_set_tex(void)
445 {
446 	uint32_t prrr, nmrr;
447 	uint32_t type, inner, outer, nos;
448 	int i;
449 
450 #ifdef PMAP_PTE_NOCACHE
451 	/* XXX fixme */
452 	if (cpuinfo.coherent_walk) {
453 		pt_memattr = VM_MEMATTR_WB_WA;
454 		ttb_flags = encode_ttb_flags(0);
455 	}
456 	else {
457 		pt_memattr = VM_MEMATTR_NOCACHE;
458 		ttb_flags = encode_ttb_flags(1);
459 	}
460 #else
461 	pt_memattr = VM_MEMATTR_WB_WA;
462 	ttb_flags = encode_ttb_flags(0);
463 #endif
464 
465 	prrr = 0;
466 	nmrr = 0;
467 
468 	/* Build remapping register from TEX classes. */
469 	for (i = 0; i < 8; i++) {
470 		type = (tex_class[i] >> TEXDEF_TYPE_SHIFT) &
471 			TEXDEF_TYPE_MASK;
472 		inner = (tex_class[i] >> TEXDEF_INNER_SHIFT) &
473 			TEXDEF_INNER_MASK;
474 		outer = (tex_class[i] >> TEXDEF_OUTER_SHIFT) &
475 			TEXDEF_OUTER_MASK;
476 		nos = (tex_class[i] >> TEXDEF_NOS_SHIFT) &
477 			TEXDEF_NOS_MASK;
478 
479 		prrr |= type  << (i * 2);
480 		prrr |= nos   << (i + 24);
481 		nmrr |= inner << (i * 2);
482 		nmrr |= outer << (i * 2 + 16);
483 	}
484 	/* Add shareable bits for device memory. */
485 	prrr |= PRRR_DS0 | PRRR_DS1;
486 
487 	/* Add shareable bits for normal memory in SMP case. */
488 #ifdef SMP
489 	ARM_SMP_UP(
490 		prrr |= PRRR_NS1,
491 	);
492 #endif
493 	cp15_prrr_set(prrr);
494 	cp15_nmrr_set(nmrr);
495 
496 	/* Caches are disabled, so full TLB flush should be enough. */
497 	tlb_flush_all_local();
498 }
499 
500 /*
501  * Remap one vm_meattr class to another one. This can be useful as
502  * workaround for SOC errata, e.g. if devices must be accessed using
503  * SO memory class.
504  *
505  * !!! Please note that this function is absolutely last resort thing.
506  * It should not be used under normal circumstances. !!!
507  *
508  * Usage rules:
509  * - it shall be called after pmap_bootstrap_prepare() and before
510  *   cpu_mp_start() (thus only on boot CPU). In practice, it's expected
511  *   to be called from platform_attach() or platform_late_init().
512  *
513  * - if remapping doesn't change caching mode, or until uncached class
514  *   is remapped to any kind of cached one, then no other restriction exists.
515  *
516  * - if pmap_remap_vm_attr() changes caching mode, but both (original and
517  *   remapped) remain cached, then caller is resposible for calling
518  *   of dcache_wbinv_poc_all().
519  *
520  * - remapping of any kind of cached class to uncached is not permitted.
521  */
522 void
523 pmap_remap_vm_attr(vm_memattr_t old_attr, vm_memattr_t new_attr)
524 {
525 	int old_idx, new_idx;
526 
527 	/* Map VM memattrs to indexes to tex_class table. */
528 	old_idx = PTE2_ATTR2IDX(pte2_attr_tab[(int)old_attr]);
529 	new_idx = PTE2_ATTR2IDX(pte2_attr_tab[(int)new_attr]);
530 
531 	/* Replace TEX attribute and apply it. */
532 	tex_class[old_idx] = tex_class[new_idx];
533 	pmap_set_tex();
534 }
535 
536 /*
537  * KERNBASE must be multiple of NPT2_IN_PG * PTE1_SIZE. In other words,
538  * KERNBASE is mapped by first L2 page table in L2 page table page. It
539  * meets same constrain due to PT2MAP being placed just under KERNBASE.
540  */
541 CTASSERT((KERNBASE & (NPT2_IN_PG * PTE1_SIZE - 1)) == 0);
542 CTASSERT((KERNBASE - VM_MAXUSER_ADDRESS) >= PT2MAP_SIZE);
543 
544 /*
545  *  In crazy dreams, PAGE_SIZE could be a multiple of PTE2_SIZE in general.
546  *  For now, anyhow, the following check must be fulfilled.
547  */
548 CTASSERT(PAGE_SIZE == PTE2_SIZE);
549 /*
550  *  We don't want to mess up MI code with all MMU and PMAP definitions,
551  *  so some things, which depend on other ones, are defined independently.
552  *  Now, it is time to check that we don't screw up something.
553  */
554 CTASSERT(PDRSHIFT == PTE1_SHIFT);
555 /*
556  *  Check L1 and L2 page table entries definitions consistency.
557  */
558 CTASSERT(NB_IN_PT1 == (sizeof(pt1_entry_t) * NPTE1_IN_PT1));
559 CTASSERT(NB_IN_PT2 == (sizeof(pt2_entry_t) * NPTE2_IN_PT2));
560 /*
561  *  Check L2 page tables page consistency.
562  */
563 CTASSERT(PAGE_SIZE == (NPT2_IN_PG * NB_IN_PT2));
564 CTASSERT((1 << PT2PG_SHIFT) == NPT2_IN_PG);
565 /*
566  *  Check PT2TAB consistency.
567  *  PT2TAB_ENTRIES is defined as a division of NPTE1_IN_PT1 by NPT2_IN_PG.
568  *  This should be done without remainder.
569  */
570 CTASSERT(NPTE1_IN_PT1 == (PT2TAB_ENTRIES * NPT2_IN_PG));
571 
572 /*
573  *	A PT2MAP magic.
574  *
575  *  All level 2 page tables (PT2s) are mapped continuously and accordingly
576  *  into PT2MAP address space. As PT2 size is less than PAGE_SIZE, this can
577  *  be done only if PAGE_SIZE is a multiple of PT2 size. All PT2s in one page
578  *  must be used together, but not necessary at once. The first PT2 in a page
579  *  must map things on correctly aligned address and the others must follow
580  *  in right order.
581  */
582 #define NB_IN_PT2TAB	(PT2TAB_ENTRIES * sizeof(pt2_entry_t))
583 #define NPT2_IN_PT2TAB	(NB_IN_PT2TAB / NB_IN_PT2)
584 #define NPG_IN_PT2TAB	(NB_IN_PT2TAB / PAGE_SIZE)
585 
586 /*
587  *  Check PT2TAB consistency.
588  *  NPT2_IN_PT2TAB is defined as a division of NB_IN_PT2TAB by NB_IN_PT2.
589  *  NPG_IN_PT2TAB is defined as a division of NB_IN_PT2TAB by PAGE_SIZE.
590  *  The both should be done without remainder.
591  */
592 CTASSERT(NB_IN_PT2TAB == (NPT2_IN_PT2TAB * NB_IN_PT2));
593 CTASSERT(NB_IN_PT2TAB == (NPG_IN_PT2TAB * PAGE_SIZE));
594 /*
595  *  The implementation was made general, however, with the assumption
596  *  bellow in mind. In case of another value of NPG_IN_PT2TAB,
597  *  the code should be once more rechecked.
598  */
599 CTASSERT(NPG_IN_PT2TAB == 1);
600 
601 /*
602  *  Get offset of PT2 in a page
603  *  associated with given PT1 index.
604  */
605 static __inline u_int
606 page_pt2off(u_int pt1_idx)
607 {
608 
609 	return ((pt1_idx & PT2PG_MASK) * NB_IN_PT2);
610 }
611 
612 /*
613  *  Get physical address of PT2
614  *  associated with given PT2s page and PT1 index.
615  */
616 static __inline vm_paddr_t
617 page_pt2pa(vm_paddr_t pgpa, u_int pt1_idx)
618 {
619 
620 	return (pgpa + page_pt2off(pt1_idx));
621 }
622 
623 /*
624  *  Get first entry of PT2
625  *  associated with given PT2s page and PT1 index.
626  */
627 static __inline pt2_entry_t *
628 page_pt2(vm_offset_t pgva, u_int pt1_idx)
629 {
630 
631 	return ((pt2_entry_t *)(pgva + page_pt2off(pt1_idx)));
632 }
633 
634 /*
635  *  Get virtual address of PT2s page (mapped in PT2MAP)
636  *  which holds PT2 which holds entry which maps given virtual address.
637  */
638 static __inline vm_offset_t
639 pt2map_pt2pg(vm_offset_t va)
640 {
641 
642 	va &= ~(NPT2_IN_PG * PTE1_SIZE - 1);
643 	return ((vm_offset_t)pt2map_entry(va));
644 }
645 
646 /*****************************************************************************
647  *
648  *     THREE pmap initialization milestones exist:
649  *
650  *  locore.S
651  *    -> fundamental init (including MMU) in ASM
652  *
653  *  initarm()
654  *    -> fundamental init continues in C
655  *    -> first available physical address is known
656  *
657  *    pmap_bootstrap_prepare() -> FIRST PMAP MILESTONE (first epoch begins)
658  *      -> basic (safe) interface for physical address allocation is made
659  *      -> basic (safe) interface for virtual mapping is made
660  *      -> limited not SMP coherent work is possible
661  *
662  *    -> more fundamental init continues in C
663  *    -> locks and some more things are available
664  *    -> all fundamental allocations and mappings are done
665  *
666  *    pmap_bootstrap() -> SECOND PMAP MILESTONE (second epoch begins)
667  *      -> phys_avail[] and virtual_avail is set
668  *      -> control is passed to vm subsystem
669  *      -> physical and virtual address allocation are off limit
670  *      -> low level mapping functions, some SMP coherent,
671  *         are available, which cannot be used before vm subsystem
672  *         is being inited
673  *
674  *  mi_startup()
675  *    -> vm subsystem is being inited
676  *
677  *      pmap_init() -> THIRD PMAP MILESTONE (third epoch begins)
678  *        -> pmap is fully inited
679  *
680  *****************************************************************************/
681 
682 /*****************************************************************************
683  *
684  *	PMAP first stage initialization and utility functions
685  *	for pre-bootstrap epoch.
686  *
687  *  After pmap_bootstrap_prepare() is called, the following functions
688  *  can be used:
689  *
690  *  (1) strictly only for this stage functions for physical page allocations,
691  *      virtual space allocations, and mappings:
692  *
693  *  vm_paddr_t pmap_preboot_get_pages(u_int num);
694  *  void pmap_preboot_map_pages(vm_paddr_t pa, vm_offset_t va, u_int num);
695  *  vm_offset_t pmap_preboot_reserve_pages(u_int num);
696  *  vm_offset_t pmap_preboot_get_vpages(u_int num);
697  *  void pmap_preboot_map_attr(vm_paddr_t pa, vm_offset_t va, vm_size_t size,
698  *      vm_prot_t prot, vm_memattr_t attr);
699  *
700  *  (2) for all stages:
701  *
702  *  vm_paddr_t pmap_kextract(vm_offset_t va);
703  *
704  *  NOTE: This is not SMP coherent stage.
705  *
706  *****************************************************************************/
707 
708 #define KERNEL_P2V(pa) \
709     ((vm_offset_t)((pa) - arm_physmem_kernaddr + KERNVIRTADDR))
710 #define KERNEL_V2P(va) \
711     ((vm_paddr_t)((va) - KERNVIRTADDR + arm_physmem_kernaddr))
712 
713 static vm_paddr_t last_paddr;
714 
715 /*
716  *  Pre-bootstrap epoch page allocator.
717  */
718 vm_paddr_t
719 pmap_preboot_get_pages(u_int num)
720 {
721 	vm_paddr_t ret;
722 
723 	ret = last_paddr;
724 	last_paddr += num * PAGE_SIZE;
725 
726 	return (ret);
727 }
728 
729 /*
730  *	The fundamental initialization of PMAP stuff.
731  *
732  *  Some things already happened in locore.S and some things could happen
733  *  before pmap_bootstrap_prepare() is called, so let's recall what is done:
734  *  1. Caches are disabled.
735  *  2. We are running on virtual addresses already with 'boot_pt1'
736  *     as L1 page table.
737  *  3. So far, all virtual addresses can be converted to physical ones and
738  *     vice versa by the following macros:
739  *       KERNEL_P2V(pa) .... physical to virtual ones,
740  *       KERNEL_V2P(va) .... virtual to physical ones.
741  *
742  *  What is done herein:
743  *  1. The 'boot_pt1' is replaced by real kernel L1 page table 'kern_pt1'.
744  *  2. PT2MAP magic is brought to live.
745  *  3. Basic preboot functions for page allocations and mappings can be used.
746  *  4. Everything is prepared for L1 cache enabling.
747  *
748  *  Variations:
749  *  1. To use second TTB register, so kernel and users page tables will be
750  *     separated. This way process forking - pmap_pinit() - could be faster,
751  *     it saves physical pages and KVA per a process, and it's simple change.
752  *     However, it will lead, due to hardware matter, to the following:
753  *     (a) 2G space for kernel and 2G space for users.
754  *     (b) 1G space for kernel in low addresses and 3G for users above it.
755  *     A question is: Is the case (b) really an option? Note that case (b)
756  *     does save neither physical memory and KVA.
757  */
758 void
759 pmap_bootstrap_prepare(vm_paddr_t last)
760 {
761 	vm_paddr_t pt2pg_pa, pt2tab_pa, pa, size;
762 	vm_offset_t pt2pg_va;
763 	pt1_entry_t *pte1p;
764 	pt2_entry_t *pte2p;
765 	u_int i;
766 	uint32_t l1_attr;
767 
768 	/*
769 	 * Now, we are going to make real kernel mapping. Note that we are
770 	 * already running on some mapping made in locore.S and we expect
771 	 * that it's large enough to ensure nofault access to physical memory
772 	 * allocated herein before switch.
773 	 *
774 	 * As kernel image and everything needed before are and will be mapped
775 	 * by section mappings, we align last physical address to PTE1_SIZE.
776 	 */
777 	last_paddr = pte1_roundup(last);
778 
779 	/*
780 	 * Allocate and zero page(s) for kernel L1 page table.
781 	 *
782 	 * Note that it's first allocation on space which was PTE1_SIZE
783 	 * aligned and as such base_pt1 is aligned to NB_IN_PT1 too.
784 	 */
785 	base_pt1 = pmap_preboot_get_pages(NPG_IN_PT1);
786 	kern_pt1 = (pt1_entry_t *)KERNEL_P2V(base_pt1);
787 	bzero((void*)kern_pt1, NB_IN_PT1);
788 	pte1_sync_range(kern_pt1, NB_IN_PT1);
789 
790 	/* Allocate and zero page(s) for kernel PT2TAB. */
791 	pt2tab_pa = pmap_preboot_get_pages(NPG_IN_PT2TAB);
792 	kern_pt2tab = (pt2_entry_t *)KERNEL_P2V(pt2tab_pa);
793 	bzero(kern_pt2tab, NB_IN_PT2TAB);
794 	pte2_sync_range(kern_pt2tab, NB_IN_PT2TAB);
795 
796 	/* Allocate and zero page(s) for kernel L2 page tables. */
797 	pt2pg_pa = pmap_preboot_get_pages(NKPT2PG);
798 	pt2pg_va = KERNEL_P2V(pt2pg_pa);
799 	size = NKPT2PG * PAGE_SIZE;
800 	bzero((void*)pt2pg_va, size);
801 	pte2_sync_range((pt2_entry_t *)pt2pg_va, size);
802 
803 	/*
804 	 * Add a physical memory segment (vm_phys_seg) corresponding to the
805 	 * preallocated pages for kernel L2 page tables so that vm_page
806 	 * structures representing these pages will be created. The vm_page
807 	 * structures are required for promotion of the corresponding kernel
808 	 * virtual addresses to section mappings.
809 	 */
810 	vm_phys_add_seg(pt2tab_pa, pmap_preboot_get_pages(0));
811 
812 	/*
813 	 * Insert allocated L2 page table pages to PT2TAB and make
814 	 * link to all PT2s in L1 page table. See how kernel_vm_end
815 	 * is initialized.
816 	 *
817 	 * We play simple and safe. So every KVA will have underlaying
818 	 * L2 page table, even kernel image mapped by sections.
819 	 */
820 	pte2p = kern_pt2tab_entry(KERNBASE);
821 	for (pa = pt2pg_pa; pa < pt2pg_pa + size; pa += PTE2_SIZE)
822 		pt2tab_store(pte2p++, PTE2_KPT(pa));
823 
824 	pte1p = kern_pte1(KERNBASE);
825 	for (pa = pt2pg_pa; pa < pt2pg_pa + size; pa += NB_IN_PT2)
826 		pte1_store(pte1p++, PTE1_LINK(pa));
827 
828 	/* Make section mappings for kernel. */
829 	l1_attr = ATTR_TO_L1(PTE2_ATTR_DEFAULT);
830 	pte1p = kern_pte1(KERNBASE);
831 	for (pa = KERNEL_V2P(KERNBASE); pa < last; pa += PTE1_SIZE)
832 		pte1_store(pte1p++, PTE1_KERN(pa, PTE1_AP_KRW, l1_attr));
833 
834 	/*
835 	 * Get free and aligned space for PT2MAP and make L1 page table links
836 	 * to L2 page tables held in PT2TAB.
837 	 *
838 	 * Note that pages holding PT2s are stored in PT2TAB as pt2_entry_t
839 	 * descriptors and PT2TAB page(s) itself is(are) used as PT2s. Thus
840 	 * each entry in PT2TAB maps all PT2s in a page. This implies that
841 	 * virtual address of PT2MAP must be aligned to NPT2_IN_PG * PTE1_SIZE.
842 	 */
843 	PT2MAP = (pt2_entry_t *)(KERNBASE - PT2MAP_SIZE);
844 	pte1p = kern_pte1((vm_offset_t)PT2MAP);
845 	for (pa = pt2tab_pa, i = 0; i < NPT2_IN_PT2TAB; i++, pa += NB_IN_PT2) {
846 		pte1_store(pte1p++, PTE1_LINK(pa));
847 	}
848 
849 	/*
850 	 * Store PT2TAB in PT2TAB itself, i.e. self reference mapping.
851 	 * Each pmap will hold own PT2TAB, so the mapping should be not global.
852 	 */
853 	pte2p = kern_pt2tab_entry((vm_offset_t)PT2MAP);
854 	for (pa = pt2tab_pa, i = 0; i < NPG_IN_PT2TAB; i++, pa += PTE2_SIZE) {
855 		pt2tab_store(pte2p++, PTE2_KPT_NG(pa));
856 	}
857 
858 	/*
859 	 * Choose correct L2 page table and make mappings for allocations
860 	 * made herein which replaces temporary locore.S mappings after a while.
861 	 * Note that PT2MAP cannot be used until we switch to kern_pt1.
862 	 *
863 	 * Note, that these allocations started aligned on 1M section and
864 	 * kernel PT1 was allocated first. Making of mappings must follow
865 	 * order of physical allocations as we've used KERNEL_P2V() macro
866 	 * for virtual addresses resolution.
867 	 */
868 	pte2p = kern_pt2tab_entry((vm_offset_t)kern_pt1);
869 	pt2pg_va = KERNEL_P2V(pte2_pa(pte2_load(pte2p)));
870 
871 	pte2p = page_pt2(pt2pg_va, pte1_index((vm_offset_t)kern_pt1));
872 
873 	/* Make mapping for kernel L1 page table. */
874 	for (pa = base_pt1, i = 0; i < NPG_IN_PT1; i++, pa += PTE2_SIZE)
875 		pte2_store(pte2p++, PTE2_KPT(pa));
876 
877 	/* Make mapping for kernel PT2TAB. */
878 	for (pa = pt2tab_pa, i = 0; i < NPG_IN_PT2TAB; i++, pa += PTE2_SIZE)
879 		pte2_store(pte2p++, PTE2_KPT(pa));
880 
881 	/* Finally, switch from 'boot_pt1' to 'kern_pt1'. */
882 	pmap_kern_ttb = base_pt1 | ttb_flags;
883 	cpuinfo_reinit_mmu(pmap_kern_ttb);
884 	/*
885 	 * Initialize the first available KVA. As kernel image is mapped by
886 	 * sections, we are leaving some gap behind.
887 	 */
888 	virtual_avail = (vm_offset_t)kern_pt2tab + NPG_IN_PT2TAB * PAGE_SIZE;
889 }
890 
891 /*
892  *  Setup L2 page table page for given KVA.
893  *  Used in pre-bootstrap epoch.
894  *
895  *  Note that we have allocated NKPT2PG pages for L2 page tables in advance
896  *  and used them for mapping KVA starting from KERNBASE. However, this is not
897  *  enough. Vectors and devices need L2 page tables too. Note that they are
898  *  even above VM_MAX_KERNEL_ADDRESS.
899  */
900 static __inline vm_paddr_t
901 pmap_preboot_pt2pg_setup(vm_offset_t va)
902 {
903 	pt2_entry_t *pte2p, pte2;
904 	vm_paddr_t pt2pg_pa;
905 
906 	/* Get associated entry in PT2TAB. */
907 	pte2p = kern_pt2tab_entry(va);
908 
909 	/* Just return, if PT2s page exists already. */
910 	pte2 = pt2tab_load(pte2p);
911 	if (pte2_is_valid(pte2))
912 		return (pte2_pa(pte2));
913 
914 	KASSERT(va >= VM_MAX_KERNEL_ADDRESS,
915 	    ("%s: NKPT2PG too small", __func__));
916 
917 	/*
918 	 * Allocate page for PT2s and insert it to PT2TAB.
919 	 * In other words, map it into PT2MAP space.
920 	 */
921 	pt2pg_pa = pmap_preboot_get_pages(1);
922 	pt2tab_store(pte2p, PTE2_KPT(pt2pg_pa));
923 
924 	/* Zero all PT2s in allocated page. */
925 	bzero((void*)pt2map_pt2pg(va), PAGE_SIZE);
926 	pte2_sync_range((pt2_entry_t *)pt2map_pt2pg(va), PAGE_SIZE);
927 
928 	return (pt2pg_pa);
929 }
930 
931 /*
932  *  Setup L2 page table for given KVA.
933  *  Used in pre-bootstrap epoch.
934  */
935 static void
936 pmap_preboot_pt2_setup(vm_offset_t va)
937 {
938 	pt1_entry_t *pte1p;
939 	vm_paddr_t pt2pg_pa, pt2_pa;
940 
941 	/* Setup PT2's page. */
942 	pt2pg_pa = pmap_preboot_pt2pg_setup(va);
943 	pt2_pa = page_pt2pa(pt2pg_pa, pte1_index(va));
944 
945 	/* Insert PT2 to PT1. */
946 	pte1p = kern_pte1(va);
947 	pte1_store(pte1p, PTE1_LINK(pt2_pa));
948 }
949 
950 /*
951  *  Get L2 page entry associated with given KVA.
952  *  Used in pre-bootstrap epoch.
953  */
954 static __inline pt2_entry_t*
955 pmap_preboot_vtopte2(vm_offset_t va)
956 {
957 	pt1_entry_t *pte1p;
958 
959 	/* Setup PT2 if needed. */
960 	pte1p = kern_pte1(va);
961 	if (!pte1_is_valid(pte1_load(pte1p))) /* XXX - sections ?! */
962 		pmap_preboot_pt2_setup(va);
963 
964 	return (pt2map_entry(va));
965 }
966 
967 /*
968  *  Pre-bootstrap epoch page(s) mapping(s).
969  */
970 void
971 pmap_preboot_map_pages(vm_paddr_t pa, vm_offset_t va, u_int num)
972 {
973 	u_int i;
974 	pt2_entry_t *pte2p;
975 
976 	/* Map all the pages. */
977 	for (i = 0; i < num; i++) {
978 		pte2p = pmap_preboot_vtopte2(va);
979 		pte2_store(pte2p, PTE2_KRW(pa));
980 		va += PAGE_SIZE;
981 		pa += PAGE_SIZE;
982 	}
983 }
984 
985 /*
986  *  Pre-bootstrap epoch virtual space alocator.
987  */
988 vm_offset_t
989 pmap_preboot_reserve_pages(u_int num)
990 {
991 	u_int i;
992 	vm_offset_t start, va;
993 	pt2_entry_t *pte2p;
994 
995 	/* Allocate virtual space. */
996 	start = va = virtual_avail;
997 	virtual_avail += num * PAGE_SIZE;
998 
999 	/* Zero the mapping. */
1000 	for (i = 0; i < num; i++) {
1001 		pte2p = pmap_preboot_vtopte2(va);
1002 		pte2_store(pte2p, 0);
1003 		va += PAGE_SIZE;
1004 	}
1005 
1006 	return (start);
1007 }
1008 
1009 /*
1010  *  Pre-bootstrap epoch page(s) allocation and mapping(s).
1011  */
1012 vm_offset_t
1013 pmap_preboot_get_vpages(u_int num)
1014 {
1015 	vm_paddr_t  pa;
1016 	vm_offset_t va;
1017 
1018 	/* Allocate physical page(s). */
1019 	pa = pmap_preboot_get_pages(num);
1020 
1021 	/* Allocate virtual space. */
1022 	va = virtual_avail;
1023 	virtual_avail += num * PAGE_SIZE;
1024 
1025 	/* Map and zero all. */
1026 	pmap_preboot_map_pages(pa, va, num);
1027 	bzero((void *)va, num * PAGE_SIZE);
1028 
1029 	return (va);
1030 }
1031 
1032 /*
1033  *  Pre-bootstrap epoch page mapping(s) with attributes.
1034  */
1035 void
1036 pmap_preboot_map_attr(vm_paddr_t pa, vm_offset_t va, vm_size_t size,
1037     vm_prot_t prot, vm_memattr_t attr)
1038 {
1039 	u_int num;
1040 	u_int l1_attr, l1_prot, l2_prot, l2_attr;
1041 	pt1_entry_t *pte1p;
1042 	pt2_entry_t *pte2p;
1043 
1044 	l2_prot = prot & VM_PROT_WRITE ? PTE2_AP_KRW : PTE2_AP_KR;
1045 	l2_prot |= (prot & VM_PROT_EXECUTE) ? PTE2_X : PTE2_NX;
1046 	l2_attr = vm_memattr_to_pte2(attr);
1047 	l1_prot = ATTR_TO_L1(l2_prot);
1048 	l1_attr = ATTR_TO_L1(l2_attr);
1049 
1050 	/* Map all the pages. */
1051 	num = round_page(size);
1052 	while (num > 0) {
1053 		if ((((va | pa) & PTE1_OFFSET) == 0) && (num >= PTE1_SIZE)) {
1054 			pte1p = kern_pte1(va);
1055 			pte1_store(pte1p, PTE1_KERN(pa, l1_prot, l1_attr));
1056 			va += PTE1_SIZE;
1057 			pa += PTE1_SIZE;
1058 			num -= PTE1_SIZE;
1059 		} else {
1060 			pte2p = pmap_preboot_vtopte2(va);
1061 			pte2_store(pte2p, PTE2_KERN(pa, l2_prot, l2_attr));
1062 			va += PAGE_SIZE;
1063 			pa += PAGE_SIZE;
1064 			num -= PAGE_SIZE;
1065 		}
1066 	}
1067 }
1068 
1069 /*
1070  *  Extract from the kernel page table the physical address
1071  *  that is mapped by the given virtual address "va".
1072  */
1073 vm_paddr_t
1074 pmap_kextract(vm_offset_t va)
1075 {
1076 	vm_paddr_t pa;
1077 	pt1_entry_t pte1;
1078 	pt2_entry_t pte2;
1079 
1080 	pte1 = pte1_load(kern_pte1(va));
1081 	if (pte1_is_section(pte1)) {
1082 		pa = pte1_pa(pte1) | (va & PTE1_OFFSET);
1083 	} else if (pte1_is_link(pte1)) {
1084 		/*
1085 		 * We should beware of concurrent promotion that changes
1086 		 * pte1 at this point. However, it's not a problem as PT2
1087 		 * page is preserved by promotion in PT2TAB. So even if
1088 		 * it happens, using of PT2MAP is still safe.
1089 		 *
1090 		 * QQQ: However, concurrent removing is a problem which
1091 		 *      ends in abort on PT2MAP space. Locking must be used
1092 		 *      to deal with this.
1093 		 */
1094 		pte2 = pte2_load(pt2map_entry(va));
1095 		pa = pte2_pa(pte2) | (va & PTE2_OFFSET);
1096 	}
1097 	else {
1098 		panic("%s: va %#x pte1 %#x", __func__, va, pte1);
1099 	}
1100 	return (pa);
1101 }
1102 
1103 /*
1104  *  Extract from the kernel page table the physical address
1105  *  that is mapped by the given virtual address "va". Also
1106  *  return L2 page table entry which maps the address.
1107  *
1108  *  This is only intended to be used for panic dumps.
1109  */
1110 vm_paddr_t
1111 pmap_dump_kextract(vm_offset_t va, pt2_entry_t *pte2p)
1112 {
1113 	vm_paddr_t pa;
1114 	pt1_entry_t pte1;
1115 	pt2_entry_t pte2;
1116 
1117 	pte1 = pte1_load(kern_pte1(va));
1118 	if (pte1_is_section(pte1)) {
1119 		pa = pte1_pa(pte1) | (va & PTE1_OFFSET);
1120 		pte2 = pa | ATTR_TO_L2(pte1) | PTE2_V;
1121 	} else if (pte1_is_link(pte1)) {
1122 		pte2 = pte2_load(pt2map_entry(va));
1123 		pa = pte2_pa(pte2);
1124 	} else {
1125 		pte2 = 0;
1126 		pa = 0;
1127 	}
1128 	if (pte2p != NULL)
1129 		*pte2p = pte2;
1130 	return (pa);
1131 }
1132 
1133 /*****************************************************************************
1134  *
1135  *	PMAP second stage initialization and utility functions
1136  *	for bootstrap epoch.
1137  *
1138  *  After pmap_bootstrap() is called, the following functions for
1139  *  mappings can be used:
1140  *
1141  *  void pmap_kenter(vm_offset_t va, vm_paddr_t pa);
1142  *  void pmap_kremove(vm_offset_t va);
1143  *  vm_offset_t pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end,
1144  *      int prot);
1145  *
1146  *  NOTE: This is not SMP coherent stage. And physical page allocation is not
1147  *        allowed during this stage.
1148  *
1149  *****************************************************************************/
1150 
1151 /*
1152  *  Initialize kernel PMAP locks and lists, kernel_pmap itself, and
1153  *  reserve various virtual spaces for temporary mappings.
1154  */
1155 void
1156 pmap_bootstrap(vm_offset_t firstaddr)
1157 {
1158 	pt2_entry_t *unused __unused;
1159 	struct pcpu *pc;
1160 
1161 	/*
1162 	 * Initialize the kernel pmap (which is statically allocated).
1163 	 */
1164 	PMAP_LOCK_INIT(kernel_pmap);
1165 	kernel_l1pa = (vm_paddr_t)kern_pt1;  /* for libkvm */
1166 	kernel_pmap->pm_pt1 = kern_pt1;
1167 	kernel_pmap->pm_pt2tab = kern_pt2tab;
1168 	CPU_FILL(&kernel_pmap->pm_active);  /* don't allow deactivation */
1169 	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
1170 
1171 	/*
1172 	 * Initialize the global pv list lock.
1173 	 */
1174 	rw_init(&pvh_global_lock, "pmap pv global");
1175 
1176 	LIST_INIT(&allpmaps);
1177 
1178 	/*
1179 	 * Request a spin mutex so that changes to allpmaps cannot be
1180 	 * preempted by smp_rendezvous_cpus().
1181 	 */
1182 	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
1183 	mtx_lock_spin(&allpmaps_lock);
1184 	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
1185 	mtx_unlock_spin(&allpmaps_lock);
1186 
1187 	/*
1188 	 * Reserve some special page table entries/VA space for temporary
1189 	 * mapping of pages.
1190 	 */
1191 #define	SYSMAP(c, p, v, n)  do {		\
1192 	v = (c)pmap_preboot_reserve_pages(n);	\
1193 	p = pt2map_entry((vm_offset_t)v);	\
1194 	} while (0)
1195 
1196 	/*
1197 	 * Local CMAP1/CMAP2 are used for zeroing and copying pages.
1198 	 * Local CMAP2 is also used for data cache cleaning.
1199 	 */
1200 	pc = get_pcpu();
1201 	mtx_init(&pc->pc_cmap_lock, "SYSMAPS", NULL, MTX_DEF);
1202 	SYSMAP(caddr_t, pc->pc_cmap1_pte2p, pc->pc_cmap1_addr, 1);
1203 	SYSMAP(caddr_t, pc->pc_cmap2_pte2p, pc->pc_cmap2_addr, 1);
1204 	SYSMAP(vm_offset_t, pc->pc_qmap_pte2p, pc->pc_qmap_addr, 1);
1205 
1206 	/*
1207 	 * Crashdump maps.
1208 	 */
1209 	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS);
1210 
1211 	/*
1212 	 * _tmppt is used for reading arbitrary physical pages via /dev/mem.
1213 	 */
1214 	SYSMAP(caddr_t, unused, _tmppt, 1);
1215 
1216 	/*
1217 	 * PADDR1 and PADDR2 are used by pmap_pte2_quick() and pmap_pte2(),
1218 	 * respectively. PADDR3 is used by pmap_pte2_ddb().
1219 	 */
1220 	SYSMAP(pt2_entry_t *, PMAP1, PADDR1, 1);
1221 	SYSMAP(pt2_entry_t *, PMAP2, PADDR2, 1);
1222 #ifdef DDB
1223 	SYSMAP(pt2_entry_t *, PMAP3, PADDR3, 1);
1224 #endif
1225 	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
1226 
1227 	/*
1228 	 * Note that in very short time in initarm(), we are going to
1229 	 * initialize phys_avail[] array and no further page allocation
1230 	 * can happen after that until vm subsystem will be initialized.
1231 	 */
1232 	kernel_vm_end_new = kernel_vm_end;
1233 	virtual_end = vm_max_kernel_address;
1234 }
1235 
1236 static void
1237 pmap_init_reserved_pages(void)
1238 {
1239 	struct pcpu *pc;
1240 	vm_offset_t pages;
1241 	int i;
1242 
1243 	CPU_FOREACH(i) {
1244 		pc = pcpu_find(i);
1245 		/*
1246 		 * Skip if the mapping has already been initialized,
1247 		 * i.e. this is the BSP.
1248 		 */
1249 		if (pc->pc_cmap1_addr != 0)
1250 			continue;
1251 		mtx_init(&pc->pc_cmap_lock, "SYSMAPS", NULL, MTX_DEF);
1252 		pages = kva_alloc(PAGE_SIZE * 3);
1253 		if (pages == 0)
1254 			panic("%s: unable to allocate KVA", __func__);
1255 		pc->pc_cmap1_pte2p = pt2map_entry(pages);
1256 		pc->pc_cmap2_pte2p = pt2map_entry(pages + PAGE_SIZE);
1257 		pc->pc_qmap_pte2p = pt2map_entry(pages + (PAGE_SIZE * 2));
1258 		pc->pc_cmap1_addr = (caddr_t)pages;
1259 		pc->pc_cmap2_addr = (caddr_t)(pages + PAGE_SIZE);
1260 		pc->pc_qmap_addr = pages + (PAGE_SIZE * 2);
1261 	}
1262 }
1263 SYSINIT(rpages_init, SI_SUB_CPU, SI_ORDER_ANY, pmap_init_reserved_pages, NULL);
1264 
1265 /*
1266  *  The function can already be use in second initialization stage.
1267  *  As such, the function DOES NOT call pmap_growkernel() where PT2
1268  *  allocation can happen. So if used, be sure that PT2 for given
1269  *  virtual address is allocated already!
1270  *
1271  *  Add a wired page to the kva.
1272  *  Note: not SMP coherent.
1273  */
1274 static __inline void
1275 pmap_kenter_prot_attr(vm_offset_t va, vm_paddr_t pa, uint32_t prot,
1276     uint32_t attr)
1277 {
1278 	pt1_entry_t *pte1p;
1279 	pt2_entry_t *pte2p;
1280 
1281 	pte1p = kern_pte1(va);
1282 	if (!pte1_is_valid(pte1_load(pte1p))) { /* XXX - sections ?! */
1283 		/*
1284 		 * This is a very low level function, so PT2 and particularly
1285 		 * PT2PG associated with given virtual address must be already
1286 		 * allocated. It's a pain mainly during pmap initialization
1287 		 * stage. However, called after pmap initialization with
1288 		 * virtual address not under kernel_vm_end will lead to
1289 		 * the same misery.
1290 		 */
1291 		if (!pte2_is_valid(pte2_load(kern_pt2tab_entry(va))))
1292 			panic("%s: kernel PT2 not allocated!", __func__);
1293 	}
1294 
1295 	pte2p = pt2map_entry(va);
1296 	pte2_store(pte2p, PTE2_KERN(pa, prot, attr));
1297 }
1298 
1299 PMAP_INLINE void
1300 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1301 {
1302 
1303 	pmap_kenter_prot_attr(va, pa, PTE2_AP_KRW, PTE2_ATTR_DEFAULT);
1304 }
1305 
1306 /*
1307  *  Remove a page from the kernel pagetables.
1308  *  Note: not SMP coherent.
1309  */
1310 PMAP_INLINE void
1311 pmap_kremove(vm_offset_t va)
1312 {
1313 	pt2_entry_t *pte2p;
1314 
1315 	pte2p = pt2map_entry(va);
1316 	pte2_clear(pte2p);
1317 }
1318 
1319 /*
1320  *  Share new kernel PT2PG with all pmaps.
1321  *  The caller is responsible for maintaining TLB consistency.
1322  */
1323 static void
1324 pmap_kenter_pt2tab(vm_offset_t va, pt2_entry_t npte2)
1325 {
1326 	pmap_t pmap;
1327 	pt2_entry_t *pte2p;
1328 
1329 	mtx_lock_spin(&allpmaps_lock);
1330 	LIST_FOREACH(pmap, &allpmaps, pm_list) {
1331 		pte2p = pmap_pt2tab_entry(pmap, va);
1332 		pt2tab_store(pte2p, npte2);
1333 	}
1334 	mtx_unlock_spin(&allpmaps_lock);
1335 }
1336 
1337 /*
1338  *  Share new kernel PTE1 with all pmaps.
1339  *  The caller is responsible for maintaining TLB consistency.
1340  */
1341 static void
1342 pmap_kenter_pte1(vm_offset_t va, pt1_entry_t npte1)
1343 {
1344 	pmap_t pmap;
1345 	pt1_entry_t *pte1p;
1346 
1347 	mtx_lock_spin(&allpmaps_lock);
1348 	LIST_FOREACH(pmap, &allpmaps, pm_list) {
1349 		pte1p = pmap_pte1(pmap, va);
1350 		pte1_store(pte1p, npte1);
1351 	}
1352 	mtx_unlock_spin(&allpmaps_lock);
1353 }
1354 
1355 /*
1356  *  Used to map a range of physical addresses into kernel
1357  *  virtual address space.
1358  *
1359  *  The value passed in '*virt' is a suggested virtual address for
1360  *  the mapping. Architectures which can support a direct-mapped
1361  *  physical to virtual region can return the appropriate address
1362  *  within that region, leaving '*virt' unchanged. Other
1363  *  architectures should map the pages starting at '*virt' and
1364  *  update '*virt' with the first usable address after the mapped
1365  *  region.
1366  *
1367  *  NOTE: Read the comments above pmap_kenter_prot_attr() as
1368  *        the function is used herein!
1369  */
1370 vm_offset_t
1371 pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1372 {
1373 	vm_offset_t va, sva;
1374 	vm_paddr_t pte1_offset;
1375 	pt1_entry_t npte1;
1376 	uint32_t l1prot, l2prot;
1377 	uint32_t l1attr, l2attr;
1378 
1379 	PDEBUG(1, printf("%s: virt = %#x, start = %#x, end = %#x (size = %#x),"
1380 	    " prot = %d\n", __func__, *virt, start, end, end - start,  prot));
1381 
1382 	l2prot = (prot & VM_PROT_WRITE) ? PTE2_AP_KRW : PTE2_AP_KR;
1383 	l2prot |= (prot & VM_PROT_EXECUTE) ? PTE2_X : PTE2_NX;
1384 	l1prot = ATTR_TO_L1(l2prot);
1385 
1386 	l2attr = PTE2_ATTR_DEFAULT;
1387 	l1attr = ATTR_TO_L1(l2attr);
1388 
1389 	va = *virt;
1390 	/*
1391 	 * Does the physical address range's size and alignment permit at
1392 	 * least one section mapping to be created?
1393 	 */
1394 	pte1_offset = start & PTE1_OFFSET;
1395 	if ((end - start) - ((PTE1_SIZE - pte1_offset) & PTE1_OFFSET) >=
1396 	    PTE1_SIZE) {
1397 		/*
1398 		 * Increase the starting virtual address so that its alignment
1399 		 * does not preclude the use of section mappings.
1400 		 */
1401 		if ((va & PTE1_OFFSET) < pte1_offset)
1402 			va = pte1_trunc(va) + pte1_offset;
1403 		else if ((va & PTE1_OFFSET) > pte1_offset)
1404 			va = pte1_roundup(va) + pte1_offset;
1405 	}
1406 	sva = va;
1407 	while (start < end) {
1408 		if ((start & PTE1_OFFSET) == 0 && end - start >= PTE1_SIZE) {
1409 			KASSERT((va & PTE1_OFFSET) == 0,
1410 			    ("%s: misaligned va %#x", __func__, va));
1411 			npte1 = PTE1_KERN(start, l1prot, l1attr);
1412 			pmap_kenter_pte1(va, npte1);
1413 			va += PTE1_SIZE;
1414 			start += PTE1_SIZE;
1415 		} else {
1416 			pmap_kenter_prot_attr(va, start, l2prot, l2attr);
1417 			va += PAGE_SIZE;
1418 			start += PAGE_SIZE;
1419 		}
1420 	}
1421 	tlb_flush_range(sva, va - sva);
1422 	*virt = va;
1423 	return (sva);
1424 }
1425 
1426 /*
1427  *  Make a temporary mapping for a physical address.
1428  *  This is only intended to be used for panic dumps.
1429  */
1430 void *
1431 pmap_kenter_temporary(vm_paddr_t pa, int i)
1432 {
1433 	vm_offset_t va;
1434 
1435 	/* QQQ: 'i' should be less or equal to MAXDUMPPGS. */
1436 
1437 	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
1438 	pmap_kenter(va, pa);
1439 	tlb_flush_local(va);
1440 	return ((void *)crashdumpmap);
1441 }
1442 
1443 
1444 /*************************************
1445  *
1446  *  TLB & cache maintenance routines.
1447  *
1448  *************************************/
1449 
1450 /*
1451  *  We inline these within pmap.c for speed.
1452  */
1453 PMAP_INLINE void
1454 pmap_tlb_flush(pmap_t pmap, vm_offset_t va)
1455 {
1456 
1457 	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
1458 		tlb_flush(va);
1459 }
1460 
1461 PMAP_INLINE void
1462 pmap_tlb_flush_range(pmap_t pmap, vm_offset_t sva, vm_size_t size)
1463 {
1464 
1465 	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
1466 		tlb_flush_range(sva, size);
1467 }
1468 
1469 /*
1470  *  Abuse the pte2 nodes for unmapped kva to thread a kva freelist through.
1471  *  Requirements:
1472  *   - Must deal with pages in order to ensure that none of the PTE2_* bits
1473  *     are ever set, PTE2_V in particular.
1474  *   - Assumes we can write to pte2s without pte2_store() atomic ops.
1475  *   - Assumes nothing will ever test these addresses for 0 to indicate
1476  *     no mapping instead of correctly checking PTE2_V.
1477  *   - Assumes a vm_offset_t will fit in a pte2 (true for arm).
1478  *  Because PTE2_V is never set, there can be no mappings to invalidate.
1479  */
1480 static vm_offset_t
1481 pmap_pte2list_alloc(vm_offset_t *head)
1482 {
1483 	pt2_entry_t *pte2p;
1484 	vm_offset_t va;
1485 
1486 	va = *head;
1487 	if (va == 0)
1488 		panic("pmap_ptelist_alloc: exhausted ptelist KVA");
1489 	pte2p = pt2map_entry(va);
1490 	*head = *pte2p;
1491 	if (*head & PTE2_V)
1492 		panic("%s: va with PTE2_V set!", __func__);
1493 	*pte2p = 0;
1494 	return (va);
1495 }
1496 
1497 static void
1498 pmap_pte2list_free(vm_offset_t *head, vm_offset_t va)
1499 {
1500 	pt2_entry_t *pte2p;
1501 
1502 	if (va & PTE2_V)
1503 		panic("%s: freeing va with PTE2_V set!", __func__);
1504 	pte2p = pt2map_entry(va);
1505 	*pte2p = *head;		/* virtual! PTE2_V is 0 though */
1506 	*head = va;
1507 }
1508 
1509 static void
1510 pmap_pte2list_init(vm_offset_t *head, void *base, int npages)
1511 {
1512 	int i;
1513 	vm_offset_t va;
1514 
1515 	*head = 0;
1516 	for (i = npages - 1; i >= 0; i--) {
1517 		va = (vm_offset_t)base + i * PAGE_SIZE;
1518 		pmap_pte2list_free(head, va);
1519 	}
1520 }
1521 
1522 /*****************************************************************************
1523  *
1524  *	PMAP third and final stage initialization.
1525  *
1526  *  After pmap_init() is called, PMAP subsystem is fully initialized.
1527  *
1528  *****************************************************************************/
1529 
1530 SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
1531 
1532 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
1533     "Max number of PV entries");
1534 SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
1535     "Page share factor per proc");
1536 
1537 static u_long nkpt2pg = NKPT2PG;
1538 SYSCTL_ULONG(_vm_pmap, OID_AUTO, nkpt2pg, CTLFLAG_RD,
1539     &nkpt2pg, 0, "Pre-allocated pages for kernel PT2s");
1540 
1541 static int sp_enabled = 1;
1542 SYSCTL_INT(_vm_pmap, OID_AUTO, sp_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
1543     &sp_enabled, 0, "Are large page mappings enabled?");
1544 
1545 static SYSCTL_NODE(_vm_pmap, OID_AUTO, pte1, CTLFLAG_RD, 0,
1546     "1MB page mapping counters");
1547 
1548 static u_long pmap_pte1_demotions;
1549 SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, demotions, CTLFLAG_RD,
1550     &pmap_pte1_demotions, 0, "1MB page demotions");
1551 
1552 static u_long pmap_pte1_mappings;
1553 SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, mappings, CTLFLAG_RD,
1554     &pmap_pte1_mappings, 0, "1MB page mappings");
1555 
1556 static u_long pmap_pte1_p_failures;
1557 SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, p_failures, CTLFLAG_RD,
1558     &pmap_pte1_p_failures, 0, "1MB page promotion failures");
1559 
1560 static u_long pmap_pte1_promotions;
1561 SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, promotions, CTLFLAG_RD,
1562     &pmap_pte1_promotions, 0, "1MB page promotions");
1563 
1564 static u_long pmap_pte1_kern_demotions;
1565 SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, kern_demotions, CTLFLAG_RD,
1566     &pmap_pte1_kern_demotions, 0, "1MB page kernel demotions");
1567 
1568 static u_long pmap_pte1_kern_promotions;
1569 SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, kern_promotions, CTLFLAG_RD,
1570     &pmap_pte1_kern_promotions, 0, "1MB page kernel promotions");
1571 
1572 static __inline ttb_entry_t
1573 pmap_ttb_get(pmap_t pmap)
1574 {
1575 
1576 	return (vtophys(pmap->pm_pt1) | ttb_flags);
1577 }
1578 
1579 /*
1580  *  Initialize a vm_page's machine-dependent fields.
1581  *
1582  *  Variations:
1583  *  1. Pages for L2 page tables are always not managed. So, pv_list and
1584  *     pt2_wirecount can share same physical space. However, proper
1585  *     initialization on a page alloc for page tables and reinitialization
1586  *     on the page free must be ensured.
1587  */
1588 void
1589 pmap_page_init(vm_page_t m)
1590 {
1591 
1592 	TAILQ_INIT(&m->md.pv_list);
1593 	pt2_wirecount_init(m);
1594 	m->md.pat_mode = VM_MEMATTR_DEFAULT;
1595 }
1596 
1597 /*
1598  *  Virtualization for faster way how to zero whole page.
1599  */
1600 static __inline void
1601 pagezero(void *page)
1602 {
1603 
1604 	bzero(page, PAGE_SIZE);
1605 }
1606 
1607 /*
1608  *  Zero L2 page table page.
1609  *  Use same KVA as in pmap_zero_page().
1610  */
1611 static __inline vm_paddr_t
1612 pmap_pt2pg_zero(vm_page_t m)
1613 {
1614 	pt2_entry_t *cmap2_pte2p;
1615 	vm_paddr_t pa;
1616 	struct pcpu *pc;
1617 
1618 	pa = VM_PAGE_TO_PHYS(m);
1619 
1620 	/*
1621 	 * XXX: For now, we map whole page even if it's already zero,
1622 	 *      to sync it even if the sync is only DSB.
1623 	 */
1624 	sched_pin();
1625 	pc = get_pcpu();
1626 	cmap2_pte2p = pc->pc_cmap2_pte2p;
1627 	mtx_lock(&pc->pc_cmap_lock);
1628 	if (pte2_load(cmap2_pte2p) != 0)
1629 		panic("%s: CMAP2 busy", __func__);
1630 	pte2_store(cmap2_pte2p, PTE2_KERN_NG(pa, PTE2_AP_KRW,
1631 	    vm_page_pte2_attr(m)));
1632 	/*  Even VM_ALLOC_ZERO request is only advisory. */
1633 	if ((m->flags & PG_ZERO) == 0)
1634 		pagezero(pc->pc_cmap2_addr);
1635 	pte2_sync_range((pt2_entry_t *)pc->pc_cmap2_addr, PAGE_SIZE);
1636 	pte2_clear(cmap2_pte2p);
1637 	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
1638 
1639 	/*
1640 	 * Unpin the thread before releasing the lock.  Otherwise the thread
1641 	 * could be rescheduled while still bound to the current CPU, only
1642 	 * to unpin itself immediately upon resuming execution.
1643 	 */
1644 	sched_unpin();
1645 	mtx_unlock(&pc->pc_cmap_lock);
1646 
1647 	return (pa);
1648 }
1649 
1650 /*
1651  *  Init just allocated page as L2 page table(s) holder
1652  *  and return its physical address.
1653  */
1654 static __inline vm_paddr_t
1655 pmap_pt2pg_init(pmap_t pmap, vm_offset_t va, vm_page_t m)
1656 {
1657 	vm_paddr_t pa;
1658 	pt2_entry_t *pte2p;
1659 
1660 	/* Check page attributes. */
1661 	if (m->md.pat_mode != pt_memattr)
1662 		pmap_page_set_memattr(m, pt_memattr);
1663 
1664 	/* Zero page and init wire counts. */
1665 	pa = pmap_pt2pg_zero(m);
1666 	pt2_wirecount_init(m);
1667 
1668 	/*
1669 	 * Map page to PT2MAP address space for given pmap.
1670 	 * Note that PT2MAP space is shared with all pmaps.
1671 	 */
1672 	if (pmap == kernel_pmap)
1673 		pmap_kenter_pt2tab(va, PTE2_KPT(pa));
1674 	else {
1675 		pte2p = pmap_pt2tab_entry(pmap, va);
1676 		pt2tab_store(pte2p, PTE2_KPT_NG(pa));
1677 	}
1678 
1679 	return (pa);
1680 }
1681 
1682 /*
1683  *  Initialize the pmap module.
1684  *  Called by vm_init, to initialize any structures that the pmap
1685  *  system needs to map virtual memory.
1686  */
1687 void
1688 pmap_init(void)
1689 {
1690 	vm_size_t s;
1691 	pt2_entry_t *pte2p, pte2;
1692 	u_int i, pte1_idx, pv_npg;
1693 
1694 	PDEBUG(1, printf("%s: phys_start = %#x\n", __func__, PHYSADDR));
1695 
1696 	/*
1697 	 * Initialize the vm page array entries for kernel pmap's
1698 	 * L2 page table pages allocated in advance.
1699 	 */
1700 	pte1_idx = pte1_index(KERNBASE - PT2MAP_SIZE);
1701 	pte2p = kern_pt2tab_entry(KERNBASE - PT2MAP_SIZE);
1702 	for (i = 0; i < nkpt2pg + NPG_IN_PT2TAB; i++, pte2p++) {
1703 		vm_paddr_t pa;
1704 		vm_page_t m;
1705 
1706 		pte2 = pte2_load(pte2p);
1707 		KASSERT(pte2_is_valid(pte2), ("%s: no valid entry", __func__));
1708 
1709 		pa = pte2_pa(pte2);
1710 		m = PHYS_TO_VM_PAGE(pa);
1711 		KASSERT(m >= vm_page_array &&
1712 		    m < &vm_page_array[vm_page_array_size],
1713 		    ("%s: L2 page table page is out of range", __func__));
1714 
1715 		m->pindex = pte1_idx;
1716 		m->phys_addr = pa;
1717 		pte1_idx += NPT2_IN_PG;
1718 	}
1719 
1720 	/*
1721 	 * Initialize the address space (zone) for the pv entries.  Set a
1722 	 * high water mark so that the system can recover from excessive
1723 	 * numbers of pv entries.
1724 	 */
1725 	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1726 	pv_entry_max = shpgperproc * maxproc + vm_cnt.v_page_count;
1727 	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1728 	pv_entry_max = roundup(pv_entry_max, _NPCPV);
1729 	pv_entry_high_water = 9 * (pv_entry_max / 10);
1730 
1731 	/*
1732 	 * Are large page mappings enabled?
1733 	 */
1734 	TUNABLE_INT_FETCH("vm.pmap.sp_enabled", &sp_enabled);
1735 	if (sp_enabled) {
1736 		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
1737 		    ("%s: can't assign to pagesizes[1]", __func__));
1738 		pagesizes[1] = PTE1_SIZE;
1739 	}
1740 
1741 	/*
1742 	 * Calculate the size of the pv head table for sections.
1743 	 * Handle the possibility that "vm_phys_segs[...].end" is zero.
1744 	 * Note that the table is only for sections which could be promoted.
1745 	 */
1746 	first_managed_pa = pte1_trunc(vm_phys_segs[0].start);
1747 	pv_npg = (pte1_trunc(vm_phys_segs[vm_phys_nsegs - 1].end - PAGE_SIZE)
1748 	    - first_managed_pa) / PTE1_SIZE + 1;
1749 
1750 	/*
1751 	 * Allocate memory for the pv head table for sections.
1752 	 */
1753 	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
1754 	s = round_page(s);
1755 	pv_table = (struct md_page *)kmem_malloc(kernel_arena, s,
1756 	    M_WAITOK | M_ZERO);
1757 	for (i = 0; i < pv_npg; i++)
1758 		TAILQ_INIT(&pv_table[i].pv_list);
1759 
1760 	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
1761 	pv_chunkbase = (struct pv_chunk *)kva_alloc(PAGE_SIZE * pv_maxchunks);
1762 	if (pv_chunkbase == NULL)
1763 		panic("%s: not enough kvm for pv chunks", __func__);
1764 	pmap_pte2list_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
1765 }
1766 
1767 /*
1768  *  Add a list of wired pages to the kva
1769  *  this routine is only used for temporary
1770  *  kernel mappings that do not need to have
1771  *  page modification or references recorded.
1772  *  Note that old mappings are simply written
1773  *  over.  The page *must* be wired.
1774  *  Note: SMP coherent.  Uses a ranged shootdown IPI.
1775  */
1776 void
1777 pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1778 {
1779 	u_int anychanged;
1780 	pt2_entry_t *epte2p, *pte2p, pte2;
1781 	vm_page_t m;
1782 	vm_paddr_t pa;
1783 
1784 	anychanged = 0;
1785 	pte2p = pt2map_entry(sva);
1786 	epte2p = pte2p + count;
1787 	while (pte2p < epte2p) {
1788 		m = *ma++;
1789 		pa = VM_PAGE_TO_PHYS(m);
1790 		pte2 = pte2_load(pte2p);
1791 		if ((pte2_pa(pte2) != pa) ||
1792 		    (pte2_attr(pte2) != vm_page_pte2_attr(m))) {
1793 			anychanged++;
1794 			pte2_store(pte2p, PTE2_KERN(pa, PTE2_AP_KRW,
1795 			    vm_page_pte2_attr(m)));
1796 		}
1797 		pte2p++;
1798 	}
1799 	if (__predict_false(anychanged))
1800 		tlb_flush_range(sva, count * PAGE_SIZE);
1801 }
1802 
1803 /*
1804  *  This routine tears out page mappings from the
1805  *  kernel -- it is meant only for temporary mappings.
1806  *  Note: SMP coherent.  Uses a ranged shootdown IPI.
1807  */
1808 void
1809 pmap_qremove(vm_offset_t sva, int count)
1810 {
1811 	vm_offset_t va;
1812 
1813 	va = sva;
1814 	while (count-- > 0) {
1815 		pmap_kremove(va);
1816 		va += PAGE_SIZE;
1817 	}
1818 	tlb_flush_range(sva, va - sva);
1819 }
1820 
1821 /*
1822  *  Are we current address space or kernel?
1823  */
1824 static __inline int
1825 pmap_is_current(pmap_t pmap)
1826 {
1827 
1828 	return (pmap == kernel_pmap ||
1829 		(pmap == vmspace_pmap(curthread->td_proc->p_vmspace)));
1830 }
1831 
1832 /*
1833  *  If the given pmap is not the current or kernel pmap, the returned
1834  *  pte2 must be released by passing it to pmap_pte2_release().
1835  */
1836 static pt2_entry_t *
1837 pmap_pte2(pmap_t pmap, vm_offset_t va)
1838 {
1839 	pt1_entry_t pte1;
1840 	vm_paddr_t pt2pg_pa;
1841 
1842 	pte1 = pte1_load(pmap_pte1(pmap, va));
1843 	if (pte1_is_section(pte1))
1844 		panic("%s: attempt to map PTE1", __func__);
1845 	if (pte1_is_link(pte1)) {
1846 		/* Are we current address space or kernel? */
1847 		if (pmap_is_current(pmap))
1848 			return (pt2map_entry(va));
1849 		/* Note that L2 page table size is not equal to PAGE_SIZE. */
1850 		pt2pg_pa = trunc_page(pte1_link_pa(pte1));
1851 		mtx_lock(&PMAP2mutex);
1852 		if (pte2_pa(pte2_load(PMAP2)) != pt2pg_pa) {
1853 			pte2_store(PMAP2, PTE2_KPT(pt2pg_pa));
1854 			tlb_flush((vm_offset_t)PADDR2);
1855 		}
1856 		return (PADDR2 + (arm32_btop(va) & (NPTE2_IN_PG - 1)));
1857 	}
1858 	return (NULL);
1859 }
1860 
1861 /*
1862  *  Releases a pte2 that was obtained from pmap_pte2().
1863  *  Be prepared for the pte2p being NULL.
1864  */
1865 static __inline void
1866 pmap_pte2_release(pt2_entry_t *pte2p)
1867 {
1868 
1869 	if ((pt2_entry_t *)(trunc_page((vm_offset_t)pte2p)) == PADDR2) {
1870 		mtx_unlock(&PMAP2mutex);
1871 	}
1872 }
1873 
1874 /*
1875  *  Super fast pmap_pte2 routine best used when scanning
1876  *  the pv lists.  This eliminates many coarse-grained
1877  *  invltlb calls.  Note that many of the pv list
1878  *  scans are across different pmaps.  It is very wasteful
1879  *  to do an entire tlb flush for checking a single mapping.
1880  *
1881  *  If the given pmap is not the current pmap, pvh_global_lock
1882  *  must be held and curthread pinned to a CPU.
1883  */
1884 static pt2_entry_t *
1885 pmap_pte2_quick(pmap_t pmap, vm_offset_t va)
1886 {
1887 	pt1_entry_t pte1;
1888 	vm_paddr_t pt2pg_pa;
1889 
1890 	pte1 = pte1_load(pmap_pte1(pmap, va));
1891 	if (pte1_is_section(pte1))
1892 		panic("%s: attempt to map PTE1", __func__);
1893 	if (pte1_is_link(pte1)) {
1894 		/* Are we current address space or kernel? */
1895 		if (pmap_is_current(pmap))
1896 			return (pt2map_entry(va));
1897 		rw_assert(&pvh_global_lock, RA_WLOCKED);
1898 		KASSERT(curthread->td_pinned > 0,
1899 		    ("%s: curthread not pinned", __func__));
1900 		/* Note that L2 page table size is not equal to PAGE_SIZE. */
1901 		pt2pg_pa = trunc_page(pte1_link_pa(pte1));
1902 		if (pte2_pa(pte2_load(PMAP1)) != pt2pg_pa) {
1903 			pte2_store(PMAP1, PTE2_KPT(pt2pg_pa));
1904 #ifdef SMP
1905 			PMAP1cpu = PCPU_GET(cpuid);
1906 #endif
1907 			tlb_flush_local((vm_offset_t)PADDR1);
1908 			PMAP1changed++;
1909 		} else
1910 #ifdef SMP
1911 		if (PMAP1cpu != PCPU_GET(cpuid)) {
1912 			PMAP1cpu = PCPU_GET(cpuid);
1913 			tlb_flush_local((vm_offset_t)PADDR1);
1914 			PMAP1changedcpu++;
1915 		} else
1916 #endif
1917 			PMAP1unchanged++;
1918 		return (PADDR1 + (arm32_btop(va) & (NPTE2_IN_PG - 1)));
1919 	}
1920 	return (NULL);
1921 }
1922 
1923 /*
1924  *  Routine: pmap_extract
1925  *  Function:
1926  * 	Extract the physical page address associated
1927  *	with the given map/virtual_address pair.
1928  */
1929 vm_paddr_t
1930 pmap_extract(pmap_t pmap, vm_offset_t va)
1931 {
1932 	vm_paddr_t pa;
1933 	pt1_entry_t pte1;
1934 	pt2_entry_t *pte2p;
1935 
1936 	PMAP_LOCK(pmap);
1937 	pte1 = pte1_load(pmap_pte1(pmap, va));
1938 	if (pte1_is_section(pte1))
1939 		pa = pte1_pa(pte1) | (va & PTE1_OFFSET);
1940 	else if (pte1_is_link(pte1)) {
1941 		pte2p = pmap_pte2(pmap, va);
1942 		pa = pte2_pa(pte2_load(pte2p)) | (va & PTE2_OFFSET);
1943 		pmap_pte2_release(pte2p);
1944 	} else
1945 		pa = 0;
1946 	PMAP_UNLOCK(pmap);
1947 	return (pa);
1948 }
1949 
1950 /*
1951  *  Routine: pmap_extract_and_hold
1952  *  Function:
1953  *	Atomically extract and hold the physical page
1954  *	with the given pmap and virtual address pair
1955  *	if that mapping permits the given protection.
1956  */
1957 vm_page_t
1958 pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1959 {
1960 	vm_paddr_t pa, lockpa;
1961 	pt1_entry_t pte1;
1962 	pt2_entry_t pte2, *pte2p;
1963 	vm_page_t m;
1964 
1965 	lockpa = 0;
1966 	m = NULL;
1967 	PMAP_LOCK(pmap);
1968 retry:
1969 	pte1 = pte1_load(pmap_pte1(pmap, va));
1970 	if (pte1_is_section(pte1)) {
1971 		if (!(pte1 & PTE1_RO) || !(prot & VM_PROT_WRITE)) {
1972 			pa = pte1_pa(pte1) | (va & PTE1_OFFSET);
1973 			if (vm_page_pa_tryrelock(pmap, pa, &lockpa))
1974 				goto retry;
1975 			m = PHYS_TO_VM_PAGE(pa);
1976 			vm_page_hold(m);
1977 		}
1978 	} else if (pte1_is_link(pte1)) {
1979 		pte2p = pmap_pte2(pmap, va);
1980 		pte2 = pte2_load(pte2p);
1981 		pmap_pte2_release(pte2p);
1982 		if (pte2_is_valid(pte2) &&
1983 		    (!(pte2 & PTE2_RO) || !(prot & VM_PROT_WRITE))) {
1984 			pa = pte2_pa(pte2);
1985 			if (vm_page_pa_tryrelock(pmap, pa, &lockpa))
1986 				goto retry;
1987 			m = PHYS_TO_VM_PAGE(pa);
1988 			vm_page_hold(m);
1989 		}
1990 	}
1991 	PA_UNLOCK_COND(lockpa);
1992 	PMAP_UNLOCK(pmap);
1993 	return (m);
1994 }
1995 
1996 /*
1997  *  Grow the number of kernel L2 page table entries, if needed.
1998  */
1999 void
2000 pmap_growkernel(vm_offset_t addr)
2001 {
2002 	vm_page_t m;
2003 	vm_paddr_t pt2pg_pa, pt2_pa;
2004 	pt1_entry_t pte1;
2005 	pt2_entry_t pte2;
2006 
2007 	PDEBUG(1, printf("%s: addr = %#x\n", __func__, addr));
2008 	/*
2009 	 * All the time kernel_vm_end is first KVA for which underlying
2010 	 * L2 page table is either not allocated or linked from L1 page table
2011 	 * (not considering sections). Except for two possible cases:
2012 	 *
2013 	 *   (1) in the very beginning as long as pmap_growkernel() was
2014 	 *       not called, it could be first unused KVA (which is not
2015 	 *       rounded up to PTE1_SIZE),
2016 	 *
2017 	 *   (2) when all KVA space is mapped and kernel_map->max_offset
2018 	 *       address is not rounded up to PTE1_SIZE. (For example,
2019 	 *       it could be 0xFFFFFFFF.)
2020 	 */
2021 	kernel_vm_end = pte1_roundup(kernel_vm_end);
2022 	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
2023 	addr = roundup2(addr, PTE1_SIZE);
2024 	if (addr - 1 >= kernel_map->max_offset)
2025 		addr = kernel_map->max_offset;
2026 	while (kernel_vm_end < addr) {
2027 		pte1 = pte1_load(kern_pte1(kernel_vm_end));
2028 		if (pte1_is_valid(pte1)) {
2029 			kernel_vm_end += PTE1_SIZE;
2030 			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
2031 				kernel_vm_end = kernel_map->max_offset;
2032 				break;
2033 			}
2034 			continue;
2035 		}
2036 
2037 		/*
2038 		 * kernel_vm_end_new is used in pmap_pinit() when kernel
2039 		 * mappings are entered to new pmap all at once to avoid race
2040 		 * between pmap_kenter_pte1() and kernel_vm_end increase.
2041 		 * The same aplies to pmap_kenter_pt2tab().
2042 		 */
2043 		kernel_vm_end_new = kernel_vm_end + PTE1_SIZE;
2044 
2045 		pte2 = pt2tab_load(kern_pt2tab_entry(kernel_vm_end));
2046 		if (!pte2_is_valid(pte2)) {
2047 			/*
2048 			 * Install new PT2s page into kernel PT2TAB.
2049 			 */
2050 			m = vm_page_alloc(NULL,
2051 			    pte1_index(kernel_vm_end) & ~PT2PG_MASK,
2052 			    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ |
2053 			    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
2054 			if (m == NULL)
2055 				panic("%s: no memory to grow kernel", __func__);
2056 			/*
2057 			 * QQQ: To link all new L2 page tables from L1 page
2058 			 *      table now and so pmap_kenter_pte1() them
2059 			 *      at once together with pmap_kenter_pt2tab()
2060 			 *      could be nice speed up. However,
2061 			 *      pmap_growkernel() does not happen so often...
2062 			 * QQQ: The other TTBR is another option.
2063 			 */
2064 			pt2pg_pa = pmap_pt2pg_init(kernel_pmap, kernel_vm_end,
2065 			    m);
2066 		} else
2067 			pt2pg_pa = pte2_pa(pte2);
2068 
2069 		pt2_pa = page_pt2pa(pt2pg_pa, pte1_index(kernel_vm_end));
2070 		pmap_kenter_pte1(kernel_vm_end, PTE1_LINK(pt2_pa));
2071 
2072 		kernel_vm_end = kernel_vm_end_new;
2073 		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
2074 			kernel_vm_end = kernel_map->max_offset;
2075 			break;
2076 		}
2077 	}
2078 }
2079 
2080 static int
2081 kvm_size(SYSCTL_HANDLER_ARGS)
2082 {
2083 	unsigned long ksize = vm_max_kernel_address - KERNBASE;
2084 
2085 	return (sysctl_handle_long(oidp, &ksize, 0, req));
2086 }
2087 SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
2088     0, 0, kvm_size, "IU", "Size of KVM");
2089 
2090 static int
2091 kvm_free(SYSCTL_HANDLER_ARGS)
2092 {
2093 	unsigned long kfree = vm_max_kernel_address - kernel_vm_end;
2094 
2095 	return (sysctl_handle_long(oidp, &kfree, 0, req));
2096 }
2097 SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
2098     0, 0, kvm_free, "IU", "Amount of KVM free");
2099 
2100 /***********************************************
2101  *
2102  *  Pmap allocation/deallocation routines.
2103  *
2104  ***********************************************/
2105 
2106 /*
2107  *  Initialize the pmap for the swapper process.
2108  */
2109 void
2110 pmap_pinit0(pmap_t pmap)
2111 {
2112 	PDEBUG(1, printf("%s: pmap = %p\n", __func__, pmap));
2113 
2114 	PMAP_LOCK_INIT(pmap);
2115 
2116 	/*
2117 	 * Kernel page table directory and pmap stuff around is already
2118 	 * initialized, we are using it right now and here. So, finish
2119 	 * only PMAP structures initialization for process0 ...
2120 	 *
2121 	 * Since the L1 page table and PT2TAB is shared with the kernel pmap,
2122 	 * which is already included in the list "allpmaps", this pmap does
2123 	 * not need to be inserted into that list.
2124 	 */
2125 	pmap->pm_pt1 = kern_pt1;
2126 	pmap->pm_pt2tab = kern_pt2tab;
2127 	CPU_ZERO(&pmap->pm_active);
2128 	PCPU_SET(curpmap, pmap);
2129 	TAILQ_INIT(&pmap->pm_pvchunk);
2130 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
2131 	CPU_SET(0, &pmap->pm_active);
2132 }
2133 
2134 static __inline void
2135 pte1_copy_nosync(pt1_entry_t *spte1p, pt1_entry_t *dpte1p, vm_offset_t sva,
2136     vm_offset_t eva)
2137 {
2138 	u_int idx, count;
2139 
2140 	idx = pte1_index(sva);
2141 	count = (pte1_index(eva) - idx + 1) * sizeof(pt1_entry_t);
2142 	bcopy(spte1p + idx, dpte1p + idx, count);
2143 }
2144 
2145 static __inline void
2146 pt2tab_copy_nosync(pt2_entry_t *spte2p, pt2_entry_t *dpte2p, vm_offset_t sva,
2147     vm_offset_t eva)
2148 {
2149 	u_int idx, count;
2150 
2151 	idx = pt2tab_index(sva);
2152 	count = (pt2tab_index(eva) - idx + 1) * sizeof(pt2_entry_t);
2153 	bcopy(spte2p + idx, dpte2p + idx, count);
2154 }
2155 
2156 /*
2157  *  Initialize a preallocated and zeroed pmap structure,
2158  *  such as one in a vmspace structure.
2159  */
2160 int
2161 pmap_pinit(pmap_t pmap)
2162 {
2163 	pt1_entry_t *pte1p;
2164 	pt2_entry_t *pte2p;
2165 	vm_paddr_t pa, pt2tab_pa;
2166 	u_int i;
2167 
2168 	PDEBUG(6, printf("%s: pmap = %p, pm_pt1 = %p\n", __func__, pmap,
2169 	    pmap->pm_pt1));
2170 
2171 	/*
2172 	 * No need to allocate L2 page table space yet but we do need
2173 	 * a valid L1 page table and PT2TAB table.
2174 	 *
2175 	 * Install shared kernel mappings to these tables. It's a little
2176 	 * tricky as some parts of KVA are reserved for vectors, devices,
2177 	 * and whatever else. These parts are supposed to be above
2178 	 * vm_max_kernel_address. Thus two regions should be installed:
2179 	 *
2180 	 *   (1) <KERNBASE, kernel_vm_end),
2181 	 *   (2) <vm_max_kernel_address, 0xFFFFFFFF>.
2182 	 *
2183 	 * QQQ: The second region should be stable enough to be installed
2184 	 *      only once in time when the tables are allocated.
2185 	 * QQQ: Maybe copy of both regions at once could be faster ...
2186 	 * QQQ: Maybe the other TTBR is an option.
2187 	 *
2188 	 * Finally, install own PT2TAB table to these tables.
2189 	 */
2190 
2191 	if (pmap->pm_pt1 == NULL) {
2192 		pmap->pm_pt1 = (pt1_entry_t *)kmem_alloc_contig(kernel_arena,
2193 		    NB_IN_PT1, M_NOWAIT | M_ZERO, 0, -1UL, NB_IN_PT1, 0,
2194 		    pt_memattr);
2195 		if (pmap->pm_pt1 == NULL)
2196 			return (0);
2197 	}
2198 	if (pmap->pm_pt2tab == NULL) {
2199 		/*
2200 		 * QQQ: (1) PT2TAB must be contiguous. If PT2TAB is one page
2201 		 *      only, what should be the only size for 32 bit systems,
2202 		 *      then we could allocate it with vm_page_alloc() and all
2203 		 *      the stuff needed as other L2 page table pages.
2204 		 *      (2) Note that a process PT2TAB is special L2 page table
2205 		 *      page. Its mapping in kernel_arena is permanent and can
2206 		 *      be used no matter which process is current. Its mapping
2207 		 *      in PT2MAP can be used only for current process.
2208 		 */
2209 		pmap->pm_pt2tab = (pt2_entry_t *)kmem_alloc_attr(kernel_arena,
2210 		    NB_IN_PT2TAB, M_NOWAIT | M_ZERO, 0, -1UL, pt_memattr);
2211 		if (pmap->pm_pt2tab == NULL) {
2212 			/*
2213 			 * QQQ: As struct pmap is allocated from UMA with
2214 			 *      UMA_ZONE_NOFREE flag, it's important to leave
2215 			 *      no allocation in pmap if initialization failed.
2216 			 */
2217 			kmem_free(kernel_arena, (vm_offset_t)pmap->pm_pt1,
2218 			    NB_IN_PT1);
2219 			pmap->pm_pt1 = NULL;
2220 			return (0);
2221 		}
2222 		/*
2223 		 * QQQ: Each L2 page table page vm_page_t has pindex set to
2224 		 *      pte1 index of virtual address mapped by this page.
2225 		 *      It's not valid for non kernel PT2TABs themselves.
2226 		 *      The pindex of these pages can not be altered because
2227 		 *      of the way how they are allocated now. However, it
2228 		 *      should not be a problem.
2229 		 */
2230 	}
2231 
2232 	mtx_lock_spin(&allpmaps_lock);
2233 	/*
2234 	 * To avoid race with pmap_kenter_pte1() and pmap_kenter_pt2tab(),
2235 	 * kernel_vm_end_new is used here instead of kernel_vm_end.
2236 	 */
2237 	pte1_copy_nosync(kern_pt1, pmap->pm_pt1, KERNBASE,
2238 	    kernel_vm_end_new - 1);
2239 	pte1_copy_nosync(kern_pt1, pmap->pm_pt1, vm_max_kernel_address,
2240 	    0xFFFFFFFF);
2241 	pt2tab_copy_nosync(kern_pt2tab, pmap->pm_pt2tab, KERNBASE,
2242 	    kernel_vm_end_new - 1);
2243 	pt2tab_copy_nosync(kern_pt2tab, pmap->pm_pt2tab, vm_max_kernel_address,
2244 	    0xFFFFFFFF);
2245 	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
2246 	mtx_unlock_spin(&allpmaps_lock);
2247 
2248 	/*
2249 	 * Store PT2MAP PT2 pages (a.k.a. PT2TAB) in PT2TAB itself.
2250 	 * I.e. self reference mapping.  The PT2TAB is private, however mapped
2251 	 * into shared PT2MAP space, so the mapping should be not global.
2252 	 */
2253 	pt2tab_pa = vtophys(pmap->pm_pt2tab);
2254 	pte2p = pmap_pt2tab_entry(pmap, (vm_offset_t)PT2MAP);
2255 	for (pa = pt2tab_pa, i = 0; i < NPG_IN_PT2TAB; i++, pa += PTE2_SIZE) {
2256 		pt2tab_store(pte2p++, PTE2_KPT_NG(pa));
2257 	}
2258 
2259 	/* Insert PT2MAP PT2s into pmap PT1. */
2260 	pte1p = pmap_pte1(pmap, (vm_offset_t)PT2MAP);
2261 	for (pa = pt2tab_pa, i = 0; i < NPT2_IN_PT2TAB; i++, pa += NB_IN_PT2) {
2262 		pte1_store(pte1p++, PTE1_LINK(pa));
2263 	}
2264 
2265 	/*
2266 	 * Now synchronize new mapping which was made above.
2267 	 */
2268 	pte1_sync_range(pmap->pm_pt1, NB_IN_PT1);
2269 	pte2_sync_range(pmap->pm_pt2tab, NB_IN_PT2TAB);
2270 
2271 	CPU_ZERO(&pmap->pm_active);
2272 	TAILQ_INIT(&pmap->pm_pvchunk);
2273 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
2274 
2275 	return (1);
2276 }
2277 
2278 #ifdef INVARIANTS
2279 static boolean_t
2280 pt2tab_user_is_empty(pt2_entry_t *tab)
2281 {
2282 	u_int i, end;
2283 
2284 	end = pt2tab_index(VM_MAXUSER_ADDRESS);
2285 	for (i = 0; i < end; i++)
2286 		if (tab[i] != 0) return (FALSE);
2287 	return (TRUE);
2288 }
2289 #endif
2290 /*
2291  *  Release any resources held by the given physical map.
2292  *  Called when a pmap initialized by pmap_pinit is being released.
2293  *  Should only be called if the map contains no valid mappings.
2294  */
2295 void
2296 pmap_release(pmap_t pmap)
2297 {
2298 #ifdef INVARIANTS
2299 	vm_offset_t start, end;
2300 #endif
2301 	KASSERT(pmap->pm_stats.resident_count == 0,
2302 	    ("%s: pmap resident count %ld != 0", __func__,
2303 	    pmap->pm_stats.resident_count));
2304 	KASSERT(pt2tab_user_is_empty(pmap->pm_pt2tab),
2305 	    ("%s: has allocated user PT2(s)", __func__));
2306 	KASSERT(CPU_EMPTY(&pmap->pm_active),
2307 	    ("%s: pmap %p is active on some CPU(s)", __func__, pmap));
2308 
2309 	mtx_lock_spin(&allpmaps_lock);
2310 	LIST_REMOVE(pmap, pm_list);
2311 	mtx_unlock_spin(&allpmaps_lock);
2312 
2313 #ifdef INVARIANTS
2314 	start = pte1_index(KERNBASE) * sizeof(pt1_entry_t);
2315 	end = (pte1_index(0xFFFFFFFF) + 1) * sizeof(pt1_entry_t);
2316 	bzero((char *)pmap->pm_pt1 + start, end - start);
2317 
2318 	start = pt2tab_index(KERNBASE) * sizeof(pt2_entry_t);
2319 	end = (pt2tab_index(0xFFFFFFFF) + 1) * sizeof(pt2_entry_t);
2320 	bzero((char *)pmap->pm_pt2tab + start, end - start);
2321 #endif
2322 	/*
2323 	 * We are leaving PT1 and PT2TAB allocated on released pmap,
2324 	 * so hopefully UMA vmspace_zone will always be inited with
2325 	 * UMA_ZONE_NOFREE flag.
2326 	 */
2327 }
2328 
2329 /*********************************************************
2330  *
2331  *  L2 table pages and their pages management routines.
2332  *
2333  *********************************************************/
2334 
2335 /*
2336  *  Virtual interface for L2 page table wire counting.
2337  *
2338  *  Each L2 page table in a page has own counter which counts a number of
2339  *  valid mappings in a table. Global page counter counts mappings in all
2340  *  tables in a page plus a single itself mapping in PT2TAB.
2341  *
2342  *  During a promotion we leave the associated L2 page table counter
2343  *  untouched, so the table (strictly speaking a page which holds it)
2344  *  is never freed if promoted.
2345  *
2346  *  If a page m->wire_count == 1 then no valid mappings exist in any L2 page
2347  *  table in the page and the page itself is only mapped in PT2TAB.
2348  */
2349 
2350 static __inline void
2351 pt2_wirecount_init(vm_page_t m)
2352 {
2353 	u_int i;
2354 
2355 	/*
2356 	 * Note: A page m is allocated with VM_ALLOC_WIRED flag and
2357 	 *       m->wire_count should be already set correctly.
2358 	 *       So, there is no need to set it again herein.
2359 	 */
2360 	for (i = 0; i < NPT2_IN_PG; i++)
2361 		m->md.pt2_wirecount[i] = 0;
2362 }
2363 
2364 static __inline void
2365 pt2_wirecount_inc(vm_page_t m, uint32_t pte1_idx)
2366 {
2367 
2368 	/*
2369 	 * Note: A just modificated pte2 (i.e. already allocated)
2370 	 *       is acquiring one extra reference which must be
2371 	 *       explicitly cleared. It influences the KASSERTs herein.
2372 	 *       All L2 page tables in a page always belong to the same
2373 	 *       pmap, so we allow only one extra reference for the page.
2374 	 */
2375 	KASSERT(m->md.pt2_wirecount[pte1_idx & PT2PG_MASK] < (NPTE2_IN_PT2 + 1),
2376 	    ("%s: PT2 is overflowing ...", __func__));
2377 	KASSERT(m->wire_count <= (NPTE2_IN_PG + 1),
2378 	    ("%s: PT2PG is overflowing ...", __func__));
2379 
2380 	m->wire_count++;
2381 	m->md.pt2_wirecount[pte1_idx & PT2PG_MASK]++;
2382 }
2383 
2384 static __inline void
2385 pt2_wirecount_dec(vm_page_t m, uint32_t pte1_idx)
2386 {
2387 
2388 	KASSERT(m->md.pt2_wirecount[pte1_idx & PT2PG_MASK] != 0,
2389 	    ("%s: PT2 is underflowing ...", __func__));
2390 	KASSERT(m->wire_count > 1,
2391 	    ("%s: PT2PG is underflowing ...", __func__));
2392 
2393 	m->wire_count--;
2394 	m->md.pt2_wirecount[pte1_idx & PT2PG_MASK]--;
2395 }
2396 
2397 static __inline void
2398 pt2_wirecount_set(vm_page_t m, uint32_t pte1_idx, uint16_t count)
2399 {
2400 
2401 	KASSERT(count <= NPTE2_IN_PT2,
2402 	    ("%s: invalid count %u", __func__, count));
2403 	KASSERT(m->wire_count >  m->md.pt2_wirecount[pte1_idx & PT2PG_MASK],
2404 	    ("%s: PT2PG corrupting (%u, %u) ...", __func__, m->wire_count,
2405 	    m->md.pt2_wirecount[pte1_idx & PT2PG_MASK]));
2406 
2407 	m->wire_count -= m->md.pt2_wirecount[pte1_idx & PT2PG_MASK];
2408 	m->wire_count += count;
2409 	m->md.pt2_wirecount[pte1_idx & PT2PG_MASK] = count;
2410 
2411 	KASSERT(m->wire_count <= (NPTE2_IN_PG + 1),
2412 	    ("%s: PT2PG is overflowed (%u) ...", __func__, m->wire_count));
2413 }
2414 
2415 static __inline uint32_t
2416 pt2_wirecount_get(vm_page_t m, uint32_t pte1_idx)
2417 {
2418 
2419 	return (m->md.pt2_wirecount[pte1_idx & PT2PG_MASK]);
2420 }
2421 
2422 static __inline boolean_t
2423 pt2_is_empty(vm_page_t m, vm_offset_t va)
2424 {
2425 
2426 	return (m->md.pt2_wirecount[pte1_index(va) & PT2PG_MASK] == 0);
2427 }
2428 
2429 static __inline boolean_t
2430 pt2_is_full(vm_page_t m, vm_offset_t va)
2431 {
2432 
2433 	return (m->md.pt2_wirecount[pte1_index(va) & PT2PG_MASK] ==
2434 	    NPTE2_IN_PT2);
2435 }
2436 
2437 static __inline boolean_t
2438 pt2pg_is_empty(vm_page_t m)
2439 {
2440 
2441 	return (m->wire_count == 1);
2442 }
2443 
2444 /*
2445  *  This routine is called if the L2 page table
2446  *  is not mapped correctly.
2447  */
2448 static vm_page_t
2449 _pmap_allocpte2(pmap_t pmap, vm_offset_t va, u_int flags)
2450 {
2451 	uint32_t pte1_idx;
2452 	pt1_entry_t *pte1p;
2453 	pt2_entry_t pte2;
2454 	vm_page_t  m;
2455 	vm_paddr_t pt2pg_pa, pt2_pa;
2456 
2457 	pte1_idx = pte1_index(va);
2458 	pte1p = pmap->pm_pt1 + pte1_idx;
2459 
2460 	KASSERT(pte1_load(pte1p) == 0,
2461 	    ("%s: pm_pt1[%#x] is not zero: %#x", __func__, pte1_idx,
2462 	    pte1_load(pte1p)));
2463 
2464 	pte2 = pt2tab_load(pmap_pt2tab_entry(pmap, va));
2465 	if (!pte2_is_valid(pte2)) {
2466 		/*
2467 		 * Install new PT2s page into pmap PT2TAB.
2468 		 */
2469 		m = vm_page_alloc(NULL, pte1_idx & ~PT2PG_MASK,
2470 		    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
2471 		if (m == NULL) {
2472 			if ((flags & PMAP_ENTER_NOSLEEP) == 0) {
2473 				PMAP_UNLOCK(pmap);
2474 				rw_wunlock(&pvh_global_lock);
2475 				VM_WAIT;
2476 				rw_wlock(&pvh_global_lock);
2477 				PMAP_LOCK(pmap);
2478 			}
2479 
2480 			/*
2481 			 * Indicate the need to retry.  While waiting,
2482 			 * the L2 page table page may have been allocated.
2483 			 */
2484 			return (NULL);
2485 		}
2486 		pmap->pm_stats.resident_count++;
2487 		pt2pg_pa = pmap_pt2pg_init(pmap, va, m);
2488 	} else {
2489 		pt2pg_pa = pte2_pa(pte2);
2490 		m = PHYS_TO_VM_PAGE(pt2pg_pa);
2491 	}
2492 
2493 	pt2_wirecount_inc(m, pte1_idx);
2494 	pt2_pa = page_pt2pa(pt2pg_pa, pte1_idx);
2495 	pte1_store(pte1p, PTE1_LINK(pt2_pa));
2496 
2497 	return (m);
2498 }
2499 
2500 static vm_page_t
2501 pmap_allocpte2(pmap_t pmap, vm_offset_t va, u_int flags)
2502 {
2503 	u_int pte1_idx;
2504 	pt1_entry_t *pte1p, pte1;
2505 	vm_page_t m;
2506 
2507 	pte1_idx = pte1_index(va);
2508 retry:
2509 	pte1p = pmap->pm_pt1 + pte1_idx;
2510 	pte1 = pte1_load(pte1p);
2511 
2512 	/*
2513 	 * This supports switching from a 1MB page to a
2514 	 * normal 4K page.
2515 	 */
2516 	if (pte1_is_section(pte1)) {
2517 		(void)pmap_demote_pte1(pmap, pte1p, va);
2518 		/*
2519 		 * Reload pte1 after demotion.
2520 		 *
2521 		 * Note: Demotion can even fail as either PT2 is not find for
2522 		 *       the virtual address or PT2PG can not be allocated.
2523 		 */
2524 		pte1 = pte1_load(pte1p);
2525 	}
2526 
2527 	/*
2528 	 * If the L2 page table page is mapped, we just increment the
2529 	 * hold count, and activate it.
2530 	 */
2531 	if (pte1_is_link(pte1)) {
2532 		m = PHYS_TO_VM_PAGE(pte1_link_pa(pte1));
2533 		pt2_wirecount_inc(m, pte1_idx);
2534 	} else  {
2535 		/*
2536 		 * Here if the PT2 isn't mapped, or if it has
2537 		 * been deallocated.
2538 		 */
2539 		m = _pmap_allocpte2(pmap, va, flags);
2540 		if (m == NULL && (flags & PMAP_ENTER_NOSLEEP) == 0)
2541 			goto retry;
2542 	}
2543 
2544 	return (m);
2545 }
2546 
2547 static __inline void
2548 pmap_free_zero_pages(struct spglist *free)
2549 {
2550 	vm_page_t m;
2551 
2552 	while ((m = SLIST_FIRST(free)) != NULL) {
2553 		SLIST_REMOVE_HEAD(free, plinks.s.ss);
2554 		/* Preserve the page's PG_ZERO setting. */
2555 		vm_page_free_toq(m);
2556 	}
2557 }
2558 
2559 /*
2560  *  Schedule the specified unused L2 page table page to be freed. Specifically,
2561  *  add the page to the specified list of pages that will be released to the
2562  *  physical memory manager after the TLB has been updated.
2563  */
2564 static __inline void
2565 pmap_add_delayed_free_list(vm_page_t m, struct spglist *free)
2566 {
2567 
2568 	/*
2569 	 * Put page on a list so that it is released after
2570 	 * *ALL* TLB shootdown is done
2571 	 */
2572 #ifdef PMAP_DEBUG
2573 	pmap_zero_page_check(m);
2574 #endif
2575 	m->flags |= PG_ZERO;
2576 	SLIST_INSERT_HEAD(free, m, plinks.s.ss);
2577 }
2578 
2579 /*
2580  *  Unwire L2 page tables page.
2581  */
2582 static void
2583 pmap_unwire_pt2pg(pmap_t pmap, vm_offset_t va, vm_page_t m)
2584 {
2585 	pt1_entry_t *pte1p, opte1 __unused;
2586 	pt2_entry_t *pte2p;
2587 	uint32_t i;
2588 
2589 	KASSERT(pt2pg_is_empty(m),
2590 	    ("%s: pmap %p PT2PG %p wired", __func__, pmap, m));
2591 
2592 	/*
2593 	 * Unmap all L2 page tables in the page from L1 page table.
2594 	 *
2595 	 * QQQ: Individual L2 page tables (except the last one) can be unmapped
2596 	 * earlier. However, we are doing that this way.
2597 	 */
2598 	KASSERT(m->pindex == (pte1_index(va) & ~PT2PG_MASK),
2599 	    ("%s: pmap %p va %#x PT2PG %p bad index", __func__, pmap, va, m));
2600 	pte1p = pmap->pm_pt1 + m->pindex;
2601 	for (i = 0; i < NPT2_IN_PG; i++, pte1p++) {
2602 		KASSERT(m->md.pt2_wirecount[i] == 0,
2603 		    ("%s: pmap %p PT2 %u (PG %p) wired", __func__, pmap, i, m));
2604 		opte1 = pte1_load(pte1p);
2605 		if (pte1_is_link(opte1)) {
2606 			pte1_clear(pte1p);
2607 			/*
2608 			 * Flush intermediate TLB cache.
2609 			 */
2610 			pmap_tlb_flush(pmap, (m->pindex + i) << PTE1_SHIFT);
2611 		}
2612 #ifdef INVARIANTS
2613 		else
2614 			KASSERT((opte1 == 0) || pte1_is_section(opte1),
2615 			    ("%s: pmap %p va %#x bad pte1 %x at %u", __func__,
2616 			    pmap, va, opte1, i));
2617 #endif
2618 	}
2619 
2620 	/*
2621 	 * Unmap the page from PT2TAB.
2622 	 */
2623 	pte2p = pmap_pt2tab_entry(pmap, va);
2624 	(void)pt2tab_load_clear(pte2p);
2625 	pmap_tlb_flush(pmap, pt2map_pt2pg(va));
2626 
2627 	m->wire_count = 0;
2628 	pmap->pm_stats.resident_count--;
2629 
2630 	/*
2631 	 * This is a release store so that the ordinary store unmapping
2632 	 * the L2 page table page is globally performed before TLB shoot-
2633 	 * down is begun.
2634 	 */
2635 	atomic_subtract_rel_int(&vm_cnt.v_wire_count, 1);
2636 }
2637 
2638 /*
2639  *  Decrements a L2 page table page's wire count, which is used to record the
2640  *  number of valid page table entries within the page.  If the wire count
2641  *  drops to zero, then the page table page is unmapped.  Returns TRUE if the
2642  *  page table page was unmapped and FALSE otherwise.
2643  */
2644 static __inline boolean_t
2645 pmap_unwire_pt2(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
2646 {
2647 	pt2_wirecount_dec(m, pte1_index(va));
2648 	if (pt2pg_is_empty(m)) {
2649 		/*
2650 		 * QQQ: Wire count is zero, so whole page should be zero and
2651 		 *      we can set PG_ZERO flag to it.
2652 		 *      Note that when promotion is enabled, it takes some
2653 		 *      more efforts. See pmap_unwire_pt2_all() below.
2654 		 */
2655 		pmap_unwire_pt2pg(pmap, va, m);
2656 		pmap_add_delayed_free_list(m, free);
2657 		return (TRUE);
2658 	} else
2659 		return (FALSE);
2660 }
2661 
2662 /*
2663  *  Drop a L2 page table page's wire count at once, which is used to record
2664  *  the number of valid L2 page table entries within the page. If the wire
2665  *  count drops to zero, then the L2 page table page is unmapped.
2666  */
2667 static __inline void
2668 pmap_unwire_pt2_all(pmap_t pmap, vm_offset_t va, vm_page_t m,
2669     struct spglist *free)
2670 {
2671 	u_int pte1_idx = pte1_index(va);
2672 
2673 	KASSERT(m->pindex == (pte1_idx & ~PT2PG_MASK),
2674 		("%s: PT2 page's pindex is wrong", __func__));
2675 	KASSERT(m->wire_count > pt2_wirecount_get(m, pte1_idx),
2676 	    ("%s: bad pt2 wire count %u > %u", __func__, m->wire_count,
2677 	    pt2_wirecount_get(m, pte1_idx)));
2678 
2679 	/*
2680 	 * It's possible that the L2 page table was never used.
2681 	 * It happened in case that a section was created without promotion.
2682 	 */
2683 	if (pt2_is_full(m, va)) {
2684 		pt2_wirecount_set(m, pte1_idx, 0);
2685 
2686 		/*
2687 		 * QQQ: We clear L2 page table now, so when L2 page table page
2688 		 *      is going to be freed, we can set it PG_ZERO flag ...
2689 		 *      This function is called only on section mappings, so
2690 		 *      hopefully it's not to big overload.
2691 		 *
2692 		 * XXX: If pmap is current, existing PT2MAP mapping could be
2693 		 *      used for zeroing.
2694 		 */
2695 		pmap_zero_page_area(m, page_pt2off(pte1_idx), NB_IN_PT2);
2696 	}
2697 #ifdef INVARIANTS
2698 	else
2699 		KASSERT(pt2_is_empty(m, va), ("%s: PT2 is not empty (%u)",
2700 		    __func__, pt2_wirecount_get(m, pte1_idx)));
2701 #endif
2702 	if (pt2pg_is_empty(m)) {
2703 		pmap_unwire_pt2pg(pmap, va, m);
2704 		pmap_add_delayed_free_list(m, free);
2705 	}
2706 }
2707 
2708 /*
2709  *  After removing a L2 page table entry, this routine is used to
2710  *  conditionally free the page, and manage the hold/wire counts.
2711  */
2712 static boolean_t
2713 pmap_unuse_pt2(pmap_t pmap, vm_offset_t va, struct spglist *free)
2714 {
2715 	pt1_entry_t pte1;
2716 	vm_page_t mpte;
2717 
2718 	if (va >= VM_MAXUSER_ADDRESS)
2719 		return (FALSE);
2720 	pte1 = pte1_load(pmap_pte1(pmap, va));
2721 	mpte = PHYS_TO_VM_PAGE(pte1_link_pa(pte1));
2722 	return (pmap_unwire_pt2(pmap, va, mpte, free));
2723 }
2724 
2725 /*************************************
2726  *
2727  *  Page management routines.
2728  *
2729  *************************************/
2730 
2731 CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
2732 CTASSERT(_NPCM == 11);
2733 CTASSERT(_NPCPV == 336);
2734 
2735 static __inline struct pv_chunk *
2736 pv_to_chunk(pv_entry_t pv)
2737 {
2738 
2739 	return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
2740 }
2741 
2742 #define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
2743 
2744 #define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
2745 #define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
2746 
2747 static const uint32_t pc_freemask[_NPCM] = {
2748 	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2749 	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2750 	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2751 	PC_FREE0_9, PC_FREE10
2752 };
2753 
2754 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
2755 	"Current number of pv entries");
2756 
2757 #ifdef PV_STATS
2758 static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
2759 
2760 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
2761     "Current number of pv entry chunks");
2762 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
2763     "Current number of pv entry chunks allocated");
2764 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
2765     "Current number of pv entry chunks frees");
2766 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail,
2767     0, "Number of times tried to get a chunk page but failed.");
2768 
2769 static long pv_entry_frees, pv_entry_allocs;
2770 static int pv_entry_spare;
2771 
2772 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
2773     "Current number of pv entry frees");
2774 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs,
2775     0, "Current number of pv entry allocs");
2776 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
2777     "Current number of spare pv entries");
2778 #endif
2779 
2780 /*
2781  *  Is given page managed?
2782  */
2783 static __inline bool
2784 is_managed(vm_paddr_t pa)
2785 {
2786 	vm_page_t m;
2787 
2788 	m = PHYS_TO_VM_PAGE(pa);
2789 	if (m == NULL)
2790 		return (false);
2791 	return ((m->oflags & VPO_UNMANAGED) == 0);
2792 }
2793 
2794 static __inline bool
2795 pte1_is_managed(pt1_entry_t pte1)
2796 {
2797 
2798 	return (is_managed(pte1_pa(pte1)));
2799 }
2800 
2801 static __inline bool
2802 pte2_is_managed(pt2_entry_t pte2)
2803 {
2804 
2805 	return (is_managed(pte2_pa(pte2)));
2806 }
2807 
2808 /*
2809  *  We are in a serious low memory condition.  Resort to
2810  *  drastic measures to free some pages so we can allocate
2811  *  another pv entry chunk.
2812  */
2813 static vm_page_t
2814 pmap_pv_reclaim(pmap_t locked_pmap)
2815 {
2816 	struct pch newtail;
2817 	struct pv_chunk *pc;
2818 	struct md_page *pvh;
2819 	pt1_entry_t *pte1p;
2820 	pmap_t pmap;
2821 	pt2_entry_t *pte2p, tpte2;
2822 	pv_entry_t pv;
2823 	vm_offset_t va;
2824 	vm_page_t m, m_pc;
2825 	struct spglist free;
2826 	uint32_t inuse;
2827 	int bit, field, freed;
2828 
2829 	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
2830 	pmap = NULL;
2831 	m_pc = NULL;
2832 	SLIST_INIT(&free);
2833 	TAILQ_INIT(&newtail);
2834 	while ((pc = TAILQ_FIRST(&pv_chunks)) != NULL && (pv_vafree == 0 ||
2835 	    SLIST_EMPTY(&free))) {
2836 		TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2837 		if (pmap != pc->pc_pmap) {
2838 			if (pmap != NULL) {
2839 				if (pmap != locked_pmap)
2840 					PMAP_UNLOCK(pmap);
2841 			}
2842 			pmap = pc->pc_pmap;
2843 			/* Avoid deadlock and lock recursion. */
2844 			if (pmap > locked_pmap)
2845 				PMAP_LOCK(pmap);
2846 			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap)) {
2847 				pmap = NULL;
2848 				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2849 				continue;
2850 			}
2851 		}
2852 
2853 		/*
2854 		 * Destroy every non-wired, 4 KB page mapping in the chunk.
2855 		 */
2856 		freed = 0;
2857 		for (field = 0; field < _NPCM; field++) {
2858 			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
2859 			    inuse != 0; inuse &= ~(1UL << bit)) {
2860 				bit = ffs(inuse) - 1;
2861 				pv = &pc->pc_pventry[field * 32 + bit];
2862 				va = pv->pv_va;
2863 				pte1p = pmap_pte1(pmap, va);
2864 				if (pte1_is_section(pte1_load(pte1p)))
2865 					continue;
2866 				pte2p = pmap_pte2(pmap, va);
2867 				tpte2 = pte2_load(pte2p);
2868 				if ((tpte2 & PTE2_W) == 0)
2869 					tpte2 = pte2_load_clear(pte2p);
2870 				pmap_pte2_release(pte2p);
2871 				if ((tpte2 & PTE2_W) != 0)
2872 					continue;
2873 				KASSERT(tpte2 != 0,
2874 				    ("pmap_pv_reclaim: pmap %p va %#x zero pte",
2875 				    pmap, va));
2876 				pmap_tlb_flush(pmap, va);
2877 				m = PHYS_TO_VM_PAGE(pte2_pa(tpte2));
2878 				if (pte2_is_dirty(tpte2))
2879 					vm_page_dirty(m);
2880 				if ((tpte2 & PTE2_A) != 0)
2881 					vm_page_aflag_set(m, PGA_REFERENCED);
2882 				TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
2883 				if (TAILQ_EMPTY(&m->md.pv_list) &&
2884 				    (m->flags & PG_FICTITIOUS) == 0) {
2885 					pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2886 					if (TAILQ_EMPTY(&pvh->pv_list)) {
2887 						vm_page_aflag_clear(m,
2888 						    PGA_WRITEABLE);
2889 					}
2890 				}
2891 				pc->pc_map[field] |= 1UL << bit;
2892 				pmap_unuse_pt2(pmap, va, &free);
2893 				freed++;
2894 			}
2895 		}
2896 		if (freed == 0) {
2897 			TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2898 			continue;
2899 		}
2900 		/* Every freed mapping is for a 4 KB page. */
2901 		pmap->pm_stats.resident_count -= freed;
2902 		PV_STAT(pv_entry_frees += freed);
2903 		PV_STAT(pv_entry_spare += freed);
2904 		pv_entry_count -= freed;
2905 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2906 		for (field = 0; field < _NPCM; field++)
2907 			if (pc->pc_map[field] != pc_freemask[field]) {
2908 				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
2909 				    pc_list);
2910 				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2911 
2912 				/*
2913 				 * One freed pv entry in locked_pmap is
2914 				 * sufficient.
2915 				 */
2916 				if (pmap == locked_pmap)
2917 					goto out;
2918 				break;
2919 			}
2920 		if (field == _NPCM) {
2921 			PV_STAT(pv_entry_spare -= _NPCPV);
2922 			PV_STAT(pc_chunk_count--);
2923 			PV_STAT(pc_chunk_frees++);
2924 			/* Entire chunk is free; return it. */
2925 			m_pc = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2926 			pmap_qremove((vm_offset_t)pc, 1);
2927 			pmap_pte2list_free(&pv_vafree, (vm_offset_t)pc);
2928 			break;
2929 		}
2930 	}
2931 out:
2932 	TAILQ_CONCAT(&pv_chunks, &newtail, pc_lru);
2933 	if (pmap != NULL) {
2934 		if (pmap != locked_pmap)
2935 			PMAP_UNLOCK(pmap);
2936 	}
2937 	if (m_pc == NULL && pv_vafree != 0 && SLIST_EMPTY(&free)) {
2938 		m_pc = SLIST_FIRST(&free);
2939 		SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2940 		/* Recycle a freed page table page. */
2941 		m_pc->wire_count = 1;
2942 		atomic_add_int(&vm_cnt.v_wire_count, 1);
2943 	}
2944 	pmap_free_zero_pages(&free);
2945 	return (m_pc);
2946 }
2947 
2948 static void
2949 free_pv_chunk(struct pv_chunk *pc)
2950 {
2951 	vm_page_t m;
2952 
2953 	TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2954 	PV_STAT(pv_entry_spare -= _NPCPV);
2955 	PV_STAT(pc_chunk_count--);
2956 	PV_STAT(pc_chunk_frees++);
2957 	/* entire chunk is free, return it */
2958 	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2959 	pmap_qremove((vm_offset_t)pc, 1);
2960 	vm_page_unwire(m, PQ_NONE);
2961 	vm_page_free(m);
2962 	pmap_pte2list_free(&pv_vafree, (vm_offset_t)pc);
2963 }
2964 
2965 /*
2966  *  Free the pv_entry back to the free list.
2967  */
2968 static void
2969 free_pv_entry(pmap_t pmap, pv_entry_t pv)
2970 {
2971 	struct pv_chunk *pc;
2972 	int idx, field, bit;
2973 
2974 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2975 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2976 	PV_STAT(pv_entry_frees++);
2977 	PV_STAT(pv_entry_spare++);
2978 	pv_entry_count--;
2979 	pc = pv_to_chunk(pv);
2980 	idx = pv - &pc->pc_pventry[0];
2981 	field = idx / 32;
2982 	bit = idx % 32;
2983 	pc->pc_map[field] |= 1ul << bit;
2984 	for (idx = 0; idx < _NPCM; idx++)
2985 		if (pc->pc_map[idx] != pc_freemask[idx]) {
2986 			/*
2987 			 * 98% of the time, pc is already at the head of the
2988 			 * list.  If it isn't already, move it to the head.
2989 			 */
2990 			if (__predict_false(TAILQ_FIRST(&pmap->pm_pvchunk) !=
2991 			    pc)) {
2992 				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2993 				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
2994 				    pc_list);
2995 			}
2996 			return;
2997 		}
2998 	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2999 	free_pv_chunk(pc);
3000 }
3001 
3002 /*
3003  *  Get a new pv_entry, allocating a block from the system
3004  *  when needed.
3005  */
3006 static pv_entry_t
3007 get_pv_entry(pmap_t pmap, boolean_t try)
3008 {
3009 	static const struct timeval printinterval = { 60, 0 };
3010 	static struct timeval lastprint;
3011 	int bit, field;
3012 	pv_entry_t pv;
3013 	struct pv_chunk *pc;
3014 	vm_page_t m;
3015 
3016 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3017 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3018 	PV_STAT(pv_entry_allocs++);
3019 	pv_entry_count++;
3020 	if (pv_entry_count > pv_entry_high_water)
3021 		if (ratecheck(&lastprint, &printinterval))
3022 			printf("Approaching the limit on PV entries, consider "
3023 			    "increasing either the vm.pmap.shpgperproc or the "
3024 			    "vm.pmap.pv_entry_max tunable.\n");
3025 retry:
3026 	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
3027 	if (pc != NULL) {
3028 		for (field = 0; field < _NPCM; field++) {
3029 			if (pc->pc_map[field]) {
3030 				bit = ffs(pc->pc_map[field]) - 1;
3031 				break;
3032 			}
3033 		}
3034 		if (field < _NPCM) {
3035 			pv = &pc->pc_pventry[field * 32 + bit];
3036 			pc->pc_map[field] &= ~(1ul << bit);
3037 			/* If this was the last item, move it to tail */
3038 			for (field = 0; field < _NPCM; field++)
3039 				if (pc->pc_map[field] != 0) {
3040 					PV_STAT(pv_entry_spare--);
3041 					return (pv);	/* not full, return */
3042 				}
3043 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3044 			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
3045 			PV_STAT(pv_entry_spare--);
3046 			return (pv);
3047 		}
3048 	}
3049 	/*
3050 	 * Access to the pte2list "pv_vafree" is synchronized by the pvh
3051 	 * global lock.  If "pv_vafree" is currently non-empty, it will
3052 	 * remain non-empty until pmap_pte2list_alloc() completes.
3053 	 */
3054 	if (pv_vafree == 0 || (m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
3055 	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
3056 		if (try) {
3057 			pv_entry_count--;
3058 			PV_STAT(pc_chunk_tryfail++);
3059 			return (NULL);
3060 		}
3061 		m = pmap_pv_reclaim(pmap);
3062 		if (m == NULL)
3063 			goto retry;
3064 	}
3065 	PV_STAT(pc_chunk_count++);
3066 	PV_STAT(pc_chunk_allocs++);
3067 	pc = (struct pv_chunk *)pmap_pte2list_alloc(&pv_vafree);
3068 	pmap_qenter((vm_offset_t)pc, &m, 1);
3069 	pc->pc_pmap = pmap;
3070 	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
3071 	for (field = 1; field < _NPCM; field++)
3072 		pc->pc_map[field] = pc_freemask[field];
3073 	TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
3074 	pv = &pc->pc_pventry[0];
3075 	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
3076 	PV_STAT(pv_entry_spare += _NPCPV - 1);
3077 	return (pv);
3078 }
3079 
3080 /*
3081  *  Create a pv entry for page at pa for
3082  *  (pmap, va).
3083  */
3084 static void
3085 pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
3086 {
3087 	pv_entry_t pv;
3088 
3089 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3090 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3091 	pv = get_pv_entry(pmap, FALSE);
3092 	pv->pv_va = va;
3093 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3094 }
3095 
3096 static __inline pv_entry_t
3097 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
3098 {
3099 	pv_entry_t pv;
3100 
3101 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3102 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
3103 		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
3104 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
3105 			break;
3106 		}
3107 	}
3108 	return (pv);
3109 }
3110 
3111 static void
3112 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
3113 {
3114 	pv_entry_t pv;
3115 
3116 	pv = pmap_pvh_remove(pvh, pmap, va);
3117 	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
3118 	free_pv_entry(pmap, pv);
3119 }
3120 
3121 static void
3122 pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
3123 {
3124 	struct md_page *pvh;
3125 
3126 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3127 	pmap_pvh_free(&m->md, pmap, va);
3128 	if (TAILQ_EMPTY(&m->md.pv_list) && (m->flags & PG_FICTITIOUS) == 0) {
3129 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3130 		if (TAILQ_EMPTY(&pvh->pv_list))
3131 			vm_page_aflag_clear(m, PGA_WRITEABLE);
3132 	}
3133 }
3134 
3135 static void
3136 pmap_pv_demote_pte1(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
3137 {
3138 	struct md_page *pvh;
3139 	pv_entry_t pv;
3140 	vm_offset_t va_last;
3141 	vm_page_t m;
3142 
3143 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3144 	KASSERT((pa & PTE1_OFFSET) == 0,
3145 	    ("pmap_pv_demote_pte1: pa is not 1mpage aligned"));
3146 
3147 	/*
3148 	 * Transfer the 1mpage's pv entry for this mapping to the first
3149 	 * page's pv list.
3150 	 */
3151 	pvh = pa_to_pvh(pa);
3152 	va = pte1_trunc(va);
3153 	pv = pmap_pvh_remove(pvh, pmap, va);
3154 	KASSERT(pv != NULL, ("pmap_pv_demote_pte1: pv not found"));
3155 	m = PHYS_TO_VM_PAGE(pa);
3156 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3157 	/* Instantiate the remaining NPTE2_IN_PT2 - 1 pv entries. */
3158 	va_last = va + PTE1_SIZE - PAGE_SIZE;
3159 	do {
3160 		m++;
3161 		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3162 		    ("pmap_pv_demote_pte1: page %p is not managed", m));
3163 		va += PAGE_SIZE;
3164 		pmap_insert_entry(pmap, va, m);
3165 	} while (va < va_last);
3166 }
3167 
3168 static void
3169 pmap_pv_promote_pte1(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
3170 {
3171 	struct md_page *pvh;
3172 	pv_entry_t pv;
3173 	vm_offset_t va_last;
3174 	vm_page_t m;
3175 
3176 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3177 	KASSERT((pa & PTE1_OFFSET) == 0,
3178 	    ("pmap_pv_promote_pte1: pa is not 1mpage aligned"));
3179 
3180 	/*
3181 	 * Transfer the first page's pv entry for this mapping to the
3182 	 * 1mpage's pv list.  Aside from avoiding the cost of a call
3183 	 * to get_pv_entry(), a transfer avoids the possibility that
3184 	 * get_pv_entry() calls pmap_pv_reclaim() and that pmap_pv_reclaim()
3185 	 * removes one of the mappings that is being promoted.
3186 	 */
3187 	m = PHYS_TO_VM_PAGE(pa);
3188 	va = pte1_trunc(va);
3189 	pv = pmap_pvh_remove(&m->md, pmap, va);
3190 	KASSERT(pv != NULL, ("pmap_pv_promote_pte1: pv not found"));
3191 	pvh = pa_to_pvh(pa);
3192 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
3193 	/* Free the remaining NPTE2_IN_PT2 - 1 pv entries. */
3194 	va_last = va + PTE1_SIZE - PAGE_SIZE;
3195 	do {
3196 		m++;
3197 		va += PAGE_SIZE;
3198 		pmap_pvh_free(&m->md, pmap, va);
3199 	} while (va < va_last);
3200 }
3201 
3202 /*
3203  *  Conditionally create a pv entry.
3204  */
3205 static boolean_t
3206 pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
3207 {
3208 	pv_entry_t pv;
3209 
3210 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3211 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3212 	if (pv_entry_count < pv_entry_high_water &&
3213 	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
3214 		pv->pv_va = va;
3215 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3216 		return (TRUE);
3217 	} else
3218 		return (FALSE);
3219 }
3220 
3221 /*
3222  *  Create the pv entries for each of the pages within a section.
3223  */
3224 static boolean_t
3225 pmap_pv_insert_pte1(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
3226 {
3227 	struct md_page *pvh;
3228 	pv_entry_t pv;
3229 
3230 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3231 	if (pv_entry_count < pv_entry_high_water &&
3232 	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
3233 		pv->pv_va = va;
3234 		pvh = pa_to_pvh(pa);
3235 		TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
3236 		return (TRUE);
3237 	} else
3238 		return (FALSE);
3239 }
3240 
3241 static inline void
3242 pmap_tlb_flush_pte1(pmap_t pmap, vm_offset_t va, pt1_entry_t npte1)
3243 {
3244 
3245 	/* Kill all the small mappings or the big one only. */
3246 	if (pte1_is_section(npte1))
3247 		pmap_tlb_flush_range(pmap, pte1_trunc(va), PTE1_SIZE);
3248 	else
3249 		pmap_tlb_flush(pmap, pte1_trunc(va));
3250 }
3251 
3252 /*
3253  *  Update kernel pte1 on all pmaps.
3254  *
3255  *  The following function is called only on one cpu with disabled interrupts.
3256  *  In SMP case, smp_rendezvous_cpus() is used to stop other cpus. This way
3257  *  nobody can invoke explicit hardware table walk during the update of pte1.
3258  *  Unsolicited hardware table walk can still happen, invoked by speculative
3259  *  data or instruction prefetch or even by speculative hardware table walk.
3260  *
3261  *  The break-before-make approach should be implemented here. However, it's
3262  *  not so easy to do that for kernel mappings as it would be unhappy to unmap
3263  *  itself unexpectedly but voluntarily.
3264  */
3265 static void
3266 pmap_update_pte1_kernel(vm_offset_t va, pt1_entry_t npte1)
3267 {
3268 	pmap_t pmap;
3269 	pt1_entry_t *pte1p;
3270 
3271 	/*
3272 	 * Get current pmap. Interrupts should be disabled here
3273 	 * so PCPU_GET() is done atomically.
3274 	 */
3275 	pmap = PCPU_GET(curpmap);
3276 	if (pmap == NULL)
3277 		pmap = kernel_pmap;
3278 
3279 	/*
3280 	 * (1) Change pte1 on current pmap.
3281 	 * (2) Flush all obsolete TLB entries on current CPU.
3282 	 * (3) Change pte1 on all pmaps.
3283 	 * (4) Flush all obsolete TLB entries on all CPUs in SMP case.
3284 	 */
3285 
3286 	pte1p = pmap_pte1(pmap, va);
3287 	pte1_store(pte1p, npte1);
3288 
3289 	/* Kill all the small mappings or the big one only. */
3290 	if (pte1_is_section(npte1)) {
3291 		pmap_pte1_kern_promotions++;
3292 		tlb_flush_range_local(pte1_trunc(va), PTE1_SIZE);
3293 	} else {
3294 		pmap_pte1_kern_demotions++;
3295 		tlb_flush_local(pte1_trunc(va));
3296 	}
3297 
3298 	/*
3299 	 * In SMP case, this function is called when all cpus are at smp
3300 	 * rendezvous, so there is no need to use 'allpmaps_lock' lock here.
3301 	 * In UP case, the function is called with this lock locked.
3302 	 */
3303 	LIST_FOREACH(pmap, &allpmaps, pm_list) {
3304 		pte1p = pmap_pte1(pmap, va);
3305 		pte1_store(pte1p, npte1);
3306 	}
3307 
3308 #ifdef SMP
3309 	/* Kill all the small mappings or the big one only. */
3310 	if (pte1_is_section(npte1))
3311 		tlb_flush_range(pte1_trunc(va), PTE1_SIZE);
3312 	else
3313 		tlb_flush(pte1_trunc(va));
3314 #endif
3315 }
3316 
3317 #ifdef SMP
3318 struct pte1_action {
3319 	vm_offset_t va;
3320 	pt1_entry_t npte1;
3321 	u_int update;		/* CPU that updates the PTE1 */
3322 };
3323 
3324 static void
3325 pmap_update_pte1_action(void *arg)
3326 {
3327 	struct pte1_action *act = arg;
3328 
3329 	if (act->update == PCPU_GET(cpuid))
3330 		pmap_update_pte1_kernel(act->va, act->npte1);
3331 }
3332 
3333 /*
3334  *  Change pte1 on current pmap.
3335  *  Note that kernel pte1 must be changed on all pmaps.
3336  *
3337  *  According to the architecture reference manual published by ARM,
3338  *  the behaviour is UNPREDICTABLE when two or more TLB entries map the same VA.
3339  *  According to this manual, UNPREDICTABLE behaviours must never happen in
3340  *  a viable system. In contrast, on x86 processors, it is not specified which
3341  *  TLB entry mapping the virtual address will be used, but the MMU doesn't
3342  *  generate a bogus translation the way it does on Cortex-A8 rev 2 (Beaglebone
3343  *  Black).
3344  *
3345  *  It's a problem when either promotion or demotion is being done. The pte1
3346  *  update and appropriate TLB flush must be done atomically in general.
3347  */
3348 static void
3349 pmap_change_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va,
3350     pt1_entry_t npte1)
3351 {
3352 
3353 	if (pmap == kernel_pmap) {
3354 		struct pte1_action act;
3355 
3356 		sched_pin();
3357 		act.va = va;
3358 		act.npte1 = npte1;
3359 		act.update = PCPU_GET(cpuid);
3360 		smp_rendezvous_cpus(all_cpus, smp_no_rendezvous_barrier,
3361 		    pmap_update_pte1_action, NULL, &act);
3362 		sched_unpin();
3363 	} else {
3364 		register_t cspr;
3365 
3366 		/*
3367 		 * Use break-before-make approach for changing userland
3368 		 * mappings. It can cause L1 translation aborts on other
3369 		 * cores in SMP case. So, special treatment is implemented
3370 		 * in pmap_fault(). To reduce the likelihood that another core
3371 		 * will be affected by the broken mapping, disable interrupts
3372 		 * until the mapping change is completed.
3373 		 */
3374 		cspr = disable_interrupts(PSR_I | PSR_F);
3375 		pte1_clear(pte1p);
3376 		pmap_tlb_flush_pte1(pmap, va, npte1);
3377 		pte1_store(pte1p, npte1);
3378 		restore_interrupts(cspr);
3379 	}
3380 }
3381 #else
3382 static void
3383 pmap_change_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va,
3384     pt1_entry_t npte1)
3385 {
3386 
3387 	if (pmap == kernel_pmap) {
3388 		mtx_lock_spin(&allpmaps_lock);
3389 		pmap_update_pte1_kernel(va, npte1);
3390 		mtx_unlock_spin(&allpmaps_lock);
3391 	} else {
3392 		register_t cspr;
3393 
3394 		/*
3395 		 * Use break-before-make approach for changing userland
3396 		 * mappings. It's absolutely safe in UP case when interrupts
3397 		 * are disabled.
3398 		 */
3399 		cspr = disable_interrupts(PSR_I | PSR_F);
3400 		pte1_clear(pte1p);
3401 		pmap_tlb_flush_pte1(pmap, va, npte1);
3402 		pte1_store(pte1p, npte1);
3403 		restore_interrupts(cspr);
3404 	}
3405 }
3406 #endif
3407 
3408 /*
3409  *  Tries to promote the NPTE2_IN_PT2, contiguous 4KB page mappings that are
3410  *  within a single page table page (PT2) to a single 1MB page mapping.
3411  *  For promotion to occur, two conditions must be met: (1) the 4KB page
3412  *  mappings must map aligned, contiguous physical memory and (2) the 4KB page
3413  *  mappings must have identical characteristics.
3414  *
3415  *  Managed (PG_MANAGED) mappings within the kernel address space are not
3416  *  promoted.  The reason is that kernel PTE1s are replicated in each pmap but
3417  *  pmap_remove_write(), pmap_clear_modify(), and pmap_clear_reference() only
3418  *  read the PTE1 from the kernel pmap.
3419  */
3420 static void
3421 pmap_promote_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va)
3422 {
3423 	pt1_entry_t npte1;
3424 	pt2_entry_t *fpte2p, fpte2, fpte2_fav;
3425 	pt2_entry_t *pte2p, pte2;
3426 	vm_offset_t pteva __unused;
3427 	vm_page_t m __unused;
3428 
3429 	PDEBUG(6, printf("%s(%p): try for va %#x pte1 %#x at %p\n", __func__,
3430 	    pmap, va, pte1_load(pte1p), pte1p));
3431 
3432 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3433 
3434 	/*
3435 	 * Examine the first PTE2 in the specified PT2. Abort if this PTE2 is
3436 	 * either invalid, unused, or does not map the first 4KB physical page
3437 	 * within a 1MB page.
3438 	 */
3439 	fpte2p = pmap_pte2_quick(pmap, pte1_trunc(va));
3440 	fpte2 = pte2_load(fpte2p);
3441 	if ((fpte2 & ((PTE2_FRAME & PTE1_OFFSET) | PTE2_A | PTE2_V)) !=
3442 	    (PTE2_A | PTE2_V)) {
3443 		pmap_pte1_p_failures++;
3444 		CTR3(KTR_PMAP, "%s: failure(1) for va %#x in pmap %p",
3445 		    __func__, va, pmap);
3446 		return;
3447 	}
3448 	if (pte2_is_managed(fpte2) && pmap == kernel_pmap) {
3449 		pmap_pte1_p_failures++;
3450 		CTR3(KTR_PMAP, "%s: failure(2) for va %#x in pmap %p",
3451 		    __func__, va, pmap);
3452 		return;
3453 	}
3454 	if ((fpte2 & (PTE2_NM | PTE2_RO)) == PTE2_NM) {
3455 		/*
3456 		 * When page is not modified, PTE2_RO can be set without
3457 		 * a TLB invalidation.
3458 		 */
3459 		fpte2 |= PTE2_RO;
3460 		pte2_store(fpte2p, fpte2);
3461 	}
3462 
3463 	/*
3464 	 * Examine each of the other PTE2s in the specified PT2. Abort if this
3465 	 * PTE2 maps an unexpected 4KB physical page or does not have identical
3466 	 * characteristics to the first PTE2.
3467 	 */
3468 	fpte2_fav = (fpte2 & (PTE2_FRAME | PTE2_A | PTE2_V));
3469 	fpte2_fav += PTE1_SIZE - PTE2_SIZE; /* examine from the end */
3470 	for (pte2p = fpte2p + NPTE2_IN_PT2 - 1; pte2p > fpte2p; pte2p--) {
3471 		pte2 = pte2_load(pte2p);
3472 		if ((pte2 & (PTE2_FRAME | PTE2_A | PTE2_V)) != fpte2_fav) {
3473 			pmap_pte1_p_failures++;
3474 			CTR3(KTR_PMAP, "%s: failure(3) for va %#x in pmap %p",
3475 			    __func__, va, pmap);
3476 			return;
3477 		}
3478 		if ((pte2 & (PTE2_NM | PTE2_RO)) == PTE2_NM) {
3479 			/*
3480 			 * When page is not modified, PTE2_RO can be set
3481 			 * without a TLB invalidation. See note above.
3482 			 */
3483 			pte2 |= PTE2_RO;
3484 			pte2_store(pte2p, pte2);
3485 			pteva = pte1_trunc(va) | (pte2 & PTE1_OFFSET &
3486 			    PTE2_FRAME);
3487 			CTR3(KTR_PMAP, "%s: protect for va %#x in pmap %p",
3488 			    __func__, pteva, pmap);
3489 		}
3490 		if ((pte2 & PTE2_PROMOTE) != (fpte2 & PTE2_PROMOTE)) {
3491 			pmap_pte1_p_failures++;
3492 			CTR3(KTR_PMAP, "%s: failure(4) for va %#x in pmap %p",
3493 			    __func__, va, pmap);
3494 			return;
3495 		}
3496 
3497 		fpte2_fav -= PTE2_SIZE;
3498 	}
3499 	/*
3500 	 * The page table page in its current state will stay in PT2TAB
3501 	 * until the PTE1 mapping the section is demoted by pmap_demote_pte1()
3502 	 * or destroyed by pmap_remove_pte1().
3503 	 *
3504 	 * Note that L2 page table size is not equal to PAGE_SIZE.
3505 	 */
3506 	m = PHYS_TO_VM_PAGE(trunc_page(pte1_link_pa(pte1_load(pte1p))));
3507 	KASSERT(m >= vm_page_array && m < &vm_page_array[vm_page_array_size],
3508 	    ("%s: PT2 page is out of range", __func__));
3509 	KASSERT(m->pindex == (pte1_index(va) & ~PT2PG_MASK),
3510 	    ("%s: PT2 page's pindex is wrong", __func__));
3511 
3512 	/*
3513 	 * Get pte1 from pte2 format.
3514 	 */
3515 	npte1 = (fpte2 & PTE1_FRAME) | ATTR_TO_L1(fpte2) | PTE1_V;
3516 
3517 	/*
3518 	 * Promote the pv entries.
3519 	 */
3520 	if (pte2_is_managed(fpte2))
3521 		pmap_pv_promote_pte1(pmap, va, pte1_pa(npte1));
3522 
3523 	/*
3524 	 * Promote the mappings.
3525 	 */
3526 	pmap_change_pte1(pmap, pte1p, va, npte1);
3527 
3528 	pmap_pte1_promotions++;
3529 	CTR3(KTR_PMAP, "%s: success for va %#x in pmap %p",
3530 	    __func__, va, pmap);
3531 
3532 	PDEBUG(6, printf("%s(%p): success for va %#x pte1 %#x(%#x) at %p\n",
3533 	    __func__, pmap, va, npte1, pte1_load(pte1p), pte1p));
3534 }
3535 
3536 /*
3537  *  Zero L2 page table page.
3538  */
3539 static __inline void
3540 pmap_clear_pt2(pt2_entry_t *fpte2p)
3541 {
3542 	pt2_entry_t *pte2p;
3543 
3544 	for (pte2p = fpte2p; pte2p < fpte2p + NPTE2_IN_PT2; pte2p++)
3545 		pte2_clear(pte2p);
3546 
3547 }
3548 
3549 /*
3550  *  Removes a 1MB page mapping from the kernel pmap.
3551  */
3552 static void
3553 pmap_remove_kernel_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va)
3554 {
3555 	vm_page_t m;
3556 	uint32_t pte1_idx;
3557 	pt2_entry_t *fpte2p;
3558 	vm_paddr_t pt2_pa;
3559 
3560 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3561 	m = pmap_pt2_page(pmap, va);
3562 	if (m == NULL)
3563 		/*
3564 		 * QQQ: Is this function called only on promoted pte1?
3565 		 *      We certainly do section mappings directly
3566 		 *      (without promotion) in kernel !!!
3567 		 */
3568 		panic("%s: missing pt2 page", __func__);
3569 
3570 	pte1_idx = pte1_index(va);
3571 
3572 	/*
3573 	 * Initialize the L2 page table.
3574 	 */
3575 	fpte2p = page_pt2(pt2map_pt2pg(va), pte1_idx);
3576 	pmap_clear_pt2(fpte2p);
3577 
3578 	/*
3579 	 * Remove the mapping.
3580 	 */
3581 	pt2_pa = page_pt2pa(VM_PAGE_TO_PHYS(m), pte1_idx);
3582 	pmap_kenter_pte1(va, PTE1_LINK(pt2_pa));
3583 
3584 	/*
3585 	 * QQQ: We do not need to invalidate PT2MAP mapping
3586 	 * as we did not change it. I.e. the L2 page table page
3587 	 * was and still is mapped the same way.
3588 	 */
3589 }
3590 
3591 /*
3592  *  Do the things to unmap a section in a process
3593  */
3594 static void
3595 pmap_remove_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t sva,
3596     struct spglist *free)
3597 {
3598 	pt1_entry_t opte1;
3599 	struct md_page *pvh;
3600 	vm_offset_t eva, va;
3601 	vm_page_t m;
3602 
3603 	PDEBUG(6, printf("%s(%p): va %#x pte1 %#x at %p\n", __func__, pmap, sva,
3604 	    pte1_load(pte1p), pte1p));
3605 
3606 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3607 	KASSERT((sva & PTE1_OFFSET) == 0,
3608 	    ("%s: sva is not 1mpage aligned", __func__));
3609 
3610 	/*
3611 	 * Clear and invalidate the mapping. It should occupy one and only TLB
3612 	 * entry. So, pmap_tlb_flush() called with aligned address should be
3613 	 * sufficient.
3614 	 */
3615 	opte1 = pte1_load_clear(pte1p);
3616 	pmap_tlb_flush(pmap, sva);
3617 
3618 	if (pte1_is_wired(opte1))
3619 		pmap->pm_stats.wired_count -= PTE1_SIZE / PAGE_SIZE;
3620 	pmap->pm_stats.resident_count -= PTE1_SIZE / PAGE_SIZE;
3621 	if (pte1_is_managed(opte1)) {
3622 		pvh = pa_to_pvh(pte1_pa(opte1));
3623 		pmap_pvh_free(pvh, pmap, sva);
3624 		eva = sva + PTE1_SIZE;
3625 		for (va = sva, m = PHYS_TO_VM_PAGE(pte1_pa(opte1));
3626 		    va < eva; va += PAGE_SIZE, m++) {
3627 			if (pte1_is_dirty(opte1))
3628 				vm_page_dirty(m);
3629 			if (opte1 & PTE1_A)
3630 				vm_page_aflag_set(m, PGA_REFERENCED);
3631 			if (TAILQ_EMPTY(&m->md.pv_list) &&
3632 			    TAILQ_EMPTY(&pvh->pv_list))
3633 				vm_page_aflag_clear(m, PGA_WRITEABLE);
3634 		}
3635 	}
3636 	if (pmap == kernel_pmap) {
3637 		/*
3638 		 * L2 page table(s) can't be removed from kernel map as
3639 		 * kernel counts on it (stuff around pmap_growkernel()).
3640 		 */
3641 		 pmap_remove_kernel_pte1(pmap, pte1p, sva);
3642 	} else {
3643 		/*
3644 		 * Get associated L2 page table page.
3645 		 * It's possible that the page was never allocated.
3646 		 */
3647 		m = pmap_pt2_page(pmap, sva);
3648 		if (m != NULL)
3649 			pmap_unwire_pt2_all(pmap, sva, m, free);
3650 	}
3651 }
3652 
3653 /*
3654  *  Fills L2 page table page with mappings to consecutive physical pages.
3655  */
3656 static __inline void
3657 pmap_fill_pt2(pt2_entry_t *fpte2p, pt2_entry_t npte2)
3658 {
3659 	pt2_entry_t *pte2p;
3660 
3661 	for (pte2p = fpte2p; pte2p < fpte2p + NPTE2_IN_PT2; pte2p++) {
3662 		pte2_store(pte2p, npte2);
3663 		npte2 += PTE2_SIZE;
3664 	}
3665 }
3666 
3667 /*
3668  *  Tries to demote a 1MB page mapping. If demotion fails, the
3669  *  1MB page mapping is invalidated.
3670  */
3671 static boolean_t
3672 pmap_demote_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va)
3673 {
3674 	pt1_entry_t opte1, npte1;
3675 	pt2_entry_t *fpte2p, npte2;
3676 	vm_paddr_t pt2pg_pa, pt2_pa;
3677 	vm_page_t m;
3678 	struct spglist free;
3679 	uint32_t pte1_idx, isnew = 0;
3680 
3681 	PDEBUG(6, printf("%s(%p): try for va %#x pte1 %#x at %p\n", __func__,
3682 	    pmap, va, pte1_load(pte1p), pte1p));
3683 
3684 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3685 
3686 	opte1 = pte1_load(pte1p);
3687 	KASSERT(pte1_is_section(opte1), ("%s: opte1 not a section", __func__));
3688 
3689 	if ((opte1 & PTE1_A) == 0 || (m = pmap_pt2_page(pmap, va)) == NULL) {
3690 		KASSERT(!pte1_is_wired(opte1),
3691 		    ("%s: PT2 page for a wired mapping is missing", __func__));
3692 
3693 		/*
3694 		 * Invalidate the 1MB page mapping and return
3695 		 * "failure" if the mapping was never accessed or the
3696 		 * allocation of the new page table page fails.
3697 		 */
3698 		if ((opte1 & PTE1_A) == 0 || (m = vm_page_alloc(NULL,
3699 		    pte1_index(va) & ~PT2PG_MASK, VM_ALLOC_NOOBJ |
3700 		    VM_ALLOC_NORMAL | VM_ALLOC_WIRED)) == NULL) {
3701 			SLIST_INIT(&free);
3702 			pmap_remove_pte1(pmap, pte1p, pte1_trunc(va), &free);
3703 			pmap_free_zero_pages(&free);
3704 			CTR3(KTR_PMAP, "%s: failure for va %#x in pmap %p",
3705 			    __func__, va, pmap);
3706 			return (FALSE);
3707 		}
3708 		if (va < VM_MAXUSER_ADDRESS)
3709 			pmap->pm_stats.resident_count++;
3710 
3711 		isnew = 1;
3712 
3713 		/*
3714 		 * We init all L2 page tables in the page even if
3715 		 * we are going to change everything for one L2 page
3716 		 * table in a while.
3717 		 */
3718 		pt2pg_pa = pmap_pt2pg_init(pmap, va, m);
3719 	} else {
3720 		if (va < VM_MAXUSER_ADDRESS) {
3721 			if (pt2_is_empty(m, va))
3722 				isnew = 1; /* Demoting section w/o promotion. */
3723 #ifdef INVARIANTS
3724 			else
3725 				KASSERT(pt2_is_full(m, va), ("%s: bad PT2 wire"
3726 				    " count %u", __func__,
3727 				    pt2_wirecount_get(m, pte1_index(va))));
3728 #endif
3729 		}
3730 	}
3731 
3732 	pt2pg_pa = VM_PAGE_TO_PHYS(m);
3733 	pte1_idx = pte1_index(va);
3734 	/*
3735 	 * If the pmap is current, then the PT2MAP can provide access to
3736 	 * the page table page (promoted L2 page tables are not unmapped).
3737 	 * Otherwise, temporarily map the L2 page table page (m) into
3738 	 * the kernel's address space at either PADDR1 or PADDR2.
3739 	 *
3740 	 * Note that L2 page table size is not equal to PAGE_SIZE.
3741 	 */
3742 	if (pmap_is_current(pmap))
3743 		fpte2p = page_pt2(pt2map_pt2pg(va), pte1_idx);
3744 	else if (curthread->td_pinned > 0 && rw_wowned(&pvh_global_lock)) {
3745 		if (pte2_pa(pte2_load(PMAP1)) != pt2pg_pa) {
3746 			pte2_store(PMAP1, PTE2_KPT(pt2pg_pa));
3747 #ifdef SMP
3748 			PMAP1cpu = PCPU_GET(cpuid);
3749 #endif
3750 			tlb_flush_local((vm_offset_t)PADDR1);
3751 			PMAP1changed++;
3752 		} else
3753 #ifdef SMP
3754 		if (PMAP1cpu != PCPU_GET(cpuid)) {
3755 			PMAP1cpu = PCPU_GET(cpuid);
3756 			tlb_flush_local((vm_offset_t)PADDR1);
3757 			PMAP1changedcpu++;
3758 		} else
3759 #endif
3760 			PMAP1unchanged++;
3761 		fpte2p = page_pt2((vm_offset_t)PADDR1, pte1_idx);
3762 	} else {
3763 		mtx_lock(&PMAP2mutex);
3764 		if (pte2_pa(pte2_load(PMAP2)) != pt2pg_pa) {
3765 			pte2_store(PMAP2, PTE2_KPT(pt2pg_pa));
3766 			tlb_flush((vm_offset_t)PADDR2);
3767 		}
3768 		fpte2p = page_pt2((vm_offset_t)PADDR2, pte1_idx);
3769 	}
3770 	pt2_pa = page_pt2pa(pt2pg_pa, pte1_idx);
3771 	npte1 = PTE1_LINK(pt2_pa);
3772 
3773 	KASSERT((opte1 & PTE1_A) != 0,
3774 	    ("%s: opte1 is missing PTE1_A", __func__));
3775 	KASSERT((opte1 & (PTE1_NM | PTE1_RO)) != PTE1_NM,
3776 	    ("%s: opte1 has PTE1_NM", __func__));
3777 
3778 	/*
3779 	 *  Get pte2 from pte1 format.
3780 	*/
3781 	npte2 = pte1_pa(opte1) | ATTR_TO_L2(opte1) | PTE2_V;
3782 
3783 	/*
3784 	 * If the L2 page table page is new, initialize it. If the mapping
3785 	 * has changed attributes, update the page table entries.
3786 	 */
3787 	if (isnew != 0) {
3788 		pt2_wirecount_set(m, pte1_idx, NPTE2_IN_PT2);
3789 		pmap_fill_pt2(fpte2p, npte2);
3790 	} else if ((pte2_load(fpte2p) & PTE2_PROMOTE) !=
3791 		    (npte2 & PTE2_PROMOTE))
3792 		pmap_fill_pt2(fpte2p, npte2);
3793 
3794 	KASSERT(pte2_pa(pte2_load(fpte2p)) == pte2_pa(npte2),
3795 	    ("%s: fpte2p and npte2 map different physical addresses",
3796 	    __func__));
3797 
3798 	if (fpte2p == PADDR2)
3799 		mtx_unlock(&PMAP2mutex);
3800 
3801 	/*
3802 	 * Demote the mapping. This pmap is locked. The old PTE1 has
3803 	 * PTE1_A set. If the old PTE1 has not PTE1_RO set, it also
3804 	 * has not PTE1_NM set. Thus, there is no danger of a race with
3805 	 * another processor changing the setting of PTE1_A and/or PTE1_NM
3806 	 * between the read above and the store below.
3807 	 */
3808 	pmap_change_pte1(pmap, pte1p, va, npte1);
3809 
3810 	/*
3811 	 * Demote the pv entry. This depends on the earlier demotion
3812 	 * of the mapping. Specifically, the (re)creation of a per-
3813 	 * page pv entry might trigger the execution of pmap_pv_reclaim(),
3814 	 * which might reclaim a newly (re)created per-page pv entry
3815 	 * and destroy the associated mapping. In order to destroy
3816 	 * the mapping, the PTE1 must have already changed from mapping
3817 	 * the 1mpage to referencing the page table page.
3818 	 */
3819 	if (pte1_is_managed(opte1))
3820 		pmap_pv_demote_pte1(pmap, va, pte1_pa(opte1));
3821 
3822 	pmap_pte1_demotions++;
3823 	CTR3(KTR_PMAP, "%s: success for va %#x in pmap %p",
3824 	    __func__, va, pmap);
3825 
3826 	PDEBUG(6, printf("%s(%p): success for va %#x pte1 %#x(%#x) at %p\n",
3827 	    __func__, pmap, va, npte1, pte1_load(pte1p), pte1p));
3828 	return (TRUE);
3829 }
3830 
3831 /*
3832  *	Insert the given physical page (p) at
3833  *	the specified virtual address (v) in the
3834  *	target physical map with the protection requested.
3835  *
3836  *	If specified, the page will be wired down, meaning
3837  *	that the related pte can not be reclaimed.
3838  *
3839  *	NB:  This is the only routine which MAY NOT lazy-evaluate
3840  *	or lose information.  That is, this routine must actually
3841  *	insert this page into the given map NOW.
3842  */
3843 int
3844 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
3845     u_int flags, int8_t psind)
3846 {
3847 	pt1_entry_t *pte1p;
3848 	pt2_entry_t *pte2p;
3849 	pt2_entry_t npte2, opte2;
3850 	pv_entry_t pv;
3851 	vm_paddr_t opa, pa;
3852 	vm_page_t mpte2, om;
3853 	boolean_t wired;
3854 
3855 	va = trunc_page(va);
3856 	mpte2 = NULL;
3857 	wired = (flags & PMAP_ENTER_WIRED) != 0;
3858 
3859 	KASSERT(va <= vm_max_kernel_address, ("%s: toobig", __func__));
3860 	KASSERT(va < UPT2V_MIN_ADDRESS || va >= UPT2V_MAX_ADDRESS,
3861 	    ("%s: invalid to pmap_enter page table pages (va: 0x%x)", __func__,
3862 	    va));
3863 	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
3864 		VM_OBJECT_ASSERT_LOCKED(m->object);
3865 
3866 	rw_wlock(&pvh_global_lock);
3867 	PMAP_LOCK(pmap);
3868 	sched_pin();
3869 
3870 	/*
3871 	 * In the case that a page table page is not
3872 	 * resident, we are creating it here.
3873 	 */
3874 	if (va < VM_MAXUSER_ADDRESS) {
3875 		mpte2 = pmap_allocpte2(pmap, va, flags);
3876 		if (mpte2 == NULL) {
3877 			KASSERT((flags & PMAP_ENTER_NOSLEEP) != 0,
3878 			    ("pmap_allocpte2 failed with sleep allowed"));
3879 			sched_unpin();
3880 			rw_wunlock(&pvh_global_lock);
3881 			PMAP_UNLOCK(pmap);
3882 			return (KERN_RESOURCE_SHORTAGE);
3883 		}
3884 	}
3885 	pte1p = pmap_pte1(pmap, va);
3886 	if (pte1_is_section(pte1_load(pte1p)))
3887 		panic("%s: attempted on 1MB page", __func__);
3888 	pte2p = pmap_pte2_quick(pmap, va);
3889 	if (pte2p == NULL)
3890 		panic("%s: invalid L1 page table entry va=%#x", __func__, va);
3891 
3892 	om = NULL;
3893 	pa = VM_PAGE_TO_PHYS(m);
3894 	opte2 = pte2_load(pte2p);
3895 	opa = pte2_pa(opte2);
3896 	/*
3897 	 * Mapping has not changed, must be protection or wiring change.
3898 	 */
3899 	if (pte2_is_valid(opte2) && (opa == pa)) {
3900 		/*
3901 		 * Wiring change, just update stats. We don't worry about
3902 		 * wiring PT2 pages as they remain resident as long as there
3903 		 * are valid mappings in them. Hence, if a user page is wired,
3904 		 * the PT2 page will be also.
3905 		 */
3906 		if (wired && !pte2_is_wired(opte2))
3907 			pmap->pm_stats.wired_count++;
3908 		else if (!wired && pte2_is_wired(opte2))
3909 			pmap->pm_stats.wired_count--;
3910 
3911 		/*
3912 		 * Remove extra pte2 reference
3913 		 */
3914 		if (mpte2)
3915 			pt2_wirecount_dec(mpte2, pte1_index(va));
3916 		if (pte2_is_managed(opte2))
3917 			om = m;
3918 		goto validate;
3919 	}
3920 
3921 	/*
3922 	 * QQQ: We think that changing physical address on writeable mapping
3923 	 *      is not safe. Well, maybe on kernel address space with correct
3924 	 *      locking, it can make a sense. However, we have no idea why
3925 	 *      anyone should do that on user address space. Are we wrong?
3926 	 */
3927 	KASSERT((opa == 0) || (opa == pa) ||
3928 	    !pte2_is_valid(opte2) || ((opte2 & PTE2_RO) != 0),
3929 	    ("%s: pmap %p va %#x(%#x) opa %#x pa %#x - gotcha %#x %#x!",
3930 	    __func__, pmap, va, opte2, opa, pa, flags, prot));
3931 
3932 	pv = NULL;
3933 
3934 	/*
3935 	 * Mapping has changed, invalidate old range and fall through to
3936 	 * handle validating new mapping.
3937 	 */
3938 	if (opa) {
3939 		if (pte2_is_wired(opte2))
3940 			pmap->pm_stats.wired_count--;
3941 		if (pte2_is_managed(opte2)) {
3942 			om = PHYS_TO_VM_PAGE(opa);
3943 			pv = pmap_pvh_remove(&om->md, pmap, va);
3944 		}
3945 		/*
3946 		 * Remove extra pte2 reference
3947 		 */
3948 		if (mpte2 != NULL)
3949 			pt2_wirecount_dec(mpte2, va >> PTE1_SHIFT);
3950 	} else
3951 		pmap->pm_stats.resident_count++;
3952 
3953 	/*
3954 	 * Enter on the PV list if part of our managed memory.
3955 	 */
3956 	if ((m->oflags & VPO_UNMANAGED) == 0) {
3957 		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
3958 		    ("%s: managed mapping within the clean submap", __func__));
3959 		if (pv == NULL)
3960 			pv = get_pv_entry(pmap, FALSE);
3961 		pv->pv_va = va;
3962 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3963 	} else if (pv != NULL)
3964 		free_pv_entry(pmap, pv);
3965 
3966 	/*
3967 	 * Increment counters
3968 	 */
3969 	if (wired)
3970 		pmap->pm_stats.wired_count++;
3971 
3972 validate:
3973 	/*
3974 	 * Now validate mapping with desired protection/wiring.
3975 	 */
3976 	npte2 = PTE2(pa, PTE2_NM, vm_page_pte2_attr(m));
3977 	if (prot & VM_PROT_WRITE) {
3978 		if (pte2_is_managed(npte2))
3979 			vm_page_aflag_set(m, PGA_WRITEABLE);
3980 	}
3981 	else
3982 		npte2 |= PTE2_RO;
3983 	if ((prot & VM_PROT_EXECUTE) == 0)
3984 		npte2 |= PTE2_NX;
3985 	if (wired)
3986 		npte2 |= PTE2_W;
3987 	if (va < VM_MAXUSER_ADDRESS)
3988 		npte2 |= PTE2_U;
3989 	if (pmap != kernel_pmap)
3990 		npte2 |= PTE2_NG;
3991 
3992 	/*
3993 	 * If the mapping or permission bits are different, we need
3994 	 * to update the pte2.
3995 	 *
3996 	 * QQQ: Think again and again what to do
3997 	 *      if the mapping is going to be changed!
3998 	 */
3999 	if ((opte2 & ~(PTE2_NM | PTE2_A)) != (npte2 & ~(PTE2_NM | PTE2_A))) {
4000 		/*
4001 		 * Sync icache if exec permission and attribute VM_MEMATTR_WB_WA
4002 		 * is set. Do it now, before the mapping is stored and made
4003 		 * valid for hardware table walk. If done later, there is a race
4004 		 * for other threads of current process in lazy loading case.
4005 		 * Don't do it for kernel memory which is mapped with exec
4006 		 * permission even if the memory isn't going to hold executable
4007 		 * code. The only time when icache sync is needed is after
4008 		 * kernel module is loaded and the relocation info is processed.
4009 		 * And it's done in elf_cpu_load_file().
4010 		 *
4011 		 * QQQ: (1) Does it exist any better way where
4012 		 *          or how to sync icache?
4013 		 *      (2) Now, we do it on a page basis.
4014 		 */
4015 		if ((prot & VM_PROT_EXECUTE) && pmap != kernel_pmap &&
4016 		    m->md.pat_mode == VM_MEMATTR_WB_WA &&
4017 		    (opa != pa || (opte2 & PTE2_NX)))
4018 			cache_icache_sync_fresh(va, pa, PAGE_SIZE);
4019 
4020 		npte2 |= PTE2_A;
4021 		if (flags & VM_PROT_WRITE)
4022 			npte2 &= ~PTE2_NM;
4023 		if (opte2 & PTE2_V) {
4024 			/* Change mapping with break-before-make approach. */
4025 			opte2 = pte2_load_clear(pte2p);
4026 			pmap_tlb_flush(pmap, va);
4027 			pte2_store(pte2p, npte2);
4028 			if (opte2 & PTE2_A) {
4029 				if (pte2_is_managed(opte2))
4030 					vm_page_aflag_set(om, PGA_REFERENCED);
4031 			}
4032 			if (pte2_is_dirty(opte2)) {
4033 				if (pte2_is_managed(opte2))
4034 					vm_page_dirty(om);
4035 			}
4036 			if (pte2_is_managed(opte2) &&
4037 			    TAILQ_EMPTY(&om->md.pv_list) &&
4038 			    ((om->flags & PG_FICTITIOUS) != 0 ||
4039 			    TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
4040 				vm_page_aflag_clear(om, PGA_WRITEABLE);
4041 		} else
4042 			pte2_store(pte2p, npte2);
4043 	}
4044 #if 0
4045 	else {
4046 		/*
4047 		 * QQQ: In time when both access and not mofified bits are
4048 		 *      emulated by software, this should not happen. Some
4049 		 *      analysis is need, if this really happen. Missing
4050 		 *      tlb flush somewhere could be the reason.
4051 		 */
4052 		panic("%s: pmap %p va %#x opte2 %x npte2 %x !!", __func__, pmap,
4053 		    va, opte2, npte2);
4054 	}
4055 #endif
4056 	/*
4057 	 * If both the L2 page table page and the reservation are fully
4058 	 * populated, then attempt promotion.
4059 	 */
4060 	if ((mpte2 == NULL || pt2_is_full(mpte2, va)) &&
4061 	    sp_enabled && (m->flags & PG_FICTITIOUS) == 0 &&
4062 	    vm_reserv_level_iffullpop(m) == 0)
4063 		pmap_promote_pte1(pmap, pte1p, va);
4064 	sched_unpin();
4065 	rw_wunlock(&pvh_global_lock);
4066 	PMAP_UNLOCK(pmap);
4067 	return (KERN_SUCCESS);
4068 }
4069 
4070 /*
4071  *  Do the things to unmap a page in a process.
4072  */
4073 static int
4074 pmap_remove_pte2(pmap_t pmap, pt2_entry_t *pte2p, vm_offset_t va,
4075     struct spglist *free)
4076 {
4077 	pt2_entry_t opte2;
4078 	vm_page_t m;
4079 
4080 	rw_assert(&pvh_global_lock, RA_WLOCKED);
4081 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4082 
4083 	/* Clear and invalidate the mapping. */
4084 	opte2 = pte2_load_clear(pte2p);
4085 	pmap_tlb_flush(pmap, va);
4086 
4087 	KASSERT(pte2_is_valid(opte2), ("%s: pmap %p va %#x not link pte2 %#x",
4088 	    __func__, pmap, va, opte2));
4089 
4090 	if (opte2 & PTE2_W)
4091 		pmap->pm_stats.wired_count -= 1;
4092 	pmap->pm_stats.resident_count -= 1;
4093 	if (pte2_is_managed(opte2)) {
4094 		m = PHYS_TO_VM_PAGE(pte2_pa(opte2));
4095 		if (pte2_is_dirty(opte2))
4096 			vm_page_dirty(m);
4097 		if (opte2 & PTE2_A)
4098 			vm_page_aflag_set(m, PGA_REFERENCED);
4099 		pmap_remove_entry(pmap, m, va);
4100 	}
4101 	return (pmap_unuse_pt2(pmap, va, free));
4102 }
4103 
4104 /*
4105  *  Remove a single page from a process address space.
4106  */
4107 static void
4108 pmap_remove_page(pmap_t pmap, vm_offset_t va, struct spglist *free)
4109 {
4110 	pt2_entry_t *pte2p;
4111 
4112 	rw_assert(&pvh_global_lock, RA_WLOCKED);
4113 	KASSERT(curthread->td_pinned > 0,
4114 	    ("%s: curthread not pinned", __func__));
4115 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4116 	if ((pte2p = pmap_pte2_quick(pmap, va)) == NULL ||
4117 	    !pte2_is_valid(pte2_load(pte2p)))
4118 		return;
4119 	pmap_remove_pte2(pmap, pte2p, va, free);
4120 }
4121 
4122 /*
4123  *  Remove the given range of addresses from the specified map.
4124  *
4125  *  It is assumed that the start and end are properly
4126  *  rounded to the page size.
4127  */
4128 void
4129 pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
4130 {
4131 	vm_offset_t nextva;
4132 	pt1_entry_t *pte1p, pte1;
4133 	pt2_entry_t *pte2p, pte2;
4134 	struct spglist free;
4135 
4136 	/*
4137 	 * Perform an unsynchronized read. This is, however, safe.
4138 	 */
4139 	if (pmap->pm_stats.resident_count == 0)
4140 		return;
4141 
4142 	SLIST_INIT(&free);
4143 
4144 	rw_wlock(&pvh_global_lock);
4145 	sched_pin();
4146 	PMAP_LOCK(pmap);
4147 
4148 	/*
4149 	 * Special handling of removing one page. A very common
4150 	 * operation and easy to short circuit some code.
4151 	 */
4152 	if (sva + PAGE_SIZE == eva) {
4153 		pte1 = pte1_load(pmap_pte1(pmap, sva));
4154 		if (pte1_is_link(pte1)) {
4155 			pmap_remove_page(pmap, sva, &free);
4156 			goto out;
4157 		}
4158 	}
4159 
4160 	for (; sva < eva; sva = nextva) {
4161 		/*
4162 		 * Calculate address for next L2 page table.
4163 		 */
4164 		nextva = pte1_trunc(sva + PTE1_SIZE);
4165 		if (nextva < sva)
4166 			nextva = eva;
4167 		if (pmap->pm_stats.resident_count == 0)
4168 			break;
4169 
4170 		pte1p = pmap_pte1(pmap, sva);
4171 		pte1 = pte1_load(pte1p);
4172 
4173 		/*
4174 		 * Weed out invalid mappings. Note: we assume that the L1 page
4175 		 * table is always allocated, and in kernel virtual.
4176 		 */
4177 		if (pte1 == 0)
4178 			continue;
4179 
4180 		if (pte1_is_section(pte1)) {
4181 			/*
4182 			 * Are we removing the entire large page?  If not,
4183 			 * demote the mapping and fall through.
4184 			 */
4185 			if (sva + PTE1_SIZE == nextva && eva >= nextva) {
4186 				pmap_remove_pte1(pmap, pte1p, sva, &free);
4187 				continue;
4188 			} else if (!pmap_demote_pte1(pmap, pte1p, sva)) {
4189 				/* The large page mapping was destroyed. */
4190 				continue;
4191 			}
4192 #ifdef INVARIANTS
4193 			else {
4194 				/* Update pte1 after demotion. */
4195 				pte1 = pte1_load(pte1p);
4196 			}
4197 #endif
4198 		}
4199 
4200 		KASSERT(pte1_is_link(pte1), ("%s: pmap %p va %#x pte1 %#x at %p"
4201 		    " is not link", __func__, pmap, sva, pte1, pte1p));
4202 
4203 		/*
4204 		 * Limit our scan to either the end of the va represented
4205 		 * by the current L2 page table page, or to the end of the
4206 		 * range being removed.
4207 		 */
4208 		if (nextva > eva)
4209 			nextva = eva;
4210 
4211 		for (pte2p = pmap_pte2_quick(pmap, sva); sva != nextva;
4212 		    pte2p++, sva += PAGE_SIZE) {
4213 			pte2 = pte2_load(pte2p);
4214 			if (!pte2_is_valid(pte2))
4215 				continue;
4216 			if (pmap_remove_pte2(pmap, pte2p, sva, &free))
4217 				break;
4218 		}
4219 	}
4220 out:
4221 	sched_unpin();
4222 	rw_wunlock(&pvh_global_lock);
4223 	PMAP_UNLOCK(pmap);
4224 	pmap_free_zero_pages(&free);
4225 }
4226 
4227 /*
4228  *	Routine:	pmap_remove_all
4229  *	Function:
4230  *		Removes this physical page from
4231  *		all physical maps in which it resides.
4232  *		Reflects back modify bits to the pager.
4233  *
4234  *	Notes:
4235  *		Original versions of this routine were very
4236  *		inefficient because they iteratively called
4237  *		pmap_remove (slow...)
4238  */
4239 
4240 void
4241 pmap_remove_all(vm_page_t m)
4242 {
4243 	struct md_page *pvh;
4244 	pv_entry_t pv;
4245 	pmap_t pmap;
4246 	pt2_entry_t *pte2p, opte2;
4247 	pt1_entry_t *pte1p;
4248 	vm_offset_t va;
4249 	struct spglist free;
4250 
4251 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4252 	    ("%s: page %p is not managed", __func__, m));
4253 	SLIST_INIT(&free);
4254 	rw_wlock(&pvh_global_lock);
4255 	sched_pin();
4256 	if ((m->flags & PG_FICTITIOUS) != 0)
4257 		goto small_mappings;
4258 	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4259 	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
4260 		va = pv->pv_va;
4261 		pmap = PV_PMAP(pv);
4262 		PMAP_LOCK(pmap);
4263 		pte1p = pmap_pte1(pmap, va);
4264 		(void)pmap_demote_pte1(pmap, pte1p, va);
4265 		PMAP_UNLOCK(pmap);
4266 	}
4267 small_mappings:
4268 	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
4269 		pmap = PV_PMAP(pv);
4270 		PMAP_LOCK(pmap);
4271 		pmap->pm_stats.resident_count--;
4272 		pte1p = pmap_pte1(pmap, pv->pv_va);
4273 		KASSERT(!pte1_is_section(pte1_load(pte1p)), ("%s: found "
4274 		    "a 1mpage in page %p's pv list", __func__, m));
4275 		pte2p = pmap_pte2_quick(pmap, pv->pv_va);
4276 		opte2 = pte2_load_clear(pte2p);
4277 		pmap_tlb_flush(pmap, pv->pv_va);
4278 		KASSERT(pte2_is_valid(opte2), ("%s: pmap %p va %x zero pte2",
4279 		    __func__, pmap, pv->pv_va));
4280 		if (pte2_is_wired(opte2))
4281 			pmap->pm_stats.wired_count--;
4282 		if (opte2 & PTE2_A)
4283 			vm_page_aflag_set(m, PGA_REFERENCED);
4284 
4285 		/*
4286 		 * Update the vm_page_t clean and reference bits.
4287 		 */
4288 		if (pte2_is_dirty(opte2))
4289 			vm_page_dirty(m);
4290 		pmap_unuse_pt2(pmap, pv->pv_va, &free);
4291 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
4292 		free_pv_entry(pmap, pv);
4293 		PMAP_UNLOCK(pmap);
4294 	}
4295 	vm_page_aflag_clear(m, PGA_WRITEABLE);
4296 	sched_unpin();
4297 	rw_wunlock(&pvh_global_lock);
4298 	pmap_free_zero_pages(&free);
4299 }
4300 
4301 /*
4302  *  Just subroutine for pmap_remove_pages() to reasonably satisfy
4303  *  good coding style, a.k.a. 80 character line width limit hell.
4304  */
4305 static __inline void
4306 pmap_remove_pte1_quick(pmap_t pmap, pt1_entry_t pte1, pv_entry_t pv,
4307     struct spglist *free)
4308 {
4309 	vm_paddr_t pa;
4310 	vm_page_t m, mt, mpt2pg;
4311 	struct md_page *pvh;
4312 
4313 	pa = pte1_pa(pte1);
4314 	m = PHYS_TO_VM_PAGE(pa);
4315 
4316 	KASSERT(m->phys_addr == pa, ("%s: vm_page_t %p addr mismatch %#x %#x",
4317 	    __func__, m, m->phys_addr, pa));
4318 	KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
4319 	    m < &vm_page_array[vm_page_array_size],
4320 	    ("%s: bad pte1 %#x", __func__, pte1));
4321 
4322 	if (pte1_is_dirty(pte1)) {
4323 		for (mt = m; mt < &m[PTE1_SIZE / PAGE_SIZE]; mt++)
4324 			vm_page_dirty(mt);
4325 	}
4326 
4327 	pmap->pm_stats.resident_count -= PTE1_SIZE / PAGE_SIZE;
4328 	pvh = pa_to_pvh(pa);
4329 	TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
4330 	if (TAILQ_EMPTY(&pvh->pv_list)) {
4331 		for (mt = m; mt < &m[PTE1_SIZE / PAGE_SIZE]; mt++)
4332 			if (TAILQ_EMPTY(&mt->md.pv_list))
4333 				vm_page_aflag_clear(mt, PGA_WRITEABLE);
4334 	}
4335 	mpt2pg = pmap_pt2_page(pmap, pv->pv_va);
4336 	if (mpt2pg != NULL)
4337 		pmap_unwire_pt2_all(pmap, pv->pv_va, mpt2pg, free);
4338 }
4339 
4340 /*
4341  *  Just subroutine for pmap_remove_pages() to reasonably satisfy
4342  *  good coding style, a.k.a. 80 character line width limit hell.
4343  */
4344 static __inline void
4345 pmap_remove_pte2_quick(pmap_t pmap, pt2_entry_t pte2, pv_entry_t pv,
4346     struct spglist *free)
4347 {
4348 	vm_paddr_t pa;
4349 	vm_page_t m;
4350 	struct md_page *pvh;
4351 
4352 	pa = pte2_pa(pte2);
4353 	m = PHYS_TO_VM_PAGE(pa);
4354 
4355 	KASSERT(m->phys_addr == pa, ("%s: vm_page_t %p addr mismatch %#x %#x",
4356 	    __func__, m, m->phys_addr, pa));
4357 	KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
4358 	    m < &vm_page_array[vm_page_array_size],
4359 	    ("%s: bad pte2 %#x", __func__, pte2));
4360 
4361 	if (pte2_is_dirty(pte2))
4362 		vm_page_dirty(m);
4363 
4364 	pmap->pm_stats.resident_count--;
4365 	TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
4366 	if (TAILQ_EMPTY(&m->md.pv_list) && (m->flags & PG_FICTITIOUS) == 0) {
4367 		pvh = pa_to_pvh(pa);
4368 		if (TAILQ_EMPTY(&pvh->pv_list))
4369 			vm_page_aflag_clear(m, PGA_WRITEABLE);
4370 	}
4371 	pmap_unuse_pt2(pmap, pv->pv_va, free);
4372 }
4373 
4374 /*
4375  *  Remove all pages from specified address space this aids process
4376  *  exit speeds. Also, this code is special cased for current process
4377  *  only, but can have the more generic (and slightly slower) mode enabled.
4378  *  This is much faster than pmap_remove in the case of running down
4379  *  an entire address space.
4380  */
4381 void
4382 pmap_remove_pages(pmap_t pmap)
4383 {
4384 	pt1_entry_t *pte1p, pte1;
4385 	pt2_entry_t *pte2p, pte2;
4386 	pv_entry_t pv;
4387 	struct pv_chunk *pc, *npc;
4388 	struct spglist free;
4389 	int field, idx;
4390 	int32_t bit;
4391 	uint32_t inuse, bitmask;
4392 	boolean_t allfree;
4393 
4394 	/*
4395 	 * Assert that the given pmap is only active on the current
4396 	 * CPU.  Unfortunately, we cannot block another CPU from
4397 	 * activating the pmap while this function is executing.
4398 	 */
4399 	KASSERT(pmap == vmspace_pmap(curthread->td_proc->p_vmspace),
4400 	    ("%s: non-current pmap %p", __func__, pmap));
4401 #if defined(SMP) && defined(INVARIANTS)
4402 	{
4403 		cpuset_t other_cpus;
4404 
4405 		sched_pin();
4406 		other_cpus = pmap->pm_active;
4407 		CPU_CLR(PCPU_GET(cpuid), &other_cpus);
4408 		sched_unpin();
4409 		KASSERT(CPU_EMPTY(&other_cpus),
4410 		    ("%s: pmap %p active on other cpus", __func__, pmap));
4411 	}
4412 #endif
4413 	SLIST_INIT(&free);
4414 	rw_wlock(&pvh_global_lock);
4415 	PMAP_LOCK(pmap);
4416 	sched_pin();
4417 	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
4418 		KASSERT(pc->pc_pmap == pmap, ("%s: wrong pmap %p %p",
4419 		    __func__, pmap, pc->pc_pmap));
4420 		allfree = TRUE;
4421 		for (field = 0; field < _NPCM; field++) {
4422 			inuse = (~(pc->pc_map[field])) & pc_freemask[field];
4423 			while (inuse != 0) {
4424 				bit = ffs(inuse) - 1;
4425 				bitmask = 1UL << bit;
4426 				idx = field * 32 + bit;
4427 				pv = &pc->pc_pventry[idx];
4428 				inuse &= ~bitmask;
4429 
4430 				/*
4431 				 * Note that we cannot remove wired pages
4432 				 * from a process' mapping at this time
4433 				 */
4434 				pte1p = pmap_pte1(pmap, pv->pv_va);
4435 				pte1 = pte1_load(pte1p);
4436 				if (pte1_is_section(pte1)) {
4437 					if (pte1_is_wired(pte1))  {
4438 						allfree = FALSE;
4439 						continue;
4440 					}
4441 					pte1_clear(pte1p);
4442 					pmap_remove_pte1_quick(pmap, pte1, pv,
4443 					    &free);
4444 				}
4445 				else if (pte1_is_link(pte1)) {
4446 					pte2p = pt2map_entry(pv->pv_va);
4447 					pte2 = pte2_load(pte2p);
4448 
4449 					if (!pte2_is_valid(pte2)) {
4450 						printf("%s: pmap %p va %#x "
4451 						    "pte2 %#x\n", __func__,
4452 						    pmap, pv->pv_va, pte2);
4453 						panic("bad pte2");
4454 					}
4455 
4456 					if (pte2_is_wired(pte2))   {
4457 						allfree = FALSE;
4458 						continue;
4459 					}
4460 					pte2_clear(pte2p);
4461 					pmap_remove_pte2_quick(pmap, pte2, pv,
4462 					    &free);
4463 				} else {
4464 					printf("%s: pmap %p va %#x pte1 %#x\n",
4465 					    __func__, pmap, pv->pv_va, pte1);
4466 					panic("bad pte1");
4467 				}
4468 
4469 				/* Mark free */
4470 				PV_STAT(pv_entry_frees++);
4471 				PV_STAT(pv_entry_spare++);
4472 				pv_entry_count--;
4473 				pc->pc_map[field] |= bitmask;
4474 			}
4475 		}
4476 		if (allfree) {
4477 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
4478 			free_pv_chunk(pc);
4479 		}
4480 	}
4481 	tlb_flush_all_ng_local();
4482 	sched_unpin();
4483 	rw_wunlock(&pvh_global_lock);
4484 	PMAP_UNLOCK(pmap);
4485 	pmap_free_zero_pages(&free);
4486 }
4487 
4488 /*
4489  *  This code makes some *MAJOR* assumptions:
4490  *  1. Current pmap & pmap exists.
4491  *  2. Not wired.
4492  *  3. Read access.
4493  *  4. No L2 page table pages.
4494  *  but is *MUCH* faster than pmap_enter...
4495  */
4496 static vm_page_t
4497 pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
4498     vm_prot_t prot, vm_page_t mpt2pg)
4499 {
4500 	pt2_entry_t *pte2p, pte2;
4501 	vm_paddr_t pa;
4502 	struct spglist free;
4503 	uint32_t l2prot;
4504 
4505 	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
4506 	    (m->oflags & VPO_UNMANAGED) != 0,
4507 	    ("%s: managed mapping within the clean submap", __func__));
4508 	rw_assert(&pvh_global_lock, RA_WLOCKED);
4509 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4510 
4511 	/*
4512 	 * In the case that a L2 page table page is not
4513 	 * resident, we are creating it here.
4514 	 */
4515 	if (va < VM_MAXUSER_ADDRESS) {
4516 		u_int pte1_idx;
4517 		pt1_entry_t pte1, *pte1p;
4518 		vm_paddr_t pt2_pa;
4519 
4520 		/*
4521 		 * Get L1 page table things.
4522 		 */
4523 		pte1_idx = pte1_index(va);
4524 		pte1p = pmap_pte1(pmap, va);
4525 		pte1 = pte1_load(pte1p);
4526 
4527 		if (mpt2pg && (mpt2pg->pindex == (pte1_idx & ~PT2PG_MASK))) {
4528 			/*
4529 			 * Each of NPT2_IN_PG L2 page tables on the page can
4530 			 * come here. Make sure that associated L1 page table
4531 			 * link is established.
4532 			 *
4533 			 * QQQ: It comes that we don't establish all links to
4534 			 *      L2 page tables for newly allocated L2 page
4535 			 *      tables page.
4536 			 */
4537 			KASSERT(!pte1_is_section(pte1),
4538 			    ("%s: pte1 %#x is section", __func__, pte1));
4539 			if (!pte1_is_link(pte1)) {
4540 				pt2_pa = page_pt2pa(VM_PAGE_TO_PHYS(mpt2pg),
4541 				    pte1_idx);
4542 				pte1_store(pte1p, PTE1_LINK(pt2_pa));
4543 			}
4544 			pt2_wirecount_inc(mpt2pg, pte1_idx);
4545 		} else {
4546 			/*
4547 			 * If the L2 page table page is mapped, we just
4548 			 * increment the hold count, and activate it.
4549 			 */
4550 			if (pte1_is_section(pte1)) {
4551 				return (NULL);
4552 			} else if (pte1_is_link(pte1)) {
4553 				mpt2pg = PHYS_TO_VM_PAGE(pte1_link_pa(pte1));
4554 				pt2_wirecount_inc(mpt2pg, pte1_idx);
4555 			} else {
4556 				mpt2pg = _pmap_allocpte2(pmap, va,
4557 				    PMAP_ENTER_NOSLEEP);
4558 				if (mpt2pg == NULL)
4559 					return (NULL);
4560 			}
4561 		}
4562 	} else {
4563 		mpt2pg = NULL;
4564 	}
4565 
4566 	/*
4567 	 * This call to pt2map_entry() makes the assumption that we are
4568 	 * entering the page into the current pmap.  In order to support
4569 	 * quick entry into any pmap, one would likely use pmap_pte2_quick().
4570 	 * But that isn't as quick as pt2map_entry().
4571 	 */
4572 	pte2p = pt2map_entry(va);
4573 	pte2 = pte2_load(pte2p);
4574 	if (pte2_is_valid(pte2)) {
4575 		if (mpt2pg != NULL) {
4576 			/*
4577 			 * Remove extra pte2 reference
4578 			 */
4579 			pt2_wirecount_dec(mpt2pg, pte1_index(va));
4580 			mpt2pg = NULL;
4581 		}
4582 		return (NULL);
4583 	}
4584 
4585 	/*
4586 	 * Enter on the PV list if part of our managed memory.
4587 	 */
4588 	if ((m->oflags & VPO_UNMANAGED) == 0 &&
4589 	    !pmap_try_insert_pv_entry(pmap, va, m)) {
4590 		if (mpt2pg != NULL) {
4591 			SLIST_INIT(&free);
4592 			if (pmap_unwire_pt2(pmap, va, mpt2pg, &free)) {
4593 				pmap_tlb_flush(pmap, va);
4594 				pmap_free_zero_pages(&free);
4595 			}
4596 
4597 			mpt2pg = NULL;
4598 		}
4599 		return (NULL);
4600 	}
4601 
4602 	/*
4603 	 * Increment counters
4604 	 */
4605 	pmap->pm_stats.resident_count++;
4606 
4607 	/*
4608 	 * Now validate mapping with RO protection
4609 	 */
4610 	pa = VM_PAGE_TO_PHYS(m);
4611 	l2prot = PTE2_RO | PTE2_NM;
4612 	if (va < VM_MAXUSER_ADDRESS)
4613 		l2prot |= PTE2_U | PTE2_NG;
4614 	if ((prot & VM_PROT_EXECUTE) == 0)
4615 		l2prot |= PTE2_NX;
4616 	else if (m->md.pat_mode == VM_MEMATTR_WB_WA && pmap != kernel_pmap) {
4617 		/*
4618 		 * Sync icache if exec permission and attribute VM_MEMATTR_WB_WA
4619 		 * is set. QQQ: For more info, see comments in pmap_enter().
4620 		 */
4621 		cache_icache_sync_fresh(va, pa, PAGE_SIZE);
4622 	}
4623 	pte2_store(pte2p, PTE2(pa, l2prot, vm_page_pte2_attr(m)));
4624 
4625 	return (mpt2pg);
4626 }
4627 
4628 void
4629 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
4630 {
4631 
4632 	rw_wlock(&pvh_global_lock);
4633 	PMAP_LOCK(pmap);
4634 	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL);
4635 	rw_wunlock(&pvh_global_lock);
4636 	PMAP_UNLOCK(pmap);
4637 }
4638 
4639 /*
4640  *  Tries to create 1MB page mapping.  Returns TRUE if successful and
4641  *  FALSE otherwise.  Fails if (1) a page table page cannot be allocated without
4642  *  blocking, (2) a mapping already exists at the specified virtual address, or
4643  *  (3) a pv entry cannot be allocated without reclaiming another pv entry.
4644  */
4645 static boolean_t
4646 pmap_enter_pte1(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
4647 {
4648 	pt1_entry_t *pte1p;
4649 	vm_paddr_t pa;
4650 	uint32_t l1prot;
4651 
4652 	rw_assert(&pvh_global_lock, RA_WLOCKED);
4653 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4654 	pte1p = pmap_pte1(pmap, va);
4655 	if (pte1_is_valid(pte1_load(pte1p))) {
4656 		CTR3(KTR_PMAP, "%s: failure for va %#lx in pmap %p", __func__,
4657 		    va, pmap);
4658 		return (FALSE);
4659 	}
4660 	if ((m->oflags & VPO_UNMANAGED) == 0) {
4661 		/*
4662 		 * Abort this mapping if its PV entry could not be created.
4663 		 */
4664 		if (!pmap_pv_insert_pte1(pmap, va, VM_PAGE_TO_PHYS(m))) {
4665 			CTR3(KTR_PMAP, "%s: failure for va %#lx in pmap %p",
4666 			    __func__, va, pmap);
4667 			return (FALSE);
4668 		}
4669 	}
4670 	/*
4671 	 * Increment counters.
4672 	 */
4673 	pmap->pm_stats.resident_count += PTE1_SIZE / PAGE_SIZE;
4674 
4675 	/*
4676 	 * Map the section.
4677 	 *
4678 	 * QQQ: Why VM_PROT_WRITE is not evaluated and the mapping is
4679 	 *      made readonly?
4680 	 */
4681 	pa = VM_PAGE_TO_PHYS(m);
4682 	l1prot = PTE1_RO | PTE1_NM;
4683 	if (va < VM_MAXUSER_ADDRESS)
4684 		l1prot |= PTE1_U | PTE1_NG;
4685 	if ((prot & VM_PROT_EXECUTE) == 0)
4686 		l1prot |= PTE1_NX;
4687 	else if (m->md.pat_mode == VM_MEMATTR_WB_WA && pmap != kernel_pmap) {
4688 		/*
4689 		 * Sync icache if exec permission and attribute VM_MEMATTR_WB_WA
4690 		 * is set. QQQ: For more info, see comments in pmap_enter().
4691 		 */
4692 		cache_icache_sync_fresh(va, pa, PTE1_SIZE);
4693 	}
4694 	pte1_store(pte1p, PTE1(pa, l1prot, ATTR_TO_L1(vm_page_pte2_attr(m))));
4695 
4696 	pmap_pte1_mappings++;
4697 	CTR3(KTR_PMAP, "%s: success for va %#lx in pmap %p", __func__, va,
4698 	    pmap);
4699 	return (TRUE);
4700 }
4701 
4702 /*
4703  *  Maps a sequence of resident pages belonging to the same object.
4704  *  The sequence begins with the given page m_start.  This page is
4705  *  mapped at the given virtual address start.  Each subsequent page is
4706  *  mapped at a virtual address that is offset from start by the same
4707  *  amount as the page is offset from m_start within the object.  The
4708  *  last page in the sequence is the page with the largest offset from
4709  *  m_start that can be mapped at a virtual address less than the given
4710  *  virtual address end.  Not every virtual page between start and end
4711  *  is mapped; only those for which a resident page exists with the
4712  *  corresponding offset from m_start are mapped.
4713  */
4714 void
4715 pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
4716     vm_page_t m_start, vm_prot_t prot)
4717 {
4718 	vm_offset_t va;
4719 	vm_page_t m, mpt2pg;
4720 	vm_pindex_t diff, psize;
4721 
4722 	PDEBUG(6, printf("%s: pmap %p start %#x end  %#x m %p prot %#x\n",
4723 	    __func__, pmap, start, end, m_start, prot));
4724 
4725 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
4726 	psize = atop(end - start);
4727 	mpt2pg = NULL;
4728 	m = m_start;
4729 	rw_wlock(&pvh_global_lock);
4730 	PMAP_LOCK(pmap);
4731 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
4732 		va = start + ptoa(diff);
4733 		if ((va & PTE1_OFFSET) == 0 && va + PTE1_SIZE <= end &&
4734 		    m->psind == 1 && sp_enabled &&
4735 		    pmap_enter_pte1(pmap, va, m, prot))
4736 			m = &m[PTE1_SIZE / PAGE_SIZE - 1];
4737 		else
4738 			mpt2pg = pmap_enter_quick_locked(pmap, va, m, prot,
4739 			    mpt2pg);
4740 		m = TAILQ_NEXT(m, listq);
4741 	}
4742 	rw_wunlock(&pvh_global_lock);
4743 	PMAP_UNLOCK(pmap);
4744 }
4745 
4746 /*
4747  *  This code maps large physical mmap regions into the
4748  *  processor address space.  Note that some shortcuts
4749  *  are taken, but the code works.
4750  */
4751 void
4752 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
4753     vm_pindex_t pindex, vm_size_t size)
4754 {
4755 	pt1_entry_t *pte1p;
4756 	vm_paddr_t pa, pte2_pa;
4757 	vm_page_t p;
4758 	vm_memattr_t pat_mode;
4759 	u_int l1attr, l1prot;
4760 
4761 	VM_OBJECT_ASSERT_WLOCKED(object);
4762 	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
4763 	    ("%s: non-device object", __func__));
4764 	if ((addr & PTE1_OFFSET) == 0 && (size & PTE1_OFFSET) == 0) {
4765 		if (!vm_object_populate(object, pindex, pindex + atop(size)))
4766 			return;
4767 		p = vm_page_lookup(object, pindex);
4768 		KASSERT(p->valid == VM_PAGE_BITS_ALL,
4769 		    ("%s: invalid page %p", __func__, p));
4770 		pat_mode = p->md.pat_mode;
4771 
4772 		/*
4773 		 * Abort the mapping if the first page is not physically
4774 		 * aligned to a 1MB page boundary.
4775 		 */
4776 		pte2_pa = VM_PAGE_TO_PHYS(p);
4777 		if (pte2_pa & PTE1_OFFSET)
4778 			return;
4779 
4780 		/*
4781 		 * Skip the first page. Abort the mapping if the rest of
4782 		 * the pages are not physically contiguous or have differing
4783 		 * memory attributes.
4784 		 */
4785 		p = TAILQ_NEXT(p, listq);
4786 		for (pa = pte2_pa + PAGE_SIZE; pa < pte2_pa + size;
4787 		    pa += PAGE_SIZE) {
4788 			KASSERT(p->valid == VM_PAGE_BITS_ALL,
4789 			    ("%s: invalid page %p", __func__, p));
4790 			if (pa != VM_PAGE_TO_PHYS(p) ||
4791 			    pat_mode != p->md.pat_mode)
4792 				return;
4793 			p = TAILQ_NEXT(p, listq);
4794 		}
4795 
4796 		/*
4797 		 * Map using 1MB pages.
4798 		 *
4799 		 * QQQ: Well, we are mapping a section, so same condition must
4800 		 * be hold like during promotion. It looks that only RW mapping
4801 		 * is done here, so readonly mapping must be done elsewhere.
4802 		 */
4803 		l1prot = PTE1_U | PTE1_NG | PTE1_RW | PTE1_M | PTE1_A;
4804 		l1attr = ATTR_TO_L1(vm_memattr_to_pte2(pat_mode));
4805 		PMAP_LOCK(pmap);
4806 		for (pa = pte2_pa; pa < pte2_pa + size; pa += PTE1_SIZE) {
4807 			pte1p = pmap_pte1(pmap, addr);
4808 			if (!pte1_is_valid(pte1_load(pte1p))) {
4809 				pte1_store(pte1p, PTE1(pa, l1prot, l1attr));
4810 				pmap->pm_stats.resident_count += PTE1_SIZE /
4811 				    PAGE_SIZE;
4812 				pmap_pte1_mappings++;
4813 			}
4814 			/* Else continue on if the PTE1 is already valid. */
4815 			addr += PTE1_SIZE;
4816 		}
4817 		PMAP_UNLOCK(pmap);
4818 	}
4819 }
4820 
4821 /*
4822  *  Do the things to protect a 1mpage in a process.
4823  */
4824 static void
4825 pmap_protect_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t sva,
4826     vm_prot_t prot)
4827 {
4828 	pt1_entry_t npte1, opte1;
4829 	vm_offset_t eva, va;
4830 	vm_page_t m;
4831 
4832 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4833 	KASSERT((sva & PTE1_OFFSET) == 0,
4834 	    ("%s: sva is not 1mpage aligned", __func__));
4835 
4836 	opte1 = npte1 = pte1_load(pte1p);
4837 	if (pte1_is_managed(opte1) && pte1_is_dirty(opte1)) {
4838 		eva = sva + PTE1_SIZE;
4839 		for (va = sva, m = PHYS_TO_VM_PAGE(pte1_pa(opte1));
4840 		    va < eva; va += PAGE_SIZE, m++)
4841 			vm_page_dirty(m);
4842 	}
4843 	if ((prot & VM_PROT_WRITE) == 0)
4844 		npte1 |= PTE1_RO | PTE1_NM;
4845 	if ((prot & VM_PROT_EXECUTE) == 0)
4846 		npte1 |= PTE1_NX;
4847 
4848 	/*
4849 	 * QQQ: Herein, execute permission is never set.
4850 	 *      It only can be cleared. So, no icache
4851 	 *      syncing is needed.
4852 	 */
4853 
4854 	if (npte1 != opte1) {
4855 		pte1_store(pte1p, npte1);
4856 		pmap_tlb_flush(pmap, sva);
4857 	}
4858 }
4859 
4860 /*
4861  *	Set the physical protection on the
4862  *	specified range of this map as requested.
4863  */
4864 void
4865 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
4866 {
4867 	boolean_t pv_lists_locked;
4868 	vm_offset_t nextva;
4869 	pt1_entry_t *pte1p, pte1;
4870 	pt2_entry_t *pte2p, opte2, npte2;
4871 
4872 	KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
4873 	if (prot == VM_PROT_NONE) {
4874 		pmap_remove(pmap, sva, eva);
4875 		return;
4876 	}
4877 
4878 	if ((prot & (VM_PROT_WRITE | VM_PROT_EXECUTE)) ==
4879 	    (VM_PROT_WRITE | VM_PROT_EXECUTE))
4880 		return;
4881 
4882 	if (pmap_is_current(pmap))
4883 		pv_lists_locked = FALSE;
4884 	else {
4885 		pv_lists_locked = TRUE;
4886 resume:
4887 		rw_wlock(&pvh_global_lock);
4888 		sched_pin();
4889 	}
4890 
4891 	PMAP_LOCK(pmap);
4892 	for (; sva < eva; sva = nextva) {
4893 		/*
4894 		 * Calculate address for next L2 page table.
4895 		 */
4896 		nextva = pte1_trunc(sva + PTE1_SIZE);
4897 		if (nextva < sva)
4898 			nextva = eva;
4899 
4900 		pte1p = pmap_pte1(pmap, sva);
4901 		pte1 = pte1_load(pte1p);
4902 
4903 		/*
4904 		 * Weed out invalid mappings. Note: we assume that L1 page
4905 		 * page table is always allocated, and in kernel virtual.
4906 		 */
4907 		if (pte1 == 0)
4908 			continue;
4909 
4910 		if (pte1_is_section(pte1)) {
4911 			/*
4912 			 * Are we protecting the entire large page?  If not,
4913 			 * demote the mapping and fall through.
4914 			 */
4915 			if (sva + PTE1_SIZE == nextva && eva >= nextva) {
4916 				pmap_protect_pte1(pmap, pte1p, sva, prot);
4917 				continue;
4918 			} else {
4919 				if (!pv_lists_locked) {
4920 					pv_lists_locked = TRUE;
4921 					if (!rw_try_wlock(&pvh_global_lock)) {
4922 						PMAP_UNLOCK(pmap);
4923 						goto resume;
4924 					}
4925 					sched_pin();
4926 				}
4927 				if (!pmap_demote_pte1(pmap, pte1p, sva)) {
4928 					/*
4929 					 * The large page mapping
4930 					 * was destroyed.
4931 					 */
4932 					continue;
4933 				}
4934 #ifdef INVARIANTS
4935 				else {
4936 					/* Update pte1 after demotion */
4937 					pte1 = pte1_load(pte1p);
4938 				}
4939 #endif
4940 			}
4941 		}
4942 
4943 		KASSERT(pte1_is_link(pte1), ("%s: pmap %p va %#x pte1 %#x at %p"
4944 		    " is not link", __func__, pmap, sva, pte1, pte1p));
4945 
4946 		/*
4947 		 * Limit our scan to either the end of the va represented
4948 		 * by the current L2 page table page, or to the end of the
4949 		 * range being protected.
4950 		 */
4951 		if (nextva > eva)
4952 			nextva = eva;
4953 
4954 		for (pte2p = pmap_pte2_quick(pmap, sva); sva != nextva; pte2p++,
4955 		    sva += PAGE_SIZE) {
4956 			vm_page_t m;
4957 
4958 			opte2 = npte2 = pte2_load(pte2p);
4959 			if (!pte2_is_valid(opte2))
4960 				continue;
4961 
4962 			if ((prot & VM_PROT_WRITE) == 0) {
4963 				if (pte2_is_managed(opte2) &&
4964 				    pte2_is_dirty(opte2)) {
4965 					m = PHYS_TO_VM_PAGE(pte2_pa(opte2));
4966 					vm_page_dirty(m);
4967 				}
4968 				npte2 |= PTE2_RO | PTE2_NM;
4969 			}
4970 
4971 			if ((prot & VM_PROT_EXECUTE) == 0)
4972 				npte2 |= PTE2_NX;
4973 
4974 			/*
4975 			 * QQQ: Herein, execute permission is never set.
4976 			 *      It only can be cleared. So, no icache
4977 			 *      syncing is needed.
4978 			 */
4979 
4980 			if (npte2 != opte2) {
4981 				pte2_store(pte2p, npte2);
4982 				pmap_tlb_flush(pmap, sva);
4983 			}
4984 		}
4985 	}
4986 	if (pv_lists_locked) {
4987 		sched_unpin();
4988 		rw_wunlock(&pvh_global_lock);
4989 	}
4990 	PMAP_UNLOCK(pmap);
4991 }
4992 
4993 /*
4994  *	pmap_pvh_wired_mappings:
4995  *
4996  *	Return the updated number "count" of managed mappings that are wired.
4997  */
4998 static int
4999 pmap_pvh_wired_mappings(struct md_page *pvh, int count)
5000 {
5001 	pmap_t pmap;
5002 	pt1_entry_t pte1;
5003 	pt2_entry_t pte2;
5004 	pv_entry_t pv;
5005 
5006 	rw_assert(&pvh_global_lock, RA_WLOCKED);
5007 	sched_pin();
5008 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5009 		pmap = PV_PMAP(pv);
5010 		PMAP_LOCK(pmap);
5011 		pte1 = pte1_load(pmap_pte1(pmap, pv->pv_va));
5012 		if (pte1_is_section(pte1)) {
5013 			if (pte1_is_wired(pte1))
5014 				count++;
5015 		} else {
5016 			KASSERT(pte1_is_link(pte1),
5017 			    ("%s: pte1 %#x is not link", __func__, pte1));
5018 			pte2 = pte2_load(pmap_pte2_quick(pmap, pv->pv_va));
5019 			if (pte2_is_wired(pte2))
5020 				count++;
5021 		}
5022 		PMAP_UNLOCK(pmap);
5023 	}
5024 	sched_unpin();
5025 	return (count);
5026 }
5027 
5028 /*
5029  *	pmap_page_wired_mappings:
5030  *
5031  *	Return the number of managed mappings to the given physical page
5032  *	that are wired.
5033  */
5034 int
5035 pmap_page_wired_mappings(vm_page_t m)
5036 {
5037 	int count;
5038 
5039 	count = 0;
5040 	if ((m->oflags & VPO_UNMANAGED) != 0)
5041 		return (count);
5042 	rw_wlock(&pvh_global_lock);
5043 	count = pmap_pvh_wired_mappings(&m->md, count);
5044 	if ((m->flags & PG_FICTITIOUS) == 0) {
5045 		count = pmap_pvh_wired_mappings(pa_to_pvh(VM_PAGE_TO_PHYS(m)),
5046 		    count);
5047 	}
5048 	rw_wunlock(&pvh_global_lock);
5049 	return (count);
5050 }
5051 
5052 /*
5053  *  Returns TRUE if any of the given mappings were used to modify
5054  *  physical memory.  Otherwise, returns FALSE.  Both page and 1mpage
5055  *  mappings are supported.
5056  */
5057 static boolean_t
5058 pmap_is_modified_pvh(struct md_page *pvh)
5059 {
5060 	pv_entry_t pv;
5061 	pt1_entry_t pte1;
5062 	pt2_entry_t pte2;
5063 	pmap_t pmap;
5064 	boolean_t rv;
5065 
5066 	rw_assert(&pvh_global_lock, RA_WLOCKED);
5067 	rv = FALSE;
5068 	sched_pin();
5069 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5070 		pmap = PV_PMAP(pv);
5071 		PMAP_LOCK(pmap);
5072 		pte1 = pte1_load(pmap_pte1(pmap, pv->pv_va));
5073 		if (pte1_is_section(pte1)) {
5074 			rv = pte1_is_dirty(pte1);
5075 		} else {
5076 			KASSERT(pte1_is_link(pte1),
5077 			    ("%s: pte1 %#x is not link", __func__, pte1));
5078 			pte2 = pte2_load(pmap_pte2_quick(pmap, pv->pv_va));
5079 			rv = pte2_is_dirty(pte2);
5080 		}
5081 		PMAP_UNLOCK(pmap);
5082 		if (rv)
5083 			break;
5084 	}
5085 	sched_unpin();
5086 	return (rv);
5087 }
5088 
5089 /*
5090  *	pmap_is_modified:
5091  *
5092  *	Return whether or not the specified physical page was modified
5093  *	in any physical maps.
5094  */
5095 boolean_t
5096 pmap_is_modified(vm_page_t m)
5097 {
5098 	boolean_t rv;
5099 
5100 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5101 	    ("%s: page %p is not managed", __func__, m));
5102 
5103 	/*
5104 	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
5105 	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
5106 	 * is clear, no PTE2s can have PG_M set.
5107 	 */
5108 	VM_OBJECT_ASSERT_WLOCKED(m->object);
5109 	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
5110 		return (FALSE);
5111 	rw_wlock(&pvh_global_lock);
5112 	rv = pmap_is_modified_pvh(&m->md) ||
5113 	    ((m->flags & PG_FICTITIOUS) == 0 &&
5114 	    pmap_is_modified_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
5115 	rw_wunlock(&pvh_global_lock);
5116 	return (rv);
5117 }
5118 
5119 /*
5120  *	pmap_is_prefaultable:
5121  *
5122  *	Return whether or not the specified virtual address is eligible
5123  *	for prefault.
5124  */
5125 boolean_t
5126 pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
5127 {
5128 	pt1_entry_t pte1;
5129 	pt2_entry_t pte2;
5130 	boolean_t rv;
5131 
5132 	rv = FALSE;
5133 	PMAP_LOCK(pmap);
5134 	pte1 = pte1_load(pmap_pte1(pmap, addr));
5135 	if (pte1_is_link(pte1)) {
5136 		pte2 = pte2_load(pt2map_entry(addr));
5137 		rv = !pte2_is_valid(pte2) ;
5138 	}
5139 	PMAP_UNLOCK(pmap);
5140 	return (rv);
5141 }
5142 
5143 /*
5144  *  Returns TRUE if any of the given mappings were referenced and FALSE
5145  *  otherwise. Both page and 1mpage mappings are supported.
5146  */
5147 static boolean_t
5148 pmap_is_referenced_pvh(struct md_page *pvh)
5149 {
5150 
5151 	pv_entry_t pv;
5152 	pt1_entry_t pte1;
5153 	pt2_entry_t pte2;
5154 	pmap_t pmap;
5155 	boolean_t rv;
5156 
5157 	rw_assert(&pvh_global_lock, RA_WLOCKED);
5158 	rv = FALSE;
5159 	sched_pin();
5160 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5161 		pmap = PV_PMAP(pv);
5162 		PMAP_LOCK(pmap);
5163 		pte1 = pte1_load(pmap_pte1(pmap, pv->pv_va));
5164 		if (pte1_is_section(pte1)) {
5165 			rv = (pte1 & (PTE1_A | PTE1_V)) == (PTE1_A | PTE1_V);
5166 		} else {
5167 			pte2 = pte2_load(pmap_pte2_quick(pmap, pv->pv_va));
5168 			rv = (pte2 & (PTE2_A | PTE2_V)) == (PTE2_A | PTE2_V);
5169 		}
5170 		PMAP_UNLOCK(pmap);
5171 		if (rv)
5172 			break;
5173 	}
5174 	sched_unpin();
5175 	return (rv);
5176 }
5177 
5178 /*
5179  *	pmap_is_referenced:
5180  *
5181  *	Return whether or not the specified physical page was referenced
5182  *	in any physical maps.
5183  */
5184 boolean_t
5185 pmap_is_referenced(vm_page_t m)
5186 {
5187 	boolean_t rv;
5188 
5189 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5190 	    ("%s: page %p is not managed", __func__, m));
5191 	rw_wlock(&pvh_global_lock);
5192 	rv = pmap_is_referenced_pvh(&m->md) ||
5193 	    ((m->flags & PG_FICTITIOUS) == 0 &&
5194 	    pmap_is_referenced_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
5195 	rw_wunlock(&pvh_global_lock);
5196 	return (rv);
5197 }
5198 
5199 /*
5200  *	pmap_ts_referenced:
5201  *
5202  *	Return a count of reference bits for a page, clearing those bits.
5203  *	It is not necessary for every reference bit to be cleared, but it
5204  *	is necessary that 0 only be returned when there are truly no
5205  *	reference bits set.
5206  *
5207  *	As an optimization, update the page's dirty field if a modified bit is
5208  *	found while counting reference bits.  This opportunistic update can be
5209  *	performed at low cost and can eliminate the need for some future calls
5210  *	to pmap_is_modified().  However, since this function stops after
5211  *	finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
5212  *	dirty pages.  Those dirty pages will only be detected by a future call
5213  *	to pmap_is_modified().
5214  */
5215 int
5216 pmap_ts_referenced(vm_page_t m)
5217 {
5218 	struct md_page *pvh;
5219 	pv_entry_t pv, pvf;
5220 	pmap_t pmap;
5221 	pt1_entry_t  *pte1p, opte1;
5222 	pt2_entry_t *pte2p, opte2;
5223 	vm_paddr_t pa;
5224 	int rtval = 0;
5225 
5226 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5227 	    ("%s: page %p is not managed", __func__, m));
5228 	pa = VM_PAGE_TO_PHYS(m);
5229 	pvh = pa_to_pvh(pa);
5230 	rw_wlock(&pvh_global_lock);
5231 	sched_pin();
5232 	if ((m->flags & PG_FICTITIOUS) != 0 ||
5233 	    (pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
5234 		goto small_mappings;
5235 	pv = pvf;
5236 	do {
5237 		pmap = PV_PMAP(pv);
5238 		PMAP_LOCK(pmap);
5239 		pte1p = pmap_pte1(pmap, pv->pv_va);
5240 		opte1 = pte1_load(pte1p);
5241 		if (pte1_is_dirty(opte1)) {
5242 			/*
5243 			 * Although "opte1" is mapping a 1MB page, because
5244 			 * this function is called at a 4KB page granularity,
5245 			 * we only update the 4KB page under test.
5246 			 */
5247 			vm_page_dirty(m);
5248 		}
5249 		if ((opte1 & PTE1_A) != 0) {
5250 			/*
5251 			 * Since this reference bit is shared by 256 4KB pages,
5252 			 * it should not be cleared every time it is tested.
5253 			 * Apply a simple "hash" function on the physical page
5254 			 * number, the virtual section number, and the pmap
5255 			 * address to select one 4KB page out of the 256
5256 			 * on which testing the reference bit will result
5257 			 * in clearing that bit. This function is designed
5258 			 * to avoid the selection of the same 4KB page
5259 			 * for every 1MB page mapping.
5260 			 *
5261 			 * On demotion, a mapping that hasn't been referenced
5262 			 * is simply destroyed.  To avoid the possibility of a
5263 			 * subsequent page fault on a demoted wired mapping,
5264 			 * always leave its reference bit set.  Moreover,
5265 			 * since the section is wired, the current state of
5266 			 * its reference bit won't affect page replacement.
5267 			 */
5268 			 if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> PTE1_SHIFT) ^
5269 			    (uintptr_t)pmap) & (NPTE2_IN_PG - 1)) == 0 &&
5270 			    !pte1_is_wired(opte1)) {
5271 				pte1_clear_bit(pte1p, PTE1_A);
5272 				pmap_tlb_flush(pmap, pv->pv_va);
5273 			}
5274 			rtval++;
5275 		}
5276 		PMAP_UNLOCK(pmap);
5277 		/* Rotate the PV list if it has more than one entry. */
5278 		if (TAILQ_NEXT(pv, pv_next) != NULL) {
5279 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
5280 			TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
5281 		}
5282 		if (rtval >= PMAP_TS_REFERENCED_MAX)
5283 			goto out;
5284 	} while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
5285 small_mappings:
5286 	if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
5287 		goto out;
5288 	pv = pvf;
5289 	do {
5290 		pmap = PV_PMAP(pv);
5291 		PMAP_LOCK(pmap);
5292 		pte1p = pmap_pte1(pmap, pv->pv_va);
5293 		KASSERT(pte1_is_link(pte1_load(pte1p)),
5294 		    ("%s: not found a link in page %p's pv list", __func__, m));
5295 
5296 		pte2p = pmap_pte2_quick(pmap, pv->pv_va);
5297 		opte2 = pte2_load(pte2p);
5298 		if (pte2_is_dirty(opte2))
5299 			vm_page_dirty(m);
5300 		if ((opte2 & PTE2_A) != 0) {
5301 			pte2_clear_bit(pte2p, PTE2_A);
5302 			pmap_tlb_flush(pmap, pv->pv_va);
5303 			rtval++;
5304 		}
5305 		PMAP_UNLOCK(pmap);
5306 		/* Rotate the PV list if it has more than one entry. */
5307 		if (TAILQ_NEXT(pv, pv_next) != NULL) {
5308 			TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
5309 			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5310 		}
5311 	} while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && rtval <
5312 	    PMAP_TS_REFERENCED_MAX);
5313 out:
5314 	sched_unpin();
5315 	rw_wunlock(&pvh_global_lock);
5316 	return (rtval);
5317 }
5318 
5319 /*
5320  *	Clear the wired attribute from the mappings for the specified range of
5321  *	addresses in the given pmap.  Every valid mapping within that range
5322  *	must have the wired attribute set.  In contrast, invalid mappings
5323  *	cannot have the wired attribute set, so they are ignored.
5324  *
5325  *	The wired attribute of the page table entry is not a hardware feature,
5326  *	so there is no need to invalidate any TLB entries.
5327  */
5328 void
5329 pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
5330 {
5331 	vm_offset_t nextva;
5332 	pt1_entry_t *pte1p, pte1;
5333 	pt2_entry_t *pte2p, pte2;
5334 	boolean_t pv_lists_locked;
5335 
5336 	if (pmap_is_current(pmap))
5337 		pv_lists_locked = FALSE;
5338 	else {
5339 		pv_lists_locked = TRUE;
5340 resume:
5341 		rw_wlock(&pvh_global_lock);
5342 		sched_pin();
5343 	}
5344 	PMAP_LOCK(pmap);
5345 	for (; sva < eva; sva = nextva) {
5346 		nextva = pte1_trunc(sva + PTE1_SIZE);
5347 		if (nextva < sva)
5348 			nextva = eva;
5349 
5350 		pte1p = pmap_pte1(pmap, sva);
5351 		pte1 = pte1_load(pte1p);
5352 
5353 		/*
5354 		 * Weed out invalid mappings. Note: we assume that L1 page
5355 		 * page table is always allocated, and in kernel virtual.
5356 		 */
5357 		if (pte1 == 0)
5358 			continue;
5359 
5360 		if (pte1_is_section(pte1)) {
5361 			if (!pte1_is_wired(pte1))
5362 				panic("%s: pte1 %#x not wired", __func__, pte1);
5363 
5364 			/*
5365 			 * Are we unwiring the entire large page?  If not,
5366 			 * demote the mapping and fall through.
5367 			 */
5368 			if (sva + PTE1_SIZE == nextva && eva >= nextva) {
5369 				pte1_clear_bit(pte1p, PTE1_W);
5370 				pmap->pm_stats.wired_count -= PTE1_SIZE /
5371 				    PAGE_SIZE;
5372 				continue;
5373 			} else {
5374 				if (!pv_lists_locked) {
5375 					pv_lists_locked = TRUE;
5376 					if (!rw_try_wlock(&pvh_global_lock)) {
5377 						PMAP_UNLOCK(pmap);
5378 						/* Repeat sva. */
5379 						goto resume;
5380 					}
5381 					sched_pin();
5382 				}
5383 				if (!pmap_demote_pte1(pmap, pte1p, sva))
5384 					panic("%s: demotion failed", __func__);
5385 #ifdef INVARIANTS
5386 				else {
5387 					/* Update pte1 after demotion */
5388 					pte1 = pte1_load(pte1p);
5389 				}
5390 #endif
5391 			}
5392 		}
5393 
5394 		KASSERT(pte1_is_link(pte1), ("%s: pmap %p va %#x pte1 %#x at %p"
5395 		    " is not link", __func__, pmap, sva, pte1, pte1p));
5396 
5397 		/*
5398 		 * Limit our scan to either the end of the va represented
5399 		 * by the current L2 page table page, or to the end of the
5400 		 * range being protected.
5401 		 */
5402 		if (nextva > eva)
5403 			nextva = eva;
5404 
5405 		for (pte2p = pmap_pte2_quick(pmap, sva); sva != nextva; pte2p++,
5406 		    sva += PAGE_SIZE) {
5407 			pte2 = pte2_load(pte2p);
5408 			if (!pte2_is_valid(pte2))
5409 				continue;
5410 			if (!pte2_is_wired(pte2))
5411 				panic("%s: pte2 %#x is missing PTE2_W",
5412 				    __func__, pte2);
5413 
5414 			/*
5415 			 * PTE2_W must be cleared atomically. Although the pmap
5416 			 * lock synchronizes access to PTE2_W, another processor
5417 			 * could be changing PTE2_NM and/or PTE2_A concurrently.
5418 			 */
5419 			pte2_clear_bit(pte2p, PTE2_W);
5420 			pmap->pm_stats.wired_count--;
5421 		}
5422 	}
5423 	if (pv_lists_locked) {
5424 		sched_unpin();
5425 		rw_wunlock(&pvh_global_lock);
5426 	}
5427 	PMAP_UNLOCK(pmap);
5428 }
5429 
5430 /*
5431  *  Clear the write and modified bits in each of the given page's mappings.
5432  */
5433 void
5434 pmap_remove_write(vm_page_t m)
5435 {
5436 	struct md_page *pvh;
5437 	pv_entry_t next_pv, pv;
5438 	pmap_t pmap;
5439 	pt1_entry_t *pte1p;
5440 	pt2_entry_t *pte2p, opte2;
5441 	vm_offset_t va;
5442 
5443 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5444 	    ("%s: page %p is not managed", __func__, m));
5445 
5446 	/*
5447 	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
5448 	 * set by another thread while the object is locked.  Thus,
5449 	 * if PGA_WRITEABLE is clear, no page table entries need updating.
5450 	 */
5451 	VM_OBJECT_ASSERT_WLOCKED(m->object);
5452 	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
5453 		return;
5454 	rw_wlock(&pvh_global_lock);
5455 	sched_pin();
5456 	if ((m->flags & PG_FICTITIOUS) != 0)
5457 		goto small_mappings;
5458 	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5459 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
5460 		va = pv->pv_va;
5461 		pmap = PV_PMAP(pv);
5462 		PMAP_LOCK(pmap);
5463 		pte1p = pmap_pte1(pmap, va);
5464 		if (!(pte1_load(pte1p) & PTE1_RO))
5465 			(void)pmap_demote_pte1(pmap, pte1p, va);
5466 		PMAP_UNLOCK(pmap);
5467 	}
5468 small_mappings:
5469 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5470 		pmap = PV_PMAP(pv);
5471 		PMAP_LOCK(pmap);
5472 		pte1p = pmap_pte1(pmap, pv->pv_va);
5473 		KASSERT(!pte1_is_section(pte1_load(pte1p)), ("%s: found"
5474 		    " a section in page %p's pv list", __func__, m));
5475 		pte2p = pmap_pte2_quick(pmap, pv->pv_va);
5476 		opte2 = pte2_load(pte2p);
5477 		if (!(opte2 & PTE2_RO)) {
5478 			pte2_store(pte2p, opte2 | PTE2_RO | PTE2_NM);
5479 			if (pte2_is_dirty(opte2))
5480 				vm_page_dirty(m);
5481 			pmap_tlb_flush(pmap, pv->pv_va);
5482 		}
5483 		PMAP_UNLOCK(pmap);
5484 	}
5485 	vm_page_aflag_clear(m, PGA_WRITEABLE);
5486 	sched_unpin();
5487 	rw_wunlock(&pvh_global_lock);
5488 }
5489 
5490 /*
5491  *	Apply the given advice to the specified range of addresses within the
5492  *	given pmap.  Depending on the advice, clear the referenced and/or
5493  *	modified flags in each mapping and set the mapped page's dirty field.
5494  */
5495 void
5496 pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
5497 {
5498 	pt1_entry_t *pte1p, opte1;
5499 	pt2_entry_t *pte2p, pte2;
5500 	vm_offset_t pdnxt;
5501 	vm_page_t m;
5502 	boolean_t pv_lists_locked;
5503 
5504 	if (advice != MADV_DONTNEED && advice != MADV_FREE)
5505 		return;
5506 	if (pmap_is_current(pmap))
5507 		pv_lists_locked = FALSE;
5508 	else {
5509 		pv_lists_locked = TRUE;
5510 resume:
5511 		rw_wlock(&pvh_global_lock);
5512 		sched_pin();
5513 	}
5514 	PMAP_LOCK(pmap);
5515 	for (; sva < eva; sva = pdnxt) {
5516 		pdnxt = pte1_trunc(sva + PTE1_SIZE);
5517 		if (pdnxt < sva)
5518 			pdnxt = eva;
5519 		pte1p = pmap_pte1(pmap, sva);
5520 		opte1 = pte1_load(pte1p);
5521 		if (!pte1_is_valid(opte1)) /* XXX */
5522 			continue;
5523 		else if (pte1_is_section(opte1)) {
5524 			if (!pte1_is_managed(opte1))
5525 				continue;
5526 			if (!pv_lists_locked) {
5527 				pv_lists_locked = TRUE;
5528 				if (!rw_try_wlock(&pvh_global_lock)) {
5529 					PMAP_UNLOCK(pmap);
5530 					goto resume;
5531 				}
5532 				sched_pin();
5533 			}
5534 			if (!pmap_demote_pte1(pmap, pte1p, sva)) {
5535 				/*
5536 				 * The large page mapping was destroyed.
5537 				 */
5538 				continue;
5539 			}
5540 
5541 			/*
5542 			 * Unless the page mappings are wired, remove the
5543 			 * mapping to a single page so that a subsequent
5544 			 * access may repromote.  Since the underlying L2 page
5545 			 * table is fully populated, this removal never
5546 			 * frees a L2 page table page.
5547 			 */
5548 			if (!pte1_is_wired(opte1)) {
5549 				pte2p = pmap_pte2_quick(pmap, sva);
5550 				KASSERT(pte2_is_valid(pte2_load(pte2p)),
5551 				    ("%s: invalid PTE2", __func__));
5552 				pmap_remove_pte2(pmap, pte2p, sva, NULL);
5553 			}
5554 		}
5555 		if (pdnxt > eva)
5556 			pdnxt = eva;
5557 		for (pte2p = pmap_pte2_quick(pmap, sva); sva != pdnxt; pte2p++,
5558 		    sva += PAGE_SIZE) {
5559 			pte2 = pte2_load(pte2p);
5560 			if (!pte2_is_valid(pte2) || !pte2_is_managed(pte2))
5561 				continue;
5562 			else if (pte2_is_dirty(pte2)) {
5563 				if (advice == MADV_DONTNEED) {
5564 					/*
5565 					 * Future calls to pmap_is_modified()
5566 					 * can be avoided by making the page
5567 					 * dirty now.
5568 					 */
5569 					m = PHYS_TO_VM_PAGE(pte2_pa(pte2));
5570 					vm_page_dirty(m);
5571 				}
5572 				pte2_set_bit(pte2p, PTE2_NM);
5573 				pte2_clear_bit(pte2p, PTE2_A);
5574 			} else if ((pte2 & PTE2_A) != 0)
5575 				pte2_clear_bit(pte2p, PTE2_A);
5576 			else
5577 				continue;
5578 			pmap_tlb_flush(pmap, sva);
5579 		}
5580 	}
5581 	if (pv_lists_locked) {
5582 		sched_unpin();
5583 		rw_wunlock(&pvh_global_lock);
5584 	}
5585 	PMAP_UNLOCK(pmap);
5586 }
5587 
5588 /*
5589  *	Clear the modify bits on the specified physical page.
5590  */
5591 void
5592 pmap_clear_modify(vm_page_t m)
5593 {
5594 	struct md_page *pvh;
5595 	pv_entry_t next_pv, pv;
5596 	pmap_t pmap;
5597 	pt1_entry_t *pte1p, opte1;
5598 	pt2_entry_t *pte2p, opte2;
5599 	vm_offset_t va;
5600 
5601 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5602 	    ("%s: page %p is not managed", __func__, m));
5603 	VM_OBJECT_ASSERT_WLOCKED(m->object);
5604 	KASSERT(!vm_page_xbusied(m),
5605 	    ("%s: page %p is exclusive busy", __func__, m));
5606 
5607 	/*
5608 	 * If the page is not PGA_WRITEABLE, then no PTE2s can have PTE2_NM
5609 	 * cleared. If the object containing the page is locked and the page
5610 	 * is not exclusive busied, then PGA_WRITEABLE cannot be concurrently
5611 	 * set.
5612 	 */
5613 	if ((m->flags & PGA_WRITEABLE) == 0)
5614 		return;
5615 	rw_wlock(&pvh_global_lock);
5616 	sched_pin();
5617 	if ((m->flags & PG_FICTITIOUS) != 0)
5618 		goto small_mappings;
5619 	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5620 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
5621 		va = pv->pv_va;
5622 		pmap = PV_PMAP(pv);
5623 		PMAP_LOCK(pmap);
5624 		pte1p = pmap_pte1(pmap, va);
5625 		opte1 = pte1_load(pte1p);
5626 		if (!(opte1 & PTE1_RO)) {
5627 			if (pmap_demote_pte1(pmap, pte1p, va) &&
5628 			    !pte1_is_wired(opte1)) {
5629 				/*
5630 				 * Write protect the mapping to a
5631 				 * single page so that a subsequent
5632 				 * write access may repromote.
5633 				 */
5634 				va += VM_PAGE_TO_PHYS(m) - pte1_pa(opte1);
5635 				pte2p = pmap_pte2_quick(pmap, va);
5636 				opte2 = pte2_load(pte2p);
5637 				if ((opte2 & PTE2_V)) {
5638 					pte2_set_bit(pte2p, PTE2_NM | PTE2_RO);
5639 					vm_page_dirty(m);
5640 					pmap_tlb_flush(pmap, va);
5641 				}
5642 			}
5643 		}
5644 		PMAP_UNLOCK(pmap);
5645 	}
5646 small_mappings:
5647 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5648 		pmap = PV_PMAP(pv);
5649 		PMAP_LOCK(pmap);
5650 		pte1p = pmap_pte1(pmap, pv->pv_va);
5651 		KASSERT(!pte1_is_section(pte1_load(pte1p)), ("%s: found"
5652 		    " a section in page %p's pv list", __func__, m));
5653 		pte2p = pmap_pte2_quick(pmap, pv->pv_va);
5654 		if (pte2_is_dirty(pte2_load(pte2p))) {
5655 			pte2_set_bit(pte2p, PTE2_NM);
5656 			pmap_tlb_flush(pmap, pv->pv_va);
5657 		}
5658 		PMAP_UNLOCK(pmap);
5659 	}
5660 	sched_unpin();
5661 	rw_wunlock(&pvh_global_lock);
5662 }
5663 
5664 
5665 /*
5666  *  Sets the memory attribute for the specified page.
5667  */
5668 void
5669 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
5670 {
5671 	pt2_entry_t *cmap2_pte2p;
5672 	vm_memattr_t oma;
5673 	vm_paddr_t pa;
5674 	struct pcpu *pc;
5675 
5676 	oma = m->md.pat_mode;
5677 	m->md.pat_mode = ma;
5678 
5679 	CTR5(KTR_PMAP, "%s: page %p - 0x%08X oma: %d, ma: %d", __func__, m,
5680 	    VM_PAGE_TO_PHYS(m), oma, ma);
5681 	if ((m->flags & PG_FICTITIOUS) != 0)
5682 		return;
5683 #if 0
5684 	/*
5685 	 * If "m" is a normal page, flush it from the cache.
5686 	 *
5687 	 * First, try to find an existing mapping of the page by sf
5688 	 * buffer. sf_buf_invalidate_cache() modifies mapping and
5689 	 * flushes the cache.
5690 	 */
5691 	if (sf_buf_invalidate_cache(m, oma))
5692 		return;
5693 #endif
5694 	/*
5695 	 * If page is not mapped by sf buffer, map the page
5696 	 * transient and do invalidation.
5697 	 */
5698 	if (ma != oma) {
5699 		pa = VM_PAGE_TO_PHYS(m);
5700 		sched_pin();
5701 		pc = get_pcpu();
5702 		cmap2_pte2p = pc->pc_cmap2_pte2p;
5703 		mtx_lock(&pc->pc_cmap_lock);
5704 		if (pte2_load(cmap2_pte2p) != 0)
5705 			panic("%s: CMAP2 busy", __func__);
5706 		pte2_store(cmap2_pte2p, PTE2_KERN_NG(pa, PTE2_AP_KRW,
5707 		    vm_memattr_to_pte2(ma)));
5708 		dcache_wbinv_poc((vm_offset_t)pc->pc_cmap2_addr, pa, PAGE_SIZE);
5709 		pte2_clear(cmap2_pte2p);
5710 		tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
5711 		sched_unpin();
5712 		mtx_unlock(&pc->pc_cmap_lock);
5713 	}
5714 }
5715 
5716 /*
5717  *  Miscellaneous support routines follow
5718  */
5719 
5720 /*
5721  *  Returns TRUE if the given page is mapped individually or as part of
5722  *  a 1mpage.  Otherwise, returns FALSE.
5723  */
5724 boolean_t
5725 pmap_page_is_mapped(vm_page_t m)
5726 {
5727 	boolean_t rv;
5728 
5729 	if ((m->oflags & VPO_UNMANAGED) != 0)
5730 		return (FALSE);
5731 	rw_wlock(&pvh_global_lock);
5732 	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
5733 	    ((m->flags & PG_FICTITIOUS) == 0 &&
5734 	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
5735 	rw_wunlock(&pvh_global_lock);
5736 	return (rv);
5737 }
5738 
5739 /*
5740  *  Returns true if the pmap's pv is one of the first
5741  *  16 pvs linked to from this page.  This count may
5742  *  be changed upwards or downwards in the future; it
5743  *  is only necessary that true be returned for a small
5744  *  subset of pmaps for proper page aging.
5745  */
5746 boolean_t
5747 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
5748 {
5749 	struct md_page *pvh;
5750 	pv_entry_t pv;
5751 	int loops = 0;
5752 	boolean_t rv;
5753 
5754 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5755 	    ("%s: page %p is not managed", __func__, m));
5756 	rv = FALSE;
5757 	rw_wlock(&pvh_global_lock);
5758 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5759 		if (PV_PMAP(pv) == pmap) {
5760 			rv = TRUE;
5761 			break;
5762 		}
5763 		loops++;
5764 		if (loops >= 16)
5765 			break;
5766 	}
5767 	if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
5768 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5769 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5770 			if (PV_PMAP(pv) == pmap) {
5771 				rv = TRUE;
5772 				break;
5773 			}
5774 			loops++;
5775 			if (loops >= 16)
5776 				break;
5777 		}
5778 	}
5779 	rw_wunlock(&pvh_global_lock);
5780 	return (rv);
5781 }
5782 
5783 /*
5784  *	pmap_zero_page zeros the specified hardware page by mapping
5785  *	the page into KVM and using bzero to clear its contents.
5786  */
5787 void
5788 pmap_zero_page(vm_page_t m)
5789 {
5790 	pt2_entry_t *cmap2_pte2p;
5791 	struct pcpu *pc;
5792 
5793 	sched_pin();
5794 	pc = get_pcpu();
5795 	cmap2_pte2p = pc->pc_cmap2_pte2p;
5796 	mtx_lock(&pc->pc_cmap_lock);
5797 	if (pte2_load(cmap2_pte2p) != 0)
5798 		panic("%s: CMAP2 busy", __func__);
5799 	pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(m), PTE2_AP_KRW,
5800 	    vm_page_pte2_attr(m)));
5801 	pagezero(pc->pc_cmap2_addr);
5802 	pte2_clear(cmap2_pte2p);
5803 	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
5804 	sched_unpin();
5805 	mtx_unlock(&pc->pc_cmap_lock);
5806 }
5807 
5808 /*
5809  *	pmap_zero_page_area zeros the specified hardware page by mapping
5810  *	the page into KVM and using bzero to clear its contents.
5811  *
5812  *	off and size may not cover an area beyond a single hardware page.
5813  */
5814 void
5815 pmap_zero_page_area(vm_page_t m, int off, int size)
5816 {
5817 	pt2_entry_t *cmap2_pte2p;
5818 	struct pcpu *pc;
5819 
5820 	sched_pin();
5821 	pc = get_pcpu();
5822 	cmap2_pte2p = pc->pc_cmap2_pte2p;
5823 	mtx_lock(&pc->pc_cmap_lock);
5824 	if (pte2_load(cmap2_pte2p) != 0)
5825 		panic("%s: CMAP2 busy", __func__);
5826 	pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(m), PTE2_AP_KRW,
5827 	    vm_page_pte2_attr(m)));
5828 	if (off == 0 && size == PAGE_SIZE)
5829 		pagezero(pc->pc_cmap2_addr);
5830 	else
5831 		bzero(pc->pc_cmap2_addr + off, size);
5832 	pte2_clear(cmap2_pte2p);
5833 	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
5834 	sched_unpin();
5835 	mtx_unlock(&pc->pc_cmap_lock);
5836 }
5837 
5838 /*
5839  *	pmap_copy_page copies the specified (machine independent)
5840  *	page by mapping the page into virtual memory and using
5841  *	bcopy to copy the page, one machine dependent page at a
5842  *	time.
5843  */
5844 void
5845 pmap_copy_page(vm_page_t src, vm_page_t dst)
5846 {
5847 	pt2_entry_t *cmap1_pte2p, *cmap2_pte2p;
5848 	struct pcpu *pc;
5849 
5850 	sched_pin();
5851 	pc = get_pcpu();
5852 	cmap1_pte2p = pc->pc_cmap1_pte2p;
5853 	cmap2_pte2p = pc->pc_cmap2_pte2p;
5854 	mtx_lock(&pc->pc_cmap_lock);
5855 	if (pte2_load(cmap1_pte2p) != 0)
5856 		panic("%s: CMAP1 busy", __func__);
5857 	if (pte2_load(cmap2_pte2p) != 0)
5858 		panic("%s: CMAP2 busy", __func__);
5859 	pte2_store(cmap1_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(src),
5860 	    PTE2_AP_KR | PTE2_NM, vm_page_pte2_attr(src)));
5861 	pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(dst),
5862 	    PTE2_AP_KRW, vm_page_pte2_attr(dst)));
5863 	bcopy(pc->pc_cmap1_addr, pc->pc_cmap2_addr, PAGE_SIZE);
5864 	pte2_clear(cmap1_pte2p);
5865 	tlb_flush((vm_offset_t)pc->pc_cmap1_addr);
5866 	pte2_clear(cmap2_pte2p);
5867 	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
5868 	sched_unpin();
5869 	mtx_unlock(&pc->pc_cmap_lock);
5870 }
5871 
5872 int unmapped_buf_allowed = 1;
5873 
5874 void
5875 pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
5876     vm_offset_t b_offset, int xfersize)
5877 {
5878 	pt2_entry_t *cmap1_pte2p, *cmap2_pte2p;
5879 	vm_page_t a_pg, b_pg;
5880 	char *a_cp, *b_cp;
5881 	vm_offset_t a_pg_offset, b_pg_offset;
5882 	struct pcpu *pc;
5883 	int cnt;
5884 
5885 	sched_pin();
5886 	pc = get_pcpu();
5887 	cmap1_pte2p = pc->pc_cmap1_pte2p;
5888 	cmap2_pte2p = pc->pc_cmap2_pte2p;
5889 	mtx_lock(&pc->pc_cmap_lock);
5890 	if (pte2_load(cmap1_pte2p) != 0)
5891 		panic("pmap_copy_pages: CMAP1 busy");
5892 	if (pte2_load(cmap2_pte2p) != 0)
5893 		panic("pmap_copy_pages: CMAP2 busy");
5894 	while (xfersize > 0) {
5895 		a_pg = ma[a_offset >> PAGE_SHIFT];
5896 		a_pg_offset = a_offset & PAGE_MASK;
5897 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
5898 		b_pg = mb[b_offset >> PAGE_SHIFT];
5899 		b_pg_offset = b_offset & PAGE_MASK;
5900 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
5901 		pte2_store(cmap1_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(a_pg),
5902 		    PTE2_AP_KR | PTE2_NM, vm_page_pte2_attr(a_pg)));
5903 		tlb_flush_local((vm_offset_t)pc->pc_cmap1_addr);
5904 		pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(b_pg),
5905 		    PTE2_AP_KRW, vm_page_pte2_attr(b_pg)));
5906 		tlb_flush_local((vm_offset_t)pc->pc_cmap2_addr);
5907 		a_cp = pc->pc_cmap1_addr + a_pg_offset;
5908 		b_cp = pc->pc_cmap2_addr + b_pg_offset;
5909 		bcopy(a_cp, b_cp, cnt);
5910 		a_offset += cnt;
5911 		b_offset += cnt;
5912 		xfersize -= cnt;
5913 	}
5914 	pte2_clear(cmap1_pte2p);
5915 	tlb_flush((vm_offset_t)pc->pc_cmap1_addr);
5916 	pte2_clear(cmap2_pte2p);
5917 	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
5918 	sched_unpin();
5919 	mtx_unlock(&pc->pc_cmap_lock);
5920 }
5921 
5922 vm_offset_t
5923 pmap_quick_enter_page(vm_page_t m)
5924 {
5925 	struct pcpu *pc;
5926 	pt2_entry_t *pte2p;
5927 
5928 	critical_enter();
5929 	pc = get_pcpu();
5930 	pte2p = pc->pc_qmap_pte2p;
5931 
5932 	KASSERT(pte2_load(pte2p) == 0, ("%s: PTE2 busy", __func__));
5933 
5934 	pte2_store(pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(m), PTE2_AP_KRW,
5935 	    vm_page_pte2_attr(m)));
5936 	return (pc->pc_qmap_addr);
5937 }
5938 
5939 void
5940 pmap_quick_remove_page(vm_offset_t addr)
5941 {
5942 	struct pcpu *pc;
5943 	pt2_entry_t *pte2p;
5944 
5945 	pc = get_pcpu();
5946 	pte2p = pc->pc_qmap_pte2p;
5947 
5948 	KASSERT(addr == pc->pc_qmap_addr, ("%s: invalid address", __func__));
5949 	KASSERT(pte2_load(pte2p) != 0, ("%s: PTE2 not in use", __func__));
5950 
5951 	pte2_clear(pte2p);
5952 	tlb_flush(pc->pc_qmap_addr);
5953 	critical_exit();
5954 }
5955 
5956 /*
5957  *	Copy the range specified by src_addr/len
5958  *	from the source map to the range dst_addr/len
5959  *	in the destination map.
5960  *
5961  *	This routine is only advisory and need not do anything.
5962  */
5963 void
5964 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
5965     vm_offset_t src_addr)
5966 {
5967 	struct spglist free;
5968 	vm_offset_t addr;
5969 	vm_offset_t end_addr = src_addr + len;
5970 	vm_offset_t nextva;
5971 
5972 	if (dst_addr != src_addr)
5973 		return;
5974 
5975 	if (!pmap_is_current(src_pmap))
5976 		return;
5977 
5978 	rw_wlock(&pvh_global_lock);
5979 	if (dst_pmap < src_pmap) {
5980 		PMAP_LOCK(dst_pmap);
5981 		PMAP_LOCK(src_pmap);
5982 	} else {
5983 		PMAP_LOCK(src_pmap);
5984 		PMAP_LOCK(dst_pmap);
5985 	}
5986 	sched_pin();
5987 	for (addr = src_addr; addr < end_addr; addr = nextva) {
5988 		pt2_entry_t *src_pte2p, *dst_pte2p;
5989 		vm_page_t dst_mpt2pg, src_mpt2pg;
5990 		pt1_entry_t src_pte1;
5991 		u_int pte1_idx;
5992 
5993 		KASSERT(addr < VM_MAXUSER_ADDRESS,
5994 		    ("%s: invalid to pmap_copy page tables", __func__));
5995 
5996 		nextva = pte1_trunc(addr + PTE1_SIZE);
5997 		if (nextva < addr)
5998 			nextva = end_addr;
5999 
6000 		pte1_idx = pte1_index(addr);
6001 		src_pte1 = src_pmap->pm_pt1[pte1_idx];
6002 		if (pte1_is_section(src_pte1)) {
6003 			if ((addr & PTE1_OFFSET) != 0 ||
6004 			    (addr + PTE1_SIZE) > end_addr)
6005 				continue;
6006 			if (dst_pmap->pm_pt1[pte1_idx] == 0 &&
6007 			    (!pte1_is_managed(src_pte1) ||
6008 			    pmap_pv_insert_pte1(dst_pmap, addr,
6009 			    pte1_pa(src_pte1)))) {
6010 				dst_pmap->pm_pt1[pte1_idx] = src_pte1 &
6011 				    ~PTE1_W;
6012 				dst_pmap->pm_stats.resident_count +=
6013 				    PTE1_SIZE / PAGE_SIZE;
6014 				pmap_pte1_mappings++;
6015 			}
6016 			continue;
6017 		} else if (!pte1_is_link(src_pte1))
6018 			continue;
6019 
6020 		src_mpt2pg = PHYS_TO_VM_PAGE(pte1_link_pa(src_pte1));
6021 
6022 		/*
6023 		 * We leave PT2s to be linked from PT1 even if they are not
6024 		 * referenced until all PT2s in a page are without reference.
6025 		 *
6026 		 * QQQ: It could be changed ...
6027 		 */
6028 #if 0 /* single_pt2_link_is_cleared */
6029 		KASSERT(pt2_wirecount_get(src_mpt2pg, pte1_idx) > 0,
6030 		    ("%s: source page table page is unused", __func__));
6031 #else
6032 		if (pt2_wirecount_get(src_mpt2pg, pte1_idx) == 0)
6033 			continue;
6034 #endif
6035 		if (nextva > end_addr)
6036 			nextva = end_addr;
6037 
6038 		src_pte2p = pt2map_entry(addr);
6039 		while (addr < nextva) {
6040 			pt2_entry_t temp_pte2;
6041 			temp_pte2 = pte2_load(src_pte2p);
6042 			/*
6043 			 * we only virtual copy managed pages
6044 			 */
6045 			if (pte2_is_managed(temp_pte2)) {
6046 				dst_mpt2pg = pmap_allocpte2(dst_pmap, addr,
6047 				    PMAP_ENTER_NOSLEEP);
6048 				if (dst_mpt2pg == NULL)
6049 					goto out;
6050 				dst_pte2p = pmap_pte2_quick(dst_pmap, addr);
6051 				if (!pte2_is_valid(pte2_load(dst_pte2p)) &&
6052 				    pmap_try_insert_pv_entry(dst_pmap, addr,
6053 				    PHYS_TO_VM_PAGE(pte2_pa(temp_pte2)))) {
6054 					/*
6055 					 * Clear the wired, modified, and
6056 					 * accessed (referenced) bits
6057 					 * during the copy.
6058 					 */
6059 					temp_pte2 &=  ~(PTE2_W | PTE2_A);
6060 					temp_pte2 |= PTE2_NM;
6061 					pte2_store(dst_pte2p, temp_pte2);
6062 					dst_pmap->pm_stats.resident_count++;
6063 				} else {
6064 					SLIST_INIT(&free);
6065 					if (pmap_unwire_pt2(dst_pmap, addr,
6066 					    dst_mpt2pg, &free)) {
6067 						pmap_tlb_flush(dst_pmap, addr);
6068 						pmap_free_zero_pages(&free);
6069 					}
6070 					goto out;
6071 				}
6072 				if (pt2_wirecount_get(dst_mpt2pg, pte1_idx) >=
6073 				    pt2_wirecount_get(src_mpt2pg, pte1_idx))
6074 					break;
6075 			}
6076 			addr += PAGE_SIZE;
6077 			src_pte2p++;
6078 		}
6079 	}
6080 out:
6081 	sched_unpin();
6082 	rw_wunlock(&pvh_global_lock);
6083 	PMAP_UNLOCK(src_pmap);
6084 	PMAP_UNLOCK(dst_pmap);
6085 }
6086 
6087 /*
6088  *	Increase the starting virtual address of the given mapping if a
6089  *	different alignment might result in more section mappings.
6090  */
6091 void
6092 pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
6093     vm_offset_t *addr, vm_size_t size)
6094 {
6095 	vm_offset_t pte1_offset;
6096 
6097 	if (size < PTE1_SIZE)
6098 		return;
6099 	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
6100 		offset += ptoa(object->pg_color);
6101 	pte1_offset = offset & PTE1_OFFSET;
6102 	if (size - ((PTE1_SIZE - pte1_offset) & PTE1_OFFSET) < PTE1_SIZE ||
6103 	    (*addr & PTE1_OFFSET) == pte1_offset)
6104 		return;
6105 	if ((*addr & PTE1_OFFSET) < pte1_offset)
6106 		*addr = pte1_trunc(*addr) + pte1_offset;
6107 	else
6108 		*addr = pte1_roundup(*addr) + pte1_offset;
6109 }
6110 
6111 void
6112 pmap_activate(struct thread *td)
6113 {
6114 	pmap_t pmap, oldpmap;
6115 	u_int cpuid, ttb;
6116 
6117 	PDEBUG(9, printf("%s: td = %08x\n", __func__, (uint32_t)td));
6118 
6119 	critical_enter();
6120 	pmap = vmspace_pmap(td->td_proc->p_vmspace);
6121 	oldpmap = PCPU_GET(curpmap);
6122 	cpuid = PCPU_GET(cpuid);
6123 
6124 #if defined(SMP)
6125 	CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
6126 	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
6127 #else
6128 	CPU_CLR(cpuid, &oldpmap->pm_active);
6129 	CPU_SET(cpuid, &pmap->pm_active);
6130 #endif
6131 
6132 	ttb = pmap_ttb_get(pmap);
6133 
6134 	/*
6135 	 * pmap_activate is for the current thread on the current cpu
6136 	 */
6137 	td->td_pcb->pcb_pagedir = ttb;
6138 	cp15_ttbr_set(ttb);
6139 	PCPU_SET(curpmap, pmap);
6140 	critical_exit();
6141 }
6142 
6143 /*
6144  *  Perform the pmap work for mincore.
6145  */
6146 int
6147 pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
6148 {
6149 	pt1_entry_t *pte1p, pte1;
6150 	pt2_entry_t *pte2p, pte2;
6151 	vm_paddr_t pa;
6152 	bool managed;
6153 	int val;
6154 
6155 	PMAP_LOCK(pmap);
6156 retry:
6157 	pte1p = pmap_pte1(pmap, addr);
6158 	pte1 = pte1_load(pte1p);
6159 	if (pte1_is_section(pte1)) {
6160 		pa = trunc_page(pte1_pa(pte1) | (addr & PTE1_OFFSET));
6161 		managed = pte1_is_managed(pte1);
6162 		val = MINCORE_SUPER | MINCORE_INCORE;
6163 		if (pte1_is_dirty(pte1))
6164 			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
6165 		if (pte1 & PTE1_A)
6166 			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
6167 	} else if (pte1_is_link(pte1)) {
6168 		pte2p = pmap_pte2(pmap, addr);
6169 		pte2 = pte2_load(pte2p);
6170 		pmap_pte2_release(pte2p);
6171 		pa = pte2_pa(pte2);
6172 		managed = pte2_is_managed(pte2);
6173 		val = MINCORE_INCORE;
6174 		if (pte2_is_dirty(pte2))
6175 			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
6176 		if (pte2 & PTE2_A)
6177 			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
6178 	} else {
6179 		managed = false;
6180 		val = 0;
6181 	}
6182 	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
6183 	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) && managed) {
6184 		/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
6185 		if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
6186 			goto retry;
6187 	} else
6188 		PA_UNLOCK_COND(*locked_pa);
6189 	PMAP_UNLOCK(pmap);
6190 	return (val);
6191 }
6192 
6193 void
6194 pmap_kenter_device(vm_offset_t va, vm_size_t size, vm_paddr_t pa)
6195 {
6196 	vm_offset_t sva;
6197 	uint32_t l2attr;
6198 
6199 	KASSERT((size & PAGE_MASK) == 0,
6200 	    ("%s: device mapping not page-sized", __func__));
6201 
6202 	sva = va;
6203 	l2attr = vm_memattr_to_pte2(VM_MEMATTR_DEVICE);
6204 	while (size != 0) {
6205 		pmap_kenter_prot_attr(va, pa, PTE2_AP_KRW, l2attr);
6206 		va += PAGE_SIZE;
6207 		pa += PAGE_SIZE;
6208 		size -= PAGE_SIZE;
6209 	}
6210 	tlb_flush_range(sva, va - sva);
6211 }
6212 
6213 void
6214 pmap_kremove_device(vm_offset_t va, vm_size_t size)
6215 {
6216 	vm_offset_t sva;
6217 
6218 	KASSERT((size & PAGE_MASK) == 0,
6219 	    ("%s: device mapping not page-sized", __func__));
6220 
6221 	sva = va;
6222 	while (size != 0) {
6223 		pmap_kremove(va);
6224 		va += PAGE_SIZE;
6225 		size -= PAGE_SIZE;
6226 	}
6227 	tlb_flush_range(sva, va - sva);
6228 }
6229 
6230 void
6231 pmap_set_pcb_pagedir(pmap_t pmap, struct pcb *pcb)
6232 {
6233 
6234 	pcb->pcb_pagedir = pmap_ttb_get(pmap);
6235 }
6236 
6237 
6238 /*
6239  *  Clean L1 data cache range by physical address.
6240  *  The range must be within a single page.
6241  */
6242 static void
6243 pmap_dcache_wb_pou(vm_paddr_t pa, vm_size_t size, uint32_t attr)
6244 {
6245 	pt2_entry_t *cmap2_pte2p;
6246 	struct pcpu *pc;
6247 
6248 	KASSERT(((pa & PAGE_MASK) + size) <= PAGE_SIZE,
6249 	    ("%s: not on single page", __func__));
6250 
6251 	sched_pin();
6252 	pc = get_pcpu();
6253 	cmap2_pte2p = pc->pc_cmap2_pte2p;
6254 	mtx_lock(&pc->pc_cmap_lock);
6255 	if (pte2_load(cmap2_pte2p) != 0)
6256 		panic("%s: CMAP2 busy", __func__);
6257 	pte2_store(cmap2_pte2p, PTE2_KERN_NG(pa, PTE2_AP_KRW, attr));
6258 	dcache_wb_pou((vm_offset_t)pc->pc_cmap2_addr + (pa & PAGE_MASK), size);
6259 	pte2_clear(cmap2_pte2p);
6260 	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
6261 	sched_unpin();
6262 	mtx_unlock(&pc->pc_cmap_lock);
6263 }
6264 
6265 /*
6266  *  Sync instruction cache range which is not mapped yet.
6267  */
6268 void
6269 cache_icache_sync_fresh(vm_offset_t va, vm_paddr_t pa, vm_size_t size)
6270 {
6271 	uint32_t len, offset;
6272 	vm_page_t m;
6273 
6274 	/* Write back d-cache on given address range. */
6275 	offset = pa & PAGE_MASK;
6276 	for ( ; size != 0; size -= len, pa += len, offset = 0) {
6277 		len = min(PAGE_SIZE - offset, size);
6278 		m = PHYS_TO_VM_PAGE(pa);
6279 		KASSERT(m != NULL, ("%s: vm_page_t is null for %#x",
6280 		  __func__, pa));
6281 		pmap_dcache_wb_pou(pa, len, vm_page_pte2_attr(m));
6282 	}
6283 	/*
6284 	 * I-cache is VIPT. Only way how to flush all virtual mappings
6285 	 * on given physical address is to invalidate all i-cache.
6286 	 */
6287 	icache_inv_all();
6288 }
6289 
6290 void
6291 pmap_sync_icache(pmap_t pmap, vm_offset_t va, vm_size_t size)
6292 {
6293 
6294 	/* Write back d-cache on given address range. */
6295 	if (va >= VM_MIN_KERNEL_ADDRESS) {
6296 		dcache_wb_pou(va, size);
6297 	} else {
6298 		uint32_t len, offset;
6299 		vm_paddr_t pa;
6300 		vm_page_t m;
6301 
6302 		offset = va & PAGE_MASK;
6303 		for ( ; size != 0; size -= len, va += len, offset = 0) {
6304 			pa = pmap_extract(pmap, va); /* offset is preserved */
6305 			len = min(PAGE_SIZE - offset, size);
6306 			m = PHYS_TO_VM_PAGE(pa);
6307 			KASSERT(m != NULL, ("%s: vm_page_t is null for %#x",
6308 				__func__, pa));
6309 			pmap_dcache_wb_pou(pa, len, vm_page_pte2_attr(m));
6310 		}
6311 	}
6312 	/*
6313 	 * I-cache is VIPT. Only way how to flush all virtual mappings
6314 	 * on given physical address is to invalidate all i-cache.
6315 	 */
6316 	icache_inv_all();
6317 }
6318 
6319 /*
6320  *  The implementation of pmap_fault() uses IN_RANGE2() macro which
6321  *  depends on the fact that given range size is a power of 2.
6322  */
6323 CTASSERT(powerof2(NB_IN_PT1));
6324 CTASSERT(powerof2(PT2MAP_SIZE));
6325 
6326 #define IN_RANGE2(addr, start, size)	\
6327     ((vm_offset_t)(start) == ((vm_offset_t)(addr) & ~((size) - 1)))
6328 
6329 /*
6330  *  Handle access and R/W emulation faults.
6331  */
6332 int
6333 pmap_fault(pmap_t pmap, vm_offset_t far, uint32_t fsr, int idx, bool usermode)
6334 {
6335 	pt1_entry_t *pte1p, pte1;
6336 	pt2_entry_t *pte2p, pte2;
6337 
6338 	if (pmap == NULL)
6339 		pmap = kernel_pmap;
6340 
6341 	/*
6342 	 * In kernel, we should never get abort with FAR which is in range of
6343 	 * pmap->pm_pt1 or PT2MAP address spaces. If it happens, stop here
6344 	 * and print out a useful abort message and even get to the debugger
6345 	 * otherwise it likely ends with never ending loop of aborts.
6346 	 */
6347 	if (__predict_false(IN_RANGE2(far, pmap->pm_pt1, NB_IN_PT1))) {
6348 		/*
6349 		 * All L1 tables should always be mapped and present.
6350 		 * However, we check only current one herein. For user mode,
6351 		 * only permission abort from malicious user is not fatal.
6352 		 * And alignment abort as it may have higher priority.
6353 		 */
6354 		if (!usermode || (idx != FAULT_ALIGN && idx != FAULT_PERM_L2)) {
6355 			CTR4(KTR_PMAP, "%s: pmap %#x pm_pt1 %#x far %#x",
6356 			    __func__, pmap, pmap->pm_pt1, far);
6357 			panic("%s: pm_pt1 abort", __func__);
6358 		}
6359 		return (KERN_INVALID_ADDRESS);
6360 	}
6361 	if (__predict_false(IN_RANGE2(far, PT2MAP, PT2MAP_SIZE))) {
6362 		/*
6363 		 * PT2MAP should be always mapped and present in current
6364 		 * L1 table. However, only existing L2 tables are mapped
6365 		 * in PT2MAP. For user mode, only L2 translation abort and
6366 		 * permission abort from malicious user is not fatal.
6367 		 * And alignment abort as it may have higher priority.
6368 		 */
6369 		if (!usermode || (idx != FAULT_ALIGN &&
6370 		    idx != FAULT_TRAN_L2 && idx != FAULT_PERM_L2)) {
6371 			CTR4(KTR_PMAP, "%s: pmap %#x PT2MAP %#x far %#x",
6372 			    __func__, pmap, PT2MAP, far);
6373 			panic("%s: PT2MAP abort", __func__);
6374 		}
6375 		return (KERN_INVALID_ADDRESS);
6376 	}
6377 
6378 	/*
6379 	 * A pmap lock is used below for handling of access and R/W emulation
6380 	 * aborts. They were handled by atomic operations before so some
6381 	 * analysis of new situation is needed to answer the following question:
6382 	 * Is it safe to use the lock even for these aborts?
6383 	 *
6384 	 * There may happen two cases in general:
6385 	 *
6386 	 * (1) Aborts while the pmap lock is locked already - this should not
6387 	 * happen as pmap lock is not recursive. However, under pmap lock only
6388 	 * internal kernel data should be accessed and such data should be
6389 	 * mapped with A bit set and NM bit cleared. If double abort happens,
6390 	 * then a mapping of data which has caused it must be fixed. Further,
6391 	 * all new mappings are always made with A bit set and the bit can be
6392 	 * cleared only on managed mappings.
6393 	 *
6394 	 * (2) Aborts while another lock(s) is/are locked - this already can
6395 	 * happen. However, there is no difference here if it's either access or
6396 	 * R/W emulation abort, or if it's some other abort.
6397 	 */
6398 
6399 	PMAP_LOCK(pmap);
6400 #ifdef SMP
6401 	/*
6402 	 * Special treatment is due to break-before-make approach done when
6403 	 * pte1 is updated for userland mapping during section promotion or
6404 	 * demotion. If not caught here, pmap_enter() can find a section
6405 	 * mapping on faulting address. That is not allowed.
6406 	 */
6407 	if (idx == FAULT_TRAN_L1 && usermode && cp15_ats1cur_check(far) == 0) {
6408 		PMAP_UNLOCK(pmap);
6409 		return (KERN_SUCCESS);
6410 	}
6411 #endif
6412 	/*
6413 	 * Accesss bits for page and section. Note that the entry
6414 	 * is not in TLB yet, so TLB flush is not necessary.
6415 	 *
6416 	 * QQQ: This is hardware emulation, we do not call userret()
6417 	 *      for aborts from user mode.
6418 	 */
6419 	if (idx == FAULT_ACCESS_L2) {
6420 		pte2p = pt2map_entry(far);
6421 		pte2 = pte2_load(pte2p);
6422 		if (pte2_is_valid(pte2)) {
6423 			pte2_store(pte2p, pte2 | PTE2_A);
6424 			PMAP_UNLOCK(pmap);
6425 			return (KERN_SUCCESS);
6426 		}
6427 	}
6428 	if (idx == FAULT_ACCESS_L1) {
6429 		pte1p = pmap_pte1(pmap, far);
6430 		pte1 = pte1_load(pte1p);
6431 		if (pte1_is_section(pte1)) {
6432 			pte1_store(pte1p, pte1 | PTE1_A);
6433 			PMAP_UNLOCK(pmap);
6434 			return (KERN_SUCCESS);
6435 		}
6436 	}
6437 
6438 	/*
6439 	 * Handle modify bits for page and section. Note that the modify
6440 	 * bit is emulated by software. So PTEx_RO is software read only
6441 	 * bit and PTEx_NM flag is real hardware read only bit.
6442 	 *
6443 	 * QQQ: This is hardware emulation, we do not call userret()
6444 	 *      for aborts from user mode.
6445 	 */
6446 	if ((fsr & FSR_WNR) && (idx == FAULT_PERM_L2)) {
6447 		pte2p = pt2map_entry(far);
6448 		pte2 = pte2_load(pte2p);
6449 		if (pte2_is_valid(pte2) && !(pte2 & PTE2_RO) &&
6450 		    (pte2 & PTE2_NM)) {
6451 			pte2_store(pte2p, pte2 & ~PTE2_NM);
6452 			tlb_flush(trunc_page(far));
6453 			PMAP_UNLOCK(pmap);
6454 			return (KERN_SUCCESS);
6455 		}
6456 	}
6457 	if ((fsr & FSR_WNR) && (idx == FAULT_PERM_L1)) {
6458 		pte1p = pmap_pte1(pmap, far);
6459 		pte1 = pte1_load(pte1p);
6460 		if (pte1_is_section(pte1) && !(pte1 & PTE1_RO) &&
6461 		    (pte1 & PTE1_NM)) {
6462 			pte1_store(pte1p, pte1 & ~PTE1_NM);
6463 			tlb_flush(pte1_trunc(far));
6464 			PMAP_UNLOCK(pmap);
6465 			return (KERN_SUCCESS);
6466 		}
6467 	}
6468 
6469 	/*
6470 	 * QQQ: The previous code, mainly fast handling of access and
6471 	 *      modify bits aborts, could be moved to ASM. Now we are
6472 	 *      starting to deal with not fast aborts.
6473 	 */
6474 
6475 #ifdef INVARIANTS
6476 	/*
6477 	 * Read an entry in PT2TAB associated with both pmap and far.
6478 	 * It's safe because PT2TAB is always mapped.
6479 	 */
6480 	pte2 = pt2tab_load(pmap_pt2tab_entry(pmap, far));
6481 	if (pte2_is_valid(pte2)) {
6482 		/*
6483 		 * Now, when we know that L2 page table is allocated,
6484 		 * we can use PT2MAP to get L2 page table entry.
6485 		 */
6486 		pte2 = pte2_load(pt2map_entry(far));
6487 		if (pte2_is_valid(pte2)) {
6488 			/*
6489 			 * If L2 page table entry is valid, make sure that
6490 			 * L1 page table entry is valid too.  Note that we
6491 			 * leave L2 page entries untouched when promoted.
6492 			 */
6493 			pte1 = pte1_load(pmap_pte1(pmap, far));
6494 			if (!pte1_is_valid(pte1)) {
6495 				panic("%s: missing L1 page entry (%p, %#x)",
6496 				    __func__, pmap, far);
6497 			}
6498 		}
6499 	}
6500 #endif
6501 	PMAP_UNLOCK(pmap);
6502 	return (KERN_FAILURE);
6503 }
6504 
6505 #if defined(PMAP_DEBUG)
6506 /*
6507  *  Reusing of KVA used in pmap_zero_page function !!!
6508  */
6509 static void
6510 pmap_zero_page_check(vm_page_t m)
6511 {
6512 	pt2_entry_t *cmap2_pte2p;
6513 	uint32_t *p, *end;
6514 	struct pcpu *pc;
6515 
6516 	sched_pin();
6517 	pc = get_pcpu();
6518 	cmap2_pte2p = pc->pc_cmap2_pte2p;
6519 	mtx_lock(&pc->pc_cmap_lock);
6520 	if (pte2_load(cmap2_pte2p) != 0)
6521 		panic("%s: CMAP2 busy", __func__);
6522 	pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(m), PTE2_AP_KRW,
6523 	    vm_page_pte2_attr(m)));
6524 	end = (uint32_t*)(pc->pc_cmap2_addr + PAGE_SIZE);
6525 	for (p = (uint32_t*)pc->pc_cmap2_addr; p < end; p++)
6526 		if (*p != 0)
6527 			panic("%s: page %p not zero, va: %p", __func__, m,
6528 			    pc->pc_cmap2_addr);
6529 	pte2_clear(cmap2_pte2p);
6530 	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
6531 	sched_unpin();
6532 	mtx_unlock(&pc->pc_cmap_lock);
6533 }
6534 
6535 int
6536 pmap_pid_dump(int pid)
6537 {
6538 	pmap_t pmap;
6539 	struct proc *p;
6540 	int npte2 = 0;
6541 	int i, j, index;
6542 
6543 	sx_slock(&allproc_lock);
6544 	FOREACH_PROC_IN_SYSTEM(p) {
6545 		if (p->p_pid != pid || p->p_vmspace == NULL)
6546 			continue;
6547 		index = 0;
6548 		pmap = vmspace_pmap(p->p_vmspace);
6549 		for (i = 0; i < NPTE1_IN_PT1; i++) {
6550 			pt1_entry_t pte1;
6551 			pt2_entry_t *pte2p, pte2;
6552 			vm_offset_t base, va;
6553 			vm_paddr_t pa;
6554 			vm_page_t m;
6555 
6556 			base = i << PTE1_SHIFT;
6557 			pte1 = pte1_load(&pmap->pm_pt1[i]);
6558 
6559 			if (pte1_is_section(pte1)) {
6560 				/*
6561 				 * QQQ: Do something here!
6562 				 */
6563 			} else if (pte1_is_link(pte1)) {
6564 				for (j = 0; j < NPTE2_IN_PT2; j++) {
6565 					va = base + (j << PAGE_SHIFT);
6566 					if (va >= VM_MIN_KERNEL_ADDRESS) {
6567 						if (index) {
6568 							index = 0;
6569 							printf("\n");
6570 						}
6571 						sx_sunlock(&allproc_lock);
6572 						return (npte2);
6573 					}
6574 					pte2p = pmap_pte2(pmap, va);
6575 					pte2 = pte2_load(pte2p);
6576 					pmap_pte2_release(pte2p);
6577 					if (!pte2_is_valid(pte2))
6578 						continue;
6579 
6580 					pa = pte2_pa(pte2);
6581 					m = PHYS_TO_VM_PAGE(pa);
6582 					printf("va: 0x%x, pa: 0x%x, h: %d, w:"
6583 					    " %d, f: 0x%x", va, pa,
6584 					    m->hold_count, m->wire_count,
6585 					    m->flags);
6586 					npte2++;
6587 					index++;
6588 					if (index >= 2) {
6589 						index = 0;
6590 						printf("\n");
6591 					} else {
6592 						printf(" ");
6593 					}
6594 				}
6595 			}
6596 		}
6597 	}
6598 	sx_sunlock(&allproc_lock);
6599 	return (npte2);
6600 }
6601 
6602 #endif
6603 
6604 #ifdef DDB
6605 static pt2_entry_t *
6606 pmap_pte2_ddb(pmap_t pmap, vm_offset_t va)
6607 {
6608 	pt1_entry_t pte1;
6609 	vm_paddr_t pt2pg_pa;
6610 
6611 	pte1 = pte1_load(pmap_pte1(pmap, va));
6612 	if (!pte1_is_link(pte1))
6613 		return (NULL);
6614 
6615 	if (pmap_is_current(pmap))
6616 		return (pt2map_entry(va));
6617 
6618 	/* Note that L2 page table size is not equal to PAGE_SIZE. */
6619 	pt2pg_pa = trunc_page(pte1_link_pa(pte1));
6620 	if (pte2_pa(pte2_load(PMAP3)) != pt2pg_pa) {
6621 		pte2_store(PMAP3, PTE2_KPT(pt2pg_pa));
6622 #ifdef SMP
6623 		PMAP3cpu = PCPU_GET(cpuid);
6624 #endif
6625 		tlb_flush_local((vm_offset_t)PADDR3);
6626 	}
6627 #ifdef SMP
6628 	else if (PMAP3cpu != PCPU_GET(cpuid)) {
6629 		PMAP3cpu = PCPU_GET(cpuid);
6630 		tlb_flush_local((vm_offset_t)PADDR3);
6631 	}
6632 #endif
6633 	return (PADDR3 + (arm32_btop(va) & (NPTE2_IN_PG - 1)));
6634 }
6635 
6636 static void
6637 dump_pmap(pmap_t pmap)
6638 {
6639 
6640 	printf("pmap %p\n", pmap);
6641 	printf("  pm_pt1: %p\n", pmap->pm_pt1);
6642 	printf("  pm_pt2tab: %p\n", pmap->pm_pt2tab);
6643 	printf("  pm_active: 0x%08lX\n", pmap->pm_active.__bits[0]);
6644 }
6645 
6646 DB_SHOW_COMMAND(pmaps, pmap_list_pmaps)
6647 {
6648 
6649 	pmap_t pmap;
6650 	LIST_FOREACH(pmap, &allpmaps, pm_list) {
6651 		dump_pmap(pmap);
6652 	}
6653 }
6654 
6655 static int
6656 pte2_class(pt2_entry_t pte2)
6657 {
6658 	int cls;
6659 
6660 	cls = (pte2 >> 2) & 0x03;
6661 	cls |= (pte2 >> 4) & 0x04;
6662 	return (cls);
6663 }
6664 
6665 static void
6666 dump_section(pmap_t pmap, uint32_t pte1_idx)
6667 {
6668 }
6669 
6670 static void
6671 dump_link(pmap_t pmap, uint32_t pte1_idx, boolean_t invalid_ok)
6672 {
6673 	uint32_t i;
6674 	vm_offset_t va;
6675 	pt2_entry_t *pte2p, pte2;
6676 	vm_page_t m;
6677 
6678 	va = pte1_idx << PTE1_SHIFT;
6679 	pte2p = pmap_pte2_ddb(pmap, va);
6680 	for (i = 0; i < NPTE2_IN_PT2; i++, pte2p++, va += PAGE_SIZE) {
6681 		pte2 = pte2_load(pte2p);
6682 		if (pte2 == 0)
6683 			continue;
6684 		if (!pte2_is_valid(pte2)) {
6685 			printf(" 0x%08X: 0x%08X", va, pte2);
6686 			if (!invalid_ok)
6687 				printf(" - not valid !!!");
6688 			printf("\n");
6689 			continue;
6690 		}
6691 		m = PHYS_TO_VM_PAGE(pte2_pa(pte2));
6692 		printf(" 0x%08X: 0x%08X, TEX%d, s:%d, g:%d, m:%p", va , pte2,
6693 		    pte2_class(pte2), !!(pte2 & PTE2_S), !(pte2 & PTE2_NG), m);
6694 		if (m != NULL) {
6695 			printf(" v:%d h:%d w:%d f:0x%04X\n", m->valid,
6696 			    m->hold_count, m->wire_count, m->flags);
6697 		} else {
6698 			printf("\n");
6699 		}
6700 	}
6701 }
6702 
6703 static __inline boolean_t
6704 is_pv_chunk_space(vm_offset_t va)
6705 {
6706 
6707 	if ((((vm_offset_t)pv_chunkbase) <= va) &&
6708 	    (va < ((vm_offset_t)pv_chunkbase + PAGE_SIZE * pv_maxchunks)))
6709 		return (TRUE);
6710 	return (FALSE);
6711 }
6712 
6713 DB_SHOW_COMMAND(pmap, pmap_pmap_print)
6714 {
6715 	/* XXX convert args. */
6716 	pmap_t pmap = (pmap_t)addr;
6717 	pt1_entry_t pte1;
6718 	pt2_entry_t pte2;
6719 	vm_offset_t va, eva;
6720 	vm_page_t m;
6721 	uint32_t i;
6722 	boolean_t invalid_ok, dump_link_ok, dump_pv_chunk;
6723 
6724 	if (have_addr) {
6725 		pmap_t pm;
6726 
6727 		LIST_FOREACH(pm, &allpmaps, pm_list)
6728 			if (pm == pmap) break;
6729 		if (pm == NULL) {
6730 			printf("given pmap %p is not in allpmaps list\n", pmap);
6731 			return;
6732 		}
6733 	} else
6734 		pmap = PCPU_GET(curpmap);
6735 
6736 	eva = (modif[0] == 'u') ? VM_MAXUSER_ADDRESS : 0xFFFFFFFF;
6737 	dump_pv_chunk = FALSE; /* XXX evaluate from modif[] */
6738 
6739 	printf("pmap: 0x%08X\n", (uint32_t)pmap);
6740 	printf("PT2MAP: 0x%08X\n", (uint32_t)PT2MAP);
6741 	printf("pt2tab: 0x%08X\n", (uint32_t)pmap->pm_pt2tab);
6742 
6743 	for(i = 0; i < NPTE1_IN_PT1; i++) {
6744 		pte1 = pte1_load(&pmap->pm_pt1[i]);
6745 		if (pte1 == 0)
6746 			continue;
6747 		va = i << PTE1_SHIFT;
6748 		if (va >= eva)
6749 			break;
6750 
6751 		if (pte1_is_section(pte1)) {
6752 			printf("0x%08X: Section 0x%08X, s:%d g:%d\n", va, pte1,
6753 			    !!(pte1 & PTE1_S), !(pte1 & PTE1_NG));
6754 			dump_section(pmap, i);
6755 		} else if (pte1_is_link(pte1)) {
6756 			dump_link_ok = TRUE;
6757 			invalid_ok = FALSE;
6758 			pte2 = pte2_load(pmap_pt2tab_entry(pmap, va));
6759 			m = PHYS_TO_VM_PAGE(pte1_link_pa(pte1));
6760 			printf("0x%08X: Link 0x%08X, pt2tab: 0x%08X m: %p",
6761 			    va, pte1, pte2, m);
6762 			if (is_pv_chunk_space(va)) {
6763 				printf(" - pv_chunk space");
6764 				if (dump_pv_chunk)
6765 					invalid_ok = TRUE;
6766 				else
6767 					dump_link_ok = FALSE;
6768 			}
6769 			else if (m != NULL)
6770 				printf(" w:%d w2:%u", m->wire_count,
6771 				    pt2_wirecount_get(m, pte1_index(va)));
6772 			if (pte2 == 0)
6773 				printf(" !!! pt2tab entry is ZERO");
6774 			else if (pte2_pa(pte1) != pte2_pa(pte2))
6775 				printf(" !!! pt2tab entry is DIFFERENT - m: %p",
6776 				    PHYS_TO_VM_PAGE(pte2_pa(pte2)));
6777 			printf("\n");
6778 			if (dump_link_ok)
6779 				dump_link(pmap, i, invalid_ok);
6780 		} else
6781 			printf("0x%08X: Invalid entry 0x%08X\n", va, pte1);
6782 	}
6783 }
6784 
6785 static void
6786 dump_pt2tab(pmap_t pmap)
6787 {
6788 	uint32_t i;
6789 	pt2_entry_t pte2;
6790 	vm_offset_t va;
6791 	vm_paddr_t pa;
6792 	vm_page_t m;
6793 
6794 	printf("PT2TAB:\n");
6795 	for (i = 0; i < PT2TAB_ENTRIES; i++) {
6796 		pte2 = pte2_load(&pmap->pm_pt2tab[i]);
6797 		if (!pte2_is_valid(pte2))
6798 			continue;
6799 		va = i << PT2TAB_SHIFT;
6800 		pa = pte2_pa(pte2);
6801 		m = PHYS_TO_VM_PAGE(pa);
6802 		printf(" 0x%08X: 0x%08X, TEX%d, s:%d, m:%p", va, pte2,
6803 		    pte2_class(pte2), !!(pte2 & PTE2_S), m);
6804 		if (m != NULL)
6805 			printf(" , h: %d, w: %d, f: 0x%04X pidx: %lld",
6806 			    m->hold_count, m->wire_count, m->flags, m->pindex);
6807 		printf("\n");
6808 	}
6809 }
6810 
6811 DB_SHOW_COMMAND(pmap_pt2tab, pmap_pt2tab_print)
6812 {
6813 	/* XXX convert args. */
6814 	pmap_t pmap = (pmap_t)addr;
6815 	pt1_entry_t pte1;
6816 	pt2_entry_t pte2;
6817 	vm_offset_t va;
6818 	uint32_t i, start;
6819 
6820 	if (have_addr) {
6821 		printf("supported only on current pmap\n");
6822 		return;
6823 	}
6824 
6825 	pmap = PCPU_GET(curpmap);
6826 	printf("curpmap: 0x%08X\n", (uint32_t)pmap);
6827 	printf("PT2MAP: 0x%08X\n", (uint32_t)PT2MAP);
6828 	printf("pt2tab: 0x%08X\n", (uint32_t)pmap->pm_pt2tab);
6829 
6830 	start = pte1_index((vm_offset_t)PT2MAP);
6831 	for (i = start; i < (start + NPT2_IN_PT2TAB); i++) {
6832 		pte1 = pte1_load(&pmap->pm_pt1[i]);
6833 		if (pte1 == 0)
6834 			continue;
6835 		va = i << PTE1_SHIFT;
6836 		if (pte1_is_section(pte1)) {
6837 			printf("0x%08X: Section 0x%08X, s:%d\n", va, pte1,
6838 			    !!(pte1 & PTE1_S));
6839 			dump_section(pmap, i);
6840 		} else if (pte1_is_link(pte1)) {
6841 			pte2 = pte2_load(pmap_pt2tab_entry(pmap, va));
6842 			printf("0x%08X: Link 0x%08X, pt2tab: 0x%08X\n", va,
6843 			    pte1, pte2);
6844 			if (pte2 == 0)
6845 				printf("  !!! pt2tab entry is ZERO\n");
6846 		} else
6847 			printf("0x%08X: Invalid entry 0x%08X\n", va, pte1);
6848 	}
6849 	dump_pt2tab(pmap);
6850 }
6851 #endif
6852