xref: /freebsd/sys/arm/arm/trap-v6.c (revision 1323ec57)
1 /*-
2  * Copyright 2014 Olivier Houchard <cognet@FreeBSD.org>
3  * Copyright 2014 Svatopluk Kraus <onwahe@gmail.com>
4  * Copyright 2014 Michal Meloun <meloun@miracle.cz>
5  * Copyright 2014 Andrew Turner <andrew@FreeBSD.org>
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include "opt_ktrace.h"
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include <sys/param.h>
36 #include <sys/bus.h>
37 #include <sys/systm.h>
38 #include <sys/proc.h>
39 #include <sys/kernel.h>
40 #include <sys/lock.h>
41 #include <sys/mutex.h>
42 #include <sys/signalvar.h>
43 #include <sys/ktr.h>
44 #include <sys/vmmeter.h>
45 #ifdef KTRACE
46 #include <sys/uio.h>
47 #include <sys/ktrace.h>
48 #endif
49 
50 #include <vm/vm.h>
51 #include <vm/pmap.h>
52 #include <vm/vm_kern.h>
53 #include <vm/vm_map.h>
54 #include <vm/vm_extern.h>
55 #include <vm/vm_param.h>
56 
57 #include <machine/cpu.h>
58 #include <machine/frame.h>
59 #include <machine/machdep.h>
60 #include <machine/pcb.h>
61 
62 #ifdef KDB
63 #include <sys/kdb.h>
64 #include <machine/db_machdep.h>
65 #endif
66 
67 #ifdef KDTRACE_HOOKS
68 #include <sys/dtrace_bsd.h>
69 #endif
70 
71 extern char cachebailout[];
72 
73 struct ksig {
74 	int sig;
75 	u_long code;
76 	vm_offset_t	addr;
77 };
78 
79 typedef int abort_func_t(struct trapframe *, u_int, u_int, u_int, u_int,
80     struct thread *, struct ksig *);
81 
82 static abort_func_t abort_fatal;
83 static abort_func_t abort_align;
84 static abort_func_t abort_icache;
85 
86 struct abort {
87 	abort_func_t	*func;
88 	const char	*desc;
89 };
90 
91 /*
92  * How are the aborts handled?
93  *
94  * Undefined Code:
95  *  - Always fatal as we do not know what does it mean.
96  * Imprecise External Abort:
97  *  - Always fatal, but can be handled somehow in the future.
98  *    Now, due to PCIe buggy hardware, ignored.
99  * Precise External Abort:
100  *  - Always fatal, but who knows in the future???
101  * Debug Event:
102  *  - Special handling.
103  * External Translation Abort (L1 & L2)
104  *  - Always fatal as something is screwed up in page tables or hardware.
105  * Domain Fault (L1 & L2):
106  *  - Always fatal as we do not play game with domains.
107  * Alignment Fault:
108  *  - Everything should be aligned in kernel with exception of user to kernel
109  *    and vice versa data copying, so if pcb_onfault is not set, it's fatal.
110  *    We generate signal in case of abort from user mode.
111  * Instruction cache maintenance:
112  *  - According to manual, this is translation fault during cache maintenance
113  *    operation. So, it could be really complex in SMP case and fuzzy too
114  *    for cache operations working on virtual addresses. For now, we will
115  *    consider this abort as fatal. In fact, no cache maintenance on
116  *    not mapped virtual addresses should be called. As cache maintenance
117  *    operation (except DMB, DSB, and Flush Prefetch Buffer) are privileged,
118  *    the abort is fatal for user mode as well for now. (This is good place to
119  *    note that cache maintenance on virtual address fill TLB.)
120  * Acces Bit (L1 & L2):
121  *  - Fast hardware emulation for kernel and user mode.
122  * Translation Fault (L1 & L2):
123  *  - Standard fault mechanism is held including vm_fault().
124  * Permission Fault (L1 & L2):
125  *  - Fast hardware emulation of modify bits and in other cases, standard
126  *    fault mechanism is held including vm_fault().
127  */
128 
129 static const struct abort aborts[] = {
130 	{abort_fatal,	"Undefined Code (0x000)"},
131 	{abort_align,	"Alignment Fault"},
132 	{abort_fatal,	"Debug Event"},
133 	{NULL,		"Access Bit (L1)"},
134 	{NULL,		"Instruction cache maintenance"},
135 	{NULL,		"Translation Fault (L1)"},
136 	{NULL,		"Access Bit (L2)"},
137 	{NULL,		"Translation Fault (L2)"},
138 
139 	{abort_fatal,	"External Abort"},
140 	{abort_fatal,	"Domain Fault (L1)"},
141 	{abort_fatal,	"Undefined Code (0x00A)"},
142 	{abort_fatal,	"Domain Fault (L2)"},
143 	{abort_fatal,	"External Translation Abort (L1)"},
144 	{NULL,		"Permission Fault (L1)"},
145 	{abort_fatal,	"External Translation Abort (L2)"},
146 	{NULL,		"Permission Fault (L2)"},
147 
148 	{abort_fatal,	"TLB Conflict Abort"},
149 	{abort_fatal,	"Undefined Code (0x401)"},
150 	{abort_fatal,	"Undefined Code (0x402)"},
151 	{abort_fatal,	"Undefined Code (0x403)"},
152 	{abort_fatal,	"Undefined Code (0x404)"},
153 	{abort_fatal,	"Undefined Code (0x405)"},
154 	{abort_fatal,	"Asynchronous External Abort"},
155 	{abort_fatal,	"Undefined Code (0x407)"},
156 
157 	{abort_fatal,	"Asynchronous Parity Error on Memory Access"},
158 	{abort_fatal,	"Parity Error on Memory Access"},
159 	{abort_fatal,	"Undefined Code (0x40A)"},
160 	{abort_fatal,	"Undefined Code (0x40B)"},
161 	{abort_fatal,	"Parity Error on Translation (L1)"},
162 	{abort_fatal,	"Undefined Code (0x40D)"},
163 	{abort_fatal,	"Parity Error on Translation (L2)"},
164 	{abort_fatal,	"Undefined Code (0x40F)"}
165 };
166 
167 static __inline void
168 call_trapsignal(struct thread *td, int sig, int code, vm_offset_t addr,
169     int trapno)
170 {
171 	ksiginfo_t ksi;
172 
173 	CTR4(KTR_TRAP, "%s: addr: %#x, sig: %d, code: %d",
174 	   __func__, addr, sig, code);
175 
176 	/*
177 	 * TODO: some info would be nice to know
178 	 * if we are serving data or prefetch abort.
179 	 */
180 
181 	ksiginfo_init_trap(&ksi);
182 	ksi.ksi_signo = sig;
183 	ksi.ksi_code = code;
184 	ksi.ksi_addr = (void *)addr;
185 	ksi.ksi_trapno = trapno;
186 	trapsignal(td, &ksi);
187 }
188 
189 /*
190  * abort_imprecise() handles the following abort:
191  *
192  *  FAULT_EA_IMPREC - Imprecise External Abort
193  *
194  * The imprecise means that we don't know where the abort happened,
195  * thus FAR is undefined. The abort should not never fire, but hot
196  * plugging or accidental hardware failure can be the cause of it.
197  * If the abort happens, it can even be on different (thread) context.
198  * Without any additional support, the abort is fatal, as we do not
199  * know what really happened.
200  *
201  * QQQ: Some additional functionality, like pcb_onfault but global,
202  *      can be implemented. Imprecise handlers could be registered
203  *      which tell us if the abort is caused by something they know
204  *      about. They should return one of three codes like:
205  *		FAULT_IS_MINE,
206  *		FAULT_CAN_BE_MINE,
207  *		FAULT_IS_NOT_MINE.
208  *      The handlers should be called until some of them returns
209  *      FAULT_IS_MINE value or all was called. If all handlers return
210  *	FAULT_IS_NOT_MINE value, then the abort is fatal.
211  */
212 static __inline void
213 abort_imprecise(struct trapframe *tf, u_int fsr, u_int prefetch, bool usermode)
214 {
215 
216 	/*
217 	 * XXX - We can got imprecise abort as result of access
218 	 * to not-present PCI/PCIe configuration space.
219 	 */
220 #if 0
221 	goto out;
222 #endif
223 	abort_fatal(tf, FAULT_EA_IMPREC, fsr, 0, prefetch, curthread, NULL);
224 
225 	/*
226 	 * Returning from this function means that we ignore
227 	 * the abort for good reason. Note that imprecise abort
228 	 * could fire any time even in user mode.
229 	 */
230 
231 #if 0
232 out:
233 	if (usermode)
234 		userret(curthread, tf);
235 #endif
236 }
237 
238 /*
239  * abort_debug() handles the following abort:
240  *
241  *  FAULT_DEBUG - Debug Event
242  *
243  */
244 static __inline void
245 abort_debug(struct trapframe *tf, u_int fsr, u_int prefetch, bool usermode,
246     u_int far)
247 {
248 
249 	if (usermode) {
250 		struct thread *td;
251 
252 		td = curthread;
253 		call_trapsignal(td, SIGTRAP, TRAP_BRKPT, far, FAULT_DEBUG);
254 		userret(td, tf);
255 	} else {
256 #ifdef KDB
257 		kdb_trap((prefetch) ? T_BREAKPOINT : T_WATCHPOINT, 0, tf);
258 #else
259 		printf("No debugger in kernel.\n");
260 #endif
261 	}
262 }
263 
264 /*
265  * Abort handler.
266  *
267  * FAR, FSR, and everything what can be lost after enabling
268  * interrupts must be grabbed before the interrupts will be
269  * enabled. Note that when interrupts will be enabled, we
270  * could even migrate to another CPU ...
271  *
272  * TODO: move quick cases to ASM
273  */
274 void
275 abort_handler(struct trapframe *tf, int prefetch)
276 {
277 	struct thread *td;
278 	vm_offset_t far, va;
279 	int idx, rv;
280 	uint32_t fsr;
281 	struct ksig ksig;
282 	struct proc *p;
283 	struct pcb *pcb;
284 	struct vm_map *map;
285 	struct vmspace *vm;
286 	vm_prot_t ftype;
287 	bool usermode;
288 	int bp_harden, ucode;
289 #ifdef INVARIANTS
290 	void *onfault;
291 #endif
292 
293 	VM_CNT_INC(v_trap);
294 	td = curthread;
295 
296 	fsr = (prefetch) ? cp15_ifsr_get(): cp15_dfsr_get();
297 #if __ARM_ARCH >= 7
298 	far = (prefetch) ? cp15_ifar_get() : cp15_dfar_get();
299 #else
300 	far = (prefetch) ? TRAPF_PC(tf) : cp15_dfar_get();
301 #endif
302 
303 	idx = FSR_TO_FAULT(fsr);
304 	usermode = TRAPF_USERMODE(tf);	/* Abort came from user mode? */
305 
306 	/*
307 	 * Apply BP hardening by flushing the branch prediction cache
308 	 * for prefaults on kernel addresses.
309 	 */
310 	if (__predict_false(prefetch && far > VM_MAXUSER_ADDRESS &&
311 	    (idx == FAULT_TRAN_L2 || idx == FAULT_PERM_L2))) {
312 		bp_harden = PCPU_GET(bp_harden_kind);
313 		if (bp_harden == PCPU_BP_HARDEN_KIND_BPIALL)
314 			_CP15_BPIALL();
315 		else if (bp_harden == PCPU_BP_HARDEN_KIND_ICIALLU)
316 			_CP15_ICIALLU();
317 	}
318 
319 	if (usermode)
320 		td->td_frame = tf;
321 
322 	CTR6(KTR_TRAP, "%s: fsr %#x (idx %u) far %#x prefetch %u usermode %d",
323 	    __func__, fsr, idx, far, prefetch, usermode);
324 
325 	/*
326 	 * Firstly, handle aborts that are not directly related to mapping.
327 	 */
328 	if (__predict_false(idx == FAULT_EA_IMPREC)) {
329 		abort_imprecise(tf, fsr, prefetch, usermode);
330 		return;
331 	}
332 
333 	if (__predict_false(idx == FAULT_DEBUG)) {
334 		abort_debug(tf, fsr, prefetch, usermode, far);
335 		return;
336 	}
337 
338 	/*
339 	 * ARM has a set of unprivileged load and store instructions
340 	 * (LDRT/LDRBT/STRT/STRBT ...) which are supposed to be used in other
341 	 * than user mode and OS should recognize their aborts and behave
342 	 * appropriately. However, there is no way how to do that reasonably
343 	 * in general unless we restrict the handling somehow.
344 	 *
345 	 * For now, these instructions are used only in copyin()/copyout()
346 	 * like functions where usermode buffers are checked in advance that
347 	 * they are not from KVA space. Thus, no action is needed here.
348 	 */
349 
350 	/*
351 	 * (1) Handle access and R/W hardware emulation aborts.
352 	 * (2) Check that abort is not on pmap essential address ranges.
353 	 *     There is no way how to fix it, so we don't even try.
354 	 */
355 	rv = pmap_fault(PCPU_GET(curpmap), far, fsr, idx, usermode);
356 	if (rv == KERN_SUCCESS)
357 		return;
358 #ifdef KDB
359 	if (kdb_active) {
360 		kdb_reenter();
361 		goto out;
362 	}
363 #endif
364 	if (rv == KERN_INVALID_ADDRESS)
365 		goto nogo;
366 
367 	if (__predict_false((td->td_pflags & TDP_NOFAULTING) != 0)) {
368 		/*
369 		 * Due to both processor errata and lazy TLB invalidation when
370 		 * access restrictions are removed from virtual pages, memory
371 		 * accesses that are allowed by the physical mapping layer may
372 		 * nonetheless cause one spurious page fault per virtual page.
373 		 * When the thread is executing a "no faulting" section that
374 		 * is bracketed by vm_fault_{disable,enable}_pagefaults(),
375 		 * every page fault is treated as a spurious page fault,
376 		 * unless it accesses the same virtual address as the most
377 		 * recent page fault within the same "no faulting" section.
378 		 */
379 		if (td->td_md.md_spurflt_addr != far ||
380 		    (td->td_pflags & TDP_RESETSPUR) != 0) {
381 			td->td_md.md_spurflt_addr = far;
382 			td->td_pflags &= ~TDP_RESETSPUR;
383 
384 			tlb_flush_local(far & ~PAGE_MASK);
385 			return;
386 		}
387 	} else {
388 		/*
389 		 * If we get a page fault while in a critical section, then
390 		 * it is most likely a fatal kernel page fault.  The kernel
391 		 * is already going to panic trying to get a sleep lock to
392 		 * do the VM lookup, so just consider it a fatal trap so the
393 		 * kernel can print out a useful trap message and even get
394 		 * to the debugger.
395 		 *
396 		 * If we get a page fault while holding a non-sleepable
397 		 * lock, then it is most likely a fatal kernel page fault.
398 		 * If WITNESS is enabled, then it's going to whine about
399 		 * bogus LORs with various VM locks, so just skip to the
400 		 * fatal trap handling directly.
401 		 */
402 		if (td->td_critnest != 0 ||
403 		    WITNESS_CHECK(WARN_SLEEPOK | WARN_GIANTOK, NULL,
404 		    "Kernel page fault") != 0) {
405 			abort_fatal(tf, idx, fsr, far, prefetch, td, &ksig);
406 			return;
407 		}
408 	}
409 
410 	/* Re-enable interrupts if they were enabled previously. */
411 	if (td->td_md.md_spinlock_count == 0) {
412 		if (__predict_true(tf->tf_spsr & PSR_I) == 0)
413 			enable_interrupts(PSR_I);
414 		if (__predict_true(tf->tf_spsr & PSR_F) == 0)
415 			enable_interrupts(PSR_F);
416 	}
417 
418 	p = td->td_proc;
419 	if (usermode) {
420 		td->td_pticks = 0;
421 		if (td->td_cowgen != atomic_load_int(&p->p_cowgen))
422 			thread_cow_update(td);
423 	}
424 
425 	/* Invoke the appropriate handler, if necessary. */
426 	if (__predict_false(aborts[idx].func != NULL)) {
427 		if ((aborts[idx].func)(tf, idx, fsr, far, prefetch, td, &ksig))
428 			goto do_trapsignal;
429 		goto out;
430 	}
431 
432 	/*
433 	 * At this point, we're dealing with one of the following aborts:
434 	 *
435 	 *  FAULT_ICACHE   - I-cache maintenance
436 	 *  FAULT_TRAN_xx  - Translation
437 	 *  FAULT_PERM_xx  - Permission
438 	 */
439 
440 	/*
441 	 * Don't pass faulting cache operation to vm_fault(). We don't want
442 	 * to handle all vm stuff at this moment.
443 	 */
444 	pcb = td->td_pcb;
445 	if (__predict_false(pcb->pcb_onfault == cachebailout)) {
446 		tf->tf_r0 = far;		/* return failing address */
447 		tf->tf_pc = (register_t)pcb->pcb_onfault;
448 		return;
449 	}
450 
451 	/* Handle remaining I-cache aborts. */
452 	if (idx == FAULT_ICACHE) {
453 		if (abort_icache(tf, idx, fsr, far, prefetch, td, &ksig))
454 			goto do_trapsignal;
455 		goto out;
456 	}
457 
458 	va = trunc_page(far);
459 	if (va >= KERNBASE) {
460 		/*
461 		 * Don't allow user-mode faults in kernel address space.
462 		 */
463 		if (usermode) {
464 			ksig.sig = SIGSEGV;
465 			ksig.code = SEGV_ACCERR;
466 			goto nogo;
467 		}
468 
469 		map = kernel_map;
470 	} else {
471 		/*
472 		 * This is a fault on non-kernel virtual memory. If curproc
473 		 * is NULL or curproc->p_vmspace is NULL the fault is fatal.
474 		 */
475 		vm = (p != NULL) ? p->p_vmspace : NULL;
476 		if (vm == NULL) {
477 			ksig.sig = SIGSEGV;
478 			ksig.code = 0;
479 			goto nogo;
480 		}
481 
482 		map = &vm->vm_map;
483 		if (!usermode && (td->td_intr_nesting_level != 0 ||
484 		    pcb->pcb_onfault == NULL)) {
485 			abort_fatal(tf, idx, fsr, far, prefetch, td, &ksig);
486 			return;
487 		}
488 	}
489 
490 	ftype = (fsr & FSR_WNR) ? VM_PROT_WRITE : VM_PROT_READ;
491 	if (prefetch)
492 		ftype |= VM_PROT_EXECUTE;
493 
494 #ifdef INVARIANTS
495 	onfault = pcb->pcb_onfault;
496 	pcb->pcb_onfault = NULL;
497 #endif
498 
499 	/* Fault in the page. */
500 	rv = vm_fault_trap(map, va, ftype, VM_FAULT_NORMAL, &ksig.sig,
501 	    &ucode);
502 	ksig.code = ucode;
503 
504 #ifdef INVARIANTS
505 	pcb->pcb_onfault = onfault;
506 #endif
507 
508 	if (__predict_true(rv == KERN_SUCCESS))
509 		goto out;
510 nogo:
511 	if (!usermode) {
512 		if (td->td_intr_nesting_level == 0 &&
513 		    pcb->pcb_onfault != NULL) {
514 			tf->tf_r0 = rv;
515 			tf->tf_pc = (int)pcb->pcb_onfault;
516 			return;
517 		}
518 		CTR2(KTR_TRAP, "%s: vm_fault() failed with %d", __func__, rv);
519 		abort_fatal(tf, idx, fsr, far, prefetch, td, &ksig);
520 		return;
521 	}
522 
523 	ksig.addr = far;
524 
525 do_trapsignal:
526 	call_trapsignal(td, ksig.sig, ksig.code, ksig.addr, idx);
527 out:
528 	if (usermode)
529 		userret(td, tf);
530 }
531 
532 /*
533  * abort_fatal() handles the following data aborts:
534  *
535  *  FAULT_DEBUG		- Debug Event
536  *  FAULT_ACCESS_xx	- Acces Bit
537  *  FAULT_EA_PREC	- Precise External Abort
538  *  FAULT_DOMAIN_xx	- Domain Fault
539  *  FAULT_EA_TRAN_xx	- External Translation Abort
540  *  FAULT_EA_IMPREC	- Imprecise External Abort
541  *  + all undefined codes for ABORT
542  *
543  * We should never see these on a properly functioning system.
544  *
545  * This function is also called by the other handlers if they
546  * detect a fatal problem.
547  *
548  * Note: If 'l' is NULL, we assume we're dealing with a prefetch abort.
549  */
550 static int
551 abort_fatal(struct trapframe *tf, u_int idx, u_int fsr, u_int far,
552     u_int prefetch, struct thread *td, struct ksig *ksig)
553 {
554 	bool usermode;
555 	const char *mode;
556 	const char *rw_mode;
557 #ifdef KDB
558 	bool handled;
559 #endif
560 
561 	usermode = TRAPF_USERMODE(tf);
562 #ifdef KDTRACE_HOOKS
563 	if (!usermode) {
564 		if (dtrace_trap_func != NULL && (*dtrace_trap_func)(tf, far))
565 			return (0);
566 	}
567 #endif
568 
569 	mode = usermode ? "user" : "kernel";
570 	rw_mode  = fsr & FSR_WNR ? "write" : "read";
571 	disable_interrupts(PSR_I|PSR_F);
572 
573 	if (td != NULL) {
574 		printf("Fatal %s mode data abort: '%s' on %s\n", mode,
575 		    aborts[idx].desc, rw_mode);
576 		printf("trapframe: %p\nFSR=%08x, FAR=", tf, fsr);
577 		if (idx != FAULT_EA_IMPREC)
578 			printf("%08x, ", far);
579 		else
580 			printf("Invalid,  ");
581 		printf("spsr=%08x\n", tf->tf_spsr);
582 	} else {
583 		printf("Fatal %s mode prefetch abort at 0x%08x\n",
584 		    mode, tf->tf_pc);
585 		printf("trapframe: %p, spsr=%08x\n", tf, tf->tf_spsr);
586 	}
587 
588 	printf("r0 =%08x, r1 =%08x, r2 =%08x, r3 =%08x\n",
589 	    tf->tf_r0, tf->tf_r1, tf->tf_r2, tf->tf_r3);
590 	printf("r4 =%08x, r5 =%08x, r6 =%08x, r7 =%08x\n",
591 	    tf->tf_r4, tf->tf_r5, tf->tf_r6, tf->tf_r7);
592 	printf("r8 =%08x, r9 =%08x, r10=%08x, r11=%08x\n",
593 	    tf->tf_r8, tf->tf_r9, tf->tf_r10, tf->tf_r11);
594 	printf("r12=%08x, ", tf->tf_r12);
595 
596 	if (usermode)
597 		printf("usp=%08x, ulr=%08x",
598 		    tf->tf_usr_sp, tf->tf_usr_lr);
599 	else
600 		printf("ssp=%08x, slr=%08x",
601 		    tf->tf_svc_sp, tf->tf_svc_lr);
602 	printf(", pc =%08x\n\n", tf->tf_pc);
603 
604 #ifdef KDB
605 	if (debugger_on_trap) {
606 		kdb_why = KDB_WHY_TRAP;
607 		handled = kdb_trap(fsr, 0, tf);
608 		kdb_why = KDB_WHY_UNSET;
609 		if (handled)
610 			return (0);
611 	}
612 #endif
613 	panic("Fatal abort");
614 	/*NOTREACHED*/
615 }
616 
617 /*
618  * abort_align() handles the following data abort:
619  *
620  *  FAULT_ALIGN - Alignment fault
621  *
622  * Everything should be aligned in kernel with exception of user to kernel
623  * and vice versa data copying, so if pcb_onfault is not set, it's fatal.
624  * We generate signal in case of abort from user mode.
625  */
626 static int
627 abort_align(struct trapframe *tf, u_int idx, u_int fsr, u_int far,
628     u_int prefetch, struct thread *td, struct ksig *ksig)
629 {
630 	bool usermode;
631 
632 	usermode = TRAPF_USERMODE(tf);
633 	if (!usermode) {
634 		if (td->td_intr_nesting_level == 0 && td != NULL &&
635 		    td->td_pcb->pcb_onfault != NULL) {
636 			tf->tf_r0 = EFAULT;
637 			tf->tf_pc = (int)td->td_pcb->pcb_onfault;
638 			return (0);
639 		}
640 		abort_fatal(tf, idx, fsr, far, prefetch, td, ksig);
641 	}
642 	/* Deliver a bus error signal to the process */
643 	ksig->code = BUS_ADRALN;
644 	ksig->sig = SIGBUS;
645 	ksig->addr = far;
646 	return (1);
647 }
648 
649 /*
650  * abort_icache() handles the following data abort:
651  *
652  * FAULT_ICACHE - Instruction cache maintenance
653  *
654  * According to manual, FAULT_ICACHE is translation fault during cache
655  * maintenance operation. In fact, no cache maintenance operation on
656  * not mapped virtual addresses should be called. As cache maintenance
657  * operation (except DMB, DSB, and Flush Prefetch Buffer) are privileged,
658  * the abort is concider as fatal for now. However, all the matter with
659  * cache maintenance operation on virtual addresses could be really complex
660  * and fuzzy in SMP case, so maybe in future standard fault mechanism
661  * should be held here including vm_fault() calling.
662  */
663 static int
664 abort_icache(struct trapframe *tf, u_int idx, u_int fsr, u_int far,
665     u_int prefetch, struct thread *td, struct ksig *ksig)
666 {
667 
668 	abort_fatal(tf, idx, fsr, far, prefetch, td, ksig);
669 	return(0);
670 }
671