xref: /freebsd/sys/arm/broadcom/bcm2835/bcm2835_bsc.c (revision 535af610)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2001 Tsubai Masanari.
5  * Copyright (c) 2012 Oleksandr Tymoshenko <gonzo@freebsd.org>
6  * Copyright (c) 2013 Luiz Otavio O Souza <loos@freebsd.org>
7  * Copyright (c) 2017 Ian Lepore <ian@freebsd.org>
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  */
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 /*
36  * Driver for bcm2835 i2c-compatible two-wire bus, named 'BSC' on this SoC.
37  *
38  * This controller can only perform complete transfers, it does not provide
39  * low-level control over sending start/repeat-start/stop sequences on the bus.
40  * In addition, bugs in the silicon make it somewhat difficult to perform a
41  * repeat-start, and limit the repeat-start to a read following a write on
42  * the same slave device.  (The i2c protocol allows a repeat start to change
43  * direction or not, and change slave address or not at any time.)
44  *
45  * The repeat-start bug and workaround are described in a problem report at
46  * https://github.com/raspberrypi/linux/issues/254 with the crucial part being
47  * in a comment block from a fragment of a GPU i2c driver, containing this:
48  *
49  * -----------------------------------------------------------------------------
50  * - See i2c.v: The I2C peripheral samples the values for rw_bit and xfer_count
51  * - in the IDLE state if start is set.
52  * -
53  * - We want to generate a ReSTART not a STOP at the end of the TX phase. In
54  * - order to do that we must ensure the state machine goes RACK1 -> RACK2 ->
55  * - SRSTRT1 (not RACK1 -> RACK2 -> SSTOP1).
56  * -
57  * - So, in the RACK2 state when (TX) xfer_count==0 we must therefore have
58  * - already set, ready to be sampled:
59  * -  READ ; rw_bit     <= I2CC bit 0 -- must be "read"
60  * -  ST;    start      <= I2CC bit 7 -- must be "Go" in order to not issue STOP
61  * -  DLEN;  xfer_count <= I2CDLEN    -- must be equal to our read amount
62  * -
63  * - The plan to do this is:
64  * -  1. Start the sub-address write, but don't let it finish
65  * -     (keep xfer_count > 0)
66  * -  2. Populate READ, DLEN and ST in preparation for ReSTART read sequence
67  * -  3. Let TX finish (write the rest of the data)
68  * -  4. Read back data as it arrives
69  * -----------------------------------------------------------------------------
70  *
71  * The transfer function below scans the list of messages passed to it, looking
72  * for a read following a write to the same slave.  When it finds that, it
73  * starts the write without prefilling the tx fifo, which holds xfer_count>0,
74  * then presets the direction, length, and start command for the following read,
75  * as described above.  Then the tx fifo is filled and the rest of the transfer
76  * proceeds as normal, with the controller automatically supplying a
77  * repeat-start on the bus when the write operation finishes.
78  *
79  * XXX I suspect the controller may be able to do a repeat-start on any
80  * write->read or write->write transition, even when the slave addresses differ.
81  * It's unclear whether the slave address can be prestaged along with the
82  * direction and length while the write xfer_count is being held at zero.  In
83  * fact, if it can't do this, then it couldn't be used to read EDID data.
84  */
85 
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/kernel.h>
89 #include <sys/lock.h>
90 #include <sys/module.h>
91 #include <sys/mutex.h>
92 #include <sys/bus.h>
93 #include <machine/resource.h>
94 #include <machine/bus.h>
95 #include <sys/rman.h>
96 #include <sys/sysctl.h>
97 
98 #include <dev/iicbus/iicbus.h>
99 #include <dev/iicbus/iiconf.h>
100 #include <dev/ofw/ofw_bus.h>
101 #include <dev/ofw/ofw_bus_subr.h>
102 
103 #include <arm/broadcom/bcm2835/bcm2835_bscreg.h>
104 #include <arm/broadcom/bcm2835/bcm2835_bscvar.h>
105 
106 #include "iicbus_if.h"
107 
108 static struct ofw_compat_data compat_data[] = {
109 	{"broadcom,bcm2835-bsc",	1},
110 	{"brcm,bcm2708-i2c",		1},
111 	{"brcm,bcm2835-i2c",		1},
112 	{NULL,				0}
113 };
114 
115 #define DEVICE_DEBUGF(sc, lvl, fmt, args...) \
116     if ((lvl) <= (sc)->sc_debug) \
117         device_printf((sc)->sc_dev, fmt, ##args)
118 
119 #define DEBUGF(sc, lvl, fmt, args...) \
120     if ((lvl) <= (sc)->sc_debug) \
121         printf(fmt, ##args)
122 
123 static void bcm_bsc_intr(void *);
124 static int bcm_bsc_detach(device_t);
125 
126 static void
127 bcm_bsc_modifyreg(struct bcm_bsc_softc *sc, uint32_t off, uint32_t mask,
128 	uint32_t value)
129 {
130 	uint32_t reg;
131 
132 	mtx_assert(&sc->sc_mtx, MA_OWNED);
133 	reg = BCM_BSC_READ(sc, off);
134 	reg &= ~mask;
135 	reg |= value;
136 	BCM_BSC_WRITE(sc, off, reg);
137 }
138 
139 static int
140 bcm_bsc_clock_proc(SYSCTL_HANDLER_ARGS)
141 {
142 	struct bcm_bsc_softc *sc;
143 	uint32_t clk;
144 
145 	sc = (struct bcm_bsc_softc *)arg1;
146 	BCM_BSC_LOCK(sc);
147 	clk = BCM_BSC_READ(sc, BCM_BSC_CLOCK);
148 	BCM_BSC_UNLOCK(sc);
149 	clk &= 0xffff;
150 	if (clk == 0)
151 		clk = 32768;
152 	clk = BCM_BSC_CORE_CLK / clk;
153 
154 	return (sysctl_handle_int(oidp, &clk, 0, req));
155 }
156 
157 static int
158 bcm_bsc_clkt_proc(SYSCTL_HANDLER_ARGS)
159 {
160 	struct bcm_bsc_softc *sc;
161 	uint32_t clkt;
162 	int error;
163 
164 	sc = (struct bcm_bsc_softc *)arg1;
165 
166 	BCM_BSC_LOCK(sc);
167 	clkt = BCM_BSC_READ(sc, BCM_BSC_CLKT);
168 	BCM_BSC_UNLOCK(sc);
169 	clkt &= 0xffff;
170 	error = sysctl_handle_int(oidp, &clkt, sizeof(clkt), req);
171 	if (error != 0 || req->newptr == NULL)
172 		return (error);
173 
174 	BCM_BSC_LOCK(sc);
175 	BCM_BSC_WRITE(sc, BCM_BSC_CLKT, clkt & 0xffff);
176 	BCM_BSC_UNLOCK(sc);
177 
178 	return (0);
179 }
180 
181 static int
182 bcm_bsc_fall_proc(SYSCTL_HANDLER_ARGS)
183 {
184 	struct bcm_bsc_softc *sc;
185 	uint32_t clk, reg;
186 	int error;
187 
188 	sc = (struct bcm_bsc_softc *)arg1;
189 
190 	BCM_BSC_LOCK(sc);
191 	reg = BCM_BSC_READ(sc, BCM_BSC_DELAY);
192 	BCM_BSC_UNLOCK(sc);
193 	reg >>= 16;
194 	error = sysctl_handle_int(oidp, &reg, sizeof(reg), req);
195 	if (error != 0 || req->newptr == NULL)
196 		return (error);
197 
198 	BCM_BSC_LOCK(sc);
199 	clk = BCM_BSC_READ(sc, BCM_BSC_CLOCK);
200 	clk = BCM_BSC_CORE_CLK / clk;
201 	if (reg > clk / 2)
202 		reg = clk / 2 - 1;
203 	bcm_bsc_modifyreg(sc, BCM_BSC_DELAY, 0xffff0000, reg << 16);
204 	BCM_BSC_UNLOCK(sc);
205 
206 	return (0);
207 }
208 
209 static int
210 bcm_bsc_rise_proc(SYSCTL_HANDLER_ARGS)
211 {
212 	struct bcm_bsc_softc *sc;
213 	uint32_t clk, reg;
214 	int error;
215 
216 	sc = (struct bcm_bsc_softc *)arg1;
217 
218 	BCM_BSC_LOCK(sc);
219 	reg = BCM_BSC_READ(sc, BCM_BSC_DELAY);
220 	BCM_BSC_UNLOCK(sc);
221 	reg &= 0xffff;
222 	error = sysctl_handle_int(oidp, &reg, sizeof(reg), req);
223 	if (error != 0 || req->newptr == NULL)
224 		return (error);
225 
226 	BCM_BSC_LOCK(sc);
227 	clk = BCM_BSC_READ(sc, BCM_BSC_CLOCK);
228 	clk = BCM_BSC_CORE_CLK / clk;
229 	if (reg > clk / 2)
230 		reg = clk / 2 - 1;
231 	bcm_bsc_modifyreg(sc, BCM_BSC_DELAY, 0xffff, reg);
232 	BCM_BSC_UNLOCK(sc);
233 
234 	return (0);
235 }
236 
237 static void
238 bcm_bsc_sysctl_init(struct bcm_bsc_softc *sc)
239 {
240 	struct sysctl_ctx_list *ctx;
241 	struct sysctl_oid *tree_node;
242 	struct sysctl_oid_list *tree;
243 
244 	/*
245 	 * Add system sysctl tree/handlers.
246 	 */
247 	ctx = device_get_sysctl_ctx(sc->sc_dev);
248 	tree_node = device_get_sysctl_tree(sc->sc_dev);
249 	tree = SYSCTL_CHILDREN(tree_node);
250 	SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "frequency",
251 	    CTLFLAG_RW | CTLTYPE_UINT | CTLFLAG_NEEDGIANT,
252 	    sc, sizeof(*sc),
253 	    bcm_bsc_clock_proc, "IU", "I2C BUS clock frequency");
254 	SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "clock_stretch",
255 	    CTLFLAG_RW | CTLTYPE_UINT | CTLFLAG_NEEDGIANT,
256 	    sc, sizeof(*sc),
257 	    bcm_bsc_clkt_proc, "IU", "I2C BUS clock stretch timeout");
258 	SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "fall_edge_delay",
259 	    CTLFLAG_RW | CTLTYPE_UINT | CTLFLAG_NEEDGIANT,
260 	    sc, sizeof(*sc),
261 	    bcm_bsc_fall_proc, "IU", "I2C BUS falling edge delay");
262 	SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "rise_edge_delay",
263 	    CTLFLAG_RW | CTLTYPE_UINT | CTLFLAG_NEEDGIANT,
264 	    sc, sizeof(*sc),
265 	    bcm_bsc_rise_proc, "IU", "I2C BUS rising edge delay");
266 	SYSCTL_ADD_INT(ctx, tree, OID_AUTO, "debug",
267 	    CTLFLAG_RWTUN, &sc->sc_debug, 0,
268 	    "Enable debug; 1=reads/writes, 2=add starts/stops");
269 }
270 
271 static void
272 bcm_bsc_reset(struct bcm_bsc_softc *sc)
273 {
274 
275 	/* Enable the BSC Controller, disable interrupts. */
276 	BCM_BSC_WRITE(sc, BCM_BSC_CTRL, BCM_BSC_CTRL_I2CEN);
277 	/* Clear pending interrupts. */
278 	BCM_BSC_WRITE(sc, BCM_BSC_STATUS, BCM_BSC_STATUS_CLKT |
279 	    BCM_BSC_STATUS_ERR | BCM_BSC_STATUS_DONE);
280 	/* Clear the FIFO. */
281 	bcm_bsc_modifyreg(sc, BCM_BSC_CTRL, BCM_BSC_CTRL_CLEAR0,
282 	    BCM_BSC_CTRL_CLEAR0);
283 }
284 
285 static int
286 bcm_bsc_probe(device_t dev)
287 {
288 
289 	if (!ofw_bus_status_okay(dev))
290 		return (ENXIO);
291 
292 	if (ofw_bus_search_compatible(dev, compat_data)->ocd_data == 0)
293 		return (ENXIO);
294 
295 	device_set_desc(dev, "BCM2708/2835 BSC controller");
296 
297 	return (BUS_PROBE_DEFAULT);
298 }
299 
300 static int
301 bcm_bsc_attach(device_t dev)
302 {
303 	struct bcm_bsc_softc *sc;
304 	int rid;
305 
306 	sc = device_get_softc(dev);
307 	sc->sc_dev = dev;
308 
309 	rid = 0;
310 	sc->sc_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
311 	    RF_ACTIVE);
312 	if (!sc->sc_mem_res) {
313 		device_printf(dev, "cannot allocate memory window\n");
314 		return (ENXIO);
315 	}
316 
317 	sc->sc_bst = rman_get_bustag(sc->sc_mem_res);
318 	sc->sc_bsh = rman_get_bushandle(sc->sc_mem_res);
319 
320 	rid = 0;
321 	sc->sc_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
322 	    RF_ACTIVE | RF_SHAREABLE);
323 	if (!sc->sc_irq_res) {
324 		bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->sc_mem_res);
325 		device_printf(dev, "cannot allocate interrupt\n");
326 		return (ENXIO);
327 	}
328 
329 	/* Hook up our interrupt handler. */
330 	if (bus_setup_intr(dev, sc->sc_irq_res, INTR_TYPE_MISC | INTR_MPSAFE,
331 	    NULL, bcm_bsc_intr, sc, &sc->sc_intrhand)) {
332 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq_res);
333 		bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->sc_mem_res);
334 		device_printf(dev, "cannot setup the interrupt handler\n");
335 		return (ENXIO);
336 	}
337 
338 	mtx_init(&sc->sc_mtx, "bcm_bsc", NULL, MTX_DEF);
339 
340 	bcm_bsc_sysctl_init(sc);
341 
342 	/* Enable the BSC controller.  Flush the FIFO. */
343 	BCM_BSC_LOCK(sc);
344 	bcm_bsc_reset(sc);
345 	BCM_BSC_UNLOCK(sc);
346 
347 	sc->sc_iicbus = device_add_child(dev, "iicbus", -1);
348 	if (sc->sc_iicbus == NULL) {
349 		bcm_bsc_detach(dev);
350 		return (ENXIO);
351 	}
352 
353 	/* Probe and attach the iicbus when interrupts are available. */
354 	return (bus_delayed_attach_children(dev));
355 }
356 
357 static int
358 bcm_bsc_detach(device_t dev)
359 {
360 	struct bcm_bsc_softc *sc;
361 
362 	bus_generic_detach(dev);
363 
364 	sc = device_get_softc(dev);
365 	if (sc->sc_iicbus != NULL)
366 		device_delete_child(dev, sc->sc_iicbus);
367 	mtx_destroy(&sc->sc_mtx);
368 	if (sc->sc_intrhand)
369 		bus_teardown_intr(dev, sc->sc_irq_res, sc->sc_intrhand);
370 	if (sc->sc_irq_res)
371 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq_res);
372 	if (sc->sc_mem_res)
373 		bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->sc_mem_res);
374 
375 	return (0);
376 }
377 
378 static void
379 bcm_bsc_empty_rx_fifo(struct bcm_bsc_softc *sc)
380 {
381 	uint32_t status;
382 
383 	/* Assumes sc_totlen > 0 and BCM_BSC_STATUS_RXD is asserted on entry. */
384 	do {
385 		if (sc->sc_resid == 0) {
386 			sc->sc_data  = sc->sc_curmsg->buf;
387 			sc->sc_dlen  = sc->sc_curmsg->len;
388 			sc->sc_resid = sc->sc_dlen;
389 			++sc->sc_curmsg;
390 		}
391 		do {
392 			*sc->sc_data = BCM_BSC_READ(sc, BCM_BSC_DATA);
393 			DEBUGF(sc, 1, "0x%02x ", *sc->sc_data);
394 			++sc->sc_data;
395 			--sc->sc_resid;
396 			--sc->sc_totlen;
397 			status = BCM_BSC_READ(sc, BCM_BSC_STATUS);
398 		} while (sc->sc_resid > 0 && (status & BCM_BSC_STATUS_RXD));
399 	} while (sc->sc_totlen > 0 && (status & BCM_BSC_STATUS_RXD));
400 }
401 
402 static void
403 bcm_bsc_fill_tx_fifo(struct bcm_bsc_softc *sc)
404 {
405 	uint32_t status;
406 
407 	/* Assumes sc_totlen > 0 and BCM_BSC_STATUS_TXD is asserted on entry. */
408 	do {
409 		if (sc->sc_resid == 0) {
410 			sc->sc_data  = sc->sc_curmsg->buf;
411 			sc->sc_dlen  = sc->sc_curmsg->len;
412 			sc->sc_resid = sc->sc_dlen;
413 			++sc->sc_curmsg;
414 		}
415 		do {
416 			BCM_BSC_WRITE(sc, BCM_BSC_DATA, *sc->sc_data);
417 			DEBUGF(sc, 1, "0x%02x ", *sc->sc_data);
418 			++sc->sc_data;
419 			--sc->sc_resid;
420 			--sc->sc_totlen;
421 			status = BCM_BSC_READ(sc, BCM_BSC_STATUS);
422 		} while (sc->sc_resid > 0 && (status & BCM_BSC_STATUS_TXD));
423 		/*
424 		 * If a repeat-start was pending and we just hit the end of a tx
425 		 * buffer, see if it's also the end of the writes that preceeded
426 		 * the repeat-start.  If so, log the repeat-start and the start
427 		 * of the following read, and return because we're not writing
428 		 * anymore (and TXD will be true because there's room to write
429 		 * in the fifo).
430 		 */
431 		if (sc->sc_replen > 0 && sc->sc_resid == 0) {
432 			sc->sc_replen -= sc->sc_dlen;
433 			if (sc->sc_replen == 0) {
434 				DEBUGF(sc, 1, " err=0\n");
435 				DEVICE_DEBUGF(sc, 2, "rstart 0x%02x\n",
436 				    sc->sc_curmsg->slave | 0x01);
437 				DEVICE_DEBUGF(sc, 1,
438 				    "read   0x%02x len %d: ",
439 				    sc->sc_curmsg->slave | 0x01,
440 				    sc->sc_totlen);
441 				sc->sc_flags |= BCM_I2C_READ;
442 				return;
443 			}
444 		}
445 	} while (sc->sc_totlen > 0 && (status & BCM_BSC_STATUS_TXD));
446 }
447 
448 static void
449 bcm_bsc_intr(void *arg)
450 {
451 	struct bcm_bsc_softc *sc;
452 	uint32_t status;
453 
454 	sc = (struct bcm_bsc_softc *)arg;
455 
456 	BCM_BSC_LOCK(sc);
457 
458 	/* The I2C interrupt is shared among all the BSC controllers. */
459 	if ((sc->sc_flags & BCM_I2C_BUSY) == 0) {
460 		BCM_BSC_UNLOCK(sc);
461 		return;
462 	}
463 
464 	status = BCM_BSC_READ(sc, BCM_BSC_STATUS);
465 	DEBUGF(sc, 4, " <intrstatus=0x%08x> ", status);
466 
467 	/* RXD and DONE can assert together, empty fifo before checking done. */
468 	if ((sc->sc_flags & BCM_I2C_READ) && (status & BCM_BSC_STATUS_RXD))
469 		bcm_bsc_empty_rx_fifo(sc);
470 
471 	/* Check for completion. */
472 	if (status & (BCM_BSC_STATUS_ERRBITS | BCM_BSC_STATUS_DONE)) {
473 		sc->sc_flags |= BCM_I2C_DONE;
474 		if (status & BCM_BSC_STATUS_ERRBITS)
475 			sc->sc_flags |= BCM_I2C_ERROR;
476 		/* Disable interrupts. */
477 		bcm_bsc_reset(sc);
478 		wakeup(sc);
479 	} else if (!(sc->sc_flags & BCM_I2C_READ)) {
480 		/*
481 		 * Don't check for TXD until after determining whether the
482 		 * transfer is complete; TXD will be asserted along with ERR or
483 		 * DONE if there is room in the fifo.
484 		 */
485 		if ((status & BCM_BSC_STATUS_TXD) && sc->sc_totlen > 0)
486 			bcm_bsc_fill_tx_fifo(sc);
487 	}
488 
489 	BCM_BSC_UNLOCK(sc);
490 }
491 
492 static int
493 bcm_bsc_transfer(device_t dev, struct iic_msg *msgs, uint32_t nmsgs)
494 {
495 	struct bcm_bsc_softc *sc;
496 	struct iic_msg *endmsgs, *nxtmsg;
497 	uint32_t readctl, status;
498 	int err;
499 	uint16_t curlen;
500 	uint8_t curisread, curslave, nxtisread, nxtslave;
501 
502 	sc = device_get_softc(dev);
503 	BCM_BSC_LOCK(sc);
504 
505 	/* If the controller is busy wait until it is available. */
506 	while (sc->sc_flags & BCM_I2C_BUSY)
507 		mtx_sleep(dev, &sc->sc_mtx, 0, "bscbusw", 0);
508 
509 	/* Now we have control over the BSC controller. */
510 	sc->sc_flags = BCM_I2C_BUSY;
511 
512 	DEVICE_DEBUGF(sc, 3, "Transfer %d msgs\n", nmsgs);
513 
514 	/* Clear the FIFO and the pending interrupts. */
515 	bcm_bsc_reset(sc);
516 
517 	/*
518 	 * Perform all the transfers requested in the array of msgs.  Note that
519 	 * it is bcm_bsc_empty_rx_fifo() and bcm_bsc_fill_tx_fifo() that advance
520 	 * sc->sc_curmsg through the array of messages, as the data from each
521 	 * message is fully consumed, but it is this loop that notices when we
522 	 * have no more messages to process.
523 	 */
524 	err = 0;
525 	sc->sc_resid = 0;
526 	sc->sc_curmsg = msgs;
527 	endmsgs = &msgs[nmsgs];
528 	while (sc->sc_curmsg < endmsgs) {
529 		readctl = 0;
530 		curslave = sc->sc_curmsg->slave >> 1;
531 		curisread = sc->sc_curmsg->flags & IIC_M_RD;
532 		sc->sc_replen = 0;
533 		sc->sc_totlen = sc->sc_curmsg->len;
534 		/*
535 		 * Scan for scatter/gather IO (same slave and direction) or
536 		 * repeat-start (read following write for the same slave).
537 		 */
538 		for (nxtmsg = sc->sc_curmsg + 1; nxtmsg < endmsgs; ++nxtmsg) {
539 			nxtslave = nxtmsg->slave >> 1;
540 			if (curslave == nxtslave) {
541 				nxtisread = nxtmsg->flags & IIC_M_RD;
542 				if (curisread == nxtisread) {
543 					/*
544 					 * Same slave and direction, this
545 					 * message will be part of the same
546 					 * transfer as the previous one.
547 					 */
548 					sc->sc_totlen += nxtmsg->len;
549 					continue;
550 				} else if (curisread == IIC_M_WR) {
551 					/*
552 					 * Read after write to same slave means
553 					 * repeat-start, remember how many bytes
554 					 * come before the repeat-start, switch
555 					 * the direction to IIC_M_RD, and gather
556 					 * up following reads to the same slave.
557 					 */
558 					curisread = IIC_M_RD;
559 					sc->sc_replen = sc->sc_totlen;
560 					sc->sc_totlen += nxtmsg->len;
561 					continue;
562 				}
563 			}
564 			break;
565 		}
566 
567 		/*
568 		 * curslave and curisread temporaries from above may refer to
569 		 * the after-repstart msg, reset them to reflect sc_curmsg.
570 		 */
571 		curisread = (sc->sc_curmsg->flags & IIC_M_RD) ? 1 : 0;
572 		curslave = sc->sc_curmsg->slave | curisread;
573 
574 		/* Write the slave address. */
575 		BCM_BSC_WRITE(sc, BCM_BSC_SLAVE, curslave >> 1);
576 
577 		DEVICE_DEBUGF(sc, 2, "start  0x%02x\n", curslave);
578 
579 		/*
580 		 * Either set up read length and direction variables for a
581 		 * simple transfer or get the hardware started on the first
582 		 * piece of a transfer that involves a repeat-start and set up
583 		 * the read length and direction vars for the second piece.
584 		 */
585 		if (sc->sc_replen == 0) {
586 			DEVICE_DEBUGF(sc, 1, "%-6s 0x%02x len %d: ",
587 			    (curisread) ? "read" : "write", curslave,
588 			    sc->sc_totlen);
589 			curlen = sc->sc_totlen;
590 			if (curisread) {
591 				readctl = BCM_BSC_CTRL_READ;
592 				sc->sc_flags |= BCM_I2C_READ;
593 			} else {
594 				readctl = 0;
595 				sc->sc_flags &= ~BCM_I2C_READ;
596 			}
597 		} else {
598 			DEVICE_DEBUGF(sc, 1, "%-6s 0x%02x len %d: ",
599 			    (curisread) ? "read" : "write", curslave,
600 			    sc->sc_replen);
601 
602 			/*
603 			 * Start the write transfer with an empty fifo and wait
604 			 * for the 'transfer active' status bit to light up;
605 			 * that indicates that the hardware has latched the
606 			 * direction and length for the write, and we can safely
607 			 * reload those registers and issue the start for the
608 			 * following read; interrupts are not enabled here.
609 			 */
610 			BCM_BSC_WRITE(sc, BCM_BSC_DLEN, sc->sc_replen);
611 			BCM_BSC_WRITE(sc, BCM_BSC_CTRL, BCM_BSC_CTRL_I2CEN |
612 			    BCM_BSC_CTRL_ST);
613 			do {
614 				status = BCM_BSC_READ(sc, BCM_BSC_STATUS);
615 				if (status & BCM_BSC_STATUS_ERR) {
616 					/* no ACK on slave addr */
617 					err = EIO;
618 					goto xfer_done;
619 				}
620 			} while ((status & BCM_BSC_STATUS_TA) == 0);
621 			/*
622 			 * Set curlen and readctl for the repeat-start read that
623 			 * we need to set up below, but set sc_flags to write,
624 			 * because that is the operation in progress right now.
625 			 */
626 			curlen = sc->sc_totlen - sc->sc_replen;
627 			readctl = BCM_BSC_CTRL_READ;
628 			sc->sc_flags &= ~BCM_I2C_READ;
629 		}
630 
631 		/*
632 		 * Start the transfer with interrupts enabled, then if doing a
633 		 * write, fill the tx fifo.  Not prefilling the fifo until after
634 		 * this start command is the key workaround for making
635 		 * repeat-start work, and it's harmless to do it in this order
636 		 * for a regular write too.
637 		 */
638 		BCM_BSC_WRITE(sc, BCM_BSC_DLEN, curlen);
639 		BCM_BSC_WRITE(sc, BCM_BSC_CTRL, readctl | BCM_BSC_CTRL_I2CEN |
640 		    BCM_BSC_CTRL_ST | BCM_BSC_CTRL_INT_ALL);
641 
642 		if (!(sc->sc_curmsg->flags & IIC_M_RD)) {
643 			bcm_bsc_fill_tx_fifo(sc);
644 		}
645 
646 		/* Wait for the transaction to complete. */
647 		while (err == 0 && !(sc->sc_flags & BCM_I2C_DONE)) {
648 			err = mtx_sleep(sc, &sc->sc_mtx, 0, "bsciow", hz);
649 		}
650 		/* Check for errors. */
651 		if (err == 0 && (sc->sc_flags & BCM_I2C_ERROR))
652 			err = EIO;
653 xfer_done:
654 		DEBUGF(sc, 1, " err=%d\n", err);
655 		DEVICE_DEBUGF(sc, 2, "stop\n");
656 		if (err != 0)
657 			break;
658 	}
659 
660 	/* Disable interrupts, clean fifo, etc. */
661 	bcm_bsc_reset(sc);
662 
663 	/* Clean the controller flags. */
664 	sc->sc_flags = 0;
665 
666 	/* Wake up the threads waiting for bus. */
667 	wakeup(dev);
668 
669 	BCM_BSC_UNLOCK(sc);
670 
671 	return (err);
672 }
673 
674 static int
675 bcm_bsc_iicbus_reset(device_t dev, u_char speed, u_char addr, u_char *oldaddr)
676 {
677 	struct bcm_bsc_softc *sc;
678 	uint32_t busfreq;
679 
680 	sc = device_get_softc(dev);
681 	BCM_BSC_LOCK(sc);
682 	bcm_bsc_reset(sc);
683 	if (sc->sc_iicbus == NULL)
684 		busfreq = 100000;
685 	else
686 		busfreq = IICBUS_GET_FREQUENCY(sc->sc_iicbus, speed);
687 	BCM_BSC_WRITE(sc, BCM_BSC_CLOCK, BCM_BSC_CORE_CLK / busfreq);
688 	BCM_BSC_UNLOCK(sc);
689 
690 	return (IIC_ENOADDR);
691 }
692 
693 static phandle_t
694 bcm_bsc_get_node(device_t bus, device_t dev)
695 {
696 
697 	/* We only have one child, the I2C bus, which needs our own node. */
698 	return (ofw_bus_get_node(bus));
699 }
700 
701 static device_method_t bcm_bsc_methods[] = {
702 	/* Device interface */
703 	DEVMETHOD(device_probe,		bcm_bsc_probe),
704 	DEVMETHOD(device_attach,	bcm_bsc_attach),
705 	DEVMETHOD(device_detach,	bcm_bsc_detach),
706 
707 	/* iicbus interface */
708 	DEVMETHOD(iicbus_reset,		bcm_bsc_iicbus_reset),
709 	DEVMETHOD(iicbus_callback,	iicbus_null_callback),
710 	DEVMETHOD(iicbus_transfer,	bcm_bsc_transfer),
711 
712 	/* ofw_bus interface */
713 	DEVMETHOD(ofw_bus_get_node,	bcm_bsc_get_node),
714 
715 	DEVMETHOD_END
716 };
717 
718 static driver_t bcm_bsc_driver = {
719 	"iichb",
720 	bcm_bsc_methods,
721 	sizeof(struct bcm_bsc_softc),
722 };
723 
724 DRIVER_MODULE(iicbus, bcm2835_bsc, iicbus_driver, 0, 0);
725 DRIVER_MODULE(bcm2835_bsc, simplebus, bcm_bsc_driver, 0, 0);
726