xref: /freebsd/sys/arm/ti/cpsw/if_cpsw.c (revision d184218c)
1 /*-
2  * Copyright (c) 2012 Damjan Marion <dmarion@Freebsd.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 /*
28  * TI Common Platform Ethernet Switch (CPSW) Driver
29  * Found in TI8148 "DaVinci" and AM335x "Sitara" SoCs.
30  *
31  * This controller is documented in the AM335x Technical Reference
32  * Manual, in the TMS320DM814x DaVinci Digital Video Processors TRM
33  * and in the TMS320C6452 3 Port Switch Ethernet Subsystem TRM.
34  *
35  * It is basically a single Ethernet port (port 0) wired internally to
36  * a 3-port store-and-forward switch connected to two independent
37  * "sliver" controllers (port 1 and port 2).  You can operate the
38  * controller in a variety of different ways by suitably configuring
39  * the slivers and the Address Lookup Engine (ALE) that routes packets
40  * between the ports.
41  *
42  * This code was developed and tested on a BeagleBone with
43  * an AM335x SoC.
44  */
45 
46 #include <sys/cdefs.h>
47 __FBSDID("$FreeBSD$");
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/endian.h>
52 #include <sys/mbuf.h>
53 #include <sys/lock.h>
54 #include <sys/mutex.h>
55 #include <sys/kernel.h>
56 #include <sys/module.h>
57 #include <sys/socket.h>
58 #include <sys/sysctl.h>
59 
60 #include <net/ethernet.h>
61 #include <net/bpf.h>
62 #include <net/if.h>
63 #include <net/if_arp.h>
64 #include <net/if_dl.h>
65 #include <net/if_media.h>
66 #include <net/if_types.h>
67 #include <net/if_vlan_var.h>
68 
69 #include <netinet/in_systm.h>
70 #include <netinet/in.h>
71 #include <netinet/ip.h>
72 
73 #include <sys/sockio.h>
74 #include <sys/bus.h>
75 #include <machine/bus.h>
76 #include <sys/rman.h>
77 #include <machine/resource.h>
78 
79 #include <dev/mii/mii.h>
80 #include <dev/mii/miivar.h>
81 
82 #include <dev/fdt/fdt_common.h>
83 #include <dev/ofw/ofw_bus.h>
84 #include <dev/ofw/ofw_bus_subr.h>
85 
86 #include "if_cpswreg.h"
87 #include "if_cpswvar.h"
88 
89 #include <arm/ti/ti_scm.h>
90 
91 #include "miibus_if.h"
92 
93 /* Device probe/attach/detach. */
94 static int cpsw_probe(device_t);
95 static void cpsw_init_slots(struct cpsw_softc *);
96 static int cpsw_attach(device_t);
97 static void cpsw_free_slot(struct cpsw_softc *, struct cpsw_slot *);
98 static int cpsw_detach(device_t);
99 
100 /* Device Init/shutdown. */
101 static void cpsw_init(void *);
102 static void cpsw_init_locked(void *);
103 static int cpsw_shutdown(device_t);
104 static void cpsw_shutdown_locked(struct cpsw_softc *);
105 
106 /* Device Suspend/Resume. */
107 static int cpsw_suspend(device_t);
108 static int cpsw_resume(device_t);
109 
110 /* Ioctl. */
111 static int cpsw_ioctl(struct ifnet *, u_long command, caddr_t data);
112 
113 static int cpsw_miibus_readreg(device_t, int phy, int reg);
114 static int cpsw_miibus_writereg(device_t, int phy, int reg, int value);
115 
116 /* Send/Receive packets. */
117 static void cpsw_intr_rx(void *arg);
118 static struct mbuf *cpsw_rx_dequeue(struct cpsw_softc *);
119 static void cpsw_rx_enqueue(struct cpsw_softc *);
120 static void cpsw_start(struct ifnet *);
121 static void cpsw_tx_enqueue(struct cpsw_softc *);
122 static int cpsw_tx_dequeue(struct cpsw_softc *);
123 
124 /* Misc interrupts and watchdog. */
125 static void cpsw_intr_rx_thresh(void *);
126 static void cpsw_intr_misc(void *);
127 static void cpsw_tick(void *);
128 static void cpsw_ifmedia_sts(struct ifnet *, struct ifmediareq *);
129 static int cpsw_ifmedia_upd(struct ifnet *);
130 static void cpsw_tx_watchdog(struct cpsw_softc *);
131 
132 /* ALE support */
133 static void cpsw_ale_read_entry(struct cpsw_softc *, uint16_t idx, uint32_t *ale_entry);
134 static void cpsw_ale_write_entry(struct cpsw_softc *, uint16_t idx, uint32_t *ale_entry);
135 static int cpsw_ale_mc_entry_set(struct cpsw_softc *, uint8_t portmap, uint8_t *mac);
136 static int cpsw_ale_update_addresses(struct cpsw_softc *, int purge);
137 static void cpsw_ale_dump_table(struct cpsw_softc *);
138 
139 /* Statistics and sysctls. */
140 static void cpsw_add_sysctls(struct cpsw_softc *);
141 static void cpsw_stats_collect(struct cpsw_softc *);
142 static int cpsw_stats_sysctl(SYSCTL_HANDLER_ARGS);
143 
144 /*
145  * Arbitrary limit on number of segments in an mbuf to be transmitted.
146  * Packets with more segments than this will be defragmented before
147  * they are queued.
148  */
149 #define CPSW_TXFRAGS 8
150 
151 
152 /*
153  * TODO: The CPSW subsystem (CPSW_SS) can drive two independent PHYs
154  * as separate Ethernet ports.  To properly support this, we should
155  * break this into two separate devices: a CPSW_SS device that owns
156  * the interrupts and actually talks to the CPSW hardware, and a
157  * separate CPSW Ethernet child device for each Ethernet port.  The RX
158  * interrupt, for example, would be part of CPSW_SS; it would receive
159  * a packet, note the input port, and then dispatch it to the child
160  * device's interface queue.  Similarly for transmit.
161  *
162  * It's not clear to me whether the device tree should be restructured
163  * with a cpsw_ss node and two child nodes.  That would allow specifying
164  * MAC addresses for each port, for example, but might be overkill.
165  *
166  * Unfortunately, I don't have hardware right now that supports two
167  * Ethernet ports via CPSW.
168  */
169 
170 static device_method_t cpsw_methods[] = {
171 	/* Device interface */
172 	DEVMETHOD(device_probe,		cpsw_probe),
173 	DEVMETHOD(device_attach,	cpsw_attach),
174 	DEVMETHOD(device_detach,	cpsw_detach),
175 	DEVMETHOD(device_shutdown,	cpsw_shutdown),
176 	DEVMETHOD(device_suspend,	cpsw_suspend),
177 	DEVMETHOD(device_resume,	cpsw_resume),
178 	/* MII interface */
179 	DEVMETHOD(miibus_readreg,	cpsw_miibus_readreg),
180 	DEVMETHOD(miibus_writereg,	cpsw_miibus_writereg),
181 	{ 0, 0 }
182 };
183 
184 static driver_t cpsw_driver = {
185 	"cpsw",
186 	cpsw_methods,
187 	sizeof(struct cpsw_softc),
188 };
189 
190 static devclass_t cpsw_devclass;
191 
192 DRIVER_MODULE(cpsw, simplebus, cpsw_driver, cpsw_devclass, 0, 0);
193 DRIVER_MODULE(miibus, cpsw, miibus_driver, miibus_devclass, 0, 0);
194 MODULE_DEPEND(cpsw, ether, 1, 1, 1);
195 MODULE_DEPEND(cpsw, miibus, 1, 1, 1);
196 
197 static struct resource_spec res_spec[] = {
198 	{ SYS_RES_MEMORY, 0, RF_ACTIVE },
199 	{ SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
200 	{ SYS_RES_IRQ, 1, RF_ACTIVE | RF_SHAREABLE },
201 	{ SYS_RES_IRQ, 2, RF_ACTIVE | RF_SHAREABLE },
202 	{ SYS_RES_IRQ, 3, RF_ACTIVE | RF_SHAREABLE },
203 	{ -1, 0 }
204 };
205 
206 /* Number of entries here must match size of stats
207  * array in struct cpsw_softc. */
208 static struct cpsw_stat {
209 	int	reg;
210 	char *oid;
211 } cpsw_stat_sysctls[CPSW_SYSCTL_COUNT] = {
212 	{0x00, "GoodRxFrames"},
213 	{0x04, "BroadcastRxFrames"},
214 	{0x08, "MulticastRxFrames"},
215 	{0x0C, "PauseRxFrames"},
216 	{0x10, "RxCrcErrors"},
217 	{0x14, "RxAlignErrors"},
218 	{0x18, "OversizeRxFrames"},
219 	{0x1c, "RxJabbers"},
220 	{0x20, "ShortRxFrames"},
221 	{0x24, "RxFragments"},
222 	{0x30, "RxOctets"},
223 	{0x34, "GoodTxFrames"},
224 	{0x38, "BroadcastTxFrames"},
225 	{0x3c, "MulticastTxFrames"},
226 	{0x40, "PauseTxFrames"},
227 	{0x44, "DeferredTxFrames"},
228 	{0x48, "CollisionsTxFrames"},
229 	{0x4c, "SingleCollisionTxFrames"},
230 	{0x50, "MultipleCollisionTxFrames"},
231 	{0x54, "ExcessiveCollisions"},
232 	{0x58, "LateCollisions"},
233 	{0x5c, "TxUnderrun"},
234 	{0x60, "CarrierSenseErrors"},
235 	{0x64, "TxOctets"},
236 	{0x68, "RxTx64OctetFrames"},
237 	{0x6c, "RxTx65to127OctetFrames"},
238 	{0x70, "RxTx128to255OctetFrames"},
239 	{0x74, "RxTx256to511OctetFrames"},
240 	{0x78, "RxTx512to1024OctetFrames"},
241 	{0x7c, "RxTx1024upOctetFrames"},
242 	{0x80, "NetOctets"},
243 	{0x84, "RxStartOfFrameOverruns"},
244 	{0x88, "RxMiddleOfFrameOverruns"},
245 	{0x8c, "RxDmaOverruns"}
246 };
247 
248 /*
249  * Basic debug support.
250  */
251 
252 #define IF_DEBUG(sc)  if (sc->cpsw_if_flags & IFF_DEBUG)
253 
254 static void
255 cpsw_debugf_head(const char *funcname)
256 {
257 	int t = (int)(time_second % (24 * 60 * 60));
258 
259 	printf("%02d:%02d:%02d %s ", t / (60 * 60), (t / 60) % 60, t % 60, funcname);
260 }
261 
262 #include <machine/stdarg.h>
263 static void
264 cpsw_debugf(const char *fmt, ...)
265 {
266 	va_list ap;
267 
268 	va_start(ap, fmt);
269 	vprintf(fmt, ap);
270 	va_end(ap);
271 	printf("\n");
272 
273 }
274 
275 #define CPSW_DEBUGF(a) do {					\
276 	IF_DEBUG(sc) {						\
277 		cpsw_debugf_head(__func__);			\
278 		cpsw_debugf a;					\
279 	}							\
280 } while (0)
281 
282 
283 /*
284  * Locking macros
285  */
286 #define CPSW_TX_LOCK(sc) do {					\
287 		mtx_assert(&(sc)->rx.lock, MA_NOTOWNED);		\
288 		mtx_lock(&(sc)->tx.lock);				\
289 } while (0)
290 
291 #define CPSW_TX_UNLOCK(sc)	mtx_unlock(&(sc)->tx.lock)
292 #define CPSW_TX_LOCK_ASSERT(sc)	mtx_assert(&(sc)->tx.lock, MA_OWNED)
293 
294 #define CPSW_RX_LOCK(sc) do {					\
295 		mtx_assert(&(sc)->tx.lock, MA_NOTOWNED);		\
296 		mtx_lock(&(sc)->rx.lock);				\
297 } while (0)
298 
299 #define CPSW_RX_UNLOCK(sc)		mtx_unlock(&(sc)->rx.lock)
300 #define CPSW_RX_LOCK_ASSERT(sc)	mtx_assert(&(sc)->rx.lock, MA_OWNED)
301 
302 #define CPSW_GLOBAL_LOCK(sc) do {					\
303 		if ((mtx_owned(&(sc)->tx.lock) ? 1 : 0) !=	\
304 		    (mtx_owned(&(sc)->rx.lock) ? 1 : 0)) {		\
305 			panic("cpsw deadlock possibility detection!");	\
306 		}							\
307 		mtx_lock(&(sc)->tx.lock);				\
308 		mtx_lock(&(sc)->rx.lock);				\
309 } while (0)
310 
311 #define CPSW_GLOBAL_UNLOCK(sc) do {					\
312 		CPSW_RX_UNLOCK(sc);				\
313 		CPSW_TX_UNLOCK(sc);				\
314 } while (0)
315 
316 #define CPSW_GLOBAL_LOCK_ASSERT(sc) do {				\
317 		CPSW_TX_LOCK_ASSERT(sc);				\
318 		CPSW_RX_LOCK_ASSERT(sc);				\
319 } while (0)
320 
321 /*
322  * Read/Write macros
323  */
324 #define	cpsw_read_4(sc, reg)		bus_read_4(sc->res[0], reg)
325 #define	cpsw_write_4(sc, reg, val)	bus_write_4(sc->res[0], reg, val)
326 
327 #define	cpsw_cpdma_bd_offset(i)	(CPSW_CPPI_RAM_OFFSET + ((i)*16))
328 
329 #define	cpsw_cpdma_bd_paddr(sc, slot)				\
330 	BUS_SPACE_PHYSADDR(sc->res[0], slot->bd_offset)
331 #define	cpsw_cpdma_read_bd(sc, slot, val)				\
332 	bus_read_region_4(sc->res[0], slot->bd_offset, (uint32_t *) val, 4)
333 #define	cpsw_cpdma_write_bd(sc, slot, val)				\
334 	bus_write_region_4(sc->res[0], slot->bd_offset, (uint32_t *) val, 4)
335 #define	cpsw_cpdma_write_bd_next(sc, slot, next_slot)			\
336 	cpsw_write_4(sc, slot->bd_offset, cpsw_cpdma_bd_paddr(sc, next_slot))
337 #define	cpsw_cpdma_read_bd_flags(sc, slot)		\
338 	bus_read_2(sc->res[0], slot->bd_offset + 14)
339 #define	cpsw_write_hdp_slot(sc, queue, slot)				\
340 	cpsw_write_4(sc, (queue)->hdp_offset, cpsw_cpdma_bd_paddr(sc, slot))
341 #define	CP_OFFSET (CPSW_CPDMA_TX_CP(0) - CPSW_CPDMA_TX_HDP(0))
342 #define	cpsw_read_cp(sc, queue)				\
343 	cpsw_read_4(sc, (queue)->hdp_offset + CP_OFFSET)
344 #define	cpsw_write_cp(sc, queue, val)				\
345 	cpsw_write_4(sc, (queue)->hdp_offset + CP_OFFSET, (val))
346 #define	cpsw_write_cp_slot(sc, queue, slot)		\
347 	cpsw_write_cp(sc, queue, cpsw_cpdma_bd_paddr(sc, slot))
348 
349 #if 0
350 /* XXX temporary function versions for debugging. */
351 static void
352 cpsw_write_hdp_slotX(struct cpsw_softc *sc, struct cpsw_queue *queue, struct cpsw_slot *slot)
353 {
354 	uint32_t reg = queue->hdp_offset;
355 	uint32_t v = cpsw_cpdma_bd_paddr(sc, slot);
356 	CPSW_DEBUGF(("HDP <=== 0x%08x (was 0x%08x)", v, cpsw_read_4(sc, reg)));
357 	cpsw_write_4(sc, reg, v);
358 }
359 
360 static void
361 cpsw_write_cp_slotX(struct cpsw_softc *sc, struct cpsw_queue *queue, struct cpsw_slot *slot)
362 {
363 	uint32_t v = cpsw_cpdma_bd_paddr(sc, slot);
364 	CPSW_DEBUGF(("CP <=== 0x%08x (expecting 0x%08x)", v, cpsw_read_cp(sc, queue)));
365 	cpsw_write_cp(sc, queue, v);
366 }
367 #endif
368 
369 /*
370  * Expanded dump routines for verbose debugging.
371  */
372 static void
373 cpsw_dump_slot(struct cpsw_softc *sc, struct cpsw_slot *slot)
374 {
375 	static const char *flags[] = {"SOP", "EOP", "Owner", "EOQ",
376 	    "TDownCmplt", "PassCRC", "Long", "Short", "MacCtl", "Overrun",
377 	    "PktErr1", "PortEn/PktErr0", "RxVlanEncap", "Port2", "Port1",
378 	    "Port0"};
379 	struct cpsw_cpdma_bd bd;
380 	const char *sep;
381 	int i;
382 
383 	cpsw_cpdma_read_bd(sc, slot, &bd);
384 	printf("BD Addr: 0x%08x   Next: 0x%08x\n", cpsw_cpdma_bd_paddr(sc, slot), bd.next);
385 	printf("  BufPtr: 0x%08x   BufLen: 0x%08x\n", bd.bufptr, bd.buflen);
386 	printf("  BufOff: 0x%08x   PktLen: 0x%08x\n", bd.bufoff, bd.pktlen);
387 	printf("  Flags: ");
388 	sep = "";
389 	for (i = 0; i < 16; ++i) {
390 		if (bd.flags & (1 << (15 - i))) {
391 			printf("%s%s", sep, flags[i]);
392 			sep = ",";
393 		}
394 	}
395 	printf("\n");
396 	if (slot->mbuf) {
397 		printf("  Ether:  %14D\n",
398 		    (char *)(slot->mbuf->m_hdr.mh_data), " ");
399 		printf("  Packet: %16D\n",
400 		    (char *)(slot->mbuf->m_hdr.mh_data) + 14, " ");
401 	}
402 }
403 
404 #define CPSW_DUMP_SLOT(cs, slot) do {				\
405 	IF_DEBUG(sc) {						\
406 		cpsw_dump_slot(sc, slot);			\
407 	}							\
408 } while (0)
409 
410 
411 static void
412 cpsw_dump_queue(struct cpsw_softc *sc, struct cpsw_slots *q)
413 {
414 	struct cpsw_slot *slot;
415 	int i = 0;
416 	int others = 0;
417 
418 	STAILQ_FOREACH(slot, q, next) {
419 		if (i > 4)
420 			++others;
421 		else
422 			cpsw_dump_slot(sc, slot);
423 		++i;
424 	}
425 	if (others)
426 		printf(" ... and %d more.\n", others);
427 	printf("\n");
428 }
429 
430 #define CPSW_DUMP_QUEUE(sc, q) do {				\
431 	IF_DEBUG(sc) {						\
432 		cpsw_dump_queue(sc, q);				\
433 	}							\
434 } while (0)
435 
436 
437 /*
438  *
439  * Device Probe, Attach, Detach.
440  *
441  */
442 
443 static int
444 cpsw_probe(device_t dev)
445 {
446 
447 	if (!ofw_bus_is_compatible(dev, "ti,cpsw"))
448 		return (ENXIO);
449 
450 	device_set_desc(dev, "3-port Switch Ethernet Subsystem");
451 	return (BUS_PROBE_DEFAULT);
452 }
453 
454 
455 static void
456 cpsw_init_slots(struct cpsw_softc *sc)
457 {
458 	struct cpsw_slot *slot;
459 	int i;
460 
461 	STAILQ_INIT(&sc->avail);
462 
463 	/* Put the slot descriptors onto the global avail list. */
464 	for (i = 0; i < sizeof(sc->_slots) / sizeof(sc->_slots[0]); i++) {
465 		slot = &sc->_slots[i];
466 		slot->bd_offset = cpsw_cpdma_bd_offset(i);
467 		STAILQ_INSERT_TAIL(&sc->avail, slot, next);
468 	}
469 }
470 
471 /*
472  * bind an interrupt, add the relevant info to sc->interrupts
473  */
474 static int
475 cpsw_attach_interrupt(struct cpsw_softc *sc, struct resource *res, driver_intr_t *handler, const char *description)
476 {
477 	void **pcookie;
478 	int error;
479 
480 	sc->interrupts[sc->interrupt_count].res = res;
481 	sc->interrupts[sc->interrupt_count].description = description;
482 	pcookie = &sc->interrupts[sc->interrupt_count].ih_cookie;
483 
484 	error = bus_setup_intr(sc->dev, res, INTR_TYPE_NET | INTR_MPSAFE,
485 	    NULL, *handler, sc, pcookie);
486 	if (error)
487 		device_printf(sc->dev,
488 		    "could not setup %s\n", description);
489 	else
490 		++sc->interrupt_count;
491 	return (error);
492 }
493 
494 /*
495  * teardown everything in sc->interrupts.
496  */
497 static void
498 cpsw_detach_interrupts(struct cpsw_softc *sc)
499 {
500 	int error;
501 	int i;
502 
503 	for (i = 0; i < sizeof(sc->interrupts) / sizeof(sc->interrupts[0]); ++i) {
504 		if (!sc->interrupts[i].ih_cookie)
505 			continue;
506 		error = bus_teardown_intr(sc->dev,
507 		    sc->interrupts[i].res, sc->interrupts[i].ih_cookie);
508 		if (error)
509 			device_printf(sc->dev, "could not release %s\n",
510 			    sc->interrupts[i].description);
511 		sc->interrupts[i].ih_cookie = NULL;
512 	}
513 }
514 
515 static int
516 cpsw_add_slots(struct cpsw_softc *sc, struct cpsw_queue *queue, int requested)
517 {
518 	const int max_slots = sizeof(sc->_slots) / sizeof(sc->_slots[0]);
519 	struct cpsw_slot *slot;
520 	int i;
521 
522 	if (requested < 0)
523 		requested = max_slots;
524 
525 	for (i = 0; i < requested; ++i) {
526 		slot = STAILQ_FIRST(&sc->avail);
527 		if (slot == NULL)
528 			return (0);
529 		if (bus_dmamap_create(sc->mbuf_dtag, 0, &slot->dmamap)) {
530 			if_printf(sc->ifp, "failed to create dmamap\n");
531 			return (ENOMEM);
532 		}
533 		STAILQ_REMOVE_HEAD(&sc->avail, next);
534 		STAILQ_INSERT_TAIL(&queue->avail, slot, next);
535 		++queue->avail_queue_len;
536 		++queue->queue_slots;
537 	}
538 	return (0);
539 }
540 
541 static int
542 cpsw_attach(device_t dev)
543 {
544 	bus_dma_segment_t segs[1];
545 	struct cpsw_softc *sc = device_get_softc(dev);
546 	struct mii_softc *miisc;
547 	struct ifnet *ifp;
548 	void *phy_sc;
549 	int error, phy, nsegs;
550 	uint32_t reg;
551 
552 	CPSW_DEBUGF((""));
553 
554 	getbinuptime(&sc->attach_uptime);
555 	sc->dev = dev;
556 	sc->node = ofw_bus_get_node(dev);
557 
558 	/* Get phy address from fdt */
559 	if (fdt_get_phyaddr(sc->node, sc->dev, &phy, &phy_sc) != 0) {
560 		device_printf(dev, "failed to get PHY address from FDT\n");
561 		return (ENXIO);
562 	}
563 	/* Initialize mutexes */
564 	mtx_init(&sc->tx.lock, device_get_nameunit(dev),
565 	    "cpsw TX lock", MTX_DEF);
566 	mtx_init(&sc->rx.lock, device_get_nameunit(dev),
567 	    "cpsw RX lock", MTX_DEF);
568 
569 	/* Allocate IO and IRQ resources */
570 	error = bus_alloc_resources(dev, res_spec, sc->res);
571 	if (error) {
572 		device_printf(dev, "could not allocate resources\n");
573 		cpsw_detach(dev);
574 		return (ENXIO);
575 	}
576 
577 	reg = cpsw_read_4(sc, CPSW_SS_IDVER);
578 	device_printf(dev, "CPSW SS Version %d.%d (%d)\n", (reg >> 8 & 0x7),
579 		reg & 0xFF, (reg >> 11) & 0x1F);
580 
581 	cpsw_add_sysctls(sc);
582 
583 	/* Allocate a busdma tag and DMA safe memory for mbufs. */
584 	error = bus_dma_tag_create(
585 		bus_get_dma_tag(sc->dev),	/* parent */
586 		1, 0,				/* alignment, boundary */
587 		BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
588 		BUS_SPACE_MAXADDR,		/* highaddr */
589 		NULL, NULL,			/* filtfunc, filtfuncarg */
590 		MCLBYTES, CPSW_TXFRAGS,		/* maxsize, nsegments */
591 		MCLBYTES, 0,			/* maxsegsz, flags */
592 		NULL, NULL,			/* lockfunc, lockfuncarg */
593 		&sc->mbuf_dtag);		/* dmatag */
594 	if (error) {
595 		device_printf(dev, "bus_dma_tag_create failed\n");
596 		cpsw_detach(dev);
597 		return (error);
598 	}
599 
600 	/* Allocate network interface */
601 	ifp = sc->ifp = if_alloc(IFT_ETHER);
602 	if (ifp == NULL) {
603 		device_printf(dev, "if_alloc() failed\n");
604 		cpsw_detach(dev);
605 		return (ENOMEM);
606 	}
607 
608 	/* Allocate the null mbuf and pre-sync it. */
609 	sc->null_mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
610 	memset(sc->null_mbuf->m_hdr.mh_data, 0, sc->null_mbuf->m_ext.ext_size);
611 	bus_dmamap_create(sc->mbuf_dtag, 0, &sc->null_mbuf_dmamap);
612 	bus_dmamap_load_mbuf_sg(sc->mbuf_dtag, sc->null_mbuf_dmamap,
613 	    sc->null_mbuf, segs, &nsegs, BUS_DMA_NOWAIT);
614 	bus_dmamap_sync(sc->mbuf_dtag, sc->null_mbuf_dmamap,
615 	    BUS_DMASYNC_PREWRITE);
616 	sc->null_mbuf_paddr = segs[0].ds_addr;
617 
618 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
619 	ifp->if_softc = sc;
620 	ifp->if_flags = IFF_SIMPLEX | IFF_MULTICAST | IFF_BROADCAST;
621 	ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_HWCSUM; //FIXME VLAN?
622 	ifp->if_capenable = ifp->if_capabilities;
623 
624 	ifp->if_init = cpsw_init;
625 	ifp->if_start = cpsw_start;
626 	ifp->if_ioctl = cpsw_ioctl;
627 
628 	cpsw_init_slots(sc);
629 
630 	/* Allocate slots to TX and RX queues. */
631 	STAILQ_INIT(&sc->rx.avail);
632 	STAILQ_INIT(&sc->rx.active);
633 	STAILQ_INIT(&sc->tx.avail);
634 	STAILQ_INIT(&sc->tx.active);
635 	// For now:  128 slots to TX, rest to RX.
636 	// XXX TODO: start with 32/64 and grow dynamically based on demand.
637 	if (cpsw_add_slots(sc, &sc->tx, 128) || cpsw_add_slots(sc, &sc->rx, -1)) {
638 		device_printf(dev, "failed to allocate dmamaps\n");
639 		cpsw_detach(dev);
640 		return (ENOMEM);
641 	}
642 	device_printf(dev, "Initial queue size TX=%d RX=%d\n",
643 	    sc->tx.queue_slots, sc->rx.queue_slots);
644 
645 	ifp->if_snd.ifq_drv_maxlen = sc->tx.queue_slots;
646 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
647 	IFQ_SET_READY(&ifp->if_snd);
648 
649 	sc->tx.hdp_offset = CPSW_CPDMA_TX_HDP(0);
650 	sc->rx.hdp_offset = CPSW_CPDMA_RX_HDP(0);
651 
652 	/* Get high part of MAC address from control module (mac_id0_hi) */
653 	/* TODO: Get MAC ID1 as well as MAC ID0. */
654 	ti_scm_reg_read_4(0x634, &reg);
655 	sc->mac_addr[0] = reg & 0xFF;
656 	sc->mac_addr[1] = (reg >>  8) & 0xFF;
657 	sc->mac_addr[2] = (reg >> 16) & 0xFF;
658 	sc->mac_addr[3] = (reg >> 24) & 0xFF;
659 
660 	/* Get low part of MAC address from control module (mac_id0_lo) */
661 	ti_scm_reg_read_4(0x630, &reg);
662 	sc->mac_addr[4] = reg & 0xFF;
663 	sc->mac_addr[5] = (reg >>  8) & 0xFF;
664 
665 	ether_ifattach(ifp, sc->mac_addr);
666 	callout_init(&sc->watchdog.callout, 0);
667 
668 	/* Initialze MDIO - ENABLE, PREAMBLE=0, FAULTENB, CLKDIV=0xFF */
669 	/* TODO Calculate MDCLK=CLK/(CLKDIV+1) */
670 	cpsw_write_4(sc, MDIOCONTROL, 1 << 30 | 1 << 18 | 0xFF);
671 
672 	/* Clear ALE */
673 	cpsw_write_4(sc, CPSW_ALE_CONTROL, 1 << 30);
674 
675 	/* Attach PHY(s) */
676 	error = mii_attach(dev, &sc->miibus, ifp, cpsw_ifmedia_upd,
677 	    cpsw_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
678 	if (error) {
679 		device_printf(dev, "attaching PHYs failed\n");
680 		cpsw_detach(dev);
681 		return (error);
682 	}
683 	sc->mii = device_get_softc(sc->miibus);
684 
685 	/* Tell the MAC where to find the PHY so autoneg works */
686 	miisc = LIST_FIRST(&sc->mii->mii_phys);
687 
688 	/* Select PHY and enable interrupts */
689 	cpsw_write_4(sc, MDIOUSERPHYSEL0, 1 << 6 | (miisc->mii_phy & 0x1F));
690 
691 	/* Note: We don't use sc->res[3] (TX interrupt) */
692 	if (cpsw_attach_interrupt(sc, sc->res[1],
693 		cpsw_intr_rx_thresh, "CPSW RX threshold interrupt") ||
694 	    cpsw_attach_interrupt(sc, sc->res[2],
695 		cpsw_intr_rx, "CPSW RX interrupt") ||
696 	    cpsw_attach_interrupt(sc, sc->res[4],
697 		cpsw_intr_misc, "CPSW misc interrupt")) {
698 		cpsw_detach(dev);
699 		return (ENXIO);
700 	}
701 
702 	return (0);
703 }
704 
705 static void
706 cpsw_free_slot(struct cpsw_softc *sc, struct cpsw_slot *slot)
707 {
708 	int error;
709 
710 	if (slot->dmamap) {
711 		error = bus_dmamap_destroy(sc->mbuf_dtag, slot->dmamap);
712 		KASSERT(error == 0, ("Mapping still active"));
713 		slot->dmamap = NULL;
714 	}
715 	if (slot->mbuf) {
716 		m_freem(slot->mbuf);
717 		slot->mbuf = NULL;
718 	}
719 }
720 
721 static int
722 cpsw_detach(device_t dev)
723 {
724 	struct cpsw_softc *sc = device_get_softc(dev);
725 	int error, i;
726 
727 	CPSW_DEBUGF((""));
728 
729 	/* Stop controller and free TX queue */
730 	if (device_is_attached(dev)) {
731 		ether_ifdetach(sc->ifp);
732 		CPSW_GLOBAL_LOCK(sc);
733 		cpsw_shutdown_locked(sc);
734 		CPSW_GLOBAL_UNLOCK(sc);
735 		callout_drain(&sc->watchdog.callout);
736 	}
737 
738 	bus_generic_detach(dev);
739 	device_delete_child(dev, sc->miibus);
740 
741 	/* Stop and release all interrupts */
742 	cpsw_detach_interrupts(sc);
743 
744 	/* Free dmamaps and mbufs */
745 	for (i = 0; i < sizeof(sc->_slots) / sizeof(sc->_slots[0]); ++i) {
746 		cpsw_free_slot(sc, &sc->_slots[i]);
747 	}
748 
749 	/* Free DMA tag */
750 	error = bus_dma_tag_destroy(sc->mbuf_dtag);
751 	KASSERT(error == 0, ("Unable to destroy DMA tag"));
752 
753 	/* Free IO memory handler */
754 	bus_release_resources(dev, res_spec, sc->res);
755 
756 	/* Destroy mutexes */
757 	mtx_destroy(&sc->rx.lock);
758 	mtx_destroy(&sc->tx.lock);
759 
760 	return (0);
761 }
762 
763 /*
764  *
765  * Init/Shutdown.
766  *
767  */
768 
769 static void
770 cpsw_reset(struct cpsw_softc *sc)
771 {
772 	int i;
773 
774 	/* Reset RMII/RGMII wrapper. */
775 	cpsw_write_4(sc, CPSW_WR_SOFT_RESET, 1);
776 	while (cpsw_read_4(sc, CPSW_WR_SOFT_RESET) & 1)
777 		;
778 
779 	/* Disable TX and RX interrupts for all cores. */
780 	for (i = 0; i < 3; ++i) {
781 		cpsw_write_4(sc, CPSW_WR_C_RX_THRESH_EN(i), 0x00);
782 		cpsw_write_4(sc, CPSW_WR_C_TX_EN(i), 0x00);
783 		cpsw_write_4(sc, CPSW_WR_C_RX_EN(i), 0x00);
784 		cpsw_write_4(sc, CPSW_WR_C_MISC_EN(i), 0x00);
785 	}
786 
787 	/* Reset CPSW subsystem. */
788 	cpsw_write_4(sc, CPSW_SS_SOFT_RESET, 1);
789 	while (cpsw_read_4(sc, CPSW_SS_SOFT_RESET) & 1)
790 		;
791 
792 	/* Reset Sliver port 1 and 2 */
793 	for (i = 0; i < 2; i++) {
794 		/* Reset */
795 		cpsw_write_4(sc, CPSW_SL_SOFT_RESET(i), 1);
796 		while (cpsw_read_4(sc, CPSW_SL_SOFT_RESET(i)) & 1)
797 			;
798 	}
799 
800 	/* Reset DMA controller. */
801 	cpsw_write_4(sc, CPSW_CPDMA_SOFT_RESET, 1);
802 	while (cpsw_read_4(sc, CPSW_CPDMA_SOFT_RESET) & 1)
803 		;
804 
805 	/* Disable TX & RX DMA */
806 	cpsw_write_4(sc, CPSW_CPDMA_TX_CONTROL, 0);
807 	cpsw_write_4(sc, CPSW_CPDMA_RX_CONTROL, 0);
808 
809 	/* Clear all queues. */
810 	for (i = 0; i < 8; i++) {
811 		cpsw_write_4(sc, CPSW_CPDMA_TX_HDP(i), 0);
812 		cpsw_write_4(sc, CPSW_CPDMA_RX_HDP(i), 0);
813 		cpsw_write_4(sc, CPSW_CPDMA_TX_CP(i), 0);
814 		cpsw_write_4(sc, CPSW_CPDMA_RX_CP(i), 0);
815 	}
816 
817 	/* Clear all interrupt Masks */
818 	cpsw_write_4(sc, CPSW_CPDMA_RX_INTMASK_CLEAR, 0xFFFFFFFF);
819 	cpsw_write_4(sc, CPSW_CPDMA_TX_INTMASK_CLEAR, 0xFFFFFFFF);
820 }
821 
822 static void
823 cpsw_init(void *arg)
824 {
825 	struct cpsw_softc *sc = arg;
826 
827 	CPSW_DEBUGF((""));
828 	CPSW_GLOBAL_LOCK(sc);
829 	cpsw_init_locked(arg);
830 	CPSW_GLOBAL_UNLOCK(sc);
831 }
832 
833 static void
834 cpsw_init_locked(void *arg)
835 {
836 	struct ifnet *ifp;
837 	struct cpsw_softc *sc = arg;
838 	struct cpsw_slot *slot;
839 	uint32_t i;
840 
841 	CPSW_DEBUGF((""));
842 	ifp = sc->ifp;
843 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
844 		return;
845 
846 	getbinuptime(&sc->init_uptime);
847 
848 	/* Reset the controller. */
849 	cpsw_reset(sc);
850 
851 	/* Enable ALE */
852 	cpsw_write_4(sc, CPSW_ALE_CONTROL, 1 << 31 | 1 << 4);
853 
854 	/* Init Sliver port 1 and 2 */
855 	for (i = 0; i < 2; i++) {
856 		/* Set Slave Mapping */
857 		cpsw_write_4(sc, CPSW_SL_RX_PRI_MAP(i), 0x76543210);
858 		cpsw_write_4(sc, CPSW_PORT_P_TX_PRI_MAP(i + 1), 0x33221100);
859 		cpsw_write_4(sc, CPSW_SL_RX_MAXLEN(i), 0x5f2);
860 		/* Set MACCONTROL for ports 0,1: IFCTL_B(16), IFCTL_A(15),
861 		   GMII_EN(5), FULLDUPLEX(1) */
862 		/* TODO: Docs claim that IFCTL_B and IFCTL_A do the same thing? */
863 		/* Huh?  Docs call bit 0 "Loopback" some places, "FullDuplex" others. */
864 		cpsw_write_4(sc, CPSW_SL_MACCONTROL(i), 1 << 15 | 1 << 5 | 1);
865 	}
866 
867 	/* Set Host Port Mapping */
868 	cpsw_write_4(sc, CPSW_PORT_P0_CPDMA_TX_PRI_MAP, 0x76543210);
869 	cpsw_write_4(sc, CPSW_PORT_P0_CPDMA_RX_CH_MAP, 0);
870 
871 	/* Initialize ALE: all ports set to forwarding(3), initialize addrs */
872 	for (i = 0; i < 3; i++)
873 		cpsw_write_4(sc, CPSW_ALE_PORTCTL(i), 3);
874 	cpsw_ale_update_addresses(sc, 1);
875 
876 	cpsw_write_4(sc, CPSW_SS_PTYPE, 0);
877 
878 	/* Enable statistics for ports 0, 1 and 2 */
879 	cpsw_write_4(sc, CPSW_SS_STAT_PORT_EN, 7);
880 
881 	/* Experiment:  Turn off flow control */
882 	/* This seems to fix the watchdog resets that have plagued
883 	   earlier versions of this driver; I'm not yet sure if there
884 	   are negative effects yet. */
885 	cpsw_write_4(sc, CPSW_SS_FLOW_CONTROL, 0);
886 
887 	/* Make IP hdr aligned with 4 */
888 	cpsw_write_4(sc, CPSW_CPDMA_RX_BUFFER_OFFSET, 2);
889 
890 	/* Initialize RX Buffer Descriptors */
891 	cpsw_write_4(sc, CPSW_CPDMA_RX_FREEBUFFER(0), 0);
892 
893 	/* Enable TX & RX DMA */
894 	cpsw_write_4(sc, CPSW_CPDMA_TX_CONTROL, 1);
895 	cpsw_write_4(sc, CPSW_CPDMA_RX_CONTROL, 1);
896 
897 	/* Enable Interrupts for core 0 */
898 	cpsw_write_4(sc, CPSW_WR_C_RX_THRESH_EN(0), 0xFF);
899 	cpsw_write_4(sc, CPSW_WR_C_RX_EN(0), 0xFF);
900 	cpsw_write_4(sc, CPSW_WR_C_MISC_EN(0), 0x3F);
901 
902 	/* Enable host Error Interrupt */
903 	cpsw_write_4(sc, CPSW_CPDMA_DMA_INTMASK_SET, 3);
904 
905 	/* Enable interrupts for RX Channel 0 */
906 	cpsw_write_4(sc, CPSW_CPDMA_RX_INTMASK_SET, 1);
907 
908 	/* Initialze MDIO - ENABLE, PREAMBLE=0, FAULTENB, CLKDIV=0xFF */
909 	/* TODO Calculate MDCLK=CLK/(CLKDIV+1) */
910 	cpsw_write_4(sc, MDIOCONTROL, 1 << 30 | 1 << 18 | 0xFF);
911 
912 	/* Select MII in GMII_SEL, Internal Delay mode */
913 	//ti_scm_reg_write_4(0x650, 0);
914 
915 	/* Initialize active queues. */
916 	slot = STAILQ_FIRST(&sc->tx.active);
917 	if (slot != NULL)
918 		cpsw_write_hdp_slot(sc, &sc->tx, slot);
919 	slot = STAILQ_FIRST(&sc->rx.active);
920 	if (slot != NULL)
921 		cpsw_write_hdp_slot(sc, &sc->rx, slot);
922 	cpsw_rx_enqueue(sc);
923 
924 	/* Activate network interface */
925 	sc->rx.running = 1;
926 	sc->tx.running = 1;
927 	sc->watchdog.timer = 0;
928 	callout_reset(&sc->watchdog.callout, hz, cpsw_tick, sc);
929 	sc->ifp->if_drv_flags |= IFF_DRV_RUNNING;
930 	sc->ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
931 
932 }
933 
934 static int
935 cpsw_shutdown(device_t dev)
936 {
937 	struct cpsw_softc *sc = device_get_softc(dev);
938 
939 	CPSW_DEBUGF((""));
940 	CPSW_GLOBAL_LOCK(sc);
941 	cpsw_shutdown_locked(sc);
942 	CPSW_GLOBAL_UNLOCK(sc);
943 	return (0);
944 }
945 
946 static void
947 cpsw_rx_teardown_locked(struct cpsw_softc *sc)
948 {
949 	struct mbuf *received, *next;
950 	int i = 0;
951 
952 	CPSW_DEBUGF(("starting RX teardown"));
953 	cpsw_write_4(sc, CPSW_CPDMA_RX_TEARDOWN, 0);
954 	for (;;) {
955 		received = cpsw_rx_dequeue(sc);
956 		CPSW_GLOBAL_UNLOCK(sc);
957 		while (received != NULL) {
958 			next = received->m_nextpkt;
959 			received->m_nextpkt = NULL;
960 			(*sc->ifp->if_input)(sc->ifp, received);
961 			received = next;
962 		}
963 		CPSW_GLOBAL_LOCK(sc);
964 		if (!sc->rx.running) {
965 			CPSW_DEBUGF(("finished RX teardown (%d retries)", i));
966 			return;
967 		}
968 		if (++i > 10) {
969 			if_printf(sc->ifp, "Unable to cleanly shutdown receiver\n");
970 			return;
971 		}
972 		DELAY(10);
973 	}
974 }
975 
976 static void
977 cpsw_tx_teardown_locked(struct cpsw_softc *sc)
978 {
979 	int i = 0;
980 
981 	CPSW_DEBUGF(("starting TX teardown"));
982 	cpsw_write_4(sc, CPSW_CPDMA_TX_TEARDOWN, 0);
983 	cpsw_tx_dequeue(sc);
984 	while (sc->tx.running && ++i < 10) {
985 		DELAY(10);
986 		cpsw_tx_dequeue(sc);
987 	}
988 	if (sc->tx.running)
989 		if_printf(sc->ifp, "Unable to cleanly shutdown transmitter\n");
990 	CPSW_DEBUGF(("finished TX teardown (%d retries, %d idle buffers)",
991 	    i, sc->tx.active_queue_len));
992 }
993 
994 static void
995 cpsw_shutdown_locked(struct cpsw_softc *sc)
996 {
997 	struct ifnet *ifp;
998 
999 	CPSW_DEBUGF((""));
1000 	CPSW_GLOBAL_LOCK_ASSERT(sc);
1001 	ifp = sc->ifp;
1002 
1003 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1004 		return;
1005 
1006 	/* Disable interface */
1007 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1008 	ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1009 
1010 	/* Stop ticker */
1011 	callout_stop(&sc->watchdog.callout);
1012 
1013 	/* Tear down the RX/TX queues. */
1014 	cpsw_rx_teardown_locked(sc);
1015 	cpsw_tx_teardown_locked(sc);
1016 
1017 	/* Capture stats before we reset controller. */
1018 	cpsw_stats_collect(sc);
1019 
1020 	cpsw_reset(sc);
1021 }
1022 
1023 /*
1024  *  Suspend/Resume.
1025  */
1026 
1027 static int
1028 cpsw_suspend(device_t dev)
1029 {
1030 	struct cpsw_softc *sc = device_get_softc(dev);
1031 
1032 	CPSW_DEBUGF((""));
1033 	CPSW_GLOBAL_LOCK(sc);
1034 	cpsw_shutdown_locked(sc);
1035 	CPSW_GLOBAL_UNLOCK(sc);
1036 	return (0);
1037 }
1038 
1039 static int
1040 cpsw_resume(device_t dev)
1041 {
1042 	struct cpsw_softc *sc = device_get_softc(dev);
1043 
1044 	CPSW_DEBUGF(("UNIMPLEMENTED"));
1045 	return (0);
1046 }
1047 
1048 /*
1049  *
1050  *  IOCTL
1051  *
1052  */
1053 
1054 static void
1055 cpsw_set_promisc(struct cpsw_softc *sc, int set)
1056 {
1057 	/*
1058 	 * Enabling promiscuous mode requires two bits of work: First,
1059 	 * ALE_BYPASS needs to be enabled.  That disables the ALE
1060 	 * forwarding logic and causes every packet to be sent to the
1061 	 * host port.  That makes us promiscuous wrt received packets.
1062 	 *
1063 	 * With ALE forwarding disabled, the transmitter needs to set
1064 	 * an explicit output port on every packet to route it to the
1065 	 * correct egress.  This should be doable for systems such as
1066 	 * BeagleBone where only one egress port is actually wired to
1067 	 * a PHY.  If you have both egress ports wired up, life gets a
1068 	 * lot more interesting.
1069 	 *
1070 	 * Hmmm.... NetBSD driver uses ALE_BYPASS always and doesn't
1071 	 * seem to set explicit egress ports.  Does that mean they
1072 	 * are always promiscuous?
1073 	 */
1074 	if (set) {
1075 		printf("Promiscuous mode unimplemented\n");
1076 	}
1077 }
1078 
1079 static void
1080 cpsw_set_allmulti(struct cpsw_softc *sc, int set)
1081 {
1082 	if (set) {
1083 		printf("All-multicast mode unimplemented\n");
1084 	}
1085 }
1086 
1087 static int
1088 cpsw_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1089 {
1090 	struct cpsw_softc *sc = ifp->if_softc;
1091 	struct ifreq *ifr = (struct ifreq *)data;
1092 	int error;
1093 	uint32_t changed;
1094 
1095 	error = 0;
1096 
1097 	switch (command) {
1098 	case SIOCSIFFLAGS:
1099 		CPSW_GLOBAL_LOCK(sc);
1100 		if (ifp->if_flags & IFF_UP) {
1101 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1102 				changed = ifp->if_flags ^ sc->cpsw_if_flags;
1103 				CPSW_DEBUGF(("SIOCSIFFLAGS: UP & RUNNING (changed=0x%x)", changed));
1104 				if (changed & IFF_PROMISC)
1105 					cpsw_set_promisc(sc,
1106 					    ifp->if_flags & IFF_PROMISC);
1107 				if (changed & IFF_ALLMULTI)
1108 					cpsw_set_allmulti(sc,
1109 					    ifp->if_flags & IFF_ALLMULTI);
1110 			} else {
1111 				CPSW_DEBUGF(("SIOCSIFFLAGS: UP but not RUNNING; starting up"));
1112 				cpsw_init_locked(sc);
1113 			}
1114 		} else if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1115 			CPSW_DEBUGF(("SIOCSIFFLAGS: not UP but RUNNING; shutting down"));
1116 			cpsw_shutdown_locked(sc);
1117 		}
1118 
1119 		sc->cpsw_if_flags = ifp->if_flags;
1120 		CPSW_GLOBAL_UNLOCK(sc);
1121 		break;
1122 	case SIOCADDMULTI:
1123 		cpsw_ale_update_addresses(sc, 0);
1124 		break;
1125 	case SIOCDELMULTI:
1126 		/* Ugh.  DELMULTI doesn't provide the specific address
1127 		   being removed, so the best we can do is remove
1128 		   everything and rebuild it all. */
1129 		cpsw_ale_update_addresses(sc, 1);
1130 		break;
1131 	case SIOCGIFMEDIA:
1132 	case SIOCSIFMEDIA:
1133 		error = ifmedia_ioctl(ifp, ifr, &sc->mii->mii_media, command);
1134 		break;
1135 	default:
1136 		error = ether_ioctl(ifp, command, data);
1137 	}
1138 	return (error);
1139 }
1140 
1141 /*
1142  *
1143  * MIIBUS
1144  *
1145  */
1146 static int
1147 cpsw_miibus_ready(struct cpsw_softc *sc)
1148 {
1149 	uint32_t r, retries = CPSW_MIIBUS_RETRIES;
1150 
1151 	while (--retries) {
1152 		r = cpsw_read_4(sc, MDIOUSERACCESS0);
1153 		if ((r & 1 << 31) == 0)
1154 			return 1;
1155 		DELAY(CPSW_MIIBUS_DELAY);
1156 	}
1157 	return 0;
1158 }
1159 
1160 static int
1161 cpsw_miibus_readreg(device_t dev, int phy, int reg)
1162 {
1163 	struct cpsw_softc *sc = device_get_softc(dev);
1164 	uint32_t cmd, r;
1165 
1166 	if (!cpsw_miibus_ready(sc)) {
1167 		device_printf(dev, "MDIO not ready to read\n");
1168 		return 0;
1169 	}
1170 
1171 	/* Set GO, reg, phy */
1172 	cmd = 1 << 31 | (reg & 0x1F) << 21 | (phy & 0x1F) << 16;
1173 	cpsw_write_4(sc, MDIOUSERACCESS0, cmd);
1174 
1175 	if (!cpsw_miibus_ready(sc)) {
1176 		device_printf(dev, "MDIO timed out during read\n");
1177 		return 0;
1178 	}
1179 
1180 	r = cpsw_read_4(sc, MDIOUSERACCESS0);
1181 	if((r & 1 << 29) == 0) {
1182 		device_printf(dev, "Failed to read from PHY.\n");
1183 		r = 0;
1184 	}
1185 	return (r & 0xFFFF);
1186 }
1187 
1188 static int
1189 cpsw_miibus_writereg(device_t dev, int phy, int reg, int value)
1190 {
1191 	struct cpsw_softc *sc = device_get_softc(dev);
1192 	uint32_t cmd;
1193 
1194 	if (!cpsw_miibus_ready(sc)) {
1195 		device_printf(dev, "MDIO not ready to write\n");
1196 		return 0;
1197 	}
1198 
1199 	/* Set GO, WRITE, reg, phy, and value */
1200 	cmd = 3 << 30 | (reg & 0x1F) << 21 | (phy & 0x1F) << 16
1201 	    | (value & 0xFFFF);
1202 	cpsw_write_4(sc, MDIOUSERACCESS0, cmd);
1203 
1204 	if (!cpsw_miibus_ready(sc)) {
1205 		device_printf(dev, "MDIO timed out during write\n");
1206 		return 0;
1207 	}
1208 
1209 	if((cpsw_read_4(sc, MDIOUSERACCESS0) & (1 << 29)) == 0)
1210 		device_printf(dev, "Failed to write to PHY.\n");
1211 
1212 	return 0;
1213 }
1214 
1215 /*
1216  *
1217  * Transmit/Receive Packets.
1218  *
1219  */
1220 
1221 
1222 static void
1223 cpsw_intr_rx(void *arg)
1224 {
1225 	struct cpsw_softc *sc = arg;
1226 	struct mbuf *received, *next;
1227 
1228 	CPSW_RX_LOCK(sc);
1229 	received = cpsw_rx_dequeue(sc);
1230 	cpsw_rx_enqueue(sc);
1231 	cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 1);
1232 	CPSW_RX_UNLOCK(sc);
1233 
1234 	while (received != NULL) {
1235 		next = received->m_nextpkt;
1236 		received->m_nextpkt = NULL;
1237 		(*sc->ifp->if_input)(sc->ifp, received);
1238 		received = next;
1239 	}
1240 }
1241 
1242 static struct mbuf *
1243 cpsw_rx_dequeue(struct cpsw_softc *sc)
1244 {
1245 	struct cpsw_cpdma_bd bd;
1246 	struct cpsw_slot *slot;
1247 	struct ifnet *ifp;
1248 	struct mbuf *mb_head, *mb_tail;
1249 	int removed = 0;
1250 
1251 	ifp = sc->ifp;
1252 	mb_head = mb_tail = NULL;
1253 
1254 	/* Pull completed packets off hardware RX queue. */
1255 	while ((slot = STAILQ_FIRST(&sc->rx.active)) != NULL) {
1256 		cpsw_cpdma_read_bd(sc, slot, &bd);
1257 		if (bd.flags & CPDMA_BD_OWNER)
1258 			break; /* Still in use by hardware */
1259 
1260 		CPSW_DEBUGF(("Removing received packet from RX queue"));
1261 		++removed;
1262 		STAILQ_REMOVE_HEAD(&sc->rx.active, next);
1263 		STAILQ_INSERT_TAIL(&sc->rx.avail, slot, next);
1264 
1265 		bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_POSTREAD);
1266 		bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1267 
1268 		if (bd.flags & CPDMA_BD_TDOWNCMPLT) {
1269 			CPSW_DEBUGF(("RX teardown in progress"));
1270 			m_freem(slot->mbuf);
1271 			slot->mbuf = NULL;
1272 			cpsw_write_cp(sc, &sc->rx, 0xfffffffc);
1273 			sc->rx.running = 0;
1274 			break;
1275 		}
1276 
1277 		cpsw_write_cp_slot(sc, &sc->rx, slot);
1278 
1279 		/* Set up mbuf */
1280 		/* TODO: track SOP/EOP bits to assemble a full mbuf
1281 		   out of received fragments. */
1282 		slot->mbuf->m_hdr.mh_data += bd.bufoff;
1283 		slot->mbuf->m_hdr.mh_len = bd.pktlen - 4;
1284 		slot->mbuf->m_pkthdr.len = bd.pktlen - 4;
1285 		slot->mbuf->m_flags |= M_PKTHDR;
1286 		slot->mbuf->m_pkthdr.rcvif = ifp;
1287 		slot->mbuf->m_nextpkt = NULL;
1288 
1289 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1290 			/* check for valid CRC by looking into pkt_err[5:4] */
1291 			if ((bd.flags & CPDMA_BD_PKT_ERR_MASK) == 0) {
1292 				slot->mbuf->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1293 				slot->mbuf->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1294 				slot->mbuf->m_pkthdr.csum_data = 0xffff;
1295 			}
1296 		}
1297 
1298 		/* Add mbuf to packet list to be returned. */
1299 		if (mb_tail) {
1300 			mb_tail->m_nextpkt = slot->mbuf;
1301 		} else {
1302 			mb_head = slot->mbuf;
1303 		}
1304 		mb_tail = slot->mbuf;
1305 		slot->mbuf = NULL;
1306 	}
1307 
1308 	if (removed != 0) {
1309 		sc->rx.queue_removes += removed;
1310 		sc->rx.active_queue_len -= removed;
1311 		sc->rx.avail_queue_len += removed;
1312 		if (sc->rx.avail_queue_len > sc->rx.max_avail_queue_len)
1313 			sc->rx.max_avail_queue_len = sc->rx.avail_queue_len;
1314 	}
1315 	return (mb_head);
1316 }
1317 
1318 static void
1319 cpsw_rx_enqueue(struct cpsw_softc *sc)
1320 {
1321 	bus_dma_segment_t seg[1];
1322 	struct cpsw_cpdma_bd bd;
1323 	struct ifnet *ifp = sc->ifp;
1324 	struct cpsw_slots tmpqueue = STAILQ_HEAD_INITIALIZER(tmpqueue);
1325 	struct cpsw_slot *slot, *prev_slot = NULL;
1326 	struct cpsw_slot *last_old_slot, *first_new_slot;
1327 	int error, nsegs, added = 0;
1328 
1329 	/* Register new mbufs with hardware. */
1330 	while ((slot = STAILQ_FIRST(&sc->rx.avail)) != NULL) {
1331 		if (slot->mbuf == NULL) {
1332 			slot->mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1333 			if (slot->mbuf == NULL) {
1334 				if_printf(sc->ifp, "Unable to fill RX queue\n");
1335 				break;
1336 			}
1337 			slot->mbuf->m_len =
1338 			    slot->mbuf->m_pkthdr.len =
1339 			    slot->mbuf->m_ext.ext_size;
1340 		}
1341 
1342 		error = bus_dmamap_load_mbuf_sg(sc->mbuf_dtag, slot->dmamap,
1343 		    slot->mbuf, seg, &nsegs, BUS_DMA_NOWAIT);
1344 
1345 		KASSERT(nsegs == 1, ("More than one segment (nsegs=%d)", nsegs));
1346 		KASSERT(error == 0, ("DMA error (error=%d)", error));
1347 		if (error != 0 || nsegs != 1) {
1348 			if_printf(ifp,
1349 			    "%s: Can't prep RX buf for DMA (nsegs=%d, error=%d)\n",
1350 			    __func__, nsegs, error);
1351 			bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1352 			m_freem(slot->mbuf);
1353 			slot->mbuf = NULL;
1354 			break;
1355 		}
1356 
1357 		bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_PREREAD);
1358 
1359 		/* Create and submit new rx descriptor*/
1360 		bd.next = 0;
1361 		bd.bufptr = seg->ds_addr;
1362 		bd.bufoff = 0;
1363 		bd.buflen = MCLBYTES - 1;
1364 		bd.pktlen = bd.buflen;
1365 		bd.flags = CPDMA_BD_OWNER;
1366 		cpsw_cpdma_write_bd(sc, slot, &bd);
1367 		++added;
1368 
1369 		if (prev_slot != NULL)
1370 			cpsw_cpdma_write_bd_next(sc, prev_slot, slot);
1371 		prev_slot = slot;
1372 		STAILQ_REMOVE_HEAD(&sc->rx.avail, next);
1373 		sc->rx.avail_queue_len--;
1374 		STAILQ_INSERT_TAIL(&tmpqueue, slot, next);
1375 	}
1376 
1377 	if (added == 0)
1378 		return;
1379 
1380 	CPSW_DEBUGF(("Adding %d buffers to RX queue", added));
1381 
1382 	/* Link new entries to hardware RX queue. */
1383 	last_old_slot = STAILQ_LAST(&sc->rx.active, cpsw_slot, next);
1384 	first_new_slot = STAILQ_FIRST(&tmpqueue);
1385 	STAILQ_CONCAT(&sc->rx.active, &tmpqueue);
1386 	if (first_new_slot == NULL) {
1387 		return;
1388 	} else if (last_old_slot == NULL) {
1389 		/* Start a fresh queue. */
1390 		cpsw_write_hdp_slot(sc, &sc->rx, first_new_slot);
1391 	} else {
1392 		/* Add buffers to end of current queue. */
1393 		cpsw_cpdma_write_bd_next(sc, last_old_slot, first_new_slot);
1394 		/* If underrun, restart queue. */
1395 		if (cpsw_cpdma_read_bd_flags(sc, last_old_slot) & CPDMA_BD_EOQ) {
1396 			cpsw_write_hdp_slot(sc, &sc->rx, first_new_slot);
1397 		}
1398 	}
1399 	sc->rx.queue_adds += added;
1400 	sc->rx.active_queue_len += added;
1401 	if (sc->rx.active_queue_len > sc->rx.max_active_queue_len) {
1402 		sc->rx.max_active_queue_len = sc->rx.active_queue_len;
1403 	}
1404 }
1405 
1406 static void
1407 cpsw_start(struct ifnet *ifp)
1408 {
1409 	struct cpsw_softc *sc = ifp->if_softc;
1410 
1411 	CPSW_TX_LOCK(sc);
1412 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) && sc->tx.running) {
1413 		cpsw_tx_enqueue(sc);
1414 		cpsw_tx_dequeue(sc);
1415 	}
1416 	CPSW_TX_UNLOCK(sc);
1417 }
1418 
1419 static void
1420 cpsw_tx_enqueue(struct cpsw_softc *sc)
1421 {
1422 	bus_dma_segment_t segs[CPSW_TXFRAGS];
1423 	struct cpsw_cpdma_bd bd;
1424 	struct cpsw_slots tmpqueue = STAILQ_HEAD_INITIALIZER(tmpqueue);
1425 	struct cpsw_slot *slot, *prev_slot = NULL;
1426 	struct cpsw_slot *last_old_slot, *first_new_slot;
1427 	struct mbuf *m0;
1428 	int error, nsegs, seg, added = 0, padlen;
1429 
1430 	/* Pull pending packets from IF queue and prep them for DMA. */
1431 	while ((slot = STAILQ_FIRST(&sc->tx.avail)) != NULL) {
1432 		IF_DEQUEUE(&sc->ifp->if_snd, m0);
1433 		if (m0 == NULL)
1434 			break;
1435 
1436 		slot->mbuf = m0;
1437 		padlen = ETHER_MIN_LEN - slot->mbuf->m_pkthdr.len;
1438 		if (padlen < 0)
1439 			padlen = 0;
1440 
1441 		/* Create mapping in DMA memory */
1442 		error = bus_dmamap_load_mbuf_sg(sc->mbuf_dtag, slot->dmamap,
1443 		    slot->mbuf, segs, &nsegs, BUS_DMA_NOWAIT);
1444 		/* If the packet is too fragmented, try to simplify. */
1445 		if (error == EFBIG ||
1446 		    (error == 0 &&
1447 			nsegs + (padlen > 0 ? 1 : 0) > sc->tx.avail_queue_len)) {
1448 			bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1449 			if (padlen > 0) /* May as well add padding. */
1450 				m_append(slot->mbuf, padlen,
1451 				    sc->null_mbuf->m_hdr.mh_data);
1452 			m0 = m_defrag(slot->mbuf, M_NOWAIT);
1453 			if (m0 == NULL) {
1454 				if_printf(sc->ifp,
1455 				    "Can't defragment packet; dropping\n");
1456 				m_freem(slot->mbuf);
1457 			} else {
1458 				CPSW_DEBUGF(("Requeueing defragmented packet"));
1459 				IF_PREPEND(&sc->ifp->if_snd, m0);
1460 			}
1461 			slot->mbuf = NULL;
1462 			continue;
1463 		}
1464 		if (error != 0) {
1465 			if_printf(sc->ifp,
1466 			    "%s: Can't setup DMA (error=%d), dropping packet\n",
1467 			    __func__, error);
1468 			bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1469 			m_freem(slot->mbuf);
1470 			slot->mbuf = NULL;
1471 			break;
1472 		}
1473 
1474 		bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap,
1475 				BUS_DMASYNC_PREWRITE);
1476 
1477 
1478 		CPSW_DEBUGF(("Queueing TX packet: %d segments + %d pad bytes",
1479 			nsegs, padlen));
1480 
1481 		/* If there is only one segment, the for() loop
1482 		 * gets skipped and the single buffer gets set up
1483 		 * as both SOP and EOP. */
1484 		/* Start by setting up the first buffer */
1485 		bd.next = 0;
1486 		bd.bufptr = segs[0].ds_addr;
1487 		bd.bufoff = 0;
1488 		bd.buflen = segs[0].ds_len;
1489 		bd.pktlen = m_length(slot->mbuf, NULL) + padlen;
1490 		bd.flags =  CPDMA_BD_SOP | CPDMA_BD_OWNER;
1491 		for (seg = 1; seg < nsegs; ++seg) {
1492 			/* Save the previous buffer (which isn't EOP) */
1493 			cpsw_cpdma_write_bd(sc, slot, &bd);
1494 			if (prev_slot != NULL)
1495 				cpsw_cpdma_write_bd_next(sc, prev_slot, slot);
1496 			prev_slot = slot;
1497 			STAILQ_REMOVE_HEAD(&sc->tx.avail, next);
1498 			sc->tx.avail_queue_len--;
1499 			STAILQ_INSERT_TAIL(&tmpqueue, slot, next);
1500 			++added;
1501 			slot = STAILQ_FIRST(&sc->tx.avail);
1502 
1503 			/* Setup next buffer (which isn't SOP) */
1504 			bd.next = 0;
1505 			bd.bufptr = segs[seg].ds_addr;
1506 			bd.bufoff = 0;
1507 			bd.buflen = segs[seg].ds_len;
1508 			bd.pktlen = 0;
1509 			bd.flags = CPDMA_BD_OWNER;
1510 		}
1511 		/* Save the final buffer. */
1512 		if (padlen <= 0)
1513 			bd.flags |= CPDMA_BD_EOP;
1514 		cpsw_cpdma_write_bd(sc, slot, &bd);
1515 		if (prev_slot != NULL)
1516 			cpsw_cpdma_write_bd_next(sc, prev_slot, slot);
1517 		prev_slot = slot;
1518 		STAILQ_REMOVE_HEAD(&sc->tx.avail, next);
1519 		sc->tx.avail_queue_len--;
1520 		STAILQ_INSERT_TAIL(&tmpqueue, slot, next);
1521 		++added;
1522 
1523 		if (padlen > 0) {
1524 			slot = STAILQ_FIRST(&sc->tx.avail);
1525 			STAILQ_REMOVE_HEAD(&sc->tx.avail, next);
1526 			sc->tx.avail_queue_len--;
1527 			STAILQ_INSERT_TAIL(&tmpqueue, slot, next);
1528 			++added;
1529 
1530 			/* Setup buffer of null pad bytes (definitely EOP) */
1531 			cpsw_cpdma_write_bd_next(sc, prev_slot, slot);
1532 			prev_slot = slot;
1533 			bd.next = 0;
1534 			bd.bufptr = sc->null_mbuf_paddr;
1535 			bd.bufoff = 0;
1536 			bd.buflen = padlen;
1537 			bd.pktlen = 0;
1538 			bd.flags = CPDMA_BD_EOP | CPDMA_BD_OWNER;
1539 			cpsw_cpdma_write_bd(sc, slot, &bd);
1540 			++nsegs;
1541 		}
1542 
1543 		if (nsegs > sc->tx.longest_chain)
1544 			sc->tx.longest_chain = nsegs;
1545 
1546 		// TODO: Should we defer the BPF tap until
1547 		// after all packets are queued?
1548 		BPF_MTAP(sc->ifp, m0);
1549 	}
1550 
1551 	/* Attach the list of new buffers to the hardware TX queue. */
1552 	last_old_slot = STAILQ_LAST(&sc->tx.active, cpsw_slot, next);
1553 	first_new_slot = STAILQ_FIRST(&tmpqueue);
1554 	STAILQ_CONCAT(&sc->tx.active, &tmpqueue);
1555 	if (first_new_slot == NULL) {
1556 		return;
1557 	} else if (last_old_slot == NULL) {
1558 		/* Start a fresh queue. */
1559 		cpsw_write_hdp_slot(sc, &sc->tx, first_new_slot);
1560 	} else {
1561 		/* Add buffers to end of current queue. */
1562 		cpsw_cpdma_write_bd_next(sc, last_old_slot, first_new_slot);
1563 		/* If underrun, restart queue. */
1564 		if (cpsw_cpdma_read_bd_flags(sc, last_old_slot) & CPDMA_BD_EOQ) {
1565 			cpsw_write_hdp_slot(sc, &sc->tx, first_new_slot);
1566 		}
1567 	}
1568 	sc->tx.queue_adds += added;
1569 	sc->tx.active_queue_len += added;
1570 	if (sc->tx.active_queue_len > sc->tx.max_active_queue_len) {
1571 		sc->tx.max_active_queue_len = sc->tx.active_queue_len;
1572 	}
1573 }
1574 
1575 static int
1576 cpsw_tx_dequeue(struct cpsw_softc *sc)
1577 {
1578 	struct cpsw_slot *slot, *last_removed_slot = NULL;
1579 	uint32_t flags, removed = 0;
1580 
1581 	slot = STAILQ_FIRST(&sc->tx.active);
1582 	if (slot == NULL && cpsw_read_cp(sc, &sc->tx) == 0xfffffffc) {
1583 		CPSW_DEBUGF(("TX teardown of an empty queue"));
1584 		cpsw_write_cp(sc, &sc->tx, 0xfffffffc);
1585 		sc->tx.running = 0;
1586 		return (0);
1587 	}
1588 
1589 	/* Pull completed buffers off the hardware TX queue. */
1590 	while (slot != NULL) {
1591 		flags = cpsw_cpdma_read_bd_flags(sc, slot);
1592 		if (flags & CPDMA_BD_OWNER)
1593 			break; /* Hardware is still using this packet. */
1594 
1595 		CPSW_DEBUGF(("TX removing completed packet"));
1596 		bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_POSTWRITE);
1597 		bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1598 		m_freem(slot->mbuf);
1599 		slot->mbuf = NULL;
1600 
1601 		/* Dequeue any additional buffers used by this packet. */
1602 		while (slot != NULL && slot->mbuf == NULL) {
1603 			STAILQ_REMOVE_HEAD(&sc->tx.active, next);
1604 			STAILQ_INSERT_TAIL(&sc->tx.avail, slot, next);
1605 			++removed;
1606 			last_removed_slot = slot;
1607 			slot = STAILQ_FIRST(&sc->tx.active);
1608 		}
1609 
1610 		/* TearDown complete is only marked on the SOP for the packet. */
1611 		if (flags & CPDMA_BD_TDOWNCMPLT) {
1612 			CPSW_DEBUGF(("TX teardown in progress"));
1613 			cpsw_write_cp(sc, &sc->tx, 0xfffffffc);
1614 			// TODO: Increment a count of dropped TX packets
1615 			sc->tx.running = 0;
1616 			break;
1617 		}
1618 	}
1619 
1620 	if (removed != 0) {
1621 		cpsw_write_cp_slot(sc, &sc->tx, last_removed_slot);
1622 		sc->tx.queue_removes += removed;
1623 		sc->tx.active_queue_len -= removed;
1624 		sc->tx.avail_queue_len += removed;
1625 		if (sc->tx.avail_queue_len > sc->tx.max_avail_queue_len)
1626 			sc->tx.max_avail_queue_len = sc->tx.avail_queue_len;
1627 	}
1628 	return (removed);
1629 }
1630 
1631 /*
1632  *
1633  * Miscellaneous interrupts.
1634  *
1635  */
1636 
1637 static void
1638 cpsw_intr_rx_thresh(void *arg)
1639 {
1640 	struct cpsw_softc *sc = arg;
1641 	uint32_t stat = cpsw_read_4(sc, CPSW_WR_C_RX_THRESH_STAT(0));
1642 
1643 	CPSW_DEBUGF(("stat=%x", stat));
1644 	cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 0);
1645 }
1646 
1647 static void
1648 cpsw_intr_misc_host_error(struct cpsw_softc *sc)
1649 {
1650 	uint32_t intstat;
1651 	uint32_t dmastat;
1652 	int txerr, rxerr, txchan, rxchan;
1653 
1654 	printf("\n\n");
1655 	device_printf(sc->dev,
1656 	    "HOST ERROR:  PROGRAMMING ERROR DETECTED BY HARDWARE\n");
1657 	printf("\n\n");
1658 	intstat = cpsw_read_4(sc, CPSW_CPDMA_DMA_INTSTAT_MASKED);
1659 	device_printf(sc->dev, "CPSW_CPDMA_DMA_INTSTAT_MASKED=0x%x\n", intstat);
1660 	dmastat = cpsw_read_4(sc, CPSW_CPDMA_DMASTATUS);
1661 	device_printf(sc->dev, "CPSW_CPDMA_DMASTATUS=0x%x\n", dmastat);
1662 
1663 	txerr = (dmastat >> 20) & 15;
1664 	txchan = (dmastat >> 16) & 7;
1665 	rxerr = (dmastat >> 12) & 15;
1666 	rxchan = (dmastat >> 8) & 7;
1667 
1668 	switch (txerr) {
1669 	case 0: break;
1670 	case 1:	printf("SOP error on TX channel %d\n", txchan);
1671 		break;
1672 	case 2:	printf("Ownership bit not set on SOP buffer on TX channel %d\n", txchan);
1673 		break;
1674 	case 3:	printf("Zero Next Buffer but not EOP on TX channel %d\n", txchan);
1675 		break;
1676 	case 4:	printf("Zero Buffer Pointer on TX channel %d\n", txchan);
1677 		break;
1678 	case 5:	printf("Zero Buffer Length on TX channel %d\n", txchan);
1679 		break;
1680 	case 6:	printf("Packet length error on TX channel %d\n", txchan);
1681 		break;
1682 	default: printf("Unknown error on TX channel %d\n", txchan);
1683 		break;
1684 	}
1685 
1686 	if (txerr != 0) {
1687 		printf("CPSW_CPDMA_TX%d_HDP=0x%x\n",
1688 		    txchan, cpsw_read_4(sc, CPSW_CPDMA_TX_HDP(txchan)));
1689 		printf("CPSW_CPDMA_TX%d_CP=0x%x\n",
1690 		    txchan, cpsw_read_4(sc, CPSW_CPDMA_TX_CP(txchan)));
1691 		cpsw_dump_queue(sc, &sc->tx.active);
1692 	}
1693 
1694 	switch (rxerr) {
1695 	case 0: break;
1696 	case 2:	printf("Ownership bit not set on RX channel %d\n", rxchan);
1697 		break;
1698 	case 4:	printf("Zero Buffer Pointer on RX channel %d\n", rxchan);
1699 		break;
1700 	case 5:	printf("Zero Buffer Length on RX channel %d\n", rxchan);
1701 		break;
1702 	case 6:	printf("Buffer offset too big on RX channel %d\n", rxchan);
1703 		break;
1704 	default: printf("Unknown RX error on RX channel %d\n", rxchan);
1705 		break;
1706 	}
1707 
1708 	if (rxerr != 0) {
1709 		printf("CPSW_CPDMA_RX%d_HDP=0x%x\n",
1710 		    rxchan, cpsw_read_4(sc,CPSW_CPDMA_RX_HDP(rxchan)));
1711 		printf("CPSW_CPDMA_RX%d_CP=0x%x\n",
1712 		    rxchan, cpsw_read_4(sc, CPSW_CPDMA_RX_CP(rxchan)));
1713 		cpsw_dump_queue(sc, &sc->rx.active);
1714 	}
1715 
1716 	printf("\nALE Table\n");
1717 	cpsw_ale_dump_table(sc);
1718 
1719 	// XXX do something useful here??
1720 	panic("CPSW HOST ERROR INTERRUPT");
1721 
1722 	// Suppress this interrupt in the future.
1723 	cpsw_write_4(sc, CPSW_CPDMA_DMA_INTMASK_CLEAR, intstat);
1724 	printf("XXX HOST ERROR INTERRUPT SUPPRESSED\n");
1725 	// The watchdog will probably reset the controller
1726 	// in a little while.  It will probably fail again.
1727 }
1728 
1729 static void
1730 cpsw_intr_misc(void *arg)
1731 {
1732 	struct cpsw_softc *sc = arg;
1733 	uint32_t stat = cpsw_read_4(sc, CPSW_WR_C_MISC_STAT(0));
1734 
1735 	if (stat & 16)
1736 		CPSW_DEBUGF(("Time sync event interrupt unimplemented"));
1737 	if (stat & 8)
1738 		cpsw_stats_collect(sc);
1739 	if (stat & 4)
1740 		cpsw_intr_misc_host_error(sc);
1741 	if (stat & 2)
1742 		CPSW_DEBUGF(("MDIO link change interrupt unimplemented"));
1743 	if (stat & 1)
1744 		CPSW_DEBUGF(("MDIO operation completed interrupt unimplemented"));
1745 	cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 3);
1746 }
1747 
1748 /*
1749  *
1750  * Periodic Checks and Watchdog.
1751  *
1752  */
1753 
1754 static void
1755 cpsw_tick(void *msc)
1756 {
1757 	struct cpsw_softc *sc = msc;
1758 
1759 	/* Check for TX timeout */
1760 	cpsw_tx_watchdog(sc);
1761 
1762 	/* Check for media type change */
1763 	mii_tick(sc->mii);
1764 	if(sc->cpsw_media_status != sc->mii->mii_media.ifm_media) {
1765 		printf("%s: media type changed (ifm_media=%x)\n", __func__,
1766 			sc->mii->mii_media.ifm_media);
1767 		cpsw_ifmedia_upd(sc->ifp);
1768 	}
1769 
1770 	/* Schedule another timeout one second from now */
1771 	callout_reset(&sc->watchdog.callout, hz, cpsw_tick, sc);
1772 }
1773 
1774 static void
1775 cpsw_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1776 {
1777 	struct cpsw_softc *sc = ifp->if_softc;
1778 	struct mii_data *mii;
1779 
1780 	CPSW_DEBUGF((""));
1781 	CPSW_TX_LOCK(sc);
1782 
1783 	mii = sc->mii;
1784 	mii_pollstat(mii);
1785 
1786 	ifmr->ifm_active = mii->mii_media_active;
1787 	ifmr->ifm_status = mii->mii_media_status;
1788 
1789 	CPSW_TX_UNLOCK(sc);
1790 }
1791 
1792 static int
1793 cpsw_ifmedia_upd(struct ifnet *ifp)
1794 {
1795 	struct cpsw_softc *sc = ifp->if_softc;
1796 
1797 	CPSW_DEBUGF((""));
1798 	if (ifp->if_flags & IFF_UP) {
1799 		CPSW_GLOBAL_LOCK(sc);
1800 		sc->cpsw_media_status = sc->mii->mii_media.ifm_media;
1801 		mii_mediachg(sc->mii);
1802 		cpsw_init_locked(sc);
1803 		CPSW_GLOBAL_UNLOCK(sc);
1804 	}
1805 
1806 	return (0);
1807 }
1808 
1809 static void
1810 cpsw_tx_watchdog_full_reset(struct cpsw_softc *sc)
1811 {
1812 	cpsw_debugf_head("CPSW watchdog");
1813 	if_printf(sc->ifp, "watchdog timeout\n");
1814 	cpsw_shutdown_locked(sc);
1815 	cpsw_init_locked(sc);
1816 }
1817 
1818 static void
1819 cpsw_tx_watchdog(struct cpsw_softc *sc)
1820 {
1821 	struct ifnet *ifp = sc->ifp;
1822 
1823 	CPSW_GLOBAL_LOCK(sc);
1824 	if (sc->tx.active_queue_len == 0 || (ifp->if_flags & IFF_UP) == 0 ||
1825 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || !sc->tx.running) {
1826 		sc->watchdog.timer = 0; /* Nothing to do. */
1827 	} else if (sc->tx.queue_removes > sc->tx.queue_removes_at_last_tick) {
1828 		sc->watchdog.timer = 0;  /* Stuff done while we weren't looking. */
1829 	} else if (cpsw_tx_dequeue(sc) > 0) {
1830 		sc->watchdog.timer = 0;  /* We just did something. */
1831 	} else {
1832 		/* There was something to do but it didn't get done. */
1833 		++sc->watchdog.timer;
1834 		if (sc->watchdog.timer > 2) {
1835 			sc->watchdog.timer = 0;
1836 			++ifp->if_oerrors;
1837 			++sc->watchdog.resets;
1838 			cpsw_tx_watchdog_full_reset(sc);
1839 		}
1840 	}
1841 	sc->tx.queue_removes_at_last_tick = sc->tx.queue_removes;
1842 	CPSW_GLOBAL_UNLOCK(sc);
1843 }
1844 
1845 /*
1846  *
1847  * ALE support routines.
1848  *
1849  */
1850 
1851 static void
1852 cpsw_ale_read_entry(struct cpsw_softc *sc, uint16_t idx, uint32_t *ale_entry)
1853 {
1854 	cpsw_write_4(sc, CPSW_ALE_TBLCTL, idx & 1023);
1855 	ale_entry[0] = cpsw_read_4(sc, CPSW_ALE_TBLW0);
1856 	ale_entry[1] = cpsw_read_4(sc, CPSW_ALE_TBLW1);
1857 	ale_entry[2] = cpsw_read_4(sc, CPSW_ALE_TBLW2);
1858 }
1859 
1860 static void
1861 cpsw_ale_write_entry(struct cpsw_softc *sc, uint16_t idx, uint32_t *ale_entry)
1862 {
1863 	cpsw_write_4(sc, CPSW_ALE_TBLW0, ale_entry[0]);
1864 	cpsw_write_4(sc, CPSW_ALE_TBLW1, ale_entry[1]);
1865 	cpsw_write_4(sc, CPSW_ALE_TBLW2, ale_entry[2]);
1866 	cpsw_write_4(sc, CPSW_ALE_TBLCTL, 1 << 31 | (idx & 1023));
1867 }
1868 
1869 static int
1870 cpsw_ale_remove_all_mc_entries(struct cpsw_softc *sc)
1871 {
1872 	int i;
1873 	uint32_t ale_entry[3];
1874 
1875 	/* First two entries are link address and broadcast. */
1876 	for (i = 2; i < CPSW_MAX_ALE_ENTRIES; i++) {
1877 		cpsw_ale_read_entry(sc, i, ale_entry);
1878 		if (((ale_entry[1] >> 28) & 3) == 1 && /* Address entry */
1879 		    ((ale_entry[1] >> 8) & 1) == 1) { /* MCast link addr */
1880 			ale_entry[0] = ale_entry[1] = ale_entry[2] = 0;
1881 			cpsw_ale_write_entry(sc, i, ale_entry);
1882 		}
1883 	}
1884 	return CPSW_MAX_ALE_ENTRIES;
1885 }
1886 
1887 static int
1888 cpsw_ale_mc_entry_set(struct cpsw_softc *sc, uint8_t portmap, uint8_t *mac)
1889 {
1890 	int free_index = -1, matching_index = -1, i;
1891 	uint32_t ale_entry[3];
1892 
1893 	/* Find a matching entry or a free entry. */
1894 	for (i = 0; i < CPSW_MAX_ALE_ENTRIES; i++) {
1895 		cpsw_ale_read_entry(sc, i, ale_entry);
1896 
1897 		/* Entry Type[61:60] is 0 for free entry */
1898 		if (free_index < 0 && ((ale_entry[1] >> 28) & 3) == 0) {
1899 			free_index = i;
1900 		}
1901 
1902 		if ((((ale_entry[1] >> 8) & 0xFF) == mac[0]) &&
1903 		    (((ale_entry[1] >> 0) & 0xFF) == mac[1]) &&
1904 		    (((ale_entry[0] >>24) & 0xFF) == mac[2]) &&
1905 		    (((ale_entry[0] >>16) & 0xFF) == mac[3]) &&
1906 		    (((ale_entry[0] >> 8) & 0xFF) == mac[4]) &&
1907 		    (((ale_entry[0] >> 0) & 0xFF) == mac[5])) {
1908 			matching_index = i;
1909 			break;
1910 		}
1911 	}
1912 
1913 	if (matching_index < 0) {
1914 		if (free_index < 0)
1915 			return (ENOMEM);
1916 		i = free_index;
1917 	}
1918 
1919 	/* Set MAC address */
1920 	ale_entry[0] = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
1921 	ale_entry[1] = mac[0] << 8 | mac[1];
1922 
1923 	/* Entry type[61:60] is addr entry(1), Mcast fwd state[63:62] is fw(3)*/
1924 	ale_entry[1] |= 0xd0 << 24;
1925 
1926 	/* Set portmask [68:66] */
1927 	ale_entry[2] = (portmap & 7) << 2;
1928 
1929 	cpsw_ale_write_entry(sc, i, ale_entry);
1930 
1931 	return 0;
1932 }
1933 
1934 static void
1935 cpsw_ale_dump_table(struct cpsw_softc *sc) {
1936 	int i;
1937 	uint32_t ale_entry[3];
1938 	for (i = 0; i < CPSW_MAX_ALE_ENTRIES; i++) {
1939 		cpsw_ale_read_entry(sc, i, ale_entry);
1940 		if (ale_entry[0] || ale_entry[1] || ale_entry[2]) {
1941 			printf("ALE[%4u] %08x %08x %08x ", i, ale_entry[0],
1942 				ale_entry[1], ale_entry[2]);
1943 			printf("mac: %02x:%02x:%02x:%02x:%02x:%02x ",
1944 				(ale_entry[1] >> 8) & 0xFF,
1945 				(ale_entry[1] >> 0) & 0xFF,
1946 				(ale_entry[0] >>24) & 0xFF,
1947 				(ale_entry[0] >>16) & 0xFF,
1948 				(ale_entry[0] >> 8) & 0xFF,
1949 				(ale_entry[0] >> 0) & 0xFF);
1950 			printf(((ale_entry[1] >> 8) & 1) ? "mcast " : "ucast ");
1951 			printf("type: %u ", (ale_entry[1] >> 28) & 3);
1952 			printf("port: %u ", (ale_entry[2] >> 2) & 7);
1953 			printf("\n");
1954 		}
1955 	}
1956 	printf("\n");
1957 }
1958 
1959 static int
1960 cpsw_ale_update_addresses(struct cpsw_softc *sc, int purge)
1961 {
1962 	uint8_t *mac;
1963 	uint32_t ale_entry[3];
1964 	struct ifnet *ifp = sc->ifp;
1965 	struct ifmultiaddr *ifma;
1966 	int i;
1967 
1968 	/* Route incoming packets for our MAC address to Port 0 (host). */
1969 	/* For simplicity, keep this entry at table index 0 in the ALE. */
1970         if_addr_rlock(ifp);
1971 	mac = LLADDR((struct sockaddr_dl *)ifp->if_addr->ifa_addr);
1972 	ale_entry[0] = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
1973 	ale_entry[1] = 0x10 << 24 | mac[0] << 8 | mac[1]; /* addr entry + mac */
1974 	ale_entry[2] = 0; /* port = 0 */
1975 	cpsw_ale_write_entry(sc, 0, ale_entry);
1976 
1977 	/* Set outgoing MAC Address for Ports 1 and 2. */
1978 	for (i = 1; i < 3; ++i) {
1979 		cpsw_write_4(sc, CPSW_PORT_P_SA_HI(i),
1980 		    mac[3] << 24 | mac[2] << 16 | mac[1] << 8 | mac[0]);
1981 		cpsw_write_4(sc, CPSW_PORT_P_SA_LO(i),
1982 		    mac[5] << 8 | mac[4]);
1983 	}
1984         if_addr_runlock(ifp);
1985 
1986 	/* Keep the broadcast address at table entry 1. */
1987 	ale_entry[0] = 0xffffffff; /* Lower 32 bits of MAC */
1988 	ale_entry[1] = 0xd000ffff; /* FW (3 << 30), Addr entry (1 << 24), upper 16 bits of Mac */
1989 	ale_entry[2] = 0x0000001c; /* Forward to all ports */
1990 	cpsw_ale_write_entry(sc, 1, ale_entry);
1991 
1992 	/* SIOCDELMULTI doesn't specify the particular address
1993 	   being removed, so we have to remove all and rebuild. */
1994 	if (purge)
1995 		cpsw_ale_remove_all_mc_entries(sc);
1996 
1997         /* Set other multicast addrs desired. */
1998         if_maddr_rlock(ifp);
1999         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2000                 if (ifma->ifma_addr->sa_family != AF_LINK)
2001                         continue;
2002 		cpsw_ale_mc_entry_set(sc, 7,
2003 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
2004         }
2005         if_maddr_runlock(ifp);
2006 
2007 	return (0);
2008 }
2009 
2010 /*
2011  *
2012  * Statistics and Sysctls.
2013  *
2014  */
2015 
2016 #if 0
2017 static void
2018 cpsw_stats_dump(struct cpsw_softc *sc)
2019 {
2020 	int i;
2021 	uint32_t r;
2022 
2023 	for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
2024 		r = cpsw_read_4(sc, CPSW_STATS_OFFSET +
2025 		    cpsw_stat_sysctls[i].reg);
2026 		CPSW_DEBUGF(("%s: %ju + %u = %ju", cpsw_stat_sysctls[i].oid,
2027 			     (intmax_t)sc->shadow_stats[i], r,
2028 			     (intmax_t)sc->shadow_stats[i] + r));
2029 	}
2030 }
2031 #endif
2032 
2033 static void
2034 cpsw_stats_collect(struct cpsw_softc *sc)
2035 {
2036 	int i;
2037 	uint32_t r;
2038 
2039 	CPSW_DEBUGF(("Controller shadow statistics updated."));
2040 
2041 	for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
2042 		r = cpsw_read_4(sc, CPSW_STATS_OFFSET +
2043 		    cpsw_stat_sysctls[i].reg);
2044 		sc->shadow_stats[i] += r;
2045 		cpsw_write_4(sc, CPSW_STATS_OFFSET + cpsw_stat_sysctls[i].reg, r);
2046 	}
2047 }
2048 
2049 static int
2050 cpsw_stats_sysctl(SYSCTL_HANDLER_ARGS)
2051 {
2052 	struct cpsw_softc *sc;
2053 	struct cpsw_stat *stat;
2054 	uint64_t result;
2055 
2056 	sc = (struct cpsw_softc *)arg1;
2057 	stat = &cpsw_stat_sysctls[oidp->oid_number];
2058 	result = sc->shadow_stats[oidp->oid_number];
2059 	result += cpsw_read_4(sc, CPSW_STATS_OFFSET + stat->reg);
2060 	return (sysctl_handle_64(oidp, &result, 0, req));
2061 }
2062 
2063 static int
2064 cpsw_stat_attached(SYSCTL_HANDLER_ARGS)
2065 {
2066 	struct cpsw_softc *sc;
2067 	struct bintime t;
2068 	unsigned result;
2069 
2070 	sc = (struct cpsw_softc *)arg1;
2071 	getbinuptime(&t);
2072 	bintime_sub(&t, &sc->attach_uptime);
2073 	result = t.sec;
2074 	return (sysctl_handle_int(oidp, &result, 0, req));
2075 }
2076 
2077 static int
2078 cpsw_stat_uptime(SYSCTL_HANDLER_ARGS)
2079 {
2080 	struct cpsw_softc *sc;
2081 	struct bintime t;
2082 	unsigned result;
2083 
2084 	sc = (struct cpsw_softc *)arg1;
2085 	if (sc->ifp->if_drv_flags & IFF_DRV_RUNNING) {
2086 		getbinuptime(&t);
2087 		bintime_sub(&t, &sc->init_uptime);
2088 		result = t.sec;
2089 	} else
2090 		result = 0;
2091 	return (sysctl_handle_int(oidp, &result, 0, req));
2092 }
2093 
2094 static void
2095 cpsw_add_queue_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *node, struct cpsw_queue *queue)
2096 {
2097 	struct sysctl_oid_list *parent;
2098 
2099 	parent = SYSCTL_CHILDREN(node);
2100 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "totalBuffers",
2101 	    CTLFLAG_RD, &queue->queue_slots, 0,
2102 	    "Total buffers currently assigned to this queue");
2103 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "activeBuffers",
2104 	    CTLFLAG_RD, &queue->active_queue_len, 0,
2105 	    "Buffers currently registered with hardware controller");
2106 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "maxActiveBuffers",
2107 	    CTLFLAG_RD, &queue->max_active_queue_len, 0,
2108 	    "Max value of activeBuffers since last driver reset");
2109 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "availBuffers",
2110 	    CTLFLAG_RD, &queue->avail_queue_len, 0,
2111 	    "Buffers allocated to this queue but not currently "
2112 	    "registered with hardware controller");
2113 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "maxAvailBuffers",
2114 	    CTLFLAG_RD, &queue->max_avail_queue_len, 0,
2115 	    "Max value of availBuffers since last driver reset");
2116 	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "totalEnqueued",
2117 	    CTLFLAG_RD, &queue->queue_adds, 0,
2118 	    "Total buffers added to queue");
2119 	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "totalDequeued",
2120 	    CTLFLAG_RD, &queue->queue_removes, 0,
2121 	    "Total buffers removed from queue");
2122 	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "longestChain",
2123 	    CTLFLAG_RD, &queue->longest_chain, 0,
2124 	    "Max buffers used for a single packet");
2125 }
2126 
2127 static void
2128 cpsw_add_watchdog_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *node, struct cpsw_softc *sc)
2129 {
2130 	struct sysctl_oid_list *parent;
2131 
2132 	parent = SYSCTL_CHILDREN(node);
2133 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "resets",
2134 	    CTLFLAG_RD, &sc->watchdog.resets, 0,
2135 	    "Total number of watchdog resets");
2136 }
2137 
2138 static void
2139 cpsw_add_sysctls(struct cpsw_softc *sc)
2140 {
2141 	struct sysctl_ctx_list *ctx;
2142 	struct sysctl_oid *stats_node, *queue_node, *node;
2143 	struct sysctl_oid_list *parent, *stats_parent, *queue_parent;
2144 	int i;
2145 
2146 	ctx = device_get_sysctl_ctx(sc->dev);
2147 	parent = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
2148 
2149 	SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, "attachedSecs",
2150 	    CTLTYPE_UINT | CTLFLAG_RD, sc, 0, cpsw_stat_attached, "IU",
2151 	    "Time since driver attach");
2152 
2153 	SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, "uptime",
2154 	    CTLTYPE_UINT | CTLFLAG_RD, sc, 0, cpsw_stat_uptime, "IU",
2155 	    "Seconds since driver init");
2156 
2157 	stats_node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats",
2158 				     CTLFLAG_RD, NULL, "CPSW Statistics");
2159 	stats_parent = SYSCTL_CHILDREN(stats_node);
2160 	for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
2161 		SYSCTL_ADD_PROC(ctx, stats_parent, i,
2162 				cpsw_stat_sysctls[i].oid,
2163 				CTLTYPE_U64 | CTLFLAG_RD, sc, 0,
2164 				cpsw_stats_sysctl, "IU",
2165 				cpsw_stat_sysctls[i].oid);
2166 	}
2167 
2168 	queue_node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "queue",
2169 	    CTLFLAG_RD, NULL, "CPSW Queue Statistics");
2170 	queue_parent = SYSCTL_CHILDREN(queue_node);
2171 
2172 	node = SYSCTL_ADD_NODE(ctx, queue_parent, OID_AUTO, "tx",
2173 	    CTLFLAG_RD, NULL, "TX Queue Statistics");
2174 	cpsw_add_queue_sysctls(ctx, node, &sc->tx);
2175 
2176 	node = SYSCTL_ADD_NODE(ctx, queue_parent, OID_AUTO, "rx",
2177 	    CTLFLAG_RD, NULL, "RX Queue Statistics");
2178 	cpsw_add_queue_sysctls(ctx, node, &sc->rx);
2179 
2180 	node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "watchdog",
2181 	    CTLFLAG_RD, NULL, "Watchdog Statistics");
2182 	cpsw_add_watchdog_sysctls(ctx, node, sc);
2183 }
2184 
2185