xref: /freebsd/sys/arm64/arm64/busdma_bounce.c (revision 1f474190)
1 /*-
2  * Copyright (c) 1997, 1998 Justin T. Gibbs.
3  * Copyright (c) 2015-2016 The FreeBSD Foundation
4  * All rights reserved.
5  *
6  * Portions of this software were developed by Andrew Turner
7  * under sponsorship of the FreeBSD Foundation.
8  *
9  * Portions of this software were developed by Semihalf
10  * under sponsorship of the FreeBSD Foundation.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions, and the following disclaimer,
17  *    without modification, immediately at the beginning of the file.
18  * 2. The name of the author may not be used to endorse or promote products
19  *    derived from this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
25  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/malloc.h>
40 #include <sys/bus.h>
41 #include <sys/interrupt.h>
42 #include <sys/kernel.h>
43 #include <sys/ktr.h>
44 #include <sys/lock.h>
45 #include <sys/proc.h>
46 #include <sys/memdesc.h>
47 #include <sys/mutex.h>
48 #include <sys/sysctl.h>
49 #include <sys/uio.h>
50 
51 #include <vm/vm.h>
52 #include <vm/vm_extern.h>
53 #include <vm/vm_kern.h>
54 #include <vm/vm_page.h>
55 #include <vm/vm_map.h>
56 
57 #include <machine/atomic.h>
58 #include <machine/bus.h>
59 #include <machine/md_var.h>
60 #include <arm64/include/bus_dma_impl.h>
61 
62 #define MAX_BPAGES 4096
63 
64 enum {
65 	BF_COULD_BOUNCE		= 0x01,
66 	BF_MIN_ALLOC_COMP	= 0x02,
67 	BF_KMEM_ALLOC		= 0x04,
68 	BF_COHERENT		= 0x10,
69 };
70 
71 struct bounce_zone;
72 
73 struct bus_dma_tag {
74 	struct bus_dma_tag_common common;
75 	size_t			alloc_size;
76 	size_t			alloc_alignment;
77 	int			map_count;
78 	int			bounce_flags;
79 	bus_dma_segment_t	*segments;
80 	struct bounce_zone	*bounce_zone;
81 };
82 
83 struct bounce_page {
84 	vm_offset_t	vaddr;		/* kva of bounce buffer */
85 	bus_addr_t	busaddr;	/* Physical address */
86 	vm_offset_t	datavaddr;	/* kva of client data */
87 	vm_page_t	datapage;	/* physical page of client data */
88 	vm_offset_t	dataoffs;	/* page offset of client data */
89 	bus_size_t	datacount;	/* client data count */
90 	STAILQ_ENTRY(bounce_page) links;
91 };
92 
93 int busdma_swi_pending;
94 
95 struct bounce_zone {
96 	STAILQ_ENTRY(bounce_zone) links;
97 	STAILQ_HEAD(bp_list, bounce_page) bounce_page_list;
98 	int		total_bpages;
99 	int		free_bpages;
100 	int		reserved_bpages;
101 	int		active_bpages;
102 	int		total_bounced;
103 	int		total_deferred;
104 	int		map_count;
105 	bus_size_t	alignment;
106 	bus_addr_t	lowaddr;
107 	char		zoneid[8];
108 	char		lowaddrid[20];
109 	struct sysctl_ctx_list sysctl_tree;
110 	struct sysctl_oid *sysctl_tree_top;
111 };
112 
113 static struct mtx bounce_lock;
114 static int total_bpages;
115 static int busdma_zonecount;
116 static STAILQ_HEAD(, bounce_zone) bounce_zone_list;
117 
118 static SYSCTL_NODE(_hw, OID_AUTO, busdma, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
119     "Busdma parameters");
120 SYSCTL_INT(_hw_busdma, OID_AUTO, total_bpages, CTLFLAG_RD, &total_bpages, 0,
121 	   "Total bounce pages");
122 
123 struct sync_list {
124 	vm_offset_t	vaddr;		/* kva of client data */
125 	bus_addr_t	paddr;		/* physical address */
126 	vm_page_t	pages;		/* starting page of client data */
127 	bus_size_t	datacount;	/* client data count */
128 };
129 
130 struct bus_dmamap {
131 	struct bp_list	       bpages;
132 	int		       pagesneeded;
133 	int		       pagesreserved;
134 	bus_dma_tag_t	       dmat;
135 	struct memdesc	       mem;
136 	bus_dmamap_callback_t *callback;
137 	void		      *callback_arg;
138 	STAILQ_ENTRY(bus_dmamap) links;
139 	u_int			flags;
140 #define	DMAMAP_COHERENT		(1 << 0)
141 #define	DMAMAP_FROM_DMAMEM	(1 << 1)
142 #define	DMAMAP_MBUF		(1 << 2)
143 	int			sync_count;
144 	struct sync_list	slist[];
145 };
146 
147 static STAILQ_HEAD(, bus_dmamap) bounce_map_waitinglist;
148 static STAILQ_HEAD(, bus_dmamap) bounce_map_callbacklist;
149 
150 static void init_bounce_pages(void *dummy);
151 static int alloc_bounce_zone(bus_dma_tag_t dmat);
152 static int alloc_bounce_pages(bus_dma_tag_t dmat, u_int numpages);
153 static int reserve_bounce_pages(bus_dma_tag_t dmat, bus_dmamap_t map,
154     int commit);
155 static bus_addr_t add_bounce_page(bus_dma_tag_t dmat, bus_dmamap_t map,
156     vm_offset_t vaddr, bus_addr_t addr, bus_size_t size);
157 static void free_bounce_page(bus_dma_tag_t dmat, struct bounce_page *bpage);
158 int run_filter(bus_dma_tag_t dmat, bus_addr_t paddr);
159 static bool _bus_dmamap_pagesneeded(bus_dma_tag_t dmat, bus_dmamap_t map,
160     vm_paddr_t buf, bus_size_t buflen, int *pagesneeded);
161 static void _bus_dmamap_count_pages(bus_dma_tag_t dmat, bus_dmamap_t map,
162     pmap_t pmap, void *buf, bus_size_t buflen, int flags);
163 static void _bus_dmamap_count_phys(bus_dma_tag_t dmat, bus_dmamap_t map,
164     vm_paddr_t buf, bus_size_t buflen, int flags);
165 static int _bus_dmamap_reserve_pages(bus_dma_tag_t dmat, bus_dmamap_t map,
166     int flags);
167 
168 /*
169  * Return true if the DMA should bounce because the start or end does not fall
170  * on a cacheline boundary (which would require a partial cacheline flush).
171  * COHERENT memory doesn't trigger cacheline flushes.  Memory allocated by
172  * bus_dmamem_alloc() is always aligned to cacheline boundaries, and there's a
173  * strict rule that such memory cannot be accessed by the CPU while DMA is in
174  * progress (or by multiple DMA engines at once), so that it's always safe to do
175  * full cacheline flushes even if that affects memory outside the range of a
176  * given DMA operation that doesn't involve the full allocated buffer.  If we're
177  * mapping an mbuf, that follows the same rules as a buffer we allocated.
178  */
179 static bool
180 cacheline_bounce(bus_dma_tag_t dmat, bus_dmamap_t map, bus_addr_t paddr,
181     bus_size_t size)
182 {
183 
184 #define	DMAMAP_CACHELINE_FLAGS						\
185     (DMAMAP_FROM_DMAMEM | DMAMAP_COHERENT | DMAMAP_MBUF)
186 	if ((dmat->bounce_flags & BF_COHERENT) != 0)
187 		return (false);
188 	if (map != NULL && (map->flags & DMAMAP_CACHELINE_FLAGS) != 0)
189 		return (false);
190 	return (((paddr | size) & (dcache_line_size - 1)) != 0);
191 #undef DMAMAP_CACHELINE_FLAGS
192 }
193 
194 /*
195  * Return true if the given address does not fall on the alignment boundary.
196  */
197 static bool
198 alignment_bounce(bus_dma_tag_t dmat, bus_addr_t addr)
199 {
200 
201 	return ((addr & (dmat->common.alignment - 1)) != 0);
202 }
203 
204 static bool
205 might_bounce(bus_dma_tag_t dmat, bus_dmamap_t map, bus_addr_t paddr,
206     bus_size_t size)
207 {
208 
209 	if ((dmat->bounce_flags & BF_COULD_BOUNCE) != 0)
210 		return (true);
211 
212 	if (cacheline_bounce(dmat, map, paddr, size))
213 		return (true);
214 
215 	if (alignment_bounce(dmat, paddr))
216 		return (true);
217 
218 	return (false);
219 }
220 
221 static bool
222 must_bounce(bus_dma_tag_t dmat, bus_dmamap_t map, bus_addr_t paddr,
223     bus_size_t size)
224 {
225 
226 	if (cacheline_bounce(dmat, map, paddr, size))
227 		return (true);
228 
229 	if (alignment_bounce(dmat, paddr))
230 		return (true);
231 
232 	if ((dmat->bounce_flags & BF_COULD_BOUNCE) != 0 &&
233 	    bus_dma_run_filter(&dmat->common, paddr))
234 		return (true);
235 
236 	return (false);
237 }
238 
239 /*
240  * Allocate a device specific dma_tag.
241  */
242 static int
243 bounce_bus_dma_tag_create(bus_dma_tag_t parent, bus_size_t alignment,
244     bus_addr_t boundary, bus_addr_t lowaddr, bus_addr_t highaddr,
245     bus_dma_filter_t *filter, void *filterarg, bus_size_t maxsize,
246     int nsegments, bus_size_t maxsegsz, int flags, bus_dma_lock_t *lockfunc,
247     void *lockfuncarg, bus_dma_tag_t *dmat)
248 {
249 	bus_dma_tag_t newtag;
250 	int error;
251 
252 	*dmat = NULL;
253 	error = common_bus_dma_tag_create(parent != NULL ? &parent->common :
254 	    NULL, alignment, boundary, lowaddr, highaddr, filter, filterarg,
255 	    maxsize, nsegments, maxsegsz, flags, lockfunc, lockfuncarg,
256 	    sizeof (struct bus_dma_tag), (void **)&newtag);
257 	if (error != 0)
258 		return (error);
259 
260 	newtag->common.impl = &bus_dma_bounce_impl;
261 	newtag->map_count = 0;
262 	newtag->segments = NULL;
263 
264 	if ((flags & BUS_DMA_COHERENT) != 0) {
265 		newtag->bounce_flags |= BF_COHERENT;
266 		newtag->alloc_alignment = newtag->common.alignment;
267 		newtag->alloc_size = newtag->common.maxsize;
268 	} else {
269 		/*
270 		 * Ensure the buffer is aligned to a cacheline when allocating
271 		 * a non-coherent buffer. This is so we don't have any data
272 		 * that another CPU may be accessing around DMA buffer
273 		 * causing the cache to become dirty.
274 		 */
275 		newtag->alloc_alignment = MAX(newtag->common.alignment,
276 		    dcache_line_size);
277 		newtag->alloc_size = roundup2(newtag->common.maxsize,
278 		    dcache_line_size);
279 	}
280 
281 	if (parent != NULL) {
282 		if ((newtag->common.filter != NULL ||
283 		    (parent->bounce_flags & BF_COULD_BOUNCE) != 0))
284 			newtag->bounce_flags |= BF_COULD_BOUNCE;
285 
286 		/* Copy some flags from the parent */
287 		newtag->bounce_flags |= parent->bounce_flags & BF_COHERENT;
288 	}
289 
290 	if (newtag->common.lowaddr < ptoa((vm_paddr_t)Maxmem) ||
291 	    newtag->common.alignment > 1)
292 		newtag->bounce_flags |= BF_COULD_BOUNCE;
293 
294 	if ((flags & BUS_DMA_ALLOCNOW) != 0) {
295 		struct bounce_zone *bz;
296 
297 		/* Must bounce */
298 		if ((error = alloc_bounce_zone(newtag)) != 0) {
299 			free(newtag, M_DEVBUF);
300 			return (error);
301 		}
302 		bz = newtag->bounce_zone;
303 
304 		if (ptoa(bz->total_bpages) < maxsize) {
305 			int pages;
306 
307 			pages = atop(round_page(maxsize)) - bz->total_bpages;
308 
309 			/* Add pages to our bounce pool */
310 			if (alloc_bounce_pages(newtag, pages) < pages)
311 				error = ENOMEM;
312 		}
313 		/* Performed initial allocation */
314 		newtag->bounce_flags |= BF_MIN_ALLOC_COMP;
315 	} else
316 		error = 0;
317 
318 	if (error != 0)
319 		free(newtag, M_DEVBUF);
320 	else
321 		*dmat = newtag;
322 	CTR4(KTR_BUSDMA, "%s returned tag %p tag flags 0x%x error %d",
323 	    __func__, newtag, (newtag != NULL ? newtag->common.flags : 0),
324 	    error);
325 	return (error);
326 }
327 
328 static int
329 bounce_bus_dma_tag_destroy(bus_dma_tag_t dmat)
330 {
331 	bus_dma_tag_t dmat_copy, parent;
332 	int error;
333 
334 	error = 0;
335 	dmat_copy = dmat;
336 
337 	if (dmat != NULL) {
338 		if (dmat->map_count != 0) {
339 			error = EBUSY;
340 			goto out;
341 		}
342 		while (dmat != NULL) {
343 			parent = (bus_dma_tag_t)dmat->common.parent;
344 			atomic_subtract_int(&dmat->common.ref_count, 1);
345 			if (dmat->common.ref_count == 0) {
346 				if (dmat->segments != NULL)
347 					free(dmat->segments, M_DEVBUF);
348 				free(dmat, M_DEVBUF);
349 				/*
350 				 * Last reference count, so
351 				 * release our reference
352 				 * count on our parent.
353 				 */
354 				dmat = parent;
355 			} else
356 				dmat = NULL;
357 		}
358 	}
359 out:
360 	CTR3(KTR_BUSDMA, "%s tag %p error %d", __func__, dmat_copy, error);
361 	return (error);
362 }
363 
364 static bool
365 bounce_bus_dma_id_mapped(bus_dma_tag_t dmat, vm_paddr_t buf, bus_size_t buflen)
366 {
367 
368 	if (!might_bounce(dmat, NULL, buf, buflen))
369 		return (true);
370 	return (!_bus_dmamap_pagesneeded(dmat, NULL, buf, buflen, NULL));
371 }
372 
373 static bus_dmamap_t
374 alloc_dmamap(bus_dma_tag_t dmat, int flags)
375 {
376 	u_long mapsize;
377 	bus_dmamap_t map;
378 
379 	mapsize = sizeof(*map);
380 	mapsize += sizeof(struct sync_list) * dmat->common.nsegments;
381 	map = malloc(mapsize, M_DEVBUF, flags | M_ZERO);
382 	if (map == NULL)
383 		return (NULL);
384 
385 	/* Initialize the new map */
386 	STAILQ_INIT(&map->bpages);
387 
388 	return (map);
389 }
390 
391 /*
392  * Allocate a handle for mapping from kva/uva/physical
393  * address space into bus device space.
394  */
395 static int
396 bounce_bus_dmamap_create(bus_dma_tag_t dmat, int flags, bus_dmamap_t *mapp)
397 {
398 	struct bounce_zone *bz;
399 	int error, maxpages, pages;
400 
401 	error = 0;
402 
403 	if (dmat->segments == NULL) {
404 		dmat->segments = (bus_dma_segment_t *)malloc(
405 		    sizeof(bus_dma_segment_t) * dmat->common.nsegments,
406 		    M_DEVBUF, M_NOWAIT);
407 		if (dmat->segments == NULL) {
408 			CTR3(KTR_BUSDMA, "%s: tag %p error %d",
409 			    __func__, dmat, ENOMEM);
410 			return (ENOMEM);
411 		}
412 	}
413 
414 	*mapp = alloc_dmamap(dmat, M_NOWAIT);
415 	if (*mapp == NULL) {
416 		CTR3(KTR_BUSDMA, "%s: tag %p error %d",
417 		    __func__, dmat, ENOMEM);
418 		return (ENOMEM);
419 	}
420 
421 	/*
422 	 * Bouncing might be required if the driver asks for an active
423 	 * exclusion region, a data alignment that is stricter than 1, and/or
424 	 * an active address boundary.
425 	 */
426 	if (dmat->bounce_zone == NULL) {
427 		if ((error = alloc_bounce_zone(dmat)) != 0) {
428 			free(*mapp, M_DEVBUF);
429 			return (error);
430 		}
431 	}
432 	bz = dmat->bounce_zone;
433 
434 	/*
435 	 * Attempt to add pages to our pool on a per-instance
436 	 * basis up to a sane limit.
437 	 */
438 	if (dmat->common.alignment > 1)
439 		maxpages = MAX_BPAGES;
440 	else
441 		maxpages = MIN(MAX_BPAGES, Maxmem -
442 		    atop(dmat->common.lowaddr));
443 	if ((dmat->bounce_flags & BF_MIN_ALLOC_COMP) == 0 ||
444 	    (bz->map_count > 0 && bz->total_bpages < maxpages)) {
445 		pages = MAX(atop(dmat->common.maxsize), 1);
446 		pages = MIN(maxpages - bz->total_bpages, pages);
447 		pages = MAX(pages, 1);
448 		if (alloc_bounce_pages(dmat, pages) < pages)
449 			error = ENOMEM;
450 		if ((dmat->bounce_flags & BF_MIN_ALLOC_COMP) == 0) {
451 			if (error == 0) {
452 				dmat->bounce_flags |= BF_MIN_ALLOC_COMP;
453 			}
454 		} else
455 			error = 0;
456 	}
457 	bz->map_count++;
458 
459 	if (error == 0) {
460 		dmat->map_count++;
461 		if ((dmat->bounce_flags & BF_COHERENT) != 0)
462 			(*mapp)->flags |= DMAMAP_COHERENT;
463 	} else {
464 		free(*mapp, M_DEVBUF);
465 	}
466 	CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d",
467 	    __func__, dmat, dmat->common.flags, error);
468 	return (error);
469 }
470 
471 /*
472  * Destroy a handle for mapping from kva/uva/physical
473  * address space into bus device space.
474  */
475 static int
476 bounce_bus_dmamap_destroy(bus_dma_tag_t dmat, bus_dmamap_t map)
477 {
478 
479 	/* Check we are destroying the correct map type */
480 	if ((map->flags & DMAMAP_FROM_DMAMEM) != 0)
481 		panic("bounce_bus_dmamap_destroy: Invalid map freed\n");
482 
483 	if (STAILQ_FIRST(&map->bpages) != NULL || map->sync_count != 0) {
484 		CTR3(KTR_BUSDMA, "%s: tag %p error %d", __func__, dmat, EBUSY);
485 		return (EBUSY);
486 	}
487 	if (dmat->bounce_zone)
488 		dmat->bounce_zone->map_count--;
489 	free(map, M_DEVBUF);
490 	dmat->map_count--;
491 	CTR2(KTR_BUSDMA, "%s: tag %p error 0", __func__, dmat);
492 	return (0);
493 }
494 
495 /*
496  * Allocate a piece of memory that can be efficiently mapped into
497  * bus device space based on the constraints lited in the dma tag.
498  * A dmamap to for use with dmamap_load is also allocated.
499  */
500 static int
501 bounce_bus_dmamem_alloc(bus_dma_tag_t dmat, void** vaddr, int flags,
502     bus_dmamap_t *mapp)
503 {
504 	/*
505 	 * XXX ARM64TODO:
506 	 * This bus_dma implementation requires IO-Coherent architecutre.
507 	 * If IO-Coherency is not guaranteed, the BUS_DMA_COHERENT flag has
508 	 * to be implented using non-cacheable memory.
509 	 */
510 
511 	vm_memattr_t attr;
512 	int mflags;
513 
514 	if (flags & BUS_DMA_NOWAIT)
515 		mflags = M_NOWAIT;
516 	else
517 		mflags = M_WAITOK;
518 
519 	if (dmat->segments == NULL) {
520 		dmat->segments = (bus_dma_segment_t *)malloc(
521 		    sizeof(bus_dma_segment_t) * dmat->common.nsegments,
522 		    M_DEVBUF, mflags);
523 		if (dmat->segments == NULL) {
524 			CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d",
525 			    __func__, dmat, dmat->common.flags, ENOMEM);
526 			return (ENOMEM);
527 		}
528 	}
529 	if (flags & BUS_DMA_ZERO)
530 		mflags |= M_ZERO;
531 	if (flags & BUS_DMA_NOCACHE)
532 		attr = VM_MEMATTR_UNCACHEABLE;
533 	else if ((flags & BUS_DMA_COHERENT) != 0 &&
534 	    (dmat->bounce_flags & BF_COHERENT) == 0)
535 		/*
536 		 * If we have a non-coherent tag, and are trying to allocate
537 		 * a coherent block of memory it needs to be uncached.
538 		 */
539 		attr = VM_MEMATTR_UNCACHEABLE;
540 	else
541 		attr = VM_MEMATTR_DEFAULT;
542 
543 	/*
544 	 * Create the map, but don't set the could bounce flag as
545 	 * this allocation should never bounce;
546 	 */
547 	*mapp = alloc_dmamap(dmat, mflags);
548 	if (*mapp == NULL) {
549 		CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d",
550 		    __func__, dmat, dmat->common.flags, ENOMEM);
551 		return (ENOMEM);
552 	}
553 
554 	/*
555 	 * Mark the map as coherent if we used uncacheable memory or the
556 	 * tag was already marked as coherent.
557 	 */
558 	if (attr == VM_MEMATTR_UNCACHEABLE ||
559 	    (dmat->bounce_flags & BF_COHERENT) != 0)
560 		(*mapp)->flags |= DMAMAP_COHERENT;
561 
562 	(*mapp)->flags |= DMAMAP_FROM_DMAMEM;
563 
564 	/*
565 	 * Allocate the buffer from the malloc(9) allocator if...
566 	 *  - It's small enough to fit into a single power of two sized bucket.
567 	 *  - The alignment is less than or equal to the maximum size
568 	 *  - The low address requirement is fulfilled.
569 	 * else allocate non-contiguous pages if...
570 	 *  - The page count that could get allocated doesn't exceed
571 	 *    nsegments also when the maximum segment size is less
572 	 *    than PAGE_SIZE.
573 	 *  - The alignment constraint isn't larger than a page boundary.
574 	 *  - There are no boundary-crossing constraints.
575 	 * else allocate a block of contiguous pages because one or more of the
576 	 * constraints is something that only the contig allocator can fulfill.
577 	 *
578 	 * NOTE: The (dmat->common.alignment <= dmat->maxsize) check
579 	 * below is just a quick hack. The exact alignment guarantees
580 	 * of malloc(9) need to be nailed down, and the code below
581 	 * should be rewritten to take that into account.
582 	 *
583 	 * In the meantime warn the user if malloc gets it wrong.
584 	 */
585 	if ((dmat->alloc_size <= PAGE_SIZE) &&
586 	   (dmat->alloc_alignment <= dmat->alloc_size) &&
587 	    dmat->common.lowaddr >= ptoa((vm_paddr_t)Maxmem) &&
588 	    attr == VM_MEMATTR_DEFAULT) {
589 		*vaddr = malloc(dmat->alloc_size, M_DEVBUF, mflags);
590 	} else if (dmat->common.nsegments >=
591 	    howmany(dmat->alloc_size, MIN(dmat->common.maxsegsz, PAGE_SIZE)) &&
592 	    dmat->alloc_alignment <= PAGE_SIZE &&
593 	    (dmat->common.boundary % PAGE_SIZE) == 0) {
594 		/* Page-based multi-segment allocations allowed */
595 		*vaddr = (void *)kmem_alloc_attr(dmat->alloc_size, mflags,
596 		    0ul, dmat->common.lowaddr, attr);
597 		dmat->bounce_flags |= BF_KMEM_ALLOC;
598 	} else {
599 		*vaddr = (void *)kmem_alloc_contig(dmat->alloc_size, mflags,
600 		    0ul, dmat->common.lowaddr, dmat->alloc_alignment != 0 ?
601 		    dmat->alloc_alignment : 1ul, dmat->common.boundary, attr);
602 		dmat->bounce_flags |= BF_KMEM_ALLOC;
603 	}
604 	if (*vaddr == NULL) {
605 		CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d",
606 		    __func__, dmat, dmat->common.flags, ENOMEM);
607 		free(*mapp, M_DEVBUF);
608 		return (ENOMEM);
609 	} else if (vtophys(*vaddr) & (dmat->alloc_alignment - 1)) {
610 		printf("bus_dmamem_alloc failed to align memory properly.\n");
611 	}
612 	dmat->map_count++;
613 	CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d",
614 	    __func__, dmat, dmat->common.flags, 0);
615 	return (0);
616 }
617 
618 /*
619  * Free a piece of memory and it's allociated dmamap, that was allocated
620  * via bus_dmamem_alloc.  Make the same choice for free/contigfree.
621  */
622 static void
623 bounce_bus_dmamem_free(bus_dma_tag_t dmat, void *vaddr, bus_dmamap_t map)
624 {
625 
626 	/*
627 	 * Check the map came from bounce_bus_dmamem_alloc, so the map
628 	 * should be NULL and the BF_KMEM_ALLOC flag cleared if malloc()
629 	 * was used and set if kmem_alloc_contig() was used.
630 	 */
631 	if ((map->flags & DMAMAP_FROM_DMAMEM) == 0)
632 		panic("bus_dmamem_free: Invalid map freed\n");
633 	if ((dmat->bounce_flags & BF_KMEM_ALLOC) == 0)
634 		free(vaddr, M_DEVBUF);
635 	else
636 		kmem_free((vm_offset_t)vaddr, dmat->alloc_size);
637 	free(map, M_DEVBUF);
638 	dmat->map_count--;
639 	CTR3(KTR_BUSDMA, "%s: tag %p flags 0x%x", __func__, dmat,
640 	    dmat->bounce_flags);
641 }
642 
643 static bool
644 _bus_dmamap_pagesneeded(bus_dma_tag_t dmat, bus_dmamap_t map, vm_paddr_t buf,
645     bus_size_t buflen, int *pagesneeded)
646 {
647 	bus_addr_t curaddr;
648 	bus_size_t sgsize;
649 	int count;
650 
651 	/*
652 	 * Count the number of bounce pages needed in order to
653 	 * complete this transfer
654 	 */
655 	count = 0;
656 	curaddr = buf;
657 	while (buflen != 0) {
658 		sgsize = MIN(buflen, dmat->common.maxsegsz);
659 		if (must_bounce(dmat, map, curaddr, sgsize)) {
660 			sgsize = MIN(sgsize,
661 			    PAGE_SIZE - (curaddr & PAGE_MASK));
662 			if (pagesneeded == NULL)
663 				return (true);
664 			count++;
665 		}
666 		curaddr += sgsize;
667 		buflen -= sgsize;
668 	}
669 
670 	if (pagesneeded != NULL)
671 		*pagesneeded = count;
672 	return (count != 0);
673 }
674 
675 static void
676 _bus_dmamap_count_phys(bus_dma_tag_t dmat, bus_dmamap_t map, vm_paddr_t buf,
677     bus_size_t buflen, int flags)
678 {
679 
680 	if (map->pagesneeded == 0) {
681 		_bus_dmamap_pagesneeded(dmat, map, buf, buflen,
682 		    &map->pagesneeded);
683 		CTR1(KTR_BUSDMA, "pagesneeded= %d\n", map->pagesneeded);
684 	}
685 }
686 
687 static void
688 _bus_dmamap_count_pages(bus_dma_tag_t dmat, bus_dmamap_t map, pmap_t pmap,
689     void *buf, bus_size_t buflen, int flags)
690 {
691 	vm_offset_t vaddr;
692 	vm_offset_t vendaddr;
693 	bus_addr_t paddr;
694 	bus_size_t sg_len;
695 
696 	if (map->pagesneeded == 0) {
697 		CTR4(KTR_BUSDMA, "lowaddr= %d Maxmem= %d, boundary= %d, "
698 		    "alignment= %d", dmat->common.lowaddr,
699 		    ptoa((vm_paddr_t)Maxmem),
700 		    dmat->common.boundary, dmat->common.alignment);
701 		CTR2(KTR_BUSDMA, "map= %p, pagesneeded= %d", map,
702 		    map->pagesneeded);
703 		/*
704 		 * Count the number of bounce pages
705 		 * needed in order to complete this transfer
706 		 */
707 		vaddr = (vm_offset_t)buf;
708 		vendaddr = (vm_offset_t)buf + buflen;
709 
710 		while (vaddr < vendaddr) {
711 			sg_len = PAGE_SIZE - ((vm_offset_t)vaddr & PAGE_MASK);
712 			if (pmap == kernel_pmap)
713 				paddr = pmap_kextract(vaddr);
714 			else
715 				paddr = pmap_extract(pmap, vaddr);
716 			if (must_bounce(dmat, map, paddr,
717 			    min(vendaddr - vaddr, (PAGE_SIZE - ((vm_offset_t)vaddr &
718 			    PAGE_MASK)))) != 0) {
719 				sg_len = roundup2(sg_len,
720 				    dmat->common.alignment);
721 				map->pagesneeded++;
722 			}
723 			vaddr += sg_len;
724 		}
725 		CTR1(KTR_BUSDMA, "pagesneeded= %d\n", map->pagesneeded);
726 	}
727 }
728 
729 static int
730 _bus_dmamap_reserve_pages(bus_dma_tag_t dmat, bus_dmamap_t map, int flags)
731 {
732 
733 	/* Reserve Necessary Bounce Pages */
734 	mtx_lock(&bounce_lock);
735 	if (flags & BUS_DMA_NOWAIT) {
736 		if (reserve_bounce_pages(dmat, map, 0) != 0) {
737 			mtx_unlock(&bounce_lock);
738 			return (ENOMEM);
739 		}
740 	} else {
741 		if (reserve_bounce_pages(dmat, map, 1) != 0) {
742 			/* Queue us for resources */
743 			STAILQ_INSERT_TAIL(&bounce_map_waitinglist, map, links);
744 			mtx_unlock(&bounce_lock);
745 			return (EINPROGRESS);
746 		}
747 	}
748 	mtx_unlock(&bounce_lock);
749 
750 	return (0);
751 }
752 
753 /*
754  * Add a single contiguous physical range to the segment list.
755  */
756 static bus_size_t
757 _bus_dmamap_addseg(bus_dma_tag_t dmat, bus_dmamap_t map, bus_addr_t curaddr,
758     bus_size_t sgsize, bus_dma_segment_t *segs, int *segp)
759 {
760 	bus_addr_t baddr, bmask;
761 	int seg;
762 
763 	/*
764 	 * Make sure we don't cross any boundaries.
765 	 */
766 	bmask = ~(dmat->common.boundary - 1);
767 	if (dmat->common.boundary > 0) {
768 		baddr = (curaddr + dmat->common.boundary) & bmask;
769 		if (sgsize > (baddr - curaddr))
770 			sgsize = (baddr - curaddr);
771 	}
772 
773 	/*
774 	 * Insert chunk into a segment, coalescing with
775 	 * previous segment if possible.
776 	 */
777 	seg = *segp;
778 	if (seg == -1) {
779 		seg = 0;
780 		segs[seg].ds_addr = curaddr;
781 		segs[seg].ds_len = sgsize;
782 	} else {
783 		if (curaddr == segs[seg].ds_addr + segs[seg].ds_len &&
784 		    (segs[seg].ds_len + sgsize) <= dmat->common.maxsegsz &&
785 		    (dmat->common.boundary == 0 ||
786 		     (segs[seg].ds_addr & bmask) == (curaddr & bmask)))
787 			segs[seg].ds_len += sgsize;
788 		else {
789 			if (++seg >= dmat->common.nsegments)
790 				return (0);
791 			segs[seg].ds_addr = curaddr;
792 			segs[seg].ds_len = sgsize;
793 		}
794 	}
795 	*segp = seg;
796 	return (sgsize);
797 }
798 
799 /*
800  * Utility function to load a physical buffer.  segp contains
801  * the starting segment on entrace, and the ending segment on exit.
802  */
803 static int
804 bounce_bus_dmamap_load_phys(bus_dma_tag_t dmat, bus_dmamap_t map,
805     vm_paddr_t buf, bus_size_t buflen, int flags, bus_dma_segment_t *segs,
806     int *segp)
807 {
808 	struct sync_list *sl;
809 	bus_size_t sgsize;
810 	bus_addr_t curaddr, sl_end;
811 	int error;
812 
813 	if (segs == NULL)
814 		segs = dmat->segments;
815 
816 	if (might_bounce(dmat, map, (bus_addr_t)buf, buflen)) {
817 		_bus_dmamap_count_phys(dmat, map, buf, buflen, flags);
818 		if (map->pagesneeded != 0) {
819 			error = _bus_dmamap_reserve_pages(dmat, map, flags);
820 			if (error)
821 				return (error);
822 		}
823 	}
824 
825 	sl = map->slist + map->sync_count - 1;
826 	sl_end = 0;
827 
828 	while (buflen > 0) {
829 		curaddr = buf;
830 		sgsize = MIN(buflen, dmat->common.maxsegsz);
831 		if (map->pagesneeded != 0 &&
832 		    must_bounce(dmat, map, curaddr, sgsize)) {
833 			sgsize = MIN(sgsize, PAGE_SIZE - (curaddr & PAGE_MASK));
834 			curaddr = add_bounce_page(dmat, map, 0, curaddr,
835 			    sgsize);
836 		} else if ((map->flags & DMAMAP_COHERENT) == 0) {
837 			if (map->sync_count > 0)
838 				sl_end = sl->paddr + sl->datacount;
839 
840 			if (map->sync_count == 0 || curaddr != sl_end) {
841 				if (++map->sync_count > dmat->common.nsegments)
842 					break;
843 				sl++;
844 				sl->vaddr = 0;
845 				sl->paddr = curaddr;
846 				sl->datacount = sgsize;
847 				sl->pages = PHYS_TO_VM_PAGE(curaddr);
848 				KASSERT(sl->pages != NULL,
849 				    ("%s: page at PA:0x%08lx is not in "
850 				    "vm_page_array", __func__, curaddr));
851 			} else
852 				sl->datacount += sgsize;
853 		}
854 		sgsize = _bus_dmamap_addseg(dmat, map, curaddr, sgsize, segs,
855 		    segp);
856 		if (sgsize == 0)
857 			break;
858 		buf += sgsize;
859 		buflen -= sgsize;
860 	}
861 
862 	/*
863 	 * Did we fit?
864 	 */
865 	return (buflen != 0 ? EFBIG : 0); /* XXX better return value here? */
866 }
867 
868 /*
869  * Utility function to load a linear buffer.  segp contains
870  * the starting segment on entrace, and the ending segment on exit.
871  */
872 static int
873 bounce_bus_dmamap_load_buffer(bus_dma_tag_t dmat, bus_dmamap_t map, void *buf,
874     bus_size_t buflen, pmap_t pmap, int flags, bus_dma_segment_t *segs,
875     int *segp)
876 {
877 	struct sync_list *sl;
878 	bus_size_t sgsize, max_sgsize;
879 	bus_addr_t curaddr, sl_pend;
880 	vm_offset_t kvaddr, vaddr, sl_vend;
881 	int error;
882 
883 	if (segs == NULL)
884 		segs = dmat->segments;
885 
886 	if (flags & BUS_DMA_LOAD_MBUF)
887 		map->flags |= DMAMAP_MBUF;
888 
889 	if (might_bounce(dmat, map, (bus_addr_t)buf, buflen)) {
890 		_bus_dmamap_count_pages(dmat, map, pmap, buf, buflen, flags);
891 		if (map->pagesneeded != 0) {
892 			error = _bus_dmamap_reserve_pages(dmat, map, flags);
893 			if (error)
894 				return (error);
895 		}
896 	}
897 
898 	sl = map->slist + map->sync_count - 1;
899 	vaddr = (vm_offset_t)buf;
900 	sl_pend = 0;
901 	sl_vend = 0;
902 
903 	while (buflen > 0) {
904 		/*
905 		 * Get the physical address for this segment.
906 		 */
907 		if (pmap == kernel_pmap) {
908 			curaddr = pmap_kextract(vaddr);
909 			kvaddr = vaddr;
910 		} else {
911 			curaddr = pmap_extract(pmap, vaddr);
912 			kvaddr = 0;
913 		}
914 
915 		/*
916 		 * Compute the segment size, and adjust counts.
917 		 */
918 		max_sgsize = MIN(buflen, dmat->common.maxsegsz);
919 		sgsize = PAGE_SIZE - (curaddr & PAGE_MASK);
920 		if (map->pagesneeded != 0 &&
921 		    must_bounce(dmat, map, curaddr, sgsize)) {
922 			sgsize = roundup2(sgsize, dmat->common.alignment);
923 			sgsize = MIN(sgsize, max_sgsize);
924 			curaddr = add_bounce_page(dmat, map, kvaddr, curaddr,
925 			    sgsize);
926 		} else if ((map->flags & DMAMAP_COHERENT) == 0) {
927 			sgsize = MIN(sgsize, max_sgsize);
928 			if (map->sync_count > 0) {
929 				sl_pend = sl->paddr + sl->datacount;
930 				sl_vend = sl->vaddr + sl->datacount;
931 			}
932 
933 			if (map->sync_count == 0 ||
934 			    (kvaddr != 0 && kvaddr != sl_vend) ||
935 			    (curaddr != sl_pend)) {
936 				if (++map->sync_count > dmat->common.nsegments)
937 					goto cleanup;
938 				sl++;
939 				sl->vaddr = kvaddr;
940 				sl->paddr = curaddr;
941 				if (kvaddr != 0) {
942 					sl->pages = NULL;
943 				} else {
944 					sl->pages = PHYS_TO_VM_PAGE(curaddr);
945 					KASSERT(sl->pages != NULL,
946 					    ("%s: page at PA:0x%08lx is not "
947 					    "in vm_page_array", __func__,
948 					    curaddr));
949 				}
950 				sl->datacount = sgsize;
951 			} else
952 				sl->datacount += sgsize;
953 		} else {
954 			sgsize = MIN(sgsize, max_sgsize);
955 		}
956 		sgsize = _bus_dmamap_addseg(dmat, map, curaddr, sgsize, segs,
957 		    segp);
958 		if (sgsize == 0)
959 			break;
960 		vaddr += sgsize;
961 		buflen -= sgsize;
962 	}
963 
964 cleanup:
965 	/*
966 	 * Did we fit?
967 	 */
968 	return (buflen != 0 ? EFBIG : 0); /* XXX better return value here? */
969 }
970 
971 static void
972 bounce_bus_dmamap_waitok(bus_dma_tag_t dmat, bus_dmamap_t map,
973     struct memdesc *mem, bus_dmamap_callback_t *callback, void *callback_arg)
974 {
975 
976 	map->mem = *mem;
977 	map->dmat = dmat;
978 	map->callback = callback;
979 	map->callback_arg = callback_arg;
980 }
981 
982 static bus_dma_segment_t *
983 bounce_bus_dmamap_complete(bus_dma_tag_t dmat, bus_dmamap_t map,
984     bus_dma_segment_t *segs, int nsegs, int error)
985 {
986 
987 	if (segs == NULL)
988 		segs = dmat->segments;
989 	return (segs);
990 }
991 
992 /*
993  * Release the mapping held by map.
994  */
995 static void
996 bounce_bus_dmamap_unload(bus_dma_tag_t dmat, bus_dmamap_t map)
997 {
998 	struct bounce_page *bpage;
999 
1000 	while ((bpage = STAILQ_FIRST(&map->bpages)) != NULL) {
1001 		STAILQ_REMOVE_HEAD(&map->bpages, links);
1002 		free_bounce_page(dmat, bpage);
1003 	}
1004 
1005 	map->sync_count = 0;
1006 	map->flags &= ~DMAMAP_MBUF;
1007 }
1008 
1009 static void
1010 dma_preread_safe(vm_offset_t va, vm_size_t size)
1011 {
1012 	/*
1013 	 * Write back any partial cachelines immediately before and
1014 	 * after the DMA region.
1015 	 */
1016 	if (va & (dcache_line_size - 1))
1017 		cpu_dcache_wb_range(va, 1);
1018 	if ((va + size) & (dcache_line_size - 1))
1019 		cpu_dcache_wb_range(va + size, 1);
1020 
1021 	cpu_dcache_inv_range(va, size);
1022 }
1023 
1024 static void
1025 dma_dcache_sync(struct sync_list *sl, bus_dmasync_op_t op)
1026 {
1027 	uint32_t len, offset;
1028 	vm_page_t m;
1029 	vm_paddr_t pa;
1030 	vm_offset_t va, tempva;
1031 	bus_size_t size;
1032 
1033 	offset = sl->paddr & PAGE_MASK;
1034 	m = sl->pages;
1035 	size = sl->datacount;
1036 	pa = sl->paddr;
1037 
1038 	for ( ; size != 0; size -= len, pa += len, offset = 0, ++m) {
1039 		tempva = 0;
1040 		if (sl->vaddr == 0) {
1041 			len = min(PAGE_SIZE - offset, size);
1042 			tempva = pmap_quick_enter_page(m);
1043 			va = tempva | offset;
1044 			KASSERT(pa == (VM_PAGE_TO_PHYS(m) | offset),
1045 			    ("unexpected vm_page_t phys: 0x%16lx != 0x%16lx",
1046 			    VM_PAGE_TO_PHYS(m) | offset, pa));
1047 		} else {
1048 			len = sl->datacount;
1049 			va = sl->vaddr;
1050 		}
1051 
1052 		switch (op) {
1053 		case BUS_DMASYNC_PREWRITE:
1054 		case BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD:
1055 			cpu_dcache_wb_range(va, len);
1056 			break;
1057 		case BUS_DMASYNC_PREREAD:
1058 			/*
1059 			 * An mbuf may start in the middle of a cacheline. There
1060 			 * will be no cpu writes to the beginning of that line
1061 			 * (which contains the mbuf header) while dma is in
1062 			 * progress.  Handle that case by doing a writeback of
1063 			 * just the first cacheline before invalidating the
1064 			 * overall buffer.  Any mbuf in a chain may have this
1065 			 * misalignment.  Buffers which are not mbufs bounce if
1066 			 * they are not aligned to a cacheline.
1067 			 */
1068 			dma_preread_safe(va, len);
1069 			break;
1070 		case BUS_DMASYNC_POSTREAD:
1071 		case BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE:
1072 			cpu_dcache_inv_range(va, len);
1073 			break;
1074 		default:
1075 			panic("unsupported combination of sync operations: "
1076                               "0x%08x\n", op);
1077 		}
1078 
1079 		if (tempva != 0)
1080 			pmap_quick_remove_page(tempva);
1081 	}
1082 }
1083 
1084 static void
1085 bounce_bus_dmamap_sync(bus_dma_tag_t dmat, bus_dmamap_t map,
1086     bus_dmasync_op_t op)
1087 {
1088 	struct bounce_page *bpage;
1089 	struct sync_list *sl, *end;
1090 	vm_offset_t datavaddr, tempvaddr;
1091 
1092 	if (op == BUS_DMASYNC_POSTWRITE)
1093 		return;
1094 
1095 	if ((op & BUS_DMASYNC_POSTREAD) != 0) {
1096 		/*
1097 		 * Wait for any DMA operations to complete before the bcopy.
1098 		 */
1099 		dsb(sy);
1100 	}
1101 
1102 	if ((bpage = STAILQ_FIRST(&map->bpages)) != NULL) {
1103 		CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x op 0x%x "
1104 		    "performing bounce", __func__, dmat, dmat->common.flags,
1105 		    op);
1106 
1107 		if ((op & BUS_DMASYNC_PREWRITE) != 0) {
1108 			while (bpage != NULL) {
1109 				tempvaddr = 0;
1110 				datavaddr = bpage->datavaddr;
1111 				if (datavaddr == 0) {
1112 					tempvaddr = pmap_quick_enter_page(
1113 					    bpage->datapage);
1114 					datavaddr = tempvaddr | bpage->dataoffs;
1115 				}
1116 
1117 				bcopy((void *)datavaddr,
1118 				    (void *)bpage->vaddr, bpage->datacount);
1119 				if (tempvaddr != 0)
1120 					pmap_quick_remove_page(tempvaddr);
1121 				if ((map->flags & DMAMAP_COHERENT) == 0)
1122 					cpu_dcache_wb_range(bpage->vaddr,
1123 					    bpage->datacount);
1124 				bpage = STAILQ_NEXT(bpage, links);
1125 			}
1126 			dmat->bounce_zone->total_bounced++;
1127 		} else if ((op & BUS_DMASYNC_PREREAD) != 0) {
1128 			while (bpage != NULL) {
1129 				if ((map->flags & DMAMAP_COHERENT) == 0)
1130 					cpu_dcache_wbinv_range(bpage->vaddr,
1131 					    bpage->datacount);
1132 				bpage = STAILQ_NEXT(bpage, links);
1133 			}
1134 		}
1135 
1136 		if ((op & BUS_DMASYNC_POSTREAD) != 0) {
1137 			while (bpage != NULL) {
1138 				if ((map->flags & DMAMAP_COHERENT) == 0)
1139 					cpu_dcache_inv_range(bpage->vaddr,
1140 					    bpage->datacount);
1141 				tempvaddr = 0;
1142 				datavaddr = bpage->datavaddr;
1143 				if (datavaddr == 0) {
1144 					tempvaddr = pmap_quick_enter_page(
1145 					    bpage->datapage);
1146 					datavaddr = tempvaddr | bpage->dataoffs;
1147 				}
1148 
1149 				bcopy((void *)bpage->vaddr,
1150 				    (void *)datavaddr, bpage->datacount);
1151 
1152 				if (tempvaddr != 0)
1153 					pmap_quick_remove_page(tempvaddr);
1154 				bpage = STAILQ_NEXT(bpage, links);
1155 			}
1156 			dmat->bounce_zone->total_bounced++;
1157 		}
1158 	}
1159 
1160 	/*
1161 	 * Cache maintenance for normal (non-COHERENT non-bounce) buffers.
1162 	 */
1163 	if (map->sync_count != 0) {
1164 		sl = &map->slist[0];
1165 		end = &map->slist[map->sync_count];
1166 		CTR3(KTR_BUSDMA, "%s: tag %p op 0x%x "
1167 		    "performing sync", __func__, dmat, op);
1168 
1169 		for ( ; sl != end; ++sl)
1170 			dma_dcache_sync(sl, op);
1171 	}
1172 
1173 	if ((op & (BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE)) != 0) {
1174 		/*
1175 		 * Wait for the bcopy to complete before any DMA operations.
1176 		 */
1177 		dsb(sy);
1178 	}
1179 }
1180 
1181 static void
1182 init_bounce_pages(void *dummy __unused)
1183 {
1184 
1185 	total_bpages = 0;
1186 	STAILQ_INIT(&bounce_zone_list);
1187 	STAILQ_INIT(&bounce_map_waitinglist);
1188 	STAILQ_INIT(&bounce_map_callbacklist);
1189 	mtx_init(&bounce_lock, "bounce pages lock", NULL, MTX_DEF);
1190 }
1191 SYSINIT(bpages, SI_SUB_LOCK, SI_ORDER_ANY, init_bounce_pages, NULL);
1192 
1193 static struct sysctl_ctx_list *
1194 busdma_sysctl_tree(struct bounce_zone *bz)
1195 {
1196 
1197 	return (&bz->sysctl_tree);
1198 }
1199 
1200 static struct sysctl_oid *
1201 busdma_sysctl_tree_top(struct bounce_zone *bz)
1202 {
1203 
1204 	return (bz->sysctl_tree_top);
1205 }
1206 
1207 static int
1208 alloc_bounce_zone(bus_dma_tag_t dmat)
1209 {
1210 	struct bounce_zone *bz;
1211 
1212 	/* Check to see if we already have a suitable zone */
1213 	STAILQ_FOREACH(bz, &bounce_zone_list, links) {
1214 		if ((dmat->common.alignment <= bz->alignment) &&
1215 		    (dmat->common.lowaddr >= bz->lowaddr)) {
1216 			dmat->bounce_zone = bz;
1217 			return (0);
1218 		}
1219 	}
1220 
1221 	if ((bz = (struct bounce_zone *)malloc(sizeof(*bz), M_DEVBUF,
1222 	    M_NOWAIT | M_ZERO)) == NULL)
1223 		return (ENOMEM);
1224 
1225 	STAILQ_INIT(&bz->bounce_page_list);
1226 	bz->free_bpages = 0;
1227 	bz->reserved_bpages = 0;
1228 	bz->active_bpages = 0;
1229 	bz->lowaddr = dmat->common.lowaddr;
1230 	bz->alignment = MAX(dmat->common.alignment, PAGE_SIZE);
1231 	bz->map_count = 0;
1232 	snprintf(bz->zoneid, 8, "zone%d", busdma_zonecount);
1233 	busdma_zonecount++;
1234 	snprintf(bz->lowaddrid, 18, "%#jx", (uintmax_t)bz->lowaddr);
1235 	STAILQ_INSERT_TAIL(&bounce_zone_list, bz, links);
1236 	dmat->bounce_zone = bz;
1237 
1238 	sysctl_ctx_init(&bz->sysctl_tree);
1239 	bz->sysctl_tree_top = SYSCTL_ADD_NODE(&bz->sysctl_tree,
1240 	    SYSCTL_STATIC_CHILDREN(_hw_busdma), OID_AUTO, bz->zoneid,
1241 	    CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "");
1242 	if (bz->sysctl_tree_top == NULL) {
1243 		sysctl_ctx_free(&bz->sysctl_tree);
1244 		return (0);	/* XXX error code? */
1245 	}
1246 
1247 	SYSCTL_ADD_INT(busdma_sysctl_tree(bz),
1248 	    SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
1249 	    "total_bpages", CTLFLAG_RD, &bz->total_bpages, 0,
1250 	    "Total bounce pages");
1251 	SYSCTL_ADD_INT(busdma_sysctl_tree(bz),
1252 	    SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
1253 	    "free_bpages", CTLFLAG_RD, &bz->free_bpages, 0,
1254 	    "Free bounce pages");
1255 	SYSCTL_ADD_INT(busdma_sysctl_tree(bz),
1256 	    SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
1257 	    "reserved_bpages", CTLFLAG_RD, &bz->reserved_bpages, 0,
1258 	    "Reserved bounce pages");
1259 	SYSCTL_ADD_INT(busdma_sysctl_tree(bz),
1260 	    SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
1261 	    "active_bpages", CTLFLAG_RD, &bz->active_bpages, 0,
1262 	    "Active bounce pages");
1263 	SYSCTL_ADD_INT(busdma_sysctl_tree(bz),
1264 	    SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
1265 	    "total_bounced", CTLFLAG_RD, &bz->total_bounced, 0,
1266 	    "Total bounce requests");
1267 	SYSCTL_ADD_INT(busdma_sysctl_tree(bz),
1268 	    SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
1269 	    "total_deferred", CTLFLAG_RD, &bz->total_deferred, 0,
1270 	    "Total bounce requests that were deferred");
1271 	SYSCTL_ADD_STRING(busdma_sysctl_tree(bz),
1272 	    SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
1273 	    "lowaddr", CTLFLAG_RD, bz->lowaddrid, 0, "");
1274 	SYSCTL_ADD_UAUTO(busdma_sysctl_tree(bz),
1275 	    SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
1276 	    "alignment", CTLFLAG_RD, &bz->alignment, "");
1277 
1278 	return (0);
1279 }
1280 
1281 static int
1282 alloc_bounce_pages(bus_dma_tag_t dmat, u_int numpages)
1283 {
1284 	struct bounce_zone *bz;
1285 	int count;
1286 
1287 	bz = dmat->bounce_zone;
1288 	count = 0;
1289 	while (numpages > 0) {
1290 		struct bounce_page *bpage;
1291 
1292 		bpage = (struct bounce_page *)malloc(sizeof(*bpage), M_DEVBUF,
1293 						     M_NOWAIT | M_ZERO);
1294 
1295 		if (bpage == NULL)
1296 			break;
1297 		bpage->vaddr = (vm_offset_t)contigmalloc(PAGE_SIZE, M_DEVBUF,
1298 		    M_NOWAIT, 0ul, bz->lowaddr, PAGE_SIZE, 0);
1299 		if (bpage->vaddr == 0) {
1300 			free(bpage, M_DEVBUF);
1301 			break;
1302 		}
1303 		bpage->busaddr = pmap_kextract(bpage->vaddr);
1304 		mtx_lock(&bounce_lock);
1305 		STAILQ_INSERT_TAIL(&bz->bounce_page_list, bpage, links);
1306 		total_bpages++;
1307 		bz->total_bpages++;
1308 		bz->free_bpages++;
1309 		mtx_unlock(&bounce_lock);
1310 		count++;
1311 		numpages--;
1312 	}
1313 	return (count);
1314 }
1315 
1316 static int
1317 reserve_bounce_pages(bus_dma_tag_t dmat, bus_dmamap_t map, int commit)
1318 {
1319 	struct bounce_zone *bz;
1320 	int pages;
1321 
1322 	mtx_assert(&bounce_lock, MA_OWNED);
1323 	bz = dmat->bounce_zone;
1324 	pages = MIN(bz->free_bpages, map->pagesneeded - map->pagesreserved);
1325 	if (commit == 0 && map->pagesneeded > (map->pagesreserved + pages))
1326 		return (map->pagesneeded - (map->pagesreserved + pages));
1327 	bz->free_bpages -= pages;
1328 	bz->reserved_bpages += pages;
1329 	map->pagesreserved += pages;
1330 	pages = map->pagesneeded - map->pagesreserved;
1331 
1332 	return (pages);
1333 }
1334 
1335 static bus_addr_t
1336 add_bounce_page(bus_dma_tag_t dmat, bus_dmamap_t map, vm_offset_t vaddr,
1337 		bus_addr_t addr, bus_size_t size)
1338 {
1339 	struct bounce_zone *bz;
1340 	struct bounce_page *bpage;
1341 
1342 	KASSERT(dmat->bounce_zone != NULL, ("no bounce zone in dma tag"));
1343 
1344 	bz = dmat->bounce_zone;
1345 	if (map->pagesneeded == 0)
1346 		panic("add_bounce_page: map doesn't need any pages");
1347 	map->pagesneeded--;
1348 
1349 	if (map->pagesreserved == 0)
1350 		panic("add_bounce_page: map doesn't need any pages");
1351 	map->pagesreserved--;
1352 
1353 	mtx_lock(&bounce_lock);
1354 	bpage = STAILQ_FIRST(&bz->bounce_page_list);
1355 	if (bpage == NULL)
1356 		panic("add_bounce_page: free page list is empty");
1357 
1358 	STAILQ_REMOVE_HEAD(&bz->bounce_page_list, links);
1359 	bz->reserved_bpages--;
1360 	bz->active_bpages++;
1361 	mtx_unlock(&bounce_lock);
1362 
1363 	if (dmat->common.flags & BUS_DMA_KEEP_PG_OFFSET) {
1364 		/* Page offset needs to be preserved. */
1365 		bpage->vaddr |= addr & PAGE_MASK;
1366 		bpage->busaddr |= addr & PAGE_MASK;
1367 	}
1368 	bpage->datavaddr = vaddr;
1369 	bpage->datapage = PHYS_TO_VM_PAGE(addr);
1370 	bpage->dataoffs = addr & PAGE_MASK;
1371 	bpage->datacount = size;
1372 	STAILQ_INSERT_TAIL(&(map->bpages), bpage, links);
1373 	return (bpage->busaddr);
1374 }
1375 
1376 static void
1377 free_bounce_page(bus_dma_tag_t dmat, struct bounce_page *bpage)
1378 {
1379 	struct bus_dmamap *map;
1380 	struct bounce_zone *bz;
1381 
1382 	bz = dmat->bounce_zone;
1383 	bpage->datavaddr = 0;
1384 	bpage->datacount = 0;
1385 	if (dmat->common.flags & BUS_DMA_KEEP_PG_OFFSET) {
1386 		/*
1387 		 * Reset the bounce page to start at offset 0.  Other uses
1388 		 * of this bounce page may need to store a full page of
1389 		 * data and/or assume it starts on a page boundary.
1390 		 */
1391 		bpage->vaddr &= ~PAGE_MASK;
1392 		bpage->busaddr &= ~PAGE_MASK;
1393 	}
1394 
1395 	mtx_lock(&bounce_lock);
1396 	STAILQ_INSERT_HEAD(&bz->bounce_page_list, bpage, links);
1397 	bz->free_bpages++;
1398 	bz->active_bpages--;
1399 	if ((map = STAILQ_FIRST(&bounce_map_waitinglist)) != NULL) {
1400 		if (reserve_bounce_pages(map->dmat, map, 1) == 0) {
1401 			STAILQ_REMOVE_HEAD(&bounce_map_waitinglist, links);
1402 			STAILQ_INSERT_TAIL(&bounce_map_callbacklist,
1403 			    map, links);
1404 			busdma_swi_pending = 1;
1405 			bz->total_deferred++;
1406 			swi_sched(vm_ih, 0);
1407 		}
1408 	}
1409 	mtx_unlock(&bounce_lock);
1410 }
1411 
1412 void
1413 busdma_swi(void)
1414 {
1415 	bus_dma_tag_t dmat;
1416 	struct bus_dmamap *map;
1417 
1418 	mtx_lock(&bounce_lock);
1419 	while ((map = STAILQ_FIRST(&bounce_map_callbacklist)) != NULL) {
1420 		STAILQ_REMOVE_HEAD(&bounce_map_callbacklist, links);
1421 		mtx_unlock(&bounce_lock);
1422 		dmat = map->dmat;
1423 		(dmat->common.lockfunc)(dmat->common.lockfuncarg, BUS_DMA_LOCK);
1424 		bus_dmamap_load_mem(map->dmat, map, &map->mem,
1425 		    map->callback, map->callback_arg, BUS_DMA_WAITOK);
1426 		(dmat->common.lockfunc)(dmat->common.lockfuncarg,
1427 		    BUS_DMA_UNLOCK);
1428 		mtx_lock(&bounce_lock);
1429 	}
1430 	mtx_unlock(&bounce_lock);
1431 }
1432 
1433 struct bus_dma_impl bus_dma_bounce_impl = {
1434 	.tag_create = bounce_bus_dma_tag_create,
1435 	.tag_destroy = bounce_bus_dma_tag_destroy,
1436 	.id_mapped = bounce_bus_dma_id_mapped,
1437 	.map_create = bounce_bus_dmamap_create,
1438 	.map_destroy = bounce_bus_dmamap_destroy,
1439 	.mem_alloc = bounce_bus_dmamem_alloc,
1440 	.mem_free = bounce_bus_dmamem_free,
1441 	.load_phys = bounce_bus_dmamap_load_phys,
1442 	.load_buffer = bounce_bus_dmamap_load_buffer,
1443 	.load_ma = bus_dmamap_load_ma_triv,
1444 	.map_waitok = bounce_bus_dmamap_waitok,
1445 	.map_complete = bounce_bus_dmamap_complete,
1446 	.map_unload = bounce_bus_dmamap_unload,
1447 	.map_sync = bounce_bus_dmamap_sync
1448 };
1449