xref: /freebsd/sys/arm64/iommu/smmu.c (revision 19261079)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2019-2020 Ruslan Bukin <br@bsdpad.com>
5  *
6  * This software was developed by SRI International and the University of
7  * Cambridge Computer Laboratory (Department of Computer Science and
8  * Technology) under DARPA contract HR0011-18-C-0016 ("ECATS"), as part of the
9  * DARPA SSITH research programme.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 /*
34  * Hardware overview.
35  *
36  * An incoming transaction from a peripheral device has an address, size,
37  * attributes and StreamID.
38  *
39  * In case of PCI-based devices, StreamID is a PCI rid.
40  *
41  * The StreamID is used to select a Stream Table Entry (STE) in a Stream table,
42  * which contains per-device configuration.
43  *
44  * Stream table is a linear or 2-level walk table (this driver supports both).
45  * Note that a linear table could occupy 1GB or more of memory depending on
46  * sid_bits value.
47  *
48  * STE is used to locate a Context Descriptor, which is a struct in memory
49  * that describes stages of translation, translation table type, pointer to
50  * level 0 of page tables, ASID, etc.
51  *
52  * Hardware supports two stages of translation: Stage1 (S1) and Stage2 (S2):
53  *  o S1 is used for the host machine traffic translation
54  *  o S2 is for a hypervisor
55  *
56  * This driver enables S1 stage with standard AArch64 page tables.
57  *
58  * Note that SMMU does not share TLB with a main CPU.
59  * Command queue is used by this driver to Invalidate SMMU TLB, STE cache.
60  *
61  * An arm64 SoC could have more than one SMMU instance.
62  * ACPI IORT table describes which SMMU unit is assigned for a particular
63  * peripheral device.
64  *
65  * Queues.
66  *
67  * Register interface and Memory-based circular buffer queues are used
68  * to inferface SMMU.
69  *
70  * These are a Command queue for commands to send to the SMMU and an Event
71  * queue for event/fault reports from the SMMU. Optionally PRI queue is
72  * designed for PCIe page requests reception.
73  *
74  * Note that not every hardware supports PRI services. For instance they were
75  * not found in Neoverse N1 SDP machine.
76  * (This drivers does not implement PRI queue.)
77  *
78  * All SMMU queues are arranged as circular buffers in memory. They are used
79  * in a producer-consumer fashion so that an output queue contains data
80  * produced by the SMMU and consumed by software.
81  * An input queue contains data produced by software, consumed by the SMMU.
82  *
83  * Interrupts.
84  *
85  * Interrupts are not required by this driver for normal operation.
86  * The standard wired interrupt is only triggered when an event comes from
87  * the SMMU, which is only in a case of errors (e.g. translation fault).
88  */
89 
90 #include "opt_platform.h"
91 #include "opt_acpi.h"
92 
93 #include <sys/cdefs.h>
94 __FBSDID("$FreeBSD$");
95 
96 #include <sys/param.h>
97 #include <sys/bitstring.h>
98 #include <sys/bus.h>
99 #include <sys/kernel.h>
100 #include <sys/malloc.h>
101 #include <sys/rman.h>
102 #include <sys/lock.h>
103 #include <sys/tree.h>
104 #include <sys/taskqueue.h>
105 #include <vm/vm.h>
106 #include <vm/vm_page.h>
107 #if DEV_ACPI
108 #include <contrib/dev/acpica/include/acpi.h>
109 #include <dev/acpica/acpivar.h>
110 #endif
111 #include <dev/pci/pcireg.h>
112 #include <dev/pci/pcivar.h>
113 #include <dev/iommu/iommu.h>
114 #include <arm64/iommu/iommu_pmap.h>
115 
116 #include "iommu.h"
117 #include "iommu_if.h"
118 
119 #include "smmureg.h"
120 #include "smmuvar.h"
121 
122 #define	STRTAB_L1_SZ_SHIFT	20
123 #define	STRTAB_SPLIT		8
124 
125 #define	STRTAB_L1_DESC_L2PTR_M	(0x3fffffffffff << 6)
126 #define	STRTAB_L1_DESC_DWORDS	1
127 
128 #define	STRTAB_STE_DWORDS	8
129 
130 #define	CMDQ_ENTRY_DWORDS	2
131 #define	EVTQ_ENTRY_DWORDS	4
132 #define	PRIQ_ENTRY_DWORDS	2
133 
134 #define	CD_DWORDS		8
135 
136 #define	Q_WRP(q, p)		((p) & (1 << (q)->size_log2))
137 #define	Q_IDX(q, p)		((p) & ((1 << (q)->size_log2) - 1))
138 #define	Q_OVF(p)		((p) & (1 << 31)) /* Event queue overflowed */
139 
140 #define	SMMU_Q_ALIGN		(64 * 1024)
141 
142 static struct resource_spec smmu_spec[] = {
143 	{ SYS_RES_MEMORY, 0, RF_ACTIVE },
144 	{ SYS_RES_IRQ, 0, RF_ACTIVE },
145 	{ SYS_RES_IRQ, 1, RF_ACTIVE },
146 	{ SYS_RES_IRQ, 2, RF_ACTIVE },
147 	RESOURCE_SPEC_END
148 };
149 
150 MALLOC_DEFINE(M_SMMU, "SMMU", SMMU_DEVSTR);
151 
152 #define	dprintf(fmt, ...)
153 
154 struct smmu_event {
155 	int ident;
156 	char *str;
157 	char *msg;
158 };
159 
160 static struct smmu_event events[] = {
161 	{ 0x01, "F_UUT",
162 		"Unsupported Upstream Transaction."},
163 	{ 0x02, "C_BAD_STREAMID",
164 		"Transaction StreamID out of range."},
165 	{ 0x03, "F_STE_FETCH",
166 		"Fetch of STE caused external abort."},
167 	{ 0x04, "C_BAD_STE",
168 		"Used STE invalid."},
169 	{ 0x05, "F_BAD_ATS_TREQ",
170 		"Address Translation Request disallowed for a StreamID "
171 		"and a PCIe ATS Translation Request received."},
172 	{ 0x06, "F_STREAM_DISABLED",
173 		"The STE of a transaction marks non-substream transactions "
174 		"disabled."},
175 	{ 0x07, "F_TRANSL_FORBIDDEN",
176 		"An incoming PCIe transaction is marked Translated but "
177 		"SMMU bypass is disallowed for this StreamID."},
178 	{ 0x08, "C_BAD_SUBSTREAMID",
179 		"Incoming SubstreamID present, but configuration is invalid."},
180 	{ 0x09, "F_CD_FETCH",
181 		"Fetch of CD caused external abort."},
182 	{ 0x0a, "C_BAD_CD",
183 		"Fetched CD invalid."},
184 	{ 0x0b, "F_WALK_EABT",
185 		"An external abort occurred fetching (or updating) "
186 		"a translation table descriptor."},
187 	{ 0x10, "F_TRANSLATION",
188 		"Translation fault."},
189 	{ 0x11, "F_ADDR_SIZE",
190 		"Address Size fault."},
191 	{ 0x12, "F_ACCESS",
192 		"Access flag fault due to AF == 0 in a page or block TTD."},
193 	{ 0x13, "F_PERMISSION",
194 		"Permission fault occurred on page access."},
195 	{ 0x20, "F_TLB_CONFLICT",
196 		"A TLB conflict occurred because of the transaction."},
197 	{ 0x21, "F_CFG_CONFLICT",
198 		"A configuration cache conflict occurred due to "
199 		"the transaction."},
200 	{ 0x24, "E_PAGE_REQUEST",
201 		"Speculative page request hint."},
202 	{ 0x25, "F_VMS_FETCH",
203 		"Fetch of VMS caused external abort."},
204 	{ 0, NULL, NULL },
205 };
206 
207 static int
208 smmu_q_has_space(struct smmu_queue *q)
209 {
210 
211 	/*
212 	 * See 6.3.27 SMMU_CMDQ_PROD
213 	 *
214 	 * There is space in the queue for additional commands if:
215 	 *  SMMU_CMDQ_CONS.RD != SMMU_CMDQ_PROD.WR ||
216 	 *  SMMU_CMDQ_CONS.RD_WRAP == SMMU_CMDQ_PROD.WR_WRAP
217 	 */
218 
219 	if (Q_IDX(q, q->lc.cons) != Q_IDX(q, q->lc.prod) ||
220 	    Q_WRP(q, q->lc.cons) == Q_WRP(q, q->lc.prod))
221 		return (1);
222 
223 	return (0);
224 }
225 
226 static int
227 smmu_q_empty(struct smmu_queue *q)
228 {
229 
230 	if (Q_IDX(q, q->lc.cons) == Q_IDX(q, q->lc.prod) &&
231 	    Q_WRP(q, q->lc.cons) == Q_WRP(q, q->lc.prod))
232 		return (1);
233 
234 	return (0);
235 }
236 
237 static int __unused
238 smmu_q_consumed(struct smmu_queue *q, uint32_t prod)
239 {
240 
241 	if ((Q_WRP(q, q->lc.cons) == Q_WRP(q, prod)) &&
242 	    (Q_IDX(q, q->lc.cons) >= Q_IDX(q, prod)))
243 		return (1);
244 
245 	if ((Q_WRP(q, q->lc.cons) != Q_WRP(q, prod)) &&
246 	    (Q_IDX(q, q->lc.cons) <= Q_IDX(q, prod)))
247 		return (1);
248 
249 	return (0);
250 }
251 
252 static uint32_t
253 smmu_q_inc_cons(struct smmu_queue *q)
254 {
255 	uint32_t cons;
256 	uint32_t val;
257 
258 	cons = (Q_WRP(q, q->lc.cons) | Q_IDX(q, q->lc.cons)) + 1;
259 	val = (Q_OVF(q->lc.cons) | Q_WRP(q, cons) | Q_IDX(q, cons));
260 
261 	return (val);
262 }
263 
264 static uint32_t
265 smmu_q_inc_prod(struct smmu_queue *q)
266 {
267 	uint32_t prod;
268 	uint32_t val;
269 
270 	prod = (Q_WRP(q, q->lc.prod) | Q_IDX(q, q->lc.prod)) + 1;
271 	val = (Q_OVF(q->lc.prod) | Q_WRP(q, prod) | Q_IDX(q, prod));
272 
273 	return (val);
274 }
275 
276 static int
277 smmu_write_ack(struct smmu_softc *sc, uint32_t reg,
278     uint32_t reg_ack, uint32_t val)
279 {
280 	uint32_t v;
281 	int timeout;
282 
283 	timeout = 100000;
284 
285 	bus_write_4(sc->res[0], reg, val);
286 
287 	do {
288 		v = bus_read_4(sc->res[0], reg_ack);
289 		if (v == val)
290 			break;
291 	} while (timeout--);
292 
293 	if (timeout <= 0) {
294 		device_printf(sc->dev, "Failed to write reg.\n");
295 		return (-1);
296 	}
297 
298 	return (0);
299 }
300 
301 static inline int
302 ilog2(long x)
303 {
304 
305 	KASSERT(x > 0 && powerof2(x), ("%s: invalid arg %ld", __func__, x));
306 
307 	return (flsl(x) - 1);
308 }
309 
310 static int
311 smmu_init_queue(struct smmu_softc *sc, struct smmu_queue *q,
312     uint32_t prod_off, uint32_t cons_off, uint32_t dwords)
313 {
314 	int sz;
315 
316 	sz = (1 << q->size_log2) * dwords * 8;
317 
318 	/* Set up the command circular buffer */
319 	q->vaddr = contigmalloc(sz, M_SMMU,
320 	    M_WAITOK | M_ZERO, 0, (1ul << 48) - 1, SMMU_Q_ALIGN, 0);
321 	if (q->vaddr == NULL) {
322 		device_printf(sc->dev, "failed to allocate %d bytes\n", sz);
323 		return (-1);
324 	}
325 
326 	q->prod_off = prod_off;
327 	q->cons_off = cons_off;
328 	q->paddr = vtophys(q->vaddr);
329 
330 	q->base = CMDQ_BASE_RA | EVENTQ_BASE_WA | PRIQ_BASE_WA;
331 	q->base |= q->paddr & Q_BASE_ADDR_M;
332 	q->base |= q->size_log2 << Q_LOG2SIZE_S;
333 
334 	return (0);
335 }
336 
337 static int
338 smmu_init_queues(struct smmu_softc *sc)
339 {
340 	int err;
341 
342 	/* Command queue. */
343 	err = smmu_init_queue(sc, &sc->cmdq,
344 	    SMMU_CMDQ_PROD, SMMU_CMDQ_CONS, CMDQ_ENTRY_DWORDS);
345 	if (err)
346 		return (ENXIO);
347 
348 	/* Event queue. */
349 	err = smmu_init_queue(sc, &sc->evtq,
350 	    SMMU_EVENTQ_PROD, SMMU_EVENTQ_CONS, EVTQ_ENTRY_DWORDS);
351 	if (err)
352 		return (ENXIO);
353 
354 	if (!(sc->features & SMMU_FEATURE_PRI))
355 		return (0);
356 
357 	/* PRI queue. */
358 	err = smmu_init_queue(sc, &sc->priq,
359 	    SMMU_PRIQ_PROD, SMMU_PRIQ_CONS, PRIQ_ENTRY_DWORDS);
360 	if (err)
361 		return (ENXIO);
362 
363 	return (0);
364 }
365 
366 /*
367  * Dump 2LVL or linear STE.
368  */
369 static void
370 smmu_dump_ste(struct smmu_softc *sc, int sid)
371 {
372 	struct smmu_strtab *strtab;
373 	struct l1_desc *l1_desc;
374 	uint64_t *ste, *l1;
375 	int i;
376 
377 	strtab = &sc->strtab;
378 
379 	if (sc->features & SMMU_FEATURE_2_LVL_STREAM_TABLE) {
380 		i = sid >> STRTAB_SPLIT;
381 		l1 = (void *)((uint64_t)strtab->vaddr +
382 		    STRTAB_L1_DESC_DWORDS * 8 * i);
383 		device_printf(sc->dev, "L1 ste == %lx\n", l1[0]);
384 
385 		l1_desc = &strtab->l1[i];
386 		ste = l1_desc->va;
387 		if (ste == NULL) /* L2 is not initialized */
388 			return;
389 	} else {
390 		ste = (void *)((uint64_t)strtab->vaddr +
391 		    sid * (STRTAB_STE_DWORDS << 3));
392 	}
393 
394 	/* Dump L2 or linear STE. */
395 	for (i = 0; i < STRTAB_STE_DWORDS; i++)
396 		device_printf(sc->dev, "ste[%d] == %lx\n", i, ste[i]);
397 }
398 
399 static void __unused
400 smmu_dump_cd(struct smmu_softc *sc, struct smmu_cd *cd)
401 {
402 	uint64_t *vaddr;
403 	int i;
404 
405 	device_printf(sc->dev, "%s\n", __func__);
406 
407 	vaddr = cd->vaddr;
408 	for (i = 0; i < CD_DWORDS; i++)
409 		device_printf(sc->dev, "cd[%d] == %lx\n", i, vaddr[i]);
410 }
411 
412 static void
413 smmu_evtq_dequeue(struct smmu_softc *sc, uint32_t *evt)
414 {
415 	struct smmu_queue *evtq;
416 	void *entry_addr;
417 
418 	evtq = &sc->evtq;
419 
420 	evtq->lc.val = bus_read_8(sc->res[0], evtq->prod_off);
421 	entry_addr = (void *)((uint64_t)evtq->vaddr +
422 	    evtq->lc.cons * EVTQ_ENTRY_DWORDS * 8);
423 	memcpy(evt, entry_addr, EVTQ_ENTRY_DWORDS * 8);
424 	evtq->lc.cons = smmu_q_inc_cons(evtq);
425 	bus_write_4(sc->res[0], evtq->cons_off, evtq->lc.cons);
426 }
427 
428 static void
429 smmu_print_event(struct smmu_softc *sc, uint32_t *evt)
430 {
431 	struct smmu_event *ev;
432 	uintptr_t input_addr;
433 	uint8_t event_id;
434 	device_t dev;
435 	int sid;
436 	int i;
437 
438 	dev = sc->dev;
439 
440 	ev = NULL;
441 	event_id = evt[0] & 0xff;
442 	for (i = 0; events[i].ident != 0; i++) {
443 		if (events[i].ident == event_id) {
444 			ev = &events[i];
445 			break;
446 		}
447 	}
448 
449 	sid = evt[1];
450 	input_addr = evt[5];
451 	input_addr <<= 32;
452 	input_addr |= evt[4];
453 
454 	if (smmu_quirks_check(dev, sid, event_id, input_addr)) {
455 		/* The event is known. Don't print anything. */
456 		return;
457 	}
458 
459 	if (ev) {
460 		device_printf(sc->dev,
461 		    "Event %s (%s) received.\n", ev->str, ev->msg);
462 	} else
463 		device_printf(sc->dev, "Event 0x%x received\n", event_id);
464 
465 	device_printf(sc->dev, "SID %x, Input Address: %jx\n",
466 	    sid, input_addr);
467 
468 	for (i = 0; i < 8; i++)
469 		device_printf(sc->dev, "evt[%d] %x\n", i, evt[i]);
470 
471 	smmu_dump_ste(sc, sid);
472 }
473 
474 static void
475 make_cmd(struct smmu_softc *sc, uint64_t *cmd,
476     struct smmu_cmdq_entry *entry)
477 {
478 
479 	memset(cmd, 0, CMDQ_ENTRY_DWORDS * 8);
480 	cmd[0] = entry->opcode << CMD_QUEUE_OPCODE_S;
481 
482 	switch (entry->opcode) {
483 	case CMD_TLBI_NH_VA:
484 		cmd[0] |= (uint64_t)entry->tlbi.asid << TLBI_0_ASID_S;
485 		cmd[1] = entry->tlbi.addr & TLBI_1_ADDR_M;
486 		if (entry->tlbi.leaf) {
487 			/*
488 			 * Leaf flag means that only cached entries
489 			 * for the last level of translation table walk
490 			 * are required to be invalidated.
491 			 */
492 			cmd[1] |= TLBI_1_LEAF;
493 		}
494 		break;
495 	case CMD_TLBI_NH_ASID:
496 		cmd[0] |= (uint64_t)entry->tlbi.asid << TLBI_0_ASID_S;
497 		break;
498 	case CMD_TLBI_NSNH_ALL:
499 	case CMD_TLBI_NH_ALL:
500 	case CMD_TLBI_EL2_ALL:
501 		break;
502 	case CMD_CFGI_CD:
503 		cmd[0] |= ((uint64_t)entry->cfgi.ssid << CFGI_0_SSID_S);
504 		/* FALLTROUGH */
505 	case CMD_CFGI_STE:
506 		cmd[0] |= ((uint64_t)entry->cfgi.sid << CFGI_0_STE_SID_S);
507 		cmd[1] |= ((uint64_t)entry->cfgi.leaf << CFGI_1_LEAF_S);
508 		break;
509 	case CMD_CFGI_STE_RANGE:
510 		cmd[1] = (31 << CFGI_1_STE_RANGE_S);
511 		break;
512 	case CMD_SYNC:
513 		cmd[0] |= SYNC_0_MSH_IS | SYNC_0_MSIATTR_OIWB;
514 		if (entry->sync.msiaddr) {
515 			cmd[0] |= SYNC_0_CS_SIG_IRQ;
516 			cmd[1] |= (entry->sync.msiaddr & SYNC_1_MSIADDRESS_M);
517 		} else
518 			cmd[0] |= SYNC_0_CS_SIG_SEV;
519 		break;
520 	case CMD_PREFETCH_CONFIG:
521 		cmd[0] |= ((uint64_t)entry->prefetch.sid << PREFETCH_0_SID_S);
522 		break;
523 	};
524 }
525 
526 static void
527 smmu_cmdq_enqueue_cmd(struct smmu_softc *sc, struct smmu_cmdq_entry *entry)
528 {
529 	uint64_t cmd[CMDQ_ENTRY_DWORDS];
530 	struct smmu_queue *cmdq;
531 	void *entry_addr;
532 
533 	cmdq = &sc->cmdq;
534 
535 	make_cmd(sc, cmd, entry);
536 
537 	SMMU_LOCK(sc);
538 
539 	/* Ensure that a space is available. */
540 	do {
541 		cmdq->lc.cons = bus_read_4(sc->res[0], cmdq->cons_off);
542 	} while (smmu_q_has_space(cmdq) == 0);
543 
544 	/* Write the command to the current prod entry. */
545 	entry_addr = (void *)((uint64_t)cmdq->vaddr +
546 	    Q_IDX(cmdq, cmdq->lc.prod) * CMDQ_ENTRY_DWORDS * 8);
547 	memcpy(entry_addr, cmd, CMDQ_ENTRY_DWORDS * 8);
548 
549 	/* Increment prod index. */
550 	cmdq->lc.prod = smmu_q_inc_prod(cmdq);
551 	bus_write_4(sc->res[0], cmdq->prod_off, cmdq->lc.prod);
552 
553 	SMMU_UNLOCK(sc);
554 }
555 
556 static void __unused
557 smmu_poll_until_consumed(struct smmu_softc *sc, struct smmu_queue *q)
558 {
559 
560 	while (1) {
561 		q->lc.val = bus_read_8(sc->res[0], q->prod_off);
562 		if (smmu_q_empty(q))
563 			break;
564 		cpu_spinwait();
565 	}
566 }
567 
568 static int
569 smmu_sync(struct smmu_softc *sc)
570 {
571 	struct smmu_cmdq_entry cmd;
572 	struct smmu_queue *q;
573 	uint32_t *base;
574 	int timeout;
575 	int prod;
576 
577 	q = &sc->cmdq;
578 	prod = q->lc.prod;
579 
580 	/* Enqueue sync command. */
581 	cmd.opcode = CMD_SYNC;
582 	cmd.sync.msiaddr = q->paddr + Q_IDX(q, prod) * CMDQ_ENTRY_DWORDS * 8;
583 	smmu_cmdq_enqueue_cmd(sc, &cmd);
584 
585 	/* Wait for the sync completion. */
586 	base = (void *)((uint64_t)q->vaddr +
587 	    Q_IDX(q, prod) * CMDQ_ENTRY_DWORDS * 8);
588 
589 	/*
590 	 * It takes around 200 loops (6 instructions each)
591 	 * on Neoverse N1 to complete the sync.
592 	 */
593 	timeout = 10000;
594 
595 	do {
596 		if (*base == 0) {
597 			/* MSI write completed. */
598 			break;
599 		}
600 		cpu_spinwait();
601 	} while (timeout--);
602 
603 	if (timeout < 0)
604 		device_printf(sc->dev, "Failed to sync\n");
605 
606 	return (0);
607 }
608 
609 static int
610 smmu_sync_cd(struct smmu_softc *sc, int sid, int ssid, bool leaf)
611 {
612 	struct smmu_cmdq_entry cmd;
613 
614 	cmd.opcode = CMD_CFGI_CD;
615 	cmd.cfgi.sid = sid;
616 	cmd.cfgi.ssid = ssid;
617 	cmd.cfgi.leaf = leaf;
618 	smmu_cmdq_enqueue_cmd(sc, &cmd);
619 
620 	return (0);
621 }
622 
623 static void
624 smmu_invalidate_all_sid(struct smmu_softc *sc)
625 {
626 	struct smmu_cmdq_entry cmd;
627 
628 	/* Invalidate cached config */
629 	cmd.opcode = CMD_CFGI_STE_RANGE;
630 	smmu_cmdq_enqueue_cmd(sc, &cmd);
631 	smmu_sync(sc);
632 }
633 
634 static void
635 smmu_tlbi_all(struct smmu_softc *sc)
636 {
637 	struct smmu_cmdq_entry cmd;
638 
639 	/* Invalidate entire TLB */
640 	cmd.opcode = CMD_TLBI_NSNH_ALL;
641 	smmu_cmdq_enqueue_cmd(sc, &cmd);
642 	smmu_sync(sc);
643 }
644 
645 static void
646 smmu_tlbi_asid(struct smmu_softc *sc, uint16_t asid)
647 {
648 	struct smmu_cmdq_entry cmd;
649 
650 	/* Invalidate TLB for an ASID. */
651 	cmd.opcode = CMD_TLBI_NH_ASID;
652 	cmd.tlbi.asid = asid;
653 	smmu_cmdq_enqueue_cmd(sc, &cmd);
654 	smmu_sync(sc);
655 }
656 
657 static void
658 smmu_tlbi_va(struct smmu_softc *sc, vm_offset_t va, uint16_t asid)
659 {
660 	struct smmu_cmdq_entry cmd;
661 
662 	/* Invalidate specific range */
663 	cmd.opcode = CMD_TLBI_NH_VA;
664 	cmd.tlbi.asid = asid;
665 	cmd.tlbi.vmid = 0;
666 	cmd.tlbi.leaf = true; /* We change only L3. */
667 	cmd.tlbi.addr = va;
668 	smmu_cmdq_enqueue_cmd(sc, &cmd);
669 }
670 
671 static void
672 smmu_invalidate_sid(struct smmu_softc *sc, uint32_t sid)
673 {
674 	struct smmu_cmdq_entry cmd;
675 
676 	/* Invalidate cached config */
677 	cmd.opcode = CMD_CFGI_STE;
678 	cmd.cfgi.sid = sid;
679 	smmu_cmdq_enqueue_cmd(sc, &cmd);
680 	smmu_sync(sc);
681 }
682 
683 static void
684 smmu_prefetch_sid(struct smmu_softc *sc, uint32_t sid)
685 {
686 	struct smmu_cmdq_entry cmd;
687 
688 	cmd.opcode = CMD_PREFETCH_CONFIG;
689 	cmd.prefetch.sid = sid;
690 	smmu_cmdq_enqueue_cmd(sc, &cmd);
691 	smmu_sync(sc);
692 }
693 
694 /*
695  * Init STE in bypass mode. Traffic is not translated for the sid.
696  */
697 static void
698 smmu_init_ste_bypass(struct smmu_softc *sc, uint32_t sid, uint64_t *ste)
699 {
700 	uint64_t val;
701 
702 	val = STE0_VALID | STE0_CONFIG_BYPASS;
703 
704 	ste[1] = STE1_SHCFG_INCOMING | STE1_EATS_FULLATS;
705 	ste[2] = 0;
706 	ste[3] = 0;
707 	ste[4] = 0;
708 	ste[5] = 0;
709 	ste[6] = 0;
710 	ste[7] = 0;
711 
712 	smmu_invalidate_sid(sc, sid);
713 	ste[0] = val;
714 	dsb(sy);
715 	smmu_invalidate_sid(sc, sid);
716 
717 	smmu_prefetch_sid(sc, sid);
718 }
719 
720 /*
721  * Enable Stage1 (S1) translation for the sid.
722  */
723 static int
724 smmu_init_ste_s1(struct smmu_softc *sc, struct smmu_cd *cd,
725     uint32_t sid, uint64_t *ste)
726 {
727 	uint64_t val;
728 
729 	val = STE0_VALID;
730 
731 	/* S1 */
732 	ste[1] = STE1_EATS_FULLATS	|
733 		 STE1_S1CSH_IS		|
734 		 STE1_S1CIR_WBRA	|
735 		 STE1_S1COR_WBRA	|
736 		 STE1_STRW_NS_EL1;
737 	ste[2] = 0;
738 	ste[3] = 0;
739 	ste[4] = 0;
740 	ste[5] = 0;
741 	ste[6] = 0;
742 	ste[7] = 0;
743 
744 	if (sc->features & SMMU_FEATURE_STALL &&
745 	    ((sc->features & SMMU_FEATURE_STALL_FORCE) == 0))
746 		ste[1] |= STE1_S1STALLD;
747 
748 	/* Configure STE */
749 	val |= (cd->paddr & STE0_S1CONTEXTPTR_M);
750 	val |= STE0_CONFIG_S1_TRANS;
751 
752 	smmu_invalidate_sid(sc, sid);
753 
754 	/* The STE[0] has to be written in a single blast, last of all. */
755 	ste[0] = val;
756 	dsb(sy);
757 
758 	smmu_invalidate_sid(sc, sid);
759 	smmu_sync_cd(sc, sid, 0, true);
760 	smmu_invalidate_sid(sc, sid);
761 
762 	/* The sid will be used soon most likely. */
763 	smmu_prefetch_sid(sc, sid);
764 
765 	return (0);
766 }
767 
768 static int
769 smmu_init_ste(struct smmu_softc *sc, struct smmu_cd *cd, int sid, bool bypass)
770 {
771 	struct smmu_strtab *strtab;
772 	struct l1_desc *l1_desc;
773 	uint64_t *addr;
774 
775 	strtab = &sc->strtab;
776 
777 	if (sc->features & SMMU_FEATURE_2_LVL_STREAM_TABLE) {
778 		l1_desc = &strtab->l1[sid >> STRTAB_SPLIT];
779 		addr = l1_desc->va;
780 		addr += (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS;
781 	} else {
782 		addr = (void *)((uint64_t)strtab->vaddr +
783 		    STRTAB_STE_DWORDS * 8 * sid);
784 	};
785 
786 	if (bypass)
787 		smmu_init_ste_bypass(sc, sid, addr);
788 	else
789 		smmu_init_ste_s1(sc, cd, sid, addr);
790 
791 	smmu_sync(sc);
792 
793 	return (0);
794 }
795 
796 static int
797 smmu_init_cd(struct smmu_softc *sc, struct smmu_domain *domain)
798 {
799 	vm_paddr_t paddr;
800 	uint64_t *ptr;
801 	uint64_t val;
802 	vm_size_t size;
803 	struct smmu_cd *cd;
804 	pmap_t p;
805 
806 	size = 1 * (CD_DWORDS << 3);
807 
808 	p = &domain->p;
809 	cd = domain->cd = malloc(sizeof(struct smmu_cd),
810 	    M_SMMU, M_WAITOK | M_ZERO);
811 
812 	cd->vaddr = contigmalloc(size, M_SMMU,
813 	    M_WAITOK | M_ZERO,	/* flags */
814 	    0,			/* low */
815 	    (1ul << 40) - 1,	/* high */
816 	    size,		/* alignment */
817 	    0);			/* boundary */
818 	if (cd->vaddr == NULL) {
819 		device_printf(sc->dev, "Failed to allocate CD\n");
820 		return (ENXIO);
821 	}
822 
823 	cd->size = size;
824 	cd->paddr = vtophys(cd->vaddr);
825 
826 	ptr = cd->vaddr;
827 
828 	val = CD0_VALID;
829 	val |= CD0_AA64;
830 	val |= CD0_R;
831 	val |= CD0_A;
832 	val |= CD0_ASET;
833 	val |= (uint64_t)domain->asid << CD0_ASID_S;
834 	val |= CD0_TG0_4KB;
835 	val |= CD0_EPD1; /* Disable TT1 */
836 	val |= ((64 - sc->ias) << CD0_T0SZ_S);
837 	val |= CD0_IPS_48BITS;
838 
839 	paddr = p->pm_l0_paddr & CD1_TTB0_M;
840 	KASSERT(paddr == p->pm_l0_paddr, ("bad allocation 1"));
841 
842 	ptr[1] = paddr;
843 	ptr[2] = 0;
844 	ptr[3] = MAIR_ATTR(MAIR_DEVICE_nGnRnE, VM_MEMATTR_DEVICE)	|
845 		 MAIR_ATTR(MAIR_NORMAL_NC, VM_MEMATTR_UNCACHEABLE)	|
846 		 MAIR_ATTR(MAIR_NORMAL_WB, VM_MEMATTR_WRITE_BACK)	|
847 		 MAIR_ATTR(MAIR_NORMAL_WT, VM_MEMATTR_WRITE_THROUGH);
848 
849 	/* Install the CD. */
850 	ptr[0] = val;
851 
852 	return (0);
853 }
854 
855 static int
856 smmu_init_strtab_linear(struct smmu_softc *sc)
857 {
858 	struct smmu_strtab *strtab;
859 	vm_paddr_t base;
860 	uint32_t size;
861 	uint64_t reg;
862 
863 	strtab = &sc->strtab;
864 	strtab->num_l1_entries = (1 << sc->sid_bits);
865 
866 	size = strtab->num_l1_entries * (STRTAB_STE_DWORDS << 3);
867 
868 	if (bootverbose)
869 		device_printf(sc->dev,
870 		    "%s: linear strtab size %d, num_l1_entries %d\n",
871 		    __func__, size, strtab->num_l1_entries);
872 
873 	strtab->vaddr = contigmalloc(size, M_SMMU,
874 	    M_WAITOK | M_ZERO,	/* flags */
875 	    0,			/* low */
876 	    (1ul << 48) - 1,	/* high */
877 	    size,		/* alignment */
878 	    0);			/* boundary */
879 	if (strtab->vaddr == NULL) {
880 		device_printf(sc->dev, "failed to allocate strtab\n");
881 		return (ENXIO);
882 	}
883 
884 	reg = STRTAB_BASE_CFG_FMT_LINEAR;
885 	reg |= sc->sid_bits << STRTAB_BASE_CFG_LOG2SIZE_S;
886 	strtab->base_cfg = (uint32_t)reg;
887 
888 	base = vtophys(strtab->vaddr);
889 
890 	reg = base & STRTAB_BASE_ADDR_M;
891 	KASSERT(reg == base, ("bad allocation 2"));
892 	reg |= STRTAB_BASE_RA;
893 	strtab->base = reg;
894 
895 	return (0);
896 }
897 
898 static int
899 smmu_init_strtab_2lvl(struct smmu_softc *sc)
900 {
901 	struct smmu_strtab *strtab;
902 	vm_paddr_t base;
903 	uint64_t reg_base;
904 	uint32_t l1size;
905 	uint32_t size;
906 	uint32_t reg;
907 	int sz;
908 
909 	strtab = &sc->strtab;
910 
911 	size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3);
912 	size = min(size, sc->sid_bits - STRTAB_SPLIT);
913 	strtab->num_l1_entries = (1 << size);
914 	size += STRTAB_SPLIT;
915 
916 	l1size = strtab->num_l1_entries * (STRTAB_L1_DESC_DWORDS << 3);
917 
918 	if (bootverbose)
919 		device_printf(sc->dev,
920 		    "%s: size %d, l1 entries %d, l1size %d\n",
921 		    __func__, size, strtab->num_l1_entries, l1size);
922 
923 	strtab->vaddr = contigmalloc(l1size, M_SMMU,
924 	    M_WAITOK | M_ZERO,	/* flags */
925 	    0,			/* low */
926 	    (1ul << 48) - 1,	/* high */
927 	    l1size,		/* alignment */
928 	    0);			/* boundary */
929 	if (strtab->vaddr == NULL) {
930 		device_printf(sc->dev, "Failed to allocate 2lvl strtab.\n");
931 		return (ENOMEM);
932 	}
933 
934 	sz = strtab->num_l1_entries * sizeof(struct l1_desc);
935 
936 	strtab->l1 = malloc(sz, M_SMMU, M_WAITOK | M_ZERO);
937 	if (strtab->l1 == NULL) {
938 		contigfree(strtab->vaddr, l1size, M_SMMU);
939 		return (ENOMEM);
940 	}
941 
942 	reg = STRTAB_BASE_CFG_FMT_2LVL;
943 	reg |= size << STRTAB_BASE_CFG_LOG2SIZE_S;
944 	reg |= STRTAB_SPLIT << STRTAB_BASE_CFG_SPLIT_S;
945 	strtab->base_cfg = (uint32_t)reg;
946 
947 	base = vtophys(strtab->vaddr);
948 
949 	reg_base = base & STRTAB_BASE_ADDR_M;
950 	KASSERT(reg_base == base, ("bad allocation 3"));
951 	reg_base |= STRTAB_BASE_RA;
952 	strtab->base = reg_base;
953 
954 	return (0);
955 }
956 
957 static int
958 smmu_init_strtab(struct smmu_softc *sc)
959 {
960 	int error;
961 
962 	if (sc->features & SMMU_FEATURE_2_LVL_STREAM_TABLE)
963 		error = smmu_init_strtab_2lvl(sc);
964 	else
965 		error = smmu_init_strtab_linear(sc);
966 
967 	return (error);
968 }
969 
970 static int
971 smmu_init_l1_entry(struct smmu_softc *sc, int sid)
972 {
973 	struct smmu_strtab *strtab;
974 	struct l1_desc *l1_desc;
975 	uint64_t *addr;
976 	uint64_t val;
977 	size_t size;
978 	int i;
979 
980 	strtab = &sc->strtab;
981 	l1_desc = &strtab->l1[sid >> STRTAB_SPLIT];
982 
983 	size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
984 
985 	l1_desc->span = STRTAB_SPLIT + 1;
986 	l1_desc->size = size;
987 	l1_desc->va = contigmalloc(size, M_SMMU,
988 	    M_WAITOK | M_ZERO,	/* flags */
989 	    0,			/* low */
990 	    (1ul << 48) - 1,	/* high */
991 	    size,		/* alignment */
992 	    0);			/* boundary */
993 	if (l1_desc->va == NULL) {
994 		device_printf(sc->dev, "failed to allocate l2 entry\n");
995 		return (ENXIO);
996 	}
997 
998 	l1_desc->pa = vtophys(l1_desc->va);
999 
1000 	i = sid >> STRTAB_SPLIT;
1001 	addr = (void *)((uint64_t)strtab->vaddr +
1002 	    STRTAB_L1_DESC_DWORDS * 8 * i);
1003 
1004 	/* Install the L1 entry. */
1005 	val = l1_desc->pa & STRTAB_L1_DESC_L2PTR_M;
1006 	KASSERT(val == l1_desc->pa, ("bad allocation 4"));
1007 	val |= l1_desc->span;
1008 	*addr = val;
1009 
1010 	return (0);
1011 }
1012 
1013 static void
1014 smmu_deinit_l1_entry(struct smmu_softc *sc, int sid)
1015 {
1016 	struct smmu_strtab *strtab;
1017 	struct l1_desc *l1_desc;
1018 	uint64_t *addr;
1019 	int i;
1020 
1021 	strtab = &sc->strtab;
1022 
1023 	i = sid >> STRTAB_SPLIT;
1024 	addr = (void *)((uint64_t)strtab->vaddr +
1025 	    STRTAB_L1_DESC_DWORDS * 8 * i);
1026 	*addr = 0;
1027 
1028 	if (sc->features & SMMU_FEATURE_2_LVL_STREAM_TABLE) {
1029 		l1_desc = &strtab->l1[sid >> STRTAB_SPLIT];
1030 		contigfree(l1_desc->va, l1_desc->size, M_SMMU);
1031 	}
1032 }
1033 
1034 static int
1035 smmu_disable(struct smmu_softc *sc)
1036 {
1037 	uint32_t reg;
1038 	int error;
1039 
1040 	/* Disable SMMU */
1041 	reg = bus_read_4(sc->res[0], SMMU_CR0);
1042 	reg &= ~CR0_SMMUEN;
1043 	error = smmu_write_ack(sc, SMMU_CR0, SMMU_CR0ACK, reg);
1044 	if (error)
1045 		device_printf(sc->dev, "Could not disable SMMU.\n");
1046 
1047 	return (0);
1048 }
1049 
1050 static int
1051 smmu_event_intr(void *arg)
1052 {
1053 	uint32_t evt[EVTQ_ENTRY_DWORDS * 2];
1054 	struct smmu_softc *sc;
1055 
1056 	sc = arg;
1057 
1058 	do {
1059 		smmu_evtq_dequeue(sc, evt);
1060 		smmu_print_event(sc, evt);
1061 	} while (!smmu_q_empty(&sc->evtq));
1062 
1063 	return (FILTER_HANDLED);
1064 }
1065 
1066 static int __unused
1067 smmu_sync_intr(void *arg)
1068 {
1069 	struct smmu_softc *sc;
1070 
1071 	sc = arg;
1072 
1073 	device_printf(sc->dev, "%s\n", __func__);
1074 
1075 	return (FILTER_HANDLED);
1076 }
1077 
1078 static int
1079 smmu_gerr_intr(void *arg)
1080 {
1081 	struct smmu_softc *sc;
1082 
1083 	sc = arg;
1084 
1085 	device_printf(sc->dev, "SMMU Global Error\n");
1086 
1087 	return (FILTER_HANDLED);
1088 }
1089 
1090 static int
1091 smmu_enable_interrupts(struct smmu_softc *sc)
1092 {
1093 	uint32_t reg;
1094 	int error;
1095 
1096 	/* Disable MSI. */
1097 	bus_write_8(sc->res[0], SMMU_GERROR_IRQ_CFG0, 0);
1098 	bus_write_4(sc->res[0], SMMU_GERROR_IRQ_CFG1, 0);
1099 	bus_write_4(sc->res[0], SMMU_GERROR_IRQ_CFG2, 0);
1100 
1101 	bus_write_8(sc->res[0], SMMU_EVENTQ_IRQ_CFG0, 0);
1102 	bus_write_4(sc->res[0], SMMU_EVENTQ_IRQ_CFG1, 0);
1103 	bus_write_4(sc->res[0], SMMU_EVENTQ_IRQ_CFG2, 0);
1104 
1105 	if (sc->features & CR0_PRIQEN) {
1106 		bus_write_8(sc->res[0], SMMU_PRIQ_IRQ_CFG0, 0);
1107 		bus_write_4(sc->res[0], SMMU_PRIQ_IRQ_CFG1, 0);
1108 		bus_write_4(sc->res[0], SMMU_PRIQ_IRQ_CFG2, 0);
1109 	}
1110 
1111 	/* Disable any interrupts. */
1112 	error = smmu_write_ack(sc, SMMU_IRQ_CTRL, SMMU_IRQ_CTRLACK, 0);
1113 	if (error) {
1114 		device_printf(sc->dev, "Could not disable interrupts.\n");
1115 		return (ENXIO);
1116 	}
1117 
1118 	/* Enable interrupts. */
1119 	reg = IRQ_CTRL_EVENTQ_IRQEN | IRQ_CTRL_GERROR_IRQEN;
1120 	if (sc->features & SMMU_FEATURE_PRI)
1121 		reg |= IRQ_CTRL_PRIQ_IRQEN;
1122 
1123 	error = smmu_write_ack(sc, SMMU_IRQ_CTRL, SMMU_IRQ_CTRLACK, reg);
1124 	if (error) {
1125 		device_printf(sc->dev, "Could not enable interrupts.\n");
1126 		return (ENXIO);
1127 	}
1128 
1129 	return (0);
1130 }
1131 
1132 #if DEV_ACPI
1133 static void
1134 smmu_configure_intr(struct smmu_softc *sc, struct resource *res)
1135 {
1136 	struct intr_map_data_acpi *ad;
1137 	struct intr_map_data *data;
1138 
1139 	data = rman_get_virtual(res);
1140 	KASSERT(data != NULL, ("data is NULL"));
1141 
1142 	if (data->type == INTR_MAP_DATA_ACPI) {
1143 		ad = (struct intr_map_data_acpi *)data;
1144 		ad->trig = INTR_TRIGGER_EDGE;
1145 		ad->pol = INTR_POLARITY_HIGH;
1146 	}
1147 }
1148 #endif
1149 
1150 static int
1151 smmu_setup_interrupts(struct smmu_softc *sc)
1152 {
1153 	device_t dev;
1154 	int error;
1155 
1156 	dev = sc->dev;
1157 
1158 #if DEV_ACPI
1159 	/*
1160 	 * Configure SMMU interrupts as EDGE triggered manually
1161 	 * as ACPI tables carries no information for that.
1162 	 */
1163 	smmu_configure_intr(sc, sc->res[1]);
1164 	smmu_configure_intr(sc, sc->res[2]);
1165 	smmu_configure_intr(sc, sc->res[3]);
1166 #endif
1167 
1168 	error = bus_setup_intr(dev, sc->res[1], INTR_TYPE_MISC,
1169 	    smmu_event_intr, NULL, sc, &sc->intr_cookie[0]);
1170 	if (error) {
1171 		device_printf(dev, "Couldn't setup Event interrupt handler\n");
1172 		return (ENXIO);
1173 	}
1174 
1175 	error = bus_setup_intr(dev, sc->res[3], INTR_TYPE_MISC,
1176 	    smmu_gerr_intr, NULL, sc, &sc->intr_cookie[2]);
1177 	if (error) {
1178 		device_printf(dev, "Couldn't setup Gerr interrupt handler\n");
1179 		return (ENXIO);
1180 	}
1181 
1182 	return (0);
1183 }
1184 
1185 static int
1186 smmu_reset(struct smmu_softc *sc)
1187 {
1188 	struct smmu_cmdq_entry cmd;
1189 	struct smmu_strtab *strtab;
1190 	int error;
1191 	int reg;
1192 
1193 	reg = bus_read_4(sc->res[0], SMMU_CR0);
1194 
1195 	if (reg & CR0_SMMUEN)
1196 		device_printf(sc->dev,
1197 		    "%s: Warning: SMMU is enabled\n", __func__);
1198 
1199 	error = smmu_disable(sc);
1200 	if (error)
1201 		device_printf(sc->dev,
1202 		    "%s: Could not disable SMMU.\n", __func__);
1203 
1204 	if (smmu_enable_interrupts(sc) != 0) {
1205 		device_printf(sc->dev, "Could not enable interrupts.\n");
1206 		return (ENXIO);
1207 	}
1208 
1209 	reg = CR1_TABLE_SH_IS	|
1210 	      CR1_TABLE_OC_WBC	|
1211 	      CR1_TABLE_IC_WBC	|
1212 	      CR1_QUEUE_SH_IS	|
1213 	      CR1_QUEUE_OC_WBC	|
1214 	      CR1_QUEUE_IC_WBC;
1215 	bus_write_4(sc->res[0], SMMU_CR1, reg);
1216 
1217 	reg = CR2_PTM | CR2_RECINVSID | CR2_E2H;
1218 	bus_write_4(sc->res[0], SMMU_CR2, reg);
1219 
1220 	/* Stream table. */
1221 	strtab = &sc->strtab;
1222 	bus_write_8(sc->res[0], SMMU_STRTAB_BASE, strtab->base);
1223 	bus_write_4(sc->res[0], SMMU_STRTAB_BASE_CFG, strtab->base_cfg);
1224 
1225 	/* Command queue. */
1226 	bus_write_8(sc->res[0], SMMU_CMDQ_BASE, sc->cmdq.base);
1227 	bus_write_4(sc->res[0], SMMU_CMDQ_PROD, sc->cmdq.lc.prod);
1228 	bus_write_4(sc->res[0], SMMU_CMDQ_CONS, sc->cmdq.lc.cons);
1229 
1230 	reg = CR0_CMDQEN;
1231 	error = smmu_write_ack(sc, SMMU_CR0, SMMU_CR0ACK, reg);
1232 	if (error) {
1233 		device_printf(sc->dev, "Could not enable command queue\n");
1234 		return (ENXIO);
1235 	}
1236 
1237 	/* Invalidate cached configuration. */
1238 	smmu_invalidate_all_sid(sc);
1239 
1240 	if (sc->features & SMMU_FEATURE_HYP) {
1241 		cmd.opcode = CMD_TLBI_EL2_ALL;
1242 		smmu_cmdq_enqueue_cmd(sc, &cmd);
1243 	};
1244 
1245 	/* Invalidate TLB. */
1246 	smmu_tlbi_all(sc);
1247 
1248 	/* Event queue */
1249 	bus_write_8(sc->res[0], SMMU_EVENTQ_BASE, sc->evtq.base);
1250 	bus_write_4(sc->res[0], SMMU_EVENTQ_PROD, sc->evtq.lc.prod);
1251 	bus_write_4(sc->res[0], SMMU_EVENTQ_CONS, sc->evtq.lc.cons);
1252 
1253 	reg |= CR0_EVENTQEN;
1254 	error = smmu_write_ack(sc, SMMU_CR0, SMMU_CR0ACK, reg);
1255 	if (error) {
1256 		device_printf(sc->dev, "Could not enable event queue\n");
1257 		return (ENXIO);
1258 	}
1259 
1260 	if (sc->features & SMMU_FEATURE_PRI) {
1261 		/* PRI queue */
1262 		bus_write_8(sc->res[0], SMMU_PRIQ_BASE, sc->priq.base);
1263 		bus_write_4(sc->res[0], SMMU_PRIQ_PROD, sc->priq.lc.prod);
1264 		bus_write_4(sc->res[0], SMMU_PRIQ_CONS, sc->priq.lc.cons);
1265 
1266 		reg |= CR0_PRIQEN;
1267 		error = smmu_write_ack(sc, SMMU_CR0, SMMU_CR0ACK, reg);
1268 		if (error) {
1269 			device_printf(sc->dev, "Could not enable PRI queue\n");
1270 			return (ENXIO);
1271 		}
1272 	}
1273 
1274 	if (sc->features & SMMU_FEATURE_ATS) {
1275 		reg |= CR0_ATSCHK;
1276 		error = smmu_write_ack(sc, SMMU_CR0, SMMU_CR0ACK, reg);
1277 		if (error) {
1278 			device_printf(sc->dev, "Could not enable ATS check.\n");
1279 			return (ENXIO);
1280 		}
1281 	}
1282 
1283 	reg |= CR0_SMMUEN;
1284 	error = smmu_write_ack(sc, SMMU_CR0, SMMU_CR0ACK, reg);
1285 	if (error) {
1286 		device_printf(sc->dev, "Could not enable SMMU.\n");
1287 		return (ENXIO);
1288 	}
1289 
1290 	return (0);
1291 }
1292 
1293 static int
1294 smmu_check_features(struct smmu_softc *sc)
1295 {
1296 	uint32_t reg;
1297 	uint32_t val;
1298 
1299 	sc->features = 0;
1300 
1301 	reg = bus_read_4(sc->res[0], SMMU_IDR0);
1302 
1303 	if (reg & IDR0_ST_LVL_2) {
1304 		if (bootverbose)
1305 			device_printf(sc->dev,
1306 			    "2-level stream table supported.\n");
1307 		sc->features |= SMMU_FEATURE_2_LVL_STREAM_TABLE;
1308 	}
1309 
1310 	if (reg & IDR0_CD2L) {
1311 		if (bootverbose)
1312 			device_printf(sc->dev,
1313 			    "2-level CD table supported.\n");
1314 		sc->features |= SMMU_FEATURE_2_LVL_CD;
1315 	}
1316 
1317 	switch (reg & IDR0_TTENDIAN_M) {
1318 	case IDR0_TTENDIAN_MIXED:
1319 		if (bootverbose)
1320 			device_printf(sc->dev, "Mixed endianess supported.\n");
1321 		sc->features |= SMMU_FEATURE_TT_LE;
1322 		sc->features |= SMMU_FEATURE_TT_BE;
1323 		break;
1324 	case IDR0_TTENDIAN_LITTLE:
1325 		if (bootverbose)
1326 			device_printf(sc->dev,
1327 			    "Little endian supported only.\n");
1328 		sc->features |= SMMU_FEATURE_TT_LE;
1329 		break;
1330 	case IDR0_TTENDIAN_BIG:
1331 		if (bootverbose)
1332 			device_printf(sc->dev, "Big endian supported only.\n");
1333 		sc->features |= SMMU_FEATURE_TT_BE;
1334 		break;
1335 	default:
1336 		device_printf(sc->dev, "Unsupported endianness.\n");
1337 		return (ENXIO);
1338 	}
1339 
1340 	if (reg & IDR0_SEV)
1341 		sc->features |= SMMU_FEATURE_SEV;
1342 
1343 	if (reg & IDR0_MSI) {
1344 		if (bootverbose)
1345 			device_printf(sc->dev, "MSI feature present.\n");
1346 		sc->features |= SMMU_FEATURE_MSI;
1347 	}
1348 
1349 	if (reg & IDR0_HYP) {
1350 		if (bootverbose)
1351 			device_printf(sc->dev, "HYP feature present.\n");
1352 		sc->features |= SMMU_FEATURE_HYP;
1353 	}
1354 
1355 	if (reg & IDR0_ATS)
1356 		sc->features |= SMMU_FEATURE_ATS;
1357 
1358 	if (reg & IDR0_PRI)
1359 		sc->features |= SMMU_FEATURE_PRI;
1360 
1361 	switch (reg & IDR0_STALL_MODEL_M) {
1362 	case IDR0_STALL_MODEL_FORCE:
1363 		/* Stall is forced. */
1364 		sc->features |= SMMU_FEATURE_STALL_FORCE;
1365 		/* FALLTHROUGH */
1366 	case IDR0_STALL_MODEL_STALL:
1367 		sc->features |= SMMU_FEATURE_STALL;
1368 		break;
1369 	}
1370 
1371 	/* Grab translation stages supported. */
1372 	if (reg & IDR0_S1P) {
1373 		if (bootverbose)
1374 			device_printf(sc->dev,
1375 			    "Stage 1 translation supported.\n");
1376 		sc->features |= SMMU_FEATURE_S1P;
1377 	}
1378 	if (reg & IDR0_S2P) {
1379 		if (bootverbose)
1380 			device_printf(sc->dev,
1381 			    "Stage 2 translation supported.\n");
1382 		sc->features |= SMMU_FEATURE_S2P;
1383 	}
1384 
1385 	switch (reg & IDR0_TTF_M) {
1386 	case IDR0_TTF_ALL:
1387 	case IDR0_TTF_AA64:
1388 		sc->ias = 40;
1389 		break;
1390 	default:
1391 		device_printf(sc->dev, "No AArch64 table format support.\n");
1392 		return (ENXIO);
1393 	}
1394 
1395 	if (reg & IDR0_ASID16)
1396 		sc->asid_bits = 16;
1397 	else
1398 		sc->asid_bits = 8;
1399 
1400 	if (bootverbose)
1401 		device_printf(sc->dev, "ASID bits %d\n", sc->asid_bits);
1402 
1403 	if (reg & IDR0_VMID16)
1404 		sc->vmid_bits = 16;
1405 	else
1406 		sc->vmid_bits = 8;
1407 
1408 	reg = bus_read_4(sc->res[0], SMMU_IDR1);
1409 
1410 	if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) {
1411 		device_printf(sc->dev,
1412 		    "Embedded implementations not supported by this driver.\n");
1413 		return (ENXIO);
1414 	}
1415 
1416 	val = (reg & IDR1_CMDQS_M) >> IDR1_CMDQS_S;
1417 	sc->cmdq.size_log2 = val;
1418 	if (bootverbose)
1419 		device_printf(sc->dev, "CMD queue bits %d\n", val);
1420 
1421 	val = (reg & IDR1_EVENTQS_M) >> IDR1_EVENTQS_S;
1422 	sc->evtq.size_log2 = val;
1423 	if (bootverbose)
1424 		device_printf(sc->dev, "EVENT queue bits %d\n", val);
1425 
1426 	if (sc->features & SMMU_FEATURE_PRI) {
1427 		val = (reg & IDR1_PRIQS_M) >> IDR1_PRIQS_S;
1428 		sc->priq.size_log2 = val;
1429 		if (bootverbose)
1430 			device_printf(sc->dev, "PRI queue bits %d\n", val);
1431 	}
1432 
1433 	sc->ssid_bits = (reg & IDR1_SSIDSIZE_M) >> IDR1_SSIDSIZE_S;
1434 	sc->sid_bits = (reg & IDR1_SIDSIZE_M) >> IDR1_SIDSIZE_S;
1435 
1436 	if (sc->sid_bits <= STRTAB_SPLIT)
1437 		sc->features &= ~SMMU_FEATURE_2_LVL_STREAM_TABLE;
1438 
1439 	if (bootverbose) {
1440 		device_printf(sc->dev, "SSID bits %d\n", sc->ssid_bits);
1441 		device_printf(sc->dev, "SID bits %d\n", sc->sid_bits);
1442 	}
1443 
1444 	/* IDR3 */
1445 	reg = bus_read_4(sc->res[0], SMMU_IDR3);
1446 	if (reg & IDR3_RIL)
1447 		sc->features |= SMMU_FEATURE_RANGE_INV;
1448 
1449 	/* IDR5 */
1450 	reg = bus_read_4(sc->res[0], SMMU_IDR5);
1451 
1452 	switch (reg & IDR5_OAS_M) {
1453 	case IDR5_OAS_32:
1454 		sc->oas = 32;
1455 		break;
1456 	case IDR5_OAS_36:
1457 		sc->oas = 36;
1458 		break;
1459 	case IDR5_OAS_40:
1460 		sc->oas = 40;
1461 		break;
1462 	case IDR5_OAS_42:
1463 		sc->oas = 42;
1464 		break;
1465 	case IDR5_OAS_44:
1466 		sc->oas = 44;
1467 		break;
1468 	case IDR5_OAS_48:
1469 		sc->oas = 48;
1470 		break;
1471 	case IDR5_OAS_52:
1472 		sc->oas = 52;
1473 		break;
1474 	}
1475 
1476 	sc->pgsizes = 0;
1477 	if (reg & IDR5_GRAN64K)
1478 		sc->pgsizes |= 64 * 1024;
1479 	if (reg & IDR5_GRAN16K)
1480 		sc->pgsizes |= 16 * 1024;
1481 	if (reg & IDR5_GRAN4K)
1482 		sc->pgsizes |= 4 * 1024;
1483 
1484 	if ((reg & IDR5_VAX_M) == IDR5_VAX_52)
1485 		sc->features |= SMMU_FEATURE_VAX;
1486 
1487 	return (0);
1488 }
1489 
1490 static void
1491 smmu_init_asids(struct smmu_softc *sc)
1492 {
1493 
1494 	sc->asid_set_size = (1 << sc->asid_bits);
1495 	sc->asid_set = bit_alloc(sc->asid_set_size, M_SMMU, M_WAITOK);
1496 	mtx_init(&sc->asid_set_mutex, "asid set", NULL, MTX_SPIN);
1497 }
1498 
1499 static int
1500 smmu_asid_alloc(struct smmu_softc *sc, int *new_asid)
1501 {
1502 
1503 	mtx_lock_spin(&sc->asid_set_mutex);
1504 	bit_ffc(sc->asid_set, sc->asid_set_size, new_asid);
1505 	if (*new_asid == -1) {
1506 		mtx_unlock_spin(&sc->asid_set_mutex);
1507 		return (ENOMEM);
1508 	}
1509 	bit_set(sc->asid_set, *new_asid);
1510 	mtx_unlock_spin(&sc->asid_set_mutex);
1511 
1512 	return (0);
1513 }
1514 
1515 static void
1516 smmu_asid_free(struct smmu_softc *sc, int asid)
1517 {
1518 
1519 	mtx_lock_spin(&sc->asid_set_mutex);
1520 	bit_clear(sc->asid_set, asid);
1521 	mtx_unlock_spin(&sc->asid_set_mutex);
1522 }
1523 
1524 /*
1525  * Device interface.
1526  */
1527 int
1528 smmu_attach(device_t dev)
1529 {
1530 	struct smmu_softc *sc;
1531 	int error;
1532 
1533 	sc = device_get_softc(dev);
1534 	sc->dev = dev;
1535 
1536 	mtx_init(&sc->sc_mtx, device_get_nameunit(sc->dev), "smmu", MTX_DEF);
1537 
1538 	error = bus_alloc_resources(dev, smmu_spec, sc->res);
1539 	if (error) {
1540 		device_printf(dev, "Couldn't allocate resources.\n");
1541 		return (ENXIO);
1542 	}
1543 
1544 	error = smmu_setup_interrupts(sc);
1545 	if (error) {
1546 		bus_release_resources(dev, smmu_spec, sc->res);
1547 		return (ENXIO);
1548 	}
1549 
1550 	error = smmu_check_features(sc);
1551 	if (error) {
1552 		device_printf(dev, "Some features are required "
1553 		    "but not supported by hardware.\n");
1554 		return (ENXIO);
1555 	}
1556 
1557 	smmu_init_asids(sc);
1558 
1559 	error = smmu_init_queues(sc);
1560 	if (error) {
1561 		device_printf(dev, "Couldn't allocate queues.\n");
1562 		return (ENXIO);
1563 	}
1564 
1565 	error = smmu_init_strtab(sc);
1566 	if (error) {
1567 		device_printf(dev, "Couldn't allocate strtab.\n");
1568 		return (ENXIO);
1569 	}
1570 
1571 	error = smmu_reset(sc);
1572 	if (error) {
1573 		device_printf(dev, "Couldn't reset SMMU.\n");
1574 		return (ENXIO);
1575 	}
1576 
1577 	return (0);
1578 }
1579 
1580 int
1581 smmu_detach(device_t dev)
1582 {
1583 	struct smmu_softc *sc;
1584 
1585 	sc = device_get_softc(dev);
1586 
1587 	bus_release_resources(dev, smmu_spec, sc->res);
1588 
1589 	return (0);
1590 }
1591 
1592 static int
1593 smmu_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
1594 {
1595 	struct smmu_softc *sc;
1596 
1597 	sc = device_get_softc(dev);
1598 
1599 	device_printf(sc->dev, "%s\n", __func__);
1600 
1601 	return (ENOENT);
1602 }
1603 
1604 static int
1605 smmu_unmap(device_t dev, struct iommu_domain *iodom,
1606     vm_offset_t va, bus_size_t size)
1607 {
1608 	struct smmu_domain *domain;
1609 	struct smmu_softc *sc;
1610 	int err;
1611 	int i;
1612 
1613 	sc = device_get_softc(dev);
1614 
1615 	domain = (struct smmu_domain *)iodom;
1616 
1617 	err = 0;
1618 
1619 	dprintf("%s: %lx, %ld, domain %d\n", __func__, va, size, domain->asid);
1620 
1621 	for (i = 0; i < size; i += PAGE_SIZE) {
1622 		if (pmap_smmu_remove(&domain->p, va) == 0) {
1623 			/* pmap entry removed, invalidate TLB. */
1624 			smmu_tlbi_va(sc, va, domain->asid);
1625 		} else {
1626 			err = ENOENT;
1627 			break;
1628 		}
1629 		va += PAGE_SIZE;
1630 	}
1631 
1632 	smmu_sync(sc);
1633 
1634 	return (err);
1635 }
1636 
1637 static int
1638 smmu_map(device_t dev, struct iommu_domain *iodom,
1639     vm_offset_t va, vm_page_t *ma, vm_size_t size,
1640     vm_prot_t prot)
1641 {
1642 	struct smmu_domain *domain;
1643 	struct smmu_softc *sc;
1644 	vm_paddr_t pa;
1645 	int error;
1646 	int i;
1647 
1648 	sc = device_get_softc(dev);
1649 
1650 	domain = (struct smmu_domain *)iodom;
1651 
1652 	dprintf("%s: %lx -> %lx, %ld, domain %d\n", __func__, va, pa, size,
1653 	    domain->asid);
1654 
1655 	for (i = 0; size > 0; size -= PAGE_SIZE) {
1656 		pa = VM_PAGE_TO_PHYS(ma[i++]);
1657 		error = pmap_smmu_enter(&domain->p, va, pa, prot, 0);
1658 		if (error)
1659 			return (error);
1660 		smmu_tlbi_va(sc, va, domain->asid);
1661 		va += PAGE_SIZE;
1662 	}
1663 
1664 	smmu_sync(sc);
1665 
1666 	return (0);
1667 }
1668 
1669 static struct iommu_domain *
1670 smmu_domain_alloc(device_t dev, struct iommu_unit *iommu)
1671 {
1672 	struct smmu_domain *domain;
1673 	struct smmu_unit *unit;
1674 	struct smmu_softc *sc;
1675 	int error;
1676 	int new_asid;
1677 
1678 	sc = device_get_softc(dev);
1679 
1680 	unit = (struct smmu_unit *)iommu;
1681 
1682 	domain = malloc(sizeof(*domain), M_SMMU, M_WAITOK | M_ZERO);
1683 
1684 	error = smmu_asid_alloc(sc, &new_asid);
1685 	if (error) {
1686 		free(domain, M_SMMU);
1687 		device_printf(sc->dev,
1688 		    "Could not allocate ASID for a new domain.\n");
1689 		return (NULL);
1690 	}
1691 
1692 	domain->asid = (uint16_t)new_asid;
1693 
1694 	iommu_pmap_pinit(&domain->p);
1695 	PMAP_LOCK_INIT(&domain->p);
1696 
1697 	error = smmu_init_cd(sc, domain);
1698 	if (error) {
1699 		free(domain, M_SMMU);
1700 		device_printf(sc->dev, "Could not initialize CD\n");
1701 		return (NULL);
1702 	}
1703 
1704 	smmu_tlbi_asid(sc, domain->asid);
1705 
1706 	LIST_INIT(&domain->ctx_list);
1707 
1708 	IOMMU_LOCK(iommu);
1709 	LIST_INSERT_HEAD(&unit->domain_list, domain, next);
1710 	IOMMU_UNLOCK(iommu);
1711 
1712 	return (&domain->iodom);
1713 }
1714 
1715 static void
1716 smmu_domain_free(device_t dev, struct iommu_domain *iodom)
1717 {
1718 	struct smmu_domain *domain;
1719 	struct smmu_softc *sc;
1720 	struct smmu_cd *cd;
1721 
1722 	sc = device_get_softc(dev);
1723 
1724 	domain = (struct smmu_domain *)iodom;
1725 
1726 	LIST_REMOVE(domain, next);
1727 
1728 	cd = domain->cd;
1729 
1730 	iommu_pmap_remove_pages(&domain->p);
1731 	iommu_pmap_release(&domain->p);
1732 
1733 	smmu_tlbi_asid(sc, domain->asid);
1734 	smmu_asid_free(sc, domain->asid);
1735 
1736 	contigfree(cd->vaddr, cd->size, M_SMMU);
1737 	free(cd, M_SMMU);
1738 
1739 	free(domain, M_SMMU);
1740 }
1741 
1742 static int
1743 smmu_set_buswide(device_t dev, struct smmu_domain *domain,
1744     struct smmu_ctx *ctx)
1745 {
1746 	struct smmu_softc *sc;
1747 	int i;
1748 
1749 	sc = device_get_softc(dev);
1750 
1751 	for (i = 0; i < PCI_SLOTMAX; i++)
1752 		smmu_init_ste(sc, domain->cd, (ctx->sid | i), ctx->bypass);
1753 
1754 	return (0);
1755 }
1756 
1757 static struct iommu_ctx *
1758 smmu_ctx_alloc(device_t dev, struct iommu_domain *iodom, device_t child,
1759     bool disabled)
1760 {
1761 	struct smmu_domain *domain;
1762 	struct smmu_softc *sc;
1763 	struct smmu_ctx *ctx;
1764 	uint16_t rid;
1765 	u_int xref, sid;
1766 	int seg;
1767 	int err;
1768 
1769 	sc = device_get_softc(dev);
1770 	domain = (struct smmu_domain *)iodom;
1771 
1772 	seg = pci_get_domain(child);
1773 	rid = pci_get_rid(child);
1774 	err = acpi_iort_map_pci_smmuv3(seg, rid, &xref, &sid);
1775 	if (err)
1776 		return (NULL);
1777 
1778 	if (sc->features & SMMU_FEATURE_2_LVL_STREAM_TABLE) {
1779 		err = smmu_init_l1_entry(sc, sid);
1780 		if (err)
1781 			return (NULL);
1782 	}
1783 
1784 	ctx = malloc(sizeof(struct smmu_ctx), M_SMMU, M_WAITOK | M_ZERO);
1785 	ctx->vendor = pci_get_vendor(child);
1786 	ctx->device = pci_get_device(child);
1787 	ctx->dev = child;
1788 	ctx->sid = sid;
1789 	ctx->domain = domain;
1790 	if (disabled)
1791 		ctx->bypass = true;
1792 
1793 	/*
1794 	 * Neoverse N1 SDP:
1795 	 * 0x800 xhci
1796 	 * 0x700 re
1797 	 * 0x600 sata
1798 	 */
1799 
1800 	smmu_init_ste(sc, domain->cd, ctx->sid, ctx->bypass);
1801 
1802 	if (iommu_is_buswide_ctx(iodom->iommu, pci_get_bus(ctx->dev)))
1803 		smmu_set_buswide(dev, domain, ctx);
1804 
1805 	IOMMU_DOMAIN_LOCK(iodom);
1806 	LIST_INSERT_HEAD(&domain->ctx_list, ctx, next);
1807 	IOMMU_DOMAIN_UNLOCK(iodom);
1808 
1809 	return (&ctx->ioctx);
1810 }
1811 
1812 static void
1813 smmu_ctx_free(device_t dev, struct iommu_ctx *ioctx)
1814 {
1815 	struct smmu_softc *sc;
1816 	struct smmu_ctx *ctx;
1817 
1818 	IOMMU_ASSERT_LOCKED(ioctx->domain->iommu);
1819 
1820 	sc = device_get_softc(dev);
1821 	ctx = (struct smmu_ctx *)ioctx;
1822 
1823 	smmu_deinit_l1_entry(sc, ctx->sid);
1824 
1825 	LIST_REMOVE(ctx, next);
1826 
1827 	free(ctx, M_SMMU);
1828 }
1829 
1830 struct smmu_ctx *
1831 smmu_ctx_lookup_by_sid(device_t dev, u_int sid)
1832 {
1833 	struct smmu_softc *sc;
1834 	struct smmu_domain *domain;
1835 	struct smmu_unit *unit;
1836 	struct smmu_ctx *ctx;
1837 
1838 	sc = device_get_softc(dev);
1839 
1840 	unit = &sc->unit;
1841 
1842 	LIST_FOREACH(domain, &unit->domain_list, next) {
1843 		LIST_FOREACH(ctx, &domain->ctx_list, next) {
1844 			if (ctx->sid == sid)
1845 				return (ctx);
1846 		}
1847 	}
1848 
1849 	return (NULL);
1850 }
1851 
1852 static struct iommu_ctx *
1853 smmu_ctx_lookup(device_t dev, device_t child)
1854 {
1855 	struct iommu_unit *iommu;
1856 	struct smmu_softc *sc;
1857 	struct smmu_domain *domain;
1858 	struct smmu_unit *unit;
1859 	struct smmu_ctx *ctx;
1860 
1861 	sc = device_get_softc(dev);
1862 
1863 	unit = &sc->unit;
1864 	iommu = &unit->iommu;
1865 
1866 	IOMMU_ASSERT_LOCKED(iommu);
1867 
1868 	LIST_FOREACH(domain, &unit->domain_list, next) {
1869 		IOMMU_DOMAIN_LOCK(&domain->iodom);
1870 		LIST_FOREACH(ctx, &domain->ctx_list, next) {
1871 			if (ctx->dev == child) {
1872 				IOMMU_DOMAIN_UNLOCK(&domain->iodom);
1873 				return (&ctx->ioctx);
1874 			}
1875 		}
1876 		IOMMU_DOMAIN_UNLOCK(&domain->iodom);
1877 	}
1878 
1879 	return (NULL);
1880 }
1881 
1882 static int
1883 smmu_find(device_t dev, device_t child)
1884 {
1885 	struct smmu_softc *sc;
1886 	u_int xref, sid;
1887 	uint16_t rid;
1888 	int error;
1889 	int seg;
1890 
1891 	sc = device_get_softc(dev);
1892 
1893 	rid = pci_get_rid(child);
1894 	seg = pci_get_domain(child);
1895 
1896 	/*
1897 	 * Find an xref of an IOMMU controller that serves traffic for dev.
1898 	 */
1899 #ifdef DEV_ACPI
1900 	error = acpi_iort_map_pci_smmuv3(seg, rid, &xref, &sid);
1901 	if (error) {
1902 		/* Could not find reference to an SMMU device. */
1903 		return (ENOENT);
1904 	}
1905 #else
1906 	/* TODO: add FDT support. */
1907 	return (ENXIO);
1908 #endif
1909 
1910 	/* Check if xref is ours. */
1911 	if (xref != sc->xref)
1912 		return (EFAULT);
1913 
1914 	return (0);
1915 }
1916 
1917 static device_method_t smmu_methods[] = {
1918 	/* Device interface */
1919 	DEVMETHOD(device_detach,	smmu_detach),
1920 
1921 	/* SMMU interface */
1922 	DEVMETHOD(iommu_find,		smmu_find),
1923 	DEVMETHOD(iommu_map,		smmu_map),
1924 	DEVMETHOD(iommu_unmap,		smmu_unmap),
1925 	DEVMETHOD(iommu_domain_alloc,	smmu_domain_alloc),
1926 	DEVMETHOD(iommu_domain_free,	smmu_domain_free),
1927 	DEVMETHOD(iommu_ctx_alloc,	smmu_ctx_alloc),
1928 	DEVMETHOD(iommu_ctx_free,	smmu_ctx_free),
1929 	DEVMETHOD(iommu_ctx_lookup,	smmu_ctx_lookup),
1930 
1931 	/* Bus interface */
1932 	DEVMETHOD(bus_read_ivar,	smmu_read_ivar),
1933 
1934 	/* End */
1935 	DEVMETHOD_END
1936 };
1937 
1938 DEFINE_CLASS_0(smmu, smmu_driver, smmu_methods, sizeof(struct smmu_softc));
1939