xref: /freebsd/sys/cam/ata/ata_all.c (revision 076ad2f8)
1 /*-
2  * Copyright (c) 2009 Alexander Motin <mav@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification, immediately at the beginning of the file.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include <sys/param.h>
31 
32 #ifdef _KERNEL
33 #include <opt_scsi.h>
34 
35 #include <sys/systm.h>
36 #include <sys/libkern.h>
37 #include <sys/kernel.h>
38 #include <sys/sysctl.h>
39 #else
40 #include <errno.h>
41 #include <stdio.h>
42 #include <stdlib.h>
43 #include <string.h>
44 #ifndef min
45 #define min(a,b) (((a)<(b))?(a):(b))
46 #endif
47 #endif
48 
49 #include <cam/cam.h>
50 #include <cam/cam_ccb.h>
51 #include <cam/cam_queue.h>
52 #include <cam/cam_xpt.h>
53 #include <sys/ata.h>
54 #include <cam/ata/ata_all.h>
55 #include <sys/sbuf.h>
56 #include <sys/endian.h>
57 
58 int
59 ata_version(int ver)
60 {
61 	int bit;
62 
63 	if (ver == 0xffff)
64 		return 0;
65 	for (bit = 15; bit >= 0; bit--)
66 		if (ver & (1<<bit))
67 			return bit;
68 	return 0;
69 }
70 
71 char *
72 ata_op_string(struct ata_cmd *cmd)
73 {
74 
75 	if (cmd->control & 0x04)
76 		return ("SOFT_RESET");
77 	switch (cmd->command) {
78 	case 0x00:
79 		switch (cmd->features) {
80 		case 0x00: return ("NOP FLUSHQUEUE");
81 		case 0x01: return ("NOP AUTOPOLL");
82 		}
83 		return ("NOP");
84 	case 0x03: return ("CFA_REQUEST_EXTENDED_ERROR");
85 	case 0x06:
86 		switch (cmd->features) {
87 		case 0x01: return ("DSM TRIM");
88 		}
89 		return "DSM";
90 	case 0x08: return ("DEVICE_RESET");
91 	case 0x0b: return ("REQUEST_SENSE_DATA_EXT");
92 	case 0x20: return ("READ");
93 	case 0x24: return ("READ48");
94 	case 0x25: return ("READ_DMA48");
95 	case 0x26: return ("READ_DMA_QUEUED48");
96 	case 0x27: return ("READ_NATIVE_MAX_ADDRESS48");
97 	case 0x29: return ("READ_MUL48");
98 	case 0x2a: return ("READ_STREAM_DMA48");
99 	case 0x2b: return ("READ_STREAM48");
100 	case 0x2f: return ("READ_LOG_EXT");
101 	case 0x30: return ("WRITE");
102 	case 0x34: return ("WRITE48");
103 	case 0x35: return ("WRITE_DMA48");
104 	case 0x36: return ("WRITE_DMA_QUEUED48");
105 	case 0x37: return ("SET_MAX_ADDRESS48");
106 	case 0x39: return ("WRITE_MUL48");
107 	case 0x3a: return ("WRITE_STREAM_DMA48");
108 	case 0x3b: return ("WRITE_STREAM48");
109 	case 0x3d: return ("WRITE_DMA_FUA48");
110 	case 0x3e: return ("WRITE_DMA_QUEUED_FUA48");
111 	case 0x3f: return ("WRITE_LOG_EXT");
112 	case 0x40: return ("READ_VERIFY");
113 	case 0x42: return ("READ_VERIFY48");
114 	case 0x44: return ("ZERO_EXT");
115 	case 0x45:
116 		switch (cmd->features) {
117 		case 0x55: return ("WRITE_UNCORRECTABLE48 PSEUDO");
118 		case 0xaa: return ("WRITE_UNCORRECTABLE48 FLAGGED");
119 		}
120 		return "WRITE_UNCORRECTABLE48";
121 	case 0x47: return ("READ_LOG_DMA_EXT");
122 	case 0x4a: return ("ZAC_MANAGEMENT_IN");
123 	case 0x51: return ("CONFIGURE_STREAM");
124 	case 0x57: return ("WRITE_LOG_DMA_EXT");
125 	case 0x5b: return ("TRUSTED_NON_DATA");
126 	case 0x5c: return ("TRUSTED_RECEIVE");
127 	case 0x5d: return ("TRUSTED_RECEIVE_DMA");
128 	case 0x5e: return ("TRUSTED_SEND");
129 	case 0x5f: return ("TRUSTED_SEND_DMA");
130 	case 0x60: return ("READ_FPDMA_QUEUED");
131 	case 0x61: return ("WRITE_FPDMA_QUEUED");
132 	case 0x63:
133 		switch (cmd->features & 0xf) {
134 		case 0x00: return ("NCQ_NON_DATA ABORT NCQ QUEUE");
135 		case 0x01: return ("NCQ_NON_DATA DEADLINE HANDLING");
136 		case 0x05: return ("NCQ_NON_DATA SET FEATURES");
137 		/*
138 		 * XXX KDM need common decoding between NCQ and non-NCQ
139 		 * versions of SET FEATURES.
140 		 */
141 		case 0x06: return ("NCQ_NON_DATA ZERO EXT");
142 		case 0x07: return ("NCQ_NON_DATA ZAC MANAGEMENT OUT");
143 		}
144 		return ("NCQ_NON_DATA");
145 	case 0x64:
146 		switch (cmd->sector_count_exp & 0xf) {
147 		case 0x00: return ("SEND_FPDMA_QUEUED DATA SET MANAGEMENT");
148 		case 0x02: return ("SEND_FPDMA_QUEUED WRITE LOG DMA EXT");
149 		case 0x03: return ("SEND_FPDMA_QUEUED ZAC MANAGEMENT OUT");
150 		case 0x04: return ("SEND_FPDMA_QUEUED DATA SET MANAGEMENT XL");
151 		}
152 		return ("SEND_FPDMA_QUEUED");
153 	case 0x65:
154 		switch (cmd->sector_count_exp & 0xf) {
155 		case 0x01: return ("RECEIVE_FPDMA_QUEUED READ LOG DMA EXT");
156 		case 0x02: return ("RECEIVE_FPDMA_QUEUED ZAC MANAGEMENT IN");
157 		}
158 		return ("RECEIVE_FPDMA_QUEUED");
159 	case 0x67:
160 		if (cmd->features == 0xec)
161 			return ("SEP_ATTN IDENTIFY");
162 		switch (cmd->lba_low) {
163 		case 0x00: return ("SEP_ATTN READ BUFFER");
164 		case 0x02: return ("SEP_ATTN RECEIVE DIAGNOSTIC RESULTS");
165 		case 0x80: return ("SEP_ATTN WRITE BUFFER");
166 		case 0x82: return ("SEP_ATTN SEND DIAGNOSTIC");
167 		}
168 		return ("SEP_ATTN");
169 	case 0x70: return ("SEEK");
170 	case 0x77: return ("SET_DATE_TIME_EXT");
171 	case 0x78: return ("ACCESSIBLE_MAX_ADDRESS_CONFIGURATION");
172 	case 0x87: return ("CFA_TRANSLATE_SECTOR");
173 	case 0x90: return ("EXECUTE_DEVICE_DIAGNOSTIC");
174 	case 0x92: return ("DOWNLOAD_MICROCODE");
175 	case 0x93: return ("DOWNLOAD_MICROCODE_DMA");
176 	case 0x9a: return ("ZAC_MANAGEMENT_OUT");
177 	case 0xa0: return ("PACKET");
178 	case 0xa1: return ("ATAPI_IDENTIFY");
179 	case 0xa2: return ("SERVICE");
180 	case 0xb0:
181 		switch(cmd->features) {
182 		case 0xd0: return ("SMART READ ATTR VALUES");
183 		case 0xd1: return ("SMART READ ATTR THRESHOLDS");
184 		case 0xd3: return ("SMART SAVE ATTR VALUES");
185 		case 0xd4: return ("SMART EXECUTE OFFLINE IMMEDIATE");
186 		case 0xd5: return ("SMART READ LOG DATA");
187 		case 0xd8: return ("SMART ENABLE OPERATION");
188 		case 0xd9: return ("SMART DISABLE OPERATION");
189 		case 0xda: return ("SMART RETURN STATUS");
190 		}
191 		return ("SMART");
192 	case 0xb1: return ("DEVICE CONFIGURATION");
193 	case 0xb4: return ("SANITIZE_DEVICE");
194 	case 0xc0: return ("CFA_ERASE");
195 	case 0xc4: return ("READ_MUL");
196 	case 0xc5: return ("WRITE_MUL");
197 	case 0xc6: return ("SET_MULTI");
198 	case 0xc7: return ("READ_DMA_QUEUED");
199 	case 0xc8: return ("READ_DMA");
200 	case 0xca: return ("WRITE_DMA");
201 	case 0xcc: return ("WRITE_DMA_QUEUED");
202 	case 0xcd: return ("CFA_WRITE_MULTIPLE_WITHOUT_ERASE");
203 	case 0xce: return ("WRITE_MUL_FUA48");
204 	case 0xd1: return ("CHECK_MEDIA_CARD_TYPE");
205 	case 0xda: return ("GET_MEDIA_STATUS");
206 	case 0xde: return ("MEDIA_LOCK");
207 	case 0xdf: return ("MEDIA_UNLOCK");
208 	case 0xe0: return ("STANDBY_IMMEDIATE");
209 	case 0xe1: return ("IDLE_IMMEDIATE");
210 	case 0xe2: return ("STANDBY");
211 	case 0xe3: return ("IDLE");
212 	case 0xe4: return ("READ_BUFFER/PM");
213 	case 0xe5: return ("CHECK_POWER_MODE");
214 	case 0xe6: return ("SLEEP");
215 	case 0xe7: return ("FLUSHCACHE");
216 	case 0xe8: return ("WRITE_PM");
217 	case 0xea: return ("FLUSHCACHE48");
218 	case 0xec: return ("ATA_IDENTIFY");
219 	case 0xed: return ("MEDIA_EJECT");
220 	case 0xef:
221 		/*
222 		 * XXX KDM need common decoding between NCQ and non-NCQ
223 		 * versions of SET FEATURES.
224 		 */
225 		switch (cmd->features) {
226 	        case 0x02: return ("SETFEATURES ENABLE WCACHE");
227 	        case 0x03: return ("SETFEATURES SET TRANSFER MODE");
228 		case 0x04: return ("SETFEATURES ENABLE APM");
229 	        case 0x06: return ("SETFEATURES ENABLE PUIS");
230 	        case 0x07: return ("SETFEATURES SPIN-UP");
231 		case 0x0b: return ("SETFEATURES ENABLE WRITE READ VERIFY");
232 		case 0x0c: return ("SETFEATURES ENABLE DEVICE LIFE CONTROL");
233 	        case 0x10: return ("SETFEATURES ENABLE SATA FEATURE");
234 		case 0x41: return ("SETFEATURES ENABLE FREEFALL CONTROL");
235 		case 0x43: return ("SETFEATURES SET MAX HOST INT SECT TIMES");
236 		case 0x45: return ("SETFEATURES SET RATE BASIS");
237 		case 0x4a: return ("SETFEATURES EXTENDED POWER CONDITIONS");
238 	        case 0x55: return ("SETFEATURES DISABLE RCACHE");
239 		case 0x5d: return ("SETFEATURES ENABLE RELIRQ");
240 		case 0x5e: return ("SETFEATURES ENABLE SRVIRQ");
241 		case 0x62: return ("SETFEATURES LONG PHYS SECT ALIGN ERC");
242 		case 0x63: return ("SETFEATURES DSN");
243 		case 0x66: return ("SETFEATURES DISABLE DEFAULTS");
244 	        case 0x82: return ("SETFEATURES DISABLE WCACHE");
245 	        case 0x85: return ("SETFEATURES DISABLE APM");
246 	        case 0x86: return ("SETFEATURES DISABLE PUIS");
247 		case 0x8b: return ("SETFEATURES DISABLE WRITE READ VERIFY");
248 		case 0x8c: return ("SETFEATURES DISABLE DEVICE LIFE CONTROL");
249 	        case 0x90: return ("SETFEATURES DISABLE SATA FEATURE");
250 	        case 0xaa: return ("SETFEATURES ENABLE RCACHE");
251 		case 0xC1: return ("SETFEATURES DISABLE FREEFALL CONTROL");
252 		case 0xC3: return ("SETFEATURES SENSE DATA REPORTING");
253 		case 0xC4: return ("SETFEATURES NCQ SENSE DATA RETURN");
254 		case 0xCC: return ("SETFEATURES ENABLE DEFAULTS");
255 		case 0xdd: return ("SETFEATURES DISABLE RELIRQ");
256 		case 0xde: return ("SETFEATURES DISABLE SRVIRQ");
257 	        }
258 	        return "SETFEATURES";
259 	case 0xf1: return ("SECURITY_SET_PASSWORD");
260 	case 0xf2: return ("SECURITY_UNLOCK");
261 	case 0xf3: return ("SECURITY_ERASE_PREPARE");
262 	case 0xf4: return ("SECURITY_ERASE_UNIT");
263 	case 0xf5: return ("SECURITY_FREEZE_LOCK");
264 	case 0xf6: return ("SECURITY_DISABLE_PASSWORD");
265 	case 0xf8: return ("READ_NATIVE_MAX_ADDRESS");
266 	case 0xf9: return ("SET_MAX_ADDRESS");
267 	}
268 	return "UNKNOWN";
269 }
270 
271 char *
272 ata_cmd_string(struct ata_cmd *cmd, char *cmd_string, size_t len)
273 {
274 	struct sbuf sb;
275 	int error;
276 
277 	if (len == 0)
278 		return ("");
279 
280 	sbuf_new(&sb, cmd_string, len, SBUF_FIXEDLEN);
281 	ata_cmd_sbuf(cmd, &sb);
282 
283 	error = sbuf_finish(&sb);
284 	if (error != 0 && error != ENOMEM)
285 		return ("");
286 
287 	return(sbuf_data(&sb));
288 }
289 
290 void
291 ata_cmd_sbuf(struct ata_cmd *cmd, struct sbuf *sb)
292 {
293 	sbuf_printf(sb, "%02x %02x %02x %02x "
294 	    "%02x %02x %02x %02x %02x %02x %02x %02x",
295 	    cmd->command, cmd->features,
296 	    cmd->lba_low, cmd->lba_mid, cmd->lba_high, cmd->device,
297 	    cmd->lba_low_exp, cmd->lba_mid_exp, cmd->lba_high_exp,
298 	    cmd->features_exp, cmd->sector_count, cmd->sector_count_exp);
299 }
300 
301 char *
302 ata_res_string(struct ata_res *res, char *res_string, size_t len)
303 {
304 	struct sbuf sb;
305 	int error;
306 
307 	if (len == 0)
308 		return ("");
309 
310 	sbuf_new(&sb, res_string, len, SBUF_FIXEDLEN);
311 	ata_res_sbuf(res, &sb);
312 
313 	error = sbuf_finish(&sb);
314 	if (error != 0 && error != ENOMEM)
315 		return ("");
316 
317 	return(sbuf_data(&sb));
318 }
319 
320 int
321 ata_res_sbuf(struct ata_res *res, struct sbuf *sb)
322 {
323 
324 	sbuf_printf(sb, "%02x %02x %02x %02x "
325 	    "%02x %02x %02x %02x %02x %02x %02x",
326 	    res->status, res->error,
327 	    res->lba_low, res->lba_mid, res->lba_high, res->device,
328 	    res->lba_low_exp, res->lba_mid_exp, res->lba_high_exp,
329 	    res->sector_count, res->sector_count_exp);
330 
331 	return (0);
332 }
333 
334 /*
335  * ata_command_sbuf() returns 0 for success and -1 for failure.
336  */
337 int
338 ata_command_sbuf(struct ccb_ataio *ataio, struct sbuf *sb)
339 {
340 
341 	sbuf_printf(sb, "%s. ACB: ",
342 	    ata_op_string(&ataio->cmd));
343 	ata_cmd_sbuf(&ataio->cmd, sb);
344 
345 	return(0);
346 }
347 
348 /*
349  * ata_status_abuf() returns 0 for success and -1 for failure.
350  */
351 int
352 ata_status_sbuf(struct ccb_ataio *ataio, struct sbuf *sb)
353 {
354 
355 	sbuf_printf(sb, "ATA status: %02x (%s%s%s%s%s%s%s%s)",
356 	    ataio->res.status,
357 	    (ataio->res.status & 0x80) ? "BSY " : "",
358 	    (ataio->res.status & 0x40) ? "DRDY " : "",
359 	    (ataio->res.status & 0x20) ? "DF " : "",
360 	    (ataio->res.status & 0x10) ? "SERV " : "",
361 	    (ataio->res.status & 0x08) ? "DRQ " : "",
362 	    (ataio->res.status & 0x04) ? "CORR " : "",
363 	    (ataio->res.status & 0x02) ? "IDX " : "",
364 	    (ataio->res.status & 0x01) ? "ERR" : "");
365 	if (ataio->res.status & 1) {
366 	    sbuf_printf(sb, ", error: %02x (%s%s%s%s%s%s%s%s)",
367 		ataio->res.error,
368 		(ataio->res.error & 0x80) ? "ICRC " : "",
369 		(ataio->res.error & 0x40) ? "UNC " : "",
370 		(ataio->res.error & 0x20) ? "MC " : "",
371 		(ataio->res.error & 0x10) ? "IDNF " : "",
372 		(ataio->res.error & 0x08) ? "MCR " : "",
373 		(ataio->res.error & 0x04) ? "ABRT " : "",
374 		(ataio->res.error & 0x02) ? "NM " : "",
375 		(ataio->res.error & 0x01) ? "ILI" : "");
376 	}
377 
378 	return(0);
379 }
380 
381 void
382 ata_print_ident(struct ata_params *ident_data)
383 {
384 	const char *proto;
385 	char product[48], revision[16], ata[12], sata[12];
386 
387 	cam_strvis(product, ident_data->model, sizeof(ident_data->model),
388 		   sizeof(product));
389 	cam_strvis(revision, ident_data->revision, sizeof(ident_data->revision),
390 		   sizeof(revision));
391 	proto = (ident_data->config == ATA_PROTO_CFA) ? "CFA" :
392 		(ident_data->config & ATA_PROTO_ATAPI) ? "ATAPI" : "ATA";
393 	if (ata_version(ident_data->version_major) == 0) {
394 		snprintf(ata, sizeof(ata), "%s", proto);
395 	} else if (ata_version(ident_data->version_major) <= 7) {
396 		snprintf(ata, sizeof(ata), "%s-%d", proto,
397 		    ata_version(ident_data->version_major));
398 	} else if (ata_version(ident_data->version_major) == 8) {
399 		snprintf(ata, sizeof(ata), "%s8-ACS", proto);
400 	} else {
401 		snprintf(ata, sizeof(ata), "ACS-%d %s",
402 		    ata_version(ident_data->version_major) - 7, proto);
403 	}
404 	if (ident_data->satacapabilities && ident_data->satacapabilities != 0xffff) {
405 		if (ident_data->satacapabilities & ATA_SATA_GEN3)
406 			snprintf(sata, sizeof(sata), " SATA 3.x");
407 		else if (ident_data->satacapabilities & ATA_SATA_GEN2)
408 			snprintf(sata, sizeof(sata), " SATA 2.x");
409 		else if (ident_data->satacapabilities & ATA_SATA_GEN1)
410 			snprintf(sata, sizeof(sata), " SATA 1.x");
411 		else
412 			snprintf(sata, sizeof(sata), " SATA");
413 	} else
414 		sata[0] = 0;
415 	printf("<%s %s> %s%s device\n", product, revision, ata, sata);
416 }
417 
418 void
419 ata_print_ident_short(struct ata_params *ident_data)
420 {
421 	char product[48], revision[16];
422 
423 	cam_strvis(product, ident_data->model, sizeof(ident_data->model),
424 		   sizeof(product));
425 	cam_strvis(revision, ident_data->revision, sizeof(ident_data->revision),
426 		   sizeof(revision));
427 	printf("<%s %s>", product, revision);
428 }
429 
430 void
431 semb_print_ident(struct sep_identify_data *ident_data)
432 {
433 	char vendor[9], product[17], revision[5], fw[5], in[7], ins[5];
434 
435 	cam_strvis(vendor, ident_data->vendor_id, 8, sizeof(vendor));
436 	cam_strvis(product, ident_data->product_id, 16, sizeof(product));
437 	cam_strvis(revision, ident_data->product_rev, 4, sizeof(revision));
438 	cam_strvis(fw, ident_data->firmware_rev, 4, sizeof(fw));
439 	cam_strvis(in, ident_data->interface_id, 6, sizeof(in));
440 	cam_strvis(ins, ident_data->interface_rev, 4, sizeof(ins));
441 	printf("<%s %s %s %s> SEMB %s %s device\n",
442 	    vendor, product, revision, fw, in, ins);
443 }
444 
445 void
446 semb_print_ident_short(struct sep_identify_data *ident_data)
447 {
448 	char vendor[9], product[17], revision[5], fw[5];
449 
450 	cam_strvis(vendor, ident_data->vendor_id, 8, sizeof(vendor));
451 	cam_strvis(product, ident_data->product_id, 16, sizeof(product));
452 	cam_strvis(revision, ident_data->product_rev, 4, sizeof(revision));
453 	cam_strvis(fw, ident_data->firmware_rev, 4, sizeof(fw));
454 	printf("<%s %s %s %s>", vendor, product, revision, fw);
455 }
456 
457 uint32_t
458 ata_logical_sector_size(struct ata_params *ident_data)
459 {
460 	if ((ident_data->pss & ATA_PSS_VALID_MASK) == ATA_PSS_VALID_VALUE &&
461 	    (ident_data->pss & ATA_PSS_LSSABOVE512)) {
462 		return (((u_int32_t)ident_data->lss_1 |
463 		    ((u_int32_t)ident_data->lss_2 << 16)) * 2);
464 	}
465 	return (512);
466 }
467 
468 uint64_t
469 ata_physical_sector_size(struct ata_params *ident_data)
470 {
471 	if ((ident_data->pss & ATA_PSS_VALID_MASK) == ATA_PSS_VALID_VALUE) {
472 		if (ident_data->pss & ATA_PSS_MULTLS) {
473 			return ((uint64_t)ata_logical_sector_size(ident_data) *
474 			    (1 << (ident_data->pss & ATA_PSS_LSPPS)));
475 		} else {
476 			return (uint64_t)ata_logical_sector_size(ident_data);
477 		}
478 	}
479 	return (512);
480 }
481 
482 uint64_t
483 ata_logical_sector_offset(struct ata_params *ident_data)
484 {
485 	if ((ident_data->lsalign & 0xc000) == 0x4000) {
486 		return ((uint64_t)ata_logical_sector_size(ident_data) *
487 		    (ident_data->lsalign & 0x3fff));
488 	}
489 	return (0);
490 }
491 
492 void
493 ata_28bit_cmd(struct ccb_ataio *ataio, uint8_t cmd, uint8_t features,
494     uint32_t lba, uint8_t sector_count)
495 {
496 	bzero(&ataio->cmd, sizeof(ataio->cmd));
497 	ataio->cmd.flags = 0;
498 	if (cmd == ATA_READ_DMA ||
499 	    cmd == ATA_READ_DMA_QUEUED ||
500 	    cmd == ATA_WRITE_DMA ||
501 	    cmd == ATA_WRITE_DMA_QUEUED)
502 		ataio->cmd.flags |= CAM_ATAIO_DMA;
503 	ataio->cmd.command = cmd;
504 	ataio->cmd.features = features;
505 	ataio->cmd.lba_low = lba;
506 	ataio->cmd.lba_mid = lba >> 8;
507 	ataio->cmd.lba_high = lba >> 16;
508 	ataio->cmd.device = ATA_DEV_LBA | ((lba >> 24) & 0x0f);
509 	ataio->cmd.sector_count = sector_count;
510 }
511 
512 void
513 ata_48bit_cmd(struct ccb_ataio *ataio, uint8_t cmd, uint16_t features,
514     uint64_t lba, uint16_t sector_count)
515 {
516 
517 	ataio->cmd.flags = CAM_ATAIO_48BIT;
518 	if (cmd == ATA_READ_DMA48 ||
519 	    cmd == ATA_READ_DMA_QUEUED48 ||
520 	    cmd == ATA_READ_STREAM_DMA48 ||
521 	    cmd == ATA_WRITE_DMA48 ||
522 	    cmd == ATA_WRITE_DMA_FUA48 ||
523 	    cmd == ATA_WRITE_DMA_QUEUED48 ||
524 	    cmd == ATA_WRITE_DMA_QUEUED_FUA48 ||
525 	    cmd == ATA_WRITE_STREAM_DMA48 ||
526 	    cmd == ATA_DATA_SET_MANAGEMENT ||
527 	    cmd == ATA_READ_LOG_DMA_EXT)
528 		ataio->cmd.flags |= CAM_ATAIO_DMA;
529 	ataio->cmd.command = cmd;
530 	ataio->cmd.features = features;
531 	ataio->cmd.lba_low = lba;
532 	ataio->cmd.lba_mid = lba >> 8;
533 	ataio->cmd.lba_high = lba >> 16;
534 	ataio->cmd.device = ATA_DEV_LBA;
535 	ataio->cmd.lba_low_exp = lba >> 24;
536 	ataio->cmd.lba_mid_exp = lba >> 32;
537 	ataio->cmd.lba_high_exp = lba >> 40;
538 	ataio->cmd.features_exp = features >> 8;
539 	ataio->cmd.sector_count = sector_count;
540 	ataio->cmd.sector_count_exp = sector_count >> 8;
541 	ataio->cmd.control = 0;
542 }
543 
544 void
545 ata_ncq_cmd(struct ccb_ataio *ataio, uint8_t cmd,
546     uint64_t lba, uint16_t sector_count)
547 {
548 
549 	ataio->cmd.flags = CAM_ATAIO_48BIT | CAM_ATAIO_FPDMA;
550 	ataio->cmd.command = cmd;
551 	ataio->cmd.features = sector_count;
552 	ataio->cmd.lba_low = lba;
553 	ataio->cmd.lba_mid = lba >> 8;
554 	ataio->cmd.lba_high = lba >> 16;
555 	ataio->cmd.device = ATA_DEV_LBA;
556 	ataio->cmd.lba_low_exp = lba >> 24;
557 	ataio->cmd.lba_mid_exp = lba >> 32;
558 	ataio->cmd.lba_high_exp = lba >> 40;
559 	ataio->cmd.features_exp = sector_count >> 8;
560 	ataio->cmd.sector_count = 0;
561 	ataio->cmd.sector_count_exp = 0;
562 	ataio->cmd.control = 0;
563 }
564 
565 void
566 ata_reset_cmd(struct ccb_ataio *ataio)
567 {
568 	bzero(&ataio->cmd, sizeof(ataio->cmd));
569 	ataio->cmd.flags = CAM_ATAIO_CONTROL | CAM_ATAIO_NEEDRESULT;
570 	ataio->cmd.control = 0x04;
571 }
572 
573 void
574 ata_pm_read_cmd(struct ccb_ataio *ataio, int reg, int port)
575 {
576 	bzero(&ataio->cmd, sizeof(ataio->cmd));
577 	ataio->cmd.flags = CAM_ATAIO_NEEDRESULT;
578 	ataio->cmd.command = ATA_READ_PM;
579 	ataio->cmd.features = reg;
580 	ataio->cmd.device = port & 0x0f;
581 }
582 
583 void
584 ata_pm_write_cmd(struct ccb_ataio *ataio, int reg, int port, uint32_t val)
585 {
586 	bzero(&ataio->cmd, sizeof(ataio->cmd));
587 	ataio->cmd.flags = 0;
588 	ataio->cmd.command = ATA_WRITE_PM;
589 	ataio->cmd.features = reg;
590 	ataio->cmd.sector_count = val;
591 	ataio->cmd.lba_low = val >> 8;
592 	ataio->cmd.lba_mid = val >> 16;
593 	ataio->cmd.lba_high = val >> 24;
594 	ataio->cmd.device = port & 0x0f;
595 }
596 
597 void
598 ata_read_log(struct ccb_ataio *ataio, uint32_t retries,
599 	     void (*cbfcnp)(struct cam_periph *, union ccb *),
600 	     uint32_t log_address, uint32_t page_number, uint16_t block_count,
601 	     uint32_t protocol, uint8_t *data_ptr, uint32_t dxfer_len,
602 	     uint32_t timeout)
603 {
604 	uint64_t lba;
605 
606 	cam_fill_ataio(ataio,
607 	    /*retries*/ 1,
608 	    /*cbfcnp*/ cbfcnp,
609 	    /*flags*/ CAM_DIR_IN,
610 	    /*tag_action*/ 0,
611 	    /*data_ptr*/ data_ptr,
612 	    /*dxfer_len*/ dxfer_len,
613 	    /*timeout*/ timeout);
614 
615 	lba = (((uint64_t)page_number & 0xff00) << 32) |
616 	      ((page_number & 0x00ff) << 8) |
617 	      (log_address & 0xff);
618 
619 	ata_48bit_cmd(ataio,
620 	    /*cmd*/ (protocol & CAM_ATAIO_DMA) ? ATA_READ_LOG_DMA_EXT :
621 		     ATA_READ_LOG_EXT,
622 	    /*features*/ 0,
623 	    /*lba*/ lba,
624 	    /*sector_count*/ block_count);
625 }
626 
627 void
628 ata_bswap(int8_t *buf, int len)
629 {
630 	u_int16_t *ptr = (u_int16_t*)(buf + len);
631 
632 	while (--ptr >= (u_int16_t*)buf)
633 		*ptr = be16toh(*ptr);
634 }
635 
636 void
637 ata_btrim(int8_t *buf, int len)
638 {
639 	int8_t *ptr;
640 
641 	for (ptr = buf; ptr < buf+len; ++ptr)
642 		if (!*ptr || *ptr == '_')
643 			*ptr = ' ';
644 	for (ptr = buf + len - 1; ptr >= buf && *ptr == ' '; --ptr)
645 		*ptr = 0;
646 }
647 
648 void
649 ata_bpack(int8_t *src, int8_t *dst, int len)
650 {
651 	int i, j, blank;
652 
653 	for (i = j = blank = 0 ; i < len; i++) {
654 		if (blank && src[i] == ' ') continue;
655 		if (blank && src[i] != ' ') {
656 			dst[j++] = src[i];
657 			blank = 0;
658 			continue;
659 		}
660 		if (src[i] == ' ') {
661 			blank = 1;
662 			if (i == 0)
663 			continue;
664 		}
665 		dst[j++] = src[i];
666 	}
667 	while (j < len)
668 		dst[j++] = 0x00;
669 }
670 
671 int
672 ata_max_pmode(struct ata_params *ap)
673 {
674     if (ap->atavalid & ATA_FLAG_64_70) {
675 	if (ap->apiomodes & 0x02)
676 	    return ATA_PIO4;
677 	if (ap->apiomodes & 0x01)
678 	    return ATA_PIO3;
679     }
680     if (ap->mwdmamodes & 0x04)
681 	return ATA_PIO4;
682     if (ap->mwdmamodes & 0x02)
683 	return ATA_PIO3;
684     if (ap->mwdmamodes & 0x01)
685 	return ATA_PIO2;
686     if ((ap->retired_piomode & ATA_RETIRED_PIO_MASK) == 0x200)
687 	return ATA_PIO2;
688     if ((ap->retired_piomode & ATA_RETIRED_PIO_MASK) == 0x100)
689 	return ATA_PIO1;
690     if ((ap->retired_piomode & ATA_RETIRED_PIO_MASK) == 0x000)
691 	return ATA_PIO0;
692     return ATA_PIO0;
693 }
694 
695 int
696 ata_max_wmode(struct ata_params *ap)
697 {
698     if (ap->mwdmamodes & 0x04)
699 	return ATA_WDMA2;
700     if (ap->mwdmamodes & 0x02)
701 	return ATA_WDMA1;
702     if (ap->mwdmamodes & 0x01)
703 	return ATA_WDMA0;
704     return -1;
705 }
706 
707 int
708 ata_max_umode(struct ata_params *ap)
709 {
710     if (ap->atavalid & ATA_FLAG_88) {
711 	if (ap->udmamodes & 0x40)
712 	    return ATA_UDMA6;
713 	if (ap->udmamodes & 0x20)
714 	    return ATA_UDMA5;
715 	if (ap->udmamodes & 0x10)
716 	    return ATA_UDMA4;
717 	if (ap->udmamodes & 0x08)
718 	    return ATA_UDMA3;
719 	if (ap->udmamodes & 0x04)
720 	    return ATA_UDMA2;
721 	if (ap->udmamodes & 0x02)
722 	    return ATA_UDMA1;
723 	if (ap->udmamodes & 0x01)
724 	    return ATA_UDMA0;
725     }
726     return -1;
727 }
728 
729 int
730 ata_max_mode(struct ata_params *ap, int maxmode)
731 {
732 
733 	if (maxmode == 0)
734 		maxmode = ATA_DMA_MAX;
735 	if (maxmode >= ATA_UDMA0 && ata_max_umode(ap) > 0)
736 		return (min(maxmode, ata_max_umode(ap)));
737 	if (maxmode >= ATA_WDMA0 && ata_max_wmode(ap) > 0)
738 		return (min(maxmode, ata_max_wmode(ap)));
739 	return (min(maxmode, ata_max_pmode(ap)));
740 }
741 
742 char *
743 ata_mode2string(int mode)
744 {
745     switch (mode) {
746     case -1: return "UNSUPPORTED";
747     case 0: return "NONE";
748     case ATA_PIO0: return "PIO0";
749     case ATA_PIO1: return "PIO1";
750     case ATA_PIO2: return "PIO2";
751     case ATA_PIO3: return "PIO3";
752     case ATA_PIO4: return "PIO4";
753     case ATA_WDMA0: return "WDMA0";
754     case ATA_WDMA1: return "WDMA1";
755     case ATA_WDMA2: return "WDMA2";
756     case ATA_UDMA0: return "UDMA0";
757     case ATA_UDMA1: return "UDMA1";
758     case ATA_UDMA2: return "UDMA2";
759     case ATA_UDMA3: return "UDMA3";
760     case ATA_UDMA4: return "UDMA4";
761     case ATA_UDMA5: return "UDMA5";
762     case ATA_UDMA6: return "UDMA6";
763     default:
764 	if (mode & ATA_DMA_MASK)
765 	    return "BIOSDMA";
766 	else
767 	    return "BIOSPIO";
768     }
769 }
770 
771 int
772 ata_string2mode(char *str)
773 {
774 	if (!strcasecmp(str, "PIO0")) return (ATA_PIO0);
775 	if (!strcasecmp(str, "PIO1")) return (ATA_PIO1);
776 	if (!strcasecmp(str, "PIO2")) return (ATA_PIO2);
777 	if (!strcasecmp(str, "PIO3")) return (ATA_PIO3);
778 	if (!strcasecmp(str, "PIO4")) return (ATA_PIO4);
779 	if (!strcasecmp(str, "WDMA0")) return (ATA_WDMA0);
780 	if (!strcasecmp(str, "WDMA1")) return (ATA_WDMA1);
781 	if (!strcasecmp(str, "WDMA2")) return (ATA_WDMA2);
782 	if (!strcasecmp(str, "UDMA0")) return (ATA_UDMA0);
783 	if (!strcasecmp(str, "UDMA16")) return (ATA_UDMA0);
784 	if (!strcasecmp(str, "UDMA1")) return (ATA_UDMA1);
785 	if (!strcasecmp(str, "UDMA25")) return (ATA_UDMA1);
786 	if (!strcasecmp(str, "UDMA2")) return (ATA_UDMA2);
787 	if (!strcasecmp(str, "UDMA33")) return (ATA_UDMA2);
788 	if (!strcasecmp(str, "UDMA3")) return (ATA_UDMA3);
789 	if (!strcasecmp(str, "UDMA44")) return (ATA_UDMA3);
790 	if (!strcasecmp(str, "UDMA4")) return (ATA_UDMA4);
791 	if (!strcasecmp(str, "UDMA66")) return (ATA_UDMA4);
792 	if (!strcasecmp(str, "UDMA5")) return (ATA_UDMA5);
793 	if (!strcasecmp(str, "UDMA100")) return (ATA_UDMA5);
794 	if (!strcasecmp(str, "UDMA6")) return (ATA_UDMA6);
795 	if (!strcasecmp(str, "UDMA133")) return (ATA_UDMA6);
796 	return (-1);
797 }
798 
799 
800 u_int
801 ata_mode2speed(int mode)
802 {
803 	switch (mode) {
804 	case ATA_PIO0:
805 	default:
806 		return (3300);
807 	case ATA_PIO1:
808 		return (5200);
809 	case ATA_PIO2:
810 		return (8300);
811 	case ATA_PIO3:
812 		return (11100);
813 	case ATA_PIO4:
814 		return (16700);
815 	case ATA_WDMA0:
816 		return (4200);
817 	case ATA_WDMA1:
818 		return (13300);
819 	case ATA_WDMA2:
820 		return (16700);
821 	case ATA_UDMA0:
822 		return (16700);
823 	case ATA_UDMA1:
824 		return (25000);
825 	case ATA_UDMA2:
826 		return (33300);
827 	case ATA_UDMA3:
828 		return (44400);
829 	case ATA_UDMA4:
830 		return (66700);
831 	case ATA_UDMA5:
832 		return (100000);
833 	case ATA_UDMA6:
834 		return (133000);
835 	}
836 }
837 
838 u_int
839 ata_revision2speed(int revision)
840 {
841 	switch (revision) {
842 	case 1:
843 	default:
844 		return (150000);
845 	case 2:
846 		return (300000);
847 	case 3:
848 		return (600000);
849 	}
850 }
851 
852 int
853 ata_speed2revision(u_int speed)
854 {
855 	switch (speed) {
856 	case 0:
857 		return (0);
858 	case 150000:
859 		return (1);
860 	case 300000:
861 		return (2);
862 	case 600000:
863 		return (3);
864 	default:
865 		return (-1);
866 	}
867 }
868 
869 int
870 ata_identify_match(caddr_t identbuffer, caddr_t table_entry)
871 {
872 	struct scsi_inquiry_pattern *entry;
873 	struct ata_params *ident;
874 
875 	entry = (struct scsi_inquiry_pattern *)table_entry;
876 	ident = (struct ata_params *)identbuffer;
877 
878 	if ((cam_strmatch(ident->model, entry->product,
879 			  sizeof(ident->model)) == 0)
880 	 && (cam_strmatch(ident->revision, entry->revision,
881 			  sizeof(ident->revision)) == 0)) {
882 		return (0);
883 	}
884         return (-1);
885 }
886 
887 int
888 ata_static_identify_match(caddr_t identbuffer, caddr_t table_entry)
889 {
890 	struct scsi_static_inquiry_pattern *entry;
891 	struct ata_params *ident;
892 
893 	entry = (struct scsi_static_inquiry_pattern *)table_entry;
894 	ident = (struct ata_params *)identbuffer;
895 
896 	if ((cam_strmatch(ident->model, entry->product,
897 			  sizeof(ident->model)) == 0)
898 	 && (cam_strmatch(ident->revision, entry->revision,
899 			  sizeof(ident->revision)) == 0)) {
900 		return (0);
901 	}
902         return (-1);
903 }
904 
905 void
906 semb_receive_diagnostic_results(struct ccb_ataio *ataio,
907     u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb*),
908     uint8_t tag_action, int pcv, uint8_t page_code,
909     uint8_t *data_ptr, uint16_t length, uint32_t timeout)
910 {
911 
912 	length = min(length, 1020);
913 	length = (length + 3) & ~3;
914 	cam_fill_ataio(ataio,
915 		      retries,
916 		      cbfcnp,
917 		      /*flags*/CAM_DIR_IN,
918 		      tag_action,
919 		      data_ptr,
920 		      length,
921 		      timeout);
922 	ata_28bit_cmd(ataio, ATA_SEP_ATTN,
923 	    pcv ? page_code : 0, 0x02, length / 4);
924 }
925 
926 void
927 semb_send_diagnostic(struct ccb_ataio *ataio,
928     u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *),
929     uint8_t tag_action, uint8_t *data_ptr, uint16_t length, uint32_t timeout)
930 {
931 
932 	length = min(length, 1020);
933 	length = (length + 3) & ~3;
934 	cam_fill_ataio(ataio,
935 		      retries,
936 		      cbfcnp,
937 		      /*flags*/length ? CAM_DIR_OUT : CAM_DIR_NONE,
938 		      tag_action,
939 		      data_ptr,
940 		      length,
941 		      timeout);
942 	ata_28bit_cmd(ataio, ATA_SEP_ATTN,
943 	    length > 0 ? data_ptr[0] : 0, 0x82, length / 4);
944 }
945 
946 void
947 semb_read_buffer(struct ccb_ataio *ataio,
948     u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb*),
949     uint8_t tag_action, uint8_t page_code,
950     uint8_t *data_ptr, uint16_t length, uint32_t timeout)
951 {
952 
953 	length = min(length, 1020);
954 	length = (length + 3) & ~3;
955 	cam_fill_ataio(ataio,
956 		      retries,
957 		      cbfcnp,
958 		      /*flags*/CAM_DIR_IN,
959 		      tag_action,
960 		      data_ptr,
961 		      length,
962 		      timeout);
963 	ata_28bit_cmd(ataio, ATA_SEP_ATTN,
964 	    page_code, 0x00, length / 4);
965 }
966 
967 void
968 semb_write_buffer(struct ccb_ataio *ataio,
969     u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *),
970     uint8_t tag_action, uint8_t *data_ptr, uint16_t length, uint32_t timeout)
971 {
972 
973 	length = min(length, 1020);
974 	length = (length + 3) & ~3;
975 	cam_fill_ataio(ataio,
976 		      retries,
977 		      cbfcnp,
978 		      /*flags*/length ? CAM_DIR_OUT : CAM_DIR_NONE,
979 		      tag_action,
980 		      data_ptr,
981 		      length,
982 		      timeout);
983 	ata_28bit_cmd(ataio, ATA_SEP_ATTN,
984 	    length > 0 ? data_ptr[0] : 0, 0x80, length / 4);
985 }
986 
987 
988 void
989 ata_zac_mgmt_out(struct ccb_ataio *ataio, uint32_t retries,
990 		 void (*cbfcnp)(struct cam_periph *, union ccb *),
991 		 int use_ncq, uint8_t zm_action, uint64_t zone_id,
992 		 uint8_t zone_flags, uint16_t sector_count, uint8_t *data_ptr,
993 		 uint32_t dxfer_len, uint32_t timeout)
994 {
995 	uint8_t command_out, ata_flags;
996 	uint16_t features_out, sectors_out;
997 	uint32_t auxiliary;
998 
999 	if (use_ncq == 0) {
1000 		command_out = ATA_ZAC_MANAGEMENT_OUT;
1001 		features_out = (zm_action & 0xf) | (zone_flags << 8);
1002 		if (dxfer_len == 0) {
1003 			ata_flags = 0;
1004 			sectors_out = 0;
1005 		} else {
1006 			ata_flags = CAM_ATAIO_DMA;
1007 			/* XXX KDM use sector count? */
1008 			sectors_out = ((dxfer_len >> 9) & 0xffff);
1009 		}
1010 		auxiliary = 0;
1011 	} else {
1012 		if (dxfer_len == 0) {
1013 			command_out = ATA_NCQ_NON_DATA;
1014 			features_out = ATA_NCQ_ZAC_MGMT_OUT;
1015 			sectors_out = 0;
1016 		} else {
1017 			command_out = ATA_SEND_FPDMA_QUEUED;
1018 
1019 			/* Note that we're defaulting to normal priority */
1020 			sectors_out = ATA_SFPDMA_ZAC_MGMT_OUT << 8;
1021 
1022 			/*
1023 			 * For SEND FPDMA QUEUED, the transfer length is
1024 			 * encoded in the FEATURE register, and 0 means
1025 			 * that 65536 512 byte blocks are to be tranferred.
1026 			 * In practice, it seems unlikely that we'll see
1027 			 * a transfer that large.
1028 			 */
1029 			if (dxfer_len == (65536 * 512)) {
1030 				features_out = 0;
1031 			} else {
1032 				/*
1033 				 * Yes, the caller can theoretically send a
1034 				 * transfer larger than we can handle.
1035 				 * Anyone using this function needs enough
1036 				 * knowledge to avoid doing that.
1037 				 */
1038 				features_out = ((dxfer_len >> 9) & 0xffff);
1039 			}
1040 		}
1041 		auxiliary = (zm_action & 0xf) | (zone_flags << 8);
1042 
1043 		ata_flags = CAM_ATAIO_FPDMA;
1044 	}
1045 
1046 	cam_fill_ataio(ataio,
1047 	    /*retries*/ retries,
1048 	    /*cbfcnp*/ cbfcnp,
1049 	    /*flags*/ (dxfer_len > 0) ? CAM_DIR_OUT : CAM_DIR_NONE,
1050 	    /*tag_action*/ 0,
1051 	    /*data_ptr*/ data_ptr,
1052 	    /*dxfer_len*/ dxfer_len,
1053 	    /*timeout*/ timeout);
1054 
1055 	ata_48bit_cmd(ataio,
1056 	    /*cmd*/ command_out,
1057 	    /*features*/ features_out,
1058 	    /*lba*/ zone_id,
1059 	    /*sector_count*/ sectors_out);
1060 
1061 	ataio->cmd.flags |= ata_flags;
1062 	if (auxiliary != 0) {
1063 		ataio->ata_flags |= ATA_FLAG_AUX;
1064 		ataio->aux = auxiliary;
1065 	}
1066 }
1067 
1068 void
1069 ata_zac_mgmt_in(struct ccb_ataio *ataio, uint32_t retries,
1070 		void (*cbfcnp)(struct cam_periph *, union ccb *),
1071 		int use_ncq, uint8_t zm_action, uint64_t zone_id,
1072 		uint8_t zone_flags, uint8_t *data_ptr, uint32_t dxfer_len,
1073 		uint32_t timeout)
1074 {
1075 	uint8_t command_out, ata_flags;
1076 	uint16_t features_out, sectors_out;
1077 	uint32_t auxiliary;
1078 
1079 	if (use_ncq == 0) {
1080 		command_out = ATA_ZAC_MANAGEMENT_IN;
1081 		/* XXX KDM put a macro here */
1082 		features_out = (zm_action & 0xf) | (zone_flags << 8);
1083 		ata_flags = CAM_ATAIO_DMA;
1084 		sectors_out = ((dxfer_len >> 9) & 0xffff);
1085 		auxiliary = 0;
1086 	} else {
1087 		command_out = ATA_RECV_FPDMA_QUEUED;
1088 		sectors_out = ATA_RFPDMA_ZAC_MGMT_IN << 8;
1089 		auxiliary = (zm_action & 0xf) | (zone_flags << 8);
1090 		ata_flags = CAM_ATAIO_FPDMA;
1091 		/*
1092 		 * For RECEIVE FPDMA QUEUED, the transfer length is
1093 		 * encoded in the FEATURE register, and 0 means
1094 		 * that 65536 512 byte blocks are to be tranferred.
1095 		 * In practice, it is unlikely we will see a transfer that
1096 		 * large.
1097 		 */
1098 		if (dxfer_len == (65536 * 512)) {
1099 			features_out = 0;
1100 		} else {
1101 			/*
1102 			 * Yes, the caller can theoretically request a
1103 			 * transfer larger than we can handle.
1104 			 * Anyone using this function needs enough
1105 			 * knowledge to avoid doing that.
1106 			 */
1107 			features_out = ((dxfer_len >> 9) & 0xffff);
1108 		}
1109 	}
1110 
1111 	cam_fill_ataio(ataio,
1112 	    /*retries*/ retries,
1113 	    /*cbfcnp*/ cbfcnp,
1114 	    /*flags*/ CAM_DIR_IN,
1115 	    /*tag_action*/ 0,
1116 	    /*data_ptr*/ data_ptr,
1117 	    /*dxfer_len*/ dxfer_len,
1118 	    /*timeout*/ timeout);
1119 
1120 	ata_48bit_cmd(ataio,
1121 	    /*cmd*/ command_out,
1122 	    /*features*/ features_out,
1123 	    /*lba*/ zone_id,
1124 	    /*sector_count*/ sectors_out);
1125 
1126 	ataio->cmd.flags |= ata_flags;
1127 	if (auxiliary != 0) {
1128 		ataio->ata_flags |= ATA_FLAG_AUX;
1129 		ataio->aux = auxiliary;
1130 	}
1131 }
1132