xref: /freebsd/sys/cam/cam_xpt.c (revision d93a896e)
1 /*-
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include "opt_printf.h"
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include <sys/param.h>
36 #include <sys/bio.h>
37 #include <sys/bus.h>
38 #include <sys/systm.h>
39 #include <sys/types.h>
40 #include <sys/malloc.h>
41 #include <sys/kernel.h>
42 #include <sys/time.h>
43 #include <sys/conf.h>
44 #include <sys/fcntl.h>
45 #include <sys/interrupt.h>
46 #include <sys/proc.h>
47 #include <sys/sbuf.h>
48 #include <sys/smp.h>
49 #include <sys/taskqueue.h>
50 
51 #include <sys/lock.h>
52 #include <sys/mutex.h>
53 #include <sys/sysctl.h>
54 #include <sys/kthread.h>
55 
56 #include <cam/cam.h>
57 #include <cam/cam_ccb.h>
58 #include <cam/cam_periph.h>
59 #include <cam/cam_queue.h>
60 #include <cam/cam_sim.h>
61 #include <cam/cam_xpt.h>
62 #include <cam/cam_xpt_sim.h>
63 #include <cam/cam_xpt_periph.h>
64 #include <cam/cam_xpt_internal.h>
65 #include <cam/cam_debug.h>
66 #include <cam/cam_compat.h>
67 
68 #include <cam/scsi/scsi_all.h>
69 #include <cam/scsi/scsi_message.h>
70 #include <cam/scsi/scsi_pass.h>
71 
72 #include <machine/md_var.h>	/* geometry translation */
73 #include <machine/stdarg.h>	/* for xpt_print below */
74 
75 #include "opt_cam.h"
76 
77 /* Wild guess based on not wanting to grow the stack too much */
78 #define XPT_PRINT_MAXLEN	512
79 #ifdef PRINTF_BUFR_SIZE
80 #define XPT_PRINT_LEN	PRINTF_BUFR_SIZE
81 #else
82 #define XPT_PRINT_LEN	128
83 #endif
84 _Static_assert(XPT_PRINT_LEN <= XPT_PRINT_MAXLEN, "XPT_PRINT_LEN is too large");
85 
86 /*
87  * This is the maximum number of high powered commands (e.g. start unit)
88  * that can be outstanding at a particular time.
89  */
90 #ifndef CAM_MAX_HIGHPOWER
91 #define CAM_MAX_HIGHPOWER  4
92 #endif
93 
94 /* Datastructures internal to the xpt layer */
95 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
96 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices");
97 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs");
98 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths");
99 
100 /* Object for defering XPT actions to a taskqueue */
101 struct xpt_task {
102 	struct task	task;
103 	void		*data1;
104 	uintptr_t	data2;
105 };
106 
107 struct xpt_softc {
108 	uint32_t		xpt_generation;
109 
110 	/* number of high powered commands that can go through right now */
111 	struct mtx		xpt_highpower_lock;
112 	STAILQ_HEAD(highpowerlist, cam_ed)	highpowerq;
113 	int			num_highpower;
114 
115 	/* queue for handling async rescan requests. */
116 	TAILQ_HEAD(, ccb_hdr) ccb_scanq;
117 	int buses_to_config;
118 	int buses_config_done;
119 	int announce_nosbuf;
120 
121 	/*
122 	 * Registered buses
123 	 *
124 	 * N.B., "busses" is an archaic spelling of "buses".  In new code
125 	 * "buses" is preferred.
126 	 */
127 	TAILQ_HEAD(,cam_eb)	xpt_busses;
128 	u_int			bus_generation;
129 
130 	struct intr_config_hook	*xpt_config_hook;
131 
132 	int			boot_delay;
133 	struct callout 		boot_callout;
134 
135 	struct mtx		xpt_topo_lock;
136 	struct mtx		xpt_lock;
137 	struct taskqueue	*xpt_taskq;
138 };
139 
140 typedef enum {
141 	DM_RET_COPY		= 0x01,
142 	DM_RET_FLAG_MASK	= 0x0f,
143 	DM_RET_NONE		= 0x00,
144 	DM_RET_STOP		= 0x10,
145 	DM_RET_DESCEND		= 0x20,
146 	DM_RET_ERROR		= 0x30,
147 	DM_RET_ACTION_MASK	= 0xf0
148 } dev_match_ret;
149 
150 typedef enum {
151 	XPT_DEPTH_BUS,
152 	XPT_DEPTH_TARGET,
153 	XPT_DEPTH_DEVICE,
154 	XPT_DEPTH_PERIPH
155 } xpt_traverse_depth;
156 
157 struct xpt_traverse_config {
158 	xpt_traverse_depth	depth;
159 	void			*tr_func;
160 	void			*tr_arg;
161 };
162 
163 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
164 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
165 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
166 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
167 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
168 
169 /* Transport layer configuration information */
170 static struct xpt_softc xsoftc;
171 
172 MTX_SYSINIT(xpt_topo_init, &xsoftc.xpt_topo_lock, "XPT topology lock", MTX_DEF);
173 
174 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN,
175            &xsoftc.boot_delay, 0, "Bus registration wait time");
176 SYSCTL_UINT(_kern_cam, OID_AUTO, xpt_generation, CTLFLAG_RD,
177 	    &xsoftc.xpt_generation, 0, "CAM peripheral generation count");
178 SYSCTL_INT(_kern_cam, OID_AUTO, announce_nosbuf, CTLFLAG_RWTUN,
179 	    &xsoftc.announce_nosbuf, 0, "Don't use sbuf for announcements");
180 
181 struct cam_doneq {
182 	struct mtx_padalign	cam_doneq_mtx;
183 	STAILQ_HEAD(, ccb_hdr)	cam_doneq;
184 	int			cam_doneq_sleep;
185 };
186 
187 static struct cam_doneq cam_doneqs[MAXCPU];
188 static int cam_num_doneqs;
189 static struct proc *cam_proc;
190 
191 SYSCTL_INT(_kern_cam, OID_AUTO, num_doneqs, CTLFLAG_RDTUN,
192            &cam_num_doneqs, 0, "Number of completion queues/threads");
193 
194 struct cam_periph *xpt_periph;
195 
196 static periph_init_t xpt_periph_init;
197 
198 static struct periph_driver xpt_driver =
199 {
200 	xpt_periph_init, "xpt",
201 	TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0,
202 	CAM_PERIPH_DRV_EARLY
203 };
204 
205 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
206 
207 static d_open_t xptopen;
208 static d_close_t xptclose;
209 static d_ioctl_t xptioctl;
210 static d_ioctl_t xptdoioctl;
211 
212 static struct cdevsw xpt_cdevsw = {
213 	.d_version =	D_VERSION,
214 	.d_flags =	0,
215 	.d_open =	xptopen,
216 	.d_close =	xptclose,
217 	.d_ioctl =	xptioctl,
218 	.d_name =	"xpt",
219 };
220 
221 /* Storage for debugging datastructures */
222 struct cam_path *cam_dpath;
223 u_int32_t cam_dflags = CAM_DEBUG_FLAGS;
224 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RWTUN,
225 	&cam_dflags, 0, "Enabled debug flags");
226 u_int32_t cam_debug_delay = CAM_DEBUG_DELAY;
227 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RWTUN,
228 	&cam_debug_delay, 0, "Delay in us after each debug message");
229 
230 /* Our boot-time initialization hook */
231 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
232 
233 static moduledata_t cam_moduledata = {
234 	"cam",
235 	cam_module_event_handler,
236 	NULL
237 };
238 
239 static int	xpt_init(void *);
240 
241 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
242 MODULE_VERSION(cam, 1);
243 
244 
245 static void		xpt_async_bcast(struct async_list *async_head,
246 					u_int32_t async_code,
247 					struct cam_path *path,
248 					void *async_arg);
249 static path_id_t xptnextfreepathid(void);
250 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
251 static union ccb *xpt_get_ccb(struct cam_periph *periph);
252 static union ccb *xpt_get_ccb_nowait(struct cam_periph *periph);
253 static void	 xpt_run_allocq(struct cam_periph *periph, int sleep);
254 static void	 xpt_run_allocq_task(void *context, int pending);
255 static void	 xpt_run_devq(struct cam_devq *devq);
256 static timeout_t xpt_release_devq_timeout;
257 static void	 xpt_release_simq_timeout(void *arg) __unused;
258 static void	 xpt_acquire_bus(struct cam_eb *bus);
259 static void	 xpt_release_bus(struct cam_eb *bus);
260 static uint32_t	 xpt_freeze_devq_device(struct cam_ed *dev, u_int count);
261 static int	 xpt_release_devq_device(struct cam_ed *dev, u_int count,
262 		    int run_queue);
263 static struct cam_et*
264 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
265 static void	 xpt_acquire_target(struct cam_et *target);
266 static void	 xpt_release_target(struct cam_et *target);
267 static struct cam_eb*
268 		 xpt_find_bus(path_id_t path_id);
269 static struct cam_et*
270 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
271 static struct cam_ed*
272 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
273 static void	 xpt_config(void *arg);
274 static int	 xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
275 				 u_int32_t new_priority);
276 static xpt_devicefunc_t xptpassannouncefunc;
277 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
278 static void	 xptpoll(struct cam_sim *sim);
279 static void	 camisr_runqueue(void);
280 static void	 xpt_done_process(struct ccb_hdr *ccb_h);
281 static void	 xpt_done_td(void *);
282 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
283 				    u_int num_patterns, struct cam_eb *bus);
284 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
285 				       u_int num_patterns,
286 				       struct cam_ed *device);
287 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
288 				       u_int num_patterns,
289 				       struct cam_periph *periph);
290 static xpt_busfunc_t	xptedtbusfunc;
291 static xpt_targetfunc_t	xptedttargetfunc;
292 static xpt_devicefunc_t	xptedtdevicefunc;
293 static xpt_periphfunc_t	xptedtperiphfunc;
294 static xpt_pdrvfunc_t	xptplistpdrvfunc;
295 static xpt_periphfunc_t	xptplistperiphfunc;
296 static int		xptedtmatch(struct ccb_dev_match *cdm);
297 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
298 static int		xptbustraverse(struct cam_eb *start_bus,
299 				       xpt_busfunc_t *tr_func, void *arg);
300 static int		xpttargettraverse(struct cam_eb *bus,
301 					  struct cam_et *start_target,
302 					  xpt_targetfunc_t *tr_func, void *arg);
303 static int		xptdevicetraverse(struct cam_et *target,
304 					  struct cam_ed *start_device,
305 					  xpt_devicefunc_t *tr_func, void *arg);
306 static int		xptperiphtraverse(struct cam_ed *device,
307 					  struct cam_periph *start_periph,
308 					  xpt_periphfunc_t *tr_func, void *arg);
309 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
310 					xpt_pdrvfunc_t *tr_func, void *arg);
311 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
312 					    struct cam_periph *start_periph,
313 					    xpt_periphfunc_t *tr_func,
314 					    void *arg);
315 static xpt_busfunc_t	xptdefbusfunc;
316 static xpt_targetfunc_t	xptdeftargetfunc;
317 static xpt_devicefunc_t	xptdefdevicefunc;
318 static xpt_periphfunc_t	xptdefperiphfunc;
319 static void		xpt_finishconfig_task(void *context, int pending);
320 static void		xpt_dev_async_default(u_int32_t async_code,
321 					      struct cam_eb *bus,
322 					      struct cam_et *target,
323 					      struct cam_ed *device,
324 					      void *async_arg);
325 static struct cam_ed *	xpt_alloc_device_default(struct cam_eb *bus,
326 						 struct cam_et *target,
327 						 lun_id_t lun_id);
328 static xpt_devicefunc_t	xptsetasyncfunc;
329 static xpt_busfunc_t	xptsetasyncbusfunc;
330 static cam_status	xptregister(struct cam_periph *periph,
331 				    void *arg);
332 static __inline int device_is_queued(struct cam_ed *device);
333 
334 static __inline int
335 xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev)
336 {
337 	int	retval;
338 
339 	mtx_assert(&devq->send_mtx, MA_OWNED);
340 	if ((dev->ccbq.queue.entries > 0) &&
341 	    (dev->ccbq.dev_openings > 0) &&
342 	    (dev->ccbq.queue.qfrozen_cnt == 0)) {
343 		/*
344 		 * The priority of a device waiting for controller
345 		 * resources is that of the highest priority CCB
346 		 * enqueued.
347 		 */
348 		retval =
349 		    xpt_schedule_dev(&devq->send_queue,
350 				     &dev->devq_entry,
351 				     CAMQ_GET_PRIO(&dev->ccbq.queue));
352 	} else {
353 		retval = 0;
354 	}
355 	return (retval);
356 }
357 
358 static __inline int
359 device_is_queued(struct cam_ed *device)
360 {
361 	return (device->devq_entry.index != CAM_UNQUEUED_INDEX);
362 }
363 
364 static void
365 xpt_periph_init()
366 {
367 	make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
368 }
369 
370 static int
371 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td)
372 {
373 
374 	/*
375 	 * Only allow read-write access.
376 	 */
377 	if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
378 		return(EPERM);
379 
380 	/*
381 	 * We don't allow nonblocking access.
382 	 */
383 	if ((flags & O_NONBLOCK) != 0) {
384 		printf("%s: can't do nonblocking access\n", devtoname(dev));
385 		return(ENODEV);
386 	}
387 
388 	return(0);
389 }
390 
391 static int
392 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td)
393 {
394 
395 	return(0);
396 }
397 
398 /*
399  * Don't automatically grab the xpt softc lock here even though this is going
400  * through the xpt device.  The xpt device is really just a back door for
401  * accessing other devices and SIMs, so the right thing to do is to grab
402  * the appropriate SIM lock once the bus/SIM is located.
403  */
404 static int
405 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
406 {
407 	int error;
408 
409 	if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) {
410 		error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl);
411 	}
412 	return (error);
413 }
414 
415 static int
416 xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
417 {
418 	int error;
419 
420 	error = 0;
421 
422 	switch(cmd) {
423 	/*
424 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
425 	 * to accept CCB types that don't quite make sense to send through a
426 	 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated
427 	 * in the CAM spec.
428 	 */
429 	case CAMIOCOMMAND: {
430 		union ccb *ccb;
431 		union ccb *inccb;
432 		struct cam_eb *bus;
433 
434 		inccb = (union ccb *)addr;
435 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
436 		if (inccb->ccb_h.func_code == XPT_SCSI_IO)
437 			inccb->csio.bio = NULL;
438 #endif
439 
440 		if (inccb->ccb_h.flags & CAM_UNLOCKED)
441 			return (EINVAL);
442 
443 		bus = xpt_find_bus(inccb->ccb_h.path_id);
444 		if (bus == NULL)
445 			return (EINVAL);
446 
447 		switch (inccb->ccb_h.func_code) {
448 		case XPT_SCAN_BUS:
449 		case XPT_RESET_BUS:
450 			if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD ||
451 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
452 				xpt_release_bus(bus);
453 				return (EINVAL);
454 			}
455 			break;
456 		case XPT_SCAN_TGT:
457 			if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD ||
458 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
459 				xpt_release_bus(bus);
460 				return (EINVAL);
461 			}
462 			break;
463 		default:
464 			break;
465 		}
466 
467 		switch(inccb->ccb_h.func_code) {
468 		case XPT_SCAN_BUS:
469 		case XPT_RESET_BUS:
470 		case XPT_PATH_INQ:
471 		case XPT_ENG_INQ:
472 		case XPT_SCAN_LUN:
473 		case XPT_SCAN_TGT:
474 
475 			ccb = xpt_alloc_ccb();
476 
477 			/*
478 			 * Create a path using the bus, target, and lun the
479 			 * user passed in.
480 			 */
481 			if (xpt_create_path(&ccb->ccb_h.path, NULL,
482 					    inccb->ccb_h.path_id,
483 					    inccb->ccb_h.target_id,
484 					    inccb->ccb_h.target_lun) !=
485 					    CAM_REQ_CMP){
486 				error = EINVAL;
487 				xpt_free_ccb(ccb);
488 				break;
489 			}
490 			/* Ensure all of our fields are correct */
491 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
492 				      inccb->ccb_h.pinfo.priority);
493 			xpt_merge_ccb(ccb, inccb);
494 			xpt_path_lock(ccb->ccb_h.path);
495 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
496 			xpt_path_unlock(ccb->ccb_h.path);
497 			bcopy(ccb, inccb, sizeof(union ccb));
498 			xpt_free_path(ccb->ccb_h.path);
499 			xpt_free_ccb(ccb);
500 			break;
501 
502 		case XPT_DEBUG: {
503 			union ccb ccb;
504 
505 			/*
506 			 * This is an immediate CCB, so it's okay to
507 			 * allocate it on the stack.
508 			 */
509 
510 			/*
511 			 * Create a path using the bus, target, and lun the
512 			 * user passed in.
513 			 */
514 			if (xpt_create_path(&ccb.ccb_h.path, NULL,
515 					    inccb->ccb_h.path_id,
516 					    inccb->ccb_h.target_id,
517 					    inccb->ccb_h.target_lun) !=
518 					    CAM_REQ_CMP){
519 				error = EINVAL;
520 				break;
521 			}
522 			/* Ensure all of our fields are correct */
523 			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
524 				      inccb->ccb_h.pinfo.priority);
525 			xpt_merge_ccb(&ccb, inccb);
526 			xpt_action(&ccb);
527 			bcopy(&ccb, inccb, sizeof(union ccb));
528 			xpt_free_path(ccb.ccb_h.path);
529 			break;
530 
531 		}
532 		case XPT_DEV_MATCH: {
533 			struct cam_periph_map_info mapinfo;
534 			struct cam_path *old_path;
535 
536 			/*
537 			 * We can't deal with physical addresses for this
538 			 * type of transaction.
539 			 */
540 			if ((inccb->ccb_h.flags & CAM_DATA_MASK) !=
541 			    CAM_DATA_VADDR) {
542 				error = EINVAL;
543 				break;
544 			}
545 
546 			/*
547 			 * Save this in case the caller had it set to
548 			 * something in particular.
549 			 */
550 			old_path = inccb->ccb_h.path;
551 
552 			/*
553 			 * We really don't need a path for the matching
554 			 * code.  The path is needed because of the
555 			 * debugging statements in xpt_action().  They
556 			 * assume that the CCB has a valid path.
557 			 */
558 			inccb->ccb_h.path = xpt_periph->path;
559 
560 			bzero(&mapinfo, sizeof(mapinfo));
561 
562 			/*
563 			 * Map the pattern and match buffers into kernel
564 			 * virtual address space.
565 			 */
566 			error = cam_periph_mapmem(inccb, &mapinfo, MAXPHYS);
567 
568 			if (error) {
569 				inccb->ccb_h.path = old_path;
570 				break;
571 			}
572 
573 			/*
574 			 * This is an immediate CCB, we can send it on directly.
575 			 */
576 			xpt_action(inccb);
577 
578 			/*
579 			 * Map the buffers back into user space.
580 			 */
581 			cam_periph_unmapmem(inccb, &mapinfo);
582 
583 			inccb->ccb_h.path = old_path;
584 
585 			error = 0;
586 			break;
587 		}
588 		default:
589 			error = ENOTSUP;
590 			break;
591 		}
592 		xpt_release_bus(bus);
593 		break;
594 	}
595 	/*
596 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
597 	 * with the periphal driver name and unit name filled in.  The other
598 	 * fields don't really matter as input.  The passthrough driver name
599 	 * ("pass"), and unit number are passed back in the ccb.  The current
600 	 * device generation number, and the index into the device peripheral
601 	 * driver list, and the status are also passed back.  Note that
602 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
603 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
604 	 * (or rather should be) impossible for the device peripheral driver
605 	 * list to change since we look at the whole thing in one pass, and
606 	 * we do it with lock protection.
607 	 *
608 	 */
609 	case CAMGETPASSTHRU: {
610 		union ccb *ccb;
611 		struct cam_periph *periph;
612 		struct periph_driver **p_drv;
613 		char   *name;
614 		u_int unit;
615 		int base_periph_found;
616 
617 		ccb = (union ccb *)addr;
618 		unit = ccb->cgdl.unit_number;
619 		name = ccb->cgdl.periph_name;
620 		base_periph_found = 0;
621 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
622 		if (ccb->ccb_h.func_code == XPT_SCSI_IO)
623 			ccb->csio.bio = NULL;
624 #endif
625 
626 		/*
627 		 * Sanity check -- make sure we don't get a null peripheral
628 		 * driver name.
629 		 */
630 		if (*ccb->cgdl.periph_name == '\0') {
631 			error = EINVAL;
632 			break;
633 		}
634 
635 		/* Keep the list from changing while we traverse it */
636 		xpt_lock_buses();
637 
638 		/* first find our driver in the list of drivers */
639 		for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
640 			if (strcmp((*p_drv)->driver_name, name) == 0)
641 				break;
642 
643 		if (*p_drv == NULL) {
644 			xpt_unlock_buses();
645 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
646 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
647 			*ccb->cgdl.periph_name = '\0';
648 			ccb->cgdl.unit_number = 0;
649 			error = ENOENT;
650 			break;
651 		}
652 
653 		/*
654 		 * Run through every peripheral instance of this driver
655 		 * and check to see whether it matches the unit passed
656 		 * in by the user.  If it does, get out of the loops and
657 		 * find the passthrough driver associated with that
658 		 * peripheral driver.
659 		 */
660 		for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
661 		     periph = TAILQ_NEXT(periph, unit_links)) {
662 
663 			if (periph->unit_number == unit)
664 				break;
665 		}
666 		/*
667 		 * If we found the peripheral driver that the user passed
668 		 * in, go through all of the peripheral drivers for that
669 		 * particular device and look for a passthrough driver.
670 		 */
671 		if (periph != NULL) {
672 			struct cam_ed *device;
673 			int i;
674 
675 			base_periph_found = 1;
676 			device = periph->path->device;
677 			for (i = 0, periph = SLIST_FIRST(&device->periphs);
678 			     periph != NULL;
679 			     periph = SLIST_NEXT(periph, periph_links), i++) {
680 				/*
681 				 * Check to see whether we have a
682 				 * passthrough device or not.
683 				 */
684 				if (strcmp(periph->periph_name, "pass") == 0) {
685 					/*
686 					 * Fill in the getdevlist fields.
687 					 */
688 					strcpy(ccb->cgdl.periph_name,
689 					       periph->periph_name);
690 					ccb->cgdl.unit_number =
691 						periph->unit_number;
692 					if (SLIST_NEXT(periph, periph_links))
693 						ccb->cgdl.status =
694 							CAM_GDEVLIST_MORE_DEVS;
695 					else
696 						ccb->cgdl.status =
697 						       CAM_GDEVLIST_LAST_DEVICE;
698 					ccb->cgdl.generation =
699 						device->generation;
700 					ccb->cgdl.index = i;
701 					/*
702 					 * Fill in some CCB header fields
703 					 * that the user may want.
704 					 */
705 					ccb->ccb_h.path_id =
706 						periph->path->bus->path_id;
707 					ccb->ccb_h.target_id =
708 						periph->path->target->target_id;
709 					ccb->ccb_h.target_lun =
710 						periph->path->device->lun_id;
711 					ccb->ccb_h.status = CAM_REQ_CMP;
712 					break;
713 				}
714 			}
715 		}
716 
717 		/*
718 		 * If the periph is null here, one of two things has
719 		 * happened.  The first possibility is that we couldn't
720 		 * find the unit number of the particular peripheral driver
721 		 * that the user is asking about.  e.g. the user asks for
722 		 * the passthrough driver for "da11".  We find the list of
723 		 * "da" peripherals all right, but there is no unit 11.
724 		 * The other possibility is that we went through the list
725 		 * of peripheral drivers attached to the device structure,
726 		 * but didn't find one with the name "pass".  Either way,
727 		 * we return ENOENT, since we couldn't find something.
728 		 */
729 		if (periph == NULL) {
730 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
731 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
732 			*ccb->cgdl.periph_name = '\0';
733 			ccb->cgdl.unit_number = 0;
734 			error = ENOENT;
735 			/*
736 			 * It is unfortunate that this is even necessary,
737 			 * but there are many, many clueless users out there.
738 			 * If this is true, the user is looking for the
739 			 * passthrough driver, but doesn't have one in his
740 			 * kernel.
741 			 */
742 			if (base_periph_found == 1) {
743 				printf("xptioctl: pass driver is not in the "
744 				       "kernel\n");
745 				printf("xptioctl: put \"device pass\" in "
746 				       "your kernel config file\n");
747 			}
748 		}
749 		xpt_unlock_buses();
750 		break;
751 		}
752 	default:
753 		error = ENOTTY;
754 		break;
755 	}
756 
757 	return(error);
758 }
759 
760 static int
761 cam_module_event_handler(module_t mod, int what, void *arg)
762 {
763 	int error;
764 
765 	switch (what) {
766 	case MOD_LOAD:
767 		if ((error = xpt_init(NULL)) != 0)
768 			return (error);
769 		break;
770 	case MOD_UNLOAD:
771 		return EBUSY;
772 	default:
773 		return EOPNOTSUPP;
774 	}
775 
776 	return 0;
777 }
778 
779 static struct xpt_proto *
780 xpt_proto_find(cam_proto proto)
781 {
782 	struct xpt_proto **pp;
783 
784 	SET_FOREACH(pp, cam_xpt_proto_set) {
785 		if ((*pp)->proto == proto)
786 			return *pp;
787 	}
788 
789 	return NULL;
790 }
791 
792 static void
793 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb)
794 {
795 
796 	if (done_ccb->ccb_h.ppriv_ptr1 == NULL) {
797 		xpt_free_path(done_ccb->ccb_h.path);
798 		xpt_free_ccb(done_ccb);
799 	} else {
800 		done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1;
801 		(*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
802 	}
803 	xpt_release_boot();
804 }
805 
806 /* thread to handle bus rescans */
807 static void
808 xpt_scanner_thread(void *dummy)
809 {
810 	union ccb	*ccb;
811 	struct cam_path	 path;
812 
813 	xpt_lock_buses();
814 	for (;;) {
815 		if (TAILQ_EMPTY(&xsoftc.ccb_scanq))
816 			msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO,
817 			       "-", 0);
818 		if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
819 			TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
820 			xpt_unlock_buses();
821 
822 			/*
823 			 * Since lock can be dropped inside and path freed
824 			 * by completion callback even before return here,
825 			 * take our own path copy for reference.
826 			 */
827 			xpt_copy_path(&path, ccb->ccb_h.path);
828 			xpt_path_lock(&path);
829 			xpt_action(ccb);
830 			xpt_path_unlock(&path);
831 			xpt_release_path(&path);
832 
833 			xpt_lock_buses();
834 		}
835 	}
836 }
837 
838 void
839 xpt_rescan(union ccb *ccb)
840 {
841 	struct ccb_hdr *hdr;
842 
843 	/* Prepare request */
844 	if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD &&
845 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
846 		ccb->ccb_h.func_code = XPT_SCAN_BUS;
847 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
848 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
849 		ccb->ccb_h.func_code = XPT_SCAN_TGT;
850 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
851 	    ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD)
852 		ccb->ccb_h.func_code = XPT_SCAN_LUN;
853 	else {
854 		xpt_print(ccb->ccb_h.path, "illegal scan path\n");
855 		xpt_free_path(ccb->ccb_h.path);
856 		xpt_free_ccb(ccb);
857 		return;
858 	}
859 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
860 	    ("xpt_rescan: func %#x %s\n", ccb->ccb_h.func_code,
861  		xpt_action_name(ccb->ccb_h.func_code)));
862 
863 	ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp;
864 	ccb->ccb_h.cbfcnp = xpt_rescan_done;
865 	xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT);
866 	/* Don't make duplicate entries for the same paths. */
867 	xpt_lock_buses();
868 	if (ccb->ccb_h.ppriv_ptr1 == NULL) {
869 		TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
870 			if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
871 				wakeup(&xsoftc.ccb_scanq);
872 				xpt_unlock_buses();
873 				xpt_print(ccb->ccb_h.path, "rescan already queued\n");
874 				xpt_free_path(ccb->ccb_h.path);
875 				xpt_free_ccb(ccb);
876 				return;
877 			}
878 		}
879 	}
880 	TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
881 	xsoftc.buses_to_config++;
882 	wakeup(&xsoftc.ccb_scanq);
883 	xpt_unlock_buses();
884 }
885 
886 /* Functions accessed by the peripheral drivers */
887 static int
888 xpt_init(void *dummy)
889 {
890 	struct cam_sim *xpt_sim;
891 	struct cam_path *path;
892 	struct cam_devq *devq;
893 	cam_status status;
894 	int error, i;
895 
896 	TAILQ_INIT(&xsoftc.xpt_busses);
897 	TAILQ_INIT(&xsoftc.ccb_scanq);
898 	STAILQ_INIT(&xsoftc.highpowerq);
899 	xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
900 
901 	mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF);
902 	mtx_init(&xsoftc.xpt_highpower_lock, "XPT highpower lock", NULL, MTX_DEF);
903 	xsoftc.xpt_taskq = taskqueue_create("CAM XPT task", M_WAITOK,
904 	    taskqueue_thread_enqueue, /*context*/&xsoftc.xpt_taskq);
905 
906 #ifdef CAM_BOOT_DELAY
907 	/*
908 	 * Override this value at compile time to assist our users
909 	 * who don't use loader to boot a kernel.
910 	 */
911 	xsoftc.boot_delay = CAM_BOOT_DELAY;
912 #endif
913 	/*
914 	 * The xpt layer is, itself, the equivalent of a SIM.
915 	 * Allow 16 ccbs in the ccb pool for it.  This should
916 	 * give decent parallelism when we probe buses and
917 	 * perform other XPT functions.
918 	 */
919 	devq = cam_simq_alloc(16);
920 	xpt_sim = cam_sim_alloc(xptaction,
921 				xptpoll,
922 				"xpt",
923 				/*softc*/NULL,
924 				/*unit*/0,
925 				/*mtx*/&xsoftc.xpt_lock,
926 				/*max_dev_transactions*/0,
927 				/*max_tagged_dev_transactions*/0,
928 				devq);
929 	if (xpt_sim == NULL)
930 		return (ENOMEM);
931 
932 	mtx_lock(&xsoftc.xpt_lock);
933 	if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) {
934 		mtx_unlock(&xsoftc.xpt_lock);
935 		printf("xpt_init: xpt_bus_register failed with status %#x,"
936 		       " failing attach\n", status);
937 		return (EINVAL);
938 	}
939 	mtx_unlock(&xsoftc.xpt_lock);
940 
941 	/*
942 	 * Looking at the XPT from the SIM layer, the XPT is
943 	 * the equivalent of a peripheral driver.  Allocate
944 	 * a peripheral driver entry for us.
945 	 */
946 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
947 				      CAM_TARGET_WILDCARD,
948 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
949 		printf("xpt_init: xpt_create_path failed with status %#x,"
950 		       " failing attach\n", status);
951 		return (EINVAL);
952 	}
953 	xpt_path_lock(path);
954 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
955 			 path, NULL, 0, xpt_sim);
956 	xpt_path_unlock(path);
957 	xpt_free_path(path);
958 
959 	if (cam_num_doneqs < 1)
960 		cam_num_doneqs = 1 + mp_ncpus / 6;
961 	else if (cam_num_doneqs > MAXCPU)
962 		cam_num_doneqs = MAXCPU;
963 	for (i = 0; i < cam_num_doneqs; i++) {
964 		mtx_init(&cam_doneqs[i].cam_doneq_mtx, "CAM doneq", NULL,
965 		    MTX_DEF);
966 		STAILQ_INIT(&cam_doneqs[i].cam_doneq);
967 		error = kproc_kthread_add(xpt_done_td, &cam_doneqs[i],
968 		    &cam_proc, NULL, 0, 0, "cam", "doneq%d", i);
969 		if (error != 0) {
970 			cam_num_doneqs = i;
971 			break;
972 		}
973 	}
974 	if (cam_num_doneqs < 1) {
975 		printf("xpt_init: Cannot init completion queues "
976 		       "- failing attach\n");
977 		return (ENOMEM);
978 	}
979 	/*
980 	 * Register a callback for when interrupts are enabled.
981 	 */
982 	xsoftc.xpt_config_hook =
983 	    (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook),
984 					      M_CAMXPT, M_NOWAIT | M_ZERO);
985 	if (xsoftc.xpt_config_hook == NULL) {
986 		printf("xpt_init: Cannot malloc config hook "
987 		       "- failing attach\n");
988 		return (ENOMEM);
989 	}
990 	xsoftc.xpt_config_hook->ich_func = xpt_config;
991 	if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) {
992 		free (xsoftc.xpt_config_hook, M_CAMXPT);
993 		printf("xpt_init: config_intrhook_establish failed "
994 		       "- failing attach\n");
995 	}
996 
997 	return (0);
998 }
999 
1000 static cam_status
1001 xptregister(struct cam_periph *periph, void *arg)
1002 {
1003 	struct cam_sim *xpt_sim;
1004 
1005 	if (periph == NULL) {
1006 		printf("xptregister: periph was NULL!!\n");
1007 		return(CAM_REQ_CMP_ERR);
1008 	}
1009 
1010 	xpt_sim = (struct cam_sim *)arg;
1011 	xpt_sim->softc = periph;
1012 	xpt_periph = periph;
1013 	periph->softc = NULL;
1014 
1015 	return(CAM_REQ_CMP);
1016 }
1017 
1018 int32_t
1019 xpt_add_periph(struct cam_periph *periph)
1020 {
1021 	struct cam_ed *device;
1022 	int32_t	 status;
1023 
1024 	TASK_INIT(&periph->periph_run_task, 0, xpt_run_allocq_task, periph);
1025 	device = periph->path->device;
1026 	status = CAM_REQ_CMP;
1027 	if (device != NULL) {
1028 		mtx_lock(&device->target->bus->eb_mtx);
1029 		device->generation++;
1030 		SLIST_INSERT_HEAD(&device->periphs, periph, periph_links);
1031 		mtx_unlock(&device->target->bus->eb_mtx);
1032 		atomic_add_32(&xsoftc.xpt_generation, 1);
1033 	}
1034 
1035 	return (status);
1036 }
1037 
1038 void
1039 xpt_remove_periph(struct cam_periph *periph)
1040 {
1041 	struct cam_ed *device;
1042 
1043 	device = periph->path->device;
1044 	if (device != NULL) {
1045 		mtx_lock(&device->target->bus->eb_mtx);
1046 		device->generation++;
1047 		SLIST_REMOVE(&device->periphs, periph, cam_periph, periph_links);
1048 		mtx_unlock(&device->target->bus->eb_mtx);
1049 		atomic_add_32(&xsoftc.xpt_generation, 1);
1050 	}
1051 }
1052 
1053 
1054 void
1055 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1056 {
1057 	struct	cam_path *path = periph->path;
1058 	struct  xpt_proto *proto;
1059 
1060 	cam_periph_assert(periph, MA_OWNED);
1061 	periph->flags |= CAM_PERIPH_ANNOUNCED;
1062 
1063 	printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1064 	       periph->periph_name, periph->unit_number,
1065 	       path->bus->sim->sim_name,
1066 	       path->bus->sim->unit_number,
1067 	       path->bus->sim->bus_id,
1068 	       path->bus->path_id,
1069 	       path->target->target_id,
1070 	       (uintmax_t)path->device->lun_id);
1071 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1072 	proto = xpt_proto_find(path->device->protocol);
1073 	if (proto)
1074 		proto->ops->announce(path->device);
1075 	else
1076 		printf("%s%d: Unknown protocol device %d\n",
1077 		    periph->periph_name, periph->unit_number,
1078 		    path->device->protocol);
1079 	if (path->device->serial_num_len > 0) {
1080 		/* Don't wrap the screen  - print only the first 60 chars */
1081 		printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1082 		       periph->unit_number, path->device->serial_num);
1083 	}
1084 	/* Announce transport details. */
1085 	path->bus->xport->ops->announce(periph);
1086 	/* Announce command queueing. */
1087 	if (path->device->inq_flags & SID_CmdQue
1088 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1089 		printf("%s%d: Command Queueing enabled\n",
1090 		       periph->periph_name, periph->unit_number);
1091 	}
1092 	/* Announce caller's details if they've passed in. */
1093 	if (announce_string != NULL)
1094 		printf("%s%d: %s\n", periph->periph_name,
1095 		       periph->unit_number, announce_string);
1096 }
1097 
1098 void
1099 xpt_announce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb,
1100     char *announce_string)
1101 {
1102 	struct	cam_path *path = periph->path;
1103 	struct  xpt_proto *proto;
1104 
1105 	cam_periph_assert(periph, MA_OWNED);
1106 	periph->flags |= CAM_PERIPH_ANNOUNCED;
1107 
1108 	/* Fall back to the non-sbuf method if necessary */
1109 	if (xsoftc.announce_nosbuf != 0) {
1110 		xpt_announce_periph(periph, announce_string);
1111 		return;
1112 	}
1113 	proto = xpt_proto_find(path->device->protocol);
1114 	if (((proto != NULL) && (proto->ops->announce_sbuf == NULL)) ||
1115 	    (path->bus->xport->ops->announce_sbuf == NULL)) {
1116 		xpt_announce_periph(periph, announce_string);
1117 		return;
1118 	}
1119 
1120 	sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1121 	    periph->periph_name, periph->unit_number,
1122 	    path->bus->sim->sim_name,
1123 	    path->bus->sim->unit_number,
1124 	    path->bus->sim->bus_id,
1125 	    path->bus->path_id,
1126 	    path->target->target_id,
1127 	    (uintmax_t)path->device->lun_id);
1128 	sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number);
1129 
1130 	if (proto)
1131 		proto->ops->announce_sbuf(path->device, sb);
1132 	else
1133 		sbuf_printf(sb, "%s%d: Unknown protocol device %d\n",
1134 		    periph->periph_name, periph->unit_number,
1135 		    path->device->protocol);
1136 	if (path->device->serial_num_len > 0) {
1137 		/* Don't wrap the screen  - print only the first 60 chars */
1138 		sbuf_printf(sb, "%s%d: Serial Number %.60s\n",
1139 		    periph->periph_name, periph->unit_number,
1140 		    path->device->serial_num);
1141 	}
1142 	/* Announce transport details. */
1143 	path->bus->xport->ops->announce_sbuf(periph, sb);
1144 	/* Announce command queueing. */
1145 	if (path->device->inq_flags & SID_CmdQue
1146 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1147 		sbuf_printf(sb, "%s%d: Command Queueing enabled\n",
1148 		    periph->periph_name, periph->unit_number);
1149 	}
1150 	/* Announce caller's details if they've passed in. */
1151 	if (announce_string != NULL)
1152 		sbuf_printf(sb, "%s%d: %s\n", periph->periph_name,
1153 		    periph->unit_number, announce_string);
1154 }
1155 
1156 void
1157 xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string)
1158 {
1159 	if (quirks != 0) {
1160 		printf("%s%d: quirks=0x%b\n", periph->periph_name,
1161 		    periph->unit_number, quirks, bit_string);
1162 	}
1163 }
1164 
1165 void
1166 xpt_announce_quirks_sbuf(struct cam_periph *periph, struct sbuf *sb,
1167 			 int quirks, char *bit_string)
1168 {
1169 	if (xsoftc.announce_nosbuf != 0) {
1170 		xpt_announce_quirks(periph, quirks, bit_string);
1171 		return;
1172 	}
1173 
1174 	if (quirks != 0) {
1175 		sbuf_printf(sb, "%s%d: quirks=0x%b\n", periph->periph_name,
1176 		    periph->unit_number, quirks, bit_string);
1177 	}
1178 }
1179 
1180 void
1181 xpt_denounce_periph(struct cam_periph *periph)
1182 {
1183 	struct	cam_path *path = periph->path;
1184 	struct  xpt_proto *proto;
1185 
1186 	cam_periph_assert(periph, MA_OWNED);
1187 	printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1188 	       periph->periph_name, periph->unit_number,
1189 	       path->bus->sim->sim_name,
1190 	       path->bus->sim->unit_number,
1191 	       path->bus->sim->bus_id,
1192 	       path->bus->path_id,
1193 	       path->target->target_id,
1194 	       (uintmax_t)path->device->lun_id);
1195 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1196 	proto = xpt_proto_find(path->device->protocol);
1197 	if (proto)
1198 		proto->ops->denounce(path->device);
1199 	else
1200 		printf("%s%d: Unknown protocol device %d\n",
1201 		    periph->periph_name, periph->unit_number,
1202 		    path->device->protocol);
1203 	if (path->device->serial_num_len > 0)
1204 		printf(" s/n %.60s", path->device->serial_num);
1205 	printf(" detached\n");
1206 }
1207 
1208 void
1209 xpt_denounce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb)
1210 {
1211 	struct cam_path *path = periph->path;
1212 	struct xpt_proto *proto;
1213 
1214 	cam_periph_assert(periph, MA_OWNED);
1215 
1216 	/* Fall back to the non-sbuf method if necessary */
1217 	if (xsoftc.announce_nosbuf != 0) {
1218 		xpt_denounce_periph(periph);
1219 		return;
1220 	}
1221 	proto = xpt_proto_find(path->device->protocol);
1222 	if ((proto != NULL) && (proto->ops->denounce_sbuf == NULL)) {
1223 		xpt_denounce_periph(periph);
1224 		return;
1225 	}
1226 
1227 	sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1228 	    periph->periph_name, periph->unit_number,
1229 	    path->bus->sim->sim_name,
1230 	    path->bus->sim->unit_number,
1231 	    path->bus->sim->bus_id,
1232 	    path->bus->path_id,
1233 	    path->target->target_id,
1234 	    (uintmax_t)path->device->lun_id);
1235 	sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number);
1236 
1237 	if (proto)
1238 		proto->ops->denounce_sbuf(path->device, sb);
1239 	else
1240 		sbuf_printf(sb, "%s%d: Unknown protocol device %d\n",
1241 		    periph->periph_name, periph->unit_number,
1242 		    path->device->protocol);
1243 	if (path->device->serial_num_len > 0)
1244 		sbuf_printf(sb, " s/n %.60s", path->device->serial_num);
1245 	sbuf_printf(sb, " detached\n");
1246 }
1247 
1248 int
1249 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path)
1250 {
1251 	int ret = -1, l, o;
1252 	struct ccb_dev_advinfo cdai;
1253 	struct scsi_vpd_id_descriptor *idd;
1254 
1255 	xpt_path_assert(path, MA_OWNED);
1256 
1257 	memset(&cdai, 0, sizeof(cdai));
1258 	xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL);
1259 	cdai.ccb_h.func_code = XPT_DEV_ADVINFO;
1260 	cdai.flags = CDAI_FLAG_NONE;
1261 	cdai.bufsiz = len;
1262 
1263 	if (!strcmp(attr, "GEOM::ident"))
1264 		cdai.buftype = CDAI_TYPE_SERIAL_NUM;
1265 	else if (!strcmp(attr, "GEOM::physpath"))
1266 		cdai.buftype = CDAI_TYPE_PHYS_PATH;
1267 	else if (strcmp(attr, "GEOM::lunid") == 0 ||
1268 		 strcmp(attr, "GEOM::lunname") == 0) {
1269 		cdai.buftype = CDAI_TYPE_SCSI_DEVID;
1270 		cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN;
1271 	} else
1272 		goto out;
1273 
1274 	cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT|M_ZERO);
1275 	if (cdai.buf == NULL) {
1276 		ret = ENOMEM;
1277 		goto out;
1278 	}
1279 	xpt_action((union ccb *)&cdai); /* can only be synchronous */
1280 	if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0)
1281 		cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE);
1282 	if (cdai.provsiz == 0)
1283 		goto out;
1284 	if (cdai.buftype == CDAI_TYPE_SCSI_DEVID) {
1285 		if (strcmp(attr, "GEOM::lunid") == 0) {
1286 			idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1287 			    cdai.provsiz, scsi_devid_is_lun_naa);
1288 			if (idd == NULL)
1289 				idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1290 				    cdai.provsiz, scsi_devid_is_lun_eui64);
1291 			if (idd == NULL)
1292 				idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1293 				    cdai.provsiz, scsi_devid_is_lun_uuid);
1294 			if (idd == NULL)
1295 				idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1296 				    cdai.provsiz, scsi_devid_is_lun_md5);
1297 		} else
1298 			idd = NULL;
1299 		if (idd == NULL)
1300 			idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1301 			    cdai.provsiz, scsi_devid_is_lun_t10);
1302 		if (idd == NULL)
1303 			idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1304 			    cdai.provsiz, scsi_devid_is_lun_name);
1305 		if (idd == NULL)
1306 			goto out;
1307 		ret = 0;
1308 		if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_ASCII) {
1309 			if (idd->length < len) {
1310 				for (l = 0; l < idd->length; l++)
1311 					buf[l] = idd->identifier[l] ?
1312 					    idd->identifier[l] : ' ';
1313 				buf[l] = 0;
1314 			} else
1315 				ret = EFAULT;
1316 		} else if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_UTF8) {
1317 			l = strnlen(idd->identifier, idd->length);
1318 			if (l < len) {
1319 				bcopy(idd->identifier, buf, l);
1320 				buf[l] = 0;
1321 			} else
1322 				ret = EFAULT;
1323 		} else if ((idd->id_type & SVPD_ID_TYPE_MASK) == SVPD_ID_TYPE_UUID
1324 		    && idd->identifier[0] == 0x10) {
1325 			if ((idd->length - 2) * 2 + 4 < len) {
1326 				for (l = 2, o = 0; l < idd->length; l++) {
1327 					if (l == 6 || l == 8 || l == 10 || l == 12)
1328 					    o += sprintf(buf + o, "-");
1329 					o += sprintf(buf + o, "%02x",
1330 					    idd->identifier[l]);
1331 				}
1332 			} else
1333 				ret = EFAULT;
1334 		} else {
1335 			if (idd->length * 2 < len) {
1336 				for (l = 0; l < idd->length; l++)
1337 					sprintf(buf + l * 2, "%02x",
1338 					    idd->identifier[l]);
1339 			} else
1340 				ret = EFAULT;
1341 		}
1342 	} else {
1343 		ret = 0;
1344 		if (strlcpy(buf, cdai.buf, len) >= len)
1345 			ret = EFAULT;
1346 	}
1347 
1348 out:
1349 	if (cdai.buf != NULL)
1350 		free(cdai.buf, M_CAMXPT);
1351 	return ret;
1352 }
1353 
1354 static dev_match_ret
1355 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1356 	    struct cam_eb *bus)
1357 {
1358 	dev_match_ret retval;
1359 	u_int i;
1360 
1361 	retval = DM_RET_NONE;
1362 
1363 	/*
1364 	 * If we aren't given something to match against, that's an error.
1365 	 */
1366 	if (bus == NULL)
1367 		return(DM_RET_ERROR);
1368 
1369 	/*
1370 	 * If there are no match entries, then this bus matches no
1371 	 * matter what.
1372 	 */
1373 	if ((patterns == NULL) || (num_patterns == 0))
1374 		return(DM_RET_DESCEND | DM_RET_COPY);
1375 
1376 	for (i = 0; i < num_patterns; i++) {
1377 		struct bus_match_pattern *cur_pattern;
1378 
1379 		/*
1380 		 * If the pattern in question isn't for a bus node, we
1381 		 * aren't interested.  However, we do indicate to the
1382 		 * calling routine that we should continue descending the
1383 		 * tree, since the user wants to match against lower-level
1384 		 * EDT elements.
1385 		 */
1386 		if (patterns[i].type != DEV_MATCH_BUS) {
1387 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1388 				retval |= DM_RET_DESCEND;
1389 			continue;
1390 		}
1391 
1392 		cur_pattern = &patterns[i].pattern.bus_pattern;
1393 
1394 		/*
1395 		 * If they want to match any bus node, we give them any
1396 		 * device node.
1397 		 */
1398 		if (cur_pattern->flags == BUS_MATCH_ANY) {
1399 			/* set the copy flag */
1400 			retval |= DM_RET_COPY;
1401 
1402 			/*
1403 			 * If we've already decided on an action, go ahead
1404 			 * and return.
1405 			 */
1406 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1407 				return(retval);
1408 		}
1409 
1410 		/*
1411 		 * Not sure why someone would do this...
1412 		 */
1413 		if (cur_pattern->flags == BUS_MATCH_NONE)
1414 			continue;
1415 
1416 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1417 		 && (cur_pattern->path_id != bus->path_id))
1418 			continue;
1419 
1420 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1421 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1422 			continue;
1423 
1424 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1425 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1426 			continue;
1427 
1428 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1429 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1430 			     DEV_IDLEN) != 0))
1431 			continue;
1432 
1433 		/*
1434 		 * If we get to this point, the user definitely wants
1435 		 * information on this bus.  So tell the caller to copy the
1436 		 * data out.
1437 		 */
1438 		retval |= DM_RET_COPY;
1439 
1440 		/*
1441 		 * If the return action has been set to descend, then we
1442 		 * know that we've already seen a non-bus matching
1443 		 * expression, therefore we need to further descend the tree.
1444 		 * This won't change by continuing around the loop, so we
1445 		 * go ahead and return.  If we haven't seen a non-bus
1446 		 * matching expression, we keep going around the loop until
1447 		 * we exhaust the matching expressions.  We'll set the stop
1448 		 * flag once we fall out of the loop.
1449 		 */
1450 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1451 			return(retval);
1452 	}
1453 
1454 	/*
1455 	 * If the return action hasn't been set to descend yet, that means
1456 	 * we haven't seen anything other than bus matching patterns.  So
1457 	 * tell the caller to stop descending the tree -- the user doesn't
1458 	 * want to match against lower level tree elements.
1459 	 */
1460 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1461 		retval |= DM_RET_STOP;
1462 
1463 	return(retval);
1464 }
1465 
1466 static dev_match_ret
1467 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1468 	       struct cam_ed *device)
1469 {
1470 	dev_match_ret retval;
1471 	u_int i;
1472 
1473 	retval = DM_RET_NONE;
1474 
1475 	/*
1476 	 * If we aren't given something to match against, that's an error.
1477 	 */
1478 	if (device == NULL)
1479 		return(DM_RET_ERROR);
1480 
1481 	/*
1482 	 * If there are no match entries, then this device matches no
1483 	 * matter what.
1484 	 */
1485 	if ((patterns == NULL) || (num_patterns == 0))
1486 		return(DM_RET_DESCEND | DM_RET_COPY);
1487 
1488 	for (i = 0; i < num_patterns; i++) {
1489 		struct device_match_pattern *cur_pattern;
1490 		struct scsi_vpd_device_id *device_id_page;
1491 
1492 		/*
1493 		 * If the pattern in question isn't for a device node, we
1494 		 * aren't interested.
1495 		 */
1496 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1497 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1498 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1499 				retval |= DM_RET_DESCEND;
1500 			continue;
1501 		}
1502 
1503 		cur_pattern = &patterns[i].pattern.device_pattern;
1504 
1505 		/* Error out if mutually exclusive options are specified. */
1506 		if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1507 		 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1508 			return(DM_RET_ERROR);
1509 
1510 		/*
1511 		 * If they want to match any device node, we give them any
1512 		 * device node.
1513 		 */
1514 		if (cur_pattern->flags == DEV_MATCH_ANY)
1515 			goto copy_dev_node;
1516 
1517 		/*
1518 		 * Not sure why someone would do this...
1519 		 */
1520 		if (cur_pattern->flags == DEV_MATCH_NONE)
1521 			continue;
1522 
1523 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1524 		 && (cur_pattern->path_id != device->target->bus->path_id))
1525 			continue;
1526 
1527 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1528 		 && (cur_pattern->target_id != device->target->target_id))
1529 			continue;
1530 
1531 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1532 		 && (cur_pattern->target_lun != device->lun_id))
1533 			continue;
1534 
1535 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1536 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1537 				    (caddr_t)&cur_pattern->data.inq_pat,
1538 				    1, sizeof(cur_pattern->data.inq_pat),
1539 				    scsi_static_inquiry_match) == NULL))
1540 			continue;
1541 
1542 		device_id_page = (struct scsi_vpd_device_id *)device->device_id;
1543 		if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0)
1544 		 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN
1545 		  || scsi_devid_match((uint8_t *)device_id_page->desc_list,
1546 				      device->device_id_len
1547 				    - SVPD_DEVICE_ID_HDR_LEN,
1548 				      cur_pattern->data.devid_pat.id,
1549 				      cur_pattern->data.devid_pat.id_len) != 0))
1550 			continue;
1551 
1552 copy_dev_node:
1553 		/*
1554 		 * If we get to this point, the user definitely wants
1555 		 * information on this device.  So tell the caller to copy
1556 		 * the data out.
1557 		 */
1558 		retval |= DM_RET_COPY;
1559 
1560 		/*
1561 		 * If the return action has been set to descend, then we
1562 		 * know that we've already seen a peripheral matching
1563 		 * expression, therefore we need to further descend the tree.
1564 		 * This won't change by continuing around the loop, so we
1565 		 * go ahead and return.  If we haven't seen a peripheral
1566 		 * matching expression, we keep going around the loop until
1567 		 * we exhaust the matching expressions.  We'll set the stop
1568 		 * flag once we fall out of the loop.
1569 		 */
1570 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1571 			return(retval);
1572 	}
1573 
1574 	/*
1575 	 * If the return action hasn't been set to descend yet, that means
1576 	 * we haven't seen any peripheral matching patterns.  So tell the
1577 	 * caller to stop descending the tree -- the user doesn't want to
1578 	 * match against lower level tree elements.
1579 	 */
1580 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1581 		retval |= DM_RET_STOP;
1582 
1583 	return(retval);
1584 }
1585 
1586 /*
1587  * Match a single peripheral against any number of match patterns.
1588  */
1589 static dev_match_ret
1590 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1591 	       struct cam_periph *periph)
1592 {
1593 	dev_match_ret retval;
1594 	u_int i;
1595 
1596 	/*
1597 	 * If we aren't given something to match against, that's an error.
1598 	 */
1599 	if (periph == NULL)
1600 		return(DM_RET_ERROR);
1601 
1602 	/*
1603 	 * If there are no match entries, then this peripheral matches no
1604 	 * matter what.
1605 	 */
1606 	if ((patterns == NULL) || (num_patterns == 0))
1607 		return(DM_RET_STOP | DM_RET_COPY);
1608 
1609 	/*
1610 	 * There aren't any nodes below a peripheral node, so there's no
1611 	 * reason to descend the tree any further.
1612 	 */
1613 	retval = DM_RET_STOP;
1614 
1615 	for (i = 0; i < num_patterns; i++) {
1616 		struct periph_match_pattern *cur_pattern;
1617 
1618 		/*
1619 		 * If the pattern in question isn't for a peripheral, we
1620 		 * aren't interested.
1621 		 */
1622 		if (patterns[i].type != DEV_MATCH_PERIPH)
1623 			continue;
1624 
1625 		cur_pattern = &patterns[i].pattern.periph_pattern;
1626 
1627 		/*
1628 		 * If they want to match on anything, then we will do so.
1629 		 */
1630 		if (cur_pattern->flags == PERIPH_MATCH_ANY) {
1631 			/* set the copy flag */
1632 			retval |= DM_RET_COPY;
1633 
1634 			/*
1635 			 * We've already set the return action to stop,
1636 			 * since there are no nodes below peripherals in
1637 			 * the tree.
1638 			 */
1639 			return(retval);
1640 		}
1641 
1642 		/*
1643 		 * Not sure why someone would do this...
1644 		 */
1645 		if (cur_pattern->flags == PERIPH_MATCH_NONE)
1646 			continue;
1647 
1648 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1649 		 && (cur_pattern->path_id != periph->path->bus->path_id))
1650 			continue;
1651 
1652 		/*
1653 		 * For the target and lun id's, we have to make sure the
1654 		 * target and lun pointers aren't NULL.  The xpt peripheral
1655 		 * has a wildcard target and device.
1656 		 */
1657 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1658 		 && ((periph->path->target == NULL)
1659 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
1660 			continue;
1661 
1662 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1663 		 && ((periph->path->device == NULL)
1664 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1665 			continue;
1666 
1667 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1668 		 && (cur_pattern->unit_number != periph->unit_number))
1669 			continue;
1670 
1671 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1672 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1673 			     DEV_IDLEN) != 0))
1674 			continue;
1675 
1676 		/*
1677 		 * If we get to this point, the user definitely wants
1678 		 * information on this peripheral.  So tell the caller to
1679 		 * copy the data out.
1680 		 */
1681 		retval |= DM_RET_COPY;
1682 
1683 		/*
1684 		 * The return action has already been set to stop, since
1685 		 * peripherals don't have any nodes below them in the EDT.
1686 		 */
1687 		return(retval);
1688 	}
1689 
1690 	/*
1691 	 * If we get to this point, the peripheral that was passed in
1692 	 * doesn't match any of the patterns.
1693 	 */
1694 	return(retval);
1695 }
1696 
1697 static int
1698 xptedtbusfunc(struct cam_eb *bus, void *arg)
1699 {
1700 	struct ccb_dev_match *cdm;
1701 	struct cam_et *target;
1702 	dev_match_ret retval;
1703 
1704 	cdm = (struct ccb_dev_match *)arg;
1705 
1706 	/*
1707 	 * If our position is for something deeper in the tree, that means
1708 	 * that we've already seen this node.  So, we keep going down.
1709 	 */
1710 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1711 	 && (cdm->pos.cookie.bus == bus)
1712 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1713 	 && (cdm->pos.cookie.target != NULL))
1714 		retval = DM_RET_DESCEND;
1715 	else
1716 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1717 
1718 	/*
1719 	 * If we got an error, bail out of the search.
1720 	 */
1721 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1722 		cdm->status = CAM_DEV_MATCH_ERROR;
1723 		return(0);
1724 	}
1725 
1726 	/*
1727 	 * If the copy flag is set, copy this bus out.
1728 	 */
1729 	if (retval & DM_RET_COPY) {
1730 		int spaceleft, j;
1731 
1732 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1733 			sizeof(struct dev_match_result));
1734 
1735 		/*
1736 		 * If we don't have enough space to put in another
1737 		 * match result, save our position and tell the
1738 		 * user there are more devices to check.
1739 		 */
1740 		if (spaceleft < sizeof(struct dev_match_result)) {
1741 			bzero(&cdm->pos, sizeof(cdm->pos));
1742 			cdm->pos.position_type =
1743 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1744 
1745 			cdm->pos.cookie.bus = bus;
1746 			cdm->pos.generations[CAM_BUS_GENERATION]=
1747 				xsoftc.bus_generation;
1748 			cdm->status = CAM_DEV_MATCH_MORE;
1749 			return(0);
1750 		}
1751 		j = cdm->num_matches;
1752 		cdm->num_matches++;
1753 		cdm->matches[j].type = DEV_MATCH_BUS;
1754 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
1755 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1756 		cdm->matches[j].result.bus_result.unit_number =
1757 			bus->sim->unit_number;
1758 		strncpy(cdm->matches[j].result.bus_result.dev_name,
1759 			bus->sim->sim_name, DEV_IDLEN);
1760 	}
1761 
1762 	/*
1763 	 * If the user is only interested in buses, there's no
1764 	 * reason to descend to the next level in the tree.
1765 	 */
1766 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1767 		return(1);
1768 
1769 	/*
1770 	 * If there is a target generation recorded, check it to
1771 	 * make sure the target list hasn't changed.
1772 	 */
1773 	mtx_lock(&bus->eb_mtx);
1774 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1775 	 && (cdm->pos.cookie.bus == bus)
1776 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1777 	 && (cdm->pos.cookie.target != NULL)) {
1778 		if ((cdm->pos.generations[CAM_TARGET_GENERATION] !=
1779 		    bus->generation)) {
1780 			mtx_unlock(&bus->eb_mtx);
1781 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1782 			return (0);
1783 		}
1784 		target = (struct cam_et *)cdm->pos.cookie.target;
1785 		target->refcount++;
1786 	} else
1787 		target = NULL;
1788 	mtx_unlock(&bus->eb_mtx);
1789 
1790 	return (xpttargettraverse(bus, target, xptedttargetfunc, arg));
1791 }
1792 
1793 static int
1794 xptedttargetfunc(struct cam_et *target, void *arg)
1795 {
1796 	struct ccb_dev_match *cdm;
1797 	struct cam_eb *bus;
1798 	struct cam_ed *device;
1799 
1800 	cdm = (struct ccb_dev_match *)arg;
1801 	bus = target->bus;
1802 
1803 	/*
1804 	 * If there is a device list generation recorded, check it to
1805 	 * make sure the device list hasn't changed.
1806 	 */
1807 	mtx_lock(&bus->eb_mtx);
1808 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1809 	 && (cdm->pos.cookie.bus == bus)
1810 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1811 	 && (cdm->pos.cookie.target == target)
1812 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1813 	 && (cdm->pos.cookie.device != NULL)) {
1814 		if (cdm->pos.generations[CAM_DEV_GENERATION] !=
1815 		    target->generation) {
1816 			mtx_unlock(&bus->eb_mtx);
1817 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1818 			return(0);
1819 		}
1820 		device = (struct cam_ed *)cdm->pos.cookie.device;
1821 		device->refcount++;
1822 	} else
1823 		device = NULL;
1824 	mtx_unlock(&bus->eb_mtx);
1825 
1826 	return (xptdevicetraverse(target, device, xptedtdevicefunc, arg));
1827 }
1828 
1829 static int
1830 xptedtdevicefunc(struct cam_ed *device, void *arg)
1831 {
1832 	struct cam_eb *bus;
1833 	struct cam_periph *periph;
1834 	struct ccb_dev_match *cdm;
1835 	dev_match_ret retval;
1836 
1837 	cdm = (struct ccb_dev_match *)arg;
1838 	bus = device->target->bus;
1839 
1840 	/*
1841 	 * If our position is for something deeper in the tree, that means
1842 	 * that we've already seen this node.  So, we keep going down.
1843 	 */
1844 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1845 	 && (cdm->pos.cookie.device == device)
1846 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1847 	 && (cdm->pos.cookie.periph != NULL))
1848 		retval = DM_RET_DESCEND;
1849 	else
1850 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
1851 					device);
1852 
1853 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1854 		cdm->status = CAM_DEV_MATCH_ERROR;
1855 		return(0);
1856 	}
1857 
1858 	/*
1859 	 * If the copy flag is set, copy this device out.
1860 	 */
1861 	if (retval & DM_RET_COPY) {
1862 		int spaceleft, j;
1863 
1864 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1865 			sizeof(struct dev_match_result));
1866 
1867 		/*
1868 		 * If we don't have enough space to put in another
1869 		 * match result, save our position and tell the
1870 		 * user there are more devices to check.
1871 		 */
1872 		if (spaceleft < sizeof(struct dev_match_result)) {
1873 			bzero(&cdm->pos, sizeof(cdm->pos));
1874 			cdm->pos.position_type =
1875 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1876 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
1877 
1878 			cdm->pos.cookie.bus = device->target->bus;
1879 			cdm->pos.generations[CAM_BUS_GENERATION]=
1880 				xsoftc.bus_generation;
1881 			cdm->pos.cookie.target = device->target;
1882 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1883 				device->target->bus->generation;
1884 			cdm->pos.cookie.device = device;
1885 			cdm->pos.generations[CAM_DEV_GENERATION] =
1886 				device->target->generation;
1887 			cdm->status = CAM_DEV_MATCH_MORE;
1888 			return(0);
1889 		}
1890 		j = cdm->num_matches;
1891 		cdm->num_matches++;
1892 		cdm->matches[j].type = DEV_MATCH_DEVICE;
1893 		cdm->matches[j].result.device_result.path_id =
1894 			device->target->bus->path_id;
1895 		cdm->matches[j].result.device_result.target_id =
1896 			device->target->target_id;
1897 		cdm->matches[j].result.device_result.target_lun =
1898 			device->lun_id;
1899 		cdm->matches[j].result.device_result.protocol =
1900 			device->protocol;
1901 		bcopy(&device->inq_data,
1902 		      &cdm->matches[j].result.device_result.inq_data,
1903 		      sizeof(struct scsi_inquiry_data));
1904 		bcopy(&device->ident_data,
1905 		      &cdm->matches[j].result.device_result.ident_data,
1906 		      sizeof(struct ata_params));
1907 		bcopy(&device->mmc_ident_data,
1908 		      &cdm->matches[j].result.device_result.mmc_ident_data,
1909 		      sizeof(struct mmc_params));
1910 
1911 		/* Let the user know whether this device is unconfigured */
1912 		if (device->flags & CAM_DEV_UNCONFIGURED)
1913 			cdm->matches[j].result.device_result.flags =
1914 				DEV_RESULT_UNCONFIGURED;
1915 		else
1916 			cdm->matches[j].result.device_result.flags =
1917 				DEV_RESULT_NOFLAG;
1918 	}
1919 
1920 	/*
1921 	 * If the user isn't interested in peripherals, don't descend
1922 	 * the tree any further.
1923 	 */
1924 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1925 		return(1);
1926 
1927 	/*
1928 	 * If there is a peripheral list generation recorded, make sure
1929 	 * it hasn't changed.
1930 	 */
1931 	xpt_lock_buses();
1932 	mtx_lock(&bus->eb_mtx);
1933 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1934 	 && (cdm->pos.cookie.bus == bus)
1935 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1936 	 && (cdm->pos.cookie.target == device->target)
1937 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1938 	 && (cdm->pos.cookie.device == device)
1939 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1940 	 && (cdm->pos.cookie.periph != NULL)) {
1941 		if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1942 		    device->generation) {
1943 			mtx_unlock(&bus->eb_mtx);
1944 			xpt_unlock_buses();
1945 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1946 			return(0);
1947 		}
1948 		periph = (struct cam_periph *)cdm->pos.cookie.periph;
1949 		periph->refcount++;
1950 	} else
1951 		periph = NULL;
1952 	mtx_unlock(&bus->eb_mtx);
1953 	xpt_unlock_buses();
1954 
1955 	return (xptperiphtraverse(device, periph, xptedtperiphfunc, arg));
1956 }
1957 
1958 static int
1959 xptedtperiphfunc(struct cam_periph *periph, void *arg)
1960 {
1961 	struct ccb_dev_match *cdm;
1962 	dev_match_ret retval;
1963 
1964 	cdm = (struct ccb_dev_match *)arg;
1965 
1966 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1967 
1968 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1969 		cdm->status = CAM_DEV_MATCH_ERROR;
1970 		return(0);
1971 	}
1972 
1973 	/*
1974 	 * If the copy flag is set, copy this peripheral out.
1975 	 */
1976 	if (retval & DM_RET_COPY) {
1977 		int spaceleft, j;
1978 
1979 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1980 			sizeof(struct dev_match_result));
1981 
1982 		/*
1983 		 * If we don't have enough space to put in another
1984 		 * match result, save our position and tell the
1985 		 * user there are more devices to check.
1986 		 */
1987 		if (spaceleft < sizeof(struct dev_match_result)) {
1988 			bzero(&cdm->pos, sizeof(cdm->pos));
1989 			cdm->pos.position_type =
1990 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1991 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
1992 				CAM_DEV_POS_PERIPH;
1993 
1994 			cdm->pos.cookie.bus = periph->path->bus;
1995 			cdm->pos.generations[CAM_BUS_GENERATION]=
1996 				xsoftc.bus_generation;
1997 			cdm->pos.cookie.target = periph->path->target;
1998 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1999 				periph->path->bus->generation;
2000 			cdm->pos.cookie.device = periph->path->device;
2001 			cdm->pos.generations[CAM_DEV_GENERATION] =
2002 				periph->path->target->generation;
2003 			cdm->pos.cookie.periph = periph;
2004 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2005 				periph->path->device->generation;
2006 			cdm->status = CAM_DEV_MATCH_MORE;
2007 			return(0);
2008 		}
2009 
2010 		j = cdm->num_matches;
2011 		cdm->num_matches++;
2012 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2013 		cdm->matches[j].result.periph_result.path_id =
2014 			periph->path->bus->path_id;
2015 		cdm->matches[j].result.periph_result.target_id =
2016 			periph->path->target->target_id;
2017 		cdm->matches[j].result.periph_result.target_lun =
2018 			periph->path->device->lun_id;
2019 		cdm->matches[j].result.periph_result.unit_number =
2020 			periph->unit_number;
2021 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2022 			periph->periph_name, DEV_IDLEN);
2023 	}
2024 
2025 	return(1);
2026 }
2027 
2028 static int
2029 xptedtmatch(struct ccb_dev_match *cdm)
2030 {
2031 	struct cam_eb *bus;
2032 	int ret;
2033 
2034 	cdm->num_matches = 0;
2035 
2036 	/*
2037 	 * Check the bus list generation.  If it has changed, the user
2038 	 * needs to reset everything and start over.
2039 	 */
2040 	xpt_lock_buses();
2041 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2042 	 && (cdm->pos.cookie.bus != NULL)) {
2043 		if (cdm->pos.generations[CAM_BUS_GENERATION] !=
2044 		    xsoftc.bus_generation) {
2045 			xpt_unlock_buses();
2046 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2047 			return(0);
2048 		}
2049 		bus = (struct cam_eb *)cdm->pos.cookie.bus;
2050 		bus->refcount++;
2051 	} else
2052 		bus = NULL;
2053 	xpt_unlock_buses();
2054 
2055 	ret = xptbustraverse(bus, xptedtbusfunc, cdm);
2056 
2057 	/*
2058 	 * If we get back 0, that means that we had to stop before fully
2059 	 * traversing the EDT.  It also means that one of the subroutines
2060 	 * has set the status field to the proper value.  If we get back 1,
2061 	 * we've fully traversed the EDT and copied out any matching entries.
2062 	 */
2063 	if (ret == 1)
2064 		cdm->status = CAM_DEV_MATCH_LAST;
2065 
2066 	return(ret);
2067 }
2068 
2069 static int
2070 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
2071 {
2072 	struct cam_periph *periph;
2073 	struct ccb_dev_match *cdm;
2074 
2075 	cdm = (struct ccb_dev_match *)arg;
2076 
2077 	xpt_lock_buses();
2078 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2079 	 && (cdm->pos.cookie.pdrv == pdrv)
2080 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2081 	 && (cdm->pos.cookie.periph != NULL)) {
2082 		if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2083 		    (*pdrv)->generation) {
2084 			xpt_unlock_buses();
2085 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2086 			return(0);
2087 		}
2088 		periph = (struct cam_periph *)cdm->pos.cookie.periph;
2089 		periph->refcount++;
2090 	} else
2091 		periph = NULL;
2092 	xpt_unlock_buses();
2093 
2094 	return (xptpdperiphtraverse(pdrv, periph, xptplistperiphfunc, arg));
2095 }
2096 
2097 static int
2098 xptplistperiphfunc(struct cam_periph *periph, void *arg)
2099 {
2100 	struct ccb_dev_match *cdm;
2101 	dev_match_ret retval;
2102 
2103 	cdm = (struct ccb_dev_match *)arg;
2104 
2105 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2106 
2107 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2108 		cdm->status = CAM_DEV_MATCH_ERROR;
2109 		return(0);
2110 	}
2111 
2112 	/*
2113 	 * If the copy flag is set, copy this peripheral out.
2114 	 */
2115 	if (retval & DM_RET_COPY) {
2116 		int spaceleft, j;
2117 
2118 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2119 			sizeof(struct dev_match_result));
2120 
2121 		/*
2122 		 * If we don't have enough space to put in another
2123 		 * match result, save our position and tell the
2124 		 * user there are more devices to check.
2125 		 */
2126 		if (spaceleft < sizeof(struct dev_match_result)) {
2127 			struct periph_driver **pdrv;
2128 
2129 			pdrv = NULL;
2130 			bzero(&cdm->pos, sizeof(cdm->pos));
2131 			cdm->pos.position_type =
2132 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
2133 				CAM_DEV_POS_PERIPH;
2134 
2135 			/*
2136 			 * This may look a bit non-sensical, but it is
2137 			 * actually quite logical.  There are very few
2138 			 * peripheral drivers, and bloating every peripheral
2139 			 * structure with a pointer back to its parent
2140 			 * peripheral driver linker set entry would cost
2141 			 * more in the long run than doing this quick lookup.
2142 			 */
2143 			for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
2144 				if (strcmp((*pdrv)->driver_name,
2145 				    periph->periph_name) == 0)
2146 					break;
2147 			}
2148 
2149 			if (*pdrv == NULL) {
2150 				cdm->status = CAM_DEV_MATCH_ERROR;
2151 				return(0);
2152 			}
2153 
2154 			cdm->pos.cookie.pdrv = pdrv;
2155 			/*
2156 			 * The periph generation slot does double duty, as
2157 			 * does the periph pointer slot.  They are used for
2158 			 * both edt and pdrv lookups and positioning.
2159 			 */
2160 			cdm->pos.cookie.periph = periph;
2161 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2162 				(*pdrv)->generation;
2163 			cdm->status = CAM_DEV_MATCH_MORE;
2164 			return(0);
2165 		}
2166 
2167 		j = cdm->num_matches;
2168 		cdm->num_matches++;
2169 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2170 		cdm->matches[j].result.periph_result.path_id =
2171 			periph->path->bus->path_id;
2172 
2173 		/*
2174 		 * The transport layer peripheral doesn't have a target or
2175 		 * lun.
2176 		 */
2177 		if (periph->path->target)
2178 			cdm->matches[j].result.periph_result.target_id =
2179 				periph->path->target->target_id;
2180 		else
2181 			cdm->matches[j].result.periph_result.target_id =
2182 				CAM_TARGET_WILDCARD;
2183 
2184 		if (periph->path->device)
2185 			cdm->matches[j].result.periph_result.target_lun =
2186 				periph->path->device->lun_id;
2187 		else
2188 			cdm->matches[j].result.periph_result.target_lun =
2189 				CAM_LUN_WILDCARD;
2190 
2191 		cdm->matches[j].result.periph_result.unit_number =
2192 			periph->unit_number;
2193 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2194 			periph->periph_name, DEV_IDLEN);
2195 	}
2196 
2197 	return(1);
2198 }
2199 
2200 static int
2201 xptperiphlistmatch(struct ccb_dev_match *cdm)
2202 {
2203 	int ret;
2204 
2205 	cdm->num_matches = 0;
2206 
2207 	/*
2208 	 * At this point in the edt traversal function, we check the bus
2209 	 * list generation to make sure that no buses have been added or
2210 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2211 	 * For the peripheral driver list traversal function, however, we
2212 	 * don't have to worry about new peripheral driver types coming or
2213 	 * going; they're in a linker set, and therefore can't change
2214 	 * without a recompile.
2215 	 */
2216 
2217 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2218 	 && (cdm->pos.cookie.pdrv != NULL))
2219 		ret = xptpdrvtraverse(
2220 				(struct periph_driver **)cdm->pos.cookie.pdrv,
2221 				xptplistpdrvfunc, cdm);
2222 	else
2223 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2224 
2225 	/*
2226 	 * If we get back 0, that means that we had to stop before fully
2227 	 * traversing the peripheral driver tree.  It also means that one of
2228 	 * the subroutines has set the status field to the proper value.  If
2229 	 * we get back 1, we've fully traversed the EDT and copied out any
2230 	 * matching entries.
2231 	 */
2232 	if (ret == 1)
2233 		cdm->status = CAM_DEV_MATCH_LAST;
2234 
2235 	return(ret);
2236 }
2237 
2238 static int
2239 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2240 {
2241 	struct cam_eb *bus, *next_bus;
2242 	int retval;
2243 
2244 	retval = 1;
2245 	if (start_bus)
2246 		bus = start_bus;
2247 	else {
2248 		xpt_lock_buses();
2249 		bus = TAILQ_FIRST(&xsoftc.xpt_busses);
2250 		if (bus == NULL) {
2251 			xpt_unlock_buses();
2252 			return (retval);
2253 		}
2254 		bus->refcount++;
2255 		xpt_unlock_buses();
2256 	}
2257 	for (; bus != NULL; bus = next_bus) {
2258 		retval = tr_func(bus, arg);
2259 		if (retval == 0) {
2260 			xpt_release_bus(bus);
2261 			break;
2262 		}
2263 		xpt_lock_buses();
2264 		next_bus = TAILQ_NEXT(bus, links);
2265 		if (next_bus)
2266 			next_bus->refcount++;
2267 		xpt_unlock_buses();
2268 		xpt_release_bus(bus);
2269 	}
2270 	return(retval);
2271 }
2272 
2273 static int
2274 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2275 		  xpt_targetfunc_t *tr_func, void *arg)
2276 {
2277 	struct cam_et *target, *next_target;
2278 	int retval;
2279 
2280 	retval = 1;
2281 	if (start_target)
2282 		target = start_target;
2283 	else {
2284 		mtx_lock(&bus->eb_mtx);
2285 		target = TAILQ_FIRST(&bus->et_entries);
2286 		if (target == NULL) {
2287 			mtx_unlock(&bus->eb_mtx);
2288 			return (retval);
2289 		}
2290 		target->refcount++;
2291 		mtx_unlock(&bus->eb_mtx);
2292 	}
2293 	for (; target != NULL; target = next_target) {
2294 		retval = tr_func(target, arg);
2295 		if (retval == 0) {
2296 			xpt_release_target(target);
2297 			break;
2298 		}
2299 		mtx_lock(&bus->eb_mtx);
2300 		next_target = TAILQ_NEXT(target, links);
2301 		if (next_target)
2302 			next_target->refcount++;
2303 		mtx_unlock(&bus->eb_mtx);
2304 		xpt_release_target(target);
2305 	}
2306 	return(retval);
2307 }
2308 
2309 static int
2310 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2311 		  xpt_devicefunc_t *tr_func, void *arg)
2312 {
2313 	struct cam_eb *bus;
2314 	struct cam_ed *device, *next_device;
2315 	int retval;
2316 
2317 	retval = 1;
2318 	bus = target->bus;
2319 	if (start_device)
2320 		device = start_device;
2321 	else {
2322 		mtx_lock(&bus->eb_mtx);
2323 		device = TAILQ_FIRST(&target->ed_entries);
2324 		if (device == NULL) {
2325 			mtx_unlock(&bus->eb_mtx);
2326 			return (retval);
2327 		}
2328 		device->refcount++;
2329 		mtx_unlock(&bus->eb_mtx);
2330 	}
2331 	for (; device != NULL; device = next_device) {
2332 		mtx_lock(&device->device_mtx);
2333 		retval = tr_func(device, arg);
2334 		mtx_unlock(&device->device_mtx);
2335 		if (retval == 0) {
2336 			xpt_release_device(device);
2337 			break;
2338 		}
2339 		mtx_lock(&bus->eb_mtx);
2340 		next_device = TAILQ_NEXT(device, links);
2341 		if (next_device)
2342 			next_device->refcount++;
2343 		mtx_unlock(&bus->eb_mtx);
2344 		xpt_release_device(device);
2345 	}
2346 	return(retval);
2347 }
2348 
2349 static int
2350 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2351 		  xpt_periphfunc_t *tr_func, void *arg)
2352 {
2353 	struct cam_eb *bus;
2354 	struct cam_periph *periph, *next_periph;
2355 	int retval;
2356 
2357 	retval = 1;
2358 
2359 	bus = device->target->bus;
2360 	if (start_periph)
2361 		periph = start_periph;
2362 	else {
2363 		xpt_lock_buses();
2364 		mtx_lock(&bus->eb_mtx);
2365 		periph = SLIST_FIRST(&device->periphs);
2366 		while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2367 			periph = SLIST_NEXT(periph, periph_links);
2368 		if (periph == NULL) {
2369 			mtx_unlock(&bus->eb_mtx);
2370 			xpt_unlock_buses();
2371 			return (retval);
2372 		}
2373 		periph->refcount++;
2374 		mtx_unlock(&bus->eb_mtx);
2375 		xpt_unlock_buses();
2376 	}
2377 	for (; periph != NULL; periph = next_periph) {
2378 		retval = tr_func(periph, arg);
2379 		if (retval == 0) {
2380 			cam_periph_release_locked(periph);
2381 			break;
2382 		}
2383 		xpt_lock_buses();
2384 		mtx_lock(&bus->eb_mtx);
2385 		next_periph = SLIST_NEXT(periph, periph_links);
2386 		while (next_periph != NULL &&
2387 		    (next_periph->flags & CAM_PERIPH_FREE) != 0)
2388 			next_periph = SLIST_NEXT(next_periph, periph_links);
2389 		if (next_periph)
2390 			next_periph->refcount++;
2391 		mtx_unlock(&bus->eb_mtx);
2392 		xpt_unlock_buses();
2393 		cam_periph_release_locked(periph);
2394 	}
2395 	return(retval);
2396 }
2397 
2398 static int
2399 xptpdrvtraverse(struct periph_driver **start_pdrv,
2400 		xpt_pdrvfunc_t *tr_func, void *arg)
2401 {
2402 	struct periph_driver **pdrv;
2403 	int retval;
2404 
2405 	retval = 1;
2406 
2407 	/*
2408 	 * We don't traverse the peripheral driver list like we do the
2409 	 * other lists, because it is a linker set, and therefore cannot be
2410 	 * changed during runtime.  If the peripheral driver list is ever
2411 	 * re-done to be something other than a linker set (i.e. it can
2412 	 * change while the system is running), the list traversal should
2413 	 * be modified to work like the other traversal functions.
2414 	 */
2415 	for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2416 	     *pdrv != NULL; pdrv++) {
2417 		retval = tr_func(pdrv, arg);
2418 
2419 		if (retval == 0)
2420 			return(retval);
2421 	}
2422 
2423 	return(retval);
2424 }
2425 
2426 static int
2427 xptpdperiphtraverse(struct periph_driver **pdrv,
2428 		    struct cam_periph *start_periph,
2429 		    xpt_periphfunc_t *tr_func, void *arg)
2430 {
2431 	struct cam_periph *periph, *next_periph;
2432 	int retval;
2433 
2434 	retval = 1;
2435 
2436 	if (start_periph)
2437 		periph = start_periph;
2438 	else {
2439 		xpt_lock_buses();
2440 		periph = TAILQ_FIRST(&(*pdrv)->units);
2441 		while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2442 			periph = TAILQ_NEXT(periph, unit_links);
2443 		if (periph == NULL) {
2444 			xpt_unlock_buses();
2445 			return (retval);
2446 		}
2447 		periph->refcount++;
2448 		xpt_unlock_buses();
2449 	}
2450 	for (; periph != NULL; periph = next_periph) {
2451 		cam_periph_lock(periph);
2452 		retval = tr_func(periph, arg);
2453 		cam_periph_unlock(periph);
2454 		if (retval == 0) {
2455 			cam_periph_release(periph);
2456 			break;
2457 		}
2458 		xpt_lock_buses();
2459 		next_periph = TAILQ_NEXT(periph, unit_links);
2460 		while (next_periph != NULL &&
2461 		    (next_periph->flags & CAM_PERIPH_FREE) != 0)
2462 			next_periph = TAILQ_NEXT(next_periph, unit_links);
2463 		if (next_periph)
2464 			next_periph->refcount++;
2465 		xpt_unlock_buses();
2466 		cam_periph_release(periph);
2467 	}
2468 	return(retval);
2469 }
2470 
2471 static int
2472 xptdefbusfunc(struct cam_eb *bus, void *arg)
2473 {
2474 	struct xpt_traverse_config *tr_config;
2475 
2476 	tr_config = (struct xpt_traverse_config *)arg;
2477 
2478 	if (tr_config->depth == XPT_DEPTH_BUS) {
2479 		xpt_busfunc_t *tr_func;
2480 
2481 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2482 
2483 		return(tr_func(bus, tr_config->tr_arg));
2484 	} else
2485 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2486 }
2487 
2488 static int
2489 xptdeftargetfunc(struct cam_et *target, void *arg)
2490 {
2491 	struct xpt_traverse_config *tr_config;
2492 
2493 	tr_config = (struct xpt_traverse_config *)arg;
2494 
2495 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2496 		xpt_targetfunc_t *tr_func;
2497 
2498 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2499 
2500 		return(tr_func(target, tr_config->tr_arg));
2501 	} else
2502 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2503 }
2504 
2505 static int
2506 xptdefdevicefunc(struct cam_ed *device, void *arg)
2507 {
2508 	struct xpt_traverse_config *tr_config;
2509 
2510 	tr_config = (struct xpt_traverse_config *)arg;
2511 
2512 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2513 		xpt_devicefunc_t *tr_func;
2514 
2515 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2516 
2517 		return(tr_func(device, tr_config->tr_arg));
2518 	} else
2519 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2520 }
2521 
2522 static int
2523 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2524 {
2525 	struct xpt_traverse_config *tr_config;
2526 	xpt_periphfunc_t *tr_func;
2527 
2528 	tr_config = (struct xpt_traverse_config *)arg;
2529 
2530 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2531 
2532 	/*
2533 	 * Unlike the other default functions, we don't check for depth
2534 	 * here.  The peripheral driver level is the last level in the EDT,
2535 	 * so if we're here, we should execute the function in question.
2536 	 */
2537 	return(tr_func(periph, tr_config->tr_arg));
2538 }
2539 
2540 /*
2541  * Execute the given function for every bus in the EDT.
2542  */
2543 static int
2544 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2545 {
2546 	struct xpt_traverse_config tr_config;
2547 
2548 	tr_config.depth = XPT_DEPTH_BUS;
2549 	tr_config.tr_func = tr_func;
2550 	tr_config.tr_arg = arg;
2551 
2552 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2553 }
2554 
2555 /*
2556  * Execute the given function for every device in the EDT.
2557  */
2558 static int
2559 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2560 {
2561 	struct xpt_traverse_config tr_config;
2562 
2563 	tr_config.depth = XPT_DEPTH_DEVICE;
2564 	tr_config.tr_func = tr_func;
2565 	tr_config.tr_arg = arg;
2566 
2567 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2568 }
2569 
2570 static int
2571 xptsetasyncfunc(struct cam_ed *device, void *arg)
2572 {
2573 	struct cam_path path;
2574 	struct ccb_getdev cgd;
2575 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2576 
2577 	/*
2578 	 * Don't report unconfigured devices (Wildcard devs,
2579 	 * devices only for target mode, device instances
2580 	 * that have been invalidated but are waiting for
2581 	 * their last reference count to be released).
2582 	 */
2583 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2584 		return (1);
2585 
2586 	xpt_compile_path(&path,
2587 			 NULL,
2588 			 device->target->bus->path_id,
2589 			 device->target->target_id,
2590 			 device->lun_id);
2591 	xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL);
2592 	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2593 	xpt_action((union ccb *)&cgd);
2594 	csa->callback(csa->callback_arg,
2595 			    AC_FOUND_DEVICE,
2596 			    &path, &cgd);
2597 	xpt_release_path(&path);
2598 
2599 	return(1);
2600 }
2601 
2602 static int
2603 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2604 {
2605 	struct cam_path path;
2606 	struct ccb_pathinq cpi;
2607 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2608 
2609 	xpt_compile_path(&path, /*periph*/NULL,
2610 			 bus->path_id,
2611 			 CAM_TARGET_WILDCARD,
2612 			 CAM_LUN_WILDCARD);
2613 	xpt_path_lock(&path);
2614 	xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL);
2615 	cpi.ccb_h.func_code = XPT_PATH_INQ;
2616 	xpt_action((union ccb *)&cpi);
2617 	csa->callback(csa->callback_arg,
2618 			    AC_PATH_REGISTERED,
2619 			    &path, &cpi);
2620 	xpt_path_unlock(&path);
2621 	xpt_release_path(&path);
2622 
2623 	return(1);
2624 }
2625 
2626 void
2627 xpt_action(union ccb *start_ccb)
2628 {
2629 
2630 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE,
2631 	    ("xpt_action: func %#x %s\n", start_ccb->ccb_h.func_code,
2632 		xpt_action_name(start_ccb->ccb_h.func_code)));
2633 
2634 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2635 	(*(start_ccb->ccb_h.path->bus->xport->ops->action))(start_ccb);
2636 }
2637 
2638 void
2639 xpt_action_default(union ccb *start_ccb)
2640 {
2641 	struct cam_path *path;
2642 	struct cam_sim *sim;
2643 	struct mtx *mtx;
2644 
2645 	path = start_ccb->ccb_h.path;
2646 	CAM_DEBUG(path, CAM_DEBUG_TRACE,
2647 	    ("xpt_action_default: func %#x %s\n", start_ccb->ccb_h.func_code,
2648 		xpt_action_name(start_ccb->ccb_h.func_code)));
2649 
2650 	switch (start_ccb->ccb_h.func_code) {
2651 	case XPT_SCSI_IO:
2652 	{
2653 		struct cam_ed *device;
2654 
2655 		/*
2656 		 * For the sake of compatibility with SCSI-1
2657 		 * devices that may not understand the identify
2658 		 * message, we include lun information in the
2659 		 * second byte of all commands.  SCSI-1 specifies
2660 		 * that luns are a 3 bit value and reserves only 3
2661 		 * bits for lun information in the CDB.  Later
2662 		 * revisions of the SCSI spec allow for more than 8
2663 		 * luns, but have deprecated lun information in the
2664 		 * CDB.  So, if the lun won't fit, we must omit.
2665 		 *
2666 		 * Also be aware that during initial probing for devices,
2667 		 * the inquiry information is unknown but initialized to 0.
2668 		 * This means that this code will be exercised while probing
2669 		 * devices with an ANSI revision greater than 2.
2670 		 */
2671 		device = path->device;
2672 		if (device->protocol_version <= SCSI_REV_2
2673 		 && start_ccb->ccb_h.target_lun < 8
2674 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2675 
2676 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
2677 			    start_ccb->ccb_h.target_lun << 5;
2678 		}
2679 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2680 	}
2681 	/* FALLTHROUGH */
2682 	case XPT_TARGET_IO:
2683 	case XPT_CONT_TARGET_IO:
2684 		start_ccb->csio.sense_resid = 0;
2685 		start_ccb->csio.resid = 0;
2686 		/* FALLTHROUGH */
2687 	case XPT_ATA_IO:
2688 		if (start_ccb->ccb_h.func_code == XPT_ATA_IO)
2689 			start_ccb->ataio.resid = 0;
2690 		/* FALLTHROUGH */
2691 	case XPT_NVME_IO:
2692 		/* FALLTHROUGH */
2693 	case XPT_NVME_ADMIN:
2694 		/* FALLTHROUGH */
2695 	case XPT_MMC_IO:
2696 		/* XXX just like nmve_io? */
2697 	case XPT_RESET_DEV:
2698 	case XPT_ENG_EXEC:
2699 	case XPT_SMP_IO:
2700 	{
2701 		struct cam_devq *devq;
2702 
2703 		devq = path->bus->sim->devq;
2704 		mtx_lock(&devq->send_mtx);
2705 		cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2706 		if (xpt_schedule_devq(devq, path->device) != 0)
2707 			xpt_run_devq(devq);
2708 		mtx_unlock(&devq->send_mtx);
2709 		break;
2710 	}
2711 	case XPT_CALC_GEOMETRY:
2712 		/* Filter out garbage */
2713 		if (start_ccb->ccg.block_size == 0
2714 		 || start_ccb->ccg.volume_size == 0) {
2715 			start_ccb->ccg.cylinders = 0;
2716 			start_ccb->ccg.heads = 0;
2717 			start_ccb->ccg.secs_per_track = 0;
2718 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2719 			break;
2720 		}
2721 #if defined(__sparc64__)
2722 		/*
2723 		 * For sparc64, we may need adjust the geometry of large
2724 		 * disks in order to fit the limitations of the 16-bit
2725 		 * fields of the VTOC8 disk label.
2726 		 */
2727 		if (scsi_da_bios_params(&start_ccb->ccg) != 0) {
2728 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2729 			break;
2730 		}
2731 #endif
2732 		goto call_sim;
2733 	case XPT_ABORT:
2734 	{
2735 		union ccb* abort_ccb;
2736 
2737 		abort_ccb = start_ccb->cab.abort_ccb;
2738 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2739 			struct cam_ed *device;
2740 			struct cam_devq *devq;
2741 
2742 			device = abort_ccb->ccb_h.path->device;
2743 			devq = device->sim->devq;
2744 
2745 			mtx_lock(&devq->send_mtx);
2746 			if (abort_ccb->ccb_h.pinfo.index > 0) {
2747 				cam_ccbq_remove_ccb(&device->ccbq, abort_ccb);
2748 				abort_ccb->ccb_h.status =
2749 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2750 				xpt_freeze_devq_device(device, 1);
2751 				mtx_unlock(&devq->send_mtx);
2752 				xpt_done(abort_ccb);
2753 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2754 				break;
2755 			}
2756 			mtx_unlock(&devq->send_mtx);
2757 
2758 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2759 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2760 				/*
2761 				 * We've caught this ccb en route to
2762 				 * the SIM.  Flag it for abort and the
2763 				 * SIM will do so just before starting
2764 				 * real work on the CCB.
2765 				 */
2766 				abort_ccb->ccb_h.status =
2767 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2768 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2769 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2770 				break;
2771 			}
2772 		}
2773 		if (XPT_FC_IS_QUEUED(abort_ccb)
2774 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2775 			/*
2776 			 * It's already completed but waiting
2777 			 * for our SWI to get to it.
2778 			 */
2779 			start_ccb->ccb_h.status = CAM_UA_ABORT;
2780 			break;
2781 		}
2782 		/*
2783 		 * If we weren't able to take care of the abort request
2784 		 * in the XPT, pass the request down to the SIM for processing.
2785 		 */
2786 	}
2787 	/* FALLTHROUGH */
2788 	case XPT_ACCEPT_TARGET_IO:
2789 	case XPT_EN_LUN:
2790 	case XPT_IMMED_NOTIFY:
2791 	case XPT_NOTIFY_ACK:
2792 	case XPT_RESET_BUS:
2793 	case XPT_IMMEDIATE_NOTIFY:
2794 	case XPT_NOTIFY_ACKNOWLEDGE:
2795 	case XPT_GET_SIM_KNOB_OLD:
2796 	case XPT_GET_SIM_KNOB:
2797 	case XPT_SET_SIM_KNOB:
2798 	case XPT_GET_TRAN_SETTINGS:
2799 	case XPT_SET_TRAN_SETTINGS:
2800 	case XPT_PATH_INQ:
2801 call_sim:
2802 		sim = path->bus->sim;
2803 		mtx = sim->mtx;
2804 		if (mtx && !mtx_owned(mtx))
2805 			mtx_lock(mtx);
2806 		else
2807 			mtx = NULL;
2808 
2809 		CAM_DEBUG(path, CAM_DEBUG_TRACE,
2810 		    ("Calling sim->sim_action(): func=%#x\n", start_ccb->ccb_h.func_code));
2811 		(*(sim->sim_action))(sim, start_ccb);
2812 		CAM_DEBUG(path, CAM_DEBUG_TRACE,
2813 		    ("sim->sim_action returned: status=%#x\n", start_ccb->ccb_h.status));
2814 		if (mtx)
2815 			mtx_unlock(mtx);
2816 		break;
2817 	case XPT_PATH_STATS:
2818 		start_ccb->cpis.last_reset = path->bus->last_reset;
2819 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2820 		break;
2821 	case XPT_GDEV_TYPE:
2822 	{
2823 		struct cam_ed *dev;
2824 
2825 		dev = path->device;
2826 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2827 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2828 		} else {
2829 			struct ccb_getdev *cgd;
2830 
2831 			cgd = &start_ccb->cgd;
2832 			cgd->protocol = dev->protocol;
2833 			cgd->inq_data = dev->inq_data;
2834 			cgd->ident_data = dev->ident_data;
2835 			cgd->inq_flags = dev->inq_flags;
2836 			cgd->nvme_data = dev->nvme_data;
2837 			cgd->nvme_cdata = dev->nvme_cdata;
2838 			cgd->ccb_h.status = CAM_REQ_CMP;
2839 			cgd->serial_num_len = dev->serial_num_len;
2840 			if ((dev->serial_num_len > 0)
2841 			 && (dev->serial_num != NULL))
2842 				bcopy(dev->serial_num, cgd->serial_num,
2843 				      dev->serial_num_len);
2844 		}
2845 		break;
2846 	}
2847 	case XPT_GDEV_STATS:
2848 	{
2849 		struct ccb_getdevstats *cgds = &start_ccb->cgds;
2850 		struct cam_ed *dev = path->device;
2851 		struct cam_eb *bus = path->bus;
2852 		struct cam_et *tar = path->target;
2853 		struct cam_devq *devq = bus->sim->devq;
2854 
2855 		mtx_lock(&devq->send_mtx);
2856 		cgds->dev_openings = dev->ccbq.dev_openings;
2857 		cgds->dev_active = dev->ccbq.dev_active;
2858 		cgds->allocated = dev->ccbq.allocated;
2859 		cgds->queued = cam_ccbq_pending_ccb_count(&dev->ccbq);
2860 		cgds->held = cgds->allocated - cgds->dev_active - cgds->queued;
2861 		cgds->last_reset = tar->last_reset;
2862 		cgds->maxtags = dev->maxtags;
2863 		cgds->mintags = dev->mintags;
2864 		if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
2865 			cgds->last_reset = bus->last_reset;
2866 		mtx_unlock(&devq->send_mtx);
2867 		cgds->ccb_h.status = CAM_REQ_CMP;
2868 		break;
2869 	}
2870 	case XPT_GDEVLIST:
2871 	{
2872 		struct cam_periph	*nperiph;
2873 		struct periph_list	*periph_head;
2874 		struct ccb_getdevlist	*cgdl;
2875 		u_int			i;
2876 		struct cam_ed		*device;
2877 		int			found;
2878 
2879 
2880 		found = 0;
2881 
2882 		/*
2883 		 * Don't want anyone mucking with our data.
2884 		 */
2885 		device = path->device;
2886 		periph_head = &device->periphs;
2887 		cgdl = &start_ccb->cgdl;
2888 
2889 		/*
2890 		 * Check and see if the list has changed since the user
2891 		 * last requested a list member.  If so, tell them that the
2892 		 * list has changed, and therefore they need to start over
2893 		 * from the beginning.
2894 		 */
2895 		if ((cgdl->index != 0) &&
2896 		    (cgdl->generation != device->generation)) {
2897 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
2898 			break;
2899 		}
2900 
2901 		/*
2902 		 * Traverse the list of peripherals and attempt to find
2903 		 * the requested peripheral.
2904 		 */
2905 		for (nperiph = SLIST_FIRST(periph_head), i = 0;
2906 		     (nperiph != NULL) && (i <= cgdl->index);
2907 		     nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
2908 			if (i == cgdl->index) {
2909 				strncpy(cgdl->periph_name,
2910 					nperiph->periph_name,
2911 					DEV_IDLEN);
2912 				cgdl->unit_number = nperiph->unit_number;
2913 				found = 1;
2914 			}
2915 		}
2916 		if (found == 0) {
2917 			cgdl->status = CAM_GDEVLIST_ERROR;
2918 			break;
2919 		}
2920 
2921 		if (nperiph == NULL)
2922 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
2923 		else
2924 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
2925 
2926 		cgdl->index++;
2927 		cgdl->generation = device->generation;
2928 
2929 		cgdl->ccb_h.status = CAM_REQ_CMP;
2930 		break;
2931 	}
2932 	case XPT_DEV_MATCH:
2933 	{
2934 		dev_pos_type position_type;
2935 		struct ccb_dev_match *cdm;
2936 
2937 		cdm = &start_ccb->cdm;
2938 
2939 		/*
2940 		 * There are two ways of getting at information in the EDT.
2941 		 * The first way is via the primary EDT tree.  It starts
2942 		 * with a list of buses, then a list of targets on a bus,
2943 		 * then devices/luns on a target, and then peripherals on a
2944 		 * device/lun.  The "other" way is by the peripheral driver
2945 		 * lists.  The peripheral driver lists are organized by
2946 		 * peripheral driver.  (obviously)  So it makes sense to
2947 		 * use the peripheral driver list if the user is looking
2948 		 * for something like "da1", or all "da" devices.  If the
2949 		 * user is looking for something on a particular bus/target
2950 		 * or lun, it's generally better to go through the EDT tree.
2951 		 */
2952 
2953 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
2954 			position_type = cdm->pos.position_type;
2955 		else {
2956 			u_int i;
2957 
2958 			position_type = CAM_DEV_POS_NONE;
2959 
2960 			for (i = 0; i < cdm->num_patterns; i++) {
2961 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
2962 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
2963 					position_type = CAM_DEV_POS_EDT;
2964 					break;
2965 				}
2966 			}
2967 
2968 			if (cdm->num_patterns == 0)
2969 				position_type = CAM_DEV_POS_EDT;
2970 			else if (position_type == CAM_DEV_POS_NONE)
2971 				position_type = CAM_DEV_POS_PDRV;
2972 		}
2973 
2974 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
2975 		case CAM_DEV_POS_EDT:
2976 			xptedtmatch(cdm);
2977 			break;
2978 		case CAM_DEV_POS_PDRV:
2979 			xptperiphlistmatch(cdm);
2980 			break;
2981 		default:
2982 			cdm->status = CAM_DEV_MATCH_ERROR;
2983 			break;
2984 		}
2985 
2986 		if (cdm->status == CAM_DEV_MATCH_ERROR)
2987 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
2988 		else
2989 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2990 
2991 		break;
2992 	}
2993 	case XPT_SASYNC_CB:
2994 	{
2995 		struct ccb_setasync *csa;
2996 		struct async_node *cur_entry;
2997 		struct async_list *async_head;
2998 		u_int32_t added;
2999 
3000 		csa = &start_ccb->csa;
3001 		added = csa->event_enable;
3002 		async_head = &path->device->asyncs;
3003 
3004 		/*
3005 		 * If there is already an entry for us, simply
3006 		 * update it.
3007 		 */
3008 		cur_entry = SLIST_FIRST(async_head);
3009 		while (cur_entry != NULL) {
3010 			if ((cur_entry->callback_arg == csa->callback_arg)
3011 			 && (cur_entry->callback == csa->callback))
3012 				break;
3013 			cur_entry = SLIST_NEXT(cur_entry, links);
3014 		}
3015 
3016 		if (cur_entry != NULL) {
3017 		 	/*
3018 			 * If the request has no flags set,
3019 			 * remove the entry.
3020 			 */
3021 			added &= ~cur_entry->event_enable;
3022 			if (csa->event_enable == 0) {
3023 				SLIST_REMOVE(async_head, cur_entry,
3024 					     async_node, links);
3025 				xpt_release_device(path->device);
3026 				free(cur_entry, M_CAMXPT);
3027 			} else {
3028 				cur_entry->event_enable = csa->event_enable;
3029 			}
3030 			csa->event_enable = added;
3031 		} else {
3032 			cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT,
3033 					   M_NOWAIT);
3034 			if (cur_entry == NULL) {
3035 				csa->ccb_h.status = CAM_RESRC_UNAVAIL;
3036 				break;
3037 			}
3038 			cur_entry->event_enable = csa->event_enable;
3039 			cur_entry->event_lock = (path->bus->sim->mtx &&
3040 			    mtx_owned(path->bus->sim->mtx)) ? 1 : 0;
3041 			cur_entry->callback_arg = csa->callback_arg;
3042 			cur_entry->callback = csa->callback;
3043 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
3044 			xpt_acquire_device(path->device);
3045 		}
3046 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3047 		break;
3048 	}
3049 	case XPT_REL_SIMQ:
3050 	{
3051 		struct ccb_relsim *crs;
3052 		struct cam_ed *dev;
3053 
3054 		crs = &start_ccb->crs;
3055 		dev = path->device;
3056 		if (dev == NULL) {
3057 
3058 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
3059 			break;
3060 		}
3061 
3062 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
3063 
3064 			/* Don't ever go below one opening */
3065 			if (crs->openings > 0) {
3066 				xpt_dev_ccbq_resize(path, crs->openings);
3067 				if (bootverbose) {
3068 					xpt_print(path,
3069 					    "number of openings is now %d\n",
3070 					    crs->openings);
3071 				}
3072 			}
3073 		}
3074 
3075 		mtx_lock(&dev->sim->devq->send_mtx);
3076 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
3077 
3078 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
3079 
3080 				/*
3081 				 * Just extend the old timeout and decrement
3082 				 * the freeze count so that a single timeout
3083 				 * is sufficient for releasing the queue.
3084 				 */
3085 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3086 				callout_stop(&dev->callout);
3087 			} else {
3088 
3089 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3090 			}
3091 
3092 			callout_reset_sbt(&dev->callout,
3093 			    SBT_1MS * crs->release_timeout, 0,
3094 			    xpt_release_devq_timeout, dev, 0);
3095 
3096 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
3097 
3098 		}
3099 
3100 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
3101 
3102 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
3103 				/*
3104 				 * Decrement the freeze count so that a single
3105 				 * completion is still sufficient to unfreeze
3106 				 * the queue.
3107 				 */
3108 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3109 			} else {
3110 
3111 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
3112 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3113 			}
3114 		}
3115 
3116 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
3117 
3118 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
3119 			 || (dev->ccbq.dev_active == 0)) {
3120 
3121 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3122 			} else {
3123 
3124 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
3125 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3126 			}
3127 		}
3128 		mtx_unlock(&dev->sim->devq->send_mtx);
3129 
3130 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0)
3131 			xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE);
3132 		start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt;
3133 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3134 		break;
3135 	}
3136 	case XPT_DEBUG: {
3137 		struct cam_path *oldpath;
3138 
3139 		/* Check that all request bits are supported. */
3140 		if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) {
3141 			start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
3142 			break;
3143 		}
3144 
3145 		cam_dflags = CAM_DEBUG_NONE;
3146 		if (cam_dpath != NULL) {
3147 			oldpath = cam_dpath;
3148 			cam_dpath = NULL;
3149 			xpt_free_path(oldpath);
3150 		}
3151 		if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) {
3152 			if (xpt_create_path(&cam_dpath, NULL,
3153 					    start_ccb->ccb_h.path_id,
3154 					    start_ccb->ccb_h.target_id,
3155 					    start_ccb->ccb_h.target_lun) !=
3156 					    CAM_REQ_CMP) {
3157 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3158 			} else {
3159 				cam_dflags = start_ccb->cdbg.flags;
3160 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3161 				xpt_print(cam_dpath, "debugging flags now %x\n",
3162 				    cam_dflags);
3163 			}
3164 		} else
3165 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3166 		break;
3167 	}
3168 	case XPT_NOOP:
3169 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3170 			xpt_freeze_devq(path, 1);
3171 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3172 		break;
3173 	case XPT_REPROBE_LUN:
3174 		xpt_async(AC_INQ_CHANGED, path, NULL);
3175 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3176 		xpt_done(start_ccb);
3177 		break;
3178 	default:
3179 	case XPT_SDEV_TYPE:
3180 	case XPT_TERM_IO:
3181 	case XPT_ENG_INQ:
3182 		/* XXX Implement */
3183 		xpt_print(start_ccb->ccb_h.path,
3184 		    "%s: CCB type %#x %s not supported\n", __func__,
3185 		    start_ccb->ccb_h.func_code,
3186 		    xpt_action_name(start_ccb->ccb_h.func_code));
3187 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3188 		if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) {
3189 			xpt_done(start_ccb);
3190 		}
3191 		break;
3192 	}
3193 	CAM_DEBUG(path, CAM_DEBUG_TRACE,
3194 	    ("xpt_action_default: func= %#x %s status %#x\n",
3195 		start_ccb->ccb_h.func_code,
3196  		xpt_action_name(start_ccb->ccb_h.func_code),
3197 		start_ccb->ccb_h.status));
3198 }
3199 
3200 void
3201 xpt_polled_action(union ccb *start_ccb)
3202 {
3203 	u_int32_t timeout;
3204 	struct	  cam_sim *sim;
3205 	struct	  cam_devq *devq;
3206 	struct	  cam_ed *dev;
3207 	struct mtx *mtx;
3208 
3209 	timeout = start_ccb->ccb_h.timeout * 10;
3210 	sim = start_ccb->ccb_h.path->bus->sim;
3211 	devq = sim->devq;
3212 	mtx = sim->mtx;
3213 	dev = start_ccb->ccb_h.path->device;
3214 
3215 	mtx_unlock(&dev->device_mtx);
3216 
3217 	/*
3218 	 * Steal an opening so that no other queued requests
3219 	 * can get it before us while we simulate interrupts.
3220 	 */
3221 	mtx_lock(&devq->send_mtx);
3222 	dev->ccbq.dev_openings--;
3223 	while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) &&
3224 	    (--timeout > 0)) {
3225 		mtx_unlock(&devq->send_mtx);
3226 		DELAY(100);
3227 		if (mtx)
3228 			mtx_lock(mtx);
3229 		(*(sim->sim_poll))(sim);
3230 		if (mtx)
3231 			mtx_unlock(mtx);
3232 		camisr_runqueue();
3233 		mtx_lock(&devq->send_mtx);
3234 	}
3235 	dev->ccbq.dev_openings++;
3236 	mtx_unlock(&devq->send_mtx);
3237 
3238 	if (timeout != 0) {
3239 		xpt_action(start_ccb);
3240 		while(--timeout > 0) {
3241 			if (mtx)
3242 				mtx_lock(mtx);
3243 			(*(sim->sim_poll))(sim);
3244 			if (mtx)
3245 				mtx_unlock(mtx);
3246 			camisr_runqueue();
3247 			if ((start_ccb->ccb_h.status  & CAM_STATUS_MASK)
3248 			    != CAM_REQ_INPROG)
3249 				break;
3250 			DELAY(100);
3251 		}
3252 		if (timeout == 0) {
3253 			/*
3254 			 * XXX Is it worth adding a sim_timeout entry
3255 			 * point so we can attempt recovery?  If
3256 			 * this is only used for dumps, I don't think
3257 			 * it is.
3258 			 */
3259 			start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3260 		}
3261 	} else {
3262 		start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3263 	}
3264 
3265 	mtx_lock(&dev->device_mtx);
3266 }
3267 
3268 /*
3269  * Schedule a peripheral driver to receive a ccb when its
3270  * target device has space for more transactions.
3271  */
3272 void
3273 xpt_schedule(struct cam_periph *periph, u_int32_t new_priority)
3274 {
3275 
3276 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3277 	cam_periph_assert(periph, MA_OWNED);
3278 	if (new_priority < periph->scheduled_priority) {
3279 		periph->scheduled_priority = new_priority;
3280 		xpt_run_allocq(periph, 0);
3281 	}
3282 }
3283 
3284 
3285 /*
3286  * Schedule a device to run on a given queue.
3287  * If the device was inserted as a new entry on the queue,
3288  * return 1 meaning the device queue should be run. If we
3289  * were already queued, implying someone else has already
3290  * started the queue, return 0 so the caller doesn't attempt
3291  * to run the queue.
3292  */
3293 static int
3294 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3295 		 u_int32_t new_priority)
3296 {
3297 	int retval;
3298 	u_int32_t old_priority;
3299 
3300 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3301 
3302 	old_priority = pinfo->priority;
3303 
3304 	/*
3305 	 * Are we already queued?
3306 	 */
3307 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3308 		/* Simply reorder based on new priority */
3309 		if (new_priority < old_priority) {
3310 			camq_change_priority(queue, pinfo->index,
3311 					     new_priority);
3312 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3313 					("changed priority to %d\n",
3314 					 new_priority));
3315 			retval = 1;
3316 		} else
3317 			retval = 0;
3318 	} else {
3319 		/* New entry on the queue */
3320 		if (new_priority < old_priority)
3321 			pinfo->priority = new_priority;
3322 
3323 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3324 				("Inserting onto queue\n"));
3325 		pinfo->generation = ++queue->generation;
3326 		camq_insert(queue, pinfo);
3327 		retval = 1;
3328 	}
3329 	return (retval);
3330 }
3331 
3332 static void
3333 xpt_run_allocq_task(void *context, int pending)
3334 {
3335 	struct cam_periph *periph = context;
3336 
3337 	cam_periph_lock(periph);
3338 	periph->flags &= ~CAM_PERIPH_RUN_TASK;
3339 	xpt_run_allocq(periph, 1);
3340 	cam_periph_unlock(periph);
3341 	cam_periph_release(periph);
3342 }
3343 
3344 static void
3345 xpt_run_allocq(struct cam_periph *periph, int sleep)
3346 {
3347 	struct cam_ed	*device;
3348 	union ccb	*ccb;
3349 	uint32_t	 prio;
3350 
3351 	cam_periph_assert(periph, MA_OWNED);
3352 	if (periph->periph_allocating)
3353 		return;
3354 	periph->periph_allocating = 1;
3355 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_allocq(%p)\n", periph));
3356 	device = periph->path->device;
3357 	ccb = NULL;
3358 restart:
3359 	while ((prio = min(periph->scheduled_priority,
3360 	    periph->immediate_priority)) != CAM_PRIORITY_NONE &&
3361 	    (periph->periph_allocated - (ccb != NULL ? 1 : 0) <
3362 	     device->ccbq.total_openings || prio <= CAM_PRIORITY_OOB)) {
3363 
3364 		if (ccb == NULL &&
3365 		    (ccb = xpt_get_ccb_nowait(periph)) == NULL) {
3366 			if (sleep) {
3367 				ccb = xpt_get_ccb(periph);
3368 				goto restart;
3369 			}
3370 			if (periph->flags & CAM_PERIPH_RUN_TASK)
3371 				break;
3372 			cam_periph_doacquire(periph);
3373 			periph->flags |= CAM_PERIPH_RUN_TASK;
3374 			taskqueue_enqueue(xsoftc.xpt_taskq,
3375 			    &periph->periph_run_task);
3376 			break;
3377 		}
3378 		xpt_setup_ccb(&ccb->ccb_h, periph->path, prio);
3379 		if (prio == periph->immediate_priority) {
3380 			periph->immediate_priority = CAM_PRIORITY_NONE;
3381 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3382 					("waking cam_periph_getccb()\n"));
3383 			SLIST_INSERT_HEAD(&periph->ccb_list, &ccb->ccb_h,
3384 					  periph_links.sle);
3385 			wakeup(&periph->ccb_list);
3386 		} else {
3387 			periph->scheduled_priority = CAM_PRIORITY_NONE;
3388 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3389 					("calling periph_start()\n"));
3390 			periph->periph_start(periph, ccb);
3391 		}
3392 		ccb = NULL;
3393 	}
3394 	if (ccb != NULL)
3395 		xpt_release_ccb(ccb);
3396 	periph->periph_allocating = 0;
3397 }
3398 
3399 static void
3400 xpt_run_devq(struct cam_devq *devq)
3401 {
3402 	struct mtx *mtx;
3403 
3404 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n"));
3405 
3406 	devq->send_queue.qfrozen_cnt++;
3407 	while ((devq->send_queue.entries > 0)
3408 	    && (devq->send_openings > 0)
3409 	    && (devq->send_queue.qfrozen_cnt <= 1)) {
3410 		struct	cam_ed *device;
3411 		union ccb *work_ccb;
3412 		struct	cam_sim *sim;
3413 		struct xpt_proto *proto;
3414 
3415 		device = (struct cam_ed *)camq_remove(&devq->send_queue,
3416 							   CAMQ_HEAD);
3417 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3418 				("running device %p\n", device));
3419 
3420 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3421 		if (work_ccb == NULL) {
3422 			printf("device on run queue with no ccbs???\n");
3423 			continue;
3424 		}
3425 
3426 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3427 
3428 			mtx_lock(&xsoftc.xpt_highpower_lock);
3429 		 	if (xsoftc.num_highpower <= 0) {
3430 				/*
3431 				 * We got a high power command, but we
3432 				 * don't have any available slots.  Freeze
3433 				 * the device queue until we have a slot
3434 				 * available.
3435 				 */
3436 				xpt_freeze_devq_device(device, 1);
3437 				STAILQ_INSERT_TAIL(&xsoftc.highpowerq, device,
3438 						   highpowerq_entry);
3439 
3440 				mtx_unlock(&xsoftc.xpt_highpower_lock);
3441 				continue;
3442 			} else {
3443 				/*
3444 				 * Consume a high power slot while
3445 				 * this ccb runs.
3446 				 */
3447 				xsoftc.num_highpower--;
3448 			}
3449 			mtx_unlock(&xsoftc.xpt_highpower_lock);
3450 		}
3451 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3452 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3453 		devq->send_openings--;
3454 		devq->send_active++;
3455 		xpt_schedule_devq(devq, device);
3456 		mtx_unlock(&devq->send_mtx);
3457 
3458 		if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) {
3459 			/*
3460 			 * The client wants to freeze the queue
3461 			 * after this CCB is sent.
3462 			 */
3463 			xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3464 		}
3465 
3466 		/* In Target mode, the peripheral driver knows best... */
3467 		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3468 			if ((device->inq_flags & SID_CmdQue) != 0
3469 			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3470 				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3471 			else
3472 				/*
3473 				 * Clear this in case of a retried CCB that
3474 				 * failed due to a rejected tag.
3475 				 */
3476 				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3477 		}
3478 
3479 		KASSERT(device == work_ccb->ccb_h.path->device,
3480 		    ("device (%p) / path->device (%p) mismatch",
3481 			device, work_ccb->ccb_h.path->device));
3482 		proto = xpt_proto_find(device->protocol);
3483 		if (proto && proto->ops->debug_out)
3484 			proto->ops->debug_out(work_ccb);
3485 
3486 		/*
3487 		 * Device queues can be shared among multiple SIM instances
3488 		 * that reside on different buses.  Use the SIM from the
3489 		 * queued device, rather than the one from the calling bus.
3490 		 */
3491 		sim = device->sim;
3492 		mtx = sim->mtx;
3493 		if (mtx && !mtx_owned(mtx))
3494 			mtx_lock(mtx);
3495 		else
3496 			mtx = NULL;
3497 		work_ccb->ccb_h.qos.sim_data = sbinuptime(); // xxx uintprt_t too small 32bit platforms
3498 		(*(sim->sim_action))(sim, work_ccb);
3499 		if (mtx)
3500 			mtx_unlock(mtx);
3501 		mtx_lock(&devq->send_mtx);
3502 	}
3503 	devq->send_queue.qfrozen_cnt--;
3504 }
3505 
3506 /*
3507  * This function merges stuff from the slave ccb into the master ccb, while
3508  * keeping important fields in the master ccb constant.
3509  */
3510 void
3511 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3512 {
3513 
3514 	/*
3515 	 * Pull fields that are valid for peripheral drivers to set
3516 	 * into the master CCB along with the CCB "payload".
3517 	 */
3518 	master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3519 	master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3520 	master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3521 	master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3522 	bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3523 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3524 }
3525 
3526 void
3527 xpt_setup_ccb_flags(struct ccb_hdr *ccb_h, struct cam_path *path,
3528 		    u_int32_t priority, u_int32_t flags)
3529 {
3530 
3531 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3532 	ccb_h->pinfo.priority = priority;
3533 	ccb_h->path = path;
3534 	ccb_h->path_id = path->bus->path_id;
3535 	if (path->target)
3536 		ccb_h->target_id = path->target->target_id;
3537 	else
3538 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3539 	if (path->device) {
3540 		ccb_h->target_lun = path->device->lun_id;
3541 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3542 	} else {
3543 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3544 	}
3545 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3546 	ccb_h->flags = flags;
3547 	ccb_h->xflags = 0;
3548 }
3549 
3550 void
3551 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3552 {
3553 	xpt_setup_ccb_flags(ccb_h, path, priority, /*flags*/ 0);
3554 }
3555 
3556 /* Path manipulation functions */
3557 cam_status
3558 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3559 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3560 {
3561 	struct	   cam_path *path;
3562 	cam_status status;
3563 
3564 	path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3565 
3566 	if (path == NULL) {
3567 		status = CAM_RESRC_UNAVAIL;
3568 		return(status);
3569 	}
3570 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3571 	if (status != CAM_REQ_CMP) {
3572 		free(path, M_CAMPATH);
3573 		path = NULL;
3574 	}
3575 	*new_path_ptr = path;
3576 	return (status);
3577 }
3578 
3579 cam_status
3580 xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3581 			 struct cam_periph *periph, path_id_t path_id,
3582 			 target_id_t target_id, lun_id_t lun_id)
3583 {
3584 
3585 	return (xpt_create_path(new_path_ptr, periph, path_id, target_id,
3586 	    lun_id));
3587 }
3588 
3589 cam_status
3590 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3591 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3592 {
3593 	struct	     cam_eb *bus;
3594 	struct	     cam_et *target;
3595 	struct	     cam_ed *device;
3596 	cam_status   status;
3597 
3598 	status = CAM_REQ_CMP;	/* Completed without error */
3599 	target = NULL;		/* Wildcarded */
3600 	device = NULL;		/* Wildcarded */
3601 
3602 	/*
3603 	 * We will potentially modify the EDT, so block interrupts
3604 	 * that may attempt to create cam paths.
3605 	 */
3606 	bus = xpt_find_bus(path_id);
3607 	if (bus == NULL) {
3608 		status = CAM_PATH_INVALID;
3609 	} else {
3610 		xpt_lock_buses();
3611 		mtx_lock(&bus->eb_mtx);
3612 		target = xpt_find_target(bus, target_id);
3613 		if (target == NULL) {
3614 			/* Create one */
3615 			struct cam_et *new_target;
3616 
3617 			new_target = xpt_alloc_target(bus, target_id);
3618 			if (new_target == NULL) {
3619 				status = CAM_RESRC_UNAVAIL;
3620 			} else {
3621 				target = new_target;
3622 			}
3623 		}
3624 		xpt_unlock_buses();
3625 		if (target != NULL) {
3626 			device = xpt_find_device(target, lun_id);
3627 			if (device == NULL) {
3628 				/* Create one */
3629 				struct cam_ed *new_device;
3630 
3631 				new_device =
3632 				    (*(bus->xport->ops->alloc_device))(bus,
3633 								       target,
3634 								       lun_id);
3635 				if (new_device == NULL) {
3636 					status = CAM_RESRC_UNAVAIL;
3637 				} else {
3638 					device = new_device;
3639 				}
3640 			}
3641 		}
3642 		mtx_unlock(&bus->eb_mtx);
3643 	}
3644 
3645 	/*
3646 	 * Only touch the user's data if we are successful.
3647 	 */
3648 	if (status == CAM_REQ_CMP) {
3649 		new_path->periph = perph;
3650 		new_path->bus = bus;
3651 		new_path->target = target;
3652 		new_path->device = device;
3653 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3654 	} else {
3655 		if (device != NULL)
3656 			xpt_release_device(device);
3657 		if (target != NULL)
3658 			xpt_release_target(target);
3659 		if (bus != NULL)
3660 			xpt_release_bus(bus);
3661 	}
3662 	return (status);
3663 }
3664 
3665 cam_status
3666 xpt_clone_path(struct cam_path **new_path_ptr, struct cam_path *path)
3667 {
3668 	struct	   cam_path *new_path;
3669 
3670 	new_path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3671 	if (new_path == NULL)
3672 		return(CAM_RESRC_UNAVAIL);
3673 	xpt_copy_path(new_path, path);
3674 	*new_path_ptr = new_path;
3675 	return (CAM_REQ_CMP);
3676 }
3677 
3678 void
3679 xpt_copy_path(struct cam_path *new_path, struct cam_path *path)
3680 {
3681 
3682 	*new_path = *path;
3683 	if (path->bus != NULL)
3684 		xpt_acquire_bus(path->bus);
3685 	if (path->target != NULL)
3686 		xpt_acquire_target(path->target);
3687 	if (path->device != NULL)
3688 		xpt_acquire_device(path->device);
3689 }
3690 
3691 void
3692 xpt_release_path(struct cam_path *path)
3693 {
3694 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3695 	if (path->device != NULL) {
3696 		xpt_release_device(path->device);
3697 		path->device = NULL;
3698 	}
3699 	if (path->target != NULL) {
3700 		xpt_release_target(path->target);
3701 		path->target = NULL;
3702 	}
3703 	if (path->bus != NULL) {
3704 		xpt_release_bus(path->bus);
3705 		path->bus = NULL;
3706 	}
3707 }
3708 
3709 void
3710 xpt_free_path(struct cam_path *path)
3711 {
3712 
3713 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3714 	xpt_release_path(path);
3715 	free(path, M_CAMPATH);
3716 }
3717 
3718 void
3719 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref,
3720     uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref)
3721 {
3722 
3723 	xpt_lock_buses();
3724 	if (bus_ref) {
3725 		if (path->bus)
3726 			*bus_ref = path->bus->refcount;
3727 		else
3728 			*bus_ref = 0;
3729 	}
3730 	if (periph_ref) {
3731 		if (path->periph)
3732 			*periph_ref = path->periph->refcount;
3733 		else
3734 			*periph_ref = 0;
3735 	}
3736 	xpt_unlock_buses();
3737 	if (target_ref) {
3738 		if (path->target)
3739 			*target_ref = path->target->refcount;
3740 		else
3741 			*target_ref = 0;
3742 	}
3743 	if (device_ref) {
3744 		if (path->device)
3745 			*device_ref = path->device->refcount;
3746 		else
3747 			*device_ref = 0;
3748 	}
3749 }
3750 
3751 /*
3752  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3753  * in path1, 2 for match with wildcards in path2.
3754  */
3755 int
3756 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3757 {
3758 	int retval = 0;
3759 
3760 	if (path1->bus != path2->bus) {
3761 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
3762 			retval = 1;
3763 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3764 			retval = 2;
3765 		else
3766 			return (-1);
3767 	}
3768 	if (path1->target != path2->target) {
3769 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3770 			if (retval == 0)
3771 				retval = 1;
3772 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3773 			retval = 2;
3774 		else
3775 			return (-1);
3776 	}
3777 	if (path1->device != path2->device) {
3778 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3779 			if (retval == 0)
3780 				retval = 1;
3781 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3782 			retval = 2;
3783 		else
3784 			return (-1);
3785 	}
3786 	return (retval);
3787 }
3788 
3789 int
3790 xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev)
3791 {
3792 	int retval = 0;
3793 
3794 	if (path->bus != dev->target->bus) {
3795 		if (path->bus->path_id == CAM_BUS_WILDCARD)
3796 			retval = 1;
3797 		else if (dev->target->bus->path_id == CAM_BUS_WILDCARD)
3798 			retval = 2;
3799 		else
3800 			return (-1);
3801 	}
3802 	if (path->target != dev->target) {
3803 		if (path->target->target_id == CAM_TARGET_WILDCARD) {
3804 			if (retval == 0)
3805 				retval = 1;
3806 		} else if (dev->target->target_id == CAM_TARGET_WILDCARD)
3807 			retval = 2;
3808 		else
3809 			return (-1);
3810 	}
3811 	if (path->device != dev) {
3812 		if (path->device->lun_id == CAM_LUN_WILDCARD) {
3813 			if (retval == 0)
3814 				retval = 1;
3815 		} else if (dev->lun_id == CAM_LUN_WILDCARD)
3816 			retval = 2;
3817 		else
3818 			return (-1);
3819 	}
3820 	return (retval);
3821 }
3822 
3823 void
3824 xpt_print_path(struct cam_path *path)
3825 {
3826 	struct sbuf sb;
3827 	char buffer[XPT_PRINT_LEN];
3828 
3829 	sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN);
3830 	xpt_path_sbuf(path, &sb);
3831 	sbuf_finish(&sb);
3832 	printf("%s", sbuf_data(&sb));
3833 	sbuf_delete(&sb);
3834 }
3835 
3836 void
3837 xpt_print_device(struct cam_ed *device)
3838 {
3839 
3840 	if (device == NULL)
3841 		printf("(nopath): ");
3842 	else {
3843 		printf("(noperiph:%s%d:%d:%d:%jx): ", device->sim->sim_name,
3844 		       device->sim->unit_number,
3845 		       device->sim->bus_id,
3846 		       device->target->target_id,
3847 		       (uintmax_t)device->lun_id);
3848 	}
3849 }
3850 
3851 void
3852 xpt_print(struct cam_path *path, const char *fmt, ...)
3853 {
3854 	va_list ap;
3855 	struct sbuf sb;
3856 	char buffer[XPT_PRINT_LEN];
3857 
3858 	sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN);
3859 
3860 	xpt_path_sbuf(path, &sb);
3861 	va_start(ap, fmt);
3862 	sbuf_vprintf(&sb, fmt, ap);
3863 	va_end(ap);
3864 
3865 	sbuf_finish(&sb);
3866 	printf("%s", sbuf_data(&sb));
3867 	sbuf_delete(&sb);
3868 }
3869 
3870 int
3871 xpt_path_string(struct cam_path *path, char *str, size_t str_len)
3872 {
3873 	struct sbuf sb;
3874 	int len;
3875 
3876 	sbuf_new(&sb, str, str_len, 0);
3877 	len = xpt_path_sbuf(path, &sb);
3878 	sbuf_finish(&sb);
3879 	return (len);
3880 }
3881 
3882 int
3883 xpt_path_sbuf(struct cam_path *path, struct sbuf *sb)
3884 {
3885 
3886 	if (path == NULL)
3887 		sbuf_printf(sb, "(nopath): ");
3888 	else {
3889 		if (path->periph != NULL)
3890 			sbuf_printf(sb, "(%s%d:", path->periph->periph_name,
3891 				    path->periph->unit_number);
3892 		else
3893 			sbuf_printf(sb, "(noperiph:");
3894 
3895 		if (path->bus != NULL)
3896 			sbuf_printf(sb, "%s%d:%d:", path->bus->sim->sim_name,
3897 				    path->bus->sim->unit_number,
3898 				    path->bus->sim->bus_id);
3899 		else
3900 			sbuf_printf(sb, "nobus:");
3901 
3902 		if (path->target != NULL)
3903 			sbuf_printf(sb, "%d:", path->target->target_id);
3904 		else
3905 			sbuf_printf(sb, "X:");
3906 
3907 		if (path->device != NULL)
3908 			sbuf_printf(sb, "%jx): ",
3909 			    (uintmax_t)path->device->lun_id);
3910 		else
3911 			sbuf_printf(sb, "X): ");
3912 	}
3913 
3914 	return(sbuf_len(sb));
3915 }
3916 
3917 path_id_t
3918 xpt_path_path_id(struct cam_path *path)
3919 {
3920 	return(path->bus->path_id);
3921 }
3922 
3923 target_id_t
3924 xpt_path_target_id(struct cam_path *path)
3925 {
3926 	if (path->target != NULL)
3927 		return (path->target->target_id);
3928 	else
3929 		return (CAM_TARGET_WILDCARD);
3930 }
3931 
3932 lun_id_t
3933 xpt_path_lun_id(struct cam_path *path)
3934 {
3935 	if (path->device != NULL)
3936 		return (path->device->lun_id);
3937 	else
3938 		return (CAM_LUN_WILDCARD);
3939 }
3940 
3941 struct cam_sim *
3942 xpt_path_sim(struct cam_path *path)
3943 {
3944 
3945 	return (path->bus->sim);
3946 }
3947 
3948 struct cam_periph*
3949 xpt_path_periph(struct cam_path *path)
3950 {
3951 
3952 	return (path->periph);
3953 }
3954 
3955 /*
3956  * Release a CAM control block for the caller.  Remit the cost of the structure
3957  * to the device referenced by the path.  If the this device had no 'credits'
3958  * and peripheral drivers have registered async callbacks for this notification
3959  * call them now.
3960  */
3961 void
3962 xpt_release_ccb(union ccb *free_ccb)
3963 {
3964 	struct	 cam_ed *device;
3965 	struct	 cam_periph *periph;
3966 
3967 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
3968 	xpt_path_assert(free_ccb->ccb_h.path, MA_OWNED);
3969 	device = free_ccb->ccb_h.path->device;
3970 	periph = free_ccb->ccb_h.path->periph;
3971 
3972 	xpt_free_ccb(free_ccb);
3973 	periph->periph_allocated--;
3974 	cam_ccbq_release_opening(&device->ccbq);
3975 	xpt_run_allocq(periph, 0);
3976 }
3977 
3978 /* Functions accessed by SIM drivers */
3979 
3980 static struct xpt_xport_ops xport_default_ops = {
3981 	.alloc_device = xpt_alloc_device_default,
3982 	.action = xpt_action_default,
3983 	.async = xpt_dev_async_default,
3984 };
3985 static struct xpt_xport xport_default = {
3986 	.xport = XPORT_UNKNOWN,
3987 	.name = "unknown",
3988 	.ops = &xport_default_ops,
3989 };
3990 
3991 CAM_XPT_XPORT(xport_default);
3992 
3993 /*
3994  * A sim structure, listing the SIM entry points and instance
3995  * identification info is passed to xpt_bus_register to hook the SIM
3996  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
3997  * for this new bus and places it in the array of buses and assigns
3998  * it a path_id.  The path_id may be influenced by "hard wiring"
3999  * information specified by the user.  Once interrupt services are
4000  * available, the bus will be probed.
4001  */
4002 int32_t
4003 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus)
4004 {
4005 	struct cam_eb *new_bus;
4006 	struct cam_eb *old_bus;
4007 	struct ccb_pathinq cpi;
4008 	struct cam_path *path;
4009 	cam_status status;
4010 
4011 	sim->bus_id = bus;
4012 	new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
4013 					  M_CAMXPT, M_NOWAIT|M_ZERO);
4014 	if (new_bus == NULL) {
4015 		/* Couldn't satisfy request */
4016 		return (CAM_RESRC_UNAVAIL);
4017 	}
4018 
4019 	mtx_init(&new_bus->eb_mtx, "CAM bus lock", NULL, MTX_DEF);
4020 	TAILQ_INIT(&new_bus->et_entries);
4021 	cam_sim_hold(sim);
4022 	new_bus->sim = sim;
4023 	timevalclear(&new_bus->last_reset);
4024 	new_bus->flags = 0;
4025 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
4026 	new_bus->generation = 0;
4027 
4028 	xpt_lock_buses();
4029 	sim->path_id = new_bus->path_id =
4030 	    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
4031 	old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4032 	while (old_bus != NULL
4033 	    && old_bus->path_id < new_bus->path_id)
4034 		old_bus = TAILQ_NEXT(old_bus, links);
4035 	if (old_bus != NULL)
4036 		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
4037 	else
4038 		TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
4039 	xsoftc.bus_generation++;
4040 	xpt_unlock_buses();
4041 
4042 	/*
4043 	 * Set a default transport so that a PATH_INQ can be issued to
4044 	 * the SIM.  This will then allow for probing and attaching of
4045 	 * a more appropriate transport.
4046 	 */
4047 	new_bus->xport = &xport_default;
4048 
4049 	status = xpt_create_path(&path, /*periph*/NULL, sim->path_id,
4050 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4051 	if (status != CAM_REQ_CMP) {
4052 		xpt_release_bus(new_bus);
4053 		free(path, M_CAMXPT);
4054 		return (CAM_RESRC_UNAVAIL);
4055 	}
4056 
4057 	xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL);
4058 	cpi.ccb_h.func_code = XPT_PATH_INQ;
4059 	xpt_action((union ccb *)&cpi);
4060 
4061 	if (cpi.ccb_h.status == CAM_REQ_CMP) {
4062 		struct xpt_xport **xpt;
4063 
4064 		SET_FOREACH(xpt, cam_xpt_xport_set) {
4065 			if ((*xpt)->xport == cpi.transport) {
4066 				new_bus->xport = *xpt;
4067 				break;
4068 			}
4069 		}
4070 		if (new_bus->xport == NULL) {
4071 			xpt_print(path,
4072 			    "No transport found for %d\n", cpi.transport);
4073 			xpt_release_bus(new_bus);
4074 			free(path, M_CAMXPT);
4075 			return (CAM_RESRC_UNAVAIL);
4076 		}
4077 	}
4078 
4079 	/* Notify interested parties */
4080 	if (sim->path_id != CAM_XPT_PATH_ID) {
4081 
4082 		xpt_async(AC_PATH_REGISTERED, path, &cpi);
4083 		if ((cpi.hba_misc & PIM_NOSCAN) == 0) {
4084 			union	ccb *scan_ccb;
4085 
4086 			/* Initiate bus rescan. */
4087 			scan_ccb = xpt_alloc_ccb_nowait();
4088 			if (scan_ccb != NULL) {
4089 				scan_ccb->ccb_h.path = path;
4090 				scan_ccb->ccb_h.func_code = XPT_SCAN_BUS;
4091 				scan_ccb->crcn.flags = 0;
4092 				xpt_rescan(scan_ccb);
4093 			} else {
4094 				xpt_print(path,
4095 					  "Can't allocate CCB to scan bus\n");
4096 				xpt_free_path(path);
4097 			}
4098 		} else
4099 			xpt_free_path(path);
4100 	} else
4101 		xpt_free_path(path);
4102 	return (CAM_SUCCESS);
4103 }
4104 
4105 int32_t
4106 xpt_bus_deregister(path_id_t pathid)
4107 {
4108 	struct cam_path bus_path;
4109 	cam_status status;
4110 
4111 	status = xpt_compile_path(&bus_path, NULL, pathid,
4112 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4113 	if (status != CAM_REQ_CMP)
4114 		return (status);
4115 
4116 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4117 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4118 
4119 	/* Release the reference count held while registered. */
4120 	xpt_release_bus(bus_path.bus);
4121 	xpt_release_path(&bus_path);
4122 
4123 	return (CAM_REQ_CMP);
4124 }
4125 
4126 static path_id_t
4127 xptnextfreepathid(void)
4128 {
4129 	struct cam_eb *bus;
4130 	path_id_t pathid;
4131 	const char *strval;
4132 
4133 	mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
4134 	pathid = 0;
4135 	bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4136 retry:
4137 	/* Find an unoccupied pathid */
4138 	while (bus != NULL && bus->path_id <= pathid) {
4139 		if (bus->path_id == pathid)
4140 			pathid++;
4141 		bus = TAILQ_NEXT(bus, links);
4142 	}
4143 
4144 	/*
4145 	 * Ensure that this pathid is not reserved for
4146 	 * a bus that may be registered in the future.
4147 	 */
4148 	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
4149 		++pathid;
4150 		/* Start the search over */
4151 		goto retry;
4152 	}
4153 	return (pathid);
4154 }
4155 
4156 static path_id_t
4157 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
4158 {
4159 	path_id_t pathid;
4160 	int i, dunit, val;
4161 	char buf[32];
4162 	const char *dname;
4163 
4164 	pathid = CAM_XPT_PATH_ID;
4165 	snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
4166 	if (strcmp(buf, "xpt0") == 0 && sim_bus == 0)
4167 		return (pathid);
4168 	i = 0;
4169 	while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) {
4170 		if (strcmp(dname, "scbus")) {
4171 			/* Avoid a bit of foot shooting. */
4172 			continue;
4173 		}
4174 		if (dunit < 0)		/* unwired?! */
4175 			continue;
4176 		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4177 			if (sim_bus == val) {
4178 				pathid = dunit;
4179 				break;
4180 			}
4181 		} else if (sim_bus == 0) {
4182 			/* Unspecified matches bus 0 */
4183 			pathid = dunit;
4184 			break;
4185 		} else {
4186 			printf("Ambiguous scbus configuration for %s%d "
4187 			       "bus %d, cannot wire down.  The kernel "
4188 			       "config entry for scbus%d should "
4189 			       "specify a controller bus.\n"
4190 			       "Scbus will be assigned dynamically.\n",
4191 			       sim_name, sim_unit, sim_bus, dunit);
4192 			break;
4193 		}
4194 	}
4195 
4196 	if (pathid == CAM_XPT_PATH_ID)
4197 		pathid = xptnextfreepathid();
4198 	return (pathid);
4199 }
4200 
4201 static const char *
4202 xpt_async_string(u_int32_t async_code)
4203 {
4204 
4205 	switch (async_code) {
4206 	case AC_BUS_RESET: return ("AC_BUS_RESET");
4207 	case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL");
4208 	case AC_SCSI_AEN: return ("AC_SCSI_AEN");
4209 	case AC_SENT_BDR: return ("AC_SENT_BDR");
4210 	case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED");
4211 	case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED");
4212 	case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE");
4213 	case AC_LOST_DEVICE: return ("AC_LOST_DEVICE");
4214 	case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG");
4215 	case AC_INQ_CHANGED: return ("AC_INQ_CHANGED");
4216 	case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED");
4217 	case AC_CONTRACT: return ("AC_CONTRACT");
4218 	case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED");
4219 	case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION");
4220 	}
4221 	return ("AC_UNKNOWN");
4222 }
4223 
4224 static int
4225 xpt_async_size(u_int32_t async_code)
4226 {
4227 
4228 	switch (async_code) {
4229 	case AC_BUS_RESET: return (0);
4230 	case AC_UNSOL_RESEL: return (0);
4231 	case AC_SCSI_AEN: return (0);
4232 	case AC_SENT_BDR: return (0);
4233 	case AC_PATH_REGISTERED: return (sizeof(struct ccb_pathinq));
4234 	case AC_PATH_DEREGISTERED: return (0);
4235 	case AC_FOUND_DEVICE: return (sizeof(struct ccb_getdev));
4236 	case AC_LOST_DEVICE: return (0);
4237 	case AC_TRANSFER_NEG: return (sizeof(struct ccb_trans_settings));
4238 	case AC_INQ_CHANGED: return (0);
4239 	case AC_GETDEV_CHANGED: return (0);
4240 	case AC_CONTRACT: return (sizeof(struct ac_contract));
4241 	case AC_ADVINFO_CHANGED: return (-1);
4242 	case AC_UNIT_ATTENTION: return (sizeof(struct ccb_scsiio));
4243 	}
4244 	return (0);
4245 }
4246 
4247 static int
4248 xpt_async_process_dev(struct cam_ed *device, void *arg)
4249 {
4250 	union ccb *ccb = arg;
4251 	struct cam_path *path = ccb->ccb_h.path;
4252 	void *async_arg = ccb->casync.async_arg_ptr;
4253 	u_int32_t async_code = ccb->casync.async_code;
4254 	int relock;
4255 
4256 	if (path->device != device
4257 	 && path->device->lun_id != CAM_LUN_WILDCARD
4258 	 && device->lun_id != CAM_LUN_WILDCARD)
4259 		return (1);
4260 
4261 	/*
4262 	 * The async callback could free the device.
4263 	 * If it is a broadcast async, it doesn't hold
4264 	 * device reference, so take our own reference.
4265 	 */
4266 	xpt_acquire_device(device);
4267 
4268 	/*
4269 	 * If async for specific device is to be delivered to
4270 	 * the wildcard client, take the specific device lock.
4271 	 * XXX: We may need a way for client to specify it.
4272 	 */
4273 	if ((device->lun_id == CAM_LUN_WILDCARD &&
4274 	     path->device->lun_id != CAM_LUN_WILDCARD) ||
4275 	    (device->target->target_id == CAM_TARGET_WILDCARD &&
4276 	     path->target->target_id != CAM_TARGET_WILDCARD) ||
4277 	    (device->target->bus->path_id == CAM_BUS_WILDCARD &&
4278 	     path->target->bus->path_id != CAM_BUS_WILDCARD)) {
4279 		mtx_unlock(&device->device_mtx);
4280 		xpt_path_lock(path);
4281 		relock = 1;
4282 	} else
4283 		relock = 0;
4284 
4285 	(*(device->target->bus->xport->ops->async))(async_code,
4286 	    device->target->bus, device->target, device, async_arg);
4287 	xpt_async_bcast(&device->asyncs, async_code, path, async_arg);
4288 
4289 	if (relock) {
4290 		xpt_path_unlock(path);
4291 		mtx_lock(&device->device_mtx);
4292 	}
4293 	xpt_release_device(device);
4294 	return (1);
4295 }
4296 
4297 static int
4298 xpt_async_process_tgt(struct cam_et *target, void *arg)
4299 {
4300 	union ccb *ccb = arg;
4301 	struct cam_path *path = ccb->ccb_h.path;
4302 
4303 	if (path->target != target
4304 	 && path->target->target_id != CAM_TARGET_WILDCARD
4305 	 && target->target_id != CAM_TARGET_WILDCARD)
4306 		return (1);
4307 
4308 	if (ccb->casync.async_code == AC_SENT_BDR) {
4309 		/* Update our notion of when the last reset occurred */
4310 		microtime(&target->last_reset);
4311 	}
4312 
4313 	return (xptdevicetraverse(target, NULL, xpt_async_process_dev, ccb));
4314 }
4315 
4316 static void
4317 xpt_async_process(struct cam_periph *periph, union ccb *ccb)
4318 {
4319 	struct cam_eb *bus;
4320 	struct cam_path *path;
4321 	void *async_arg;
4322 	u_int32_t async_code;
4323 
4324 	path = ccb->ccb_h.path;
4325 	async_code = ccb->casync.async_code;
4326 	async_arg = ccb->casync.async_arg_ptr;
4327 	CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO,
4328 	    ("xpt_async(%s)\n", xpt_async_string(async_code)));
4329 	bus = path->bus;
4330 
4331 	if (async_code == AC_BUS_RESET) {
4332 		/* Update our notion of when the last reset occurred */
4333 		microtime(&bus->last_reset);
4334 	}
4335 
4336 	xpttargettraverse(bus, NULL, xpt_async_process_tgt, ccb);
4337 
4338 	/*
4339 	 * If this wasn't a fully wildcarded async, tell all
4340 	 * clients that want all async events.
4341 	 */
4342 	if (bus != xpt_periph->path->bus) {
4343 		xpt_path_lock(xpt_periph->path);
4344 		xpt_async_process_dev(xpt_periph->path->device, ccb);
4345 		xpt_path_unlock(xpt_periph->path);
4346 	}
4347 
4348 	if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4349 		xpt_release_devq(path, 1, TRUE);
4350 	else
4351 		xpt_release_simq(path->bus->sim, TRUE);
4352 	if (ccb->casync.async_arg_size > 0)
4353 		free(async_arg, M_CAMXPT);
4354 	xpt_free_path(path);
4355 	xpt_free_ccb(ccb);
4356 }
4357 
4358 static void
4359 xpt_async_bcast(struct async_list *async_head,
4360 		u_int32_t async_code,
4361 		struct cam_path *path, void *async_arg)
4362 {
4363 	struct async_node *cur_entry;
4364 	struct mtx *mtx;
4365 
4366 	cur_entry = SLIST_FIRST(async_head);
4367 	while (cur_entry != NULL) {
4368 		struct async_node *next_entry;
4369 		/*
4370 		 * Grab the next list entry before we call the current
4371 		 * entry's callback.  This is because the callback function
4372 		 * can delete its async callback entry.
4373 		 */
4374 		next_entry = SLIST_NEXT(cur_entry, links);
4375 		if ((cur_entry->event_enable & async_code) != 0) {
4376 			mtx = cur_entry->event_lock ?
4377 			    path->device->sim->mtx : NULL;
4378 			if (mtx)
4379 				mtx_lock(mtx);
4380 			cur_entry->callback(cur_entry->callback_arg,
4381 					    async_code, path,
4382 					    async_arg);
4383 			if (mtx)
4384 				mtx_unlock(mtx);
4385 		}
4386 		cur_entry = next_entry;
4387 	}
4388 }
4389 
4390 void
4391 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
4392 {
4393 	union ccb *ccb;
4394 	int size;
4395 
4396 	ccb = xpt_alloc_ccb_nowait();
4397 	if (ccb == NULL) {
4398 		xpt_print(path, "Can't allocate CCB to send %s\n",
4399 		    xpt_async_string(async_code));
4400 		return;
4401 	}
4402 
4403 	if (xpt_clone_path(&ccb->ccb_h.path, path) != CAM_REQ_CMP) {
4404 		xpt_print(path, "Can't allocate path to send %s\n",
4405 		    xpt_async_string(async_code));
4406 		xpt_free_ccb(ccb);
4407 		return;
4408 	}
4409 	ccb->ccb_h.path->periph = NULL;
4410 	ccb->ccb_h.func_code = XPT_ASYNC;
4411 	ccb->ccb_h.cbfcnp = xpt_async_process;
4412 	ccb->ccb_h.flags |= CAM_UNLOCKED;
4413 	ccb->casync.async_code = async_code;
4414 	ccb->casync.async_arg_size = 0;
4415 	size = xpt_async_size(async_code);
4416 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
4417 	    ("xpt_async: func %#x %s aync_code %d %s\n",
4418 		ccb->ccb_h.func_code,
4419 		xpt_action_name(ccb->ccb_h.func_code),
4420 		async_code,
4421 		xpt_async_string(async_code)));
4422 	if (size > 0 && async_arg != NULL) {
4423 		ccb->casync.async_arg_ptr = malloc(size, M_CAMXPT, M_NOWAIT);
4424 		if (ccb->casync.async_arg_ptr == NULL) {
4425 			xpt_print(path, "Can't allocate argument to send %s\n",
4426 			    xpt_async_string(async_code));
4427 			xpt_free_path(ccb->ccb_h.path);
4428 			xpt_free_ccb(ccb);
4429 			return;
4430 		}
4431 		memcpy(ccb->casync.async_arg_ptr, async_arg, size);
4432 		ccb->casync.async_arg_size = size;
4433 	} else if (size < 0) {
4434 		ccb->casync.async_arg_ptr = async_arg;
4435 		ccb->casync.async_arg_size = size;
4436 	}
4437 	if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4438 		xpt_freeze_devq(path, 1);
4439 	else
4440 		xpt_freeze_simq(path->bus->sim, 1);
4441 	xpt_done(ccb);
4442 }
4443 
4444 static void
4445 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus,
4446 		      struct cam_et *target, struct cam_ed *device,
4447 		      void *async_arg)
4448 {
4449 
4450 	/*
4451 	 * We only need to handle events for real devices.
4452 	 */
4453 	if (target->target_id == CAM_TARGET_WILDCARD
4454 	 || device->lun_id == CAM_LUN_WILDCARD)
4455 		return;
4456 
4457 	printf("%s called\n", __func__);
4458 }
4459 
4460 static uint32_t
4461 xpt_freeze_devq_device(struct cam_ed *dev, u_int count)
4462 {
4463 	struct cam_devq	*devq;
4464 	uint32_t freeze;
4465 
4466 	devq = dev->sim->devq;
4467 	mtx_assert(&devq->send_mtx, MA_OWNED);
4468 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4469 	    ("xpt_freeze_devq_device(%d) %u->%u\n", count,
4470 	    dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count));
4471 	freeze = (dev->ccbq.queue.qfrozen_cnt += count);
4472 	/* Remove frozen device from sendq. */
4473 	if (device_is_queued(dev))
4474 		camq_remove(&devq->send_queue, dev->devq_entry.index);
4475 	return (freeze);
4476 }
4477 
4478 u_int32_t
4479 xpt_freeze_devq(struct cam_path *path, u_int count)
4480 {
4481 	struct cam_ed	*dev = path->device;
4482 	struct cam_devq	*devq;
4483 	uint32_t	 freeze;
4484 
4485 	devq = dev->sim->devq;
4486 	mtx_lock(&devq->send_mtx);
4487 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq(%d)\n", count));
4488 	freeze = xpt_freeze_devq_device(dev, count);
4489 	mtx_unlock(&devq->send_mtx);
4490 	return (freeze);
4491 }
4492 
4493 u_int32_t
4494 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4495 {
4496 	struct cam_devq	*devq;
4497 	uint32_t	 freeze;
4498 
4499 	devq = sim->devq;
4500 	mtx_lock(&devq->send_mtx);
4501 	freeze = (devq->send_queue.qfrozen_cnt += count);
4502 	mtx_unlock(&devq->send_mtx);
4503 	return (freeze);
4504 }
4505 
4506 static void
4507 xpt_release_devq_timeout(void *arg)
4508 {
4509 	struct cam_ed *dev;
4510 	struct cam_devq *devq;
4511 
4512 	dev = (struct cam_ed *)arg;
4513 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n"));
4514 	devq = dev->sim->devq;
4515 	mtx_assert(&devq->send_mtx, MA_OWNED);
4516 	if (xpt_release_devq_device(dev, /*count*/1, /*run_queue*/TRUE))
4517 		xpt_run_devq(devq);
4518 }
4519 
4520 void
4521 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4522 {
4523 	struct cam_ed *dev;
4524 	struct cam_devq *devq;
4525 
4526 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n",
4527 	    count, run_queue));
4528 	dev = path->device;
4529 	devq = dev->sim->devq;
4530 	mtx_lock(&devq->send_mtx);
4531 	if (xpt_release_devq_device(dev, count, run_queue))
4532 		xpt_run_devq(dev->sim->devq);
4533 	mtx_unlock(&devq->send_mtx);
4534 }
4535 
4536 static int
4537 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4538 {
4539 
4540 	mtx_assert(&dev->sim->devq->send_mtx, MA_OWNED);
4541 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4542 	    ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue,
4543 	    dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count));
4544 	if (count > dev->ccbq.queue.qfrozen_cnt) {
4545 #ifdef INVARIANTS
4546 		printf("xpt_release_devq(): requested %u > present %u\n",
4547 		    count, dev->ccbq.queue.qfrozen_cnt);
4548 #endif
4549 		count = dev->ccbq.queue.qfrozen_cnt;
4550 	}
4551 	dev->ccbq.queue.qfrozen_cnt -= count;
4552 	if (dev->ccbq.queue.qfrozen_cnt == 0) {
4553 		/*
4554 		 * No longer need to wait for a successful
4555 		 * command completion.
4556 		 */
4557 		dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4558 		/*
4559 		 * Remove any timeouts that might be scheduled
4560 		 * to release this queue.
4561 		 */
4562 		if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4563 			callout_stop(&dev->callout);
4564 			dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4565 		}
4566 		/*
4567 		 * Now that we are unfrozen schedule the
4568 		 * device so any pending transactions are
4569 		 * run.
4570 		 */
4571 		xpt_schedule_devq(dev->sim->devq, dev);
4572 	} else
4573 		run_queue = 0;
4574 	return (run_queue);
4575 }
4576 
4577 void
4578 xpt_release_simq(struct cam_sim *sim, int run_queue)
4579 {
4580 	struct cam_devq	*devq;
4581 
4582 	devq = sim->devq;
4583 	mtx_lock(&devq->send_mtx);
4584 	if (devq->send_queue.qfrozen_cnt <= 0) {
4585 #ifdef INVARIANTS
4586 		printf("xpt_release_simq: requested 1 > present %u\n",
4587 		    devq->send_queue.qfrozen_cnt);
4588 #endif
4589 	} else
4590 		devq->send_queue.qfrozen_cnt--;
4591 	if (devq->send_queue.qfrozen_cnt == 0) {
4592 		/*
4593 		 * If there is a timeout scheduled to release this
4594 		 * sim queue, remove it.  The queue frozen count is
4595 		 * already at 0.
4596 		 */
4597 		if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4598 			callout_stop(&sim->callout);
4599 			sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4600 		}
4601 		if (run_queue) {
4602 			/*
4603 			 * Now that we are unfrozen run the send queue.
4604 			 */
4605 			xpt_run_devq(sim->devq);
4606 		}
4607 	}
4608 	mtx_unlock(&devq->send_mtx);
4609 }
4610 
4611 /*
4612  * XXX Appears to be unused.
4613  */
4614 static void
4615 xpt_release_simq_timeout(void *arg)
4616 {
4617 	struct cam_sim *sim;
4618 
4619 	sim = (struct cam_sim *)arg;
4620 	xpt_release_simq(sim, /* run_queue */ TRUE);
4621 }
4622 
4623 void
4624 xpt_done(union ccb *done_ccb)
4625 {
4626 	struct cam_doneq *queue;
4627 	int	run, hash;
4628 
4629 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
4630 	if (done_ccb->ccb_h.func_code == XPT_SCSI_IO &&
4631 	    done_ccb->csio.bio != NULL)
4632 		biotrack(done_ccb->csio.bio, __func__);
4633 #endif
4634 
4635 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4636 	    ("xpt_done: func= %#x %s status %#x\n",
4637 		done_ccb->ccb_h.func_code,
4638 		xpt_action_name(done_ccb->ccb_h.func_code),
4639 		done_ccb->ccb_h.status));
4640 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
4641 		return;
4642 
4643 	/* Store the time the ccb was in the sim */
4644 	done_ccb->ccb_h.qos.sim_data = sbinuptime() - done_ccb->ccb_h.qos.sim_data;
4645 	hash = (done_ccb->ccb_h.path_id + done_ccb->ccb_h.target_id +
4646 	    done_ccb->ccb_h.target_lun) % cam_num_doneqs;
4647 	queue = &cam_doneqs[hash];
4648 	mtx_lock(&queue->cam_doneq_mtx);
4649 	run = (queue->cam_doneq_sleep && STAILQ_EMPTY(&queue->cam_doneq));
4650 	STAILQ_INSERT_TAIL(&queue->cam_doneq, &done_ccb->ccb_h, sim_links.stqe);
4651 	done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4652 	mtx_unlock(&queue->cam_doneq_mtx);
4653 	if (run)
4654 		wakeup(&queue->cam_doneq);
4655 }
4656 
4657 void
4658 xpt_done_direct(union ccb *done_ccb)
4659 {
4660 
4661 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4662 	    ("xpt_done_direct: status %#x\n", done_ccb->ccb_h.status));
4663 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
4664 		return;
4665 
4666 	/* Store the time the ccb was in the sim */
4667 	done_ccb->ccb_h.qos.sim_data = sbinuptime() - done_ccb->ccb_h.qos.sim_data;
4668 	xpt_done_process(&done_ccb->ccb_h);
4669 }
4670 
4671 union ccb *
4672 xpt_alloc_ccb()
4673 {
4674 	union ccb *new_ccb;
4675 
4676 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4677 	return (new_ccb);
4678 }
4679 
4680 union ccb *
4681 xpt_alloc_ccb_nowait()
4682 {
4683 	union ccb *new_ccb;
4684 
4685 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4686 	return (new_ccb);
4687 }
4688 
4689 void
4690 xpt_free_ccb(union ccb *free_ccb)
4691 {
4692 	free(free_ccb, M_CAMCCB);
4693 }
4694 
4695 
4696 
4697 /* Private XPT functions */
4698 
4699 /*
4700  * Get a CAM control block for the caller. Charge the structure to the device
4701  * referenced by the path.  If we don't have sufficient resources to allocate
4702  * more ccbs, we return NULL.
4703  */
4704 static union ccb *
4705 xpt_get_ccb_nowait(struct cam_periph *periph)
4706 {
4707 	union ccb *new_ccb;
4708 
4709 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4710 	if (new_ccb == NULL)
4711 		return (NULL);
4712 	periph->periph_allocated++;
4713 	cam_ccbq_take_opening(&periph->path->device->ccbq);
4714 	return (new_ccb);
4715 }
4716 
4717 static union ccb *
4718 xpt_get_ccb(struct cam_periph *periph)
4719 {
4720 	union ccb *new_ccb;
4721 
4722 	cam_periph_unlock(periph);
4723 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4724 	cam_periph_lock(periph);
4725 	periph->periph_allocated++;
4726 	cam_ccbq_take_opening(&periph->path->device->ccbq);
4727 	return (new_ccb);
4728 }
4729 
4730 union ccb *
4731 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority)
4732 {
4733 	struct ccb_hdr *ccb_h;
4734 
4735 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("cam_periph_getccb\n"));
4736 	cam_periph_assert(periph, MA_OWNED);
4737 	while ((ccb_h = SLIST_FIRST(&periph->ccb_list)) == NULL ||
4738 	    ccb_h->pinfo.priority != priority) {
4739 		if (priority < periph->immediate_priority) {
4740 			periph->immediate_priority = priority;
4741 			xpt_run_allocq(periph, 0);
4742 		} else
4743 			cam_periph_sleep(periph, &periph->ccb_list, PRIBIO,
4744 			    "cgticb", 0);
4745 	}
4746 	SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle);
4747 	return ((union ccb *)ccb_h);
4748 }
4749 
4750 static void
4751 xpt_acquire_bus(struct cam_eb *bus)
4752 {
4753 
4754 	xpt_lock_buses();
4755 	bus->refcount++;
4756 	xpt_unlock_buses();
4757 }
4758 
4759 static void
4760 xpt_release_bus(struct cam_eb *bus)
4761 {
4762 
4763 	xpt_lock_buses();
4764 	KASSERT(bus->refcount >= 1, ("bus->refcount >= 1"));
4765 	if (--bus->refcount > 0) {
4766 		xpt_unlock_buses();
4767 		return;
4768 	}
4769 	TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4770 	xsoftc.bus_generation++;
4771 	xpt_unlock_buses();
4772 	KASSERT(TAILQ_EMPTY(&bus->et_entries),
4773 	    ("destroying bus, but target list is not empty"));
4774 	cam_sim_release(bus->sim);
4775 	mtx_destroy(&bus->eb_mtx);
4776 	free(bus, M_CAMXPT);
4777 }
4778 
4779 static struct cam_et *
4780 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4781 {
4782 	struct cam_et *cur_target, *target;
4783 
4784 	mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
4785 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4786 	target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT,
4787 					 M_NOWAIT|M_ZERO);
4788 	if (target == NULL)
4789 		return (NULL);
4790 
4791 	TAILQ_INIT(&target->ed_entries);
4792 	target->bus = bus;
4793 	target->target_id = target_id;
4794 	target->refcount = 1;
4795 	target->generation = 0;
4796 	target->luns = NULL;
4797 	mtx_init(&target->luns_mtx, "CAM LUNs lock", NULL, MTX_DEF);
4798 	timevalclear(&target->last_reset);
4799 	/*
4800 	 * Hold a reference to our parent bus so it
4801 	 * will not go away before we do.
4802 	 */
4803 	bus->refcount++;
4804 
4805 	/* Insertion sort into our bus's target list */
4806 	cur_target = TAILQ_FIRST(&bus->et_entries);
4807 	while (cur_target != NULL && cur_target->target_id < target_id)
4808 		cur_target = TAILQ_NEXT(cur_target, links);
4809 	if (cur_target != NULL) {
4810 		TAILQ_INSERT_BEFORE(cur_target, target, links);
4811 	} else {
4812 		TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4813 	}
4814 	bus->generation++;
4815 	return (target);
4816 }
4817 
4818 static void
4819 xpt_acquire_target(struct cam_et *target)
4820 {
4821 	struct cam_eb *bus = target->bus;
4822 
4823 	mtx_lock(&bus->eb_mtx);
4824 	target->refcount++;
4825 	mtx_unlock(&bus->eb_mtx);
4826 }
4827 
4828 static void
4829 xpt_release_target(struct cam_et *target)
4830 {
4831 	struct cam_eb *bus = target->bus;
4832 
4833 	mtx_lock(&bus->eb_mtx);
4834 	if (--target->refcount > 0) {
4835 		mtx_unlock(&bus->eb_mtx);
4836 		return;
4837 	}
4838 	TAILQ_REMOVE(&bus->et_entries, target, links);
4839 	bus->generation++;
4840 	mtx_unlock(&bus->eb_mtx);
4841 	KASSERT(TAILQ_EMPTY(&target->ed_entries),
4842 	    ("destroying target, but device list is not empty"));
4843 	xpt_release_bus(bus);
4844 	mtx_destroy(&target->luns_mtx);
4845 	if (target->luns)
4846 		free(target->luns, M_CAMXPT);
4847 	free(target, M_CAMXPT);
4848 }
4849 
4850 static struct cam_ed *
4851 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target,
4852 			 lun_id_t lun_id)
4853 {
4854 	struct cam_ed *device;
4855 
4856 	device = xpt_alloc_device(bus, target, lun_id);
4857 	if (device == NULL)
4858 		return (NULL);
4859 
4860 	device->mintags = 1;
4861 	device->maxtags = 1;
4862 	return (device);
4863 }
4864 
4865 static void
4866 xpt_destroy_device(void *context, int pending)
4867 {
4868 	struct cam_ed	*device = context;
4869 
4870 	mtx_lock(&device->device_mtx);
4871 	mtx_destroy(&device->device_mtx);
4872 	free(device, M_CAMDEV);
4873 }
4874 
4875 struct cam_ed *
4876 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4877 {
4878 	struct cam_ed	*cur_device, *device;
4879 	struct cam_devq	*devq;
4880 	cam_status status;
4881 
4882 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4883 	/* Make space for us in the device queue on our bus */
4884 	devq = bus->sim->devq;
4885 	mtx_lock(&devq->send_mtx);
4886 	status = cam_devq_resize(devq, devq->send_queue.array_size + 1);
4887 	mtx_unlock(&devq->send_mtx);
4888 	if (status != CAM_REQ_CMP)
4889 		return (NULL);
4890 
4891 	device = (struct cam_ed *)malloc(sizeof(*device),
4892 					 M_CAMDEV, M_NOWAIT|M_ZERO);
4893 	if (device == NULL)
4894 		return (NULL);
4895 
4896 	cam_init_pinfo(&device->devq_entry);
4897 	device->target = target;
4898 	device->lun_id = lun_id;
4899 	device->sim = bus->sim;
4900 	if (cam_ccbq_init(&device->ccbq,
4901 			  bus->sim->max_dev_openings) != 0) {
4902 		free(device, M_CAMDEV);
4903 		return (NULL);
4904 	}
4905 	SLIST_INIT(&device->asyncs);
4906 	SLIST_INIT(&device->periphs);
4907 	device->generation = 0;
4908 	device->flags = CAM_DEV_UNCONFIGURED;
4909 	device->tag_delay_count = 0;
4910 	device->tag_saved_openings = 0;
4911 	device->refcount = 1;
4912 	mtx_init(&device->device_mtx, "CAM device lock", NULL, MTX_DEF);
4913 	callout_init_mtx(&device->callout, &devq->send_mtx, 0);
4914 	TASK_INIT(&device->device_destroy_task, 0, xpt_destroy_device, device);
4915 	/*
4916 	 * Hold a reference to our parent bus so it
4917 	 * will not go away before we do.
4918 	 */
4919 	target->refcount++;
4920 
4921 	cur_device = TAILQ_FIRST(&target->ed_entries);
4922 	while (cur_device != NULL && cur_device->lun_id < lun_id)
4923 		cur_device = TAILQ_NEXT(cur_device, links);
4924 	if (cur_device != NULL)
4925 		TAILQ_INSERT_BEFORE(cur_device, device, links);
4926 	else
4927 		TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4928 	target->generation++;
4929 	return (device);
4930 }
4931 
4932 void
4933 xpt_acquire_device(struct cam_ed *device)
4934 {
4935 	struct cam_eb *bus = device->target->bus;
4936 
4937 	mtx_lock(&bus->eb_mtx);
4938 	device->refcount++;
4939 	mtx_unlock(&bus->eb_mtx);
4940 }
4941 
4942 void
4943 xpt_release_device(struct cam_ed *device)
4944 {
4945 	struct cam_eb *bus = device->target->bus;
4946 	struct cam_devq *devq;
4947 
4948 	mtx_lock(&bus->eb_mtx);
4949 	if (--device->refcount > 0) {
4950 		mtx_unlock(&bus->eb_mtx);
4951 		return;
4952 	}
4953 
4954 	TAILQ_REMOVE(&device->target->ed_entries, device,links);
4955 	device->target->generation++;
4956 	mtx_unlock(&bus->eb_mtx);
4957 
4958 	/* Release our slot in the devq */
4959 	devq = bus->sim->devq;
4960 	mtx_lock(&devq->send_mtx);
4961 	cam_devq_resize(devq, devq->send_queue.array_size - 1);
4962 	mtx_unlock(&devq->send_mtx);
4963 
4964 	KASSERT(SLIST_EMPTY(&device->periphs),
4965 	    ("destroying device, but periphs list is not empty"));
4966 	KASSERT(device->devq_entry.index == CAM_UNQUEUED_INDEX,
4967 	    ("destroying device while still queued for ccbs"));
4968 
4969 	if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
4970 		callout_stop(&device->callout);
4971 
4972 	xpt_release_target(device->target);
4973 
4974 	cam_ccbq_fini(&device->ccbq);
4975 	/*
4976 	 * Free allocated memory.  free(9) does nothing if the
4977 	 * supplied pointer is NULL, so it is safe to call without
4978 	 * checking.
4979 	 */
4980 	free(device->supported_vpds, M_CAMXPT);
4981 	free(device->device_id, M_CAMXPT);
4982 	free(device->ext_inq, M_CAMXPT);
4983 	free(device->physpath, M_CAMXPT);
4984 	free(device->rcap_buf, M_CAMXPT);
4985 	free(device->serial_num, M_CAMXPT);
4986 	taskqueue_enqueue(xsoftc.xpt_taskq, &device->device_destroy_task);
4987 }
4988 
4989 u_int32_t
4990 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
4991 {
4992 	int	result;
4993 	struct	cam_ed *dev;
4994 
4995 	dev = path->device;
4996 	mtx_lock(&dev->sim->devq->send_mtx);
4997 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
4998 	mtx_unlock(&dev->sim->devq->send_mtx);
4999 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5000 	 || (dev->inq_flags & SID_CmdQue) != 0)
5001 		dev->tag_saved_openings = newopenings;
5002 	return (result);
5003 }
5004 
5005 static struct cam_eb *
5006 xpt_find_bus(path_id_t path_id)
5007 {
5008 	struct cam_eb *bus;
5009 
5010 	xpt_lock_buses();
5011 	for (bus = TAILQ_FIRST(&xsoftc.xpt_busses);
5012 	     bus != NULL;
5013 	     bus = TAILQ_NEXT(bus, links)) {
5014 		if (bus->path_id == path_id) {
5015 			bus->refcount++;
5016 			break;
5017 		}
5018 	}
5019 	xpt_unlock_buses();
5020 	return (bus);
5021 }
5022 
5023 static struct cam_et *
5024 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
5025 {
5026 	struct cam_et *target;
5027 
5028 	mtx_assert(&bus->eb_mtx, MA_OWNED);
5029 	for (target = TAILQ_FIRST(&bus->et_entries);
5030 	     target != NULL;
5031 	     target = TAILQ_NEXT(target, links)) {
5032 		if (target->target_id == target_id) {
5033 			target->refcount++;
5034 			break;
5035 		}
5036 	}
5037 	return (target);
5038 }
5039 
5040 static struct cam_ed *
5041 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
5042 {
5043 	struct cam_ed *device;
5044 
5045 	mtx_assert(&target->bus->eb_mtx, MA_OWNED);
5046 	for (device = TAILQ_FIRST(&target->ed_entries);
5047 	     device != NULL;
5048 	     device = TAILQ_NEXT(device, links)) {
5049 		if (device->lun_id == lun_id) {
5050 			device->refcount++;
5051 			break;
5052 		}
5053 	}
5054 	return (device);
5055 }
5056 
5057 void
5058 xpt_start_tags(struct cam_path *path)
5059 {
5060 	struct ccb_relsim crs;
5061 	struct cam_ed *device;
5062 	struct cam_sim *sim;
5063 	int    newopenings;
5064 
5065 	device = path->device;
5066 	sim = path->bus->sim;
5067 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
5068 	xpt_freeze_devq(path, /*count*/1);
5069 	device->inq_flags |= SID_CmdQue;
5070 	if (device->tag_saved_openings != 0)
5071 		newopenings = device->tag_saved_openings;
5072 	else
5073 		newopenings = min(device->maxtags,
5074 				  sim->max_tagged_dev_openings);
5075 	xpt_dev_ccbq_resize(path, newopenings);
5076 	xpt_async(AC_GETDEV_CHANGED, path, NULL);
5077 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
5078 	crs.ccb_h.func_code = XPT_REL_SIMQ;
5079 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
5080 	crs.openings
5081 	    = crs.release_timeout
5082 	    = crs.qfrozen_cnt
5083 	    = 0;
5084 	xpt_action((union ccb *)&crs);
5085 }
5086 
5087 void
5088 xpt_stop_tags(struct cam_path *path)
5089 {
5090 	struct ccb_relsim crs;
5091 	struct cam_ed *device;
5092 	struct cam_sim *sim;
5093 
5094 	device = path->device;
5095 	sim = path->bus->sim;
5096 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
5097 	device->tag_delay_count = 0;
5098 	xpt_freeze_devq(path, /*count*/1);
5099 	device->inq_flags &= ~SID_CmdQue;
5100 	xpt_dev_ccbq_resize(path, sim->max_dev_openings);
5101 	xpt_async(AC_GETDEV_CHANGED, path, NULL);
5102 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
5103 	crs.ccb_h.func_code = XPT_REL_SIMQ;
5104 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
5105 	crs.openings
5106 	    = crs.release_timeout
5107 	    = crs.qfrozen_cnt
5108 	    = 0;
5109 	xpt_action((union ccb *)&crs);
5110 }
5111 
5112 static void
5113 xpt_boot_delay(void *arg)
5114 {
5115 
5116 	xpt_release_boot();
5117 }
5118 
5119 static void
5120 xpt_config(void *arg)
5121 {
5122 	/*
5123 	 * Now that interrupts are enabled, go find our devices
5124 	 */
5125 	if (taskqueue_start_threads(&xsoftc.xpt_taskq, 1, PRIBIO, "CAM taskq"))
5126 		printf("xpt_config: failed to create taskqueue thread.\n");
5127 
5128 	/* Setup debugging path */
5129 	if (cam_dflags != CAM_DEBUG_NONE) {
5130 		if (xpt_create_path(&cam_dpath, NULL,
5131 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
5132 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
5133 			printf("xpt_config: xpt_create_path() failed for debug"
5134 			       " target %d:%d:%d, debugging disabled\n",
5135 			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
5136 			cam_dflags = CAM_DEBUG_NONE;
5137 		}
5138 	} else
5139 		cam_dpath = NULL;
5140 
5141 	periphdriver_init(1);
5142 	xpt_hold_boot();
5143 	callout_init(&xsoftc.boot_callout, 1);
5144 	callout_reset_sbt(&xsoftc.boot_callout, SBT_1MS * xsoftc.boot_delay, 0,
5145 	    xpt_boot_delay, NULL, 0);
5146 	/* Fire up rescan thread. */
5147 	if (kproc_kthread_add(xpt_scanner_thread, NULL, &cam_proc, NULL, 0, 0,
5148 	    "cam", "scanner")) {
5149 		printf("xpt_config: failed to create rescan thread.\n");
5150 	}
5151 }
5152 
5153 void
5154 xpt_hold_boot(void)
5155 {
5156 	xpt_lock_buses();
5157 	xsoftc.buses_to_config++;
5158 	xpt_unlock_buses();
5159 }
5160 
5161 void
5162 xpt_release_boot(void)
5163 {
5164 	xpt_lock_buses();
5165 	xsoftc.buses_to_config--;
5166 	if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) {
5167 		struct	xpt_task *task;
5168 
5169 		xsoftc.buses_config_done = 1;
5170 		xpt_unlock_buses();
5171 		/* Call manually because we don't have any buses */
5172 		task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT);
5173 		if (task != NULL) {
5174 			TASK_INIT(&task->task, 0, xpt_finishconfig_task, task);
5175 			taskqueue_enqueue(taskqueue_thread, &task->task);
5176 		}
5177 	} else
5178 		xpt_unlock_buses();
5179 }
5180 
5181 /*
5182  * If the given device only has one peripheral attached to it, and if that
5183  * peripheral is the passthrough driver, announce it.  This insures that the
5184  * user sees some sort of announcement for every peripheral in their system.
5185  */
5186 static int
5187 xptpassannouncefunc(struct cam_ed *device, void *arg)
5188 {
5189 	struct cam_periph *periph;
5190 	int i;
5191 
5192 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
5193 	     periph = SLIST_NEXT(periph, periph_links), i++);
5194 
5195 	periph = SLIST_FIRST(&device->periphs);
5196 	if ((i == 1)
5197 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
5198 		xpt_announce_periph(periph, NULL);
5199 
5200 	return(1);
5201 }
5202 
5203 static void
5204 xpt_finishconfig_task(void *context, int pending)
5205 {
5206 
5207 	periphdriver_init(2);
5208 	/*
5209 	 * Check for devices with no "standard" peripheral driver
5210 	 * attached.  For any devices like that, announce the
5211 	 * passthrough driver so the user will see something.
5212 	 */
5213 	if (!bootverbose)
5214 		xpt_for_all_devices(xptpassannouncefunc, NULL);
5215 
5216 	/* Release our hook so that the boot can continue. */
5217 	config_intrhook_disestablish(xsoftc.xpt_config_hook);
5218 	free(xsoftc.xpt_config_hook, M_CAMXPT);
5219 	xsoftc.xpt_config_hook = NULL;
5220 
5221 	free(context, M_CAMXPT);
5222 }
5223 
5224 cam_status
5225 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
5226 		   struct cam_path *path)
5227 {
5228 	struct ccb_setasync csa;
5229 	cam_status status;
5230 	int xptpath = 0;
5231 
5232 	if (path == NULL) {
5233 		status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
5234 					 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
5235 		if (status != CAM_REQ_CMP)
5236 			return (status);
5237 		xpt_path_lock(path);
5238 		xptpath = 1;
5239 	}
5240 
5241 	xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL);
5242 	csa.ccb_h.func_code = XPT_SASYNC_CB;
5243 	csa.event_enable = event;
5244 	csa.callback = cbfunc;
5245 	csa.callback_arg = cbarg;
5246 	xpt_action((union ccb *)&csa);
5247 	status = csa.ccb_h.status;
5248 
5249 	CAM_DEBUG(csa.ccb_h.path, CAM_DEBUG_TRACE,
5250 	    ("xpt_register_async: func %p\n", cbfunc));
5251 
5252 	if (xptpath) {
5253 		xpt_path_unlock(path);
5254 		xpt_free_path(path);
5255 	}
5256 
5257 	if ((status == CAM_REQ_CMP) &&
5258 	    (csa.event_enable & AC_FOUND_DEVICE)) {
5259 		/*
5260 		 * Get this peripheral up to date with all
5261 		 * the currently existing devices.
5262 		 */
5263 		xpt_for_all_devices(xptsetasyncfunc, &csa);
5264 	}
5265 	if ((status == CAM_REQ_CMP) &&
5266 	    (csa.event_enable & AC_PATH_REGISTERED)) {
5267 		/*
5268 		 * Get this peripheral up to date with all
5269 		 * the currently existing buses.
5270 		 */
5271 		xpt_for_all_busses(xptsetasyncbusfunc, &csa);
5272 	}
5273 
5274 	return (status);
5275 }
5276 
5277 static void
5278 xptaction(struct cam_sim *sim, union ccb *work_ccb)
5279 {
5280 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
5281 
5282 	switch (work_ccb->ccb_h.func_code) {
5283 	/* Common cases first */
5284 	case XPT_PATH_INQ:		/* Path routing inquiry */
5285 	{
5286 		struct ccb_pathinq *cpi;
5287 
5288 		cpi = &work_ccb->cpi;
5289 		cpi->version_num = 1; /* XXX??? */
5290 		cpi->hba_inquiry = 0;
5291 		cpi->target_sprt = 0;
5292 		cpi->hba_misc = 0;
5293 		cpi->hba_eng_cnt = 0;
5294 		cpi->max_target = 0;
5295 		cpi->max_lun = 0;
5296 		cpi->initiator_id = 0;
5297 		strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
5298 		strlcpy(cpi->hba_vid, "", HBA_IDLEN);
5299 		strlcpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
5300 		cpi->unit_number = sim->unit_number;
5301 		cpi->bus_id = sim->bus_id;
5302 		cpi->base_transfer_speed = 0;
5303 		cpi->protocol = PROTO_UNSPECIFIED;
5304 		cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
5305 		cpi->transport = XPORT_UNSPECIFIED;
5306 		cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
5307 		cpi->ccb_h.status = CAM_REQ_CMP;
5308 		xpt_done(work_ccb);
5309 		break;
5310 	}
5311 	default:
5312 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
5313 		xpt_done(work_ccb);
5314 		break;
5315 	}
5316 }
5317 
5318 /*
5319  * The xpt as a "controller" has no interrupt sources, so polling
5320  * is a no-op.
5321  */
5322 static void
5323 xptpoll(struct cam_sim *sim)
5324 {
5325 }
5326 
5327 void
5328 xpt_lock_buses(void)
5329 {
5330 	mtx_lock(&xsoftc.xpt_topo_lock);
5331 }
5332 
5333 void
5334 xpt_unlock_buses(void)
5335 {
5336 	mtx_unlock(&xsoftc.xpt_topo_lock);
5337 }
5338 
5339 struct mtx *
5340 xpt_path_mtx(struct cam_path *path)
5341 {
5342 
5343 	return (&path->device->device_mtx);
5344 }
5345 
5346 static void
5347 xpt_done_process(struct ccb_hdr *ccb_h)
5348 {
5349 	struct cam_sim *sim;
5350 	struct cam_devq *devq;
5351 	struct mtx *mtx = NULL;
5352 
5353 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
5354 	struct ccb_scsiio *csio;
5355 
5356 	if (ccb_h->func_code == XPT_SCSI_IO) {
5357 		csio = &((union ccb *)ccb_h)->csio;
5358 		if (csio->bio != NULL)
5359 			biotrack(csio->bio, __func__);
5360 	}
5361 #endif
5362 
5363 	if (ccb_h->flags & CAM_HIGH_POWER) {
5364 		struct highpowerlist	*hphead;
5365 		struct cam_ed		*device;
5366 
5367 		mtx_lock(&xsoftc.xpt_highpower_lock);
5368 		hphead = &xsoftc.highpowerq;
5369 
5370 		device = STAILQ_FIRST(hphead);
5371 
5372 		/*
5373 		 * Increment the count since this command is done.
5374 		 */
5375 		xsoftc.num_highpower++;
5376 
5377 		/*
5378 		 * Any high powered commands queued up?
5379 		 */
5380 		if (device != NULL) {
5381 
5382 			STAILQ_REMOVE_HEAD(hphead, highpowerq_entry);
5383 			mtx_unlock(&xsoftc.xpt_highpower_lock);
5384 
5385 			mtx_lock(&device->sim->devq->send_mtx);
5386 			xpt_release_devq_device(device,
5387 					 /*count*/1, /*runqueue*/TRUE);
5388 			mtx_unlock(&device->sim->devq->send_mtx);
5389 		} else
5390 			mtx_unlock(&xsoftc.xpt_highpower_lock);
5391 	}
5392 
5393 	sim = ccb_h->path->bus->sim;
5394 
5395 	if (ccb_h->status & CAM_RELEASE_SIMQ) {
5396 		xpt_release_simq(sim, /*run_queue*/FALSE);
5397 		ccb_h->status &= ~CAM_RELEASE_SIMQ;
5398 	}
5399 
5400 	if ((ccb_h->flags & CAM_DEV_QFRZDIS)
5401 	 && (ccb_h->status & CAM_DEV_QFRZN)) {
5402 		xpt_release_devq(ccb_h->path, /*count*/1, /*run_queue*/TRUE);
5403 		ccb_h->status &= ~CAM_DEV_QFRZN;
5404 	}
5405 
5406 	devq = sim->devq;
5407 	if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
5408 		struct cam_ed *dev = ccb_h->path->device;
5409 
5410 		mtx_lock(&devq->send_mtx);
5411 		devq->send_active--;
5412 		devq->send_openings++;
5413 		cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
5414 
5415 		if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
5416 		  && (dev->ccbq.dev_active == 0))) {
5417 			dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY;
5418 			xpt_release_devq_device(dev, /*count*/1,
5419 					 /*run_queue*/FALSE);
5420 		}
5421 
5422 		if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
5423 		  && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) {
5424 			dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
5425 			xpt_release_devq_device(dev, /*count*/1,
5426 					 /*run_queue*/FALSE);
5427 		}
5428 
5429 		if (!device_is_queued(dev))
5430 			(void)xpt_schedule_devq(devq, dev);
5431 		xpt_run_devq(devq);
5432 		mtx_unlock(&devq->send_mtx);
5433 
5434 		if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0) {
5435 			mtx = xpt_path_mtx(ccb_h->path);
5436 			mtx_lock(mtx);
5437 
5438 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5439 			 && (--dev->tag_delay_count == 0))
5440 				xpt_start_tags(ccb_h->path);
5441 		}
5442 	}
5443 
5444 	if ((ccb_h->flags & CAM_UNLOCKED) == 0) {
5445 		if (mtx == NULL) {
5446 			mtx = xpt_path_mtx(ccb_h->path);
5447 			mtx_lock(mtx);
5448 		}
5449 	} else {
5450 		if (mtx != NULL) {
5451 			mtx_unlock(mtx);
5452 			mtx = NULL;
5453 		}
5454 	}
5455 
5456 	/* Call the peripheral driver's callback */
5457 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
5458 	(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
5459 	if (mtx != NULL)
5460 		mtx_unlock(mtx);
5461 }
5462 
5463 void
5464 xpt_done_td(void *arg)
5465 {
5466 	struct cam_doneq *queue = arg;
5467 	struct ccb_hdr *ccb_h;
5468 	STAILQ_HEAD(, ccb_hdr)	doneq;
5469 
5470 	STAILQ_INIT(&doneq);
5471 	mtx_lock(&queue->cam_doneq_mtx);
5472 	while (1) {
5473 		while (STAILQ_EMPTY(&queue->cam_doneq)) {
5474 			queue->cam_doneq_sleep = 1;
5475 			msleep(&queue->cam_doneq, &queue->cam_doneq_mtx,
5476 			    PRIBIO, "-", 0);
5477 			queue->cam_doneq_sleep = 0;
5478 		}
5479 		STAILQ_CONCAT(&doneq, &queue->cam_doneq);
5480 		mtx_unlock(&queue->cam_doneq_mtx);
5481 
5482 		THREAD_NO_SLEEPING();
5483 		while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) {
5484 			STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe);
5485 			xpt_done_process(ccb_h);
5486 		}
5487 		THREAD_SLEEPING_OK();
5488 
5489 		mtx_lock(&queue->cam_doneq_mtx);
5490 	}
5491 }
5492 
5493 static void
5494 camisr_runqueue(void)
5495 {
5496 	struct	ccb_hdr *ccb_h;
5497 	struct cam_doneq *queue;
5498 	int i;
5499 
5500 	/* Process global queues. */
5501 	for (i = 0; i < cam_num_doneqs; i++) {
5502 		queue = &cam_doneqs[i];
5503 		mtx_lock(&queue->cam_doneq_mtx);
5504 		while ((ccb_h = STAILQ_FIRST(&queue->cam_doneq)) != NULL) {
5505 			STAILQ_REMOVE_HEAD(&queue->cam_doneq, sim_links.stqe);
5506 			mtx_unlock(&queue->cam_doneq_mtx);
5507 			xpt_done_process(ccb_h);
5508 			mtx_lock(&queue->cam_doneq_mtx);
5509 		}
5510 		mtx_unlock(&queue->cam_doneq_mtx);
5511 	}
5512 }
5513 
5514 struct kv
5515 {
5516 	uint32_t v;
5517 	const char *name;
5518 };
5519 
5520 static struct kv map[] = {
5521 	{ XPT_NOOP, "XPT_NOOP" },
5522 	{ XPT_SCSI_IO, "XPT_SCSI_IO" },
5523 	{ XPT_GDEV_TYPE, "XPT_GDEV_TYPE" },
5524 	{ XPT_GDEVLIST, "XPT_GDEVLIST" },
5525 	{ XPT_PATH_INQ, "XPT_PATH_INQ" },
5526 	{ XPT_REL_SIMQ, "XPT_REL_SIMQ" },
5527 	{ XPT_SASYNC_CB, "XPT_SASYNC_CB" },
5528 	{ XPT_SDEV_TYPE, "XPT_SDEV_TYPE" },
5529 	{ XPT_SCAN_BUS, "XPT_SCAN_BUS" },
5530 	{ XPT_DEV_MATCH, "XPT_DEV_MATCH" },
5531 	{ XPT_DEBUG, "XPT_DEBUG" },
5532 	{ XPT_PATH_STATS, "XPT_PATH_STATS" },
5533 	{ XPT_GDEV_STATS, "XPT_GDEV_STATS" },
5534 	{ XPT_DEV_ADVINFO, "XPT_DEV_ADVINFO" },
5535 	{ XPT_ASYNC, "XPT_ASYNC" },
5536 	{ XPT_ABORT, "XPT_ABORT" },
5537 	{ XPT_RESET_BUS, "XPT_RESET_BUS" },
5538 	{ XPT_RESET_DEV, "XPT_RESET_DEV" },
5539 	{ XPT_TERM_IO, "XPT_TERM_IO" },
5540 	{ XPT_SCAN_LUN, "XPT_SCAN_LUN" },
5541 	{ XPT_GET_TRAN_SETTINGS, "XPT_GET_TRAN_SETTINGS" },
5542 	{ XPT_SET_TRAN_SETTINGS, "XPT_SET_TRAN_SETTINGS" },
5543 	{ XPT_CALC_GEOMETRY, "XPT_CALC_GEOMETRY" },
5544 	{ XPT_ATA_IO, "XPT_ATA_IO" },
5545 	{ XPT_GET_SIM_KNOB, "XPT_GET_SIM_KNOB" },
5546 	{ XPT_SET_SIM_KNOB, "XPT_SET_SIM_KNOB" },
5547 	{ XPT_NVME_IO, "XPT_NVME_IO" },
5548 	{ XPT_MMC_IO, "XPT_MMC_IO" },
5549 	{ XPT_SMP_IO, "XPT_SMP_IO" },
5550 	{ XPT_SCAN_TGT, "XPT_SCAN_TGT" },
5551 	{ XPT_NVME_ADMIN, "XPT_NVME_ADMIN" },
5552 	{ XPT_ENG_INQ, "XPT_ENG_INQ" },
5553 	{ XPT_ENG_EXEC, "XPT_ENG_EXEC" },
5554 	{ XPT_EN_LUN, "XPT_EN_LUN" },
5555 	{ XPT_TARGET_IO, "XPT_TARGET_IO" },
5556 	{ XPT_ACCEPT_TARGET_IO, "XPT_ACCEPT_TARGET_IO" },
5557 	{ XPT_CONT_TARGET_IO, "XPT_CONT_TARGET_IO" },
5558 	{ XPT_IMMED_NOTIFY, "XPT_IMMED_NOTIFY" },
5559 	{ XPT_NOTIFY_ACK, "XPT_NOTIFY_ACK" },
5560 	{ XPT_IMMEDIATE_NOTIFY, "XPT_IMMEDIATE_NOTIFY" },
5561 	{ XPT_NOTIFY_ACKNOWLEDGE, "XPT_NOTIFY_ACKNOWLEDGE" },
5562 	{ 0, 0 }
5563 };
5564 
5565 const char *
5566 xpt_action_name(uint32_t action)
5567 {
5568 	static char buffer[32];	/* Only for unknown messages -- racy */
5569 	struct kv *walker = map;
5570 
5571 	while (walker->name != NULL) {
5572 		if (walker->v == action)
5573 			return (walker->name);
5574 		walker++;
5575 	}
5576 
5577 	snprintf(buffer, sizeof(buffer), "%#x", action);
5578 	return (buffer);
5579 }
5580