1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * Copyright (c) 2013, Joyent, Inc. All rights reserved.
29  * Copyright (c) 2013 by Delphix. All rights reserved.
30  */
31 
32 #ifndef _SYS_DTRACE_H
33 #define	_SYS_DTRACE_H
34 
35 #ifdef	__cplusplus
36 extern "C" {
37 #endif
38 
39 /*
40  * DTrace Dynamic Tracing Software: Kernel Interfaces
41  *
42  * Note: The contents of this file are private to the implementation of the
43  * Solaris system and DTrace subsystem and are subject to change at any time
44  * without notice.  Applications and drivers using these interfaces will fail
45  * to run on future releases.  These interfaces should not be used for any
46  * purpose except those expressly outlined in dtrace(7D) and libdtrace(3LIB).
47  * Please refer to the "Solaris Dynamic Tracing Guide" for more information.
48  */
49 
50 #ifndef _ASM
51 
52 #include <sys/types.h>
53 #include <sys/modctl.h>
54 #include <sys/processor.h>
55 #ifdef illumos
56 #include <sys/systm.h>
57 #else
58 #include <sys/cpuvar.h>
59 #include <sys/param.h>
60 #include <sys/linker.h>
61 #include <sys/ioccom.h>
62 #include <sys/ucred.h>
63 typedef int model_t;
64 #endif
65 #include <sys/ctf_api.h>
66 #ifdef illumos
67 #include <sys/cyclic.h>
68 #include <sys/int_limits.h>
69 #else
70 #include <sys/stdint.h>
71 #endif
72 
73 /*
74  * DTrace Universal Constants and Typedefs
75  */
76 #define	DTRACE_CPUALL		-1	/* all CPUs */
77 #define	DTRACE_IDNONE		0	/* invalid probe identifier */
78 #define	DTRACE_EPIDNONE		0	/* invalid enabled probe identifier */
79 #define	DTRACE_AGGIDNONE	0	/* invalid aggregation identifier */
80 #define	DTRACE_AGGVARIDNONE	0	/* invalid aggregation variable ID */
81 #define	DTRACE_CACHEIDNONE	0	/* invalid predicate cache */
82 #define	DTRACE_PROVNONE		0	/* invalid provider identifier */
83 #define	DTRACE_METAPROVNONE	0	/* invalid meta-provider identifier */
84 #define	DTRACE_ARGNONE		-1	/* invalid argument index */
85 
86 #define	DTRACE_PROVNAMELEN	64
87 #define	DTRACE_MODNAMELEN	64
88 #define	DTRACE_FUNCNAMELEN	192
89 #define	DTRACE_NAMELEN		64
90 #define	DTRACE_FULLNAMELEN	(DTRACE_PROVNAMELEN + DTRACE_MODNAMELEN + \
91 				DTRACE_FUNCNAMELEN + DTRACE_NAMELEN + 4)
92 #define	DTRACE_ARGTYPELEN	128
93 
94 typedef uint32_t dtrace_id_t;		/* probe identifier */
95 typedef uint32_t dtrace_epid_t;		/* enabled probe identifier */
96 typedef uint32_t dtrace_aggid_t;	/* aggregation identifier */
97 typedef int64_t dtrace_aggvarid_t;	/* aggregation variable identifier */
98 typedef uint16_t dtrace_actkind_t;	/* action kind */
99 typedef int64_t dtrace_optval_t;	/* option value */
100 typedef uint32_t dtrace_cacheid_t;	/* predicate cache identifier */
101 
102 typedef enum dtrace_probespec {
103 	DTRACE_PROBESPEC_NONE = -1,
104 	DTRACE_PROBESPEC_PROVIDER = 0,
105 	DTRACE_PROBESPEC_MOD,
106 	DTRACE_PROBESPEC_FUNC,
107 	DTRACE_PROBESPEC_NAME
108 } dtrace_probespec_t;
109 
110 /*
111  * DTrace Intermediate Format (DIF)
112  *
113  * The following definitions describe the DTrace Intermediate Format (DIF), a
114  * a RISC-like instruction set and program encoding used to represent
115  * predicates and actions that can be bound to DTrace probes.  The constants
116  * below defining the number of available registers are suggested minimums; the
117  * compiler should use DTRACEIOC_CONF to dynamically obtain the number of
118  * registers provided by the current DTrace implementation.
119  */
120 #define	DIF_VERSION_1	1		/* DIF version 1: Solaris 10 Beta */
121 #define	DIF_VERSION_2	2		/* DIF version 2: Solaris 10 FCS */
122 #define	DIF_VERSION	DIF_VERSION_2	/* latest DIF instruction set version */
123 #define	DIF_DIR_NREGS	8		/* number of DIF integer registers */
124 #define	DIF_DTR_NREGS	8		/* number of DIF tuple registers */
125 
126 #define	DIF_OP_OR	1		/* or	r1, r2, rd */
127 #define	DIF_OP_XOR	2		/* xor	r1, r2, rd */
128 #define	DIF_OP_AND	3		/* and	r1, r2, rd */
129 #define	DIF_OP_SLL	4		/* sll	r1, r2, rd */
130 #define	DIF_OP_SRL	5		/* srl	r1, r2, rd */
131 #define	DIF_OP_SUB	6		/* sub	r1, r2, rd */
132 #define	DIF_OP_ADD	7		/* add	r1, r2, rd */
133 #define	DIF_OP_MUL	8		/* mul	r1, r2, rd */
134 #define	DIF_OP_SDIV	9		/* sdiv	r1, r2, rd */
135 #define	DIF_OP_UDIV	10		/* udiv r1, r2, rd */
136 #define	DIF_OP_SREM	11		/* srem r1, r2, rd */
137 #define	DIF_OP_UREM	12		/* urem r1, r2, rd */
138 #define	DIF_OP_NOT	13		/* not	r1, rd */
139 #define	DIF_OP_MOV	14		/* mov	r1, rd */
140 #define	DIF_OP_CMP	15		/* cmp	r1, r2 */
141 #define	DIF_OP_TST	16		/* tst  r1 */
142 #define	DIF_OP_BA	17		/* ba	label */
143 #define	DIF_OP_BE	18		/* be	label */
144 #define	DIF_OP_BNE	19		/* bne	label */
145 #define	DIF_OP_BG	20		/* bg	label */
146 #define	DIF_OP_BGU	21		/* bgu	label */
147 #define	DIF_OP_BGE	22		/* bge	label */
148 #define	DIF_OP_BGEU	23		/* bgeu	label */
149 #define	DIF_OP_BL	24		/* bl	label */
150 #define	DIF_OP_BLU	25		/* blu	label */
151 #define	DIF_OP_BLE	26		/* ble	label */
152 #define	DIF_OP_BLEU	27		/* bleu	label */
153 #define	DIF_OP_LDSB	28		/* ldsb	[r1], rd */
154 #define	DIF_OP_LDSH	29		/* ldsh	[r1], rd */
155 #define	DIF_OP_LDSW	30		/* ldsw [r1], rd */
156 #define	DIF_OP_LDUB	31		/* ldub	[r1], rd */
157 #define	DIF_OP_LDUH	32		/* lduh	[r1], rd */
158 #define	DIF_OP_LDUW	33		/* lduw	[r1], rd */
159 #define	DIF_OP_LDX	34		/* ldx	[r1], rd */
160 #define	DIF_OP_RET	35		/* ret	rd */
161 #define	DIF_OP_NOP	36		/* nop */
162 #define	DIF_OP_SETX	37		/* setx	intindex, rd */
163 #define	DIF_OP_SETS	38		/* sets strindex, rd */
164 #define	DIF_OP_SCMP	39		/* scmp	r1, r2 */
165 #define	DIF_OP_LDGA	40		/* ldga	var, ri, rd */
166 #define	DIF_OP_LDGS	41		/* ldgs var, rd */
167 #define	DIF_OP_STGS	42		/* stgs var, rs */
168 #define	DIF_OP_LDTA	43		/* ldta var, ri, rd */
169 #define	DIF_OP_LDTS	44		/* ldts var, rd */
170 #define	DIF_OP_STTS	45		/* stts var, rs */
171 #define	DIF_OP_SRA	46		/* sra	r1, r2, rd */
172 #define	DIF_OP_CALL	47		/* call	subr, rd */
173 #define	DIF_OP_PUSHTR	48		/* pushtr type, rs, rr */
174 #define	DIF_OP_PUSHTV	49		/* pushtv type, rs, rv */
175 #define	DIF_OP_POPTS	50		/* popts */
176 #define	DIF_OP_FLUSHTS	51		/* flushts */
177 #define	DIF_OP_LDGAA	52		/* ldgaa var, rd */
178 #define	DIF_OP_LDTAA	53		/* ldtaa var, rd */
179 #define	DIF_OP_STGAA	54		/* stgaa var, rs */
180 #define	DIF_OP_STTAA	55		/* sttaa var, rs */
181 #define	DIF_OP_LDLS	56		/* ldls	var, rd */
182 #define	DIF_OP_STLS	57		/* stls	var, rs */
183 #define	DIF_OP_ALLOCS	58		/* allocs r1, rd */
184 #define	DIF_OP_COPYS	59		/* copys  r1, r2, rd */
185 #define	DIF_OP_STB	60		/* stb	r1, [rd] */
186 #define	DIF_OP_STH	61		/* sth	r1, [rd] */
187 #define	DIF_OP_STW	62		/* stw	r1, [rd] */
188 #define	DIF_OP_STX	63		/* stx	r1, [rd] */
189 #define	DIF_OP_ULDSB	64		/* uldsb [r1], rd */
190 #define	DIF_OP_ULDSH	65		/* uldsh [r1], rd */
191 #define	DIF_OP_ULDSW	66		/* uldsw [r1], rd */
192 #define	DIF_OP_ULDUB	67		/* uldub [r1], rd */
193 #define	DIF_OP_ULDUH	68		/* ulduh [r1], rd */
194 #define	DIF_OP_ULDUW	69		/* ulduw [r1], rd */
195 #define	DIF_OP_ULDX	70		/* uldx  [r1], rd */
196 #define	DIF_OP_RLDSB	71		/* rldsb [r1], rd */
197 #define	DIF_OP_RLDSH	72		/* rldsh [r1], rd */
198 #define	DIF_OP_RLDSW	73		/* rldsw [r1], rd */
199 #define	DIF_OP_RLDUB	74		/* rldub [r1], rd */
200 #define	DIF_OP_RLDUH	75		/* rlduh [r1], rd */
201 #define	DIF_OP_RLDUW	76		/* rlduw [r1], rd */
202 #define	DIF_OP_RLDX	77		/* rldx  [r1], rd */
203 #define	DIF_OP_XLATE	78		/* xlate xlrindex, rd */
204 #define	DIF_OP_XLARG	79		/* xlarg xlrindex, rd */
205 
206 #define	DIF_INTOFF_MAX		0xffff	/* highest integer table offset */
207 #define	DIF_STROFF_MAX		0xffff	/* highest string table offset */
208 #define	DIF_REGISTER_MAX	0xff	/* highest register number */
209 #define	DIF_VARIABLE_MAX	0xffff	/* highest variable identifier */
210 #define	DIF_SUBROUTINE_MAX	0xffff	/* highest subroutine code */
211 
212 #define	DIF_VAR_ARRAY_MIN	0x0000	/* lowest numbered array variable */
213 #define	DIF_VAR_ARRAY_UBASE	0x0080	/* lowest user-defined array */
214 #define	DIF_VAR_ARRAY_MAX	0x00ff	/* highest numbered array variable */
215 
216 #define	DIF_VAR_OTHER_MIN	0x0100	/* lowest numbered scalar or assc */
217 #define	DIF_VAR_OTHER_UBASE	0x0500	/* lowest user-defined scalar or assc */
218 #define	DIF_VAR_OTHER_MAX	0xffff	/* highest numbered scalar or assc */
219 
220 #define	DIF_VAR_ARGS		0x0000	/* arguments array */
221 #define	DIF_VAR_REGS		0x0001	/* registers array */
222 #define	DIF_VAR_UREGS		0x0002	/* user registers array */
223 #define	DIF_VAR_CURTHREAD	0x0100	/* thread pointer */
224 #define	DIF_VAR_TIMESTAMP	0x0101	/* timestamp */
225 #define	DIF_VAR_VTIMESTAMP	0x0102	/* virtual timestamp */
226 #define	DIF_VAR_IPL		0x0103	/* interrupt priority level */
227 #define	DIF_VAR_EPID		0x0104	/* enabled probe ID */
228 #define	DIF_VAR_ID		0x0105	/* probe ID */
229 #define	DIF_VAR_ARG0		0x0106	/* first argument */
230 #define	DIF_VAR_ARG1		0x0107	/* second argument */
231 #define	DIF_VAR_ARG2		0x0108	/* third argument */
232 #define	DIF_VAR_ARG3		0x0109	/* fourth argument */
233 #define	DIF_VAR_ARG4		0x010a	/* fifth argument */
234 #define	DIF_VAR_ARG5		0x010b	/* sixth argument */
235 #define	DIF_VAR_ARG6		0x010c	/* seventh argument */
236 #define	DIF_VAR_ARG7		0x010d	/* eighth argument */
237 #define	DIF_VAR_ARG8		0x010e	/* ninth argument */
238 #define	DIF_VAR_ARG9		0x010f	/* tenth argument */
239 #define	DIF_VAR_STACKDEPTH	0x0110	/* stack depth */
240 #define	DIF_VAR_CALLER		0x0111	/* caller */
241 #define	DIF_VAR_PROBEPROV	0x0112	/* probe provider */
242 #define	DIF_VAR_PROBEMOD	0x0113	/* probe module */
243 #define	DIF_VAR_PROBEFUNC	0x0114	/* probe function */
244 #define	DIF_VAR_PROBENAME	0x0115	/* probe name */
245 #define	DIF_VAR_PID		0x0116	/* process ID */
246 #define	DIF_VAR_TID		0x0117	/* (per-process) thread ID */
247 #define	DIF_VAR_EXECNAME	0x0118	/* name of executable */
248 #define	DIF_VAR_ZONENAME	0x0119	/* zone name associated with process */
249 #define	DIF_VAR_WALLTIMESTAMP	0x011a	/* wall-clock timestamp */
250 #define	DIF_VAR_USTACKDEPTH	0x011b	/* user-land stack depth */
251 #define	DIF_VAR_UCALLER		0x011c	/* user-level caller */
252 #define	DIF_VAR_PPID		0x011d	/* parent process ID */
253 #define	DIF_VAR_UID		0x011e	/* process user ID */
254 #define	DIF_VAR_GID		0x011f	/* process group ID */
255 #define	DIF_VAR_ERRNO		0x0120	/* thread errno */
256 #define	DIF_VAR_EXECARGS	0x0121	/* process arguments */
257 #define	DIF_VAR_JID		0x0122	/* process jail id */
258 #define	DIF_VAR_JAILNAME	0x0123	/* process jail name */
259 
260 #ifndef illumos
261 #define	DIF_VAR_CPU		0x0200
262 #endif
263 
264 #define	DIF_SUBR_RAND			0
265 #define	DIF_SUBR_MUTEX_OWNED		1
266 #define	DIF_SUBR_MUTEX_OWNER		2
267 #define	DIF_SUBR_MUTEX_TYPE_ADAPTIVE	3
268 #define	DIF_SUBR_MUTEX_TYPE_SPIN	4
269 #define	DIF_SUBR_RW_READ_HELD		5
270 #define	DIF_SUBR_RW_WRITE_HELD		6
271 #define	DIF_SUBR_RW_ISWRITER		7
272 #define	DIF_SUBR_COPYIN			8
273 #define	DIF_SUBR_COPYINSTR		9
274 #define	DIF_SUBR_SPECULATION		10
275 #define	DIF_SUBR_PROGENYOF		11
276 #define	DIF_SUBR_STRLEN			12
277 #define	DIF_SUBR_COPYOUT		13
278 #define	DIF_SUBR_COPYOUTSTR		14
279 #define	DIF_SUBR_ALLOCA			15
280 #define	DIF_SUBR_BCOPY			16
281 #define	DIF_SUBR_COPYINTO		17
282 #define	DIF_SUBR_MSGDSIZE		18
283 #define	DIF_SUBR_MSGSIZE		19
284 #define	DIF_SUBR_GETMAJOR		20
285 #define	DIF_SUBR_GETMINOR		21
286 #define	DIF_SUBR_DDI_PATHNAME		22
287 #define	DIF_SUBR_STRJOIN		23
288 #define	DIF_SUBR_LLTOSTR		24
289 #define	DIF_SUBR_BASENAME		25
290 #define	DIF_SUBR_DIRNAME		26
291 #define	DIF_SUBR_CLEANPATH		27
292 #define	DIF_SUBR_STRCHR			28
293 #define	DIF_SUBR_STRRCHR		29
294 #define	DIF_SUBR_STRSTR			30
295 #define	DIF_SUBR_STRTOK			31
296 #define	DIF_SUBR_SUBSTR			32
297 #define	DIF_SUBR_INDEX			33
298 #define	DIF_SUBR_RINDEX			34
299 #define	DIF_SUBR_HTONS			35
300 #define	DIF_SUBR_HTONL			36
301 #define	DIF_SUBR_HTONLL			37
302 #define	DIF_SUBR_NTOHS			38
303 #define	DIF_SUBR_NTOHL			39
304 #define	DIF_SUBR_NTOHLL			40
305 #define	DIF_SUBR_INET_NTOP		41
306 #define	DIF_SUBR_INET_NTOA		42
307 #define	DIF_SUBR_INET_NTOA6		43
308 #define	DIF_SUBR_TOUPPER		44
309 #define	DIF_SUBR_TOLOWER		45
310 #define	DIF_SUBR_MEMREF			46
311 #define	DIF_SUBR_SX_SHARED_HELD		47
312 #define	DIF_SUBR_SX_EXCLUSIVE_HELD	48
313 #define	DIF_SUBR_SX_ISEXCLUSIVE		49
314 #define	DIF_SUBR_MEMSTR			50
315 #define	DIF_SUBR_GETF			51
316 #define	DIF_SUBR_JSON			52
317 #define	DIF_SUBR_STRTOLL		53
318 #define	DIF_SUBR_MAX			53	/* max subroutine value */
319 
320 typedef uint32_t dif_instr_t;
321 
322 #define	DIF_INSTR_OP(i)			(((i) >> 24) & 0xff)
323 #define	DIF_INSTR_R1(i)			(((i) >> 16) & 0xff)
324 #define	DIF_INSTR_R2(i)			(((i) >>  8) & 0xff)
325 #define	DIF_INSTR_RD(i)			((i) & 0xff)
326 #define	DIF_INSTR_RS(i)			((i) & 0xff)
327 #define	DIF_INSTR_LABEL(i)		((i) & 0xffffff)
328 #define	DIF_INSTR_VAR(i)		(((i) >>  8) & 0xffff)
329 #define	DIF_INSTR_INTEGER(i)		(((i) >>  8) & 0xffff)
330 #define	DIF_INSTR_STRING(i)		(((i) >>  8) & 0xffff)
331 #define	DIF_INSTR_SUBR(i)		(((i) >>  8) & 0xffff)
332 #define	DIF_INSTR_TYPE(i)		(((i) >> 16) & 0xff)
333 #define	DIF_INSTR_XLREF(i)		(((i) >>  8) & 0xffff)
334 
335 #define	DIF_INSTR_FMT(op, r1, r2, d) \
336 	(((op) << 24) | ((r1) << 16) | ((r2) << 8) | (d))
337 
338 #define	DIF_INSTR_NOT(r1, d)		(DIF_INSTR_FMT(DIF_OP_NOT, r1, 0, d))
339 #define	DIF_INSTR_MOV(r1, d)		(DIF_INSTR_FMT(DIF_OP_MOV, r1, 0, d))
340 #define	DIF_INSTR_CMP(op, r1, r2)	(DIF_INSTR_FMT(op, r1, r2, 0))
341 #define	DIF_INSTR_TST(r1)		(DIF_INSTR_FMT(DIF_OP_TST, r1, 0, 0))
342 #define	DIF_INSTR_BRANCH(op, label)	(((op) << 24) | (label))
343 #define	DIF_INSTR_LOAD(op, r1, d)	(DIF_INSTR_FMT(op, r1, 0, d))
344 #define	DIF_INSTR_STORE(op, r1, d)	(DIF_INSTR_FMT(op, r1, 0, d))
345 #define	DIF_INSTR_SETX(i, d)		((DIF_OP_SETX << 24) | ((i) << 8) | (d))
346 #define	DIF_INSTR_SETS(s, d)		((DIF_OP_SETS << 24) | ((s) << 8) | (d))
347 #define	DIF_INSTR_RET(d)		(DIF_INSTR_FMT(DIF_OP_RET, 0, 0, d))
348 #define	DIF_INSTR_NOP			(DIF_OP_NOP << 24)
349 #define	DIF_INSTR_LDA(op, v, r, d)	(DIF_INSTR_FMT(op, v, r, d))
350 #define	DIF_INSTR_LDV(op, v, d)		(((op) << 24) | ((v) << 8) | (d))
351 #define	DIF_INSTR_STV(op, v, rs)	(((op) << 24) | ((v) << 8) | (rs))
352 #define	DIF_INSTR_CALL(s, d)		((DIF_OP_CALL << 24) | ((s) << 8) | (d))
353 #define	DIF_INSTR_PUSHTS(op, t, r2, rs)	(DIF_INSTR_FMT(op, t, r2, rs))
354 #define	DIF_INSTR_POPTS			(DIF_OP_POPTS << 24)
355 #define	DIF_INSTR_FLUSHTS		(DIF_OP_FLUSHTS << 24)
356 #define	DIF_INSTR_ALLOCS(r1, d)		(DIF_INSTR_FMT(DIF_OP_ALLOCS, r1, 0, d))
357 #define	DIF_INSTR_COPYS(r1, r2, d)	(DIF_INSTR_FMT(DIF_OP_COPYS, r1, r2, d))
358 #define	DIF_INSTR_XLATE(op, r, d)	(((op) << 24) | ((r) << 8) | (d))
359 
360 #define	DIF_REG_R0	0		/* %r0 is always set to zero */
361 
362 /*
363  * A DTrace Intermediate Format Type (DIF Type) is used to represent the types
364  * of variables, function and associative array arguments, and the return type
365  * for each DIF object (shown below).  It contains a description of the type,
366  * its size in bytes, and a module identifier.
367  */
368 typedef struct dtrace_diftype {
369 	uint8_t dtdt_kind;		/* type kind (see below) */
370 	uint8_t dtdt_ckind;		/* type kind in CTF */
371 	uint8_t dtdt_flags;		/* type flags (see below) */
372 	uint8_t dtdt_pad;		/* reserved for future use */
373 	uint32_t dtdt_size;		/* type size in bytes (unless string) */
374 } dtrace_diftype_t;
375 
376 #define	DIF_TYPE_CTF		0	/* type is a CTF type */
377 #define	DIF_TYPE_STRING		1	/* type is a D string */
378 
379 #define	DIF_TF_BYREF		0x1	/* type is passed by reference */
380 #define	DIF_TF_BYUREF		0x2	/* user type is passed by reference */
381 
382 /*
383  * A DTrace Intermediate Format variable record is used to describe each of the
384  * variables referenced by a given DIF object.  It contains an integer variable
385  * identifier along with variable scope and properties, as shown below.  The
386  * size of this structure must be sizeof (int) aligned.
387  */
388 typedef struct dtrace_difv {
389 	uint32_t dtdv_name;		/* variable name index in dtdo_strtab */
390 	uint32_t dtdv_id;		/* variable reference identifier */
391 	uint8_t dtdv_kind;		/* variable kind (see below) */
392 	uint8_t dtdv_scope;		/* variable scope (see below) */
393 	uint16_t dtdv_flags;		/* variable flags (see below) */
394 	dtrace_diftype_t dtdv_type;	/* variable type (see above) */
395 } dtrace_difv_t;
396 
397 #define	DIFV_KIND_ARRAY		0	/* variable is an array of quantities */
398 #define	DIFV_KIND_SCALAR	1	/* variable is a scalar quantity */
399 
400 #define	DIFV_SCOPE_GLOBAL	0	/* variable has global scope */
401 #define	DIFV_SCOPE_THREAD	1	/* variable has thread scope */
402 #define	DIFV_SCOPE_LOCAL	2	/* variable has local scope */
403 
404 #define	DIFV_F_REF		0x1	/* variable is referenced by DIFO */
405 #define	DIFV_F_MOD		0x2	/* variable is written by DIFO */
406 
407 /*
408  * DTrace Actions
409  *
410  * The upper byte determines the class of the action; the low bytes determines
411  * the specific action within that class.  The classes of actions are as
412  * follows:
413  *
414  *   [ no class ]                  <= May record process- or kernel-related data
415  *   DTRACEACT_PROC                <= Only records process-related data
416  *   DTRACEACT_PROC_DESTRUCTIVE    <= Potentially destructive to processes
417  *   DTRACEACT_KERNEL              <= Only records kernel-related data
418  *   DTRACEACT_KERNEL_DESTRUCTIVE  <= Potentially destructive to the kernel
419  *   DTRACEACT_SPECULATIVE         <= Speculation-related action
420  *   DTRACEACT_AGGREGATION         <= Aggregating action
421  */
422 #define	DTRACEACT_NONE			0	/* no action */
423 #define	DTRACEACT_DIFEXPR		1	/* action is DIF expression */
424 #define	DTRACEACT_EXIT			2	/* exit() action */
425 #define	DTRACEACT_PRINTF		3	/* printf() action */
426 #define	DTRACEACT_PRINTA		4	/* printa() action */
427 #define	DTRACEACT_LIBACT		5	/* library-controlled action */
428 #define	DTRACEACT_TRACEMEM		6	/* tracemem() action */
429 #define	DTRACEACT_TRACEMEM_DYNSIZE	7	/* dynamic tracemem() size */
430 #define	DTRACEACT_PRINTM		8	/* printm() action (BSD) */
431 
432 #define	DTRACEACT_PROC			0x0100
433 #define	DTRACEACT_USTACK		(DTRACEACT_PROC + 1)
434 #define	DTRACEACT_JSTACK		(DTRACEACT_PROC + 2)
435 #define	DTRACEACT_USYM			(DTRACEACT_PROC + 3)
436 #define	DTRACEACT_UMOD			(DTRACEACT_PROC + 4)
437 #define	DTRACEACT_UADDR			(DTRACEACT_PROC + 5)
438 
439 #define	DTRACEACT_PROC_DESTRUCTIVE	0x0200
440 #define	DTRACEACT_STOP			(DTRACEACT_PROC_DESTRUCTIVE + 1)
441 #define	DTRACEACT_RAISE			(DTRACEACT_PROC_DESTRUCTIVE + 2)
442 #define	DTRACEACT_SYSTEM		(DTRACEACT_PROC_DESTRUCTIVE + 3)
443 #define	DTRACEACT_FREOPEN		(DTRACEACT_PROC_DESTRUCTIVE + 4)
444 
445 #define	DTRACEACT_PROC_CONTROL		0x0300
446 
447 #define	DTRACEACT_KERNEL		0x0400
448 #define	DTRACEACT_STACK			(DTRACEACT_KERNEL + 1)
449 #define	DTRACEACT_SYM			(DTRACEACT_KERNEL + 2)
450 #define	DTRACEACT_MOD			(DTRACEACT_KERNEL + 3)
451 
452 #define	DTRACEACT_KERNEL_DESTRUCTIVE	0x0500
453 #define	DTRACEACT_BREAKPOINT		(DTRACEACT_KERNEL_DESTRUCTIVE + 1)
454 #define	DTRACEACT_PANIC			(DTRACEACT_KERNEL_DESTRUCTIVE + 2)
455 #define	DTRACEACT_CHILL			(DTRACEACT_KERNEL_DESTRUCTIVE + 3)
456 
457 #define	DTRACEACT_SPECULATIVE		0x0600
458 #define	DTRACEACT_SPECULATE		(DTRACEACT_SPECULATIVE + 1)
459 #define	DTRACEACT_COMMIT		(DTRACEACT_SPECULATIVE + 2)
460 #define	DTRACEACT_DISCARD		(DTRACEACT_SPECULATIVE + 3)
461 
462 #define	DTRACEACT_CLASS(x)		((x) & 0xff00)
463 
464 #define	DTRACEACT_ISDESTRUCTIVE(x)	\
465 	(DTRACEACT_CLASS(x) == DTRACEACT_PROC_DESTRUCTIVE || \
466 	DTRACEACT_CLASS(x) == DTRACEACT_KERNEL_DESTRUCTIVE)
467 
468 #define	DTRACEACT_ISSPECULATIVE(x)	\
469 	(DTRACEACT_CLASS(x) == DTRACEACT_SPECULATIVE)
470 
471 #define	DTRACEACT_ISPRINTFLIKE(x)	\
472 	((x) == DTRACEACT_PRINTF || (x) == DTRACEACT_PRINTA || \
473 	(x) == DTRACEACT_SYSTEM || (x) == DTRACEACT_FREOPEN)
474 
475 /*
476  * DTrace Aggregating Actions
477  *
478  * These are functions f(x) for which the following is true:
479  *
480  *    f(f(x_0) U f(x_1) U ... U f(x_n)) = f(x_0 U x_1 U ... U x_n)
481  *
482  * where x_n is a set of arbitrary data.  Aggregating actions are in their own
483  * DTrace action class, DTTRACEACT_AGGREGATION.  The macros provided here allow
484  * for easier processing of the aggregation argument and data payload for a few
485  * aggregating actions (notably:  quantize(), lquantize(), and ustack()).
486  */
487 #define	DTRACEACT_AGGREGATION		0x0700
488 #define	DTRACEAGG_COUNT			(DTRACEACT_AGGREGATION + 1)
489 #define	DTRACEAGG_MIN			(DTRACEACT_AGGREGATION + 2)
490 #define	DTRACEAGG_MAX			(DTRACEACT_AGGREGATION + 3)
491 #define	DTRACEAGG_AVG			(DTRACEACT_AGGREGATION + 4)
492 #define	DTRACEAGG_SUM			(DTRACEACT_AGGREGATION + 5)
493 #define	DTRACEAGG_STDDEV		(DTRACEACT_AGGREGATION + 6)
494 #define	DTRACEAGG_QUANTIZE		(DTRACEACT_AGGREGATION + 7)
495 #define	DTRACEAGG_LQUANTIZE		(DTRACEACT_AGGREGATION + 8)
496 #define	DTRACEAGG_LLQUANTIZE		(DTRACEACT_AGGREGATION + 9)
497 
498 #define	DTRACEACT_ISAGG(x)		\
499 	(DTRACEACT_CLASS(x) == DTRACEACT_AGGREGATION)
500 
501 #define	DTRACE_QUANTIZE_NBUCKETS	\
502 	(((sizeof (uint64_t) * NBBY) - 1) * 2 + 1)
503 
504 #define	DTRACE_QUANTIZE_ZEROBUCKET	((sizeof (uint64_t) * NBBY) - 1)
505 
506 #define	DTRACE_QUANTIZE_BUCKETVAL(buck)					\
507 	(int64_t)((buck) < DTRACE_QUANTIZE_ZEROBUCKET ?			\
508 	-(1LL << (DTRACE_QUANTIZE_ZEROBUCKET - 1 - (buck))) :		\
509 	(buck) == DTRACE_QUANTIZE_ZEROBUCKET ? 0 :			\
510 	1LL << ((buck) - DTRACE_QUANTIZE_ZEROBUCKET - 1))
511 
512 #define	DTRACE_LQUANTIZE_STEPSHIFT		48
513 #define	DTRACE_LQUANTIZE_STEPMASK		((uint64_t)UINT16_MAX << 48)
514 #define	DTRACE_LQUANTIZE_LEVELSHIFT		32
515 #define	DTRACE_LQUANTIZE_LEVELMASK		((uint64_t)UINT16_MAX << 32)
516 #define	DTRACE_LQUANTIZE_BASESHIFT		0
517 #define	DTRACE_LQUANTIZE_BASEMASK		UINT32_MAX
518 
519 #define	DTRACE_LQUANTIZE_STEP(x)		\
520 	(uint16_t)(((x) & DTRACE_LQUANTIZE_STEPMASK) >> \
521 	DTRACE_LQUANTIZE_STEPSHIFT)
522 
523 #define	DTRACE_LQUANTIZE_LEVELS(x)		\
524 	(uint16_t)(((x) & DTRACE_LQUANTIZE_LEVELMASK) >> \
525 	DTRACE_LQUANTIZE_LEVELSHIFT)
526 
527 #define	DTRACE_LQUANTIZE_BASE(x)		\
528 	(int32_t)(((x) & DTRACE_LQUANTIZE_BASEMASK) >> \
529 	DTRACE_LQUANTIZE_BASESHIFT)
530 
531 #define	DTRACE_LLQUANTIZE_FACTORSHIFT		48
532 #define	DTRACE_LLQUANTIZE_FACTORMASK		((uint64_t)UINT16_MAX << 48)
533 #define	DTRACE_LLQUANTIZE_LOWSHIFT		32
534 #define	DTRACE_LLQUANTIZE_LOWMASK		((uint64_t)UINT16_MAX << 32)
535 #define	DTRACE_LLQUANTIZE_HIGHSHIFT		16
536 #define	DTRACE_LLQUANTIZE_HIGHMASK		((uint64_t)UINT16_MAX << 16)
537 #define	DTRACE_LLQUANTIZE_NSTEPSHIFT		0
538 #define	DTRACE_LLQUANTIZE_NSTEPMASK		UINT16_MAX
539 
540 #define	DTRACE_LLQUANTIZE_FACTOR(x)		\
541 	(uint16_t)(((x) & DTRACE_LLQUANTIZE_FACTORMASK) >> \
542 	DTRACE_LLQUANTIZE_FACTORSHIFT)
543 
544 #define	DTRACE_LLQUANTIZE_LOW(x)		\
545 	(uint16_t)(((x) & DTRACE_LLQUANTIZE_LOWMASK) >> \
546 	DTRACE_LLQUANTIZE_LOWSHIFT)
547 
548 #define	DTRACE_LLQUANTIZE_HIGH(x)		\
549 	(uint16_t)(((x) & DTRACE_LLQUANTIZE_HIGHMASK) >> \
550 	DTRACE_LLQUANTIZE_HIGHSHIFT)
551 
552 #define	DTRACE_LLQUANTIZE_NSTEP(x)		\
553 	(uint16_t)(((x) & DTRACE_LLQUANTIZE_NSTEPMASK) >> \
554 	DTRACE_LLQUANTIZE_NSTEPSHIFT)
555 
556 #define	DTRACE_USTACK_NFRAMES(x)	(uint32_t)((x) & UINT32_MAX)
557 #define	DTRACE_USTACK_STRSIZE(x)	(uint32_t)((x) >> 32)
558 #define	DTRACE_USTACK_ARG(x, y)		\
559 	((((uint64_t)(y)) << 32) | ((x) & UINT32_MAX))
560 
561 #ifndef _LP64
562 #if BYTE_ORDER == _BIG_ENDIAN
563 #define	DTRACE_PTR(type, name)	uint32_t name##pad; type *name
564 #else
565 #define	DTRACE_PTR(type, name)	type *name; uint32_t name##pad
566 #endif
567 #else
568 #define	DTRACE_PTR(type, name)	type *name
569 #endif
570 
571 /*
572  * DTrace Object Format (DOF)
573  *
574  * DTrace programs can be persistently encoded in the DOF format so that they
575  * may be embedded in other programs (for example, in an ELF file) or in the
576  * dtrace driver configuration file for use in anonymous tracing.  The DOF
577  * format is versioned and extensible so that it can be revised and so that
578  * internal data structures can be modified or extended compatibly.  All DOF
579  * structures use fixed-size types, so the 32-bit and 64-bit representations
580  * are identical and consumers can use either data model transparently.
581  *
582  * The file layout is structured as follows:
583  *
584  * +---------------+-------------------+----- ... ----+---- ... ------+
585  * |   dof_hdr_t   |  dof_sec_t[ ... ] |   loadable   | non-loadable  |
586  * | (file header) | (section headers) | section data | section data  |
587  * +---------------+-------------------+----- ... ----+---- ... ------+
588  * |<------------ dof_hdr.dofh_loadsz --------------->|               |
589  * |<------------ dof_hdr.dofh_filesz ------------------------------->|
590  *
591  * The file header stores meta-data including a magic number, data model for
592  * the instrumentation, data encoding, and properties of the DIF code within.
593  * The header describes its own size and the size of the section headers.  By
594  * convention, an array of section headers follows the file header, and then
595  * the data for all loadable sections and unloadable sections.  This permits
596  * consumer code to easily download the headers and all loadable data into the
597  * DTrace driver in one contiguous chunk, omitting other extraneous sections.
598  *
599  * The section headers describe the size, offset, alignment, and section type
600  * for each section.  Sections are described using a set of #defines that tell
601  * the consumer what kind of data is expected.  Sections can contain links to
602  * other sections by storing a dof_secidx_t, an index into the section header
603  * array, inside of the section data structures.  The section header includes
604  * an entry size so that sections with data arrays can grow their structures.
605  *
606  * The DOF data itself can contain many snippets of DIF (i.e. >1 DIFOs), which
607  * are represented themselves as a collection of related DOF sections.  This
608  * permits us to change the set of sections associated with a DIFO over time,
609  * and also permits us to encode DIFOs that contain different sets of sections.
610  * When a DOF section wants to refer to a DIFO, it stores the dof_secidx_t of a
611  * section of type DOF_SECT_DIFOHDR.  This section's data is then an array of
612  * dof_secidx_t's which in turn denote the sections associated with this DIFO.
613  *
614  * This loose coupling of the file structure (header and sections) to the
615  * structure of the DTrace program itself (ECB descriptions, action
616  * descriptions, and DIFOs) permits activities such as relocation processing
617  * to occur in a single pass without having to understand D program structure.
618  *
619  * Finally, strings are always stored in ELF-style string tables along with a
620  * string table section index and string table offset.  Therefore strings in
621  * DOF are always arbitrary-length and not bound to the current implementation.
622  */
623 
624 #define	DOF_ID_SIZE	16	/* total size of dofh_ident[] in bytes */
625 
626 typedef struct dof_hdr {
627 	uint8_t dofh_ident[DOF_ID_SIZE]; /* identification bytes (see below) */
628 	uint32_t dofh_flags;		/* file attribute flags (if any) */
629 	uint32_t dofh_hdrsize;		/* size of file header in bytes */
630 	uint32_t dofh_secsize;		/* size of section header in bytes */
631 	uint32_t dofh_secnum;		/* number of section headers */
632 	uint64_t dofh_secoff;		/* file offset of section headers */
633 	uint64_t dofh_loadsz;		/* file size of loadable portion */
634 	uint64_t dofh_filesz;		/* file size of entire DOF file */
635 	uint64_t dofh_pad;		/* reserved for future use */
636 } dof_hdr_t;
637 
638 #define	DOF_ID_MAG0	0	/* first byte of magic number */
639 #define	DOF_ID_MAG1	1	/* second byte of magic number */
640 #define	DOF_ID_MAG2	2	/* third byte of magic number */
641 #define	DOF_ID_MAG3	3	/* fourth byte of magic number */
642 #define	DOF_ID_MODEL	4	/* DOF data model (see below) */
643 #define	DOF_ID_ENCODING	5	/* DOF data encoding (see below) */
644 #define	DOF_ID_VERSION	6	/* DOF file format major version (see below) */
645 #define	DOF_ID_DIFVERS	7	/* DIF instruction set version */
646 #define	DOF_ID_DIFIREG	8	/* DIF integer registers used by compiler */
647 #define	DOF_ID_DIFTREG	9	/* DIF tuple registers used by compiler */
648 #define	DOF_ID_PAD	10	/* start of padding bytes (all zeroes) */
649 
650 #define	DOF_MAG_MAG0	0x7F	/* DOF_ID_MAG[0-3] */
651 #define	DOF_MAG_MAG1	'D'
652 #define	DOF_MAG_MAG2	'O'
653 #define	DOF_MAG_MAG3	'F'
654 
655 #define	DOF_MAG_STRING	"\177DOF"
656 #define	DOF_MAG_STRLEN	4
657 
658 #define	DOF_MODEL_NONE	0	/* DOF_ID_MODEL */
659 #define	DOF_MODEL_ILP32	1
660 #define	DOF_MODEL_LP64	2
661 
662 #ifdef _LP64
663 #define	DOF_MODEL_NATIVE	DOF_MODEL_LP64
664 #else
665 #define	DOF_MODEL_NATIVE	DOF_MODEL_ILP32
666 #endif
667 
668 #define	DOF_ENCODE_NONE	0	/* DOF_ID_ENCODING */
669 #define	DOF_ENCODE_LSB	1
670 #define	DOF_ENCODE_MSB	2
671 
672 #if BYTE_ORDER == _BIG_ENDIAN
673 #define	DOF_ENCODE_NATIVE	DOF_ENCODE_MSB
674 #else
675 #define	DOF_ENCODE_NATIVE	DOF_ENCODE_LSB
676 #endif
677 
678 #define	DOF_VERSION_1	1	/* DOF version 1: Solaris 10 FCS */
679 #define	DOF_VERSION_2	2	/* DOF version 2: Solaris Express 6/06 */
680 #define	DOF_VERSION	DOF_VERSION_2	/* Latest DOF version */
681 
682 #define	DOF_FL_VALID	0	/* mask of all valid dofh_flags bits */
683 
684 typedef uint32_t dof_secidx_t;	/* section header table index type */
685 typedef uint32_t dof_stridx_t;	/* string table index type */
686 
687 #define	DOF_SECIDX_NONE	(-1U)	/* null value for section indices */
688 #define	DOF_STRIDX_NONE	(-1U)	/* null value for string indices */
689 
690 typedef struct dof_sec {
691 	uint32_t dofs_type;	/* section type (see below) */
692 	uint32_t dofs_align;	/* section data memory alignment */
693 	uint32_t dofs_flags;	/* section flags (if any) */
694 	uint32_t dofs_entsize;	/* size of section entry (if table) */
695 	uint64_t dofs_offset;	/* offset of section data within file */
696 	uint64_t dofs_size;	/* size of section data in bytes */
697 } dof_sec_t;
698 
699 #define	DOF_SECT_NONE		0	/* null section */
700 #define	DOF_SECT_COMMENTS	1	/* compiler comments */
701 #define	DOF_SECT_SOURCE		2	/* D program source code */
702 #define	DOF_SECT_ECBDESC	3	/* dof_ecbdesc_t */
703 #define	DOF_SECT_PROBEDESC	4	/* dof_probedesc_t */
704 #define	DOF_SECT_ACTDESC	5	/* dof_actdesc_t array */
705 #define	DOF_SECT_DIFOHDR	6	/* dof_difohdr_t (variable length) */
706 #define	DOF_SECT_DIF		7	/* uint32_t array of byte code */
707 #define	DOF_SECT_STRTAB		8	/* string table */
708 #define	DOF_SECT_VARTAB		9	/* dtrace_difv_t array */
709 #define	DOF_SECT_RELTAB		10	/* dof_relodesc_t array */
710 #define	DOF_SECT_TYPTAB		11	/* dtrace_diftype_t array */
711 #define	DOF_SECT_URELHDR	12	/* dof_relohdr_t (user relocations) */
712 #define	DOF_SECT_KRELHDR	13	/* dof_relohdr_t (kernel relocations) */
713 #define	DOF_SECT_OPTDESC	14	/* dof_optdesc_t array */
714 #define	DOF_SECT_PROVIDER	15	/* dof_provider_t */
715 #define	DOF_SECT_PROBES		16	/* dof_probe_t array */
716 #define	DOF_SECT_PRARGS		17	/* uint8_t array (probe arg mappings) */
717 #define	DOF_SECT_PROFFS		18	/* uint32_t array (probe arg offsets) */
718 #define	DOF_SECT_INTTAB		19	/* uint64_t array */
719 #define	DOF_SECT_UTSNAME	20	/* struct utsname */
720 #define	DOF_SECT_XLTAB		21	/* dof_xlref_t array */
721 #define	DOF_SECT_XLMEMBERS	22	/* dof_xlmember_t array */
722 #define	DOF_SECT_XLIMPORT	23	/* dof_xlator_t */
723 #define	DOF_SECT_XLEXPORT	24	/* dof_xlator_t */
724 #define	DOF_SECT_PREXPORT	25	/* dof_secidx_t array (exported objs) */
725 #define	DOF_SECT_PRENOFFS	26	/* uint32_t array (enabled offsets) */
726 
727 #define	DOF_SECF_LOAD		1	/* section should be loaded */
728 
729 #define	DOF_SEC_ISLOADABLE(x)						\
730 	(((x) == DOF_SECT_ECBDESC) || ((x) == DOF_SECT_PROBEDESC) ||	\
731 	((x) == DOF_SECT_ACTDESC) || ((x) == DOF_SECT_DIFOHDR) ||	\
732 	((x) == DOF_SECT_DIF) || ((x) == DOF_SECT_STRTAB) ||		\
733 	((x) == DOF_SECT_VARTAB) || ((x) == DOF_SECT_RELTAB) ||		\
734 	((x) == DOF_SECT_TYPTAB) || ((x) == DOF_SECT_URELHDR) ||	\
735 	((x) == DOF_SECT_KRELHDR) || ((x) == DOF_SECT_OPTDESC) ||	\
736 	((x) == DOF_SECT_PROVIDER) || ((x) == DOF_SECT_PROBES) ||	\
737 	((x) == DOF_SECT_PRARGS) || ((x) == DOF_SECT_PROFFS) ||		\
738 	((x) == DOF_SECT_INTTAB) || ((x) == DOF_SECT_XLTAB) ||		\
739 	((x) == DOF_SECT_XLMEMBERS) || ((x) == DOF_SECT_XLIMPORT) ||	\
740 	((x) == DOF_SECT_XLEXPORT) ||  ((x) == DOF_SECT_PREXPORT) || 	\
741 	((x) == DOF_SECT_PRENOFFS))
742 
743 typedef struct dof_ecbdesc {
744 	dof_secidx_t dofe_probes;	/* link to DOF_SECT_PROBEDESC */
745 	dof_secidx_t dofe_pred;		/* link to DOF_SECT_DIFOHDR */
746 	dof_secidx_t dofe_actions;	/* link to DOF_SECT_ACTDESC */
747 	uint32_t dofe_pad;		/* reserved for future use */
748 	uint64_t dofe_uarg;		/* user-supplied library argument */
749 } dof_ecbdesc_t;
750 
751 typedef struct dof_probedesc {
752 	dof_secidx_t dofp_strtab;	/* link to DOF_SECT_STRTAB section */
753 	dof_stridx_t dofp_provider;	/* provider string */
754 	dof_stridx_t dofp_mod;		/* module string */
755 	dof_stridx_t dofp_func;		/* function string */
756 	dof_stridx_t dofp_name;		/* name string */
757 	uint32_t dofp_id;		/* probe identifier (or zero) */
758 } dof_probedesc_t;
759 
760 typedef struct dof_actdesc {
761 	dof_secidx_t dofa_difo;		/* link to DOF_SECT_DIFOHDR */
762 	dof_secidx_t dofa_strtab;	/* link to DOF_SECT_STRTAB section */
763 	uint32_t dofa_kind;		/* action kind (DTRACEACT_* constant) */
764 	uint32_t dofa_ntuple;		/* number of subsequent tuple actions */
765 	uint64_t dofa_arg;		/* kind-specific argument */
766 	uint64_t dofa_uarg;		/* user-supplied argument */
767 } dof_actdesc_t;
768 
769 typedef struct dof_difohdr {
770 	dtrace_diftype_t dofd_rtype;	/* return type for this fragment */
771 	dof_secidx_t dofd_links[1];	/* variable length array of indices */
772 } dof_difohdr_t;
773 
774 typedef struct dof_relohdr {
775 	dof_secidx_t dofr_strtab;	/* link to DOF_SECT_STRTAB for names */
776 	dof_secidx_t dofr_relsec;	/* link to DOF_SECT_RELTAB for relos */
777 	dof_secidx_t dofr_tgtsec;	/* link to section we are relocating */
778 } dof_relohdr_t;
779 
780 typedef struct dof_relodesc {
781 	dof_stridx_t dofr_name;		/* string name of relocation symbol */
782 	uint32_t dofr_type;		/* relo type (DOF_RELO_* constant) */
783 	uint64_t dofr_offset;		/* byte offset for relocation */
784 	uint64_t dofr_data;		/* additional type-specific data */
785 } dof_relodesc_t;
786 
787 #define	DOF_RELO_NONE	0		/* empty relocation entry */
788 #define	DOF_RELO_SETX	1		/* relocate setx value */
789 #define	DOF_RELO_DOFREL	2		/* relocate DOF-relative value */
790 
791 typedef struct dof_optdesc {
792 	uint32_t dofo_option;		/* option identifier */
793 	dof_secidx_t dofo_strtab;	/* string table, if string option */
794 	uint64_t dofo_value;		/* option value or string index */
795 } dof_optdesc_t;
796 
797 typedef uint32_t dof_attr_t;		/* encoded stability attributes */
798 
799 #define	DOF_ATTR(n, d, c)	(((n) << 24) | ((d) << 16) | ((c) << 8))
800 #define	DOF_ATTR_NAME(a)	(((a) >> 24) & 0xff)
801 #define	DOF_ATTR_DATA(a)	(((a) >> 16) & 0xff)
802 #define	DOF_ATTR_CLASS(a)	(((a) >>  8) & 0xff)
803 
804 typedef struct dof_provider {
805 	dof_secidx_t dofpv_strtab;	/* link to DOF_SECT_STRTAB section */
806 	dof_secidx_t dofpv_probes;	/* link to DOF_SECT_PROBES section */
807 	dof_secidx_t dofpv_prargs;	/* link to DOF_SECT_PRARGS section */
808 	dof_secidx_t dofpv_proffs;	/* link to DOF_SECT_PROFFS section */
809 	dof_stridx_t dofpv_name;	/* provider name string */
810 	dof_attr_t dofpv_provattr;	/* provider attributes */
811 	dof_attr_t dofpv_modattr;	/* module attributes */
812 	dof_attr_t dofpv_funcattr;	/* function attributes */
813 	dof_attr_t dofpv_nameattr;	/* name attributes */
814 	dof_attr_t dofpv_argsattr;	/* args attributes */
815 	dof_secidx_t dofpv_prenoffs;	/* link to DOF_SECT_PRENOFFS section */
816 } dof_provider_t;
817 
818 typedef struct dof_probe {
819 	uint64_t dofpr_addr;		/* probe base address or offset */
820 	dof_stridx_t dofpr_func;	/* probe function string */
821 	dof_stridx_t dofpr_name;	/* probe name string */
822 	dof_stridx_t dofpr_nargv;	/* native argument type strings */
823 	dof_stridx_t dofpr_xargv;	/* translated argument type strings */
824 	uint32_t dofpr_argidx;		/* index of first argument mapping */
825 	uint32_t dofpr_offidx;		/* index of first offset entry */
826 	uint8_t dofpr_nargc;		/* native argument count */
827 	uint8_t dofpr_xargc;		/* translated argument count */
828 	uint16_t dofpr_noffs;		/* number of offset entries for probe */
829 	uint32_t dofpr_enoffidx;	/* index of first is-enabled offset */
830 	uint16_t dofpr_nenoffs;		/* number of is-enabled offsets */
831 	uint16_t dofpr_pad1;		/* reserved for future use */
832 	uint32_t dofpr_pad2;		/* reserved for future use */
833 } dof_probe_t;
834 
835 typedef struct dof_xlator {
836 	dof_secidx_t dofxl_members;	/* link to DOF_SECT_XLMEMBERS section */
837 	dof_secidx_t dofxl_strtab;	/* link to DOF_SECT_STRTAB section */
838 	dof_stridx_t dofxl_argv;	/* input parameter type strings */
839 	uint32_t dofxl_argc;		/* input parameter list length */
840 	dof_stridx_t dofxl_type;	/* output type string name */
841 	dof_attr_t dofxl_attr;		/* output stability attributes */
842 } dof_xlator_t;
843 
844 typedef struct dof_xlmember {
845 	dof_secidx_t dofxm_difo;	/* member link to DOF_SECT_DIFOHDR */
846 	dof_stridx_t dofxm_name;	/* member name */
847 	dtrace_diftype_t dofxm_type;	/* member type */
848 } dof_xlmember_t;
849 
850 typedef struct dof_xlref {
851 	dof_secidx_t dofxr_xlator;	/* link to DOF_SECT_XLATORS section */
852 	uint32_t dofxr_member;		/* index of referenced dof_xlmember */
853 	uint32_t dofxr_argn;		/* index of argument for DIF_OP_XLARG */
854 } dof_xlref_t;
855 
856 /*
857  * DTrace Intermediate Format Object (DIFO)
858  *
859  * A DIFO is used to store the compiled DIF for a D expression, its return
860  * type, and its string and variable tables.  The string table is a single
861  * buffer of character data into which sets instructions and variable
862  * references can reference strings using a byte offset.  The variable table
863  * is an array of dtrace_difv_t structures that describe the name and type of
864  * each variable and the id used in the DIF code.  This structure is described
865  * above in the DIF section of this header file.  The DIFO is used at both
866  * user-level (in the library) and in the kernel, but the structure is never
867  * passed between the two: the DOF structures form the only interface.  As a
868  * result, the definition can change depending on the presence of _KERNEL.
869  */
870 typedef struct dtrace_difo {
871 	dif_instr_t *dtdo_buf;		/* instruction buffer */
872 	uint64_t *dtdo_inttab;		/* integer table (optional) */
873 	char *dtdo_strtab;		/* string table (optional) */
874 	dtrace_difv_t *dtdo_vartab;	/* variable table (optional) */
875 	uint_t dtdo_len;		/* length of instruction buffer */
876 	uint_t dtdo_intlen;		/* length of integer table */
877 	uint_t dtdo_strlen;		/* length of string table */
878 	uint_t dtdo_varlen;		/* length of variable table */
879 	dtrace_diftype_t dtdo_rtype;	/* return type */
880 	uint_t dtdo_refcnt;		/* owner reference count */
881 	uint_t dtdo_destructive;	/* invokes destructive subroutines */
882 #ifndef _KERNEL
883 	dof_relodesc_t *dtdo_kreltab;	/* kernel relocations */
884 	dof_relodesc_t *dtdo_ureltab;	/* user relocations */
885 	struct dt_node **dtdo_xlmtab;	/* translator references */
886 	uint_t dtdo_krelen;		/* length of krelo table */
887 	uint_t dtdo_urelen;		/* length of urelo table */
888 	uint_t dtdo_xlmlen;		/* length of translator table */
889 #endif
890 } dtrace_difo_t;
891 
892 /*
893  * DTrace Enabling Description Structures
894  *
895  * When DTrace is tracking the description of a DTrace enabling entity (probe,
896  * predicate, action, ECB, record, etc.), it does so in a description
897  * structure.  These structures all end in "desc", and are used at both
898  * user-level and in the kernel -- but (with the exception of
899  * dtrace_probedesc_t) they are never passed between them.  Typically,
900  * user-level will use the description structures when assembling an enabling.
901  * It will then distill those description structures into a DOF object (see
902  * above), and send it into the kernel.  The kernel will again use the
903  * description structures to create a description of the enabling as it reads
904  * the DOF.  When the description is complete, the enabling will be actually
905  * created -- turning it into the structures that represent the enabling
906  * instead of merely describing it.  Not surprisingly, the description
907  * structures bear a strong resemblance to the DOF structures that act as their
908  * conduit.
909  */
910 struct dtrace_predicate;
911 
912 typedef struct dtrace_probedesc {
913 	dtrace_id_t dtpd_id;			/* probe identifier */
914 	char dtpd_provider[DTRACE_PROVNAMELEN]; /* probe provider name */
915 	char dtpd_mod[DTRACE_MODNAMELEN];	/* probe module name */
916 	char dtpd_func[DTRACE_FUNCNAMELEN];	/* probe function name */
917 	char dtpd_name[DTRACE_NAMELEN];		/* probe name */
918 } dtrace_probedesc_t;
919 
920 typedef struct dtrace_repldesc {
921 	dtrace_probedesc_t dtrpd_match;		/* probe descr. to match */
922 	dtrace_probedesc_t dtrpd_create;	/* probe descr. to create */
923 } dtrace_repldesc_t;
924 
925 typedef struct dtrace_preddesc {
926 	dtrace_difo_t *dtpdd_difo;		/* pointer to DIF object */
927 	struct dtrace_predicate *dtpdd_predicate; /* pointer to predicate */
928 } dtrace_preddesc_t;
929 
930 typedef struct dtrace_actdesc {
931 	dtrace_difo_t *dtad_difo;		/* pointer to DIF object */
932 	struct dtrace_actdesc *dtad_next;	/* next action */
933 	dtrace_actkind_t dtad_kind;		/* kind of action */
934 	uint32_t dtad_ntuple;			/* number in tuple */
935 	uint64_t dtad_arg;			/* action argument */
936 	uint64_t dtad_uarg;			/* user argument */
937 	int dtad_refcnt;			/* reference count */
938 } dtrace_actdesc_t;
939 
940 typedef struct dtrace_ecbdesc {
941 	dtrace_actdesc_t *dted_action;		/* action description(s) */
942 	dtrace_preddesc_t dted_pred;		/* predicate description */
943 	dtrace_probedesc_t dted_probe;		/* probe description */
944 	uint64_t dted_uarg;			/* library argument */
945 	int dted_refcnt;			/* reference count */
946 } dtrace_ecbdesc_t;
947 
948 /*
949  * DTrace Metadata Description Structures
950  *
951  * DTrace separates the trace data stream from the metadata stream.  The only
952  * metadata tokens placed in the data stream are the dtrace_rechdr_t (EPID +
953  * timestamp) or (in the case of aggregations) aggregation identifiers.  To
954  * determine the structure of the data, DTrace consumers pass the token to the
955  * kernel, and receive in return a corresponding description of the enabled
956  * probe (via the dtrace_eprobedesc structure) or the aggregation (via the
957  * dtrace_aggdesc structure).  Both of these structures are expressed in terms
958  * of record descriptions (via the dtrace_recdesc structure) that describe the
959  * exact structure of the data.  Some record descriptions may also contain a
960  * format identifier; this additional bit of metadata can be retrieved from the
961  * kernel, for which a format description is returned via the dtrace_fmtdesc
962  * structure.  Note that all four of these structures must be bitness-neutral
963  * to allow for a 32-bit DTrace consumer on a 64-bit kernel.
964  */
965 typedef struct dtrace_recdesc {
966 	dtrace_actkind_t dtrd_action;		/* kind of action */
967 	uint32_t dtrd_size;			/* size of record */
968 	uint32_t dtrd_offset;			/* offset in ECB's data */
969 	uint16_t dtrd_alignment;		/* required alignment */
970 	uint16_t dtrd_format;			/* format, if any */
971 	uint64_t dtrd_arg;			/* action argument */
972 	uint64_t dtrd_uarg;			/* user argument */
973 } dtrace_recdesc_t;
974 
975 typedef struct dtrace_eprobedesc {
976 	dtrace_epid_t dtepd_epid;		/* enabled probe ID */
977 	dtrace_id_t dtepd_probeid;		/* probe ID */
978 	uint64_t dtepd_uarg;			/* library argument */
979 	uint32_t dtepd_size;			/* total size */
980 	int dtepd_nrecs;			/* number of records */
981 	dtrace_recdesc_t dtepd_rec[1];		/* records themselves */
982 } dtrace_eprobedesc_t;
983 
984 typedef struct dtrace_aggdesc {
985 	DTRACE_PTR(char, dtagd_name);		/* not filled in by kernel */
986 	dtrace_aggvarid_t dtagd_varid;		/* not filled in by kernel */
987 	int dtagd_flags;			/* not filled in by kernel */
988 	dtrace_aggid_t dtagd_id;		/* aggregation ID */
989 	dtrace_epid_t dtagd_epid;		/* enabled probe ID */
990 	uint32_t dtagd_size;			/* size in bytes */
991 	int dtagd_nrecs;			/* number of records */
992 	uint32_t dtagd_pad;			/* explicit padding */
993 	dtrace_recdesc_t dtagd_rec[1];		/* record descriptions */
994 } dtrace_aggdesc_t;
995 
996 typedef struct dtrace_fmtdesc {
997 	DTRACE_PTR(char, dtfd_string);		/* format string */
998 	int dtfd_length;			/* length of format string */
999 	uint16_t dtfd_format;			/* format identifier */
1000 } dtrace_fmtdesc_t;
1001 
1002 #define	DTRACE_SIZEOF_EPROBEDESC(desc)				\
1003 	(sizeof (dtrace_eprobedesc_t) + ((desc)->dtepd_nrecs ?	\
1004 	(((desc)->dtepd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0))
1005 
1006 #define	DTRACE_SIZEOF_AGGDESC(desc)				\
1007 	(sizeof (dtrace_aggdesc_t) + ((desc)->dtagd_nrecs ?	\
1008 	(((desc)->dtagd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0))
1009 
1010 /*
1011  * DTrace Option Interface
1012  *
1013  * Run-time DTrace options are set and retrieved via DOF_SECT_OPTDESC sections
1014  * in a DOF image.  The dof_optdesc structure contains an option identifier and
1015  * an option value.  The valid option identifiers are found below; the mapping
1016  * between option identifiers and option identifying strings is maintained at
1017  * user-level.  Note that the value of DTRACEOPT_UNSET is such that all of the
1018  * following are potentially valid option values:  all positive integers, zero
1019  * and negative one.  Some options (notably "bufpolicy" and "bufresize") take
1020  * predefined tokens as their values; these are defined with
1021  * DTRACEOPT_{option}_{token}.
1022  */
1023 #define	DTRACEOPT_BUFSIZE	0	/* buffer size */
1024 #define	DTRACEOPT_BUFPOLICY	1	/* buffer policy */
1025 #define	DTRACEOPT_DYNVARSIZE	2	/* dynamic variable size */
1026 #define	DTRACEOPT_AGGSIZE	3	/* aggregation size */
1027 #define	DTRACEOPT_SPECSIZE	4	/* speculation size */
1028 #define	DTRACEOPT_NSPEC		5	/* number of speculations */
1029 #define	DTRACEOPT_STRSIZE	6	/* string size */
1030 #define	DTRACEOPT_CLEANRATE	7	/* dynvar cleaning rate */
1031 #define	DTRACEOPT_CPU		8	/* CPU to trace */
1032 #define	DTRACEOPT_BUFRESIZE	9	/* buffer resizing policy */
1033 #define	DTRACEOPT_GRABANON	10	/* grab anonymous state, if any */
1034 #define	DTRACEOPT_FLOWINDENT	11	/* indent function entry/return */
1035 #define	DTRACEOPT_QUIET		12	/* only output explicitly traced data */
1036 #define	DTRACEOPT_STACKFRAMES	13	/* number of stack frames */
1037 #define	DTRACEOPT_USTACKFRAMES	14	/* number of user stack frames */
1038 #define	DTRACEOPT_AGGRATE	15	/* aggregation snapshot rate */
1039 #define	DTRACEOPT_SWITCHRATE	16	/* buffer switching rate */
1040 #define	DTRACEOPT_STATUSRATE	17	/* status rate */
1041 #define	DTRACEOPT_DESTRUCTIVE	18	/* destructive actions allowed */
1042 #define	DTRACEOPT_STACKINDENT	19	/* output indent for stack traces */
1043 #define	DTRACEOPT_RAWBYTES	20	/* always print bytes in raw form */
1044 #define	DTRACEOPT_JSTACKFRAMES	21	/* number of jstack() frames */
1045 #define	DTRACEOPT_JSTACKSTRSIZE	22	/* size of jstack() string table */
1046 #define	DTRACEOPT_AGGSORTKEY	23	/* sort aggregations by key */
1047 #define	DTRACEOPT_AGGSORTREV	24	/* reverse-sort aggregations */
1048 #define	DTRACEOPT_AGGSORTPOS	25	/* agg. position to sort on */
1049 #define	DTRACEOPT_AGGSORTKEYPOS	26	/* agg. key position to sort on */
1050 #define	DTRACEOPT_TEMPORAL	27	/* temporally ordered output */
1051 #define	DTRACEOPT_AGGHIST	28	/* histogram aggregation output */
1052 #define	DTRACEOPT_AGGPACK	29	/* packed aggregation output */
1053 #define	DTRACEOPT_AGGZOOM	30	/* zoomed aggregation scaling */
1054 #define	DTRACEOPT_ZONE		31	/* zone in which to enable probes */
1055 #define	DTRACEOPT_MAX		32	/* number of options */
1056 
1057 #define	DTRACEOPT_UNSET		(dtrace_optval_t)-2	/* unset option */
1058 
1059 #define	DTRACEOPT_BUFPOLICY_RING	0	/* ring buffer */
1060 #define	DTRACEOPT_BUFPOLICY_FILL	1	/* fill buffer, then stop */
1061 #define	DTRACEOPT_BUFPOLICY_SWITCH	2	/* switch buffers */
1062 
1063 #define	DTRACEOPT_BUFRESIZE_AUTO	0	/* automatic resizing */
1064 #define	DTRACEOPT_BUFRESIZE_MANUAL	1	/* manual resizing */
1065 
1066 /*
1067  * DTrace Buffer Interface
1068  *
1069  * In order to get a snapshot of the principal or aggregation buffer,
1070  * user-level passes a buffer description to the kernel with the dtrace_bufdesc
1071  * structure.  This describes which CPU user-level is interested in, and
1072  * where user-level wishes the kernel to snapshot the buffer to (the
1073  * dtbd_data field).  The kernel uses the same structure to pass back some
1074  * information regarding the buffer:  the size of data actually copied out, the
1075  * number of drops, the number of errors, the offset of the oldest record,
1076  * and the time of the snapshot.
1077  *
1078  * If the buffer policy is a "switch" policy, taking a snapshot of the
1079  * principal buffer has the additional effect of switching the active and
1080  * inactive buffers.  Taking a snapshot of the aggregation buffer _always_ has
1081  * the additional effect of switching the active and inactive buffers.
1082  */
1083 typedef struct dtrace_bufdesc {
1084 	uint64_t dtbd_size;			/* size of buffer */
1085 	uint32_t dtbd_cpu;			/* CPU or DTRACE_CPUALL */
1086 	uint32_t dtbd_errors;			/* number of errors */
1087 	uint64_t dtbd_drops;			/* number of drops */
1088 	DTRACE_PTR(char, dtbd_data);		/* data */
1089 	uint64_t dtbd_oldest;			/* offset of oldest record */
1090 	uint64_t dtbd_timestamp;		/* hrtime of snapshot */
1091 } dtrace_bufdesc_t;
1092 
1093 /*
1094  * Each record in the buffer (dtbd_data) begins with a header that includes
1095  * the epid and a timestamp.  The timestamp is split into two 4-byte parts
1096  * so that we do not require 8-byte alignment.
1097  */
1098 typedef struct dtrace_rechdr {
1099 	dtrace_epid_t dtrh_epid;		/* enabled probe id */
1100 	uint32_t dtrh_timestamp_hi;		/* high bits of hrtime_t */
1101 	uint32_t dtrh_timestamp_lo;		/* low bits of hrtime_t */
1102 } dtrace_rechdr_t;
1103 
1104 #define	DTRACE_RECORD_LOAD_TIMESTAMP(dtrh)			\
1105 	((dtrh)->dtrh_timestamp_lo +				\
1106 	((uint64_t)(dtrh)->dtrh_timestamp_hi << 32))
1107 
1108 #define	DTRACE_RECORD_STORE_TIMESTAMP(dtrh, hrtime) {		\
1109 	(dtrh)->dtrh_timestamp_lo = (uint32_t)hrtime;		\
1110 	(dtrh)->dtrh_timestamp_hi = hrtime >> 32;		\
1111 }
1112 
1113 /*
1114  * DTrace Status
1115  *
1116  * The status of DTrace is relayed via the dtrace_status structure.  This
1117  * structure contains members to count drops other than the capacity drops
1118  * available via the buffer interface (see above).  This consists of dynamic
1119  * drops (including capacity dynamic drops, rinsing drops and dirty drops), and
1120  * speculative drops (including capacity speculative drops, drops due to busy
1121  * speculative buffers and drops due to unavailable speculative buffers).
1122  * Additionally, the status structure contains a field to indicate the number
1123  * of "fill"-policy buffers have been filled and a boolean field to indicate
1124  * that exit() has been called.  If the dtst_exiting field is non-zero, no
1125  * further data will be generated until tracing is stopped (at which time any
1126  * enablings of the END action will be processed); if user-level sees that
1127  * this field is non-zero, tracing should be stopped as soon as possible.
1128  */
1129 typedef struct dtrace_status {
1130 	uint64_t dtst_dyndrops;			/* dynamic drops */
1131 	uint64_t dtst_dyndrops_rinsing;		/* dyn drops due to rinsing */
1132 	uint64_t dtst_dyndrops_dirty;		/* dyn drops due to dirty */
1133 	uint64_t dtst_specdrops;		/* speculative drops */
1134 	uint64_t dtst_specdrops_busy;		/* spec drops due to busy */
1135 	uint64_t dtst_specdrops_unavail;	/* spec drops due to unavail */
1136 	uint64_t dtst_errors;			/* total errors */
1137 	uint64_t dtst_filled;			/* number of filled bufs */
1138 	uint64_t dtst_stkstroverflows;		/* stack string tab overflows */
1139 	uint64_t dtst_dblerrors;		/* errors in ERROR probes */
1140 	char dtst_killed;			/* non-zero if killed */
1141 	char dtst_exiting;			/* non-zero if exit() called */
1142 	char dtst_pad[6];			/* pad out to 64-bit align */
1143 } dtrace_status_t;
1144 
1145 /*
1146  * DTrace Configuration
1147  *
1148  * User-level may need to understand some elements of the kernel DTrace
1149  * configuration in order to generate correct DIF.  This information is
1150  * conveyed via the dtrace_conf structure.
1151  */
1152 typedef struct dtrace_conf {
1153 	uint_t dtc_difversion;			/* supported DIF version */
1154 	uint_t dtc_difintregs;			/* # of DIF integer registers */
1155 	uint_t dtc_diftupregs;			/* # of DIF tuple registers */
1156 	uint_t dtc_ctfmodel;			/* CTF data model */
1157 	uint_t dtc_pad[8];			/* reserved for future use */
1158 } dtrace_conf_t;
1159 
1160 /*
1161  * DTrace Faults
1162  *
1163  * The constants below DTRACEFLT_LIBRARY indicate probe processing faults;
1164  * constants at or above DTRACEFLT_LIBRARY indicate faults in probe
1165  * postprocessing at user-level.  Probe processing faults induce an ERROR
1166  * probe and are replicated in unistd.d to allow users' ERROR probes to decode
1167  * the error condition using thse symbolic labels.
1168  */
1169 #define	DTRACEFLT_UNKNOWN		0	/* Unknown fault */
1170 #define	DTRACEFLT_BADADDR		1	/* Bad address */
1171 #define	DTRACEFLT_BADALIGN		2	/* Bad alignment */
1172 #define	DTRACEFLT_ILLOP			3	/* Illegal operation */
1173 #define	DTRACEFLT_DIVZERO		4	/* Divide-by-zero */
1174 #define	DTRACEFLT_NOSCRATCH		5	/* Out of scratch space */
1175 #define	DTRACEFLT_KPRIV			6	/* Illegal kernel access */
1176 #define	DTRACEFLT_UPRIV			7	/* Illegal user access */
1177 #define	DTRACEFLT_TUPOFLOW		8	/* Tuple stack overflow */
1178 #define	DTRACEFLT_BADSTACK		9	/* Bad stack */
1179 
1180 #define	DTRACEFLT_LIBRARY		1000	/* Library-level fault */
1181 
1182 /*
1183  * DTrace Argument Types
1184  *
1185  * Because it would waste both space and time, argument types do not reside
1186  * with the probe.  In order to determine argument types for args[X]
1187  * variables, the D compiler queries for argument types on a probe-by-probe
1188  * basis.  (This optimizes for the common case that arguments are either not
1189  * used or used in an untyped fashion.)  Typed arguments are specified with a
1190  * string of the type name in the dtragd_native member of the argument
1191  * description structure.  Typed arguments may be further translated to types
1192  * of greater stability; the provider indicates such a translated argument by
1193  * filling in the dtargd_xlate member with the string of the translated type.
1194  * Finally, the provider may indicate which argument value a given argument
1195  * maps to by setting the dtargd_mapping member -- allowing a single argument
1196  * to map to multiple args[X] variables.
1197  */
1198 typedef struct dtrace_argdesc {
1199 	dtrace_id_t dtargd_id;			/* probe identifier */
1200 	int dtargd_ndx;				/* arg number (-1 iff none) */
1201 	int dtargd_mapping;			/* value mapping */
1202 	char dtargd_native[DTRACE_ARGTYPELEN];	/* native type name */
1203 	char dtargd_xlate[DTRACE_ARGTYPELEN];	/* translated type name */
1204 } dtrace_argdesc_t;
1205 
1206 /*
1207  * DTrace Stability Attributes
1208  *
1209  * Each DTrace provider advertises the name and data stability of each of its
1210  * probe description components, as well as its architectural dependencies.
1211  * The D compiler can query the provider attributes (dtrace_pattr_t below) in
1212  * order to compute the properties of an input program and report them.
1213  */
1214 typedef uint8_t dtrace_stability_t;	/* stability code (see attributes(5)) */
1215 typedef uint8_t dtrace_class_t;		/* architectural dependency class */
1216 
1217 #define	DTRACE_STABILITY_INTERNAL	0	/* private to DTrace itself */
1218 #define	DTRACE_STABILITY_PRIVATE	1	/* private to Sun (see docs) */
1219 #define	DTRACE_STABILITY_OBSOLETE	2	/* scheduled for removal */
1220 #define	DTRACE_STABILITY_EXTERNAL	3	/* not controlled by Sun */
1221 #define	DTRACE_STABILITY_UNSTABLE	4	/* new or rapidly changing */
1222 #define	DTRACE_STABILITY_EVOLVING	5	/* less rapidly changing */
1223 #define	DTRACE_STABILITY_STABLE		6	/* mature interface from Sun */
1224 #define	DTRACE_STABILITY_STANDARD	7	/* industry standard */
1225 #define	DTRACE_STABILITY_MAX		7	/* maximum valid stability */
1226 
1227 #define	DTRACE_CLASS_UNKNOWN	0	/* unknown architectural dependency */
1228 #define	DTRACE_CLASS_CPU	1	/* CPU-module-specific */
1229 #define	DTRACE_CLASS_PLATFORM	2	/* platform-specific (uname -i) */
1230 #define	DTRACE_CLASS_GROUP	3	/* hardware-group-specific (uname -m) */
1231 #define	DTRACE_CLASS_ISA	4	/* ISA-specific (uname -p) */
1232 #define	DTRACE_CLASS_COMMON	5	/* common to all systems */
1233 #define	DTRACE_CLASS_MAX	5	/* maximum valid class */
1234 
1235 #define	DTRACE_PRIV_NONE	0x0000
1236 #define	DTRACE_PRIV_KERNEL	0x0001
1237 #define	DTRACE_PRIV_USER	0x0002
1238 #define	DTRACE_PRIV_PROC	0x0004
1239 #define	DTRACE_PRIV_OWNER	0x0008
1240 #define	DTRACE_PRIV_ZONEOWNER	0x0010
1241 
1242 #define	DTRACE_PRIV_ALL	\
1243 	(DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER | \
1244 	DTRACE_PRIV_PROC | DTRACE_PRIV_OWNER | DTRACE_PRIV_ZONEOWNER)
1245 
1246 typedef struct dtrace_ppriv {
1247 	uint32_t dtpp_flags;			/* privilege flags */
1248 	uid_t dtpp_uid;				/* user ID */
1249 	zoneid_t dtpp_zoneid;			/* zone ID */
1250 } dtrace_ppriv_t;
1251 
1252 typedef struct dtrace_attribute {
1253 	dtrace_stability_t dtat_name;		/* entity name stability */
1254 	dtrace_stability_t dtat_data;		/* entity data stability */
1255 	dtrace_class_t dtat_class;		/* entity data dependency */
1256 } dtrace_attribute_t;
1257 
1258 typedef struct dtrace_pattr {
1259 	dtrace_attribute_t dtpa_provider;	/* provider attributes */
1260 	dtrace_attribute_t dtpa_mod;		/* module attributes */
1261 	dtrace_attribute_t dtpa_func;		/* function attributes */
1262 	dtrace_attribute_t dtpa_name;		/* name attributes */
1263 	dtrace_attribute_t dtpa_args;		/* args[] attributes */
1264 } dtrace_pattr_t;
1265 
1266 typedef struct dtrace_providerdesc {
1267 	char dtvd_name[DTRACE_PROVNAMELEN];	/* provider name */
1268 	dtrace_pattr_t dtvd_attr;		/* stability attributes */
1269 	dtrace_ppriv_t dtvd_priv;		/* privileges required */
1270 } dtrace_providerdesc_t;
1271 
1272 /*
1273  * DTrace Pseudodevice Interface
1274  *
1275  * DTrace is controlled through ioctl(2)'s to the in-kernel dtrace:dtrace
1276  * pseudodevice driver.  These ioctls comprise the user-kernel interface to
1277  * DTrace.
1278  */
1279 #ifdef illumos
1280 #define	DTRACEIOC		(('d' << 24) | ('t' << 16) | ('r' << 8))
1281 #define	DTRACEIOC_PROVIDER	(DTRACEIOC | 1)		/* provider query */
1282 #define	DTRACEIOC_PROBES	(DTRACEIOC | 2)		/* probe query */
1283 #define	DTRACEIOC_BUFSNAP	(DTRACEIOC | 4)		/* snapshot buffer */
1284 #define	DTRACEIOC_PROBEMATCH	(DTRACEIOC | 5)		/* match probes */
1285 #define	DTRACEIOC_ENABLE	(DTRACEIOC | 6)		/* enable probes */
1286 #define	DTRACEIOC_AGGSNAP	(DTRACEIOC | 7)		/* snapshot agg. */
1287 #define	DTRACEIOC_EPROBE	(DTRACEIOC | 8)		/* get eprobe desc. */
1288 #define	DTRACEIOC_PROBEARG	(DTRACEIOC | 9)		/* get probe arg */
1289 #define	DTRACEIOC_CONF		(DTRACEIOC | 10)	/* get config. */
1290 #define	DTRACEIOC_STATUS	(DTRACEIOC | 11)	/* get status */
1291 #define	DTRACEIOC_GO		(DTRACEIOC | 12)	/* start tracing */
1292 #define	DTRACEIOC_STOP		(DTRACEIOC | 13)	/* stop tracing */
1293 #define	DTRACEIOC_AGGDESC	(DTRACEIOC | 15)	/* get agg. desc. */
1294 #define	DTRACEIOC_FORMAT	(DTRACEIOC | 16)	/* get format str */
1295 #define	DTRACEIOC_DOFGET	(DTRACEIOC | 17)	/* get DOF */
1296 #define	DTRACEIOC_REPLICATE	(DTRACEIOC | 18)	/* replicate enab */
1297 #else
1298 #define	DTRACEIOC_PROVIDER	_IOWR('x',1,dtrace_providerdesc_t)
1299 							/* provider query */
1300 #define	DTRACEIOC_PROBES	_IOWR('x',2,dtrace_probedesc_t)
1301 							/* probe query */
1302 #define	DTRACEIOC_BUFSNAP	_IOW('x',4,dtrace_bufdesc_t *)
1303 							/* snapshot buffer */
1304 #define	DTRACEIOC_PROBEMATCH	_IOWR('x',5,dtrace_probedesc_t)
1305 							/* match probes */
1306 typedef struct {
1307 	void	*dof;		/* DOF userland address written to driver. */
1308 	int	n_matched;	/* # matches returned by driver. */
1309 } dtrace_enable_io_t;
1310 #define	DTRACEIOC_ENABLE	_IOWR('x',6,dtrace_enable_io_t)
1311 							/* enable probes */
1312 #define	DTRACEIOC_AGGSNAP	_IOW('x',7,dtrace_bufdesc_t *)
1313 							/* snapshot agg. */
1314 #define	DTRACEIOC_EPROBE	_IOW('x',8,dtrace_eprobedesc_t)
1315 							/* get eprobe desc. */
1316 #define	DTRACEIOC_PROBEARG	_IOWR('x',9,dtrace_argdesc_t)
1317 							/* get probe arg */
1318 #define	DTRACEIOC_CONF		_IOR('x',10,dtrace_conf_t)
1319 							/* get config. */
1320 #define	DTRACEIOC_STATUS	_IOR('x',11,dtrace_status_t)
1321 							/* get status */
1322 #define	DTRACEIOC_GO		_IOR('x',12,processorid_t)
1323 							/* start tracing */
1324 #define	DTRACEIOC_STOP		_IOWR('x',13,processorid_t)
1325 							/* stop tracing */
1326 #define	DTRACEIOC_AGGDESC	_IOW('x',15,dtrace_aggdesc_t *)
1327 							/* get agg. desc. */
1328 #define	DTRACEIOC_FORMAT	_IOWR('x',16,dtrace_fmtdesc_t)
1329 							/* get format str */
1330 #define	DTRACEIOC_DOFGET	_IOW('x',17,dof_hdr_t *)
1331 							/* get DOF */
1332 #define	DTRACEIOC_REPLICATE	_IOW('x',18,dtrace_repldesc_t)
1333 							/* replicate enab */
1334 #endif
1335 
1336 /*
1337  * DTrace Helpers
1338  *
1339  * In general, DTrace establishes probes in processes and takes actions on
1340  * processes without knowing their specific user-level structures.  Instead of
1341  * existing in the framework, process-specific knowledge is contained by the
1342  * enabling D program -- which can apply process-specific knowledge by making
1343  * appropriate use of DTrace primitives like copyin() and copyinstr() to
1344  * operate on user-level data.  However, there may exist some specific probes
1345  * of particular semantic relevance that the application developer may wish to
1346  * explicitly export.  For example, an application may wish to export a probe
1347  * at the point that it begins and ends certain well-defined transactions.  In
1348  * addition to providing probes, programs may wish to offer assistance for
1349  * certain actions.  For example, in highly dynamic environments (e.g., Java),
1350  * it may be difficult to obtain a stack trace in terms of meaningful symbol
1351  * names (the translation from instruction addresses to corresponding symbol
1352  * names may only be possible in situ); these environments may wish to define
1353  * a series of actions to be applied in situ to obtain a meaningful stack
1354  * trace.
1355  *
1356  * These two mechanisms -- user-level statically defined tracing and assisting
1357  * DTrace actions -- are provided via DTrace _helpers_.  Helpers are specified
1358  * via DOF, but unlike enabling DOF, helper DOF may contain definitions of
1359  * providers, probes and their arguments.  If a helper wishes to provide
1360  * action assistance, probe descriptions and corresponding DIF actions may be
1361  * specified in the helper DOF.  For such helper actions, however, the probe
1362  * description describes the specific helper:  all DTrace helpers have the
1363  * provider name "dtrace" and the module name "helper", and the name of the
1364  * helper is contained in the function name (for example, the ustack() helper
1365  * is named "ustack").  Any helper-specific name may be contained in the name
1366  * (for example, if a helper were to have a constructor, it might be named
1367  * "dtrace:helper:<helper>:init").  Helper actions are only called when the
1368  * action that they are helping is taken.  Helper actions may only return DIF
1369  * expressions, and may only call the following subroutines:
1370  *
1371  *    alloca()      <= Allocates memory out of the consumer's scratch space
1372  *    bcopy()       <= Copies memory to scratch space
1373  *    copyin()      <= Copies memory from user-level into consumer's scratch
1374  *    copyinto()    <= Copies memory into a specific location in scratch
1375  *    copyinstr()   <= Copies a string into a specific location in scratch
1376  *
1377  * Helper actions may only access the following built-in variables:
1378  *
1379  *    curthread     <= Current kthread_t pointer
1380  *    tid           <= Current thread identifier
1381  *    pid           <= Current process identifier
1382  *    ppid          <= Parent process identifier
1383  *    uid           <= Current user ID
1384  *    gid           <= Current group ID
1385  *    execname      <= Current executable name
1386  *    zonename      <= Current zone name
1387  *
1388  * Helper actions may not manipulate or allocate dynamic variables, but they
1389  * may have clause-local and statically-allocated global variables.  The
1390  * helper action variable state is specific to the helper action -- variables
1391  * used by the helper action may not be accessed outside of the helper
1392  * action, and the helper action may not access variables that like outside
1393  * of it.  Helper actions may not load from kernel memory at-large; they are
1394  * restricting to loading current user state (via copyin() and variants) and
1395  * scratch space.  As with probe enablings, helper actions are executed in
1396  * program order.  The result of the helper action is the result of the last
1397  * executing helper expression.
1398  *
1399  * Helpers -- composed of either providers/probes or probes/actions (or both)
1400  * -- are added by opening the "helper" minor node, and issuing an ioctl(2)
1401  * (DTRACEHIOC_ADDDOF) that specifies the dof_helper_t structure. This
1402  * encapsulates the name and base address of the user-level library or
1403  * executable publishing the helpers and probes as well as the DOF that
1404  * contains the definitions of those helpers and probes.
1405  *
1406  * The DTRACEHIOC_ADD and DTRACEHIOC_REMOVE are left in place for legacy
1407  * helpers and should no longer be used.  No other ioctls are valid on the
1408  * helper minor node.
1409  */
1410 #ifdef illumos
1411 #define	DTRACEHIOC		(('d' << 24) | ('t' << 16) | ('h' << 8))
1412 #define	DTRACEHIOC_ADD		(DTRACEHIOC | 1)	/* add helper */
1413 #define	DTRACEHIOC_REMOVE	(DTRACEHIOC | 2)	/* remove helper */
1414 #define	DTRACEHIOC_ADDDOF	(DTRACEHIOC | 3)	/* add helper DOF */
1415 #else
1416 #define	DTRACEHIOC_REMOVE	_IOW('z', 2, int)	/* remove helper */
1417 #define	DTRACEHIOC_ADDDOF	_IOWR('z', 3, dof_helper_t)/* add helper DOF */
1418 #endif
1419 
1420 typedef struct dof_helper {
1421 	char dofhp_mod[DTRACE_MODNAMELEN];	/* executable or library name */
1422 	uint64_t dofhp_addr;			/* base address of object */
1423 	uint64_t dofhp_dof;			/* address of helper DOF */
1424 #ifdef __FreeBSD__
1425 	pid_t dofhp_pid;			/* target process ID */
1426 	int dofhp_gen;
1427 #endif
1428 } dof_helper_t;
1429 
1430 #define	DTRACEMNR_DTRACE	"dtrace"	/* node for DTrace ops */
1431 #define	DTRACEMNR_HELPER	"helper"	/* node for helpers */
1432 #define	DTRACEMNRN_DTRACE	0		/* minor for DTrace ops */
1433 #define	DTRACEMNRN_HELPER	1		/* minor for helpers */
1434 #define	DTRACEMNRN_CLONE	2		/* first clone minor */
1435 
1436 #ifdef _KERNEL
1437 
1438 /*
1439  * DTrace Provider API
1440  *
1441  * The following functions are implemented by the DTrace framework and are
1442  * used to implement separate in-kernel DTrace providers.  Common functions
1443  * are provided in uts/common/os/dtrace.c.  ISA-dependent subroutines are
1444  * defined in uts/<isa>/dtrace/dtrace_asm.s or uts/<isa>/dtrace/dtrace_isa.c.
1445  *
1446  * The provider API has two halves:  the API that the providers consume from
1447  * DTrace, and the API that providers make available to DTrace.
1448  *
1449  * 1 Framework-to-Provider API
1450  *
1451  * 1.1  Overview
1452  *
1453  * The Framework-to-Provider API is represented by the dtrace_pops structure
1454  * that the provider passes to the framework when registering itself.  This
1455  * structure consists of the following members:
1456  *
1457  *   dtps_provide()          <-- Provide all probes, all modules
1458  *   dtps_provide_module()   <-- Provide all probes in specified module
1459  *   dtps_enable()           <-- Enable specified probe
1460  *   dtps_disable()          <-- Disable specified probe
1461  *   dtps_suspend()          <-- Suspend specified probe
1462  *   dtps_resume()           <-- Resume specified probe
1463  *   dtps_getargdesc()       <-- Get the argument description for args[X]
1464  *   dtps_getargval()        <-- Get the value for an argX or args[X] variable
1465  *   dtps_usermode()         <-- Find out if the probe was fired in user mode
1466  *   dtps_destroy()          <-- Destroy all state associated with this probe
1467  *
1468  * 1.2  void dtps_provide(void *arg, const dtrace_probedesc_t *spec)
1469  *
1470  * 1.2.1  Overview
1471  *
1472  *   Called to indicate that the provider should provide all probes.  If the
1473  *   specified description is non-NULL, dtps_provide() is being called because
1474  *   no probe matched a specified probe -- if the provider has the ability to
1475  *   create custom probes, it may wish to create a probe that matches the
1476  *   specified description.
1477  *
1478  * 1.2.2  Arguments and notes
1479  *
1480  *   The first argument is the cookie as passed to dtrace_register().  The
1481  *   second argument is a pointer to a probe description that the provider may
1482  *   wish to consider when creating custom probes.  The provider is expected to
1483  *   call back into the DTrace framework via dtrace_probe_create() to create
1484  *   any necessary probes.  dtps_provide() may be called even if the provider
1485  *   has made available all probes; the provider should check the return value
1486  *   of dtrace_probe_create() to handle this case.  Note that the provider need
1487  *   not implement both dtps_provide() and dtps_provide_module(); see
1488  *   "Arguments and Notes" for dtrace_register(), below.
1489  *
1490  * 1.2.3  Return value
1491  *
1492  *   None.
1493  *
1494  * 1.2.4  Caller's context
1495  *
1496  *   dtps_provide() is typically called from open() or ioctl() context, but may
1497  *   be called from other contexts as well.  The DTrace framework is locked in
1498  *   such a way that providers may not register or unregister.  This means that
1499  *   the provider may not call any DTrace API that affects its registration with
1500  *   the framework, including dtrace_register(), dtrace_unregister(),
1501  *   dtrace_invalidate(), and dtrace_condense().  However, the context is such
1502  *   that the provider may (and indeed, is expected to) call probe-related
1503  *   DTrace routines, including dtrace_probe_create(), dtrace_probe_lookup(),
1504  *   and dtrace_probe_arg().
1505  *
1506  * 1.3  void dtps_provide_module(void *arg, modctl_t *mp)
1507  *
1508  * 1.3.1  Overview
1509  *
1510  *   Called to indicate that the provider should provide all probes in the
1511  *   specified module.
1512  *
1513  * 1.3.2  Arguments and notes
1514  *
1515  *   The first argument is the cookie as passed to dtrace_register().  The
1516  *   second argument is a pointer to a modctl structure that indicates the
1517  *   module for which probes should be created.
1518  *
1519  * 1.3.3  Return value
1520  *
1521  *   None.
1522  *
1523  * 1.3.4  Caller's context
1524  *
1525  *   dtps_provide_module() may be called from open() or ioctl() context, but
1526  *   may also be called from a module loading context.  mod_lock is held, and
1527  *   the DTrace framework is locked in such a way that providers may not
1528  *   register or unregister.  This means that the provider may not call any
1529  *   DTrace API that affects its registration with the framework, including
1530  *   dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
1531  *   dtrace_condense().  However, the context is such that the provider may (and
1532  *   indeed, is expected to) call probe-related DTrace routines, including
1533  *   dtrace_probe_create(), dtrace_probe_lookup(), and dtrace_probe_arg().  Note
1534  *   that the provider need not implement both dtps_provide() and
1535  *   dtps_provide_module(); see "Arguments and Notes" for dtrace_register(),
1536  *   below.
1537  *
1538  * 1.4  void dtps_enable(void *arg, dtrace_id_t id, void *parg)
1539  *
1540  * 1.4.1  Overview
1541  *
1542  *   Called to enable the specified probe.
1543  *
1544  * 1.4.2  Arguments and notes
1545  *
1546  *   The first argument is the cookie as passed to dtrace_register().  The
1547  *   second argument is the identifier of the probe to be enabled.  The third
1548  *   argument is the probe argument as passed to dtrace_probe_create().
1549  *   dtps_enable() will be called when a probe transitions from not being
1550  *   enabled at all to having one or more ECB.  The number of ECBs associated
1551  *   with the probe may change without subsequent calls into the provider.
1552  *   When the number of ECBs drops to zero, the provider will be explicitly
1553  *   told to disable the probe via dtps_disable().  dtrace_probe() should never
1554  *   be called for a probe identifier that hasn't been explicitly enabled via
1555  *   dtps_enable().
1556  *
1557  * 1.4.3  Return value
1558  *
1559  *   None.
1560  *
1561  * 1.4.4  Caller's context
1562  *
1563  *   The DTrace framework is locked in such a way that it may not be called
1564  *   back into at all.  cpu_lock is held.  mod_lock is not held and may not
1565  *   be acquired.
1566  *
1567  * 1.5  void dtps_disable(void *arg, dtrace_id_t id, void *parg)
1568  *
1569  * 1.5.1  Overview
1570  *
1571  *   Called to disable the specified probe.
1572  *
1573  * 1.5.2  Arguments and notes
1574  *
1575  *   The first argument is the cookie as passed to dtrace_register().  The
1576  *   second argument is the identifier of the probe to be disabled.  The third
1577  *   argument is the probe argument as passed to dtrace_probe_create().
1578  *   dtps_disable() will be called when a probe transitions from being enabled
1579  *   to having zero ECBs.  dtrace_probe() should never be called for a probe
1580  *   identifier that has been explicitly enabled via dtps_disable().
1581  *
1582  * 1.5.3  Return value
1583  *
1584  *   None.
1585  *
1586  * 1.5.4  Caller's context
1587  *
1588  *   The DTrace framework is locked in such a way that it may not be called
1589  *   back into at all.  cpu_lock is held.  mod_lock is not held and may not
1590  *   be acquired.
1591  *
1592  * 1.6  void dtps_suspend(void *arg, dtrace_id_t id, void *parg)
1593  *
1594  * 1.6.1  Overview
1595  *
1596  *   Called to suspend the specified enabled probe.  This entry point is for
1597  *   providers that may need to suspend some or all of their probes when CPUs
1598  *   are being powered on or when the boot monitor is being entered for a
1599  *   prolonged period of time.
1600  *
1601  * 1.6.2  Arguments and notes
1602  *
1603  *   The first argument is the cookie as passed to dtrace_register().  The
1604  *   second argument is the identifier of the probe to be suspended.  The
1605  *   third argument is the probe argument as passed to dtrace_probe_create().
1606  *   dtps_suspend will only be called on an enabled probe.  Providers that
1607  *   provide a dtps_suspend entry point will want to take roughly the action
1608  *   that it takes for dtps_disable.
1609  *
1610  * 1.6.3  Return value
1611  *
1612  *   None.
1613  *
1614  * 1.6.4  Caller's context
1615  *
1616  *   Interrupts are disabled.  The DTrace framework is in a state such that the
1617  *   specified probe cannot be disabled or destroyed for the duration of
1618  *   dtps_suspend().  As interrupts are disabled, the provider is afforded
1619  *   little latitude; the provider is expected to do no more than a store to
1620  *   memory.
1621  *
1622  * 1.7  void dtps_resume(void *arg, dtrace_id_t id, void *parg)
1623  *
1624  * 1.7.1  Overview
1625  *
1626  *   Called to resume the specified enabled probe.  This entry point is for
1627  *   providers that may need to resume some or all of their probes after the
1628  *   completion of an event that induced a call to dtps_suspend().
1629  *
1630  * 1.7.2  Arguments and notes
1631  *
1632  *   The first argument is the cookie as passed to dtrace_register().  The
1633  *   second argument is the identifier of the probe to be resumed.  The
1634  *   third argument is the probe argument as passed to dtrace_probe_create().
1635  *   dtps_resume will only be called on an enabled probe.  Providers that
1636  *   provide a dtps_resume entry point will want to take roughly the action
1637  *   that it takes for dtps_enable.
1638  *
1639  * 1.7.3  Return value
1640  *
1641  *   None.
1642  *
1643  * 1.7.4  Caller's context
1644  *
1645  *   Interrupts are disabled.  The DTrace framework is in a state such that the
1646  *   specified probe cannot be disabled or destroyed for the duration of
1647  *   dtps_resume().  As interrupts are disabled, the provider is afforded
1648  *   little latitude; the provider is expected to do no more than a store to
1649  *   memory.
1650  *
1651  * 1.8  void dtps_getargdesc(void *arg, dtrace_id_t id, void *parg,
1652  *           dtrace_argdesc_t *desc)
1653  *
1654  * 1.8.1  Overview
1655  *
1656  *   Called to retrieve the argument description for an args[X] variable.
1657  *
1658  * 1.8.2  Arguments and notes
1659  *
1660  *   The first argument is the cookie as passed to dtrace_register(). The
1661  *   second argument is the identifier of the current probe. The third
1662  *   argument is the probe argument as passed to dtrace_probe_create(). The
1663  *   fourth argument is a pointer to the argument description.  This
1664  *   description is both an input and output parameter:  it contains the
1665  *   index of the desired argument in the dtargd_ndx field, and expects
1666  *   the other fields to be filled in upon return.  If there is no argument
1667  *   corresponding to the specified index, the dtargd_ndx field should be set
1668  *   to DTRACE_ARGNONE.
1669  *
1670  * 1.8.3  Return value
1671  *
1672  *   None.  The dtargd_ndx, dtargd_native, dtargd_xlate and dtargd_mapping
1673  *   members of the dtrace_argdesc_t structure are all output values.
1674  *
1675  * 1.8.4  Caller's context
1676  *
1677  *   dtps_getargdesc() is called from ioctl() context. mod_lock is held, and
1678  *   the DTrace framework is locked in such a way that providers may not
1679  *   register or unregister.  This means that the provider may not call any
1680  *   DTrace API that affects its registration with the framework, including
1681  *   dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
1682  *   dtrace_condense().
1683  *
1684  * 1.9  uint64_t dtps_getargval(void *arg, dtrace_id_t id, void *parg,
1685  *               int argno, int aframes)
1686  *
1687  * 1.9.1  Overview
1688  *
1689  *   Called to retrieve a value for an argX or args[X] variable.
1690  *
1691  * 1.9.2  Arguments and notes
1692  *
1693  *   The first argument is the cookie as passed to dtrace_register(). The
1694  *   second argument is the identifier of the current probe. The third
1695  *   argument is the probe argument as passed to dtrace_probe_create(). The
1696  *   fourth argument is the number of the argument (the X in the example in
1697  *   1.9.1). The fifth argument is the number of stack frames that were used
1698  *   to get from the actual place in the code that fired the probe to
1699  *   dtrace_probe() itself, the so-called artificial frames. This argument may
1700  *   be used to descend an appropriate number of frames to find the correct
1701  *   values. If this entry point is left NULL, the dtrace_getarg() built-in
1702  *   function is used.
1703  *
1704  * 1.9.3  Return value
1705  *
1706  *   The value of the argument.
1707  *
1708  * 1.9.4  Caller's context
1709  *
1710  *   This is called from within dtrace_probe() meaning that interrupts
1711  *   are disabled. No locks should be taken within this entry point.
1712  *
1713  * 1.10  int dtps_usermode(void *arg, dtrace_id_t id, void *parg)
1714  *
1715  * 1.10.1  Overview
1716  *
1717  *   Called to determine if the probe was fired in a user context.
1718  *
1719  * 1.10.2  Arguments and notes
1720  *
1721  *   The first argument is the cookie as passed to dtrace_register(). The
1722  *   second argument is the identifier of the current probe. The third
1723  *   argument is the probe argument as passed to dtrace_probe_create().  This
1724  *   entry point must not be left NULL for providers whose probes allow for
1725  *   mixed mode tracing, that is to say those probes that can fire during
1726  *   kernel- _or_ user-mode execution
1727  *
1728  * 1.10.3  Return value
1729  *
1730  *   A bitwise OR that encapsulates both the mode (either DTRACE_MODE_KERNEL
1731  *   or DTRACE_MODE_USER) and the policy when the privilege of the enabling
1732  *   is insufficient for that mode (a combination of DTRACE_MODE_NOPRIV_DROP,
1733  *   DTRACE_MODE_NOPRIV_RESTRICT, and DTRACE_MODE_LIMITEDPRIV_RESTRICT).  If
1734  *   DTRACE_MODE_NOPRIV_DROP bit is set, insufficient privilege will result
1735  *   in the probe firing being silently ignored for the enabling; if the
1736  *   DTRACE_NODE_NOPRIV_RESTRICT bit is set, insufficient privilege will not
1737  *   prevent probe processing for the enabling, but restrictions will be in
1738  *   place that induce a UPRIV fault upon attempt to examine probe arguments
1739  *   or current process state.  If the DTRACE_MODE_LIMITEDPRIV_RESTRICT bit
1740  *   is set, similar restrictions will be placed upon operation if the
1741  *   privilege is sufficient to process the enabling, but does not otherwise
1742  *   entitle the enabling to all zones.  The DTRACE_MODE_NOPRIV_DROP and
1743  *   DTRACE_MODE_NOPRIV_RESTRICT are mutually exclusive (and one of these
1744  *   two policies must be specified), but either may be combined (or not)
1745  *   with DTRACE_MODE_LIMITEDPRIV_RESTRICT.
1746  *
1747  * 1.10.4  Caller's context
1748  *
1749  *   This is called from within dtrace_probe() meaning that interrupts
1750  *   are disabled. No locks should be taken within this entry point.
1751  *
1752  * 1.11 void dtps_destroy(void *arg, dtrace_id_t id, void *parg)
1753  *
1754  * 1.11.1 Overview
1755  *
1756  *   Called to destroy the specified probe.
1757  *
1758  * 1.11.2 Arguments and notes
1759  *
1760  *   The first argument is the cookie as passed to dtrace_register().  The
1761  *   second argument is the identifier of the probe to be destroyed.  The third
1762  *   argument is the probe argument as passed to dtrace_probe_create().  The
1763  *   provider should free all state associated with the probe.  The framework
1764  *   guarantees that dtps_destroy() is only called for probes that have either
1765  *   been disabled via dtps_disable() or were never enabled via dtps_enable().
1766  *   Once dtps_disable() has been called for a probe, no further call will be
1767  *   made specifying the probe.
1768  *
1769  * 1.11.3 Return value
1770  *
1771  *   None.
1772  *
1773  * 1.11.4 Caller's context
1774  *
1775  *   The DTrace framework is locked in such a way that it may not be called
1776  *   back into at all.  mod_lock is held.  cpu_lock is not held, and may not be
1777  *   acquired.
1778  *
1779  *
1780  * 2 Provider-to-Framework API
1781  *
1782  * 2.1  Overview
1783  *
1784  * The Provider-to-Framework API provides the mechanism for the provider to
1785  * register itself with the DTrace framework, to create probes, to lookup
1786  * probes and (most importantly) to fire probes.  The Provider-to-Framework
1787  * consists of:
1788  *
1789  *   dtrace_register()       <-- Register a provider with the DTrace framework
1790  *   dtrace_unregister()     <-- Remove a provider's DTrace registration
1791  *   dtrace_invalidate()     <-- Invalidate the specified provider
1792  *   dtrace_condense()       <-- Remove a provider's unenabled probes
1793  *   dtrace_attached()       <-- Indicates whether or not DTrace has attached
1794  *   dtrace_probe_create()   <-- Create a DTrace probe
1795  *   dtrace_probe_lookup()   <-- Lookup a DTrace probe based on its name
1796  *   dtrace_probe_arg()      <-- Return the probe argument for a specific probe
1797  *   dtrace_probe()          <-- Fire the specified probe
1798  *
1799  * 2.2  int dtrace_register(const char *name, const dtrace_pattr_t *pap,
1800  *          uint32_t priv, cred_t *cr, const dtrace_pops_t *pops, void *arg,
1801  *          dtrace_provider_id_t *idp)
1802  *
1803  * 2.2.1  Overview
1804  *
1805  *   dtrace_register() registers the calling provider with the DTrace
1806  *   framework.  It should generally be called by DTrace providers in their
1807  *   attach(9E) entry point.
1808  *
1809  * 2.2.2  Arguments and Notes
1810  *
1811  *   The first argument is the name of the provider.  The second argument is a
1812  *   pointer to the stability attributes for the provider.  The third argument
1813  *   is the privilege flags for the provider, and must be some combination of:
1814  *
1815  *     DTRACE_PRIV_NONE     <= All users may enable probes from this provider
1816  *
1817  *     DTRACE_PRIV_PROC     <= Any user with privilege of PRIV_DTRACE_PROC may
1818  *                             enable probes from this provider
1819  *
1820  *     DTRACE_PRIV_USER     <= Any user with privilege of PRIV_DTRACE_USER may
1821  *                             enable probes from this provider
1822  *
1823  *     DTRACE_PRIV_KERNEL   <= Any user with privilege of PRIV_DTRACE_KERNEL
1824  *                             may enable probes from this provider
1825  *
1826  *     DTRACE_PRIV_OWNER    <= This flag places an additional constraint on
1827  *                             the privilege requirements above. These probes
1828  *                             require either (a) a user ID matching the user
1829  *                             ID of the cred passed in the fourth argument
1830  *                             or (b) the PRIV_PROC_OWNER privilege.
1831  *
1832  *     DTRACE_PRIV_ZONEOWNER<= This flag places an additional constraint on
1833  *                             the privilege requirements above. These probes
1834  *                             require either (a) a zone ID matching the zone
1835  *                             ID of the cred passed in the fourth argument
1836  *                             or (b) the PRIV_PROC_ZONE privilege.
1837  *
1838  *   Note that these flags designate the _visibility_ of the probes, not
1839  *   the conditions under which they may or may not fire.
1840  *
1841  *   The fourth argument is the credential that is associated with the
1842  *   provider.  This argument should be NULL if the privilege flags don't
1843  *   include DTRACE_PRIV_OWNER or DTRACE_PRIV_ZONEOWNER.  If non-NULL, the
1844  *   framework stashes the uid and zoneid represented by this credential
1845  *   for use at probe-time, in implicit predicates.  These limit visibility
1846  *   of the probes to users and/or zones which have sufficient privilege to
1847  *   access them.
1848  *
1849  *   The fifth argument is a DTrace provider operations vector, which provides
1850  *   the implementation for the Framework-to-Provider API.  (See Section 1,
1851  *   above.)  This must be non-NULL, and each member must be non-NULL.  The
1852  *   exceptions to this are (1) the dtps_provide() and dtps_provide_module()
1853  *   members (if the provider so desires, _one_ of these members may be left
1854  *   NULL -- denoting that the provider only implements the other) and (2)
1855  *   the dtps_suspend() and dtps_resume() members, which must either both be
1856  *   NULL or both be non-NULL.
1857  *
1858  *   The sixth argument is a cookie to be specified as the first argument for
1859  *   each function in the Framework-to-Provider API.  This argument may have
1860  *   any value.
1861  *
1862  *   The final argument is a pointer to dtrace_provider_id_t.  If
1863  *   dtrace_register() successfully completes, the provider identifier will be
1864  *   stored in the memory pointed to be this argument.  This argument must be
1865  *   non-NULL.
1866  *
1867  * 2.2.3  Return value
1868  *
1869  *   On success, dtrace_register() returns 0 and stores the new provider's
1870  *   identifier into the memory pointed to by the idp argument.  On failure,
1871  *   dtrace_register() returns an errno:
1872  *
1873  *     EINVAL   The arguments passed to dtrace_register() were somehow invalid.
1874  *              This may because a parameter that must be non-NULL was NULL,
1875  *              because the name was invalid (either empty or an illegal
1876  *              provider name) or because the attributes were invalid.
1877  *
1878  *   No other failure code is returned.
1879  *
1880  * 2.2.4  Caller's context
1881  *
1882  *   dtrace_register() may induce calls to dtrace_provide(); the provider must
1883  *   hold no locks across dtrace_register() that may also be acquired by
1884  *   dtrace_provide().  cpu_lock and mod_lock must not be held.
1885  *
1886  * 2.3  int dtrace_unregister(dtrace_provider_t id)
1887  *
1888  * 2.3.1  Overview
1889  *
1890  *   Unregisters the specified provider from the DTrace framework.  It should
1891  *   generally be called by DTrace providers in their detach(9E) entry point.
1892  *
1893  * 2.3.2  Arguments and Notes
1894  *
1895  *   The only argument is the provider identifier, as returned from a
1896  *   successful call to dtrace_register().  As a result of calling
1897  *   dtrace_unregister(), the DTrace framework will call back into the provider
1898  *   via the dtps_destroy() entry point.  Once dtrace_unregister() successfully
1899  *   completes, however, the DTrace framework will no longer make calls through
1900  *   the Framework-to-Provider API.
1901  *
1902  * 2.3.3  Return value
1903  *
1904  *   On success, dtrace_unregister returns 0.  On failure, dtrace_unregister()
1905  *   returns an errno:
1906  *
1907  *     EBUSY    There are currently processes that have the DTrace pseudodevice
1908  *              open, or there exists an anonymous enabling that hasn't yet
1909  *              been claimed.
1910  *
1911  *   No other failure code is returned.
1912  *
1913  * 2.3.4  Caller's context
1914  *
1915  *   Because a call to dtrace_unregister() may induce calls through the
1916  *   Framework-to-Provider API, the caller may not hold any lock across
1917  *   dtrace_register() that is also acquired in any of the Framework-to-
1918  *   Provider API functions.  Additionally, mod_lock may not be held.
1919  *
1920  * 2.4  void dtrace_invalidate(dtrace_provider_id_t id)
1921  *
1922  * 2.4.1  Overview
1923  *
1924  *   Invalidates the specified provider.  All subsequent probe lookups for the
1925  *   specified provider will fail, but its probes will not be removed.
1926  *
1927  * 2.4.2  Arguments and note
1928  *
1929  *   The only argument is the provider identifier, as returned from a
1930  *   successful call to dtrace_register().  In general, a provider's probes
1931  *   always remain valid; dtrace_invalidate() is a mechanism for invalidating
1932  *   an entire provider, regardless of whether or not probes are enabled or
1933  *   not.  Note that dtrace_invalidate() will _not_ prevent already enabled
1934  *   probes from firing -- it will merely prevent any new enablings of the
1935  *   provider's probes.
1936  *
1937  * 2.5 int dtrace_condense(dtrace_provider_id_t id)
1938  *
1939  * 2.5.1  Overview
1940  *
1941  *   Removes all the unenabled probes for the given provider. This function is
1942  *   not unlike dtrace_unregister(), except that it doesn't remove the
1943  *   provider just as many of its associated probes as it can.
1944  *
1945  * 2.5.2  Arguments and Notes
1946  *
1947  *   As with dtrace_unregister(), the sole argument is the provider identifier
1948  *   as returned from a successful call to dtrace_register().  As a result of
1949  *   calling dtrace_condense(), the DTrace framework will call back into the
1950  *   given provider's dtps_destroy() entry point for each of the provider's
1951  *   unenabled probes.
1952  *
1953  * 2.5.3  Return value
1954  *
1955  *   Currently, dtrace_condense() always returns 0.  However, consumers of this
1956  *   function should check the return value as appropriate; its behavior may
1957  *   change in the future.
1958  *
1959  * 2.5.4  Caller's context
1960  *
1961  *   As with dtrace_unregister(), the caller may not hold any lock across
1962  *   dtrace_condense() that is also acquired in the provider's entry points.
1963  *   Also, mod_lock may not be held.
1964  *
1965  * 2.6 int dtrace_attached()
1966  *
1967  * 2.6.1  Overview
1968  *
1969  *   Indicates whether or not DTrace has attached.
1970  *
1971  * 2.6.2  Arguments and Notes
1972  *
1973  *   For most providers, DTrace makes initial contact beyond registration.
1974  *   That is, once a provider has registered with DTrace, it waits to hear
1975  *   from DTrace to create probes.  However, some providers may wish to
1976  *   proactively create probes without first being told by DTrace to do so.
1977  *   If providers wish to do this, they must first call dtrace_attached() to
1978  *   determine if DTrace itself has attached.  If dtrace_attached() returns 0,
1979  *   the provider must not make any other Provider-to-Framework API call.
1980  *
1981  * 2.6.3  Return value
1982  *
1983  *   dtrace_attached() returns 1 if DTrace has attached, 0 otherwise.
1984  *
1985  * 2.7  int dtrace_probe_create(dtrace_provider_t id, const char *mod,
1986  *	    const char *func, const char *name, int aframes, void *arg)
1987  *
1988  * 2.7.1  Overview
1989  *
1990  *   Creates a probe with specified module name, function name, and name.
1991  *
1992  * 2.7.2  Arguments and Notes
1993  *
1994  *   The first argument is the provider identifier, as returned from a
1995  *   successful call to dtrace_register().  The second, third, and fourth
1996  *   arguments are the module name, function name, and probe name,
1997  *   respectively.  Of these, module name and function name may both be NULL
1998  *   (in which case the probe is considered to be unanchored), or they may both
1999  *   be non-NULL.  The name must be non-NULL, and must point to a non-empty
2000  *   string.
2001  *
2002  *   The fifth argument is the number of artificial stack frames that will be
2003  *   found on the stack when dtrace_probe() is called for the new probe.  These
2004  *   artificial frames will be automatically be pruned should the stack() or
2005  *   stackdepth() functions be called as part of one of the probe's ECBs.  If
2006  *   the parameter doesn't add an artificial frame, this parameter should be
2007  *   zero.
2008  *
2009  *   The final argument is a probe argument that will be passed back to the
2010  *   provider when a probe-specific operation is called.  (e.g., via
2011  *   dtps_enable(), dtps_disable(), etc.)
2012  *
2013  *   Note that it is up to the provider to be sure that the probe that it
2014  *   creates does not already exist -- if the provider is unsure of the probe's
2015  *   existence, it should assure its absence with dtrace_probe_lookup() before
2016  *   calling dtrace_probe_create().
2017  *
2018  * 2.7.3  Return value
2019  *
2020  *   dtrace_probe_create() always succeeds, and always returns the identifier
2021  *   of the newly-created probe.
2022  *
2023  * 2.7.4  Caller's context
2024  *
2025  *   While dtrace_probe_create() is generally expected to be called from
2026  *   dtps_provide() and/or dtps_provide_module(), it may be called from other
2027  *   non-DTrace contexts.  Neither cpu_lock nor mod_lock may be held.
2028  *
2029  * 2.8  dtrace_id_t dtrace_probe_lookup(dtrace_provider_t id, const char *mod,
2030  *	    const char *func, const char *name)
2031  *
2032  * 2.8.1  Overview
2033  *
2034  *   Looks up a probe based on provdider and one or more of module name,
2035  *   function name and probe name.
2036  *
2037  * 2.8.2  Arguments and Notes
2038  *
2039  *   The first argument is the provider identifier, as returned from a
2040  *   successful call to dtrace_register().  The second, third, and fourth
2041  *   arguments are the module name, function name, and probe name,
2042  *   respectively.  Any of these may be NULL; dtrace_probe_lookup() will return
2043  *   the identifier of the first probe that is provided by the specified
2044  *   provider and matches all of the non-NULL matching criteria.
2045  *   dtrace_probe_lookup() is generally used by a provider to be check the
2046  *   existence of a probe before creating it with dtrace_probe_create().
2047  *
2048  * 2.8.3  Return value
2049  *
2050  *   If the probe exists, returns its identifier.  If the probe does not exist,
2051  *   return DTRACE_IDNONE.
2052  *
2053  * 2.8.4  Caller's context
2054  *
2055  *   While dtrace_probe_lookup() is generally expected to be called from
2056  *   dtps_provide() and/or dtps_provide_module(), it may also be called from
2057  *   other non-DTrace contexts.  Neither cpu_lock nor mod_lock may be held.
2058  *
2059  * 2.9  void *dtrace_probe_arg(dtrace_provider_t id, dtrace_id_t probe)
2060  *
2061  * 2.9.1  Overview
2062  *
2063  *   Returns the probe argument associated with the specified probe.
2064  *
2065  * 2.9.2  Arguments and Notes
2066  *
2067  *   The first argument is the provider identifier, as returned from a
2068  *   successful call to dtrace_register().  The second argument is a probe
2069  *   identifier, as returned from dtrace_probe_lookup() or
2070  *   dtrace_probe_create().  This is useful if a probe has multiple
2071  *   provider-specific components to it:  the provider can create the probe
2072  *   once with provider-specific state, and then add to the state by looking
2073  *   up the probe based on probe identifier.
2074  *
2075  * 2.9.3  Return value
2076  *
2077  *   Returns the argument associated with the specified probe.  If the
2078  *   specified probe does not exist, or if the specified probe is not provided
2079  *   by the specified provider, NULL is returned.
2080  *
2081  * 2.9.4  Caller's context
2082  *
2083  *   While dtrace_probe_arg() is generally expected to be called from
2084  *   dtps_provide() and/or dtps_provide_module(), it may also be called from
2085  *   other non-DTrace contexts.  Neither cpu_lock nor mod_lock may be held.
2086  *
2087  * 2.10  void dtrace_probe(dtrace_id_t probe, uintptr_t arg0, uintptr_t arg1,
2088  *		uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
2089  *
2090  * 2.10.1  Overview
2091  *
2092  *   The epicenter of DTrace:  fires the specified probes with the specified
2093  *   arguments.
2094  *
2095  * 2.10.2  Arguments and Notes
2096  *
2097  *   The first argument is a probe identifier as returned by
2098  *   dtrace_probe_create() or dtrace_probe_lookup().  The second through sixth
2099  *   arguments are the values to which the D variables "arg0" through "arg4"
2100  *   will be mapped.
2101  *
2102  *   dtrace_probe() should be called whenever the specified probe has fired --
2103  *   however the provider defines it.
2104  *
2105  * 2.10.3  Return value
2106  *
2107  *   None.
2108  *
2109  * 2.10.4  Caller's context
2110  *
2111  *   dtrace_probe() may be called in virtually any context:  kernel, user,
2112  *   interrupt, high-level interrupt, with arbitrary adaptive locks held, with
2113  *   dispatcher locks held, with interrupts disabled, etc.  The only latitude
2114  *   that must be afforded to DTrace is the ability to make calls within
2115  *   itself (and to its in-kernel subroutines) and the ability to access
2116  *   arbitrary (but mapped) memory.  On some platforms, this constrains
2117  *   context.  For example, on UltraSPARC, dtrace_probe() cannot be called
2118  *   from any context in which TL is greater than zero.  dtrace_probe() may
2119  *   also not be called from any routine which may be called by dtrace_probe()
2120  *   -- which includes functions in the DTrace framework and some in-kernel
2121  *   DTrace subroutines.  All such functions "dtrace_"; providers that
2122  *   instrument the kernel arbitrarily should be sure to not instrument these
2123  *   routines.
2124  */
2125 typedef struct dtrace_pops {
2126 	void (*dtps_provide)(void *arg, dtrace_probedesc_t *spec);
2127 	void (*dtps_provide_module)(void *arg, modctl_t *mp);
2128 	void (*dtps_enable)(void *arg, dtrace_id_t id, void *parg);
2129 	void (*dtps_disable)(void *arg, dtrace_id_t id, void *parg);
2130 	void (*dtps_suspend)(void *arg, dtrace_id_t id, void *parg);
2131 	void (*dtps_resume)(void *arg, dtrace_id_t id, void *parg);
2132 	void (*dtps_getargdesc)(void *arg, dtrace_id_t id, void *parg,
2133 	    dtrace_argdesc_t *desc);
2134 	uint64_t (*dtps_getargval)(void *arg, dtrace_id_t id, void *parg,
2135 	    int argno, int aframes);
2136 	int (*dtps_usermode)(void *arg, dtrace_id_t id, void *parg);
2137 	void (*dtps_destroy)(void *arg, dtrace_id_t id, void *parg);
2138 } dtrace_pops_t;
2139 
2140 #define	DTRACE_MODE_KERNEL			0x01
2141 #define	DTRACE_MODE_USER			0x02
2142 #define	DTRACE_MODE_NOPRIV_DROP			0x10
2143 #define	DTRACE_MODE_NOPRIV_RESTRICT		0x20
2144 #define	DTRACE_MODE_LIMITEDPRIV_RESTRICT	0x40
2145 
2146 typedef uintptr_t	dtrace_provider_id_t;
2147 
2148 extern int dtrace_register(const char *, const dtrace_pattr_t *, uint32_t,
2149     cred_t *, const dtrace_pops_t *, void *, dtrace_provider_id_t *);
2150 extern int dtrace_unregister(dtrace_provider_id_t);
2151 extern int dtrace_condense(dtrace_provider_id_t);
2152 extern void dtrace_invalidate(dtrace_provider_id_t);
2153 extern dtrace_id_t dtrace_probe_lookup(dtrace_provider_id_t, char *,
2154     char *, char *);
2155 extern dtrace_id_t dtrace_probe_create(dtrace_provider_id_t, const char *,
2156     const char *, const char *, int, void *);
2157 extern void *dtrace_probe_arg(dtrace_provider_id_t, dtrace_id_t);
2158 extern void dtrace_probe(dtrace_id_t, uintptr_t arg0, uintptr_t arg1,
2159     uintptr_t arg2, uintptr_t arg3, uintptr_t arg4);
2160 
2161 /*
2162  * DTrace Meta Provider API
2163  *
2164  * The following functions are implemented by the DTrace framework and are
2165  * used to implement meta providers. Meta providers plug into the DTrace
2166  * framework and are used to instantiate new providers on the fly. At
2167  * present, there is only one type of meta provider and only one meta
2168  * provider may be registered with the DTrace framework at a time. The
2169  * sole meta provider type provides user-land static tracing facilities
2170  * by taking meta probe descriptions and adding a corresponding provider
2171  * into the DTrace framework.
2172  *
2173  * 1 Framework-to-Provider
2174  *
2175  * 1.1 Overview
2176  *
2177  * The Framework-to-Provider API is represented by the dtrace_mops structure
2178  * that the meta provider passes to the framework when registering itself as
2179  * a meta provider. This structure consists of the following members:
2180  *
2181  *   dtms_create_probe()	<-- Add a new probe to a created provider
2182  *   dtms_provide_pid()		<-- Create a new provider for a given process
2183  *   dtms_remove_pid()		<-- Remove a previously created provider
2184  *
2185  * 1.2  void dtms_create_probe(void *arg, void *parg,
2186  *           dtrace_helper_probedesc_t *probedesc);
2187  *
2188  * 1.2.1  Overview
2189  *
2190  *   Called by the DTrace framework to create a new probe in a provider
2191  *   created by this meta provider.
2192  *
2193  * 1.2.2  Arguments and notes
2194  *
2195  *   The first argument is the cookie as passed to dtrace_meta_register().
2196  *   The second argument is the provider cookie for the associated provider;
2197  *   this is obtained from the return value of dtms_provide_pid(). The third
2198  *   argument is the helper probe description.
2199  *
2200  * 1.2.3  Return value
2201  *
2202  *   None
2203  *
2204  * 1.2.4  Caller's context
2205  *
2206  *   dtms_create_probe() is called from either ioctl() or module load context
2207  *   in the context of a newly-created provider (that is, a provider that
2208  *   is a result of a call to dtms_provide_pid()). The DTrace framework is
2209  *   locked in such a way that meta providers may not register or unregister,
2210  *   such that no other thread can call into a meta provider operation and that
2211  *   atomicity is assured with respect to meta provider operations across
2212  *   dtms_provide_pid() and subsequent calls to dtms_create_probe().
2213  *   The context is thus effectively single-threaded with respect to the meta
2214  *   provider, and that the meta provider cannot call dtrace_meta_register()
2215  *   or dtrace_meta_unregister(). However, the context is such that the
2216  *   provider may (and is expected to) call provider-related DTrace provider
2217  *   APIs including dtrace_probe_create().
2218  *
2219  * 1.3  void *dtms_provide_pid(void *arg, dtrace_meta_provider_t *mprov,
2220  *	      pid_t pid)
2221  *
2222  * 1.3.1  Overview
2223  *
2224  *   Called by the DTrace framework to instantiate a new provider given the
2225  *   description of the provider and probes in the mprov argument. The
2226  *   meta provider should call dtrace_register() to insert the new provider
2227  *   into the DTrace framework.
2228  *
2229  * 1.3.2  Arguments and notes
2230  *
2231  *   The first argument is the cookie as passed to dtrace_meta_register().
2232  *   The second argument is a pointer to a structure describing the new
2233  *   helper provider. The third argument is the process identifier for
2234  *   process associated with this new provider. Note that the name of the
2235  *   provider as passed to dtrace_register() should be the contatenation of
2236  *   the dtmpb_provname member of the mprov argument and the processs
2237  *   identifier as a string.
2238  *
2239  * 1.3.3  Return value
2240  *
2241  *   The cookie for the provider that the meta provider creates. This is
2242  *   the same value that it passed to dtrace_register().
2243  *
2244  * 1.3.4  Caller's context
2245  *
2246  *   dtms_provide_pid() is called from either ioctl() or module load context.
2247  *   The DTrace framework is locked in such a way that meta providers may not
2248  *   register or unregister. This means that the meta provider cannot call
2249  *   dtrace_meta_register() or dtrace_meta_unregister(). However, the context
2250  *   is such that the provider may -- and is expected to --  call
2251  *   provider-related DTrace provider APIs including dtrace_register().
2252  *
2253  * 1.4  void dtms_remove_pid(void *arg, dtrace_meta_provider_t *mprov,
2254  *	     pid_t pid)
2255  *
2256  * 1.4.1  Overview
2257  *
2258  *   Called by the DTrace framework to remove a provider that had previously
2259  *   been instantiated via the dtms_provide_pid() entry point. The meta
2260  *   provider need not remove the provider immediately, but this entry
2261  *   point indicates that the provider should be removed as soon as possible
2262  *   using the dtrace_unregister() API.
2263  *
2264  * 1.4.2  Arguments and notes
2265  *
2266  *   The first argument is the cookie as passed to dtrace_meta_register().
2267  *   The second argument is a pointer to a structure describing the helper
2268  *   provider. The third argument is the process identifier for process
2269  *   associated with this new provider.
2270  *
2271  * 1.4.3  Return value
2272  *
2273  *   None
2274  *
2275  * 1.4.4  Caller's context
2276  *
2277  *   dtms_remove_pid() is called from either ioctl() or exit() context.
2278  *   The DTrace framework is locked in such a way that meta providers may not
2279  *   register or unregister. This means that the meta provider cannot call
2280  *   dtrace_meta_register() or dtrace_meta_unregister(). However, the context
2281  *   is such that the provider may -- and is expected to -- call
2282  *   provider-related DTrace provider APIs including dtrace_unregister().
2283  */
2284 typedef struct dtrace_helper_probedesc {
2285 	char *dthpb_mod;			/* probe module */
2286 	char *dthpb_func; 			/* probe function */
2287 	char *dthpb_name; 			/* probe name */
2288 	uint64_t dthpb_base;			/* base address */
2289 	uint32_t *dthpb_offs;			/* offsets array */
2290 	uint32_t *dthpb_enoffs;			/* is-enabled offsets array */
2291 	uint32_t dthpb_noffs;			/* offsets count */
2292 	uint32_t dthpb_nenoffs;			/* is-enabled offsets count */
2293 	uint8_t *dthpb_args;			/* argument mapping array */
2294 	uint8_t dthpb_xargc;			/* translated argument count */
2295 	uint8_t dthpb_nargc;			/* native argument count */
2296 	char *dthpb_xtypes;			/* translated types strings */
2297 	char *dthpb_ntypes;			/* native types strings */
2298 } dtrace_helper_probedesc_t;
2299 
2300 typedef struct dtrace_helper_provdesc {
2301 	char *dthpv_provname;			/* provider name */
2302 	dtrace_pattr_t dthpv_pattr;		/* stability attributes */
2303 } dtrace_helper_provdesc_t;
2304 
2305 typedef struct dtrace_mops {
2306 	void (*dtms_create_probe)(void *, void *, dtrace_helper_probedesc_t *);
2307 	void *(*dtms_provide_pid)(void *, dtrace_helper_provdesc_t *, pid_t);
2308 	void (*dtms_remove_pid)(void *, dtrace_helper_provdesc_t *, pid_t);
2309 } dtrace_mops_t;
2310 
2311 typedef uintptr_t	dtrace_meta_provider_id_t;
2312 
2313 extern int dtrace_meta_register(const char *, const dtrace_mops_t *, void *,
2314     dtrace_meta_provider_id_t *);
2315 extern int dtrace_meta_unregister(dtrace_meta_provider_id_t);
2316 
2317 /*
2318  * DTrace Kernel Hooks
2319  *
2320  * The following functions are implemented by the base kernel and form a set of
2321  * hooks used by the DTrace framework.  DTrace hooks are implemented in either
2322  * uts/common/os/dtrace_subr.c, an ISA-specific assembly file, or in a
2323  * uts/<platform>/os/dtrace_subr.c corresponding to each hardware platform.
2324  */
2325 
2326 typedef enum dtrace_vtime_state {
2327 	DTRACE_VTIME_INACTIVE = 0,	/* No DTrace, no TNF */
2328 	DTRACE_VTIME_ACTIVE,		/* DTrace virtual time, no TNF */
2329 	DTRACE_VTIME_INACTIVE_TNF,	/* No DTrace, TNF active */
2330 	DTRACE_VTIME_ACTIVE_TNF		/* DTrace virtual time _and_ TNF */
2331 } dtrace_vtime_state_t;
2332 
2333 #ifdef illumos
2334 extern dtrace_vtime_state_t dtrace_vtime_active;
2335 #endif
2336 extern void dtrace_vtime_switch(kthread_t *next);
2337 extern void dtrace_vtime_enable_tnf(void);
2338 extern void dtrace_vtime_disable_tnf(void);
2339 extern void dtrace_vtime_enable(void);
2340 extern void dtrace_vtime_disable(void);
2341 
2342 struct regs;
2343 struct reg;
2344 
2345 #ifdef illumos
2346 extern int (*dtrace_pid_probe_ptr)(struct reg *);
2347 extern int (*dtrace_return_probe_ptr)(struct reg *);
2348 extern void (*dtrace_fasttrap_fork_ptr)(proc_t *, proc_t *);
2349 extern void (*dtrace_fasttrap_exec_ptr)(proc_t *);
2350 extern void (*dtrace_fasttrap_exit_ptr)(proc_t *);
2351 extern void dtrace_fasttrap_fork(proc_t *, proc_t *);
2352 #endif
2353 
2354 typedef uintptr_t dtrace_icookie_t;
2355 typedef void (*dtrace_xcall_t)(void *);
2356 
2357 extern dtrace_icookie_t dtrace_interrupt_disable(void);
2358 extern void dtrace_interrupt_enable(dtrace_icookie_t);
2359 
2360 extern void dtrace_membar_producer(void);
2361 extern void dtrace_membar_consumer(void);
2362 
2363 extern void (*dtrace_cpu_init)(processorid_t);
2364 #ifdef illumos
2365 extern void (*dtrace_modload)(modctl_t *);
2366 extern void (*dtrace_modunload)(modctl_t *);
2367 #endif
2368 extern void (*dtrace_helpers_cleanup)(void);
2369 extern void (*dtrace_helpers_fork)(proc_t *parent, proc_t *child);
2370 extern void (*dtrace_cpustart_init)(void);
2371 extern void (*dtrace_cpustart_fini)(void);
2372 extern void (*dtrace_closef)(void);
2373 
2374 extern void (*dtrace_debugger_init)(void);
2375 extern void (*dtrace_debugger_fini)(void);
2376 extern dtrace_cacheid_t dtrace_predcache_id;
2377 
2378 #ifdef illumos
2379 extern hrtime_t dtrace_gethrtime(void);
2380 #else
2381 void dtrace_debug_printf(const char *, ...) __printflike(1, 2);
2382 #endif
2383 extern void dtrace_sync(void);
2384 extern void dtrace_toxic_ranges(void (*)(uintptr_t, uintptr_t));
2385 extern void dtrace_xcall(processorid_t, dtrace_xcall_t, void *);
2386 extern void dtrace_vpanic(const char *, __va_list);
2387 extern void dtrace_panic(const char *, ...);
2388 
2389 extern int dtrace_safe_defer_signal(void);
2390 extern void dtrace_safe_synchronous_signal(void);
2391 
2392 extern int dtrace_mach_aframes(void);
2393 
2394 #if defined(__i386) || defined(__amd64)
2395 extern int dtrace_instr_size(uchar_t *instr);
2396 extern int dtrace_instr_size_isa(uchar_t *, model_t, int *);
2397 extern void dtrace_invop_callsite(void);
2398 #endif
2399 extern void dtrace_invop_add(int (*)(uintptr_t, struct trapframe *, uintptr_t));
2400 extern void dtrace_invop_remove(int (*)(uintptr_t, struct trapframe *,
2401     uintptr_t));
2402 
2403 #ifdef __sparc
2404 extern int dtrace_blksuword32(uintptr_t, uint32_t *, int);
2405 extern void dtrace_getfsr(uint64_t *);
2406 #endif
2407 
2408 #ifndef illumos
2409 extern void dtrace_helpers_duplicate(proc_t *, proc_t *);
2410 extern void dtrace_helpers_destroy(proc_t *);
2411 #endif
2412 
2413 #define	DTRACE_CPUFLAG_ISSET(flag) \
2414 	(cpu_core[curcpu].cpuc_dtrace_flags & (flag))
2415 
2416 #define	DTRACE_CPUFLAG_SET(flag) \
2417 	(cpu_core[curcpu].cpuc_dtrace_flags |= (flag))
2418 
2419 #define	DTRACE_CPUFLAG_CLEAR(flag) \
2420 	(cpu_core[curcpu].cpuc_dtrace_flags &= ~(flag))
2421 
2422 #endif /* _KERNEL */
2423 
2424 #endif	/* _ASM */
2425 
2426 #if defined(__i386) || defined(__amd64)
2427 
2428 #define	DTRACE_INVOP_PUSHL_EBP		1
2429 #define	DTRACE_INVOP_PUSHQ_RBP		DTRACE_INVOP_PUSHL_EBP
2430 #define	DTRACE_INVOP_POPL_EBP		2
2431 #define	DTRACE_INVOP_POPQ_RBP		DTRACE_INVOP_POPL_EBP
2432 #define	DTRACE_INVOP_LEAVE		3
2433 #define	DTRACE_INVOP_NOP		4
2434 #define	DTRACE_INVOP_RET		5
2435 
2436 #elif defined(__powerpc__)
2437 
2438 #define DTRACE_INVOP_RET	1
2439 #define DTRACE_INVOP_BCTR	2
2440 #define DTRACE_INVOP_BLR	3
2441 #define DTRACE_INVOP_JUMP	4
2442 #define DTRACE_INVOP_MFLR_R0	5
2443 #define DTRACE_INVOP_NOP	6
2444 
2445 #elif defined(__arm__)
2446 
2447 #define	DTRACE_INVOP_SHIFT	4
2448 #define	DTRACE_INVOP_MASK	((1 << DTRACE_INVOP_SHIFT) - 1)
2449 #define	DTRACE_INVOP_DATA(x)	((x) >> DTRACE_INVOP_SHIFT)
2450 
2451 #define DTRACE_INVOP_PUSHM	1
2452 #define DTRACE_INVOP_POPM	2
2453 #define DTRACE_INVOP_B		3
2454 
2455 #elif defined(__aarch64__)
2456 
2457 #define	INSN_SIZE	4
2458 
2459 #define	B_MASK		0xff000000
2460 #define	B_DATA_MASK	0x00ffffff
2461 #define	B_INSTR		0x14000000
2462 
2463 #define	RET_INSTR	0xd65f03c0
2464 
2465 #define	LDP_STP_MASK	0xffc00000
2466 #define	STP_32		0x29800000
2467 #define	STP_64		0xa9800000
2468 #define	LDP_32		0x28c00000
2469 #define	LDP_64		0xa8c00000
2470 #define	LDP_STP_PREIND	(1 << 24)
2471 #define	LDP_STP_DIR	(1 << 22) /* Load instruction */
2472 #define	ARG1_SHIFT	0
2473 #define	ARG1_MASK	0x1f
2474 #define	ARG2_SHIFT	10
2475 #define	ARG2_MASK	0x1f
2476 #define	OFFSET_SHIFT	15
2477 #define	OFFSET_SIZE	7
2478 #define	OFFSET_MASK	((1 << OFFSET_SIZE) - 1)
2479 
2480 #define	DTRACE_INVOP_PUSHM	1
2481 #define	DTRACE_INVOP_RET	2
2482 #define	DTRACE_INVOP_B		3
2483 
2484 #elif defined(__mips__)
2485 
2486 #define	INSN_SIZE		4
2487 
2488 /* Load/Store double RA to/from SP */
2489 #define	LDSD_RA_SP_MASK		0xffff0000
2490 #define	LDSD_DATA_MASK		0x0000ffff
2491 #define	SD_RA_SP		0xffbf0000
2492 #define	LD_RA_SP		0xdfbf0000
2493 
2494 #define	DTRACE_INVOP_SD		1
2495 #define	DTRACE_INVOP_LD		2
2496 
2497 #elif defined(__riscv)
2498 
2499 #define	SD_RA_SP_MASK		0x01fff07f
2500 #define	SD_RA_SP		0x00113023
2501 
2502 #define	DTRACE_INVOP_SD		1
2503 #define	DTRACE_INVOP_RET	2
2504 #define	DTRACE_INVOP_NOP	3
2505 
2506 #endif
2507 
2508 #ifdef	__cplusplus
2509 }
2510 #endif
2511 
2512 #endif	/* _SYS_DTRACE_H */
2513