1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  *
21  * $FreeBSD$
22  */
23 
24 /*
25  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
26  * Use is subject to license terms.
27  */
28 
29 /*
30  * Copyright 2016 Joyent, Inc.
31  * Copyright (c) 2012 by Delphix. All rights reserved.
32  */
33 
34 #ifndef _SYS_DTRACE_IMPL_H
35 #define	_SYS_DTRACE_IMPL_H
36 
37 #ifdef	__cplusplus
38 extern "C" {
39 #endif
40 
41 /*
42  * DTrace Dynamic Tracing Software: Kernel Implementation Interfaces
43  *
44  * Note: The contents of this file are private to the implementation of the
45  * Solaris system and DTrace subsystem and are subject to change at any time
46  * without notice.  Applications and drivers using these interfaces will fail
47  * to run on future releases.  These interfaces should not be used for any
48  * purpose except those expressly outlined in dtrace(7D) and libdtrace(3LIB).
49  * Please refer to the "Solaris Dynamic Tracing Guide" for more information.
50  */
51 
52 #include <sys/dtrace.h>
53 
54 #ifndef illumos
55 #ifdef __sparcv9
56 typedef uint32_t		pc_t;
57 #else
58 typedef uintptr_t		pc_t;
59 #endif
60 typedef	u_long			greg_t;
61 #endif
62 
63 /*
64  * DTrace Implementation Constants and Typedefs
65  */
66 #define	DTRACE_MAXPROPLEN		128
67 #define	DTRACE_DYNVAR_CHUNKSIZE		256
68 
69 #ifdef __FreeBSD__
70 #define	NCPU		MAXCPU
71 #endif /* __FreeBSD__ */
72 
73 struct dtrace_probe;
74 struct dtrace_ecb;
75 struct dtrace_predicate;
76 struct dtrace_action;
77 struct dtrace_provider;
78 struct dtrace_state;
79 
80 typedef struct dtrace_probe dtrace_probe_t;
81 typedef struct dtrace_ecb dtrace_ecb_t;
82 typedef struct dtrace_predicate dtrace_predicate_t;
83 typedef struct dtrace_action dtrace_action_t;
84 typedef struct dtrace_provider dtrace_provider_t;
85 typedef struct dtrace_meta dtrace_meta_t;
86 typedef struct dtrace_state dtrace_state_t;
87 typedef uint32_t dtrace_optid_t;
88 typedef uint32_t dtrace_specid_t;
89 typedef uint64_t dtrace_genid_t;
90 
91 /*
92  * DTrace Probes
93  *
94  * The probe is the fundamental unit of the DTrace architecture.  Probes are
95  * created by DTrace providers, and managed by the DTrace framework.  A probe
96  * is identified by a unique <provider, module, function, name> tuple, and has
97  * a unique probe identifier assigned to it.  (Some probes are not associated
98  * with a specific point in text; these are called _unanchored probes_ and have
99  * no module or function associated with them.)  Probes are represented as a
100  * dtrace_probe structure.  To allow quick lookups based on each element of the
101  * probe tuple, probes are hashed by each of provider, module, function and
102  * name.  (If a lookup is performed based on a regular expression, a
103  * dtrace_probekey is prepared, and a linear search is performed.) Each probe
104  * is additionally pointed to by a linear array indexed by its identifier.  The
105  * identifier is the provider's mechanism for indicating to the DTrace
106  * framework that a probe has fired:  the identifier is passed as the first
107  * argument to dtrace_probe(), where it is then mapped into the corresponding
108  * dtrace_probe structure.  From the dtrace_probe structure, dtrace_probe() can
109  * iterate over the probe's list of enabling control blocks; see "DTrace
110  * Enabling Control Blocks", below.)
111  */
112 struct dtrace_probe {
113 	dtrace_id_t dtpr_id;			/* probe identifier */
114 	dtrace_ecb_t *dtpr_ecb;			/* ECB list; see below */
115 	dtrace_ecb_t *dtpr_ecb_last;		/* last ECB in list */
116 	void *dtpr_arg;				/* provider argument */
117 	dtrace_cacheid_t dtpr_predcache;	/* predicate cache ID */
118 	int dtpr_aframes;			/* artificial frames */
119 	dtrace_provider_t *dtpr_provider;	/* pointer to provider */
120 	char *dtpr_mod;				/* probe's module name */
121 	char *dtpr_func;			/* probe's function name */
122 	char *dtpr_name;			/* probe's name */
123 	dtrace_probe_t *dtpr_nextmod;		/* next in module hash */
124 	dtrace_probe_t *dtpr_prevmod;		/* previous in module hash */
125 	dtrace_probe_t *dtpr_nextfunc;		/* next in function hash */
126 	dtrace_probe_t *dtpr_prevfunc;		/* previous in function hash */
127 	dtrace_probe_t *dtpr_nextname;		/* next in name hash */
128 	dtrace_probe_t *dtpr_prevname;		/* previous in name hash */
129 	dtrace_genid_t dtpr_gen;		/* probe generation ID */
130 };
131 
132 typedef int dtrace_probekey_f(const char *, const char *, int);
133 
134 typedef struct dtrace_probekey {
135 	char *dtpk_prov;			/* provider name to match */
136 	dtrace_probekey_f *dtpk_pmatch;		/* provider matching function */
137 	char *dtpk_mod;				/* module name to match */
138 	dtrace_probekey_f *dtpk_mmatch;		/* module matching function */
139 	char *dtpk_func;			/* func name to match */
140 	dtrace_probekey_f *dtpk_fmatch;		/* func matching function */
141 	char *dtpk_name;			/* name to match */
142 	dtrace_probekey_f *dtpk_nmatch;		/* name matching function */
143 	dtrace_id_t dtpk_id;			/* identifier to match */
144 } dtrace_probekey_t;
145 
146 typedef struct dtrace_hashbucket {
147 	struct dtrace_hashbucket *dthb_next;	/* next on hash chain */
148 	dtrace_probe_t *dthb_chain;		/* chain of probes */
149 	int dthb_len;				/* number of probes here */
150 } dtrace_hashbucket_t;
151 
152 typedef struct dtrace_hash {
153 	dtrace_hashbucket_t **dth_tab;		/* hash table */
154 	int dth_size;				/* size of hash table */
155 	int dth_mask;				/* mask to index into table */
156 	int dth_nbuckets;			/* total number of buckets */
157 	uintptr_t dth_nextoffs;			/* offset of next in probe */
158 	uintptr_t dth_prevoffs;			/* offset of prev in probe */
159 	uintptr_t dth_stroffs;			/* offset of str in probe */
160 } dtrace_hash_t;
161 
162 /*
163  * DTrace Enabling Control Blocks
164  *
165  * When a provider wishes to fire a probe, it calls into dtrace_probe(),
166  * passing the probe identifier as the first argument.  As described above,
167  * dtrace_probe() maps the identifier into a pointer to a dtrace_probe_t
168  * structure.  This structure contains information about the probe, and a
169  * pointer to the list of Enabling Control Blocks (ECBs).  Each ECB points to
170  * DTrace consumer state, and contains an optional predicate, and a list of
171  * actions.  (Shown schematically below.)  The ECB abstraction allows a single
172  * probe to be multiplexed across disjoint consumers, or across disjoint
173  * enablings of a single probe within one consumer.
174  *
175  *   Enabling Control Block
176  *        dtrace_ecb_t
177  * +------------------------+
178  * | dtrace_epid_t ---------+--------------> Enabled Probe ID (EPID)
179  * | dtrace_state_t * ------+--------------> State associated with this ECB
180  * | dtrace_predicate_t * --+---------+
181  * | dtrace_action_t * -----+----+    |
182  * | dtrace_ecb_t * ---+    |    |    |       Predicate (if any)
183  * +-------------------+----+    |    |       dtrace_predicate_t
184  *                     |         |    +---> +--------------------+
185  *                     |         |          | dtrace_difo_t * ---+----> DIFO
186  *                     |         |          +--------------------+
187  *                     |         |
188  *            Next ECB |         |           Action
189  *            (if any) |         |       dtrace_action_t
190  *                     :         +--> +-------------------+
191  *                     :              | dtrace_actkind_t -+------> kind
192  *                     v              | dtrace_difo_t * --+------> DIFO (if any)
193  *                                    | dtrace_recdesc_t -+------> record descr.
194  *                                    | dtrace_action_t * +------+
195  *                                    +-------------------+      |
196  *                                                               | Next action
197  *                               +-------------------------------+  (if any)
198  *                               |
199  *                               |           Action
200  *                               |       dtrace_action_t
201  *                               +--> +-------------------+
202  *                                    | dtrace_actkind_t -+------> kind
203  *                                    | dtrace_difo_t * --+------> DIFO (if any)
204  *                                    | dtrace_action_t * +------+
205  *                                    +-------------------+      |
206  *                                                               | Next action
207  *                               +-------------------------------+  (if any)
208  *                               |
209  *                               :
210  *                               v
211  *
212  *
213  * dtrace_probe() iterates over the ECB list.  If the ECB needs less space
214  * than is available in the principal buffer, the ECB is processed:  if the
215  * predicate is non-NULL, the DIF object is executed.  If the result is
216  * non-zero, the action list is processed, with each action being executed
217  * accordingly.  When the action list has been completely executed, processing
218  * advances to the next ECB. The ECB abstraction allows disjoint consumers
219  * to multiplex on single probes.
220  *
221  * Execution of the ECB results in consuming dte_size bytes in the buffer
222  * to record data.  During execution, dte_needed bytes must be available in
223  * the buffer.  This space is used for both recorded data and tuple data.
224  */
225 struct dtrace_ecb {
226 	dtrace_epid_t dte_epid;			/* enabled probe ID */
227 	uint32_t dte_alignment;			/* required alignment */
228 	size_t dte_needed;			/* space needed for execution */
229 	size_t dte_size;			/* size of recorded payload */
230 	dtrace_predicate_t *dte_predicate;	/* predicate, if any */
231 	dtrace_action_t *dte_action;		/* actions, if any */
232 	dtrace_ecb_t *dte_next;			/* next ECB on probe */
233 	dtrace_state_t *dte_state;		/* pointer to state */
234 	uint32_t dte_cond;			/* security condition */
235 	dtrace_probe_t *dte_probe;		/* pointer to probe */
236 	dtrace_action_t *dte_action_last;	/* last action on ECB */
237 	uint64_t dte_uarg;			/* library argument */
238 };
239 
240 struct dtrace_predicate {
241 	dtrace_difo_t *dtp_difo;		/* DIF object */
242 	dtrace_cacheid_t dtp_cacheid;		/* cache identifier */
243 	int dtp_refcnt;				/* reference count */
244 };
245 
246 struct dtrace_action {
247 	dtrace_actkind_t dta_kind;		/* kind of action */
248 	uint16_t dta_intuple;			/* boolean:  in aggregation */
249 	uint32_t dta_refcnt;			/* reference count */
250 	dtrace_difo_t *dta_difo;		/* pointer to DIFO */
251 	dtrace_recdesc_t dta_rec;		/* record description */
252 	dtrace_action_t *dta_prev;		/* previous action */
253 	dtrace_action_t *dta_next;		/* next action */
254 };
255 
256 typedef struct dtrace_aggregation {
257 	dtrace_action_t dtag_action;		/* action; must be first */
258 	dtrace_aggid_t dtag_id;			/* identifier */
259 	dtrace_ecb_t *dtag_ecb;			/* corresponding ECB */
260 	dtrace_action_t *dtag_first;		/* first action in tuple */
261 	uint32_t dtag_base;			/* base of aggregation */
262 	uint8_t dtag_hasarg;			/* boolean:  has argument */
263 	uint64_t dtag_initial;			/* initial value */
264 	void (*dtag_aggregate)(uint64_t *, uint64_t, uint64_t);
265 } dtrace_aggregation_t;
266 
267 /*
268  * DTrace Buffers
269  *
270  * Principal buffers, aggregation buffers, and speculative buffers are all
271  * managed with the dtrace_buffer structure.  By default, this structure
272  * includes twin data buffers -- dtb_tomax and dtb_xamot -- that serve as the
273  * active and passive buffers, respectively.  For speculative buffers,
274  * dtb_xamot will be NULL; for "ring" and "fill" buffers, dtb_xamot will point
275  * to a scratch buffer.  For all buffer types, the dtrace_buffer structure is
276  * always allocated on a per-CPU basis; a single dtrace_buffer structure is
277  * never shared among CPUs.  (That is, there is never true sharing of the
278  * dtrace_buffer structure; to prevent false sharing of the structure, it must
279  * always be aligned to the coherence granularity -- generally 64 bytes.)
280  *
281  * One of the critical design decisions of DTrace is that a given ECB always
282  * stores the same quantity and type of data.  This is done to assure that the
283  * only metadata required for an ECB's traced data is the EPID.  That is, from
284  * the EPID, the consumer can determine the data layout.  (The data buffer
285  * layout is shown schematically below.)  By assuring that one can determine
286  * data layout from the EPID, the metadata stream can be separated from the
287  * data stream -- simplifying the data stream enormously.  The ECB always
288  * proceeds the recorded data as part of the dtrace_rechdr_t structure that
289  * includes the EPID and a high-resolution timestamp used for output ordering
290  * consistency.
291  *
292  *      base of data buffer --->  +--------+--------------------+--------+
293  *                                | rechdr | data               | rechdr |
294  *                                +--------+------+--------+----+--------+
295  *                                | data          | rechdr | data        |
296  *                                +---------------+--------+-------------+
297  *                                | data, cont.                          |
298  *                                +--------+--------------------+--------+
299  *                                | rechdr | data               |        |
300  *                                +--------+--------------------+        |
301  *                                |                ||                    |
302  *                                |                ||                    |
303  *                                |                \/                    |
304  *                                :                                      :
305  *                                .                                      .
306  *                                .                                      .
307  *                                .                                      .
308  *                                :                                      :
309  *                                |                                      |
310  *     limit of data buffer --->  +--------------------------------------+
311  *
312  * When evaluating an ECB, dtrace_probe() determines if the ECB's needs of the
313  * principal buffer (both scratch and payload) exceed the available space.  If
314  * the ECB's needs exceed available space (and if the principal buffer policy
315  * is the default "switch" policy), the ECB is dropped, the buffer's drop count
316  * is incremented, and processing advances to the next ECB.  If the ECB's needs
317  * can be met with the available space, the ECB is processed, but the offset in
318  * the principal buffer is only advanced if the ECB completes processing
319  * without error.
320  *
321  * When a buffer is to be switched (either because the buffer is the principal
322  * buffer with a "switch" policy or because it is an aggregation buffer), a
323  * cross call is issued to the CPU associated with the buffer.  In the cross
324  * call context, interrupts are disabled, and the active and the inactive
325  * buffers are atomically switched.  This involves switching the data pointers,
326  * copying the various state fields (offset, drops, errors, etc.) into their
327  * inactive equivalents, and clearing the state fields.  Because interrupts are
328  * disabled during this procedure, the switch is guaranteed to appear atomic to
329  * dtrace_probe().
330  *
331  * DTrace Ring Buffering
332  *
333  * To process a ring buffer correctly, one must know the oldest valid record.
334  * Processing starts at the oldest record in the buffer and continues until
335  * the end of the buffer is reached.  Processing then resumes starting with
336  * the record stored at offset 0 in the buffer, and continues until the
337  * youngest record is processed.  If trace records are of a fixed-length,
338  * determining the oldest record is trivial:
339  *
340  *   - If the ring buffer has not wrapped, the oldest record is the record
341  *     stored at offset 0.
342  *
343  *   - If the ring buffer has wrapped, the oldest record is the record stored
344  *     at the current offset.
345  *
346  * With variable length records, however, just knowing the current offset
347  * doesn't suffice for determining the oldest valid record:  assuming that one
348  * allows for arbitrary data, one has no way of searching forward from the
349  * current offset to find the oldest valid record.  (That is, one has no way
350  * of separating data from metadata.) It would be possible to simply refuse to
351  * process any data in the ring buffer between the current offset and the
352  * limit, but this leaves (potentially) an enormous amount of otherwise valid
353  * data unprocessed.
354  *
355  * To effect ring buffering, we track two offsets in the buffer:  the current
356  * offset and the _wrapped_ offset.  If a request is made to reserve some
357  * amount of data, and the buffer has wrapped, the wrapped offset is
358  * incremented until the wrapped offset minus the current offset is greater
359  * than or equal to the reserve request.  This is done by repeatedly looking
360  * up the ECB corresponding to the EPID at the current wrapped offset, and
361  * incrementing the wrapped offset by the size of the data payload
362  * corresponding to that ECB.  If this offset is greater than or equal to the
363  * limit of the data buffer, the wrapped offset is set to 0.  Thus, the
364  * current offset effectively "chases" the wrapped offset around the buffer.
365  * Schematically:
366  *
367  *      base of data buffer --->  +------+--------------------+------+
368  *                                | EPID | data               | EPID |
369  *                                +------+--------+------+----+------+
370  *                                | data          | EPID | data      |
371  *                                +---------------+------+-----------+
372  *                                | data, cont.                      |
373  *                                +------+---------------------------+
374  *                                | EPID | data                      |
375  *           current offset --->  +------+---------------------------+
376  *                                | invalid data                     |
377  *           wrapped offset --->  +------+--------------------+------+
378  *                                | EPID | data               | EPID |
379  *                                +------+--------+------+----+------+
380  *                                | data          | EPID | data      |
381  *                                +---------------+------+-----------+
382  *                                :                                  :
383  *                                .                                  .
384  *                                .        ... valid data ...        .
385  *                                .                                  .
386  *                                :                                  :
387  *                                +------+-------------+------+------+
388  *                                | EPID | data        | EPID | data |
389  *                                +------+------------++------+------+
390  *                                | data, cont.       | leftover     |
391  *     limit of data buffer --->  +-------------------+--------------+
392  *
393  * If the amount of requested buffer space exceeds the amount of space
394  * available between the current offset and the end of the buffer:
395  *
396  *  (1)  all words in the data buffer between the current offset and the limit
397  *       of the data buffer (marked "leftover", above) are set to
398  *       DTRACE_EPIDNONE
399  *
400  *  (2)  the wrapped offset is set to zero
401  *
402  *  (3)  the iteration process described above occurs until the wrapped offset
403  *       is greater than the amount of desired space.
404  *
405  * The wrapped offset is implemented by (re-)using the inactive offset.
406  * In a "switch" buffer policy, the inactive offset stores the offset in
407  * the inactive buffer; in a "ring" buffer policy, it stores the wrapped
408  * offset.
409  *
410  * DTrace Scratch Buffering
411  *
412  * Some ECBs may wish to allocate dynamically-sized temporary scratch memory.
413  * To accommodate such requests easily, scratch memory may be allocated in
414  * the buffer beyond the current offset plus the needed memory of the current
415  * ECB.  If there isn't sufficient room in the buffer for the requested amount
416  * of scratch space, the allocation fails and an error is generated.  Scratch
417  * memory is tracked in the dtrace_mstate_t and is automatically freed when
418  * the ECB ceases processing.  Note that ring buffers cannot allocate their
419  * scratch from the principal buffer -- lest they needlessly overwrite older,
420  * valid data.  Ring buffers therefore have their own dedicated scratch buffer
421  * from which scratch is allocated.
422  */
423 #define	DTRACEBUF_RING		0x0001		/* bufpolicy set to "ring" */
424 #define	DTRACEBUF_FILL		0x0002		/* bufpolicy set to "fill" */
425 #define	DTRACEBUF_NOSWITCH	0x0004		/* do not switch buffer */
426 #define	DTRACEBUF_WRAPPED	0x0008		/* ring buffer has wrapped */
427 #define	DTRACEBUF_DROPPED	0x0010		/* drops occurred */
428 #define	DTRACEBUF_ERROR		0x0020		/* errors occurred */
429 #define	DTRACEBUF_FULL		0x0040		/* "fill" buffer is full */
430 #define	DTRACEBUF_CONSUMED	0x0080		/* buffer has been consumed */
431 #define	DTRACEBUF_INACTIVE	0x0100		/* buffer is not yet active */
432 
433 typedef struct dtrace_buffer {
434 	uint64_t dtb_offset;			/* current offset in buffer */
435 	uint64_t dtb_size;			/* size of buffer */
436 	uint32_t dtb_flags;			/* flags */
437 	uint32_t dtb_drops;			/* number of drops */
438 	caddr_t dtb_tomax;			/* active buffer */
439 	caddr_t dtb_xamot;			/* inactive buffer */
440 	uint32_t dtb_xamot_flags;		/* inactive flags */
441 	uint32_t dtb_xamot_drops;		/* drops in inactive buffer */
442 	uint64_t dtb_xamot_offset;		/* offset in inactive buffer */
443 	uint32_t dtb_errors;			/* number of errors */
444 	uint32_t dtb_xamot_errors;		/* errors in inactive buffer */
445 #ifndef _LP64
446 	uint64_t dtb_pad1;			/* pad out to 64 bytes */
447 #endif
448 	uint64_t dtb_switched;			/* time of last switch */
449 	uint64_t dtb_interval;			/* observed switch interval */
450 	uint64_t dtb_pad2[6];			/* pad to avoid false sharing */
451 } dtrace_buffer_t;
452 
453 /*
454  * DTrace Aggregation Buffers
455  *
456  * Aggregation buffers use much of the same mechanism as described above
457  * ("DTrace Buffers").  However, because an aggregation is fundamentally a
458  * hash, there exists dynamic metadata associated with an aggregation buffer
459  * that is not associated with other kinds of buffers.  This aggregation
460  * metadata is _only_ relevant for the in-kernel implementation of
461  * aggregations; it is not actually relevant to user-level consumers.  To do
462  * this, we allocate dynamic aggregation data (hash keys and hash buckets)
463  * starting below the _limit_ of the buffer, and we allocate data from the
464  * _base_ of the buffer.  When the aggregation buffer is copied out, _only_ the
465  * data is copied out; the metadata is simply discarded.  Schematically,
466  * aggregation buffers look like:
467  *
468  *      base of data buffer --->  +-------+------+-----------+-------+
469  *                                | aggid | key  | value     | aggid |
470  *                                +-------+------+-----------+-------+
471  *                                | key                              |
472  *                                +-------+-------+-----+------------+
473  *                                | value | aggid | key | value      |
474  *                                +-------+------++-----+------+-----+
475  *                                | aggid | key  | value       |     |
476  *                                +-------+------+-------------+     |
477  *                                |                ||                |
478  *                                |                ||                |
479  *                                |                \/                |
480  *                                :                                  :
481  *                                .                                  .
482  *                                .                                  .
483  *                                .                                  .
484  *                                :                                  :
485  *                                |                /\                |
486  *                                |                ||   +------------+
487  *                                |                ||   |            |
488  *                                +---------------------+            |
489  *                                | hash keys                        |
490  *                                | (dtrace_aggkey structures)       |
491  *                                |                                  |
492  *                                +----------------------------------+
493  *                                | hash buckets                     |
494  *                                | (dtrace_aggbuffer structure)     |
495  *                                |                                  |
496  *     limit of data buffer --->  +----------------------------------+
497  *
498  *
499  * As implied above, just as we assure that ECBs always store a constant
500  * amount of data, we assure that a given aggregation -- identified by its
501  * aggregation ID -- always stores data of a constant quantity and type.
502  * As with EPIDs, this allows the aggregation ID to serve as the metadata for a
503  * given record.
504  *
505  * Note that the size of the dtrace_aggkey structure must be sizeof (uintptr_t)
506  * aligned.  (If this the structure changes such that this becomes false, an
507  * assertion will fail in dtrace_aggregate().)
508  */
509 typedef struct dtrace_aggkey {
510 	uint32_t dtak_hashval;			/* hash value */
511 	uint32_t dtak_action:4;			/* action -- 4 bits */
512 	uint32_t dtak_size:28;			/* size -- 28 bits */
513 	caddr_t dtak_data;			/* data pointer */
514 	struct dtrace_aggkey *dtak_next;	/* next in hash chain */
515 } dtrace_aggkey_t;
516 
517 typedef struct dtrace_aggbuffer {
518 	uintptr_t dtagb_hashsize;		/* number of buckets */
519 	uintptr_t dtagb_free;			/* free list of keys */
520 	dtrace_aggkey_t **dtagb_hash;		/* hash table */
521 } dtrace_aggbuffer_t;
522 
523 /*
524  * DTrace Speculations
525  *
526  * Speculations have a per-CPU buffer and a global state.  Once a speculation
527  * buffer has been comitted or discarded, it cannot be reused until all CPUs
528  * have taken the same action (commit or discard) on their respective
529  * speculative buffer.  However, because DTrace probes may execute in arbitrary
530  * context, other CPUs cannot simply be cross-called at probe firing time to
531  * perform the necessary commit or discard.  The speculation states thus
532  * optimize for the case that a speculative buffer is only active on one CPU at
533  * the time of a commit() or discard() -- for if this is the case, other CPUs
534  * need not take action, and the speculation is immediately available for
535  * reuse.  If the speculation is active on multiple CPUs, it must be
536  * asynchronously cleaned -- potentially leading to a higher rate of dirty
537  * speculative drops.  The speculation states are as follows:
538  *
539  *  DTRACESPEC_INACTIVE       <= Initial state; inactive speculation
540  *  DTRACESPEC_ACTIVE         <= Allocated, but not yet speculatively traced to
541  *  DTRACESPEC_ACTIVEONE      <= Speculatively traced to on one CPU
542  *  DTRACESPEC_ACTIVEMANY     <= Speculatively traced to on more than one CPU
543  *  DTRACESPEC_COMMITTING     <= Currently being commited on one CPU
544  *  DTRACESPEC_COMMITTINGMANY <= Currently being commited on many CPUs
545  *  DTRACESPEC_DISCARDING     <= Currently being discarded on many CPUs
546  *
547  * The state transition diagram is as follows:
548  *
549  *     +----------------------------------------------------------+
550  *     |                                                          |
551  *     |                      +------------+                      |
552  *     |  +-------------------| COMMITTING |<-----------------+   |
553  *     |  |                   +------------+                  |   |
554  *     |  | copied spec.            ^             commit() on |   | discard() on
555  *     |  | into principal          |              active CPU |   | active CPU
556  *     |  |                         | commit()                |   |
557  *     V  V                         |                         |   |
558  * +----------+                 +--------+                +-----------+
559  * | INACTIVE |---------------->| ACTIVE |--------------->| ACTIVEONE |
560  * +----------+  speculation()  +--------+  speculate()   +-----------+
561  *     ^  ^                         |                         |   |
562  *     |  |                         | discard()               |   |
563  *     |  | asynchronously          |            discard() on |   | speculate()
564  *     |  | cleaned                 V            inactive CPU |   | on inactive
565  *     |  |                   +------------+                  |   | CPU
566  *     |  +-------------------| DISCARDING |<-----------------+   |
567  *     |                      +------------+                      |
568  *     | asynchronously             ^                             |
569  *     | copied spec.               |       discard()             |
570  *     | into principal             +------------------------+    |
571  *     |                                                     |    V
572  *  +----------------+             commit()              +------------+
573  *  | COMMITTINGMANY |<----------------------------------| ACTIVEMANY |
574  *  +----------------+                                   +------------+
575  */
576 typedef enum dtrace_speculation_state {
577 	DTRACESPEC_INACTIVE = 0,
578 	DTRACESPEC_ACTIVE,
579 	DTRACESPEC_ACTIVEONE,
580 	DTRACESPEC_ACTIVEMANY,
581 	DTRACESPEC_COMMITTING,
582 	DTRACESPEC_COMMITTINGMANY,
583 	DTRACESPEC_DISCARDING
584 } dtrace_speculation_state_t;
585 
586 typedef struct dtrace_speculation {
587 	dtrace_speculation_state_t dtsp_state;	/* current speculation state */
588 	int dtsp_cleaning;			/* non-zero if being cleaned */
589 	dtrace_buffer_t *dtsp_buffer;		/* speculative buffer */
590 } dtrace_speculation_t;
591 
592 /*
593  * DTrace Dynamic Variables
594  *
595  * The dynamic variable problem is obviously decomposed into two subproblems:
596  * allocating new dynamic storage, and freeing old dynamic storage.  The
597  * presence of the second problem makes the first much more complicated -- or
598  * rather, the absence of the second renders the first trivial.  This is the
599  * case with aggregations, for which there is effectively no deallocation of
600  * dynamic storage.  (Or more accurately, all dynamic storage is deallocated
601  * when a snapshot is taken of the aggregation.)  As DTrace dynamic variables
602  * allow for both dynamic allocation and dynamic deallocation, the
603  * implementation of dynamic variables is quite a bit more complicated than
604  * that of their aggregation kin.
605  *
606  * We observe that allocating new dynamic storage is tricky only because the
607  * size can vary -- the allocation problem is much easier if allocation sizes
608  * are uniform.  We further observe that in D, the size of dynamic variables is
609  * actually _not_ dynamic -- dynamic variable sizes may be determined by static
610  * analysis of DIF text.  (This is true even of putatively dynamically-sized
611  * objects like strings and stacks, the sizes of which are dictated by the
612  * "stringsize" and "stackframes" variables, respectively.)  We exploit this by
613  * performing this analysis on all DIF before enabling any probes.  For each
614  * dynamic load or store, we calculate the dynamically-allocated size plus the
615  * size of the dtrace_dynvar structure plus the storage required to key the
616  * data.  For all DIF, we take the largest value and dub it the _chunksize_.
617  * We then divide dynamic memory into two parts:  a hash table that is wide
618  * enough to have every chunk in its own bucket, and a larger region of equal
619  * chunksize units.  Whenever we wish to dynamically allocate a variable, we
620  * always allocate a single chunk of memory.  Depending on the uniformity of
621  * allocation, this will waste some amount of memory -- but it eliminates the
622  * non-determinism inherent in traditional heap fragmentation.
623  *
624  * Dynamic objects are allocated by storing a non-zero value to them; they are
625  * deallocated by storing a zero value to them.  Dynamic variables are
626  * complicated enormously by being shared between CPUs.  In particular,
627  * consider the following scenario:
628  *
629  *                 CPU A                                 CPU B
630  *  +---------------------------------+   +---------------------------------+
631  *  |                                 |   |                                 |
632  *  | allocates dynamic object a[123] |   |                                 |
633  *  | by storing the value 345 to it  |   |                                 |
634  *  |                               --------->                              |
635  *  |                                 |   | wishing to load from object     |
636  *  |                                 |   | a[123], performs lookup in      |
637  *  |                                 |   | dynamic variable space          |
638  *  |                               <---------                              |
639  *  | deallocates object a[123] by    |   |                                 |
640  *  | storing 0 to it                 |   |                                 |
641  *  |                                 |   |                                 |
642  *  | allocates dynamic object b[567] |   | performs load from a[123]       |
643  *  | by storing the value 789 to it  |   |                                 |
644  *  :                                 :   :                                 :
645  *  .                                 .   .                                 .
646  *
647  * This is obviously a race in the D program, but there are nonetheless only
648  * two valid values for CPU B's load from a[123]:  345 or 0.  Most importantly,
649  * CPU B may _not_ see the value 789 for a[123].
650  *
651  * There are essentially two ways to deal with this:
652  *
653  *  (1)  Explicitly spin-lock variables.  That is, if CPU B wishes to load
654  *       from a[123], it needs to lock a[123] and hold the lock for the
655  *       duration that it wishes to manipulate it.
656  *
657  *  (2)  Avoid reusing freed chunks until it is known that no CPU is referring
658  *       to them.
659  *
660  * The implementation of (1) is rife with complexity, because it requires the
661  * user of a dynamic variable to explicitly decree when they are done using it.
662  * Were all variables by value, this perhaps wouldn't be debilitating -- but
663  * dynamic variables of non-scalar types are tracked by reference.  That is, if
664  * a dynamic variable is, say, a string, and that variable is to be traced to,
665  * say, the principal buffer, the DIF emulation code returns to the main
666  * dtrace_probe() loop a pointer to the underlying storage, not the contents of
667  * the storage.  Further, code calling on DIF emulation would have to be aware
668  * that the DIF emulation has returned a reference to a dynamic variable that
669  * has been potentially locked.  The variable would have to be unlocked after
670  * the main dtrace_probe() loop is finished with the variable, and the main
671  * dtrace_probe() loop would have to be careful to not call any further DIF
672  * emulation while the variable is locked to avoid deadlock.  More generally,
673  * if one were to implement (1), DIF emulation code dealing with dynamic
674  * variables could only deal with one dynamic variable at a time (lest deadlock
675  * result).  To sum, (1) exports too much subtlety to the users of dynamic
676  * variables -- increasing maintenance burden and imposing serious constraints
677  * on future DTrace development.
678  *
679  * The implementation of (2) is also complex, but the complexity is more
680  * manageable.  We need to be sure that when a variable is deallocated, it is
681  * not placed on a traditional free list, but rather on a _dirty_ list.  Once a
682  * variable is on a dirty list, it cannot be found by CPUs performing a
683  * subsequent lookup of the variable -- but it may still be in use by other
684  * CPUs.  To assure that all CPUs that may be seeing the old variable have
685  * cleared out of probe context, a dtrace_sync() can be issued.  Once the
686  * dtrace_sync() has completed, it can be known that all CPUs are done
687  * manipulating the dynamic variable -- the dirty list can be atomically
688  * appended to the free list.  Unfortunately, there's a slight hiccup in this
689  * mechanism:  dtrace_sync() may not be issued from probe context.  The
690  * dtrace_sync() must be therefore issued asynchronously from non-probe
691  * context.  For this we rely on the DTrace cleaner, a cyclic that runs at the
692  * "cleanrate" frequency.  To ease this implementation, we define several chunk
693  * lists:
694  *
695  *   - Dirty.  Deallocated chunks, not yet cleaned.  Not available.
696  *
697  *   - Rinsing.  Formerly dirty chunks that are currently being asynchronously
698  *     cleaned.  Not available, but will be shortly.  Dynamic variable
699  *     allocation may not spin or block for availability, however.
700  *
701  *   - Clean.  Clean chunks, ready for allocation -- but not on the free list.
702  *
703  *   - Free.  Available for allocation.
704  *
705  * Moreover, to avoid absurd contention, _each_ of these lists is implemented
706  * on a per-CPU basis.  This is only for performance, not correctness; chunks
707  * may be allocated from another CPU's free list.  The algorithm for allocation
708  * then is this:
709  *
710  *   (1)  Attempt to atomically allocate from current CPU's free list.  If list
711  *        is non-empty and allocation is successful, allocation is complete.
712  *
713  *   (2)  If the clean list is non-empty, atomically move it to the free list,
714  *        and reattempt (1).
715  *
716  *   (3)  If the dynamic variable space is in the CLEAN state, look for free
717  *        and clean lists on other CPUs by setting the current CPU to the next
718  *        CPU, and reattempting (1).  If the next CPU is the current CPU (that
719  *        is, if all CPUs have been checked), atomically switch the state of
720  *        the dynamic variable space based on the following:
721  *
722  *        - If no free chunks were found and no dirty chunks were found,
723  *          atomically set the state to EMPTY.
724  *
725  *        - If dirty chunks were found, atomically set the state to DIRTY.
726  *
727  *        - If rinsing chunks were found, atomically set the state to RINSING.
728  *
729  *   (4)  Based on state of dynamic variable space state, increment appropriate
730  *        counter to indicate dynamic drops (if in EMPTY state) vs. dynamic
731  *        dirty drops (if in DIRTY state) vs. dynamic rinsing drops (if in
732  *        RINSING state).  Fail the allocation.
733  *
734  * The cleaning cyclic operates with the following algorithm:  for all CPUs
735  * with a non-empty dirty list, atomically move the dirty list to the rinsing
736  * list.  Perform a dtrace_sync().  For all CPUs with a non-empty rinsing list,
737  * atomically move the rinsing list to the clean list.  Perform another
738  * dtrace_sync().  By this point, all CPUs have seen the new clean list; the
739  * state of the dynamic variable space can be restored to CLEAN.
740  *
741  * There exist two final races that merit explanation.  The first is a simple
742  * allocation race:
743  *
744  *                 CPU A                                 CPU B
745  *  +---------------------------------+   +---------------------------------+
746  *  |                                 |   |                                 |
747  *  | allocates dynamic object a[123] |   | allocates dynamic object a[123] |
748  *  | by storing the value 345 to it  |   | by storing the value 567 to it  |
749  *  |                                 |   |                                 |
750  *  :                                 :   :                                 :
751  *  .                                 .   .                                 .
752  *
753  * Again, this is a race in the D program.  It can be resolved by having a[123]
754  * hold the value 345 or a[123] hold the value 567 -- but it must be true that
755  * a[123] have only _one_ of these values.  (That is, the racing CPUs may not
756  * put the same element twice on the same hash chain.)  This is resolved
757  * simply:  before the allocation is undertaken, the start of the new chunk's
758  * hash chain is noted.  Later, after the allocation is complete, the hash
759  * chain is atomically switched to point to the new element.  If this fails
760  * (because of either concurrent allocations or an allocation concurrent with a
761  * deletion), the newly allocated chunk is deallocated to the dirty list, and
762  * the whole process of looking up (and potentially allocating) the dynamic
763  * variable is reattempted.
764  *
765  * The final race is a simple deallocation race:
766  *
767  *                 CPU A                                 CPU B
768  *  +---------------------------------+   +---------------------------------+
769  *  |                                 |   |                                 |
770  *  | deallocates dynamic object      |   | deallocates dynamic object      |
771  *  | a[123] by storing the value 0   |   | a[123] by storing the value 0   |
772  *  | to it                           |   | to it                           |
773  *  |                                 |   |                                 |
774  *  :                                 :   :                                 :
775  *  .                                 .   .                                 .
776  *
777  * Once again, this is a race in the D program, but it is one that we must
778  * handle without corrupting the underlying data structures.  Because
779  * deallocations require the deletion of a chunk from the middle of a hash
780  * chain, we cannot use a single-word atomic operation to remove it.  For this,
781  * we add a spin lock to the hash buckets that is _only_ used for deallocations
782  * (allocation races are handled as above).  Further, this spin lock is _only_
783  * held for the duration of the delete; before control is returned to the DIF
784  * emulation code, the hash bucket is unlocked.
785  */
786 typedef struct dtrace_key {
787 	uint64_t dttk_value;			/* data value or data pointer */
788 	uint64_t dttk_size;			/* 0 if by-val, >0 if by-ref */
789 } dtrace_key_t;
790 
791 typedef struct dtrace_tuple {
792 	uint32_t dtt_nkeys;			/* number of keys in tuple */
793 	uint32_t dtt_pad;			/* padding */
794 	dtrace_key_t dtt_key[1];		/* array of tuple keys */
795 } dtrace_tuple_t;
796 
797 typedef struct dtrace_dynvar {
798 	uint64_t dtdv_hashval;			/* hash value -- 0 if free */
799 	struct dtrace_dynvar *dtdv_next;	/* next on list or hash chain */
800 	void *dtdv_data;			/* pointer to data */
801 	dtrace_tuple_t dtdv_tuple;		/* tuple key */
802 } dtrace_dynvar_t;
803 
804 typedef enum dtrace_dynvar_op {
805 	DTRACE_DYNVAR_ALLOC,
806 	DTRACE_DYNVAR_NOALLOC,
807 	DTRACE_DYNVAR_DEALLOC
808 } dtrace_dynvar_op_t;
809 
810 typedef struct dtrace_dynhash {
811 	dtrace_dynvar_t *dtdh_chain;		/* hash chain for this bucket */
812 	uintptr_t dtdh_lock;			/* deallocation lock */
813 #ifdef _LP64
814 	uintptr_t dtdh_pad[6];			/* pad to avoid false sharing */
815 #else
816 	uintptr_t dtdh_pad[14];			/* pad to avoid false sharing */
817 #endif
818 } dtrace_dynhash_t;
819 
820 typedef struct dtrace_dstate_percpu {
821 	dtrace_dynvar_t *dtdsc_free;		/* free list for this CPU */
822 	dtrace_dynvar_t *dtdsc_dirty;		/* dirty list for this CPU */
823 	dtrace_dynvar_t *dtdsc_rinsing;		/* rinsing list for this CPU */
824 	dtrace_dynvar_t *dtdsc_clean;		/* clean list for this CPU */
825 	uint64_t dtdsc_drops;			/* number of capacity drops */
826 	uint64_t dtdsc_dirty_drops;		/* number of dirty drops */
827 	uint64_t dtdsc_rinsing_drops;		/* number of rinsing drops */
828 #ifdef _LP64
829 	uint64_t dtdsc_pad;			/* pad to avoid false sharing */
830 #else
831 	uint64_t dtdsc_pad[2];			/* pad to avoid false sharing */
832 #endif
833 } dtrace_dstate_percpu_t;
834 
835 typedef enum dtrace_dstate_state {
836 	DTRACE_DSTATE_CLEAN = 0,
837 	DTRACE_DSTATE_EMPTY,
838 	DTRACE_DSTATE_DIRTY,
839 	DTRACE_DSTATE_RINSING
840 } dtrace_dstate_state_t;
841 
842 typedef struct dtrace_dstate {
843 	void *dtds_base;			/* base of dynamic var. space */
844 	size_t dtds_size;			/* size of dynamic var. space */
845 	size_t dtds_hashsize;			/* number of buckets in hash */
846 	size_t dtds_chunksize;			/* size of each chunk */
847 	dtrace_dynhash_t *dtds_hash;		/* pointer to hash table */
848 	dtrace_dstate_state_t dtds_state;	/* current dynamic var. state */
849 	dtrace_dstate_percpu_t *dtds_percpu;	/* per-CPU dyn. var. state */
850 } dtrace_dstate_t;
851 
852 /*
853  * DTrace Variable State
854  *
855  * The DTrace variable state tracks user-defined variables in its dtrace_vstate
856  * structure.  Each DTrace consumer has exactly one dtrace_vstate structure,
857  * but some dtrace_vstate structures may exist without a corresponding DTrace
858  * consumer (see "DTrace Helpers", below).  As described in <sys/dtrace.h>,
859  * user-defined variables can have one of three scopes:
860  *
861  *  DIFV_SCOPE_GLOBAL  =>  global scope
862  *  DIFV_SCOPE_THREAD  =>  thread-local scope (i.e. "self->" variables)
863  *  DIFV_SCOPE_LOCAL   =>  clause-local scope (i.e. "this->" variables)
864  *
865  * The variable state tracks variables by both their scope and their allocation
866  * type:
867  *
868  *  - The dtvs_globals and dtvs_locals members each point to an array of
869  *    dtrace_statvar structures.  These structures contain both the variable
870  *    metadata (dtrace_difv structures) and the underlying storage for all
871  *    statically allocated variables, including statically allocated
872  *    DIFV_SCOPE_GLOBAL variables and all DIFV_SCOPE_LOCAL variables.
873  *
874  *  - The dtvs_tlocals member points to an array of dtrace_difv structures for
875  *    DIFV_SCOPE_THREAD variables.  As such, this array tracks _only_ the
876  *    variable metadata for DIFV_SCOPE_THREAD variables; the underlying storage
877  *    is allocated out of the dynamic variable space.
878  *
879  *  - The dtvs_dynvars member is the dynamic variable state associated with the
880  *    variable state.  The dynamic variable state (described in "DTrace Dynamic
881  *    Variables", above) tracks all DIFV_SCOPE_THREAD variables and all
882  *    dynamically-allocated DIFV_SCOPE_GLOBAL variables.
883  */
884 typedef struct dtrace_statvar {
885 	uint64_t dtsv_data;			/* data or pointer to it */
886 	size_t dtsv_size;			/* size of pointed-to data */
887 	int dtsv_refcnt;			/* reference count */
888 	dtrace_difv_t dtsv_var;			/* variable metadata */
889 } dtrace_statvar_t;
890 
891 typedef struct dtrace_vstate {
892 	dtrace_state_t *dtvs_state;		/* back pointer to state */
893 	dtrace_statvar_t **dtvs_globals;	/* statically-allocated glbls */
894 	int dtvs_nglobals;			/* number of globals */
895 	dtrace_difv_t *dtvs_tlocals;		/* thread-local metadata */
896 	int dtvs_ntlocals;			/* number of thread-locals */
897 	dtrace_statvar_t **dtvs_locals;		/* clause-local data */
898 	int dtvs_nlocals;			/* number of clause-locals */
899 	dtrace_dstate_t dtvs_dynvars;		/* dynamic variable state */
900 } dtrace_vstate_t;
901 
902 /*
903  * DTrace Machine State
904  *
905  * In the process of processing a fired probe, DTrace needs to track and/or
906  * cache some per-CPU state associated with that particular firing.  This is
907  * state that is always discarded after the probe firing has completed, and
908  * much of it is not specific to any DTrace consumer, remaining valid across
909  * all ECBs.  This state is tracked in the dtrace_mstate structure.
910  */
911 #define	DTRACE_MSTATE_ARGS		0x00000001
912 #define	DTRACE_MSTATE_PROBE		0x00000002
913 #define	DTRACE_MSTATE_EPID		0x00000004
914 #define	DTRACE_MSTATE_TIMESTAMP		0x00000008
915 #define	DTRACE_MSTATE_STACKDEPTH	0x00000010
916 #define	DTRACE_MSTATE_CALLER		0x00000020
917 #define	DTRACE_MSTATE_IPL		0x00000040
918 #define	DTRACE_MSTATE_FLTOFFS		0x00000080
919 #define	DTRACE_MSTATE_WALLTIMESTAMP	0x00000100
920 #define	DTRACE_MSTATE_USTACKDEPTH	0x00000200
921 #define	DTRACE_MSTATE_UCALLER		0x00000400
922 
923 typedef struct dtrace_mstate {
924 	uintptr_t dtms_scratch_base;		/* base of scratch space */
925 	uintptr_t dtms_scratch_ptr;		/* current scratch pointer */
926 	size_t dtms_scratch_size;		/* scratch size */
927 	uint32_t dtms_present;			/* variables that are present */
928 	uint64_t dtms_arg[5];			/* cached arguments */
929 	dtrace_epid_t dtms_epid;		/* current EPID */
930 	uint64_t dtms_timestamp;		/* cached timestamp */
931 	hrtime_t dtms_walltimestamp;		/* cached wall timestamp */
932 	int dtms_stackdepth;			/* cached stackdepth */
933 	int dtms_ustackdepth;			/* cached ustackdepth */
934 	struct dtrace_probe *dtms_probe;	/* current probe */
935 	uintptr_t dtms_caller;			/* cached caller */
936 	uint64_t dtms_ucaller;			/* cached user-level caller */
937 	int dtms_ipl;				/* cached interrupt pri lev */
938 	int dtms_fltoffs;			/* faulting DIFO offset */
939 	uintptr_t dtms_strtok;			/* saved strtok() pointer */
940 	uintptr_t dtms_strtok_limit;		/* upper bound of strtok ptr */
941 	uint32_t dtms_access;			/* memory access rights */
942 	dtrace_difo_t *dtms_difo;		/* current dif object */
943 	file_t *dtms_getf;			/* cached rval of getf() */
944 } dtrace_mstate_t;
945 
946 #define	DTRACE_COND_OWNER	0x1
947 #define	DTRACE_COND_USERMODE	0x2
948 #define	DTRACE_COND_ZONEOWNER	0x4
949 
950 #define	DTRACE_PROBEKEY_MAXDEPTH	8	/* max glob recursion depth */
951 
952 /*
953  * Access flag used by dtrace_mstate.dtms_access.
954  */
955 #define	DTRACE_ACCESS_KERNEL	0x1		/* the priv to read kmem */
956 
957 
958 /*
959  * DTrace Activity
960  *
961  * Each DTrace consumer is in one of several states, which (for purposes of
962  * avoiding yet-another overloading of the noun "state") we call the current
963  * _activity_.  The activity transitions on dtrace_go() (from DTRACIOCGO), on
964  * dtrace_stop() (from DTRACIOCSTOP) and on the exit() action.  Activities may
965  * only transition in one direction; the activity transition diagram is a
966  * directed acyclic graph.  The activity transition diagram is as follows:
967  *
968  *
969  * +----------+                   +--------+                   +--------+
970  * | INACTIVE |------------------>| WARMUP |------------------>| ACTIVE |
971  * +----------+   dtrace_go(),    +--------+   dtrace_go(),    +--------+
972  *                before BEGIN        |        after BEGIN       |  |  |
973  *                                    |                          |  |  |
974  *                      exit() action |                          |  |  |
975  *                     from BEGIN ECB |                          |  |  |
976  *                                    |                          |  |  |
977  *                                    v                          |  |  |
978  *                               +----------+     exit() action  |  |  |
979  * +-----------------------------| DRAINING |<-------------------+  |  |
980  * |                             +----------+                       |  |
981  * |                                  |                             |  |
982  * |                   dtrace_stop(), |                             |  |
983  * |                     before END   |                             |  |
984  * |                                  |                             |  |
985  * |                                  v                             |  |
986  * | +---------+                 +----------+                       |  |
987  * | | STOPPED |<----------------| COOLDOWN |<----------------------+  |
988  * | +---------+  dtrace_stop(), +----------+     dtrace_stop(),       |
989  * |                after END                       before END         |
990  * |                                                                   |
991  * |                              +--------+                           |
992  * +----------------------------->| KILLED |<--------------------------+
993  *       deadman timeout or       +--------+     deadman timeout or
994  *        killed consumer                         killed consumer
995  *
996  * Note that once a DTrace consumer has stopped tracing, there is no way to
997  * restart it; if a DTrace consumer wishes to restart tracing, it must reopen
998  * the DTrace pseudodevice.
999  */
1000 typedef enum dtrace_activity {
1001 	DTRACE_ACTIVITY_INACTIVE = 0,		/* not yet running */
1002 	DTRACE_ACTIVITY_WARMUP,			/* while starting */
1003 	DTRACE_ACTIVITY_ACTIVE,			/* running */
1004 	DTRACE_ACTIVITY_DRAINING,		/* before stopping */
1005 	DTRACE_ACTIVITY_COOLDOWN,		/* while stopping */
1006 	DTRACE_ACTIVITY_STOPPED,		/* after stopping */
1007 	DTRACE_ACTIVITY_KILLED			/* killed */
1008 } dtrace_activity_t;
1009 
1010 /*
1011  * DTrace Helper Implementation
1012  *
1013  * A description of the helper architecture may be found in <sys/dtrace.h>.
1014  * Each process contains a pointer to its helpers in its p_dtrace_helpers
1015  * member.  This is a pointer to a dtrace_helpers structure, which contains an
1016  * array of pointers to dtrace_helper structures, helper variable state (shared
1017  * among a process's helpers) and a generation count.  (The generation count is
1018  * used to provide an identifier when a helper is added so that it may be
1019  * subsequently removed.)  The dtrace_helper structure is self-explanatory,
1020  * containing pointers to the objects needed to execute the helper.  Note that
1021  * helpers are _duplicated_ across fork(2), and destroyed on exec(2).  No more
1022  * than dtrace_helpers_max are allowed per-process.
1023  */
1024 #define	DTRACE_HELPER_ACTION_USTACK	0
1025 #define	DTRACE_NHELPER_ACTIONS		1
1026 
1027 typedef struct dtrace_helper_action {
1028 	int dtha_generation;			/* helper action generation */
1029 	int dtha_nactions;			/* number of actions */
1030 	dtrace_difo_t *dtha_predicate;		/* helper action predicate */
1031 	dtrace_difo_t **dtha_actions;		/* array of actions */
1032 	struct dtrace_helper_action *dtha_next;	/* next helper action */
1033 } dtrace_helper_action_t;
1034 
1035 typedef struct dtrace_helper_provider {
1036 	int dthp_generation;			/* helper provider generation */
1037 	uint32_t dthp_ref;			/* reference count */
1038 	dof_helper_t dthp_prov;			/* DOF w/ provider and probes */
1039 } dtrace_helper_provider_t;
1040 
1041 typedef struct dtrace_helpers {
1042 	dtrace_helper_action_t **dthps_actions;	/* array of helper actions */
1043 	dtrace_vstate_t dthps_vstate;		/* helper action var. state */
1044 	dtrace_helper_provider_t **dthps_provs;	/* array of providers */
1045 	uint_t dthps_nprovs;			/* count of providers */
1046 	uint_t dthps_maxprovs;			/* provider array size */
1047 	int dthps_generation;			/* current generation */
1048 	pid_t dthps_pid;			/* pid of associated proc */
1049 	int dthps_deferred;			/* helper in deferred list */
1050 	struct dtrace_helpers *dthps_next;	/* next pointer */
1051 	struct dtrace_helpers *dthps_prev;	/* prev pointer */
1052 } dtrace_helpers_t;
1053 
1054 /*
1055  * DTrace Helper Action Tracing
1056  *
1057  * Debugging helper actions can be arduous.  To ease the development and
1058  * debugging of helpers, DTrace contains a tracing-framework-within-a-tracing-
1059  * framework: helper tracing.  If dtrace_helptrace_enabled is non-zero (which
1060  * it is by default on DEBUG kernels), all helper activity will be traced to a
1061  * global, in-kernel ring buffer.  Each entry includes a pointer to the specific
1062  * helper, the location within the helper, and a trace of all local variables.
1063  * The ring buffer may be displayed in a human-readable format with the
1064  * ::dtrace_helptrace mdb(1) dcmd.
1065  */
1066 #define	DTRACE_HELPTRACE_NEXT	(-1)
1067 #define	DTRACE_HELPTRACE_DONE	(-2)
1068 #define	DTRACE_HELPTRACE_ERR	(-3)
1069 
1070 typedef struct dtrace_helptrace {
1071 	dtrace_helper_action_t	*dtht_helper;	/* helper action */
1072 	int dtht_where;				/* where in helper action */
1073 	int dtht_nlocals;			/* number of locals */
1074 	int dtht_fault;				/* type of fault (if any) */
1075 	int dtht_fltoffs;			/* DIF offset */
1076 	uint64_t dtht_illval;			/* faulting value */
1077 	uint64_t dtht_locals[1];		/* local variables */
1078 } dtrace_helptrace_t;
1079 
1080 /*
1081  * DTrace Credentials
1082  *
1083  * In probe context, we have limited flexibility to examine the credentials
1084  * of the DTrace consumer that created a particular enabling.  We use
1085  * the Least Privilege interfaces to cache the consumer's cred pointer and
1086  * some facts about that credential in a dtrace_cred_t structure. These
1087  * can limit the consumer's breadth of visibility and what actions the
1088  * consumer may take.
1089  */
1090 #define	DTRACE_CRV_ALLPROC		0x01
1091 #define	DTRACE_CRV_KERNEL		0x02
1092 #define	DTRACE_CRV_ALLZONE		0x04
1093 
1094 #define	DTRACE_CRV_ALL		(DTRACE_CRV_ALLPROC | DTRACE_CRV_KERNEL | \
1095 	DTRACE_CRV_ALLZONE)
1096 
1097 #define	DTRACE_CRA_PROC				0x0001
1098 #define	DTRACE_CRA_PROC_CONTROL			0x0002
1099 #define	DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER	0x0004
1100 #define	DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE	0x0008
1101 #define	DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG	0x0010
1102 #define	DTRACE_CRA_KERNEL			0x0020
1103 #define	DTRACE_CRA_KERNEL_DESTRUCTIVE		0x0040
1104 
1105 #define	DTRACE_CRA_ALL		(DTRACE_CRA_PROC | \
1106 	DTRACE_CRA_PROC_CONTROL | \
1107 	DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER | \
1108 	DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE | \
1109 	DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG | \
1110 	DTRACE_CRA_KERNEL | \
1111 	DTRACE_CRA_KERNEL_DESTRUCTIVE)
1112 
1113 typedef struct dtrace_cred {
1114 	cred_t			*dcr_cred;
1115 	uint8_t			dcr_destructive;
1116 	uint8_t			dcr_visible;
1117 	uint16_t		dcr_action;
1118 } dtrace_cred_t;
1119 
1120 /*
1121  * DTrace Consumer State
1122  *
1123  * Each DTrace consumer has an associated dtrace_state structure that contains
1124  * its in-kernel DTrace state -- including options, credentials, statistics and
1125  * pointers to ECBs, buffers, speculations and formats.  A dtrace_state
1126  * structure is also allocated for anonymous enablings.  When anonymous state
1127  * is grabbed, the grabbing consumers dts_anon pointer is set to the grabbed
1128  * dtrace_state structure.
1129  */
1130 struct dtrace_state {
1131 #ifdef illumos
1132 	dev_t dts_dev;				/* device */
1133 #else
1134 	struct cdev *dts_dev;			/* device */
1135 #endif
1136 	int dts_necbs;				/* total number of ECBs */
1137 	dtrace_ecb_t **dts_ecbs;		/* array of ECBs */
1138 	dtrace_epid_t dts_epid;			/* next EPID to allocate */
1139 	size_t dts_needed;			/* greatest needed space */
1140 	struct dtrace_state *dts_anon;		/* anon. state, if grabbed */
1141 	dtrace_activity_t dts_activity;		/* current activity */
1142 	dtrace_vstate_t dts_vstate;		/* variable state */
1143 	dtrace_buffer_t *dts_buffer;		/* principal buffer */
1144 	dtrace_buffer_t *dts_aggbuffer;		/* aggregation buffer */
1145 	dtrace_speculation_t *dts_speculations;	/* speculation array */
1146 	int dts_nspeculations;			/* number of speculations */
1147 	int dts_naggregations;			/* number of aggregations */
1148 	dtrace_aggregation_t **dts_aggregations; /* aggregation array */
1149 #ifdef illumos
1150 	vmem_t *dts_aggid_arena;		/* arena for aggregation IDs */
1151 #else
1152 	struct unrhdr *dts_aggid_arena;		/* arena for aggregation IDs */
1153 #endif
1154 	uint64_t dts_errors;			/* total number of errors */
1155 	uint32_t dts_speculations_busy;		/* number of spec. busy */
1156 	uint32_t dts_speculations_unavail;	/* number of spec unavail */
1157 	uint32_t dts_stkstroverflows;		/* stack string tab overflows */
1158 	uint32_t dts_dblerrors;			/* errors in ERROR probes */
1159 	uint32_t dts_reserve;			/* space reserved for END */
1160 	hrtime_t dts_laststatus;		/* time of last status */
1161 #ifdef illumos
1162 	cyclic_id_t dts_cleaner;		/* cleaning cyclic */
1163 	cyclic_id_t dts_deadman;		/* deadman cyclic */
1164 #else
1165 	struct callout dts_cleaner;		/* Cleaning callout. */
1166 	struct callout dts_deadman;		/* Deadman callout. */
1167 #endif
1168 	hrtime_t dts_alive;			/* time last alive */
1169 	char dts_speculates;			/* boolean: has speculations */
1170 	char dts_destructive;			/* boolean: has dest. actions */
1171 	int dts_nformats;			/* number of formats */
1172 	char **dts_formats;			/* format string array */
1173 	dtrace_optval_t dts_options[DTRACEOPT_MAX]; /* options */
1174 	dtrace_cred_t dts_cred;			/* credentials */
1175 	size_t dts_nretained;			/* number of retained enabs */
1176 	int dts_getf;				/* number of getf() calls */
1177 	uint64_t dts_rstate[NCPU][2];		/* per-CPU random state */
1178 };
1179 
1180 struct dtrace_provider {
1181 	dtrace_pattr_t dtpv_attr;		/* provider attributes */
1182 	dtrace_ppriv_t dtpv_priv;		/* provider privileges */
1183 	dtrace_pops_t dtpv_pops;		/* provider operations */
1184 	char *dtpv_name;			/* provider name */
1185 	void *dtpv_arg;				/* provider argument */
1186 	hrtime_t dtpv_defunct;			/* when made defunct */
1187 	struct dtrace_provider *dtpv_next;	/* next provider */
1188 };
1189 
1190 struct dtrace_meta {
1191 	dtrace_mops_t dtm_mops;			/* meta provider operations */
1192 	char *dtm_name;				/* meta provider name */
1193 	void *dtm_arg;				/* meta provider user arg */
1194 	uint64_t dtm_count;			/* no. of associated provs. */
1195 };
1196 
1197 /*
1198  * DTrace Enablings
1199  *
1200  * A dtrace_enabling structure is used to track a collection of ECB
1201  * descriptions -- before they have been turned into actual ECBs.  This is
1202  * created as a result of DOF processing, and is generally used to generate
1203  * ECBs immediately thereafter.  However, enablings are also generally
1204  * retained should the probes they describe be created at a later time; as
1205  * each new module or provider registers with the framework, the retained
1206  * enablings are reevaluated, with any new match resulting in new ECBs.  To
1207  * prevent probes from being matched more than once, the enabling tracks the
1208  * last probe generation matched, and only matches probes from subsequent
1209  * generations.
1210  */
1211 typedef struct dtrace_enabling {
1212 	dtrace_ecbdesc_t **dten_desc;		/* all ECB descriptions */
1213 	int dten_ndesc;				/* number of ECB descriptions */
1214 	int dten_maxdesc;			/* size of ECB array */
1215 	dtrace_vstate_t *dten_vstate;		/* associated variable state */
1216 	dtrace_genid_t dten_probegen;		/* matched probe generation */
1217 	dtrace_ecbdesc_t *dten_current;		/* current ECB description */
1218 	int dten_error;				/* current error value */
1219 	int dten_primed;			/* boolean: set if primed */
1220 	struct dtrace_enabling *dten_prev;	/* previous enabling */
1221 	struct dtrace_enabling *dten_next;	/* next enabling */
1222 } dtrace_enabling_t;
1223 
1224 /*
1225  * DTrace Anonymous Enablings
1226  *
1227  * Anonymous enablings are DTrace enablings that are not associated with a
1228  * controlling process, but rather derive their enabling from DOF stored as
1229  * properties in the dtrace.conf file.  If there is an anonymous enabling, a
1230  * DTrace consumer state and enabling are created on attach.  The state may be
1231  * subsequently grabbed by the first consumer specifying the "grabanon"
1232  * option.  As long as an anonymous DTrace enabling exists, dtrace(7D) will
1233  * refuse to unload.
1234  */
1235 typedef struct dtrace_anon {
1236 	dtrace_state_t *dta_state;		/* DTrace consumer state */
1237 	dtrace_enabling_t *dta_enabling;	/* pointer to enabling */
1238 	processorid_t dta_beganon;		/* which CPU BEGIN ran on */
1239 } dtrace_anon_t;
1240 
1241 /*
1242  * DTrace Error Debugging
1243  */
1244 #ifdef DEBUG
1245 #define	DTRACE_ERRDEBUG
1246 #endif
1247 
1248 #ifdef DTRACE_ERRDEBUG
1249 
1250 typedef struct dtrace_errhash {
1251 	const char	*dter_msg;	/* error message */
1252 	int		dter_count;	/* number of times seen */
1253 } dtrace_errhash_t;
1254 
1255 #define	DTRACE_ERRHASHSZ	256	/* must be > number of err msgs */
1256 
1257 #endif	/* DTRACE_ERRDEBUG */
1258 
1259 /*
1260  * DTrace Toxic Ranges
1261  *
1262  * DTrace supports safe loads from probe context; if the address turns out to
1263  * be invalid, a bit will be set by the kernel indicating that DTrace
1264  * encountered a memory error, and DTrace will propagate the error to the user
1265  * accordingly.  However, there may exist some regions of memory in which an
1266  * arbitrary load can change system state, and from which it is impossible to
1267  * recover from such a load after it has been attempted.  Examples of this may
1268  * include memory in which programmable I/O registers are mapped (for which a
1269  * read may have some implications for the device) or (in the specific case of
1270  * UltraSPARC-I and -II) the virtual address hole.  The platform is required
1271  * to make DTrace aware of these toxic ranges; DTrace will then check that
1272  * target addresses are not in a toxic range before attempting to issue a
1273  * safe load.
1274  */
1275 typedef struct dtrace_toxrange {
1276 	uintptr_t	dtt_base;		/* base of toxic range */
1277 	uintptr_t	dtt_limit;		/* limit of toxic range */
1278 } dtrace_toxrange_t;
1279 
1280 #ifdef illumos
1281 extern uint64_t dtrace_getarg(int, int);
1282 #else
1283 extern uint64_t __noinline dtrace_getarg(int, int);
1284 #endif
1285 extern greg_t dtrace_getfp(void);
1286 extern int dtrace_getipl(void);
1287 extern uintptr_t dtrace_caller(int);
1288 extern uint32_t dtrace_cas32(uint32_t *, uint32_t, uint32_t);
1289 extern void *dtrace_casptr(volatile void *, volatile void *, volatile void *);
1290 extern void dtrace_copyin(uintptr_t, uintptr_t, size_t, volatile uint16_t *);
1291 extern void dtrace_copyinstr(uintptr_t, uintptr_t, size_t, volatile uint16_t *);
1292 extern void dtrace_copyout(uintptr_t, uintptr_t, size_t, volatile uint16_t *);
1293 extern void dtrace_copyoutstr(uintptr_t, uintptr_t, size_t,
1294     volatile uint16_t *);
1295 extern void dtrace_getpcstack(pc_t *, int, int, uint32_t *);
1296 extern ulong_t dtrace_getreg(struct trapframe *, uint_t);
1297 extern int dtrace_getstackdepth(int);
1298 extern void dtrace_getupcstack(uint64_t *, int);
1299 extern void dtrace_getufpstack(uint64_t *, uint64_t *, int);
1300 extern int dtrace_getustackdepth(void);
1301 extern uintptr_t dtrace_fulword(void *);
1302 extern uint8_t dtrace_fuword8(void *);
1303 extern uint16_t dtrace_fuword16(void *);
1304 extern uint32_t dtrace_fuword32(void *);
1305 extern uint64_t dtrace_fuword64(void *);
1306 extern void dtrace_probe_error(dtrace_state_t *, dtrace_epid_t, int, int,
1307     int, uintptr_t);
1308 extern int dtrace_assfail(const char *, const char *, int);
1309 extern int dtrace_attached(void);
1310 #ifdef illumos
1311 extern hrtime_t dtrace_gethrestime(void);
1312 #endif
1313 
1314 #ifdef __sparc
1315 extern void dtrace_flush_windows(void);
1316 extern void dtrace_flush_user_windows(void);
1317 extern uint_t dtrace_getotherwin(void);
1318 extern uint_t dtrace_getfprs(void);
1319 #else
1320 extern void dtrace_copy(uintptr_t, uintptr_t, size_t);
1321 extern void dtrace_copystr(uintptr_t, uintptr_t, size_t, volatile uint16_t *);
1322 #endif
1323 
1324 /*
1325  * DTrace Assertions
1326  *
1327  * DTrace calls ASSERT and VERIFY from probe context.  To assure that a failed
1328  * ASSERT or VERIFY does not induce a markedly more catastrophic failure (e.g.,
1329  * one from which a dump cannot be gleaned), DTrace must define its own ASSERT
1330  * and VERIFY macros to be ones that may safely be called from probe context.
1331  * This header file must thus be included by any DTrace component that calls
1332  * ASSERT and/or VERIFY from probe context, and _only_ by those components.
1333  * (The only exception to this is kernel debugging infrastructure at user-level
1334  * that doesn't depend on calling ASSERT.)
1335  */
1336 #undef ASSERT
1337 #undef VERIFY
1338 #define	VERIFY(EX)	((void)((EX) || \
1339 			dtrace_assfail(#EX, __FILE__, __LINE__)))
1340 #ifdef DEBUG
1341 #define	ASSERT(EX)	((void)((EX) || \
1342 			dtrace_assfail(#EX, __FILE__, __LINE__)))
1343 #else
1344 #define	ASSERT(X)	((void)0)
1345 #endif
1346 
1347 #ifdef	__cplusplus
1348 }
1349 #endif
1350 
1351 #endif /* _SYS_DTRACE_IMPL_H */
1352