1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
22 /*	  All Rights Reserved  	*/
23 
24 
25 /*
26  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
27  * Use is subject to license terms.
28  */
29 
30 #ifndef _SYS_SYSMACROS_H
31 #define	_SYS_SYSMACROS_H
32 
33 #include <sys/param.h>
34 #include <sys/isa_defs.h>
35 #if defined(__FreeBSD__) && defined(_KERNEL)
36 #include <sys/libkern.h>
37 #endif
38 
39 #ifdef	__cplusplus
40 extern "C" {
41 #endif
42 
43 /*
44  * Some macros for units conversion
45  */
46 /*
47  * Disk blocks (sectors) and bytes.
48  */
49 #define	dtob(DD)	((DD) << DEV_BSHIFT)
50 #define	btod(BB)	(((BB) + DEV_BSIZE - 1) >> DEV_BSHIFT)
51 #define	btodt(BB)	((BB) >> DEV_BSHIFT)
52 #define	lbtod(BB)	(((offset_t)(BB) + DEV_BSIZE - 1) >> DEV_BSHIFT)
53 
54 /* common macros */
55 #ifndef MIN
56 #define	MIN(a, b)	((a) < (b) ? (a) : (b))
57 #endif
58 #ifndef MAX
59 #define	MAX(a, b)	((a) < (b) ? (b) : (a))
60 #endif
61 #ifndef ABS
62 #define	ABS(a)		((a) < 0 ? -(a) : (a))
63 #endif
64 #ifndef	SIGNOF
65 #define	SIGNOF(a)	((a) < 0 ? -1 : (a) > 0)
66 #endif
67 
68 #ifdef _KERNEL
69 
70 /*
71  * Convert a single byte to/from binary-coded decimal (BCD).
72  */
73 extern unsigned char byte_to_bcd[256];
74 extern unsigned char bcd_to_byte[256];
75 
76 #define	BYTE_TO_BCD(x)	byte_to_bcd[(x) & 0xff]
77 #define	BCD_TO_BYTE(x)	bcd_to_byte[(x) & 0xff]
78 
79 #endif	/* _KERNEL */
80 
81 /*
82  * WARNING: The device number macros defined here should not be used by device
83  * drivers or user software. Device drivers should use the device functions
84  * defined in the DDI/DKI interface (see also ddi.h). Application software
85  * should make use of the library routines available in makedev(3). A set of
86  * new device macros are provided to operate on the expanded device number
87  * format supported in SVR4. Macro versions of the DDI device functions are
88  * provided for use by kernel proper routines only. Macro routines bmajor(),
89  * major(), minor(), emajor(), eminor(), and makedev() will be removed or
90  * their definitions changed at the next major release following SVR4.
91  */
92 
93 #define	O_BITSMAJOR	7	/* # of SVR3 major device bits */
94 #define	O_BITSMINOR	8	/* # of SVR3 minor device bits */
95 #define	O_MAXMAJ	0x7f	/* SVR3 max major value */
96 #define	O_MAXMIN	0xff	/* SVR3 max minor value */
97 
98 
99 #define	L_BITSMAJOR32	14	/* # of SVR4 major device bits */
100 #define	L_BITSMINOR32	18	/* # of SVR4 minor device bits */
101 #define	L_MAXMAJ32	0x3fff	/* SVR4 max major value */
102 #define	L_MAXMIN32	0x3ffff	/* MAX minor for 3b2 software drivers. */
103 				/* For 3b2 hardware devices the minor is */
104 				/* restricted to 256 (0-255) */
105 
106 #ifdef _LP64
107 #define	L_BITSMAJOR	32	/* # of major device bits in 64-bit Solaris */
108 #define	L_BITSMINOR	32	/* # of minor device bits in 64-bit Solaris */
109 #define	L_MAXMAJ	0xfffffffful	/* max major value */
110 #define	L_MAXMIN	0xfffffffful	/* max minor value */
111 #else
112 #define	L_BITSMAJOR	L_BITSMAJOR32
113 #define	L_BITSMINOR	L_BITSMINOR32
114 #define	L_MAXMAJ	L_MAXMAJ32
115 #define	L_MAXMIN	L_MAXMIN32
116 #endif
117 
118 #ifdef illumos
119 #ifdef _KERNEL
120 
121 /* major part of a device internal to the kernel */
122 
123 #define	major(x)	(major_t)((((unsigned)(x)) >> O_BITSMINOR) & O_MAXMAJ)
124 #define	bmajor(x)	(major_t)((((unsigned)(x)) >> O_BITSMINOR) & O_MAXMAJ)
125 
126 /* get internal major part of expanded device number */
127 
128 #define	getmajor(x)	(major_t)((((dev_t)(x)) >> L_BITSMINOR) & L_MAXMAJ)
129 
130 /* minor part of a device internal to the kernel */
131 
132 #define	minor(x)	(minor_t)((x) & O_MAXMIN)
133 
134 /* get internal minor part of expanded device number */
135 
136 #define	getminor(x)	(minor_t)((x) & L_MAXMIN)
137 
138 #else
139 
140 /* major part of a device external from the kernel (same as emajor below) */
141 
142 #define	major(x)	(major_t)((((unsigned)(x)) >> O_BITSMINOR) & O_MAXMAJ)
143 
144 /* minor part of a device external from the kernel  (same as eminor below) */
145 
146 #define	minor(x)	(minor_t)((x) & O_MAXMIN)
147 
148 #endif	/* _KERNEL */
149 
150 /* create old device number */
151 
152 #define	makedev(x, y) (unsigned short)(((x) << O_BITSMINOR) | ((y) & O_MAXMIN))
153 
154 /* make an new device number */
155 
156 #define	makedevice(x, y) (dev_t)(((dev_t)(x) << L_BITSMINOR) | ((y) & L_MAXMIN))
157 
158 
159 /*
160  * emajor() allows kernel/driver code to print external major numbers
161  * eminor() allows kernel/driver code to print external minor numbers
162  */
163 
164 #define	emajor(x) \
165 	(major_t)(((unsigned int)(x) >> O_BITSMINOR) > O_MAXMAJ) ? \
166 	    NODEV : (((unsigned int)(x) >> O_BITSMINOR) & O_MAXMAJ)
167 
168 #define	eminor(x) \
169 	(minor_t)((x) & O_MAXMIN)
170 
171 /*
172  * get external major and minor device
173  * components from expanded device number
174  */
175 #define	getemajor(x)	(major_t)((((dev_t)(x) >> L_BITSMINOR) > L_MAXMAJ) ? \
176 			    NODEV : (((dev_t)(x) >> L_BITSMINOR) & L_MAXMAJ))
177 #define	geteminor(x)	(minor_t)((x) & L_MAXMIN)
178 #endif /* illumos */
179 
180 /*
181  * These are versions of the kernel routines for compressing and
182  * expanding long device numbers that don't return errors.
183  */
184 #if (L_BITSMAJOR32 == L_BITSMAJOR) && (L_BITSMINOR32 == L_BITSMINOR)
185 
186 #define	DEVCMPL(x)	(x)
187 #define	DEVEXPL(x)	(x)
188 
189 #else
190 
191 #define	DEVCMPL(x)	\
192 	(dev32_t)((((x) >> L_BITSMINOR) > L_MAXMAJ32 || \
193 	    ((x) & L_MAXMIN) > L_MAXMIN32) ? NODEV32 : \
194 	    ((((x) >> L_BITSMINOR) << L_BITSMINOR32) | ((x) & L_MAXMIN32)))
195 
196 #define	DEVEXPL(x)	\
197 	(((x) == NODEV32) ? NODEV : \
198 	makedevice(((x) >> L_BITSMINOR32) & L_MAXMAJ32, (x) & L_MAXMIN32))
199 
200 #endif /* L_BITSMAJOR32 ... */
201 
202 /* convert to old (SVR3.2) dev format */
203 
204 #define	cmpdev(x) \
205 	(o_dev_t)((((x) >> L_BITSMINOR) > O_MAXMAJ || \
206 	    ((x) & L_MAXMIN) > O_MAXMIN) ? NODEV : \
207 	    ((((x) >> L_BITSMINOR) << O_BITSMINOR) | ((x) & O_MAXMIN)))
208 
209 /* convert to new (SVR4) dev format */
210 
211 #define	expdev(x) \
212 	(dev_t)(((dev_t)(((x) >> O_BITSMINOR) & O_MAXMAJ) << L_BITSMINOR) | \
213 	    ((x) & O_MAXMIN))
214 
215 /*
216  * Macro for checking power of 2 address alignment.
217  */
218 #define	IS_P2ALIGNED(v, a) ((((uintptr_t)(v)) & ((uintptr_t)(a) - 1)) == 0)
219 
220 /*
221  * Macros for counting and rounding.
222  */
223 #define	howmany(x, y)	(((x)+((y)-1))/(y))
224 #define	roundup(x, y)	((((x)+((y)-1))/(y))*(y))
225 
226 /*
227  * Macro to determine if value is a power of 2
228  */
229 #define	ISP2(x)		(((x) & ((x) - 1)) == 0)
230 
231 /*
232  * Macros for various sorts of alignment and rounding.  The "align" must
233  * be a power of 2.  Often times it is a block, sector, or page.
234  */
235 
236 /*
237  * return x rounded down to an align boundary
238  * eg, P2ALIGN(1200, 1024) == 1024 (1*align)
239  * eg, P2ALIGN(1024, 1024) == 1024 (1*align)
240  * eg, P2ALIGN(0x1234, 0x100) == 0x1200 (0x12*align)
241  * eg, P2ALIGN(0x5600, 0x100) == 0x5600 (0x56*align)
242  */
243 #define	P2ALIGN(x, align)		((x) & -(align))
244 
245 /*
246  * return x % (mod) align
247  * eg, P2PHASE(0x1234, 0x100) == 0x34 (x-0x12*align)
248  * eg, P2PHASE(0x5600, 0x100) == 0x00 (x-0x56*align)
249  */
250 #define	P2PHASE(x, align)		((x) & ((align) - 1))
251 
252 /*
253  * return how much space is left in this block (but if it's perfectly
254  * aligned, return 0).
255  * eg, P2NPHASE(0x1234, 0x100) == 0xcc (0x13*align-x)
256  * eg, P2NPHASE(0x5600, 0x100) == 0x00 (0x56*align-x)
257  */
258 #define	P2NPHASE(x, align)		(-(x) & ((align) - 1))
259 
260 /*
261  * return x rounded up to an align boundary
262  * eg, P2ROUNDUP(0x1234, 0x100) == 0x1300 (0x13*align)
263  * eg, P2ROUNDUP(0x5600, 0x100) == 0x5600 (0x56*align)
264  */
265 #define	P2ROUNDUP(x, align)		(-(-(x) & -(align)))
266 
267 /*
268  * return the ending address of the block that x is in
269  * eg, P2END(0x1234, 0x100) == 0x12ff (0x13*align - 1)
270  * eg, P2END(0x5600, 0x100) == 0x56ff (0x57*align - 1)
271  */
272 #define	P2END(x, align)			(-(~(x) & -(align)))
273 
274 /*
275  * return x rounded up to the next phase (offset) within align.
276  * phase should be < align.
277  * eg, P2PHASEUP(0x1234, 0x100, 0x10) == 0x1310 (0x13*align + phase)
278  * eg, P2PHASEUP(0x5600, 0x100, 0x10) == 0x5610 (0x56*align + phase)
279  */
280 #define	P2PHASEUP(x, align, phase)	((phase) - (((phase) - (x)) & -(align)))
281 
282 /*
283  * return TRUE if adding len to off would cause it to cross an align
284  * boundary.
285  * eg, P2BOUNDARY(0x1234, 0xe0, 0x100) == TRUE (0x1234 + 0xe0 == 0x1314)
286  * eg, P2BOUNDARY(0x1234, 0x50, 0x100) == FALSE (0x1234 + 0x50 == 0x1284)
287  */
288 #define	P2BOUNDARY(off, len, align) \
289 	(((off) ^ ((off) + (len) - 1)) > (align) - 1)
290 
291 /*
292  * Return TRUE if they have the same highest bit set.
293  * eg, P2SAMEHIGHBIT(0x1234, 0x1001) == TRUE (the high bit is 0x1000)
294  * eg, P2SAMEHIGHBIT(0x1234, 0x3010) == FALSE (high bit of 0x3010 is 0x2000)
295  */
296 #define	P2SAMEHIGHBIT(x, y)		(((x) ^ (y)) < ((x) & (y)))
297 
298 /*
299  * Typed version of the P2* macros.  These macros should be used to ensure
300  * that the result is correctly calculated based on the data type of (x),
301  * which is passed in as the last argument, regardless of the data
302  * type of the alignment.  For example, if (x) is of type uint64_t,
303  * and we want to round it up to a page boundary using "PAGESIZE" as
304  * the alignment, we can do either
305  *	P2ROUNDUP(x, (uint64_t)PAGESIZE)
306  * or
307  *	P2ROUNDUP_TYPED(x, PAGESIZE, uint64_t)
308  */
309 #define	P2ALIGN_TYPED(x, align, type)	\
310 	((type)(x) & -(type)(align))
311 #define	P2PHASE_TYPED(x, align, type)	\
312 	((type)(x) & ((type)(align) - 1))
313 #define	P2NPHASE_TYPED(x, align, type)	\
314 	(-(type)(x) & ((type)(align) - 1))
315 #define	P2ROUNDUP_TYPED(x, align, type)	\
316 	(-(-(type)(x) & -(type)(align)))
317 #define	P2END_TYPED(x, align, type)	\
318 	(-(~(type)(x) & -(type)(align)))
319 #define	P2PHASEUP_TYPED(x, align, phase, type)	\
320 	((type)(phase) - (((type)(phase) - (type)(x)) & -(type)(align)))
321 #define	P2CROSS_TYPED(x, y, align, type)	\
322 	(((type)(x) ^ (type)(y)) > (type)(align) - 1)
323 #define	P2SAMEHIGHBIT_TYPED(x, y, type) \
324 	(((type)(x) ^ (type)(y)) < ((type)(x) & (type)(y)))
325 
326 /*
327  * Macros to atomically increment/decrement a variable.  mutex and var
328  * must be pointers.
329  */
330 #define	INCR_COUNT(var, mutex) mutex_enter(mutex), (*(var))++, mutex_exit(mutex)
331 #define	DECR_COUNT(var, mutex) mutex_enter(mutex), (*(var))--, mutex_exit(mutex)
332 
333 /*
334  * Macros to declare bitfields - the order in the parameter list is
335  * Low to High - that is, declare bit 0 first.  We only support 8-bit bitfields
336  * because if a field crosses a byte boundary it's not likely to be meaningful
337  * without reassembly in its nonnative endianness.
338  */
339 #if defined(_BIT_FIELDS_LTOH)
340 #define	DECL_BITFIELD2(_a, _b)				\
341 	uint8_t _a, _b
342 #define	DECL_BITFIELD3(_a, _b, _c)			\
343 	uint8_t _a, _b, _c
344 #define	DECL_BITFIELD4(_a, _b, _c, _d)			\
345 	uint8_t _a, _b, _c, _d
346 #define	DECL_BITFIELD5(_a, _b, _c, _d, _e)		\
347 	uint8_t _a, _b, _c, _d, _e
348 #define	DECL_BITFIELD6(_a, _b, _c, _d, _e, _f)		\
349 	uint8_t _a, _b, _c, _d, _e, _f
350 #define	DECL_BITFIELD7(_a, _b, _c, _d, _e, _f, _g)	\
351 	uint8_t _a, _b, _c, _d, _e, _f, _g
352 #define	DECL_BITFIELD8(_a, _b, _c, _d, _e, _f, _g, _h)	\
353 	uint8_t _a, _b, _c, _d, _e, _f, _g, _h
354 #elif defined(_BIT_FIELDS_HTOL)
355 #define	DECL_BITFIELD2(_a, _b)				\
356 	uint8_t _b, _a
357 #define	DECL_BITFIELD3(_a, _b, _c)			\
358 	uint8_t _c, _b, _a
359 #define	DECL_BITFIELD4(_a, _b, _c, _d)			\
360 	uint8_t _d, _c, _b, _a
361 #define	DECL_BITFIELD5(_a, _b, _c, _d, _e)		\
362 	uint8_t _e, _d, _c, _b, _a
363 #define	DECL_BITFIELD6(_a, _b, _c, _d, _e, _f)		\
364 	uint8_t _f, _e, _d, _c, _b, _a
365 #define	DECL_BITFIELD7(_a, _b, _c, _d, _e, _f, _g)	\
366 	uint8_t _g, _f, _e, _d, _c, _b, _a
367 #define	DECL_BITFIELD8(_a, _b, _c, _d, _e, _f, _g, _h)	\
368 	uint8_t _h, _g, _f, _e, _d, _c, _b, _a
369 #else
370 #error	One of _BIT_FIELDS_LTOH or _BIT_FIELDS_HTOL must be defined
371 #endif  /* _BIT_FIELDS_LTOH */
372 
373 #if defined(_KERNEL) && !defined(_KMEMUSER) && !defined(offsetof)
374 
375 /* avoid any possibility of clashing with <stddef.h> version */
376 
377 #define	offsetof(s, m)	((size_t)(&(((s *)0)->m)))
378 #endif
379 
380 /*
381  * Find highest one bit set.
382  *      Returns bit number + 1 of highest bit that is set, otherwise returns 0.
383  * High order bit is 31 (or 63 in _LP64 kernel).
384  */
385 static __inline int
386 highbit(ulong_t i)
387 {
388 #if defined(__FreeBSD__) && defined(_KERNEL) && defined(HAVE_INLINE_FLSL)
389 	return (flsl(i));
390 #else
391 	register int h = 1;
392 
393 	if (i == 0)
394 		return (0);
395 #ifdef _LP64
396 	if (i & 0xffffffff00000000ul) {
397 		h += 32; i >>= 32;
398 	}
399 #endif
400 	if (i & 0xffff0000) {
401 		h += 16; i >>= 16;
402 	}
403 	if (i & 0xff00) {
404 		h += 8; i >>= 8;
405 	}
406 	if (i & 0xf0) {
407 		h += 4; i >>= 4;
408 	}
409 	if (i & 0xc) {
410 		h += 2; i >>= 2;
411 	}
412 	if (i & 0x2) {
413 		h += 1;
414 	}
415 	return (h);
416 #endif
417 }
418 
419 /*
420  * Find highest one bit set.
421  *	Returns bit number + 1 of highest bit that is set, otherwise returns 0.
422  */
423 static __inline int
424 highbit64(uint64_t i)
425 {
426 #if defined(__FreeBSD__) && defined(_KERNEL) && defined(HAVE_INLINE_FLSLL)
427 	return (flsll(i));
428 #else
429 	int h = 1;
430 
431 	if (i == 0)
432 		return (0);
433 	if (i & 0xffffffff00000000ULL) {
434 		h += 32; i >>= 32;
435 	}
436 	if (i & 0xffff0000) {
437 		h += 16; i >>= 16;
438 	}
439 	if (i & 0xff00) {
440 		h += 8; i >>= 8;
441 	}
442 	if (i & 0xf0) {
443 		h += 4; i >>= 4;
444 	}
445 	if (i & 0xc) {
446 		h += 2; i >>= 2;
447 	}
448 	if (i & 0x2) {
449 		h += 1;
450 	}
451 	return (h);
452 #endif
453 }
454 
455 #ifdef	__cplusplus
456 }
457 #endif
458 
459 #endif	/* _SYS_SYSMACROS_H */
460