1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2002 Doug Rabson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_inet.h"
33 #include "opt_inet6.h"
34 #include "opt_ktrace.h"
35 
36 #define __ELF_WORD_SIZE 32
37 
38 #ifdef COMPAT_FREEBSD11
39 #define	_WANT_FREEBSD11_KEVENT
40 #endif
41 
42 #include <sys/param.h>
43 #include <sys/bus.h>
44 #include <sys/capsicum.h>
45 #include <sys/clock.h>
46 #include <sys/exec.h>
47 #include <sys/fcntl.h>
48 #include <sys/filedesc.h>
49 #include <sys/imgact.h>
50 #include <sys/jail.h>
51 #include <sys/kernel.h>
52 #include <sys/limits.h>
53 #include <sys/linker.h>
54 #include <sys/lock.h>
55 #include <sys/malloc.h>
56 #include <sys/file.h>		/* Must come after sys/malloc.h */
57 #include <sys/imgact.h>
58 #include <sys/mbuf.h>
59 #include <sys/mman.h>
60 #include <sys/module.h>
61 #include <sys/mount.h>
62 #include <sys/mutex.h>
63 #include <sys/namei.h>
64 #include <sys/proc.h>
65 #include <sys/procctl.h>
66 #include <sys/ptrace.h>
67 #include <sys/reboot.h>
68 #include <sys/resource.h>
69 #include <sys/resourcevar.h>
70 #include <sys/selinfo.h>
71 #include <sys/eventvar.h>	/* Must come after sys/selinfo.h */
72 #include <sys/pipe.h>		/* Must come after sys/selinfo.h */
73 #include <sys/signal.h>
74 #include <sys/signalvar.h>
75 #include <sys/socket.h>
76 #include <sys/socketvar.h>
77 #include <sys/stat.h>
78 #include <sys/syscall.h>
79 #include <sys/syscallsubr.h>
80 #include <sys/sysctl.h>
81 #include <sys/sysent.h>
82 #include <sys/sysproto.h>
83 #include <sys/systm.h>
84 #include <sys/thr.h>
85 #include <sys/unistd.h>
86 #include <sys/ucontext.h>
87 #include <sys/vnode.h>
88 #include <sys/wait.h>
89 #include <sys/ipc.h>
90 #include <sys/msg.h>
91 #include <sys/sem.h>
92 #include <sys/shm.h>
93 #ifdef KTRACE
94 #include <sys/ktrace.h>
95 #endif
96 
97 #ifdef INET
98 #include <netinet/in.h>
99 #endif
100 
101 #include <vm/vm.h>
102 #include <vm/vm_param.h>
103 #include <vm/pmap.h>
104 #include <vm/vm_map.h>
105 #include <vm/vm_object.h>
106 #include <vm/vm_extern.h>
107 
108 #include <machine/cpu.h>
109 #include <machine/elf.h>
110 #ifdef __amd64__
111 #include <machine/md_var.h>
112 #endif
113 
114 #include <security/audit/audit.h>
115 
116 #include <compat/freebsd32/freebsd32_util.h>
117 #include <compat/freebsd32/freebsd32.h>
118 #include <compat/freebsd32/freebsd32_ipc.h>
119 #include <compat/freebsd32/freebsd32_misc.h>
120 #include <compat/freebsd32/freebsd32_signal.h>
121 #include <compat/freebsd32/freebsd32_proto.h>
122 
123 FEATURE(compat_freebsd_32bit, "Compatible with 32-bit FreeBSD");
124 
125 struct ptrace_io_desc32 {
126 	int		piod_op;
127 	uint32_t	piod_offs;
128 	uint32_t	piod_addr;
129 	uint32_t	piod_len;
130 };
131 
132 struct ptrace_sc_ret32 {
133 	uint32_t	sr_retval[2];
134 	int		sr_error;
135 };
136 
137 struct ptrace_vm_entry32 {
138 	int		pve_entry;
139 	int		pve_timestamp;
140 	uint32_t	pve_start;
141 	uint32_t	pve_end;
142 	uint32_t	pve_offset;
143 	u_int		pve_prot;
144 	u_int		pve_pathlen;
145 	int32_t		pve_fileid;
146 	u_int		pve_fsid;
147 	uint32_t	pve_path;
148 };
149 
150 #ifdef __amd64__
151 CTASSERT(sizeof(struct timeval32) == 8);
152 CTASSERT(sizeof(struct timespec32) == 8);
153 CTASSERT(sizeof(struct itimerval32) == 16);
154 CTASSERT(sizeof(struct bintime32) == 12);
155 #endif
156 CTASSERT(sizeof(struct statfs32) == 256);
157 #ifdef __amd64__
158 CTASSERT(sizeof(struct rusage32) == 72);
159 #endif
160 CTASSERT(sizeof(struct sigaltstack32) == 12);
161 #ifdef __amd64__
162 CTASSERT(sizeof(struct kevent32) == 56);
163 #else
164 CTASSERT(sizeof(struct kevent32) == 64);
165 #endif
166 CTASSERT(sizeof(struct iovec32) == 8);
167 CTASSERT(sizeof(struct msghdr32) == 28);
168 #ifdef __amd64__
169 CTASSERT(sizeof(struct stat32) == 208);
170 CTASSERT(sizeof(struct freebsd11_stat32) == 96);
171 #endif
172 CTASSERT(sizeof(struct sigaction32) == 24);
173 
174 static int freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count);
175 static int freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count);
176 static int freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id,
177     int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp);
178 
179 void
180 freebsd32_rusage_out(const struct rusage *s, struct rusage32 *s32)
181 {
182 
183 	TV_CP(*s, *s32, ru_utime);
184 	TV_CP(*s, *s32, ru_stime);
185 	CP(*s, *s32, ru_maxrss);
186 	CP(*s, *s32, ru_ixrss);
187 	CP(*s, *s32, ru_idrss);
188 	CP(*s, *s32, ru_isrss);
189 	CP(*s, *s32, ru_minflt);
190 	CP(*s, *s32, ru_majflt);
191 	CP(*s, *s32, ru_nswap);
192 	CP(*s, *s32, ru_inblock);
193 	CP(*s, *s32, ru_oublock);
194 	CP(*s, *s32, ru_msgsnd);
195 	CP(*s, *s32, ru_msgrcv);
196 	CP(*s, *s32, ru_nsignals);
197 	CP(*s, *s32, ru_nvcsw);
198 	CP(*s, *s32, ru_nivcsw);
199 }
200 
201 int
202 freebsd32_wait4(struct thread *td, struct freebsd32_wait4_args *uap)
203 {
204 	int error, status;
205 	struct rusage32 ru32;
206 	struct rusage ru, *rup;
207 
208 	if (uap->rusage != NULL)
209 		rup = &ru;
210 	else
211 		rup = NULL;
212 	error = kern_wait(td, uap->pid, &status, uap->options, rup);
213 	if (error)
214 		return (error);
215 	if (uap->status != NULL)
216 		error = copyout(&status, uap->status, sizeof(status));
217 	if (uap->rusage != NULL && error == 0) {
218 		freebsd32_rusage_out(&ru, &ru32);
219 		error = copyout(&ru32, uap->rusage, sizeof(ru32));
220 	}
221 	return (error);
222 }
223 
224 int
225 freebsd32_wait6(struct thread *td, struct freebsd32_wait6_args *uap)
226 {
227 	struct wrusage32 wru32;
228 	struct __wrusage wru, *wrup;
229 	struct siginfo32 si32;
230 	struct __siginfo si, *sip;
231 	int error, status;
232 
233 	if (uap->wrusage != NULL)
234 		wrup = &wru;
235 	else
236 		wrup = NULL;
237 	if (uap->info != NULL) {
238 		sip = &si;
239 		bzero(sip, sizeof(*sip));
240 	} else
241 		sip = NULL;
242 	error = kern_wait6(td, uap->idtype, PAIR32TO64(id_t, uap->id),
243 	    &status, uap->options, wrup, sip);
244 	if (error != 0)
245 		return (error);
246 	if (uap->status != NULL)
247 		error = copyout(&status, uap->status, sizeof(status));
248 	if (uap->wrusage != NULL && error == 0) {
249 		freebsd32_rusage_out(&wru.wru_self, &wru32.wru_self);
250 		freebsd32_rusage_out(&wru.wru_children, &wru32.wru_children);
251 		error = copyout(&wru32, uap->wrusage, sizeof(wru32));
252 	}
253 	if (uap->info != NULL && error == 0) {
254 		siginfo_to_siginfo32 (&si, &si32);
255 		error = copyout(&si32, uap->info, sizeof(si32));
256 	}
257 	return (error);
258 }
259 
260 #ifdef COMPAT_FREEBSD4
261 static void
262 copy_statfs(struct statfs *in, struct statfs32 *out)
263 {
264 
265 	statfs_scale_blocks(in, INT32_MAX);
266 	bzero(out, sizeof(*out));
267 	CP(*in, *out, f_bsize);
268 	out->f_iosize = MIN(in->f_iosize, INT32_MAX);
269 	CP(*in, *out, f_blocks);
270 	CP(*in, *out, f_bfree);
271 	CP(*in, *out, f_bavail);
272 	out->f_files = MIN(in->f_files, INT32_MAX);
273 	out->f_ffree = MIN(in->f_ffree, INT32_MAX);
274 	CP(*in, *out, f_fsid);
275 	CP(*in, *out, f_owner);
276 	CP(*in, *out, f_type);
277 	CP(*in, *out, f_flags);
278 	out->f_syncwrites = MIN(in->f_syncwrites, INT32_MAX);
279 	out->f_asyncwrites = MIN(in->f_asyncwrites, INT32_MAX);
280 	strlcpy(out->f_fstypename,
281 	      in->f_fstypename, MFSNAMELEN);
282 	strlcpy(out->f_mntonname,
283 	      in->f_mntonname, min(MNAMELEN, FREEBSD4_MNAMELEN));
284 	out->f_syncreads = MIN(in->f_syncreads, INT32_MAX);
285 	out->f_asyncreads = MIN(in->f_asyncreads, INT32_MAX);
286 	strlcpy(out->f_mntfromname,
287 	      in->f_mntfromname, min(MNAMELEN, FREEBSD4_MNAMELEN));
288 }
289 #endif
290 
291 #ifdef COMPAT_FREEBSD4
292 int
293 freebsd4_freebsd32_getfsstat(struct thread *td,
294     struct freebsd4_freebsd32_getfsstat_args *uap)
295 {
296 	struct statfs *buf, *sp;
297 	struct statfs32 stat32;
298 	size_t count, size, copycount;
299 	int error;
300 
301 	count = uap->bufsize / sizeof(struct statfs32);
302 	size = count * sizeof(struct statfs);
303 	error = kern_getfsstat(td, &buf, size, &count, UIO_SYSSPACE, uap->mode);
304 	if (size > 0) {
305 		sp = buf;
306 		copycount = count;
307 		while (copycount > 0 && error == 0) {
308 			copy_statfs(sp, &stat32);
309 			error = copyout(&stat32, uap->buf, sizeof(stat32));
310 			sp++;
311 			uap->buf++;
312 			copycount--;
313 		}
314 		free(buf, M_STATFS);
315 	}
316 	if (error == 0)
317 		td->td_retval[0] = count;
318 	return (error);
319 }
320 #endif
321 
322 #ifdef COMPAT_FREEBSD10
323 int
324 freebsd10_freebsd32_pipe(struct thread *td,
325     struct freebsd10_freebsd32_pipe_args *uap) {
326 	return (freebsd10_pipe(td, (struct freebsd10_pipe_args*)uap));
327 }
328 #endif
329 
330 int
331 freebsd32_sigaltstack(struct thread *td,
332 		      struct freebsd32_sigaltstack_args *uap)
333 {
334 	struct sigaltstack32 s32;
335 	struct sigaltstack ss, oss, *ssp;
336 	int error;
337 
338 	if (uap->ss != NULL) {
339 		error = copyin(uap->ss, &s32, sizeof(s32));
340 		if (error)
341 			return (error);
342 		PTRIN_CP(s32, ss, ss_sp);
343 		CP(s32, ss, ss_size);
344 		CP(s32, ss, ss_flags);
345 		ssp = &ss;
346 	} else
347 		ssp = NULL;
348 	error = kern_sigaltstack(td, ssp, &oss);
349 	if (error == 0 && uap->oss != NULL) {
350 		PTROUT_CP(oss, s32, ss_sp);
351 		CP(oss, s32, ss_size);
352 		CP(oss, s32, ss_flags);
353 		error = copyout(&s32, uap->oss, sizeof(s32));
354 	}
355 	return (error);
356 }
357 
358 /*
359  * Custom version of exec_copyin_args() so that we can translate
360  * the pointers.
361  */
362 int
363 freebsd32_exec_copyin_args(struct image_args *args, const char *fname,
364     enum uio_seg segflg, u_int32_t *argv, u_int32_t *envv)
365 {
366 	char *argp, *envp;
367 	u_int32_t *p32, arg;
368 	int error;
369 
370 	bzero(args, sizeof(*args));
371 	if (argv == NULL)
372 		return (EFAULT);
373 
374 	/*
375 	 * Allocate demand-paged memory for the file name, argument, and
376 	 * environment strings.
377 	 */
378 	error = exec_alloc_args(args);
379 	if (error != 0)
380 		return (error);
381 
382 	/*
383 	 * Copy the file name.
384 	 */
385 	error = exec_args_add_fname(args, fname, segflg);
386 	if (error != 0)
387 		goto err_exit;
388 
389 	/*
390 	 * extract arguments first
391 	 */
392 	p32 = argv;
393 	for (;;) {
394 		error = copyin(p32++, &arg, sizeof(arg));
395 		if (error)
396 			goto err_exit;
397 		if (arg == 0)
398 			break;
399 		argp = PTRIN(arg);
400 		error = exec_args_add_arg(args, argp, UIO_USERSPACE);
401 		if (error != 0)
402 			goto err_exit;
403 	}
404 
405 	/*
406 	 * extract environment strings
407 	 */
408 	if (envv) {
409 		p32 = envv;
410 		for (;;) {
411 			error = copyin(p32++, &arg, sizeof(arg));
412 			if (error)
413 				goto err_exit;
414 			if (arg == 0)
415 				break;
416 			envp = PTRIN(arg);
417 			error = exec_args_add_env(args, envp, UIO_USERSPACE);
418 			if (error != 0)
419 				goto err_exit;
420 		}
421 	}
422 
423 	return (0);
424 
425 err_exit:
426 	exec_free_args(args);
427 	return (error);
428 }
429 
430 int
431 freebsd32_execve(struct thread *td, struct freebsd32_execve_args *uap)
432 {
433 	struct image_args eargs;
434 	struct vmspace *oldvmspace;
435 	int error;
436 
437 	error = pre_execve(td, &oldvmspace);
438 	if (error != 0)
439 		return (error);
440 	error = freebsd32_exec_copyin_args(&eargs, uap->fname, UIO_USERSPACE,
441 	    uap->argv, uap->envv);
442 	if (error == 0)
443 		error = kern_execve(td, &eargs, NULL, oldvmspace);
444 	post_execve(td, error, oldvmspace);
445 	AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td);
446 	return (error);
447 }
448 
449 int
450 freebsd32_fexecve(struct thread *td, struct freebsd32_fexecve_args *uap)
451 {
452 	struct image_args eargs;
453 	struct vmspace *oldvmspace;
454 	int error;
455 
456 	error = pre_execve(td, &oldvmspace);
457 	if (error != 0)
458 		return (error);
459 	error = freebsd32_exec_copyin_args(&eargs, NULL, UIO_SYSSPACE,
460 	    uap->argv, uap->envv);
461 	if (error == 0) {
462 		eargs.fd = uap->fd;
463 		error = kern_execve(td, &eargs, NULL, oldvmspace);
464 	}
465 	post_execve(td, error, oldvmspace);
466 	AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td);
467 	return (error);
468 }
469 
470 int
471 freebsd32_mknodat(struct thread *td, struct freebsd32_mknodat_args *uap)
472 {
473 
474 	return (kern_mknodat(td, uap->fd, uap->path, UIO_USERSPACE,
475 	    uap->mode, PAIR32TO64(dev_t, uap->dev)));
476 }
477 
478 int
479 freebsd32_mprotect(struct thread *td, struct freebsd32_mprotect_args *uap)
480 {
481 	int prot;
482 
483 	prot = uap->prot;
484 #if defined(__amd64__)
485 	if (i386_read_exec && (prot & PROT_READ) != 0)
486 		prot |= PROT_EXEC;
487 #endif
488 	return (kern_mprotect(td, (uintptr_t)PTRIN(uap->addr), uap->len,
489 	    prot));
490 }
491 
492 int
493 freebsd32_mmap(struct thread *td, struct freebsd32_mmap_args *uap)
494 {
495 	int prot;
496 
497 	prot = uap->prot;
498 #if defined(__amd64__)
499 	if (i386_read_exec && (prot & PROT_READ))
500 		prot |= PROT_EXEC;
501 #endif
502 
503 	return (kern_mmap(td, (uintptr_t)uap->addr, uap->len, prot,
504 	    uap->flags, uap->fd, PAIR32TO64(off_t, uap->pos)));
505 }
506 
507 #ifdef COMPAT_FREEBSD6
508 int
509 freebsd6_freebsd32_mmap(struct thread *td,
510     struct freebsd6_freebsd32_mmap_args *uap)
511 {
512 	int prot;
513 
514 	prot = uap->prot;
515 #if defined(__amd64__)
516 	if (i386_read_exec && (prot & PROT_READ))
517 		prot |= PROT_EXEC;
518 #endif
519 
520 	return (kern_mmap(td, (uintptr_t)uap->addr, uap->len, prot,
521 	    uap->flags, uap->fd, PAIR32TO64(off_t, uap->pos)));
522 }
523 #endif
524 
525 int
526 freebsd32_setitimer(struct thread *td, struct freebsd32_setitimer_args *uap)
527 {
528 	struct itimerval itv, oitv, *itvp;
529 	struct itimerval32 i32;
530 	int error;
531 
532 	if (uap->itv != NULL) {
533 		error = copyin(uap->itv, &i32, sizeof(i32));
534 		if (error)
535 			return (error);
536 		TV_CP(i32, itv, it_interval);
537 		TV_CP(i32, itv, it_value);
538 		itvp = &itv;
539 	} else
540 		itvp = NULL;
541 	error = kern_setitimer(td, uap->which, itvp, &oitv);
542 	if (error || uap->oitv == NULL)
543 		return (error);
544 	TV_CP(oitv, i32, it_interval);
545 	TV_CP(oitv, i32, it_value);
546 	return (copyout(&i32, uap->oitv, sizeof(i32)));
547 }
548 
549 int
550 freebsd32_getitimer(struct thread *td, struct freebsd32_getitimer_args *uap)
551 {
552 	struct itimerval itv;
553 	struct itimerval32 i32;
554 	int error;
555 
556 	error = kern_getitimer(td, uap->which, &itv);
557 	if (error || uap->itv == NULL)
558 		return (error);
559 	TV_CP(itv, i32, it_interval);
560 	TV_CP(itv, i32, it_value);
561 	return (copyout(&i32, uap->itv, sizeof(i32)));
562 }
563 
564 int
565 freebsd32_select(struct thread *td, struct freebsd32_select_args *uap)
566 {
567 	struct timeval32 tv32;
568 	struct timeval tv, *tvp;
569 	int error;
570 
571 	if (uap->tv != NULL) {
572 		error = copyin(uap->tv, &tv32, sizeof(tv32));
573 		if (error)
574 			return (error);
575 		CP(tv32, tv, tv_sec);
576 		CP(tv32, tv, tv_usec);
577 		tvp = &tv;
578 	} else
579 		tvp = NULL;
580 	/*
581 	 * XXX Do pointers need PTRIN()?
582 	 */
583 	return (kern_select(td, uap->nd, uap->in, uap->ou, uap->ex, tvp,
584 	    sizeof(int32_t) * 8));
585 }
586 
587 int
588 freebsd32_pselect(struct thread *td, struct freebsd32_pselect_args *uap)
589 {
590 	struct timespec32 ts32;
591 	struct timespec ts;
592 	struct timeval tv, *tvp;
593 	sigset_t set, *uset;
594 	int error;
595 
596 	if (uap->ts != NULL) {
597 		error = copyin(uap->ts, &ts32, sizeof(ts32));
598 		if (error != 0)
599 			return (error);
600 		CP(ts32, ts, tv_sec);
601 		CP(ts32, ts, tv_nsec);
602 		TIMESPEC_TO_TIMEVAL(&tv, &ts);
603 		tvp = &tv;
604 	} else
605 		tvp = NULL;
606 	if (uap->sm != NULL) {
607 		error = copyin(uap->sm, &set, sizeof(set));
608 		if (error != 0)
609 			return (error);
610 		uset = &set;
611 	} else
612 		uset = NULL;
613 	/*
614 	 * XXX Do pointers need PTRIN()?
615 	 */
616 	error = kern_pselect(td, uap->nd, uap->in, uap->ou, uap->ex, tvp,
617 	    uset, sizeof(int32_t) * 8);
618 	return (error);
619 }
620 
621 /*
622  * Copy 'count' items into the destination list pointed to by uap->eventlist.
623  */
624 static int
625 freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count)
626 {
627 	struct freebsd32_kevent_args *uap;
628 	struct kevent32	ks32[KQ_NEVENTS];
629 	uint64_t e;
630 	int i, j, error;
631 
632 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
633 	uap = (struct freebsd32_kevent_args *)arg;
634 
635 	for (i = 0; i < count; i++) {
636 		CP(kevp[i], ks32[i], ident);
637 		CP(kevp[i], ks32[i], filter);
638 		CP(kevp[i], ks32[i], flags);
639 		CP(kevp[i], ks32[i], fflags);
640 #if BYTE_ORDER == LITTLE_ENDIAN
641 		ks32[i].data1 = kevp[i].data;
642 		ks32[i].data2 = kevp[i].data >> 32;
643 #else
644 		ks32[i].data1 = kevp[i].data >> 32;
645 		ks32[i].data2 = kevp[i].data;
646 #endif
647 		PTROUT_CP(kevp[i], ks32[i], udata);
648 		for (j = 0; j < nitems(kevp->ext); j++) {
649 			e = kevp[i].ext[j];
650 #if BYTE_ORDER == LITTLE_ENDIAN
651 			ks32[i].ext64[2 * j] = e;
652 			ks32[i].ext64[2 * j + 1] = e >> 32;
653 #else
654 			ks32[i].ext64[2 * j] = e >> 32;
655 			ks32[i].ext64[2 * j + 1] = e;
656 #endif
657 		}
658 	}
659 	error = copyout(ks32, uap->eventlist, count * sizeof *ks32);
660 	if (error == 0)
661 		uap->eventlist += count;
662 	return (error);
663 }
664 
665 /*
666  * Copy 'count' items from the list pointed to by uap->changelist.
667  */
668 static int
669 freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count)
670 {
671 	struct freebsd32_kevent_args *uap;
672 	struct kevent32	ks32[KQ_NEVENTS];
673 	uint64_t e;
674 	int i, j, error;
675 
676 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
677 	uap = (struct freebsd32_kevent_args *)arg;
678 
679 	error = copyin(uap->changelist, ks32, count * sizeof *ks32);
680 	if (error)
681 		goto done;
682 	uap->changelist += count;
683 
684 	for (i = 0; i < count; i++) {
685 		CP(ks32[i], kevp[i], ident);
686 		CP(ks32[i], kevp[i], filter);
687 		CP(ks32[i], kevp[i], flags);
688 		CP(ks32[i], kevp[i], fflags);
689 		kevp[i].data = PAIR32TO64(uint64_t, ks32[i].data);
690 		PTRIN_CP(ks32[i], kevp[i], udata);
691 		for (j = 0; j < nitems(kevp->ext); j++) {
692 #if BYTE_ORDER == LITTLE_ENDIAN
693 			e = ks32[i].ext64[2 * j + 1];
694 			e <<= 32;
695 			e += ks32[i].ext64[2 * j];
696 #else
697 			e = ks32[i].ext64[2 * j];
698 			e <<= 32;
699 			e += ks32[i].ext64[2 * j + 1];
700 #endif
701 			kevp[i].ext[j] = e;
702 		}
703 	}
704 done:
705 	return (error);
706 }
707 
708 int
709 freebsd32_kevent(struct thread *td, struct freebsd32_kevent_args *uap)
710 {
711 	struct timespec32 ts32;
712 	struct timespec ts, *tsp;
713 	struct kevent_copyops k_ops = {
714 		.arg = uap,
715 		.k_copyout = freebsd32_kevent_copyout,
716 		.k_copyin = freebsd32_kevent_copyin,
717 	};
718 #ifdef KTRACE
719 	struct kevent32 *eventlist = uap->eventlist;
720 #endif
721 	int error;
722 
723 	if (uap->timeout) {
724 		error = copyin(uap->timeout, &ts32, sizeof(ts32));
725 		if (error)
726 			return (error);
727 		CP(ts32, ts, tv_sec);
728 		CP(ts32, ts, tv_nsec);
729 		tsp = &ts;
730 	} else
731 		tsp = NULL;
732 #ifdef KTRACE
733 	if (KTRPOINT(td, KTR_STRUCT_ARRAY))
734 		ktrstructarray("kevent32", UIO_USERSPACE, uap->changelist,
735 		    uap->nchanges, sizeof(struct kevent32));
736 #endif
737 	error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents,
738 	    &k_ops, tsp);
739 #ifdef KTRACE
740 	if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY))
741 		ktrstructarray("kevent32", UIO_USERSPACE, eventlist,
742 		    td->td_retval[0], sizeof(struct kevent32));
743 #endif
744 	return (error);
745 }
746 
747 #ifdef COMPAT_FREEBSD11
748 static int
749 freebsd32_kevent11_copyout(void *arg, struct kevent *kevp, int count)
750 {
751 	struct freebsd11_freebsd32_kevent_args *uap;
752 	struct kevent32_freebsd11 ks32[KQ_NEVENTS];
753 	int i, error;
754 
755 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
756 	uap = (struct freebsd11_freebsd32_kevent_args *)arg;
757 
758 	for (i = 0; i < count; i++) {
759 		CP(kevp[i], ks32[i], ident);
760 		CP(kevp[i], ks32[i], filter);
761 		CP(kevp[i], ks32[i], flags);
762 		CP(kevp[i], ks32[i], fflags);
763 		CP(kevp[i], ks32[i], data);
764 		PTROUT_CP(kevp[i], ks32[i], udata);
765 	}
766 	error = copyout(ks32, uap->eventlist, count * sizeof *ks32);
767 	if (error == 0)
768 		uap->eventlist += count;
769 	return (error);
770 }
771 
772 /*
773  * Copy 'count' items from the list pointed to by uap->changelist.
774  */
775 static int
776 freebsd32_kevent11_copyin(void *arg, struct kevent *kevp, int count)
777 {
778 	struct freebsd11_freebsd32_kevent_args *uap;
779 	struct kevent32_freebsd11 ks32[KQ_NEVENTS];
780 	int i, j, error;
781 
782 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
783 	uap = (struct freebsd11_freebsd32_kevent_args *)arg;
784 
785 	error = copyin(uap->changelist, ks32, count * sizeof *ks32);
786 	if (error)
787 		goto done;
788 	uap->changelist += count;
789 
790 	for (i = 0; i < count; i++) {
791 		CP(ks32[i], kevp[i], ident);
792 		CP(ks32[i], kevp[i], filter);
793 		CP(ks32[i], kevp[i], flags);
794 		CP(ks32[i], kevp[i], fflags);
795 		CP(ks32[i], kevp[i], data);
796 		PTRIN_CP(ks32[i], kevp[i], udata);
797 		for (j = 0; j < nitems(kevp->ext); j++)
798 			kevp[i].ext[j] = 0;
799 	}
800 done:
801 	return (error);
802 }
803 
804 int
805 freebsd11_freebsd32_kevent(struct thread *td,
806     struct freebsd11_freebsd32_kevent_args *uap)
807 {
808 	struct timespec32 ts32;
809 	struct timespec ts, *tsp;
810 	struct kevent_copyops k_ops = {
811 		.arg = uap,
812 		.k_copyout = freebsd32_kevent11_copyout,
813 		.k_copyin = freebsd32_kevent11_copyin,
814 	};
815 #ifdef KTRACE
816 	struct kevent32_freebsd11 *eventlist = uap->eventlist;
817 #endif
818 	int error;
819 
820 	if (uap->timeout) {
821 		error = copyin(uap->timeout, &ts32, sizeof(ts32));
822 		if (error)
823 			return (error);
824 		CP(ts32, ts, tv_sec);
825 		CP(ts32, ts, tv_nsec);
826 		tsp = &ts;
827 	} else
828 		tsp = NULL;
829 #ifdef KTRACE
830 	if (KTRPOINT(td, KTR_STRUCT_ARRAY))
831 		ktrstructarray("kevent32_freebsd11", UIO_USERSPACE,
832 		    uap->changelist, uap->nchanges,
833 		    sizeof(struct kevent32_freebsd11));
834 #endif
835 	error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents,
836 	    &k_ops, tsp);
837 #ifdef KTRACE
838 	if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY))
839 		ktrstructarray("kevent32_freebsd11", UIO_USERSPACE,
840 		    eventlist, td->td_retval[0],
841 		    sizeof(struct kevent32_freebsd11));
842 #endif
843 	return (error);
844 }
845 #endif
846 
847 int
848 freebsd32_gettimeofday(struct thread *td,
849 		       struct freebsd32_gettimeofday_args *uap)
850 {
851 	struct timeval atv;
852 	struct timeval32 atv32;
853 	struct timezone rtz;
854 	int error = 0;
855 
856 	if (uap->tp) {
857 		microtime(&atv);
858 		CP(atv, atv32, tv_sec);
859 		CP(atv, atv32, tv_usec);
860 		error = copyout(&atv32, uap->tp, sizeof (atv32));
861 	}
862 	if (error == 0 && uap->tzp != NULL) {
863 		rtz.tz_minuteswest = 0;
864 		rtz.tz_dsttime = 0;
865 		error = copyout(&rtz, uap->tzp, sizeof (rtz));
866 	}
867 	return (error);
868 }
869 
870 int
871 freebsd32_getrusage(struct thread *td, struct freebsd32_getrusage_args *uap)
872 {
873 	struct rusage32 s32;
874 	struct rusage s;
875 	int error;
876 
877 	error = kern_getrusage(td, uap->who, &s);
878 	if (error == 0) {
879 		freebsd32_rusage_out(&s, &s32);
880 		error = copyout(&s32, uap->rusage, sizeof(s32));
881 	}
882 	return (error);
883 }
884 
885 static void
886 ptrace_lwpinfo_to32(const struct ptrace_lwpinfo *pl,
887     struct ptrace_lwpinfo32 *pl32)
888 {
889 
890 	bzero(pl32, sizeof(*pl32));
891 	pl32->pl_lwpid = pl->pl_lwpid;
892 	pl32->pl_event = pl->pl_event;
893 	pl32->pl_flags = pl->pl_flags;
894 	pl32->pl_sigmask = pl->pl_sigmask;
895 	pl32->pl_siglist = pl->pl_siglist;
896 	siginfo_to_siginfo32(&pl->pl_siginfo, &pl32->pl_siginfo);
897 	strcpy(pl32->pl_tdname, pl->pl_tdname);
898 	pl32->pl_child_pid = pl->pl_child_pid;
899 	pl32->pl_syscall_code = pl->pl_syscall_code;
900 	pl32->pl_syscall_narg = pl->pl_syscall_narg;
901 }
902 
903 static void
904 ptrace_sc_ret_to32(const struct ptrace_sc_ret *psr,
905     struct ptrace_sc_ret32 *psr32)
906 {
907 
908 	bzero(psr32, sizeof(*psr32));
909 	psr32->sr_retval[0] = psr->sr_retval[0];
910 	psr32->sr_retval[1] = psr->sr_retval[1];
911 	psr32->sr_error = psr->sr_error;
912 }
913 
914 int
915 freebsd32_ptrace(struct thread *td, struct freebsd32_ptrace_args *uap)
916 {
917 	union {
918 		struct ptrace_io_desc piod;
919 		struct ptrace_lwpinfo pl;
920 		struct ptrace_vm_entry pve;
921 		struct dbreg32 dbreg;
922 		struct fpreg32 fpreg;
923 		struct reg32 reg;
924 		register_t args[nitems(td->td_sa.args)];
925 		struct ptrace_sc_ret psr;
926 		int ptevents;
927 	} r;
928 	union {
929 		struct ptrace_io_desc32 piod;
930 		struct ptrace_lwpinfo32 pl;
931 		struct ptrace_vm_entry32 pve;
932 		uint32_t args[nitems(td->td_sa.args)];
933 		struct ptrace_sc_ret32 psr;
934 	} r32;
935 	void *addr;
936 	int data, error = 0, i;
937 
938 	AUDIT_ARG_PID(uap->pid);
939 	AUDIT_ARG_CMD(uap->req);
940 	AUDIT_ARG_VALUE(uap->data);
941 	addr = &r;
942 	data = uap->data;
943 	switch (uap->req) {
944 	case PT_GET_EVENT_MASK:
945 	case PT_GET_SC_ARGS:
946 	case PT_GET_SC_RET:
947 		break;
948 	case PT_LWPINFO:
949 		if (uap->data > sizeof(r32.pl))
950 			return (EINVAL);
951 
952 		/*
953 		 * Pass size of native structure in 'data'.  Truncate
954 		 * if necessary to avoid siginfo.
955 		 */
956 		data = sizeof(r.pl);
957 		if (uap->data < offsetof(struct ptrace_lwpinfo32, pl_siginfo) +
958 		    sizeof(struct siginfo32))
959 			data = offsetof(struct ptrace_lwpinfo, pl_siginfo);
960 		break;
961 	case PT_GETREGS:
962 		bzero(&r.reg, sizeof(r.reg));
963 		break;
964 	case PT_GETFPREGS:
965 		bzero(&r.fpreg, sizeof(r.fpreg));
966 		break;
967 	case PT_GETDBREGS:
968 		bzero(&r.dbreg, sizeof(r.dbreg));
969 		break;
970 	case PT_SETREGS:
971 		error = copyin(uap->addr, &r.reg, sizeof(r.reg));
972 		break;
973 	case PT_SETFPREGS:
974 		error = copyin(uap->addr, &r.fpreg, sizeof(r.fpreg));
975 		break;
976 	case PT_SETDBREGS:
977 		error = copyin(uap->addr, &r.dbreg, sizeof(r.dbreg));
978 		break;
979 	case PT_SET_EVENT_MASK:
980 		if (uap->data != sizeof(r.ptevents))
981 			error = EINVAL;
982 		else
983 			error = copyin(uap->addr, &r.ptevents, uap->data);
984 		break;
985 	case PT_IO:
986 		error = copyin(uap->addr, &r32.piod, sizeof(r32.piod));
987 		if (error)
988 			break;
989 		CP(r32.piod, r.piod, piod_op);
990 		PTRIN_CP(r32.piod, r.piod, piod_offs);
991 		PTRIN_CP(r32.piod, r.piod, piod_addr);
992 		CP(r32.piod, r.piod, piod_len);
993 		break;
994 	case PT_VM_ENTRY:
995 		error = copyin(uap->addr, &r32.pve, sizeof(r32.pve));
996 		if (error)
997 			break;
998 
999 		CP(r32.pve, r.pve, pve_entry);
1000 		CP(r32.pve, r.pve, pve_timestamp);
1001 		CP(r32.pve, r.pve, pve_start);
1002 		CP(r32.pve, r.pve, pve_end);
1003 		CP(r32.pve, r.pve, pve_offset);
1004 		CP(r32.pve, r.pve, pve_prot);
1005 		CP(r32.pve, r.pve, pve_pathlen);
1006 		CP(r32.pve, r.pve, pve_fileid);
1007 		CP(r32.pve, r.pve, pve_fsid);
1008 		PTRIN_CP(r32.pve, r.pve, pve_path);
1009 		break;
1010 	default:
1011 		addr = uap->addr;
1012 		break;
1013 	}
1014 	if (error)
1015 		return (error);
1016 
1017 	error = kern_ptrace(td, uap->req, uap->pid, addr, data);
1018 	if (error)
1019 		return (error);
1020 
1021 	switch (uap->req) {
1022 	case PT_VM_ENTRY:
1023 		CP(r.pve, r32.pve, pve_entry);
1024 		CP(r.pve, r32.pve, pve_timestamp);
1025 		CP(r.pve, r32.pve, pve_start);
1026 		CP(r.pve, r32.pve, pve_end);
1027 		CP(r.pve, r32.pve, pve_offset);
1028 		CP(r.pve, r32.pve, pve_prot);
1029 		CP(r.pve, r32.pve, pve_pathlen);
1030 		CP(r.pve, r32.pve, pve_fileid);
1031 		CP(r.pve, r32.pve, pve_fsid);
1032 		error = copyout(&r32.pve, uap->addr, sizeof(r32.pve));
1033 		break;
1034 	case PT_IO:
1035 		CP(r.piod, r32.piod, piod_len);
1036 		error = copyout(&r32.piod, uap->addr, sizeof(r32.piod));
1037 		break;
1038 	case PT_GETREGS:
1039 		error = copyout(&r.reg, uap->addr, sizeof(r.reg));
1040 		break;
1041 	case PT_GETFPREGS:
1042 		error = copyout(&r.fpreg, uap->addr, sizeof(r.fpreg));
1043 		break;
1044 	case PT_GETDBREGS:
1045 		error = copyout(&r.dbreg, uap->addr, sizeof(r.dbreg));
1046 		break;
1047 	case PT_GET_EVENT_MASK:
1048 		/* NB: The size in uap->data is validated in kern_ptrace(). */
1049 		error = copyout(&r.ptevents, uap->addr, uap->data);
1050 		break;
1051 	case PT_LWPINFO:
1052 		ptrace_lwpinfo_to32(&r.pl, &r32.pl);
1053 		error = copyout(&r32.pl, uap->addr, uap->data);
1054 		break;
1055 	case PT_GET_SC_ARGS:
1056 		for (i = 0; i < nitems(r.args); i++)
1057 			r32.args[i] = (uint32_t)r.args[i];
1058 		error = copyout(r32.args, uap->addr, MIN(uap->data,
1059 		    sizeof(r32.args)));
1060 		break;
1061 	case PT_GET_SC_RET:
1062 		ptrace_sc_ret_to32(&r.psr, &r32.psr);
1063 		error = copyout(&r32.psr, uap->addr, MIN(uap->data,
1064 		    sizeof(r32.psr)));
1065 		break;
1066 	}
1067 
1068 	return (error);
1069 }
1070 
1071 static int
1072 freebsd32_copyinuio(struct iovec32 *iovp, u_int iovcnt, struct uio **uiop)
1073 {
1074 	struct iovec32 iov32;
1075 	struct iovec *iov;
1076 	struct uio *uio;
1077 	u_int iovlen;
1078 	int error, i;
1079 
1080 	*uiop = NULL;
1081 	if (iovcnt > UIO_MAXIOV)
1082 		return (EINVAL);
1083 	iovlen = iovcnt * sizeof(struct iovec);
1084 	uio = malloc(iovlen + sizeof *uio, M_IOV, M_WAITOK);
1085 	iov = (struct iovec *)(uio + 1);
1086 	for (i = 0; i < iovcnt; i++) {
1087 		error = copyin(&iovp[i], &iov32, sizeof(struct iovec32));
1088 		if (error) {
1089 			free(uio, M_IOV);
1090 			return (error);
1091 		}
1092 		iov[i].iov_base = PTRIN(iov32.iov_base);
1093 		iov[i].iov_len = iov32.iov_len;
1094 	}
1095 	uio->uio_iov = iov;
1096 	uio->uio_iovcnt = iovcnt;
1097 	uio->uio_segflg = UIO_USERSPACE;
1098 	uio->uio_offset = -1;
1099 	uio->uio_resid = 0;
1100 	for (i = 0; i < iovcnt; i++) {
1101 		if (iov->iov_len > INT_MAX - uio->uio_resid) {
1102 			free(uio, M_IOV);
1103 			return (EINVAL);
1104 		}
1105 		uio->uio_resid += iov->iov_len;
1106 		iov++;
1107 	}
1108 	*uiop = uio;
1109 	return (0);
1110 }
1111 
1112 int
1113 freebsd32_readv(struct thread *td, struct freebsd32_readv_args *uap)
1114 {
1115 	struct uio *auio;
1116 	int error;
1117 
1118 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
1119 	if (error)
1120 		return (error);
1121 	error = kern_readv(td, uap->fd, auio);
1122 	free(auio, M_IOV);
1123 	return (error);
1124 }
1125 
1126 int
1127 freebsd32_writev(struct thread *td, struct freebsd32_writev_args *uap)
1128 {
1129 	struct uio *auio;
1130 	int error;
1131 
1132 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
1133 	if (error)
1134 		return (error);
1135 	error = kern_writev(td, uap->fd, auio);
1136 	free(auio, M_IOV);
1137 	return (error);
1138 }
1139 
1140 int
1141 freebsd32_preadv(struct thread *td, struct freebsd32_preadv_args *uap)
1142 {
1143 	struct uio *auio;
1144 	int error;
1145 
1146 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
1147 	if (error)
1148 		return (error);
1149 	error = kern_preadv(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset));
1150 	free(auio, M_IOV);
1151 	return (error);
1152 }
1153 
1154 int
1155 freebsd32_pwritev(struct thread *td, struct freebsd32_pwritev_args *uap)
1156 {
1157 	struct uio *auio;
1158 	int error;
1159 
1160 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
1161 	if (error)
1162 		return (error);
1163 	error = kern_pwritev(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset));
1164 	free(auio, M_IOV);
1165 	return (error);
1166 }
1167 
1168 int
1169 freebsd32_copyiniov(struct iovec32 *iovp32, u_int iovcnt, struct iovec **iovp,
1170     int error)
1171 {
1172 	struct iovec32 iov32;
1173 	struct iovec *iov;
1174 	u_int iovlen;
1175 	int i;
1176 
1177 	*iovp = NULL;
1178 	if (iovcnt > UIO_MAXIOV)
1179 		return (error);
1180 	iovlen = iovcnt * sizeof(struct iovec);
1181 	iov = malloc(iovlen, M_IOV, M_WAITOK);
1182 	for (i = 0; i < iovcnt; i++) {
1183 		error = copyin(&iovp32[i], &iov32, sizeof(struct iovec32));
1184 		if (error) {
1185 			free(iov, M_IOV);
1186 			return (error);
1187 		}
1188 		iov[i].iov_base = PTRIN(iov32.iov_base);
1189 		iov[i].iov_len = iov32.iov_len;
1190 	}
1191 	*iovp = iov;
1192 	return (0);
1193 }
1194 
1195 static int
1196 freebsd32_copyinmsghdr(struct msghdr32 *msg32, struct msghdr *msg)
1197 {
1198 	struct msghdr32 m32;
1199 	int error;
1200 
1201 	error = copyin(msg32, &m32, sizeof(m32));
1202 	if (error)
1203 		return (error);
1204 	msg->msg_name = PTRIN(m32.msg_name);
1205 	msg->msg_namelen = m32.msg_namelen;
1206 	msg->msg_iov = PTRIN(m32.msg_iov);
1207 	msg->msg_iovlen = m32.msg_iovlen;
1208 	msg->msg_control = PTRIN(m32.msg_control);
1209 	msg->msg_controllen = m32.msg_controllen;
1210 	msg->msg_flags = m32.msg_flags;
1211 	return (0);
1212 }
1213 
1214 static int
1215 freebsd32_copyoutmsghdr(struct msghdr *msg, struct msghdr32 *msg32)
1216 {
1217 	struct msghdr32 m32;
1218 	int error;
1219 
1220 	m32.msg_name = PTROUT(msg->msg_name);
1221 	m32.msg_namelen = msg->msg_namelen;
1222 	m32.msg_iov = PTROUT(msg->msg_iov);
1223 	m32.msg_iovlen = msg->msg_iovlen;
1224 	m32.msg_control = PTROUT(msg->msg_control);
1225 	m32.msg_controllen = msg->msg_controllen;
1226 	m32.msg_flags = msg->msg_flags;
1227 	error = copyout(&m32, msg32, sizeof(m32));
1228 	return (error);
1229 }
1230 
1231 #ifndef __mips__
1232 #define FREEBSD32_ALIGNBYTES	(sizeof(int) - 1)
1233 #else
1234 #define FREEBSD32_ALIGNBYTES	(sizeof(long) - 1)
1235 #endif
1236 #define FREEBSD32_ALIGN(p)	\
1237 	(((u_long)(p) + FREEBSD32_ALIGNBYTES) & ~FREEBSD32_ALIGNBYTES)
1238 #define	FREEBSD32_CMSG_SPACE(l)	\
1239 	(FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + FREEBSD32_ALIGN(l))
1240 
1241 #define	FREEBSD32_CMSG_DATA(cmsg)	((unsigned char *)(cmsg) + \
1242 				 FREEBSD32_ALIGN(sizeof(struct cmsghdr)))
1243 
1244 static size_t
1245 freebsd32_cmsg_convert(const struct cmsghdr *cm, void *data, socklen_t datalen)
1246 {
1247 	size_t copylen;
1248 	union {
1249 		struct timespec32 ts;
1250 		struct timeval32 tv;
1251 		struct bintime32 bt;
1252 	} tmp32;
1253 
1254 	union {
1255 		struct timespec ts;
1256 		struct timeval tv;
1257 		struct bintime bt;
1258 	} *in;
1259 
1260 	in = data;
1261 	copylen = 0;
1262 	switch (cm->cmsg_level) {
1263 	case SOL_SOCKET:
1264 		switch (cm->cmsg_type) {
1265 		case SCM_TIMESTAMP:
1266 			TV_CP(*in, tmp32, tv);
1267 			copylen = sizeof(tmp32.tv);
1268 			break;
1269 
1270 		case SCM_BINTIME:
1271 			BT_CP(*in, tmp32, bt);
1272 			copylen = sizeof(tmp32.bt);
1273 			break;
1274 
1275 		case SCM_REALTIME:
1276 		case SCM_MONOTONIC:
1277 			TS_CP(*in, tmp32, ts);
1278 			copylen = sizeof(tmp32.ts);
1279 			break;
1280 
1281 		default:
1282 			break;
1283 		}
1284 
1285 	default:
1286 		break;
1287 	}
1288 
1289 	if (copylen == 0)
1290 		return (datalen);
1291 
1292 	KASSERT((datalen >= copylen), ("corrupted cmsghdr"));
1293 
1294 	bcopy(&tmp32, data, copylen);
1295 	return (copylen);
1296 }
1297 
1298 static int
1299 freebsd32_copy_msg_out(struct msghdr *msg, struct mbuf *control)
1300 {
1301 	struct cmsghdr *cm;
1302 	void *data;
1303 	socklen_t clen, datalen, datalen_out, oldclen;
1304 	int error;
1305 	caddr_t ctlbuf;
1306 	int len, maxlen, copylen;
1307 	struct mbuf *m;
1308 	error = 0;
1309 
1310 	len    = msg->msg_controllen;
1311 	maxlen = msg->msg_controllen;
1312 	msg->msg_controllen = 0;
1313 
1314 	ctlbuf = msg->msg_control;
1315 	for (m = control; m != NULL && len > 0; m = m->m_next) {
1316 		cm = mtod(m, struct cmsghdr *);
1317 		clen = m->m_len;
1318 		while (cm != NULL) {
1319 			if (sizeof(struct cmsghdr) > clen ||
1320 			    cm->cmsg_len > clen) {
1321 				error = EINVAL;
1322 				break;
1323 			}
1324 
1325 			data   = CMSG_DATA(cm);
1326 			datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1327 			datalen_out = freebsd32_cmsg_convert(cm, data, datalen);
1328 
1329 			/*
1330 			 * Copy out the message header.  Preserve the native
1331 			 * message size in case we need to inspect the message
1332 			 * contents later.
1333 			 */
1334 			copylen = sizeof(struct cmsghdr);
1335 			if (len < copylen) {
1336 				msg->msg_flags |= MSG_CTRUNC;
1337 				m_dispose_extcontrolm(m);
1338 				goto exit;
1339 			}
1340 			oldclen = cm->cmsg_len;
1341 			cm->cmsg_len = FREEBSD32_ALIGN(sizeof(struct cmsghdr)) +
1342 			    datalen_out;
1343 			error = copyout(cm, ctlbuf, copylen);
1344 			cm->cmsg_len = oldclen;
1345 			if (error != 0)
1346 				goto exit;
1347 
1348 			ctlbuf += FREEBSD32_ALIGN(copylen);
1349 			len    -= FREEBSD32_ALIGN(copylen);
1350 
1351 			copylen = datalen_out;
1352 			if (len < copylen) {
1353 				msg->msg_flags |= MSG_CTRUNC;
1354 				m_dispose_extcontrolm(m);
1355 				break;
1356 			}
1357 
1358 			/* Copy out the message data. */
1359 			error = copyout(data, ctlbuf, copylen);
1360 			if (error)
1361 				goto exit;
1362 
1363 			ctlbuf += FREEBSD32_ALIGN(copylen);
1364 			len    -= FREEBSD32_ALIGN(copylen);
1365 
1366 			if (CMSG_SPACE(datalen) < clen) {
1367 				clen -= CMSG_SPACE(datalen);
1368 				cm = (struct cmsghdr *)
1369 				    ((caddr_t)cm + CMSG_SPACE(datalen));
1370 			} else {
1371 				clen = 0;
1372 				cm = NULL;
1373 			}
1374 
1375 			msg->msg_controllen +=
1376 			    FREEBSD32_CMSG_SPACE(datalen_out);
1377 		}
1378 	}
1379 	if (len == 0 && m != NULL) {
1380 		msg->msg_flags |= MSG_CTRUNC;
1381 		m_dispose_extcontrolm(m);
1382 	}
1383 
1384 exit:
1385 	return (error);
1386 }
1387 
1388 int
1389 freebsd32_recvmsg(td, uap)
1390 	struct thread *td;
1391 	struct freebsd32_recvmsg_args /* {
1392 		int	s;
1393 		struct	msghdr32 *msg;
1394 		int	flags;
1395 	} */ *uap;
1396 {
1397 	struct msghdr msg;
1398 	struct msghdr32 m32;
1399 	struct iovec *uiov, *iov;
1400 	struct mbuf *control = NULL;
1401 	struct mbuf **controlp;
1402 
1403 	int error;
1404 	error = copyin(uap->msg, &m32, sizeof(m32));
1405 	if (error)
1406 		return (error);
1407 	error = freebsd32_copyinmsghdr(uap->msg, &msg);
1408 	if (error)
1409 		return (error);
1410 	error = freebsd32_copyiniov(PTRIN(m32.msg_iov), m32.msg_iovlen, &iov,
1411 	    EMSGSIZE);
1412 	if (error)
1413 		return (error);
1414 	msg.msg_flags = uap->flags;
1415 	uiov = msg.msg_iov;
1416 	msg.msg_iov = iov;
1417 
1418 	controlp = (msg.msg_control != NULL) ?  &control : NULL;
1419 	error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, controlp);
1420 	if (error == 0) {
1421 		msg.msg_iov = uiov;
1422 
1423 		if (control != NULL)
1424 			error = freebsd32_copy_msg_out(&msg, control);
1425 		else
1426 			msg.msg_controllen = 0;
1427 
1428 		if (error == 0)
1429 			error = freebsd32_copyoutmsghdr(&msg, uap->msg);
1430 	}
1431 	free(iov, M_IOV);
1432 
1433 	if (control != NULL) {
1434 		if (error != 0)
1435 			m_dispose_extcontrolm(control);
1436 		m_freem(control);
1437 	}
1438 
1439 	return (error);
1440 }
1441 
1442 /*
1443  * Copy-in the array of control messages constructed using alignment
1444  * and padding suitable for a 32-bit environment and construct an
1445  * mbuf using alignment and padding suitable for a 64-bit kernel.
1446  * The alignment and padding are defined indirectly by CMSG_DATA(),
1447  * CMSG_SPACE() and CMSG_LEN().
1448  */
1449 static int
1450 freebsd32_copyin_control(struct mbuf **mp, caddr_t buf, u_int buflen)
1451 {
1452 	struct cmsghdr *cm;
1453 	struct mbuf *m;
1454 	void *in, *in1, *md;
1455 	u_int msglen, outlen;
1456 	int error;
1457 
1458 	if (buflen > MCLBYTES)
1459 		return (EINVAL);
1460 
1461 	in = malloc(buflen, M_TEMP, M_WAITOK);
1462 	error = copyin(buf, in, buflen);
1463 	if (error != 0)
1464 		goto out;
1465 
1466 	/*
1467 	 * Make a pass over the input buffer to determine the amount of space
1468 	 * required for 64 bit-aligned copies of the control messages.
1469 	 */
1470 	in1 = in;
1471 	outlen = 0;
1472 	while (buflen > 0) {
1473 		if (buflen < sizeof(*cm)) {
1474 			error = EINVAL;
1475 			break;
1476 		}
1477 		cm = (struct cmsghdr *)in1;
1478 		if (cm->cmsg_len < FREEBSD32_ALIGN(sizeof(*cm))) {
1479 			error = EINVAL;
1480 			break;
1481 		}
1482 		msglen = FREEBSD32_ALIGN(cm->cmsg_len);
1483 		if (msglen > buflen || msglen < cm->cmsg_len) {
1484 			error = EINVAL;
1485 			break;
1486 		}
1487 		buflen -= msglen;
1488 
1489 		in1 = (char *)in1 + msglen;
1490 		outlen += CMSG_ALIGN(sizeof(*cm)) +
1491 		    CMSG_ALIGN(msglen - FREEBSD32_ALIGN(sizeof(*cm)));
1492 	}
1493 	if (error == 0 && outlen > MCLBYTES) {
1494 		/*
1495 		 * XXXMJ This implies that the upper limit on 32-bit aligned
1496 		 * control messages is less than MCLBYTES, and so we are not
1497 		 * perfectly compatible.  However, there is no platform
1498 		 * guarantee that mbuf clusters larger than MCLBYTES can be
1499 		 * allocated.
1500 		 */
1501 		error = EINVAL;
1502 	}
1503 	if (error != 0)
1504 		goto out;
1505 
1506 	m = m_get2(outlen, M_WAITOK, MT_CONTROL, 0);
1507 	m->m_len = outlen;
1508 	md = mtod(m, void *);
1509 
1510 	/*
1511 	 * Make a second pass over input messages, copying them into the output
1512 	 * buffer.
1513 	 */
1514 	in1 = in;
1515 	while (outlen > 0) {
1516 		/* Copy the message header and align the length field. */
1517 		cm = md;
1518 		memcpy(cm, in1, sizeof(*cm));
1519 		msglen = cm->cmsg_len - FREEBSD32_ALIGN(sizeof(*cm));
1520 		cm->cmsg_len = CMSG_ALIGN(sizeof(*cm)) + msglen;
1521 
1522 		/* Copy the message body. */
1523 		in1 = (char *)in1 + FREEBSD32_ALIGN(sizeof(*cm));
1524 		md = (char *)md + CMSG_ALIGN(sizeof(*cm));
1525 		memcpy(md, in1, msglen);
1526 		in1 = (char *)in1 + FREEBSD32_ALIGN(msglen);
1527 		md = (char *)md + CMSG_ALIGN(msglen);
1528 		KASSERT(outlen >= CMSG_ALIGN(sizeof(*cm)) + CMSG_ALIGN(msglen),
1529 		    ("outlen %u underflow, msglen %u", outlen, msglen));
1530 		outlen -= CMSG_ALIGN(sizeof(*cm)) + CMSG_ALIGN(msglen);
1531 	}
1532 
1533 	*mp = m;
1534 out:
1535 	free(in, M_TEMP);
1536 	return (error);
1537 }
1538 
1539 int
1540 freebsd32_sendmsg(struct thread *td,
1541 		  struct freebsd32_sendmsg_args *uap)
1542 {
1543 	struct msghdr msg;
1544 	struct msghdr32 m32;
1545 	struct iovec *iov;
1546 	struct mbuf *control = NULL;
1547 	struct sockaddr *to = NULL;
1548 	int error;
1549 
1550 	error = copyin(uap->msg, &m32, sizeof(m32));
1551 	if (error)
1552 		return (error);
1553 	error = freebsd32_copyinmsghdr(uap->msg, &msg);
1554 	if (error)
1555 		return (error);
1556 	error = freebsd32_copyiniov(PTRIN(m32.msg_iov), m32.msg_iovlen, &iov,
1557 	    EMSGSIZE);
1558 	if (error)
1559 		return (error);
1560 	msg.msg_iov = iov;
1561 	if (msg.msg_name != NULL) {
1562 		error = getsockaddr(&to, msg.msg_name, msg.msg_namelen);
1563 		if (error) {
1564 			to = NULL;
1565 			goto out;
1566 		}
1567 		msg.msg_name = to;
1568 	}
1569 
1570 	if (msg.msg_control) {
1571 		if (msg.msg_controllen < sizeof(struct cmsghdr)) {
1572 			error = EINVAL;
1573 			goto out;
1574 		}
1575 
1576 		error = freebsd32_copyin_control(&control, msg.msg_control,
1577 		    msg.msg_controllen);
1578 		if (error)
1579 			goto out;
1580 
1581 		msg.msg_control = NULL;
1582 		msg.msg_controllen = 0;
1583 	}
1584 
1585 	error = kern_sendit(td, uap->s, &msg, uap->flags, control,
1586 	    UIO_USERSPACE);
1587 
1588 out:
1589 	free(iov, M_IOV);
1590 	if (to)
1591 		free(to, M_SONAME);
1592 	return (error);
1593 }
1594 
1595 int
1596 freebsd32_recvfrom(struct thread *td,
1597 		   struct freebsd32_recvfrom_args *uap)
1598 {
1599 	struct msghdr msg;
1600 	struct iovec aiov;
1601 	int error;
1602 
1603 	if (uap->fromlenaddr) {
1604 		error = copyin(PTRIN(uap->fromlenaddr), &msg.msg_namelen,
1605 		    sizeof(msg.msg_namelen));
1606 		if (error)
1607 			return (error);
1608 	} else {
1609 		msg.msg_namelen = 0;
1610 	}
1611 
1612 	msg.msg_name = PTRIN(uap->from);
1613 	msg.msg_iov = &aiov;
1614 	msg.msg_iovlen = 1;
1615 	aiov.iov_base = PTRIN(uap->buf);
1616 	aiov.iov_len = uap->len;
1617 	msg.msg_control = NULL;
1618 	msg.msg_flags = uap->flags;
1619 	error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, NULL);
1620 	if (error == 0 && uap->fromlenaddr)
1621 		error = copyout(&msg.msg_namelen, PTRIN(uap->fromlenaddr),
1622 		    sizeof (msg.msg_namelen));
1623 	return (error);
1624 }
1625 
1626 int
1627 freebsd32_settimeofday(struct thread *td,
1628 		       struct freebsd32_settimeofday_args *uap)
1629 {
1630 	struct timeval32 tv32;
1631 	struct timeval tv, *tvp;
1632 	struct timezone tz, *tzp;
1633 	int error;
1634 
1635 	if (uap->tv) {
1636 		error = copyin(uap->tv, &tv32, sizeof(tv32));
1637 		if (error)
1638 			return (error);
1639 		CP(tv32, tv, tv_sec);
1640 		CP(tv32, tv, tv_usec);
1641 		tvp = &tv;
1642 	} else
1643 		tvp = NULL;
1644 	if (uap->tzp) {
1645 		error = copyin(uap->tzp, &tz, sizeof(tz));
1646 		if (error)
1647 			return (error);
1648 		tzp = &tz;
1649 	} else
1650 		tzp = NULL;
1651 	return (kern_settimeofday(td, tvp, tzp));
1652 }
1653 
1654 int
1655 freebsd32_utimes(struct thread *td, struct freebsd32_utimes_args *uap)
1656 {
1657 	struct timeval32 s32[2];
1658 	struct timeval s[2], *sp;
1659 	int error;
1660 
1661 	if (uap->tptr != NULL) {
1662 		error = copyin(uap->tptr, s32, sizeof(s32));
1663 		if (error)
1664 			return (error);
1665 		CP(s32[0], s[0], tv_sec);
1666 		CP(s32[0], s[0], tv_usec);
1667 		CP(s32[1], s[1], tv_sec);
1668 		CP(s32[1], s[1], tv_usec);
1669 		sp = s;
1670 	} else
1671 		sp = NULL;
1672 	return (kern_utimesat(td, AT_FDCWD, uap->path, UIO_USERSPACE,
1673 	    sp, UIO_SYSSPACE));
1674 }
1675 
1676 int
1677 freebsd32_lutimes(struct thread *td, struct freebsd32_lutimes_args *uap)
1678 {
1679 	struct timeval32 s32[2];
1680 	struct timeval s[2], *sp;
1681 	int error;
1682 
1683 	if (uap->tptr != NULL) {
1684 		error = copyin(uap->tptr, s32, sizeof(s32));
1685 		if (error)
1686 			return (error);
1687 		CP(s32[0], s[0], tv_sec);
1688 		CP(s32[0], s[0], tv_usec);
1689 		CP(s32[1], s[1], tv_sec);
1690 		CP(s32[1], s[1], tv_usec);
1691 		sp = s;
1692 	} else
1693 		sp = NULL;
1694 	return (kern_lutimes(td, uap->path, UIO_USERSPACE, sp, UIO_SYSSPACE));
1695 }
1696 
1697 int
1698 freebsd32_futimes(struct thread *td, struct freebsd32_futimes_args *uap)
1699 {
1700 	struct timeval32 s32[2];
1701 	struct timeval s[2], *sp;
1702 	int error;
1703 
1704 	if (uap->tptr != NULL) {
1705 		error = copyin(uap->tptr, s32, sizeof(s32));
1706 		if (error)
1707 			return (error);
1708 		CP(s32[0], s[0], tv_sec);
1709 		CP(s32[0], s[0], tv_usec);
1710 		CP(s32[1], s[1], tv_sec);
1711 		CP(s32[1], s[1], tv_usec);
1712 		sp = s;
1713 	} else
1714 		sp = NULL;
1715 	return (kern_futimes(td, uap->fd, sp, UIO_SYSSPACE));
1716 }
1717 
1718 int
1719 freebsd32_futimesat(struct thread *td, struct freebsd32_futimesat_args *uap)
1720 {
1721 	struct timeval32 s32[2];
1722 	struct timeval s[2], *sp;
1723 	int error;
1724 
1725 	if (uap->times != NULL) {
1726 		error = copyin(uap->times, s32, sizeof(s32));
1727 		if (error)
1728 			return (error);
1729 		CP(s32[0], s[0], tv_sec);
1730 		CP(s32[0], s[0], tv_usec);
1731 		CP(s32[1], s[1], tv_sec);
1732 		CP(s32[1], s[1], tv_usec);
1733 		sp = s;
1734 	} else
1735 		sp = NULL;
1736 	return (kern_utimesat(td, uap->fd, uap->path, UIO_USERSPACE,
1737 		sp, UIO_SYSSPACE));
1738 }
1739 
1740 int
1741 freebsd32_futimens(struct thread *td, struct freebsd32_futimens_args *uap)
1742 {
1743 	struct timespec32 ts32[2];
1744 	struct timespec ts[2], *tsp;
1745 	int error;
1746 
1747 	if (uap->times != NULL) {
1748 		error = copyin(uap->times, ts32, sizeof(ts32));
1749 		if (error)
1750 			return (error);
1751 		CP(ts32[0], ts[0], tv_sec);
1752 		CP(ts32[0], ts[0], tv_nsec);
1753 		CP(ts32[1], ts[1], tv_sec);
1754 		CP(ts32[1], ts[1], tv_nsec);
1755 		tsp = ts;
1756 	} else
1757 		tsp = NULL;
1758 	return (kern_futimens(td, uap->fd, tsp, UIO_SYSSPACE));
1759 }
1760 
1761 int
1762 freebsd32_utimensat(struct thread *td, struct freebsd32_utimensat_args *uap)
1763 {
1764 	struct timespec32 ts32[2];
1765 	struct timespec ts[2], *tsp;
1766 	int error;
1767 
1768 	if (uap->times != NULL) {
1769 		error = copyin(uap->times, ts32, sizeof(ts32));
1770 		if (error)
1771 			return (error);
1772 		CP(ts32[0], ts[0], tv_sec);
1773 		CP(ts32[0], ts[0], tv_nsec);
1774 		CP(ts32[1], ts[1], tv_sec);
1775 		CP(ts32[1], ts[1], tv_nsec);
1776 		tsp = ts;
1777 	} else
1778 		tsp = NULL;
1779 	return (kern_utimensat(td, uap->fd, uap->path, UIO_USERSPACE,
1780 	    tsp, UIO_SYSSPACE, uap->flag));
1781 }
1782 
1783 int
1784 freebsd32_adjtime(struct thread *td, struct freebsd32_adjtime_args *uap)
1785 {
1786 	struct timeval32 tv32;
1787 	struct timeval delta, olddelta, *deltap;
1788 	int error;
1789 
1790 	if (uap->delta) {
1791 		error = copyin(uap->delta, &tv32, sizeof(tv32));
1792 		if (error)
1793 			return (error);
1794 		CP(tv32, delta, tv_sec);
1795 		CP(tv32, delta, tv_usec);
1796 		deltap = &delta;
1797 	} else
1798 		deltap = NULL;
1799 	error = kern_adjtime(td, deltap, &olddelta);
1800 	if (uap->olddelta && error == 0) {
1801 		CP(olddelta, tv32, tv_sec);
1802 		CP(olddelta, tv32, tv_usec);
1803 		error = copyout(&tv32, uap->olddelta, sizeof(tv32));
1804 	}
1805 	return (error);
1806 }
1807 
1808 #ifdef COMPAT_FREEBSD4
1809 int
1810 freebsd4_freebsd32_statfs(struct thread *td, struct freebsd4_freebsd32_statfs_args *uap)
1811 {
1812 	struct statfs32 s32;
1813 	struct statfs *sp;
1814 	int error;
1815 
1816 	sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK);
1817 	error = kern_statfs(td, uap->path, UIO_USERSPACE, sp);
1818 	if (error == 0) {
1819 		copy_statfs(sp, &s32);
1820 		error = copyout(&s32, uap->buf, sizeof(s32));
1821 	}
1822 	free(sp, M_STATFS);
1823 	return (error);
1824 }
1825 #endif
1826 
1827 #ifdef COMPAT_FREEBSD4
1828 int
1829 freebsd4_freebsd32_fstatfs(struct thread *td, struct freebsd4_freebsd32_fstatfs_args *uap)
1830 {
1831 	struct statfs32 s32;
1832 	struct statfs *sp;
1833 	int error;
1834 
1835 	sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK);
1836 	error = kern_fstatfs(td, uap->fd, sp);
1837 	if (error == 0) {
1838 		copy_statfs(sp, &s32);
1839 		error = copyout(&s32, uap->buf, sizeof(s32));
1840 	}
1841 	free(sp, M_STATFS);
1842 	return (error);
1843 }
1844 #endif
1845 
1846 #ifdef COMPAT_FREEBSD4
1847 int
1848 freebsd4_freebsd32_fhstatfs(struct thread *td, struct freebsd4_freebsd32_fhstatfs_args *uap)
1849 {
1850 	struct statfs32 s32;
1851 	struct statfs *sp;
1852 	fhandle_t fh;
1853 	int error;
1854 
1855 	if ((error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t))) != 0)
1856 		return (error);
1857 	sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK);
1858 	error = kern_fhstatfs(td, fh, sp);
1859 	if (error == 0) {
1860 		copy_statfs(sp, &s32);
1861 		error = copyout(&s32, uap->buf, sizeof(s32));
1862 	}
1863 	free(sp, M_STATFS);
1864 	return (error);
1865 }
1866 #endif
1867 
1868 int
1869 freebsd32_pread(struct thread *td, struct freebsd32_pread_args *uap)
1870 {
1871 
1872 	return (kern_pread(td, uap->fd, uap->buf, uap->nbyte,
1873 	    PAIR32TO64(off_t, uap->offset)));
1874 }
1875 
1876 int
1877 freebsd32_pwrite(struct thread *td, struct freebsd32_pwrite_args *uap)
1878 {
1879 
1880 	return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte,
1881 	    PAIR32TO64(off_t, uap->offset)));
1882 }
1883 
1884 #ifdef COMPAT_43
1885 int
1886 ofreebsd32_lseek(struct thread *td, struct ofreebsd32_lseek_args *uap)
1887 {
1888 
1889 	return (kern_lseek(td, uap->fd, uap->offset, uap->whence));
1890 }
1891 #endif
1892 
1893 int
1894 freebsd32_lseek(struct thread *td, struct freebsd32_lseek_args *uap)
1895 {
1896 	int error;
1897 	off_t pos;
1898 
1899 	error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset),
1900 	    uap->whence);
1901 	/* Expand the quad return into two parts for eax and edx */
1902 	pos = td->td_uretoff.tdu_off;
1903 	td->td_retval[RETVAL_LO] = pos & 0xffffffff;	/* %eax */
1904 	td->td_retval[RETVAL_HI] = pos >> 32;		/* %edx */
1905 	return error;
1906 }
1907 
1908 int
1909 freebsd32_truncate(struct thread *td, struct freebsd32_truncate_args *uap)
1910 {
1911 
1912 	return (kern_truncate(td, uap->path, UIO_USERSPACE,
1913 	    PAIR32TO64(off_t, uap->length)));
1914 }
1915 
1916 int
1917 freebsd32_ftruncate(struct thread *td, struct freebsd32_ftruncate_args *uap)
1918 {
1919 
1920 	return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length)));
1921 }
1922 
1923 #ifdef COMPAT_43
1924 int
1925 ofreebsd32_getdirentries(struct thread *td,
1926     struct ofreebsd32_getdirentries_args *uap)
1927 {
1928 	struct ogetdirentries_args ap;
1929 	int error;
1930 	long loff;
1931 	int32_t loff_cut;
1932 
1933 	ap.fd = uap->fd;
1934 	ap.buf = uap->buf;
1935 	ap.count = uap->count;
1936 	ap.basep = NULL;
1937 	error = kern_ogetdirentries(td, &ap, &loff);
1938 	if (error == 0) {
1939 		loff_cut = loff;
1940 		error = copyout(&loff_cut, uap->basep, sizeof(int32_t));
1941 	}
1942 	return (error);
1943 }
1944 #endif
1945 
1946 #if defined(COMPAT_FREEBSD11)
1947 int
1948 freebsd11_freebsd32_getdirentries(struct thread *td,
1949     struct freebsd11_freebsd32_getdirentries_args *uap)
1950 {
1951 	long base;
1952 	int32_t base32;
1953 	int error;
1954 
1955 	error = freebsd11_kern_getdirentries(td, uap->fd, uap->buf, uap->count,
1956 	    &base, NULL);
1957 	if (error)
1958 		return (error);
1959 	if (uap->basep != NULL) {
1960 		base32 = base;
1961 		error = copyout(&base32, uap->basep, sizeof(int32_t));
1962 	}
1963 	return (error);
1964 }
1965 
1966 int
1967 freebsd11_freebsd32_getdents(struct thread *td,
1968     struct freebsd11_freebsd32_getdents_args *uap)
1969 {
1970 	struct freebsd11_freebsd32_getdirentries_args ap;
1971 
1972 	ap.fd = uap->fd;
1973 	ap.buf = uap->buf;
1974 	ap.count = uap->count;
1975 	ap.basep = NULL;
1976 	return (freebsd11_freebsd32_getdirentries(td, &ap));
1977 }
1978 #endif /* COMPAT_FREEBSD11 */
1979 
1980 #ifdef COMPAT_FREEBSD6
1981 /* versions with the 'int pad' argument */
1982 int
1983 freebsd6_freebsd32_pread(struct thread *td, struct freebsd6_freebsd32_pread_args *uap)
1984 {
1985 
1986 	return (kern_pread(td, uap->fd, uap->buf, uap->nbyte,
1987 	    PAIR32TO64(off_t, uap->offset)));
1988 }
1989 
1990 int
1991 freebsd6_freebsd32_pwrite(struct thread *td, struct freebsd6_freebsd32_pwrite_args *uap)
1992 {
1993 
1994 	return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte,
1995 	    PAIR32TO64(off_t, uap->offset)));
1996 }
1997 
1998 int
1999 freebsd6_freebsd32_lseek(struct thread *td, struct freebsd6_freebsd32_lseek_args *uap)
2000 {
2001 	int error;
2002 	off_t pos;
2003 
2004 	error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset),
2005 	    uap->whence);
2006 	/* Expand the quad return into two parts for eax and edx */
2007 	pos = *(off_t *)(td->td_retval);
2008 	td->td_retval[RETVAL_LO] = pos & 0xffffffff;	/* %eax */
2009 	td->td_retval[RETVAL_HI] = pos >> 32;		/* %edx */
2010 	return error;
2011 }
2012 
2013 int
2014 freebsd6_freebsd32_truncate(struct thread *td, struct freebsd6_freebsd32_truncate_args *uap)
2015 {
2016 
2017 	return (kern_truncate(td, uap->path, UIO_USERSPACE,
2018 	    PAIR32TO64(off_t, uap->length)));
2019 }
2020 
2021 int
2022 freebsd6_freebsd32_ftruncate(struct thread *td, struct freebsd6_freebsd32_ftruncate_args *uap)
2023 {
2024 
2025 	return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length)));
2026 }
2027 #endif /* COMPAT_FREEBSD6 */
2028 
2029 struct sf_hdtr32 {
2030 	uint32_t headers;
2031 	int hdr_cnt;
2032 	uint32_t trailers;
2033 	int trl_cnt;
2034 };
2035 
2036 static int
2037 freebsd32_do_sendfile(struct thread *td,
2038     struct freebsd32_sendfile_args *uap, int compat)
2039 {
2040 	struct sf_hdtr32 hdtr32;
2041 	struct sf_hdtr hdtr;
2042 	struct uio *hdr_uio, *trl_uio;
2043 	struct file *fp;
2044 	cap_rights_t rights;
2045 	struct iovec32 *iov32;
2046 	off_t offset, sbytes;
2047 	int error;
2048 
2049 	offset = PAIR32TO64(off_t, uap->offset);
2050 	if (offset < 0)
2051 		return (EINVAL);
2052 
2053 	hdr_uio = trl_uio = NULL;
2054 
2055 	if (uap->hdtr != NULL) {
2056 		error = copyin(uap->hdtr, &hdtr32, sizeof(hdtr32));
2057 		if (error)
2058 			goto out;
2059 		PTRIN_CP(hdtr32, hdtr, headers);
2060 		CP(hdtr32, hdtr, hdr_cnt);
2061 		PTRIN_CP(hdtr32, hdtr, trailers);
2062 		CP(hdtr32, hdtr, trl_cnt);
2063 
2064 		if (hdtr.headers != NULL) {
2065 			iov32 = PTRIN(hdtr32.headers);
2066 			error = freebsd32_copyinuio(iov32,
2067 			    hdtr32.hdr_cnt, &hdr_uio);
2068 			if (error)
2069 				goto out;
2070 #ifdef COMPAT_FREEBSD4
2071 			/*
2072 			 * In FreeBSD < 5.0 the nbytes to send also included
2073 			 * the header.  If compat is specified subtract the
2074 			 * header size from nbytes.
2075 			 */
2076 			if (compat) {
2077 				if (uap->nbytes > hdr_uio->uio_resid)
2078 					uap->nbytes -= hdr_uio->uio_resid;
2079 				else
2080 					uap->nbytes = 0;
2081 			}
2082 #endif
2083 		}
2084 		if (hdtr.trailers != NULL) {
2085 			iov32 = PTRIN(hdtr32.trailers);
2086 			error = freebsd32_copyinuio(iov32,
2087 			    hdtr32.trl_cnt, &trl_uio);
2088 			if (error)
2089 				goto out;
2090 		}
2091 	}
2092 
2093 	AUDIT_ARG_FD(uap->fd);
2094 
2095 	if ((error = fget_read(td, uap->fd,
2096 	    cap_rights_init(&rights, CAP_PREAD), &fp)) != 0)
2097 		goto out;
2098 
2099 	error = fo_sendfile(fp, uap->s, hdr_uio, trl_uio, offset,
2100 	    uap->nbytes, &sbytes, uap->flags, td);
2101 	fdrop(fp, td);
2102 
2103 	if (uap->sbytes != NULL)
2104 		copyout(&sbytes, uap->sbytes, sizeof(off_t));
2105 
2106 out:
2107 	if (hdr_uio)
2108 		free(hdr_uio, M_IOV);
2109 	if (trl_uio)
2110 		free(trl_uio, M_IOV);
2111 	return (error);
2112 }
2113 
2114 #ifdef COMPAT_FREEBSD4
2115 int
2116 freebsd4_freebsd32_sendfile(struct thread *td,
2117     struct freebsd4_freebsd32_sendfile_args *uap)
2118 {
2119 	return (freebsd32_do_sendfile(td,
2120 	    (struct freebsd32_sendfile_args *)uap, 1));
2121 }
2122 #endif
2123 
2124 int
2125 freebsd32_sendfile(struct thread *td, struct freebsd32_sendfile_args *uap)
2126 {
2127 
2128 	return (freebsd32_do_sendfile(td, uap, 0));
2129 }
2130 
2131 static void
2132 copy_stat(struct stat *in, struct stat32 *out)
2133 {
2134 
2135 	CP(*in, *out, st_dev);
2136 	CP(*in, *out, st_ino);
2137 	CP(*in, *out, st_mode);
2138 	CP(*in, *out, st_nlink);
2139 	CP(*in, *out, st_uid);
2140 	CP(*in, *out, st_gid);
2141 	CP(*in, *out, st_rdev);
2142 	TS_CP(*in, *out, st_atim);
2143 	TS_CP(*in, *out, st_mtim);
2144 	TS_CP(*in, *out, st_ctim);
2145 	CP(*in, *out, st_size);
2146 	CP(*in, *out, st_blocks);
2147 	CP(*in, *out, st_blksize);
2148 	CP(*in, *out, st_flags);
2149 	CP(*in, *out, st_gen);
2150 	TS_CP(*in, *out, st_birthtim);
2151 	out->st_padding0 = 0;
2152 	out->st_padding1 = 0;
2153 #ifdef __STAT32_TIME_T_EXT
2154 	out->st_atim_ext = 0;
2155 	out->st_mtim_ext = 0;
2156 	out->st_ctim_ext = 0;
2157 	out->st_btim_ext = 0;
2158 #endif
2159 	bzero(out->st_spare, sizeof(out->st_spare));
2160 }
2161 
2162 #ifdef COMPAT_43
2163 static void
2164 copy_ostat(struct stat *in, struct ostat32 *out)
2165 {
2166 
2167 	bzero(out, sizeof(*out));
2168 	CP(*in, *out, st_dev);
2169 	CP(*in, *out, st_ino);
2170 	CP(*in, *out, st_mode);
2171 	CP(*in, *out, st_nlink);
2172 	CP(*in, *out, st_uid);
2173 	CP(*in, *out, st_gid);
2174 	CP(*in, *out, st_rdev);
2175 	out->st_size = MIN(in->st_size, INT32_MAX);
2176 	TS_CP(*in, *out, st_atim);
2177 	TS_CP(*in, *out, st_mtim);
2178 	TS_CP(*in, *out, st_ctim);
2179 	CP(*in, *out, st_blksize);
2180 	CP(*in, *out, st_blocks);
2181 	CP(*in, *out, st_flags);
2182 	CP(*in, *out, st_gen);
2183 }
2184 #endif
2185 
2186 #ifdef COMPAT_43
2187 int
2188 ofreebsd32_stat(struct thread *td, struct ofreebsd32_stat_args *uap)
2189 {
2190 	struct stat sb;
2191 	struct ostat32 sb32;
2192 	int error;
2193 
2194 	error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE,
2195 	    &sb, NULL);
2196 	if (error)
2197 		return (error);
2198 	copy_ostat(&sb, &sb32);
2199 	error = copyout(&sb32, uap->ub, sizeof (sb32));
2200 	return (error);
2201 }
2202 #endif
2203 
2204 int
2205 freebsd32_fstat(struct thread *td, struct freebsd32_fstat_args *uap)
2206 {
2207 	struct stat ub;
2208 	struct stat32 ub32;
2209 	int error;
2210 
2211 	error = kern_fstat(td, uap->fd, &ub);
2212 	if (error)
2213 		return (error);
2214 	copy_stat(&ub, &ub32);
2215 	error = copyout(&ub32, uap->ub, sizeof(ub32));
2216 	return (error);
2217 }
2218 
2219 #ifdef COMPAT_43
2220 int
2221 ofreebsd32_fstat(struct thread *td, struct ofreebsd32_fstat_args *uap)
2222 {
2223 	struct stat ub;
2224 	struct ostat32 ub32;
2225 	int error;
2226 
2227 	error = kern_fstat(td, uap->fd, &ub);
2228 	if (error)
2229 		return (error);
2230 	copy_ostat(&ub, &ub32);
2231 	error = copyout(&ub32, uap->ub, sizeof(ub32));
2232 	return (error);
2233 }
2234 #endif
2235 
2236 int
2237 freebsd32_fstatat(struct thread *td, struct freebsd32_fstatat_args *uap)
2238 {
2239 	struct stat ub;
2240 	struct stat32 ub32;
2241 	int error;
2242 
2243 	error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE,
2244 	    &ub, NULL);
2245 	if (error)
2246 		return (error);
2247 	copy_stat(&ub, &ub32);
2248 	error = copyout(&ub32, uap->buf, sizeof(ub32));
2249 	return (error);
2250 }
2251 
2252 #ifdef COMPAT_43
2253 int
2254 ofreebsd32_lstat(struct thread *td, struct ofreebsd32_lstat_args *uap)
2255 {
2256 	struct stat sb;
2257 	struct ostat32 sb32;
2258 	int error;
2259 
2260 	error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path,
2261 	    UIO_USERSPACE, &sb, NULL);
2262 	if (error)
2263 		return (error);
2264 	copy_ostat(&sb, &sb32);
2265 	error = copyout(&sb32, uap->ub, sizeof (sb32));
2266 	return (error);
2267 }
2268 #endif
2269 
2270 int
2271 freebsd32_fhstat(struct thread *td, struct freebsd32_fhstat_args *uap)
2272 {
2273 	struct stat sb;
2274 	struct stat32 sb32;
2275 	struct fhandle fh;
2276 	int error;
2277 
2278 	error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t));
2279         if (error != 0)
2280                 return (error);
2281 	error = kern_fhstat(td, fh, &sb);
2282 	if (error != 0)
2283 		return (error);
2284 	copy_stat(&sb, &sb32);
2285 	error = copyout(&sb32, uap->sb, sizeof (sb32));
2286 	return (error);
2287 }
2288 
2289 #if defined(COMPAT_FREEBSD11)
2290 extern int ino64_trunc_error;
2291 
2292 static int
2293 freebsd11_cvtstat32(struct stat *in, struct freebsd11_stat32 *out)
2294 {
2295 
2296 	CP(*in, *out, st_ino);
2297 	if (in->st_ino != out->st_ino) {
2298 		switch (ino64_trunc_error) {
2299 		default:
2300 		case 0:
2301 			break;
2302 		case 1:
2303 			return (EOVERFLOW);
2304 		case 2:
2305 			out->st_ino = UINT32_MAX;
2306 			break;
2307 		}
2308 	}
2309 	CP(*in, *out, st_nlink);
2310 	if (in->st_nlink != out->st_nlink) {
2311 		switch (ino64_trunc_error) {
2312 		default:
2313 		case 0:
2314 			break;
2315 		case 1:
2316 			return (EOVERFLOW);
2317 		case 2:
2318 			out->st_nlink = UINT16_MAX;
2319 			break;
2320 		}
2321 	}
2322 	out->st_dev = in->st_dev;
2323 	if (out->st_dev != in->st_dev) {
2324 		switch (ino64_trunc_error) {
2325 		default:
2326 			break;
2327 		case 1:
2328 			return (EOVERFLOW);
2329 		}
2330 	}
2331 	CP(*in, *out, st_mode);
2332 	CP(*in, *out, st_uid);
2333 	CP(*in, *out, st_gid);
2334 	out->st_rdev = in->st_rdev;
2335 	if (out->st_rdev != in->st_rdev) {
2336 		switch (ino64_trunc_error) {
2337 		default:
2338 			break;
2339 		case 1:
2340 			return (EOVERFLOW);
2341 		}
2342 	}
2343 	TS_CP(*in, *out, st_atim);
2344 	TS_CP(*in, *out, st_mtim);
2345 	TS_CP(*in, *out, st_ctim);
2346 	CP(*in, *out, st_size);
2347 	CP(*in, *out, st_blocks);
2348 	CP(*in, *out, st_blksize);
2349 	CP(*in, *out, st_flags);
2350 	CP(*in, *out, st_gen);
2351 	TS_CP(*in, *out, st_birthtim);
2352 	out->st_lspare = 0;
2353 	bzero((char *)&out->st_birthtim + sizeof(out->st_birthtim),
2354 	    sizeof(*out) - offsetof(struct freebsd11_stat32,
2355 	    st_birthtim) - sizeof(out->st_birthtim));
2356 	return (0);
2357 }
2358 
2359 int
2360 freebsd11_freebsd32_stat(struct thread *td,
2361     struct freebsd11_freebsd32_stat_args *uap)
2362 {
2363 	struct stat sb;
2364 	struct freebsd11_stat32 sb32;
2365 	int error;
2366 
2367 	error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE,
2368 	    &sb, NULL);
2369 	if (error != 0)
2370 		return (error);
2371 	error = freebsd11_cvtstat32(&sb, &sb32);
2372 	if (error == 0)
2373 		error = copyout(&sb32, uap->ub, sizeof (sb32));
2374 	return (error);
2375 }
2376 
2377 int
2378 freebsd11_freebsd32_fstat(struct thread *td,
2379     struct freebsd11_freebsd32_fstat_args *uap)
2380 {
2381 	struct stat sb;
2382 	struct freebsd11_stat32 sb32;
2383 	int error;
2384 
2385 	error = kern_fstat(td, uap->fd, &sb);
2386 	if (error != 0)
2387 		return (error);
2388 	error = freebsd11_cvtstat32(&sb, &sb32);
2389 	if (error == 0)
2390 		error = copyout(&sb32, uap->ub, sizeof (sb32));
2391 	return (error);
2392 }
2393 
2394 int
2395 freebsd11_freebsd32_fstatat(struct thread *td,
2396     struct freebsd11_freebsd32_fstatat_args *uap)
2397 {
2398 	struct stat sb;
2399 	struct freebsd11_stat32 sb32;
2400 	int error;
2401 
2402 	error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE,
2403 	    &sb, NULL);
2404 	if (error != 0)
2405 		return (error);
2406 	error = freebsd11_cvtstat32(&sb, &sb32);
2407 	if (error == 0)
2408 		error = copyout(&sb32, uap->buf, sizeof (sb32));
2409 	return (error);
2410 }
2411 
2412 int
2413 freebsd11_freebsd32_lstat(struct thread *td,
2414     struct freebsd11_freebsd32_lstat_args *uap)
2415 {
2416 	struct stat sb;
2417 	struct freebsd11_stat32 sb32;
2418 	int error;
2419 
2420 	error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path,
2421 	    UIO_USERSPACE, &sb, NULL);
2422 	if (error != 0)
2423 		return (error);
2424 	error = freebsd11_cvtstat32(&sb, &sb32);
2425 	if (error == 0)
2426 		error = copyout(&sb32, uap->ub, sizeof (sb32));
2427 	return (error);
2428 }
2429 
2430 int
2431 freebsd11_freebsd32_fhstat(struct thread *td,
2432     struct freebsd11_freebsd32_fhstat_args *uap)
2433 {
2434 	struct stat sb;
2435 	struct freebsd11_stat32 sb32;
2436 	struct fhandle fh;
2437 	int error;
2438 
2439 	error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t));
2440         if (error != 0)
2441                 return (error);
2442 	error = kern_fhstat(td, fh, &sb);
2443 	if (error != 0)
2444 		return (error);
2445 	error = freebsd11_cvtstat32(&sb, &sb32);
2446 	if (error == 0)
2447 		error = copyout(&sb32, uap->sb, sizeof (sb32));
2448 	return (error);
2449 }
2450 #endif
2451 
2452 int
2453 freebsd32___sysctl(struct thread *td, struct freebsd32___sysctl_args *uap)
2454 {
2455 	int error, name[CTL_MAXNAME];
2456 	size_t j, oldlen;
2457 	uint32_t tmp;
2458 
2459 	if (uap->namelen > CTL_MAXNAME || uap->namelen < 2)
2460 		return (EINVAL);
2461  	error = copyin(uap->name, name, uap->namelen * sizeof(int));
2462  	if (error)
2463 		return (error);
2464 	if (uap->oldlenp) {
2465 		error = fueword32(uap->oldlenp, &tmp);
2466 		oldlen = tmp;
2467 	} else {
2468 		oldlen = 0;
2469 	}
2470 	if (error != 0)
2471 		return (EFAULT);
2472 	error = userland_sysctl(td, name, uap->namelen,
2473 		uap->old, &oldlen, 1,
2474 		uap->new, uap->newlen, &j, SCTL_MASK32);
2475 	if (error)
2476 		return (error);
2477 	if (uap->oldlenp)
2478 		suword32(uap->oldlenp, j);
2479 	return (0);
2480 }
2481 
2482 int
2483 freebsd32___sysctlbyname(struct thread *td,
2484     struct freebsd32___sysctlbyname_args *uap)
2485 {
2486 	size_t oldlen, rv;
2487 	int error;
2488 	uint32_t tmp;
2489 
2490 	if (uap->oldlenp != NULL) {
2491 		error = fueword32(uap->oldlenp, &tmp);
2492 		oldlen = tmp;
2493 	} else {
2494 		error = oldlen = 0;
2495 	}
2496 	if (error != 0)
2497 		return (EFAULT);
2498 	error = kern___sysctlbyname(td, uap->name, uap->namelen, uap->old,
2499 	    &oldlen, uap->new, uap->newlen, &rv, SCTL_MASK32, 1);
2500 	if (error != 0)
2501 		return (error);
2502 	if (uap->oldlenp != NULL)
2503 		error = suword32(uap->oldlenp, rv);
2504 
2505 	return (error);
2506 }
2507 
2508 int
2509 freebsd32_jail(struct thread *td, struct freebsd32_jail_args *uap)
2510 {
2511 	uint32_t version;
2512 	int error;
2513 	struct jail j;
2514 
2515 	error = copyin(uap->jail, &version, sizeof(uint32_t));
2516 	if (error)
2517 		return (error);
2518 
2519 	switch (version) {
2520 	case 0:
2521 	{
2522 		/* FreeBSD single IPv4 jails. */
2523 		struct jail32_v0 j32_v0;
2524 
2525 		bzero(&j, sizeof(struct jail));
2526 		error = copyin(uap->jail, &j32_v0, sizeof(struct jail32_v0));
2527 		if (error)
2528 			return (error);
2529 		CP(j32_v0, j, version);
2530 		PTRIN_CP(j32_v0, j, path);
2531 		PTRIN_CP(j32_v0, j, hostname);
2532 		j.ip4s = htonl(j32_v0.ip_number);	/* jail_v0 is host order */
2533 		break;
2534 	}
2535 
2536 	case 1:
2537 		/*
2538 		 * Version 1 was used by multi-IPv4 jail implementations
2539 		 * that never made it into the official kernel.
2540 		 */
2541 		return (EINVAL);
2542 
2543 	case 2:	/* JAIL_API_VERSION */
2544 	{
2545 		/* FreeBSD multi-IPv4/IPv6,noIP jails. */
2546 		struct jail32 j32;
2547 
2548 		error = copyin(uap->jail, &j32, sizeof(struct jail32));
2549 		if (error)
2550 			return (error);
2551 		CP(j32, j, version);
2552 		PTRIN_CP(j32, j, path);
2553 		PTRIN_CP(j32, j, hostname);
2554 		PTRIN_CP(j32, j, jailname);
2555 		CP(j32, j, ip4s);
2556 		CP(j32, j, ip6s);
2557 		PTRIN_CP(j32, j, ip4);
2558 		PTRIN_CP(j32, j, ip6);
2559 		break;
2560 	}
2561 
2562 	default:
2563 		/* Sci-Fi jails are not supported, sorry. */
2564 		return (EINVAL);
2565 	}
2566 	return (kern_jail(td, &j));
2567 }
2568 
2569 int
2570 freebsd32_jail_set(struct thread *td, struct freebsd32_jail_set_args *uap)
2571 {
2572 	struct uio *auio;
2573 	int error;
2574 
2575 	/* Check that we have an even number of iovecs. */
2576 	if (uap->iovcnt & 1)
2577 		return (EINVAL);
2578 
2579 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
2580 	if (error)
2581 		return (error);
2582 	error = kern_jail_set(td, auio, uap->flags);
2583 	free(auio, M_IOV);
2584 	return (error);
2585 }
2586 
2587 int
2588 freebsd32_jail_get(struct thread *td, struct freebsd32_jail_get_args *uap)
2589 {
2590 	struct iovec32 iov32;
2591 	struct uio *auio;
2592 	int error, i;
2593 
2594 	/* Check that we have an even number of iovecs. */
2595 	if (uap->iovcnt & 1)
2596 		return (EINVAL);
2597 
2598 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
2599 	if (error)
2600 		return (error);
2601 	error = kern_jail_get(td, auio, uap->flags);
2602 	if (error == 0)
2603 		for (i = 0; i < uap->iovcnt; i++) {
2604 			PTROUT_CP(auio->uio_iov[i], iov32, iov_base);
2605 			CP(auio->uio_iov[i], iov32, iov_len);
2606 			error = copyout(&iov32, uap->iovp + i, sizeof(iov32));
2607 			if (error != 0)
2608 				break;
2609 		}
2610 	free(auio, M_IOV);
2611 	return (error);
2612 }
2613 
2614 int
2615 freebsd32_sigaction(struct thread *td, struct freebsd32_sigaction_args *uap)
2616 {
2617 	struct sigaction32 s32;
2618 	struct sigaction sa, osa, *sap;
2619 	int error;
2620 
2621 	if (uap->act) {
2622 		error = copyin(uap->act, &s32, sizeof(s32));
2623 		if (error)
2624 			return (error);
2625 		sa.sa_handler = PTRIN(s32.sa_u);
2626 		CP(s32, sa, sa_flags);
2627 		CP(s32, sa, sa_mask);
2628 		sap = &sa;
2629 	} else
2630 		sap = NULL;
2631 	error = kern_sigaction(td, uap->sig, sap, &osa, 0);
2632 	if (error == 0 && uap->oact != NULL) {
2633 		s32.sa_u = PTROUT(osa.sa_handler);
2634 		CP(osa, s32, sa_flags);
2635 		CP(osa, s32, sa_mask);
2636 		error = copyout(&s32, uap->oact, sizeof(s32));
2637 	}
2638 	return (error);
2639 }
2640 
2641 #ifdef COMPAT_FREEBSD4
2642 int
2643 freebsd4_freebsd32_sigaction(struct thread *td,
2644 			     struct freebsd4_freebsd32_sigaction_args *uap)
2645 {
2646 	struct sigaction32 s32;
2647 	struct sigaction sa, osa, *sap;
2648 	int error;
2649 
2650 	if (uap->act) {
2651 		error = copyin(uap->act, &s32, sizeof(s32));
2652 		if (error)
2653 			return (error);
2654 		sa.sa_handler = PTRIN(s32.sa_u);
2655 		CP(s32, sa, sa_flags);
2656 		CP(s32, sa, sa_mask);
2657 		sap = &sa;
2658 	} else
2659 		sap = NULL;
2660 	error = kern_sigaction(td, uap->sig, sap, &osa, KSA_FREEBSD4);
2661 	if (error == 0 && uap->oact != NULL) {
2662 		s32.sa_u = PTROUT(osa.sa_handler);
2663 		CP(osa, s32, sa_flags);
2664 		CP(osa, s32, sa_mask);
2665 		error = copyout(&s32, uap->oact, sizeof(s32));
2666 	}
2667 	return (error);
2668 }
2669 #endif
2670 
2671 #ifdef COMPAT_43
2672 struct osigaction32 {
2673 	u_int32_t	sa_u;
2674 	osigset_t	sa_mask;
2675 	int		sa_flags;
2676 };
2677 
2678 #define	ONSIG	32
2679 
2680 int
2681 ofreebsd32_sigaction(struct thread *td,
2682 			     struct ofreebsd32_sigaction_args *uap)
2683 {
2684 	struct osigaction32 s32;
2685 	struct sigaction sa, osa, *sap;
2686 	int error;
2687 
2688 	if (uap->signum <= 0 || uap->signum >= ONSIG)
2689 		return (EINVAL);
2690 
2691 	if (uap->nsa) {
2692 		error = copyin(uap->nsa, &s32, sizeof(s32));
2693 		if (error)
2694 			return (error);
2695 		sa.sa_handler = PTRIN(s32.sa_u);
2696 		CP(s32, sa, sa_flags);
2697 		OSIG2SIG(s32.sa_mask, sa.sa_mask);
2698 		sap = &sa;
2699 	} else
2700 		sap = NULL;
2701 	error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET);
2702 	if (error == 0 && uap->osa != NULL) {
2703 		s32.sa_u = PTROUT(osa.sa_handler);
2704 		CP(osa, s32, sa_flags);
2705 		SIG2OSIG(osa.sa_mask, s32.sa_mask);
2706 		error = copyout(&s32, uap->osa, sizeof(s32));
2707 	}
2708 	return (error);
2709 }
2710 
2711 int
2712 ofreebsd32_sigprocmask(struct thread *td,
2713 			       struct ofreebsd32_sigprocmask_args *uap)
2714 {
2715 	sigset_t set, oset;
2716 	int error;
2717 
2718 	OSIG2SIG(uap->mask, set);
2719 	error = kern_sigprocmask(td, uap->how, &set, &oset, SIGPROCMASK_OLD);
2720 	SIG2OSIG(oset, td->td_retval[0]);
2721 	return (error);
2722 }
2723 
2724 int
2725 ofreebsd32_sigpending(struct thread *td,
2726 			      struct ofreebsd32_sigpending_args *uap)
2727 {
2728 	struct proc *p = td->td_proc;
2729 	sigset_t siglist;
2730 
2731 	PROC_LOCK(p);
2732 	siglist = p->p_siglist;
2733 	SIGSETOR(siglist, td->td_siglist);
2734 	PROC_UNLOCK(p);
2735 	SIG2OSIG(siglist, td->td_retval[0]);
2736 	return (0);
2737 }
2738 
2739 struct sigvec32 {
2740 	u_int32_t	sv_handler;
2741 	int		sv_mask;
2742 	int		sv_flags;
2743 };
2744 
2745 int
2746 ofreebsd32_sigvec(struct thread *td,
2747 			  struct ofreebsd32_sigvec_args *uap)
2748 {
2749 	struct sigvec32 vec;
2750 	struct sigaction sa, osa, *sap;
2751 	int error;
2752 
2753 	if (uap->signum <= 0 || uap->signum >= ONSIG)
2754 		return (EINVAL);
2755 
2756 	if (uap->nsv) {
2757 		error = copyin(uap->nsv, &vec, sizeof(vec));
2758 		if (error)
2759 			return (error);
2760 		sa.sa_handler = PTRIN(vec.sv_handler);
2761 		OSIG2SIG(vec.sv_mask, sa.sa_mask);
2762 		sa.sa_flags = vec.sv_flags;
2763 		sa.sa_flags ^= SA_RESTART;
2764 		sap = &sa;
2765 	} else
2766 		sap = NULL;
2767 	error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET);
2768 	if (error == 0 && uap->osv != NULL) {
2769 		vec.sv_handler = PTROUT(osa.sa_handler);
2770 		SIG2OSIG(osa.sa_mask, vec.sv_mask);
2771 		vec.sv_flags = osa.sa_flags;
2772 		vec.sv_flags &= ~SA_NOCLDWAIT;
2773 		vec.sv_flags ^= SA_RESTART;
2774 		error = copyout(&vec, uap->osv, sizeof(vec));
2775 	}
2776 	return (error);
2777 }
2778 
2779 int
2780 ofreebsd32_sigblock(struct thread *td,
2781 			    struct ofreebsd32_sigblock_args *uap)
2782 {
2783 	sigset_t set, oset;
2784 
2785 	OSIG2SIG(uap->mask, set);
2786 	kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0);
2787 	SIG2OSIG(oset, td->td_retval[0]);
2788 	return (0);
2789 }
2790 
2791 int
2792 ofreebsd32_sigsetmask(struct thread *td,
2793 			      struct ofreebsd32_sigsetmask_args *uap)
2794 {
2795 	sigset_t set, oset;
2796 
2797 	OSIG2SIG(uap->mask, set);
2798 	kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0);
2799 	SIG2OSIG(oset, td->td_retval[0]);
2800 	return (0);
2801 }
2802 
2803 int
2804 ofreebsd32_sigsuspend(struct thread *td,
2805 			      struct ofreebsd32_sigsuspend_args *uap)
2806 {
2807 	sigset_t mask;
2808 
2809 	OSIG2SIG(uap->mask, mask);
2810 	return (kern_sigsuspend(td, mask));
2811 }
2812 
2813 struct sigstack32 {
2814 	u_int32_t	ss_sp;
2815 	int		ss_onstack;
2816 };
2817 
2818 int
2819 ofreebsd32_sigstack(struct thread *td,
2820 			    struct ofreebsd32_sigstack_args *uap)
2821 {
2822 	struct sigstack32 s32;
2823 	struct sigstack nss, oss;
2824 	int error = 0, unss;
2825 
2826 	if (uap->nss != NULL) {
2827 		error = copyin(uap->nss, &s32, sizeof(s32));
2828 		if (error)
2829 			return (error);
2830 		nss.ss_sp = PTRIN(s32.ss_sp);
2831 		CP(s32, nss, ss_onstack);
2832 		unss = 1;
2833 	} else {
2834 		unss = 0;
2835 	}
2836 	oss.ss_sp = td->td_sigstk.ss_sp;
2837 	oss.ss_onstack = sigonstack(cpu_getstack(td));
2838 	if (unss) {
2839 		td->td_sigstk.ss_sp = nss.ss_sp;
2840 		td->td_sigstk.ss_size = 0;
2841 		td->td_sigstk.ss_flags |= (nss.ss_onstack & SS_ONSTACK);
2842 		td->td_pflags |= TDP_ALTSTACK;
2843 	}
2844 	if (uap->oss != NULL) {
2845 		s32.ss_sp = PTROUT(oss.ss_sp);
2846 		CP(oss, s32, ss_onstack);
2847 		error = copyout(&s32, uap->oss, sizeof(s32));
2848 	}
2849 	return (error);
2850 }
2851 #endif
2852 
2853 int
2854 freebsd32_nanosleep(struct thread *td, struct freebsd32_nanosleep_args *uap)
2855 {
2856 
2857 	return (freebsd32_user_clock_nanosleep(td, CLOCK_REALTIME,
2858 	    TIMER_RELTIME, uap->rqtp, uap->rmtp));
2859 }
2860 
2861 int
2862 freebsd32_clock_nanosleep(struct thread *td,
2863     struct freebsd32_clock_nanosleep_args *uap)
2864 {
2865 	int error;
2866 
2867 	error = freebsd32_user_clock_nanosleep(td, uap->clock_id, uap->flags,
2868 	    uap->rqtp, uap->rmtp);
2869 	return (kern_posix_error(td, error));
2870 }
2871 
2872 static int
2873 freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id,
2874     int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp)
2875 {
2876 	struct timespec32 rmt32, rqt32;
2877 	struct timespec rmt, rqt;
2878 	int error, error2;
2879 
2880 	error = copyin(ua_rqtp, &rqt32, sizeof(rqt32));
2881 	if (error)
2882 		return (error);
2883 
2884 	CP(rqt32, rqt, tv_sec);
2885 	CP(rqt32, rqt, tv_nsec);
2886 
2887 	error = kern_clock_nanosleep(td, clock_id, flags, &rqt, &rmt);
2888 	if (error == EINTR && ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0) {
2889 		CP(rmt, rmt32, tv_sec);
2890 		CP(rmt, rmt32, tv_nsec);
2891 
2892 		error2 = copyout(&rmt32, ua_rmtp, sizeof(rmt32));
2893 		if (error2 != 0)
2894 			error = error2;
2895 	}
2896 	return (error);
2897 }
2898 
2899 int
2900 freebsd32_clock_gettime(struct thread *td,
2901 			struct freebsd32_clock_gettime_args *uap)
2902 {
2903 	struct timespec	ats;
2904 	struct timespec32 ats32;
2905 	int error;
2906 
2907 	error = kern_clock_gettime(td, uap->clock_id, &ats);
2908 	if (error == 0) {
2909 		CP(ats, ats32, tv_sec);
2910 		CP(ats, ats32, tv_nsec);
2911 		error = copyout(&ats32, uap->tp, sizeof(ats32));
2912 	}
2913 	return (error);
2914 }
2915 
2916 int
2917 freebsd32_clock_settime(struct thread *td,
2918 			struct freebsd32_clock_settime_args *uap)
2919 {
2920 	struct timespec	ats;
2921 	struct timespec32 ats32;
2922 	int error;
2923 
2924 	error = copyin(uap->tp, &ats32, sizeof(ats32));
2925 	if (error)
2926 		return (error);
2927 	CP(ats32, ats, tv_sec);
2928 	CP(ats32, ats, tv_nsec);
2929 
2930 	return (kern_clock_settime(td, uap->clock_id, &ats));
2931 }
2932 
2933 int
2934 freebsd32_clock_getres(struct thread *td,
2935 		       struct freebsd32_clock_getres_args *uap)
2936 {
2937 	struct timespec	ts;
2938 	struct timespec32 ts32;
2939 	int error;
2940 
2941 	if (uap->tp == NULL)
2942 		return (0);
2943 	error = kern_clock_getres(td, uap->clock_id, &ts);
2944 	if (error == 0) {
2945 		CP(ts, ts32, tv_sec);
2946 		CP(ts, ts32, tv_nsec);
2947 		error = copyout(&ts32, uap->tp, sizeof(ts32));
2948 	}
2949 	return (error);
2950 }
2951 
2952 int freebsd32_ktimer_create(struct thread *td,
2953     struct freebsd32_ktimer_create_args *uap)
2954 {
2955 	struct sigevent32 ev32;
2956 	struct sigevent ev, *evp;
2957 	int error, id;
2958 
2959 	if (uap->evp == NULL) {
2960 		evp = NULL;
2961 	} else {
2962 		evp = &ev;
2963 		error = copyin(uap->evp, &ev32, sizeof(ev32));
2964 		if (error != 0)
2965 			return (error);
2966 		error = convert_sigevent32(&ev32, &ev);
2967 		if (error != 0)
2968 			return (error);
2969 	}
2970 	error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1);
2971 	if (error == 0) {
2972 		error = copyout(&id, uap->timerid, sizeof(int));
2973 		if (error != 0)
2974 			kern_ktimer_delete(td, id);
2975 	}
2976 	return (error);
2977 }
2978 
2979 int
2980 freebsd32_ktimer_settime(struct thread *td,
2981     struct freebsd32_ktimer_settime_args *uap)
2982 {
2983 	struct itimerspec32 val32, oval32;
2984 	struct itimerspec val, oval, *ovalp;
2985 	int error;
2986 
2987 	error = copyin(uap->value, &val32, sizeof(val32));
2988 	if (error != 0)
2989 		return (error);
2990 	ITS_CP(val32, val);
2991 	ovalp = uap->ovalue != NULL ? &oval : NULL;
2992 	error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp);
2993 	if (error == 0 && uap->ovalue != NULL) {
2994 		ITS_CP(oval, oval32);
2995 		error = copyout(&oval32, uap->ovalue, sizeof(oval32));
2996 	}
2997 	return (error);
2998 }
2999 
3000 int
3001 freebsd32_ktimer_gettime(struct thread *td,
3002     struct freebsd32_ktimer_gettime_args *uap)
3003 {
3004 	struct itimerspec32 val32;
3005 	struct itimerspec val;
3006 	int error;
3007 
3008 	error = kern_ktimer_gettime(td, uap->timerid, &val);
3009 	if (error == 0) {
3010 		ITS_CP(val, val32);
3011 		error = copyout(&val32, uap->value, sizeof(val32));
3012 	}
3013 	return (error);
3014 }
3015 
3016 int
3017 freebsd32_clock_getcpuclockid2(struct thread *td,
3018     struct freebsd32_clock_getcpuclockid2_args *uap)
3019 {
3020 	clockid_t clk_id;
3021 	int error;
3022 
3023 	error = kern_clock_getcpuclockid2(td, PAIR32TO64(id_t, uap->id),
3024 	    uap->which, &clk_id);
3025 	if (error == 0)
3026 		error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t));
3027 	return (error);
3028 }
3029 
3030 int
3031 freebsd32_thr_new(struct thread *td,
3032 		  struct freebsd32_thr_new_args *uap)
3033 {
3034 	struct thr_param32 param32;
3035 	struct thr_param param;
3036 	int error;
3037 
3038 	if (uap->param_size < 0 ||
3039 	    uap->param_size > sizeof(struct thr_param32))
3040 		return (EINVAL);
3041 	bzero(&param, sizeof(struct thr_param));
3042 	bzero(&param32, sizeof(struct thr_param32));
3043 	error = copyin(uap->param, &param32, uap->param_size);
3044 	if (error != 0)
3045 		return (error);
3046 	param.start_func = PTRIN(param32.start_func);
3047 	param.arg = PTRIN(param32.arg);
3048 	param.stack_base = PTRIN(param32.stack_base);
3049 	param.stack_size = param32.stack_size;
3050 	param.tls_base = PTRIN(param32.tls_base);
3051 	param.tls_size = param32.tls_size;
3052 	param.child_tid = PTRIN(param32.child_tid);
3053 	param.parent_tid = PTRIN(param32.parent_tid);
3054 	param.flags = param32.flags;
3055 	param.rtp = PTRIN(param32.rtp);
3056 	param.spare[0] = PTRIN(param32.spare[0]);
3057 	param.spare[1] = PTRIN(param32.spare[1]);
3058 	param.spare[2] = PTRIN(param32.spare[2]);
3059 
3060 	return (kern_thr_new(td, &param));
3061 }
3062 
3063 int
3064 freebsd32_thr_suspend(struct thread *td, struct freebsd32_thr_suspend_args *uap)
3065 {
3066 	struct timespec32 ts32;
3067 	struct timespec ts, *tsp;
3068 	int error;
3069 
3070 	error = 0;
3071 	tsp = NULL;
3072 	if (uap->timeout != NULL) {
3073 		error = copyin((const void *)uap->timeout, (void *)&ts32,
3074 		    sizeof(struct timespec32));
3075 		if (error != 0)
3076 			return (error);
3077 		ts.tv_sec = ts32.tv_sec;
3078 		ts.tv_nsec = ts32.tv_nsec;
3079 		tsp = &ts;
3080 	}
3081 	return (kern_thr_suspend(td, tsp));
3082 }
3083 
3084 void
3085 siginfo_to_siginfo32(const siginfo_t *src, struct siginfo32 *dst)
3086 {
3087 	bzero(dst, sizeof(*dst));
3088 	dst->si_signo = src->si_signo;
3089 	dst->si_errno = src->si_errno;
3090 	dst->si_code = src->si_code;
3091 	dst->si_pid = src->si_pid;
3092 	dst->si_uid = src->si_uid;
3093 	dst->si_status = src->si_status;
3094 	dst->si_addr = (uintptr_t)src->si_addr;
3095 	dst->si_value.sival_int = src->si_value.sival_int;
3096 	dst->si_timerid = src->si_timerid;
3097 	dst->si_overrun = src->si_overrun;
3098 }
3099 
3100 #ifndef _FREEBSD32_SYSPROTO_H_
3101 struct freebsd32_sigqueue_args {
3102         pid_t pid;
3103         int signum;
3104         /* union sigval32 */ int value;
3105 };
3106 #endif
3107 int
3108 freebsd32_sigqueue(struct thread *td, struct freebsd32_sigqueue_args *uap)
3109 {
3110 	union sigval sv;
3111 
3112 	/*
3113 	 * On 32-bit ABIs, sival_int and sival_ptr are the same.
3114 	 * On 64-bit little-endian ABIs, the low bits are the same.
3115 	 * In 64-bit big-endian ABIs, sival_int overlaps with
3116 	 * sival_ptr's HIGH bits.  We choose to support sival_int
3117 	 * rather than sival_ptr in this case as it seems to be
3118 	 * more common.
3119 	 */
3120 	bzero(&sv, sizeof(sv));
3121 	sv.sival_int = uap->value;
3122 
3123 	return (kern_sigqueue(td, uap->pid, uap->signum, &sv));
3124 }
3125 
3126 int
3127 freebsd32_sigtimedwait(struct thread *td, struct freebsd32_sigtimedwait_args *uap)
3128 {
3129 	struct timespec32 ts32;
3130 	struct timespec ts;
3131 	struct timespec *timeout;
3132 	sigset_t set;
3133 	ksiginfo_t ksi;
3134 	struct siginfo32 si32;
3135 	int error;
3136 
3137 	if (uap->timeout) {
3138 		error = copyin(uap->timeout, &ts32, sizeof(ts32));
3139 		if (error)
3140 			return (error);
3141 		ts.tv_sec = ts32.tv_sec;
3142 		ts.tv_nsec = ts32.tv_nsec;
3143 		timeout = &ts;
3144 	} else
3145 		timeout = NULL;
3146 
3147 	error = copyin(uap->set, &set, sizeof(set));
3148 	if (error)
3149 		return (error);
3150 
3151 	error = kern_sigtimedwait(td, set, &ksi, timeout);
3152 	if (error)
3153 		return (error);
3154 
3155 	if (uap->info) {
3156 		siginfo_to_siginfo32(&ksi.ksi_info, &si32);
3157 		error = copyout(&si32, uap->info, sizeof(struct siginfo32));
3158 	}
3159 
3160 	if (error == 0)
3161 		td->td_retval[0] = ksi.ksi_signo;
3162 	return (error);
3163 }
3164 
3165 /*
3166  * MPSAFE
3167  */
3168 int
3169 freebsd32_sigwaitinfo(struct thread *td, struct freebsd32_sigwaitinfo_args *uap)
3170 {
3171 	ksiginfo_t ksi;
3172 	struct siginfo32 si32;
3173 	sigset_t set;
3174 	int error;
3175 
3176 	error = copyin(uap->set, &set, sizeof(set));
3177 	if (error)
3178 		return (error);
3179 
3180 	error = kern_sigtimedwait(td, set, &ksi, NULL);
3181 	if (error)
3182 		return (error);
3183 
3184 	if (uap->info) {
3185 		siginfo_to_siginfo32(&ksi.ksi_info, &si32);
3186 		error = copyout(&si32, uap->info, sizeof(struct siginfo32));
3187 	}
3188 	if (error == 0)
3189 		td->td_retval[0] = ksi.ksi_signo;
3190 	return (error);
3191 }
3192 
3193 int
3194 freebsd32_cpuset_setid(struct thread *td,
3195     struct freebsd32_cpuset_setid_args *uap)
3196 {
3197 
3198 	return (kern_cpuset_setid(td, uap->which,
3199 	    PAIR32TO64(id_t, uap->id), uap->setid));
3200 }
3201 
3202 int
3203 freebsd32_cpuset_getid(struct thread *td,
3204     struct freebsd32_cpuset_getid_args *uap)
3205 {
3206 
3207 	return (kern_cpuset_getid(td, uap->level, uap->which,
3208 	    PAIR32TO64(id_t, uap->id), uap->setid));
3209 }
3210 
3211 int
3212 freebsd32_cpuset_getaffinity(struct thread *td,
3213     struct freebsd32_cpuset_getaffinity_args *uap)
3214 {
3215 
3216 	return (kern_cpuset_getaffinity(td, uap->level, uap->which,
3217 	    PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask));
3218 }
3219 
3220 int
3221 freebsd32_cpuset_setaffinity(struct thread *td,
3222     struct freebsd32_cpuset_setaffinity_args *uap)
3223 {
3224 
3225 	return (kern_cpuset_setaffinity(td, uap->level, uap->which,
3226 	    PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask));
3227 }
3228 
3229 int
3230 freebsd32_cpuset_getdomain(struct thread *td,
3231     struct freebsd32_cpuset_getdomain_args *uap)
3232 {
3233 
3234 	return (kern_cpuset_getdomain(td, uap->level, uap->which,
3235 	    PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy));
3236 }
3237 
3238 int
3239 freebsd32_cpuset_setdomain(struct thread *td,
3240     struct freebsd32_cpuset_setdomain_args *uap)
3241 {
3242 
3243 	return (kern_cpuset_setdomain(td, uap->level, uap->which,
3244 	    PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy));
3245 }
3246 
3247 int
3248 freebsd32_nmount(struct thread *td,
3249     struct freebsd32_nmount_args /* {
3250     	struct iovec *iovp;
3251     	unsigned int iovcnt;
3252     	int flags;
3253     } */ *uap)
3254 {
3255 	struct uio *auio;
3256 	uint64_t flags;
3257 	int error;
3258 
3259 	/*
3260 	 * Mount flags are now 64-bits. On 32-bit archtectures only
3261 	 * 32-bits are passed in, but from here on everything handles
3262 	 * 64-bit flags correctly.
3263 	 */
3264 	flags = uap->flags;
3265 
3266 	AUDIT_ARG_FFLAGS(flags);
3267 
3268 	/*
3269 	 * Filter out MNT_ROOTFS.  We do not want clients of nmount() in
3270 	 * userspace to set this flag, but we must filter it out if we want
3271 	 * MNT_UPDATE on the root file system to work.
3272 	 * MNT_ROOTFS should only be set by the kernel when mounting its
3273 	 * root file system.
3274 	 */
3275 	flags &= ~MNT_ROOTFS;
3276 
3277 	/*
3278 	 * check that we have an even number of iovec's
3279 	 * and that we have at least two options.
3280 	 */
3281 	if ((uap->iovcnt & 1) || (uap->iovcnt < 4))
3282 		return (EINVAL);
3283 
3284 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
3285 	if (error)
3286 		return (error);
3287 	error = vfs_donmount(td, flags, auio);
3288 
3289 	free(auio, M_IOV);
3290 	return error;
3291 }
3292 
3293 #if 0
3294 int
3295 freebsd32_xxx(struct thread *td, struct freebsd32_xxx_args *uap)
3296 {
3297 	struct yyy32 *p32, s32;
3298 	struct yyy *p = NULL, s;
3299 	struct xxx_arg ap;
3300 	int error;
3301 
3302 	if (uap->zzz) {
3303 		error = copyin(uap->zzz, &s32, sizeof(s32));
3304 		if (error)
3305 			return (error);
3306 		/* translate in */
3307 		p = &s;
3308 	}
3309 	error = kern_xxx(td, p);
3310 	if (error)
3311 		return (error);
3312 	if (uap->zzz) {
3313 		/* translate out */
3314 		error = copyout(&s32, p32, sizeof(s32));
3315 	}
3316 	return (error);
3317 }
3318 #endif
3319 
3320 int
3321 syscall32_module_handler(struct module *mod, int what, void *arg)
3322 {
3323 
3324 	return (kern_syscall_module_handler(freebsd32_sysent, mod, what, arg));
3325 }
3326 
3327 int
3328 syscall32_helper_register(struct syscall_helper_data *sd, int flags)
3329 {
3330 
3331 	return (kern_syscall_helper_register(freebsd32_sysent, sd, flags));
3332 }
3333 
3334 int
3335 syscall32_helper_unregister(struct syscall_helper_data *sd)
3336 {
3337 
3338 	return (kern_syscall_helper_unregister(freebsd32_sysent, sd));
3339 }
3340 
3341 int
3342 freebsd32_copyout_strings(struct image_params *imgp, uintptr_t *stack_base)
3343 {
3344 	int argc, envc, i;
3345 	u_int32_t *vectp;
3346 	char *stringp;
3347 	uintptr_t destp, ustringp;
3348 	struct freebsd32_ps_strings *arginfo;
3349 	char canary[sizeof(long) * 8];
3350 	int32_t pagesizes32[MAXPAGESIZES];
3351 	size_t execpath_len;
3352 	int error, szsigcode;
3353 
3354 	/*
3355 	 * Calculate string base and vector table pointers.
3356 	 * Also deal with signal trampoline code for this exec type.
3357 	 */
3358 	if (imgp->execpath != NULL && imgp->auxargs != NULL)
3359 		execpath_len = strlen(imgp->execpath) + 1;
3360 	else
3361 		execpath_len = 0;
3362 	arginfo = (struct freebsd32_ps_strings *)curproc->p_sysent->
3363 	    sv_psstrings;
3364 	imgp->ps_strings = arginfo;
3365 	if (imgp->proc->p_sysent->sv_sigcode_base == 0)
3366 		szsigcode = *(imgp->proc->p_sysent->sv_szsigcode);
3367 	else
3368 		szsigcode = 0;
3369 	destp =	(uintptr_t)arginfo;
3370 
3371 	/*
3372 	 * install sigcode
3373 	 */
3374 	if (szsigcode != 0) {
3375 		destp -= szsigcode;
3376 		destp = rounddown2(destp, sizeof(uint32_t));
3377 		error = copyout(imgp->proc->p_sysent->sv_sigcode, (void *)destp,
3378 		    szsigcode);
3379 		if (error != 0)
3380 			return (error);
3381 	}
3382 
3383 	/*
3384 	 * Copy the image path for the rtld.
3385 	 */
3386 	if (execpath_len != 0) {
3387 		destp -= execpath_len;
3388 		imgp->execpathp = (void *)destp;
3389 		error = copyout(imgp->execpath, imgp->execpathp, execpath_len);
3390 		if (error != 0)
3391 			return (error);
3392 	}
3393 
3394 	/*
3395 	 * Prepare the canary for SSP.
3396 	 */
3397 	arc4rand(canary, sizeof(canary), 0);
3398 	destp -= sizeof(canary);
3399 	imgp->canary = (void *)destp;
3400 	error = copyout(canary, imgp->canary, sizeof(canary));
3401 	if (error != 0)
3402 		return (error);
3403 	imgp->canarylen = sizeof(canary);
3404 
3405 	/*
3406 	 * Prepare the pagesizes array.
3407 	 */
3408 	for (i = 0; i < MAXPAGESIZES; i++)
3409 		pagesizes32[i] = (uint32_t)pagesizes[i];
3410 	destp -= sizeof(pagesizes32);
3411 	destp = rounddown2(destp, sizeof(uint32_t));
3412 	imgp->pagesizes = (void *)destp;
3413 	error = copyout(pagesizes32, imgp->pagesizes, sizeof(pagesizes32));
3414 	if (error != 0)
3415 		return (error);
3416 	imgp->pagesizeslen = sizeof(pagesizes32);
3417 
3418 	/*
3419 	 * Allocate room for the argument and environment strings.
3420 	 */
3421 	destp -= ARG_MAX - imgp->args->stringspace;
3422 	destp = rounddown2(destp, sizeof(uint32_t));
3423 	ustringp = destp;
3424 
3425 	if (imgp->sysent->sv_stackgap != NULL)
3426 		imgp->sysent->sv_stackgap(imgp, &destp);
3427 
3428 	if (imgp->auxargs) {
3429 		/*
3430 		 * Allocate room on the stack for the ELF auxargs
3431 		 * array.  It has up to AT_COUNT entries.
3432 		 */
3433 		destp -= AT_COUNT * sizeof(Elf32_Auxinfo);
3434 		destp = rounddown2(destp, sizeof(uint32_t));
3435 	}
3436 
3437 	vectp = (uint32_t *)destp;
3438 
3439 	/*
3440 	 * Allocate room for the argv[] and env vectors including the
3441 	 * terminating NULL pointers.
3442 	 */
3443 	vectp -= imgp->args->argc + 1 + imgp->args->envc + 1;
3444 
3445 	/*
3446 	 * vectp also becomes our initial stack base
3447 	 */
3448 	*stack_base = (uintptr_t)vectp;
3449 
3450 	stringp = imgp->args->begin_argv;
3451 	argc = imgp->args->argc;
3452 	envc = imgp->args->envc;
3453 	/*
3454 	 * Copy out strings - arguments and environment.
3455 	 */
3456 	error = copyout(stringp, (void *)ustringp,
3457 	    ARG_MAX - imgp->args->stringspace);
3458 	if (error != 0)
3459 		return (error);
3460 
3461 	/*
3462 	 * Fill in "ps_strings" struct for ps, w, etc.
3463 	 */
3464 	imgp->argv = vectp;
3465 	if (suword32(&arginfo->ps_argvstr, (u_int32_t)(intptr_t)vectp) != 0 ||
3466 	    suword32(&arginfo->ps_nargvstr, argc) != 0)
3467 		return (EFAULT);
3468 
3469 	/*
3470 	 * Fill in argument portion of vector table.
3471 	 */
3472 	for (; argc > 0; --argc) {
3473 		if (suword32(vectp++, ustringp) != 0)
3474 			return (EFAULT);
3475 		while (*stringp++ != 0)
3476 			ustringp++;
3477 		ustringp++;
3478 	}
3479 
3480 	/* a null vector table pointer separates the argp's from the envp's */
3481 	if (suword32(vectp++, 0) != 0)
3482 		return (EFAULT);
3483 
3484 	imgp->envv = vectp;
3485 	if (suword32(&arginfo->ps_envstr, (u_int32_t)(intptr_t)vectp) != 0 ||
3486 	    suword32(&arginfo->ps_nenvstr, envc) != 0)
3487 		return (EFAULT);
3488 
3489 	/*
3490 	 * Fill in environment portion of vector table.
3491 	 */
3492 	for (; envc > 0; --envc) {
3493 		if (suword32(vectp++, ustringp) != 0)
3494 			return (EFAULT);
3495 		while (*stringp++ != 0)
3496 			ustringp++;
3497 		ustringp++;
3498 	}
3499 
3500 	/* end of vector table is a null pointer */
3501 	if (suword32(vectp, 0) != 0)
3502 		return (EFAULT);
3503 
3504 	if (imgp->auxargs) {
3505 		vectp++;
3506 		error = imgp->sysent->sv_copyout_auxargs(imgp,
3507 		    (uintptr_t)vectp);
3508 		if (error != 0)
3509 			return (error);
3510 	}
3511 
3512 	return (0);
3513 }
3514 
3515 int
3516 freebsd32_kldstat(struct thread *td, struct freebsd32_kldstat_args *uap)
3517 {
3518 	struct kld_file_stat *stat;
3519 	struct kld32_file_stat *stat32;
3520 	int error, version;
3521 
3522 	if ((error = copyin(&uap->stat->version, &version, sizeof(version)))
3523 	    != 0)
3524 		return (error);
3525 	if (version != sizeof(struct kld32_file_stat_1) &&
3526 	    version != sizeof(struct kld32_file_stat))
3527 		return (EINVAL);
3528 
3529 	stat = malloc(sizeof(*stat), M_TEMP, M_WAITOK | M_ZERO);
3530 	stat32 = malloc(sizeof(*stat32), M_TEMP, M_WAITOK | M_ZERO);
3531 	error = kern_kldstat(td, uap->fileid, stat);
3532 	if (error == 0) {
3533 		bcopy(&stat->name[0], &stat32->name[0], sizeof(stat->name));
3534 		CP(*stat, *stat32, refs);
3535 		CP(*stat, *stat32, id);
3536 		PTROUT_CP(*stat, *stat32, address);
3537 		CP(*stat, *stat32, size);
3538 		bcopy(&stat->pathname[0], &stat32->pathname[0],
3539 		    sizeof(stat->pathname));
3540 		stat32->version  = version;
3541 		error = copyout(stat32, uap->stat, version);
3542 	}
3543 	free(stat, M_TEMP);
3544 	free(stat32, M_TEMP);
3545 	return (error);
3546 }
3547 
3548 int
3549 freebsd32_posix_fallocate(struct thread *td,
3550     struct freebsd32_posix_fallocate_args *uap)
3551 {
3552 	int error;
3553 
3554 	error = kern_posix_fallocate(td, uap->fd,
3555 	    PAIR32TO64(off_t, uap->offset), PAIR32TO64(off_t, uap->len));
3556 	return (kern_posix_error(td, error));
3557 }
3558 
3559 int
3560 freebsd32_posix_fadvise(struct thread *td,
3561     struct freebsd32_posix_fadvise_args *uap)
3562 {
3563 	int error;
3564 
3565 	error = kern_posix_fadvise(td, uap->fd, PAIR32TO64(off_t, uap->offset),
3566 	    PAIR32TO64(off_t, uap->len), uap->advice);
3567 	return (kern_posix_error(td, error));
3568 }
3569 
3570 int
3571 convert_sigevent32(struct sigevent32 *sig32, struct sigevent *sig)
3572 {
3573 
3574 	CP(*sig32, *sig, sigev_notify);
3575 	switch (sig->sigev_notify) {
3576 	case SIGEV_NONE:
3577 		break;
3578 	case SIGEV_THREAD_ID:
3579 		CP(*sig32, *sig, sigev_notify_thread_id);
3580 		/* FALLTHROUGH */
3581 	case SIGEV_SIGNAL:
3582 		CP(*sig32, *sig, sigev_signo);
3583 		PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr);
3584 		break;
3585 	case SIGEV_KEVENT:
3586 		CP(*sig32, *sig, sigev_notify_kqueue);
3587 		CP(*sig32, *sig, sigev_notify_kevent_flags);
3588 		PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr);
3589 		break;
3590 	default:
3591 		return (EINVAL);
3592 	}
3593 	return (0);
3594 }
3595 
3596 int
3597 freebsd32_procctl(struct thread *td, struct freebsd32_procctl_args *uap)
3598 {
3599 	void *data;
3600 	union {
3601 		struct procctl_reaper_status rs;
3602 		struct procctl_reaper_pids rp;
3603 		struct procctl_reaper_kill rk;
3604 	} x;
3605 	union {
3606 		struct procctl_reaper_pids32 rp;
3607 	} x32;
3608 	int error, error1, flags, signum;
3609 
3610 	if (uap->com >= PROC_PROCCTL_MD_MIN)
3611 		return (cpu_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id),
3612 		    uap->com, PTRIN(uap->data)));
3613 
3614 	switch (uap->com) {
3615 	case PROC_ASLR_CTL:
3616 	case PROC_PROTMAX_CTL:
3617 	case PROC_SPROTECT:
3618 	case PROC_STACKGAP_CTL:
3619 	case PROC_TRACE_CTL:
3620 	case PROC_TRAPCAP_CTL:
3621 		error = copyin(PTRIN(uap->data), &flags, sizeof(flags));
3622 		if (error != 0)
3623 			return (error);
3624 		data = &flags;
3625 		break;
3626 	case PROC_REAP_ACQUIRE:
3627 	case PROC_REAP_RELEASE:
3628 		if (uap->data != NULL)
3629 			return (EINVAL);
3630 		data = NULL;
3631 		break;
3632 	case PROC_REAP_STATUS:
3633 		data = &x.rs;
3634 		break;
3635 	case PROC_REAP_GETPIDS:
3636 		error = copyin(uap->data, &x32.rp, sizeof(x32.rp));
3637 		if (error != 0)
3638 			return (error);
3639 		CP(x32.rp, x.rp, rp_count);
3640 		PTRIN_CP(x32.rp, x.rp, rp_pids);
3641 		data = &x.rp;
3642 		break;
3643 	case PROC_REAP_KILL:
3644 		error = copyin(uap->data, &x.rk, sizeof(x.rk));
3645 		if (error != 0)
3646 			return (error);
3647 		data = &x.rk;
3648 		break;
3649 	case PROC_ASLR_STATUS:
3650 	case PROC_PROTMAX_STATUS:
3651 	case PROC_STACKGAP_STATUS:
3652 	case PROC_TRACE_STATUS:
3653 	case PROC_TRAPCAP_STATUS:
3654 		data = &flags;
3655 		break;
3656 	case PROC_PDEATHSIG_CTL:
3657 		error = copyin(uap->data, &signum, sizeof(signum));
3658 		if (error != 0)
3659 			return (error);
3660 		data = &signum;
3661 		break;
3662 	case PROC_PDEATHSIG_STATUS:
3663 		data = &signum;
3664 		break;
3665 	default:
3666 		return (EINVAL);
3667 	}
3668 	error = kern_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id),
3669 	    uap->com, data);
3670 	switch (uap->com) {
3671 	case PROC_REAP_STATUS:
3672 		if (error == 0)
3673 			error = copyout(&x.rs, uap->data, sizeof(x.rs));
3674 		break;
3675 	case PROC_REAP_KILL:
3676 		error1 = copyout(&x.rk, uap->data, sizeof(x.rk));
3677 		if (error == 0)
3678 			error = error1;
3679 		break;
3680 	case PROC_ASLR_STATUS:
3681 	case PROC_PROTMAX_STATUS:
3682 	case PROC_STACKGAP_STATUS:
3683 	case PROC_TRACE_STATUS:
3684 	case PROC_TRAPCAP_STATUS:
3685 		if (error == 0)
3686 			error = copyout(&flags, uap->data, sizeof(flags));
3687 		break;
3688 	case PROC_PDEATHSIG_STATUS:
3689 		if (error == 0)
3690 			error = copyout(&signum, uap->data, sizeof(signum));
3691 		break;
3692 	}
3693 	return (error);
3694 }
3695 
3696 int
3697 freebsd32_fcntl(struct thread *td, struct freebsd32_fcntl_args *uap)
3698 {
3699 	long tmp;
3700 
3701 	switch (uap->cmd) {
3702 	/*
3703 	 * Do unsigned conversion for arg when operation
3704 	 * interprets it as flags or pointer.
3705 	 */
3706 	case F_SETLK_REMOTE:
3707 	case F_SETLKW:
3708 	case F_SETLK:
3709 	case F_GETLK:
3710 	case F_SETFD:
3711 	case F_SETFL:
3712 	case F_OGETLK:
3713 	case F_OSETLK:
3714 	case F_OSETLKW:
3715 		tmp = (unsigned int)(uap->arg);
3716 		break;
3717 	default:
3718 		tmp = uap->arg;
3719 		break;
3720 	}
3721 	return (kern_fcntl_freebsd(td, uap->fd, uap->cmd, tmp));
3722 }
3723 
3724 int
3725 freebsd32_ppoll(struct thread *td, struct freebsd32_ppoll_args *uap)
3726 {
3727 	struct timespec32 ts32;
3728 	struct timespec ts, *tsp;
3729 	sigset_t set, *ssp;
3730 	int error;
3731 
3732 	if (uap->ts != NULL) {
3733 		error = copyin(uap->ts, &ts32, sizeof(ts32));
3734 		if (error != 0)
3735 			return (error);
3736 		CP(ts32, ts, tv_sec);
3737 		CP(ts32, ts, tv_nsec);
3738 		tsp = &ts;
3739 	} else
3740 		tsp = NULL;
3741 	if (uap->set != NULL) {
3742 		error = copyin(uap->set, &set, sizeof(set));
3743 		if (error != 0)
3744 			return (error);
3745 		ssp = &set;
3746 	} else
3747 		ssp = NULL;
3748 
3749 	return (kern_poll(td, uap->fds, uap->nfds, tsp, ssp));
3750 }
3751 
3752 int
3753 freebsd32_sched_rr_get_interval(struct thread *td,
3754     struct freebsd32_sched_rr_get_interval_args *uap)
3755 {
3756 	struct timespec ts;
3757 	struct timespec32 ts32;
3758 	int error;
3759 
3760 	error = kern_sched_rr_get_interval(td, uap->pid, &ts);
3761 	if (error == 0) {
3762 		CP(ts, ts32, tv_sec);
3763 		CP(ts, ts32, tv_nsec);
3764 		error = copyout(&ts32, uap->interval, sizeof(ts32));
3765 	}
3766 	return (error);
3767 }
3768