xref: /freebsd/sys/compat/linux/linux_event.c (revision 2f513db7)
1 /*-
2  * Copyright (c) 2007 Roman Divacky
3  * Copyright (c) 2014 Dmitry Chagin
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 #include "opt_compat.h"
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/imgact.h>
36 #include <sys/kernel.h>
37 #include <sys/limits.h>
38 #include <sys/lock.h>
39 #include <sys/mutex.h>
40 #include <sys/callout.h>
41 #include <sys/capsicum.h>
42 #include <sys/types.h>
43 #include <sys/user.h>
44 #include <sys/file.h>
45 #include <sys/filedesc.h>
46 #include <sys/filio.h>
47 #include <sys/errno.h>
48 #include <sys/event.h>
49 #include <sys/poll.h>
50 #include <sys/proc.h>
51 #include <sys/selinfo.h>
52 #include <sys/sx.h>
53 #include <sys/syscallsubr.h>
54 #include <sys/timespec.h>
55 
56 #ifdef COMPAT_LINUX32
57 #include <machine/../linux32/linux.h>
58 #include <machine/../linux32/linux32_proto.h>
59 #else
60 #include <machine/../linux/linux.h>
61 #include <machine/../linux/linux_proto.h>
62 #endif
63 
64 #include <compat/linux/linux_emul.h>
65 #include <compat/linux/linux_event.h>
66 #include <compat/linux/linux_file.h>
67 #include <compat/linux/linux_timer.h>
68 #include <compat/linux/linux_util.h>
69 
70 /*
71  * epoll defines 'struct epoll_event' with the field 'data' as 64 bits
72  * on all architectures. But on 32 bit architectures BSD 'struct kevent' only
73  * has 32 bit opaque pointer as 'udata' field. So we can't pass epoll supplied
74  * data verbatuim. Therefore we allocate 64-bit memory block to pass
75  * user supplied data for every file descriptor.
76  */
77 
78 typedef uint64_t	epoll_udata_t;
79 
80 struct epoll_emuldata {
81 	uint32_t	fdc;		/* epoll udata max index */
82 	epoll_udata_t	udata[1];	/* epoll user data vector */
83 };
84 
85 #define	EPOLL_DEF_SZ		16
86 #define	EPOLL_SIZE(fdn)			\
87 	(sizeof(struct epoll_emuldata)+(fdn) * sizeof(epoll_udata_t))
88 
89 struct epoll_event {
90 	uint32_t	events;
91 	epoll_udata_t	data;
92 }
93 #if defined(__amd64__)
94 __attribute__((packed))
95 #endif
96 ;
97 
98 #define	LINUX_MAX_EVENTS	(INT_MAX / sizeof(struct epoll_event))
99 
100 static void	epoll_fd_install(struct thread *td, int fd, epoll_udata_t udata);
101 static int	epoll_to_kevent(struct thread *td, int fd,
102 		    struct epoll_event *l_event, struct kevent *kevent,
103 		    int *nkevents);
104 static void	kevent_to_epoll(struct kevent *kevent, struct epoll_event *l_event);
105 static int	epoll_kev_copyout(void *arg, struct kevent *kevp, int count);
106 static int	epoll_kev_copyin(void *arg, struct kevent *kevp, int count);
107 static int	epoll_register_kevent(struct thread *td, struct file *epfp,
108 		    int fd, int filter, unsigned int flags);
109 static int	epoll_fd_registered(struct thread *td, struct file *epfp,
110 		    int fd);
111 static int	epoll_delete_all_events(struct thread *td, struct file *epfp,
112 		    int fd);
113 
114 struct epoll_copyin_args {
115 	struct kevent	*changelist;
116 };
117 
118 struct epoll_copyout_args {
119 	struct epoll_event	*leventlist;
120 	struct proc		*p;
121 	uint32_t		count;
122 	int			error;
123 };
124 
125 /* eventfd */
126 typedef uint64_t	eventfd_t;
127 
128 static fo_rdwr_t	eventfd_read;
129 static fo_rdwr_t	eventfd_write;
130 static fo_ioctl_t	eventfd_ioctl;
131 static fo_poll_t	eventfd_poll;
132 static fo_kqfilter_t	eventfd_kqfilter;
133 static fo_stat_t	eventfd_stat;
134 static fo_close_t	eventfd_close;
135 static fo_fill_kinfo_t	eventfd_fill_kinfo;
136 
137 static struct fileops eventfdops = {
138 	.fo_read = eventfd_read,
139 	.fo_write = eventfd_write,
140 	.fo_truncate = invfo_truncate,
141 	.fo_ioctl = eventfd_ioctl,
142 	.fo_poll = eventfd_poll,
143 	.fo_kqfilter = eventfd_kqfilter,
144 	.fo_stat = eventfd_stat,
145 	.fo_close = eventfd_close,
146 	.fo_chmod = invfo_chmod,
147 	.fo_chown = invfo_chown,
148 	.fo_sendfile = invfo_sendfile,
149 	.fo_fill_kinfo = eventfd_fill_kinfo,
150 	.fo_flags = DFLAG_PASSABLE
151 };
152 
153 static void	filt_eventfddetach(struct knote *kn);
154 static int	filt_eventfdread(struct knote *kn, long hint);
155 static int	filt_eventfdwrite(struct knote *kn, long hint);
156 
157 static struct filterops eventfd_rfiltops = {
158 	.f_isfd = 1,
159 	.f_detach = filt_eventfddetach,
160 	.f_event = filt_eventfdread
161 };
162 static struct filterops eventfd_wfiltops = {
163 	.f_isfd = 1,
164 	.f_detach = filt_eventfddetach,
165 	.f_event = filt_eventfdwrite
166 };
167 
168 /* timerfd */
169 typedef uint64_t	timerfd_t;
170 
171 static fo_rdwr_t	timerfd_read;
172 static fo_poll_t	timerfd_poll;
173 static fo_kqfilter_t	timerfd_kqfilter;
174 static fo_stat_t	timerfd_stat;
175 static fo_close_t	timerfd_close;
176 static fo_fill_kinfo_t	timerfd_fill_kinfo;
177 
178 static struct fileops timerfdops = {
179 	.fo_read = timerfd_read,
180 	.fo_write = invfo_rdwr,
181 	.fo_truncate = invfo_truncate,
182 	.fo_ioctl = eventfd_ioctl,
183 	.fo_poll = timerfd_poll,
184 	.fo_kqfilter = timerfd_kqfilter,
185 	.fo_stat = timerfd_stat,
186 	.fo_close = timerfd_close,
187 	.fo_chmod = invfo_chmod,
188 	.fo_chown = invfo_chown,
189 	.fo_sendfile = invfo_sendfile,
190 	.fo_fill_kinfo = timerfd_fill_kinfo,
191 	.fo_flags = DFLAG_PASSABLE
192 };
193 
194 static void	filt_timerfddetach(struct knote *kn);
195 static int	filt_timerfdread(struct knote *kn, long hint);
196 
197 static struct filterops timerfd_rfiltops = {
198 	.f_isfd = 1,
199 	.f_detach = filt_timerfddetach,
200 	.f_event = filt_timerfdread
201 };
202 
203 struct eventfd {
204 	eventfd_t	efd_count;
205 	uint32_t	efd_flags;
206 	struct selinfo	efd_sel;
207 	struct mtx	efd_lock;
208 };
209 
210 struct timerfd {
211 	clockid_t	tfd_clockid;
212 	struct itimerspec tfd_time;
213 	struct callout	tfd_callout;
214 	timerfd_t	tfd_count;
215 	bool		tfd_canceled;
216 	struct selinfo	tfd_sel;
217 	struct mtx	tfd_lock;
218 };
219 
220 static int	eventfd_create(struct thread *td, uint32_t initval, int flags);
221 static void	linux_timerfd_expire(void *);
222 static void	linux_timerfd_curval(struct timerfd *, struct itimerspec *);
223 
224 
225 static void
226 epoll_fd_install(struct thread *td, int fd, epoll_udata_t udata)
227 {
228 	struct linux_pemuldata *pem;
229 	struct epoll_emuldata *emd;
230 	struct proc *p;
231 
232 	p = td->td_proc;
233 
234 	pem = pem_find(p);
235 	KASSERT(pem != NULL, ("epoll proc emuldata not found.\n"));
236 
237 	LINUX_PEM_XLOCK(pem);
238 	if (pem->epoll == NULL) {
239 		emd = malloc(EPOLL_SIZE(fd), M_EPOLL, M_WAITOK);
240 		emd->fdc = fd;
241 		pem->epoll = emd;
242 	} else {
243 		emd = pem->epoll;
244 		if (fd > emd->fdc) {
245 			emd = realloc(emd, EPOLL_SIZE(fd), M_EPOLL, M_WAITOK);
246 			emd->fdc = fd;
247 			pem->epoll = emd;
248 		}
249 	}
250 	emd->udata[fd] = udata;
251 	LINUX_PEM_XUNLOCK(pem);
252 }
253 
254 static int
255 epoll_create_common(struct thread *td, int flags)
256 {
257 	int error;
258 
259 	error = kern_kqueue(td, flags, NULL);
260 	if (error != 0)
261 		return (error);
262 
263 	epoll_fd_install(td, EPOLL_DEF_SZ, 0);
264 
265 	return (0);
266 }
267 
268 #ifdef LINUX_LEGACY_SYSCALLS
269 int
270 linux_epoll_create(struct thread *td, struct linux_epoll_create_args *args)
271 {
272 
273 	/*
274 	 * args->size is unused. Linux just tests it
275 	 * and then forgets it as well.
276 	 */
277 	if (args->size <= 0)
278 		return (EINVAL);
279 
280 	return (epoll_create_common(td, 0));
281 }
282 #endif
283 
284 int
285 linux_epoll_create1(struct thread *td, struct linux_epoll_create1_args *args)
286 {
287 	int flags;
288 
289 	if ((args->flags & ~(LINUX_O_CLOEXEC)) != 0)
290 		return (EINVAL);
291 
292 	flags = 0;
293 	if ((args->flags & LINUX_O_CLOEXEC) != 0)
294 		flags |= O_CLOEXEC;
295 
296 	return (epoll_create_common(td, flags));
297 }
298 
299 /* Structure converting function from epoll to kevent. */
300 static int
301 epoll_to_kevent(struct thread *td, int fd, struct epoll_event *l_event,
302     struct kevent *kevent, int *nkevents)
303 {
304 	uint32_t levents = l_event->events;
305 	struct linux_pemuldata *pem;
306 	struct proc *p;
307 	unsigned short kev_flags = EV_ADD | EV_ENABLE;
308 
309 	/* flags related to how event is registered */
310 	if ((levents & LINUX_EPOLLONESHOT) != 0)
311 		kev_flags |= EV_DISPATCH;
312 	if ((levents & LINUX_EPOLLET) != 0)
313 		kev_flags |= EV_CLEAR;
314 	if ((levents & LINUX_EPOLLERR) != 0)
315 		kev_flags |= EV_ERROR;
316 	if ((levents & LINUX_EPOLLRDHUP) != 0)
317 		kev_flags |= EV_EOF;
318 
319 	/* flags related to what event is registered */
320 	if ((levents & LINUX_EPOLL_EVRD) != 0) {
321 		EV_SET(kevent++, fd, EVFILT_READ, kev_flags, 0, 0, 0);
322 		++(*nkevents);
323 	}
324 	if ((levents & LINUX_EPOLL_EVWR) != 0) {
325 		EV_SET(kevent++, fd, EVFILT_WRITE, kev_flags, 0, 0, 0);
326 		++(*nkevents);
327 	}
328 	/* zero event mask is legal */
329 	if ((levents & (LINUX_EPOLL_EVRD | LINUX_EPOLL_EVWR)) == 0) {
330 		EV_SET(kevent++, fd, EVFILT_READ, EV_ADD|EV_DISABLE, 0, 0, 0);
331 		++(*nkevents);
332 	}
333 
334 	if ((levents & ~(LINUX_EPOLL_EVSUP)) != 0) {
335 		p = td->td_proc;
336 
337 		pem = pem_find(p);
338 		KASSERT(pem != NULL, ("epoll proc emuldata not found.\n"));
339 		KASSERT(pem->epoll != NULL, ("epoll proc epolldata not found.\n"));
340 
341 		LINUX_PEM_XLOCK(pem);
342 		if ((pem->flags & LINUX_XUNSUP_EPOLL) == 0) {
343 			pem->flags |= LINUX_XUNSUP_EPOLL;
344 			LINUX_PEM_XUNLOCK(pem);
345 			linux_msg(td, "epoll_ctl unsupported flags: 0x%x\n",
346 			    levents);
347 		} else
348 			LINUX_PEM_XUNLOCK(pem);
349 		return (EINVAL);
350 	}
351 
352 	return (0);
353 }
354 
355 /*
356  * Structure converting function from kevent to epoll. In a case
357  * this is called on error in registration we store the error in
358  * event->data and pick it up later in linux_epoll_ctl().
359  */
360 static void
361 kevent_to_epoll(struct kevent *kevent, struct epoll_event *l_event)
362 {
363 
364 	if ((kevent->flags & EV_ERROR) != 0) {
365 		l_event->events = LINUX_EPOLLERR;
366 		return;
367 	}
368 
369 	/* XXX EPOLLPRI, EPOLLHUP */
370 	switch (kevent->filter) {
371 	case EVFILT_READ:
372 		l_event->events = LINUX_EPOLLIN;
373 		if ((kevent->flags & EV_EOF) != 0)
374 			l_event->events |= LINUX_EPOLLRDHUP;
375 	break;
376 	case EVFILT_WRITE:
377 		l_event->events = LINUX_EPOLLOUT;
378 	break;
379 	}
380 }
381 
382 /*
383  * Copyout callback used by kevent. This converts kevent
384  * events to epoll events and copies them back to the
385  * userspace. This is also called on error on registering
386  * of the filter.
387  */
388 static int
389 epoll_kev_copyout(void *arg, struct kevent *kevp, int count)
390 {
391 	struct epoll_copyout_args *args;
392 	struct linux_pemuldata *pem;
393 	struct epoll_emuldata *emd;
394 	struct epoll_event *eep;
395 	int error, fd, i;
396 
397 	args = (struct epoll_copyout_args*) arg;
398 	eep = malloc(sizeof(*eep) * count, M_EPOLL, M_WAITOK | M_ZERO);
399 
400 	pem = pem_find(args->p);
401 	KASSERT(pem != NULL, ("epoll proc emuldata not found.\n"));
402 	LINUX_PEM_SLOCK(pem);
403 	emd = pem->epoll;
404 	KASSERT(emd != NULL, ("epoll proc epolldata not found.\n"));
405 
406 	for (i = 0; i < count; i++) {
407 		kevent_to_epoll(&kevp[i], &eep[i]);
408 
409 		fd = kevp[i].ident;
410 		KASSERT(fd <= emd->fdc, ("epoll user data vector"
411 						    " is too small.\n"));
412 		eep[i].data = emd->udata[fd];
413 	}
414 	LINUX_PEM_SUNLOCK(pem);
415 
416 	error = copyout(eep, args->leventlist, count * sizeof(*eep));
417 	if (error == 0) {
418 		args->leventlist += count;
419 		args->count += count;
420 	} else if (args->error == 0)
421 		args->error = error;
422 
423 	free(eep, M_EPOLL);
424 	return (error);
425 }
426 
427 /*
428  * Copyin callback used by kevent. This copies already
429  * converted filters from kernel memory to the kevent
430  * internal kernel memory. Hence the memcpy instead of
431  * copyin.
432  */
433 static int
434 epoll_kev_copyin(void *arg, struct kevent *kevp, int count)
435 {
436 	struct epoll_copyin_args *args;
437 
438 	args = (struct epoll_copyin_args*) arg;
439 
440 	memcpy(kevp, args->changelist, count * sizeof(*kevp));
441 	args->changelist += count;
442 
443 	return (0);
444 }
445 
446 /*
447  * Load epoll filter, convert it to kevent filter
448  * and load it into kevent subsystem.
449  */
450 int
451 linux_epoll_ctl(struct thread *td, struct linux_epoll_ctl_args *args)
452 {
453 	struct file *epfp, *fp;
454 	struct epoll_copyin_args ciargs;
455 	struct kevent kev[2];
456 	struct kevent_copyops k_ops = { &ciargs,
457 					NULL,
458 					epoll_kev_copyin};
459 	struct epoll_event le;
460 	cap_rights_t rights;
461 	int nchanges = 0;
462 	int error;
463 
464 	if (args->op != LINUX_EPOLL_CTL_DEL) {
465 		error = copyin(args->event, &le, sizeof(le));
466 		if (error != 0)
467 			return (error);
468 	}
469 
470 	error = fget(td, args->epfd,
471 	    cap_rights_init(&rights, CAP_KQUEUE_CHANGE), &epfp);
472 	if (error != 0)
473 		return (error);
474 	if (epfp->f_type != DTYPE_KQUEUE) {
475 		error = EINVAL;
476 		goto leave1;
477 	}
478 
479 	 /* Protect user data vector from incorrectly supplied fd. */
480 	error = fget(td, args->fd, cap_rights_init(&rights, CAP_POLL_EVENT), &fp);
481 	if (error != 0)
482 		goto leave1;
483 
484 	/* Linux disallows spying on himself */
485 	if (epfp == fp) {
486 		error = EINVAL;
487 		goto leave0;
488 	}
489 
490 	ciargs.changelist = kev;
491 
492 	if (args->op != LINUX_EPOLL_CTL_DEL) {
493 		error = epoll_to_kevent(td, args->fd, &le, kev, &nchanges);
494 		if (error != 0)
495 			goto leave0;
496 	}
497 
498 	switch (args->op) {
499 	case LINUX_EPOLL_CTL_MOD:
500 		error = epoll_delete_all_events(td, epfp, args->fd);
501 		if (error != 0)
502 			goto leave0;
503 		break;
504 
505 	case LINUX_EPOLL_CTL_ADD:
506 		if (epoll_fd_registered(td, epfp, args->fd)) {
507 			error = EEXIST;
508 			goto leave0;
509 		}
510 		break;
511 
512 	case LINUX_EPOLL_CTL_DEL:
513 		/* CTL_DEL means unregister this fd with this epoll */
514 		error = epoll_delete_all_events(td, epfp, args->fd);
515 		goto leave0;
516 
517 	default:
518 		error = EINVAL;
519 		goto leave0;
520 	}
521 
522 	epoll_fd_install(td, args->fd, le.data);
523 
524 	error = kern_kevent_fp(td, epfp, nchanges, 0, &k_ops, NULL);
525 
526 leave0:
527 	fdrop(fp, td);
528 
529 leave1:
530 	fdrop(epfp, td);
531 	return (error);
532 }
533 
534 /*
535  * Wait for a filter to be triggered on the epoll file descriptor.
536  */
537 static int
538 linux_epoll_wait_common(struct thread *td, int epfd, struct epoll_event *events,
539     int maxevents, int timeout, sigset_t *uset)
540 {
541 	struct epoll_copyout_args coargs;
542 	struct kevent_copyops k_ops = { &coargs,
543 					epoll_kev_copyout,
544 					NULL};
545 	struct timespec ts, *tsp;
546 	cap_rights_t rights;
547 	struct file *epfp;
548 	sigset_t omask;
549 	int error;
550 
551 	if (maxevents <= 0 || maxevents > LINUX_MAX_EVENTS)
552 		return (EINVAL);
553 
554 	error = fget(td, epfd,
555 	    cap_rights_init(&rights, CAP_KQUEUE_EVENT), &epfp);
556 	if (error != 0)
557 		return (error);
558 	if (epfp->f_type != DTYPE_KQUEUE) {
559 		error = EINVAL;
560 		goto leave;
561 	}
562 	if (uset != NULL) {
563 		error = kern_sigprocmask(td, SIG_SETMASK, uset,
564 		    &omask, 0);
565 		if (error != 0)
566 			goto leave;
567 		td->td_pflags |= TDP_OLDMASK;
568 		/*
569 		 * Make sure that ast() is called on return to
570 		 * usermode and TDP_OLDMASK is cleared, restoring old
571 		 * sigmask.
572 		 */
573 		thread_lock(td);
574 		td->td_flags |= TDF_ASTPENDING;
575 		thread_unlock(td);
576 	}
577 
578 
579 	coargs.leventlist = events;
580 	coargs.p = td->td_proc;
581 	coargs.count = 0;
582 	coargs.error = 0;
583 
584 	/*
585 	 * Linux epoll_wait(2) man page states that timeout of -1 causes caller
586 	 * to block indefinitely. Real implementation does it if any negative
587 	 * timeout value is passed.
588 	 */
589 	if (timeout >= 0) {
590 		/* Convert from milliseconds to timespec. */
591 		ts.tv_sec = timeout / 1000;
592 		ts.tv_nsec = (timeout % 1000) * 1000000;
593 		tsp = &ts;
594 	} else {
595 		tsp = NULL;
596 	}
597 
598 	error = kern_kevent_fp(td, epfp, 0, maxevents, &k_ops, tsp);
599 	if (error == 0 && coargs.error != 0)
600 		error = coargs.error;
601 
602 	/*
603 	 * kern_kevent might return ENOMEM which is not expected from epoll_wait.
604 	 * Maybe we should translate that but I don't think it matters at all.
605 	 */
606 	if (error == 0)
607 		td->td_retval[0] = coargs.count;
608 
609 	if (uset != NULL)
610 		error = kern_sigprocmask(td, SIG_SETMASK, &omask,
611 		    NULL, 0);
612 leave:
613 	fdrop(epfp, td);
614 	return (error);
615 }
616 
617 #ifdef LINUX_LEGACY_SYSCALLS
618 int
619 linux_epoll_wait(struct thread *td, struct linux_epoll_wait_args *args)
620 {
621 
622 	return (linux_epoll_wait_common(td, args->epfd, args->events,
623 	    args->maxevents, args->timeout, NULL));
624 }
625 #endif
626 
627 int
628 linux_epoll_pwait(struct thread *td, struct linux_epoll_pwait_args *args)
629 {
630 	sigset_t mask, *pmask;
631 	l_sigset_t lmask;
632 	int error;
633 
634 	if (args->mask != NULL) {
635 		if (args->sigsetsize != sizeof(l_sigset_t))
636 			return (EINVAL);
637 		error = copyin(args->mask, &lmask, sizeof(l_sigset_t));
638 		if (error != 0)
639 			return (error);
640 		linux_to_bsd_sigset(&lmask, &mask);
641 		pmask = &mask;
642 	} else
643 		pmask = NULL;
644 	return (linux_epoll_wait_common(td, args->epfd, args->events,
645 	    args->maxevents, args->timeout, pmask));
646 }
647 
648 static int
649 epoll_register_kevent(struct thread *td, struct file *epfp, int fd, int filter,
650     unsigned int flags)
651 {
652 	struct epoll_copyin_args ciargs;
653 	struct kevent kev;
654 	struct kevent_copyops k_ops = { &ciargs,
655 					NULL,
656 					epoll_kev_copyin};
657 
658 	ciargs.changelist = &kev;
659 	EV_SET(&kev, fd, filter, flags, 0, 0, 0);
660 
661 	return (kern_kevent_fp(td, epfp, 1, 0, &k_ops, NULL));
662 }
663 
664 static int
665 epoll_fd_registered(struct thread *td, struct file *epfp, int fd)
666 {
667 	/*
668 	 * Set empty filter flags to avoid accidental modification of already
669 	 * registered events. In the case of event re-registration:
670 	 * 1. If event does not exists kevent() does nothing and returns ENOENT
671 	 * 2. If event does exists, it's enabled/disabled state is preserved
672 	 *    but fflags, data and udata fields are overwritten. So we can not
673 	 *    set socket lowats and store user's context pointer in udata.
674 	 */
675 	if (epoll_register_kevent(td, epfp, fd, EVFILT_READ, 0) != ENOENT ||
676 	    epoll_register_kevent(td, epfp, fd, EVFILT_WRITE, 0) != ENOENT)
677 		return (1);
678 
679 	return (0);
680 }
681 
682 static int
683 epoll_delete_all_events(struct thread *td, struct file *epfp, int fd)
684 {
685 	int error1, error2;
686 
687 	error1 = epoll_register_kevent(td, epfp, fd, EVFILT_READ, EV_DELETE);
688 	error2 = epoll_register_kevent(td, epfp, fd, EVFILT_WRITE, EV_DELETE);
689 
690 	/* return 0 if at least one result positive */
691 	return (error1 == 0 ? 0 : error2);
692 }
693 
694 static int
695 eventfd_create(struct thread *td, uint32_t initval, int flags)
696 {
697 	struct filedesc *fdp;
698 	struct eventfd *efd;
699 	struct file *fp;
700 	int fflags, fd, error;
701 
702 	fflags = 0;
703 	if ((flags & LINUX_O_CLOEXEC) != 0)
704 		fflags |= O_CLOEXEC;
705 
706 	fdp = td->td_proc->p_fd;
707 	error = falloc(td, &fp, &fd, fflags);
708 	if (error != 0)
709 		return (error);
710 
711 	efd = malloc(sizeof(*efd), M_EPOLL, M_WAITOK | M_ZERO);
712 	efd->efd_flags = flags;
713 	efd->efd_count = initval;
714 	mtx_init(&efd->efd_lock, "eventfd", NULL, MTX_DEF);
715 
716 	knlist_init_mtx(&efd->efd_sel.si_note, &efd->efd_lock);
717 
718 	fflags = FREAD | FWRITE;
719 	if ((flags & LINUX_O_NONBLOCK) != 0)
720 		fflags |= FNONBLOCK;
721 
722 	finit(fp, fflags, DTYPE_LINUXEFD, efd, &eventfdops);
723 	fdrop(fp, td);
724 
725 	td->td_retval[0] = fd;
726 	return (error);
727 }
728 
729 #ifdef LINUX_LEGACY_SYSCALLS
730 int
731 linux_eventfd(struct thread *td, struct linux_eventfd_args *args)
732 {
733 
734 	return (eventfd_create(td, args->initval, 0));
735 }
736 #endif
737 
738 int
739 linux_eventfd2(struct thread *td, struct linux_eventfd2_args *args)
740 {
741 
742 	if ((args->flags & ~(LINUX_O_CLOEXEC|LINUX_O_NONBLOCK|LINUX_EFD_SEMAPHORE)) != 0)
743 		return (EINVAL);
744 
745 	return (eventfd_create(td, args->initval, args->flags));
746 }
747 
748 static int
749 eventfd_close(struct file *fp, struct thread *td)
750 {
751 	struct eventfd *efd;
752 
753 	efd = fp->f_data;
754 	if (fp->f_type != DTYPE_LINUXEFD || efd == NULL)
755 		return (EINVAL);
756 
757 	seldrain(&efd->efd_sel);
758 	knlist_destroy(&efd->efd_sel.si_note);
759 
760 	fp->f_ops = &badfileops;
761 	mtx_destroy(&efd->efd_lock);
762 	free(efd, M_EPOLL);
763 
764 	return (0);
765 }
766 
767 static int
768 eventfd_read(struct file *fp, struct uio *uio, struct ucred *active_cred,
769     int flags, struct thread *td)
770 {
771 	struct eventfd *efd;
772 	eventfd_t count;
773 	int error;
774 
775 	efd = fp->f_data;
776 	if (fp->f_type != DTYPE_LINUXEFD || efd == NULL)
777 		return (EINVAL);
778 
779 	if (uio->uio_resid < sizeof(eventfd_t))
780 		return (EINVAL);
781 
782 	error = 0;
783 	mtx_lock(&efd->efd_lock);
784 retry:
785 	if (efd->efd_count == 0) {
786 		if ((fp->f_flag & FNONBLOCK) != 0) {
787 			mtx_unlock(&efd->efd_lock);
788 			return (EAGAIN);
789 		}
790 		error = mtx_sleep(&efd->efd_count, &efd->efd_lock, PCATCH, "lefdrd", 0);
791 		if (error == 0)
792 			goto retry;
793 	}
794 	if (error == 0) {
795 		if ((efd->efd_flags & LINUX_EFD_SEMAPHORE) != 0) {
796 			count = 1;
797 			--efd->efd_count;
798 		} else {
799 			count = efd->efd_count;
800 			efd->efd_count = 0;
801 		}
802 		KNOTE_LOCKED(&efd->efd_sel.si_note, 0);
803 		selwakeup(&efd->efd_sel);
804 		wakeup(&efd->efd_count);
805 		mtx_unlock(&efd->efd_lock);
806 		error = uiomove(&count, sizeof(eventfd_t), uio);
807 	} else
808 		mtx_unlock(&efd->efd_lock);
809 
810 	return (error);
811 }
812 
813 static int
814 eventfd_write(struct file *fp, struct uio *uio, struct ucred *active_cred,
815      int flags, struct thread *td)
816 {
817 	struct eventfd *efd;
818 	eventfd_t count;
819 	int error;
820 
821 	efd = fp->f_data;
822 	if (fp->f_type != DTYPE_LINUXEFD || efd == NULL)
823 		return (EINVAL);
824 
825 	if (uio->uio_resid < sizeof(eventfd_t))
826 		return (EINVAL);
827 
828 	error = uiomove(&count, sizeof(eventfd_t), uio);
829 	if (error != 0)
830 		return (error);
831 	if (count == UINT64_MAX)
832 		return (EINVAL);
833 
834 	mtx_lock(&efd->efd_lock);
835 retry:
836 	if (UINT64_MAX - efd->efd_count <= count) {
837 		if ((fp->f_flag & FNONBLOCK) != 0) {
838 			mtx_unlock(&efd->efd_lock);
839 			/* Do not not return the number of bytes written */
840 			uio->uio_resid += sizeof(eventfd_t);
841 			return (EAGAIN);
842 		}
843 		error = mtx_sleep(&efd->efd_count, &efd->efd_lock,
844 		    PCATCH, "lefdwr", 0);
845 		if (error == 0)
846 			goto retry;
847 	}
848 	if (error == 0) {
849 		efd->efd_count += count;
850 		KNOTE_LOCKED(&efd->efd_sel.si_note, 0);
851 		selwakeup(&efd->efd_sel);
852 		wakeup(&efd->efd_count);
853 	}
854 	mtx_unlock(&efd->efd_lock);
855 
856 	return (error);
857 }
858 
859 static int
860 eventfd_poll(struct file *fp, int events, struct ucred *active_cred,
861     struct thread *td)
862 {
863 	struct eventfd *efd;
864 	int revents = 0;
865 
866 	efd = fp->f_data;
867 	if (fp->f_type != DTYPE_LINUXEFD || efd == NULL)
868 		return (POLLERR);
869 
870 	mtx_lock(&efd->efd_lock);
871 	if ((events & (POLLIN|POLLRDNORM)) && efd->efd_count > 0)
872 		revents |= events & (POLLIN|POLLRDNORM);
873 	if ((events & (POLLOUT|POLLWRNORM)) && UINT64_MAX - 1 > efd->efd_count)
874 		revents |= events & (POLLOUT|POLLWRNORM);
875 	if (revents == 0)
876 		selrecord(td, &efd->efd_sel);
877 	mtx_unlock(&efd->efd_lock);
878 
879 	return (revents);
880 }
881 
882 /*ARGSUSED*/
883 static int
884 eventfd_kqfilter(struct file *fp, struct knote *kn)
885 {
886 	struct eventfd *efd;
887 
888 	efd = fp->f_data;
889 	if (fp->f_type != DTYPE_LINUXEFD || efd == NULL)
890 		return (EINVAL);
891 
892 	mtx_lock(&efd->efd_lock);
893 	switch (kn->kn_filter) {
894 	case EVFILT_READ:
895 		kn->kn_fop = &eventfd_rfiltops;
896 		break;
897 	case EVFILT_WRITE:
898 		kn->kn_fop = &eventfd_wfiltops;
899 		break;
900 	default:
901 		mtx_unlock(&efd->efd_lock);
902 		return (EINVAL);
903 	}
904 
905 	kn->kn_hook = efd;
906 	knlist_add(&efd->efd_sel.si_note, kn, 1);
907 	mtx_unlock(&efd->efd_lock);
908 
909 	return (0);
910 }
911 
912 static void
913 filt_eventfddetach(struct knote *kn)
914 {
915 	struct eventfd *efd = kn->kn_hook;
916 
917 	mtx_lock(&efd->efd_lock);
918 	knlist_remove(&efd->efd_sel.si_note, kn, 1);
919 	mtx_unlock(&efd->efd_lock);
920 }
921 
922 /*ARGSUSED*/
923 static int
924 filt_eventfdread(struct knote *kn, long hint)
925 {
926 	struct eventfd *efd = kn->kn_hook;
927 	int ret;
928 
929 	mtx_assert(&efd->efd_lock, MA_OWNED);
930 	ret = (efd->efd_count > 0);
931 
932 	return (ret);
933 }
934 
935 /*ARGSUSED*/
936 static int
937 filt_eventfdwrite(struct knote *kn, long hint)
938 {
939 	struct eventfd *efd = kn->kn_hook;
940 	int ret;
941 
942 	mtx_assert(&efd->efd_lock, MA_OWNED);
943 	ret = (UINT64_MAX - 1 > efd->efd_count);
944 
945 	return (ret);
946 }
947 
948 /*ARGSUSED*/
949 static int
950 eventfd_ioctl(struct file *fp, u_long cmd, void *data,
951     struct ucred *active_cred, struct thread *td)
952 {
953 
954 	if (fp->f_data == NULL || (fp->f_type != DTYPE_LINUXEFD &&
955 	    fp->f_type != DTYPE_LINUXTFD))
956 		return (EINVAL);
957 
958 	switch (cmd)
959 	{
960 	case FIONBIO:
961 		if ((*(int *)data))
962 			atomic_set_int(&fp->f_flag, FNONBLOCK);
963 		else
964 			atomic_clear_int(&fp->f_flag, FNONBLOCK);
965 	case FIOASYNC:
966 		return (0);
967 	default:
968 		return (ENXIO);
969 	}
970 }
971 
972 /*ARGSUSED*/
973 static int
974 eventfd_stat(struct file *fp, struct stat *st, struct ucred *active_cred,
975     struct thread *td)
976 {
977 
978 	return (ENXIO);
979 }
980 
981 /*ARGSUSED*/
982 static int
983 eventfd_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
984 {
985 
986 	kif->kf_type = KF_TYPE_UNKNOWN;
987 	return (0);
988 }
989 
990 int
991 linux_timerfd_create(struct thread *td, struct linux_timerfd_create_args *args)
992 {
993 	struct filedesc *fdp;
994 	struct timerfd *tfd;
995 	struct file *fp;
996 	clockid_t clockid;
997 	int fflags, fd, error;
998 
999 	if ((args->flags & ~LINUX_TFD_CREATE_FLAGS) != 0)
1000 		return (EINVAL);
1001 
1002 	error = linux_to_native_clockid(&clockid, args->clockid);
1003 	if (error != 0)
1004 		return (error);
1005 	if (clockid != CLOCK_REALTIME && clockid != CLOCK_MONOTONIC)
1006 		return (EINVAL);
1007 
1008 	fflags = 0;
1009 	if ((args->flags & LINUX_TFD_CLOEXEC) != 0)
1010 		fflags |= O_CLOEXEC;
1011 
1012 	fdp = td->td_proc->p_fd;
1013 	error = falloc(td, &fp, &fd, fflags);
1014 	if (error != 0)
1015 		return (error);
1016 
1017 	tfd = malloc(sizeof(*tfd), M_EPOLL, M_WAITOK | M_ZERO);
1018 	tfd->tfd_clockid = clockid;
1019 	mtx_init(&tfd->tfd_lock, "timerfd", NULL, MTX_DEF);
1020 
1021 	callout_init_mtx(&tfd->tfd_callout, &tfd->tfd_lock, 0);
1022 	knlist_init_mtx(&tfd->tfd_sel.si_note, &tfd->tfd_lock);
1023 
1024 	fflags = FREAD;
1025 	if ((args->flags & LINUX_O_NONBLOCK) != 0)
1026 		fflags |= FNONBLOCK;
1027 
1028 	finit(fp, fflags, DTYPE_LINUXTFD, tfd, &timerfdops);
1029 	fdrop(fp, td);
1030 
1031 	td->td_retval[0] = fd;
1032 	return (error);
1033 }
1034 
1035 static int
1036 timerfd_close(struct file *fp, struct thread *td)
1037 {
1038 	struct timerfd *tfd;
1039 
1040 	tfd = fp->f_data;
1041 	if (fp->f_type != DTYPE_LINUXTFD || tfd == NULL)
1042 		return (EINVAL);
1043 
1044 	timespecclear(&tfd->tfd_time.it_value);
1045 	timespecclear(&tfd->tfd_time.it_interval);
1046 
1047 	mtx_lock(&tfd->tfd_lock);
1048 	callout_drain(&tfd->tfd_callout);
1049 	mtx_unlock(&tfd->tfd_lock);
1050 
1051 	seldrain(&tfd->tfd_sel);
1052 	knlist_destroy(&tfd->tfd_sel.si_note);
1053 
1054 	fp->f_ops = &badfileops;
1055 	mtx_destroy(&tfd->tfd_lock);
1056 	free(tfd, M_EPOLL);
1057 
1058 	return (0);
1059 }
1060 
1061 static int
1062 timerfd_read(struct file *fp, struct uio *uio, struct ucred *active_cred,
1063     int flags, struct thread *td)
1064 {
1065 	struct timerfd *tfd;
1066 	timerfd_t count;
1067 	int error;
1068 
1069 	tfd = fp->f_data;
1070 	if (fp->f_type != DTYPE_LINUXTFD || tfd == NULL)
1071 		return (EINVAL);
1072 
1073 	if (uio->uio_resid < sizeof(timerfd_t))
1074 		return (EINVAL);
1075 
1076 	error = 0;
1077 	mtx_lock(&tfd->tfd_lock);
1078 retry:
1079 	if (tfd->tfd_canceled) {
1080 		tfd->tfd_count = 0;
1081 		mtx_unlock(&tfd->tfd_lock);
1082 		return (ECANCELED);
1083 	}
1084 	if (tfd->tfd_count == 0) {
1085 		if ((fp->f_flag & FNONBLOCK) != 0) {
1086 			mtx_unlock(&tfd->tfd_lock);
1087 			return (EAGAIN);
1088 		}
1089 		error = mtx_sleep(&tfd->tfd_count, &tfd->tfd_lock, PCATCH, "ltfdrd", 0);
1090 		if (error == 0)
1091 			goto retry;
1092 	}
1093 	if (error == 0) {
1094 		count = tfd->tfd_count;
1095 		tfd->tfd_count = 0;
1096 		mtx_unlock(&tfd->tfd_lock);
1097 		error = uiomove(&count, sizeof(timerfd_t), uio);
1098 	} else
1099 		mtx_unlock(&tfd->tfd_lock);
1100 
1101 	return (error);
1102 }
1103 
1104 static int
1105 timerfd_poll(struct file *fp, int events, struct ucred *active_cred,
1106     struct thread *td)
1107 {
1108 	struct timerfd *tfd;
1109 	int revents = 0;
1110 
1111 	tfd = fp->f_data;
1112 	if (fp->f_type != DTYPE_LINUXTFD || tfd == NULL)
1113 		return (POLLERR);
1114 
1115 	mtx_lock(&tfd->tfd_lock);
1116 	if ((events & (POLLIN|POLLRDNORM)) && tfd->tfd_count > 0)
1117 		revents |= events & (POLLIN|POLLRDNORM);
1118 	if (revents == 0)
1119 		selrecord(td, &tfd->tfd_sel);
1120 	mtx_unlock(&tfd->tfd_lock);
1121 
1122 	return (revents);
1123 }
1124 
1125 /*ARGSUSED*/
1126 static int
1127 timerfd_kqfilter(struct file *fp, struct knote *kn)
1128 {
1129 	struct timerfd *tfd;
1130 
1131 	tfd = fp->f_data;
1132 	if (fp->f_type != DTYPE_LINUXTFD || tfd == NULL)
1133 		return (EINVAL);
1134 
1135 	if (kn->kn_filter == EVFILT_READ)
1136 		kn->kn_fop = &timerfd_rfiltops;
1137 	else
1138 		return (EINVAL);
1139 
1140 	kn->kn_hook = tfd;
1141 	knlist_add(&tfd->tfd_sel.si_note, kn, 0);
1142 
1143 	return (0);
1144 }
1145 
1146 static void
1147 filt_timerfddetach(struct knote *kn)
1148 {
1149 	struct timerfd *tfd = kn->kn_hook;
1150 
1151 	mtx_lock(&tfd->tfd_lock);
1152 	knlist_remove(&tfd->tfd_sel.si_note, kn, 1);
1153 	mtx_unlock(&tfd->tfd_lock);
1154 }
1155 
1156 /*ARGSUSED*/
1157 static int
1158 filt_timerfdread(struct knote *kn, long hint)
1159 {
1160 	struct timerfd *tfd = kn->kn_hook;
1161 
1162 	return (tfd->tfd_count > 0);
1163 }
1164 
1165 /*ARGSUSED*/
1166 static int
1167 timerfd_stat(struct file *fp, struct stat *st, struct ucred *active_cred,
1168     struct thread *td)
1169 {
1170 
1171 	return (ENXIO);
1172 }
1173 
1174 /*ARGSUSED*/
1175 static int
1176 timerfd_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
1177 {
1178 
1179 	kif->kf_type = KF_TYPE_UNKNOWN;
1180 	return (0);
1181 }
1182 
1183 static void
1184 linux_timerfd_clocktime(struct timerfd *tfd, struct timespec *ts)
1185 {
1186 
1187 	if (tfd->tfd_clockid == CLOCK_REALTIME)
1188 		getnanotime(ts);
1189 	else	/* CLOCK_MONOTONIC */
1190 		getnanouptime(ts);
1191 }
1192 
1193 static void
1194 linux_timerfd_curval(struct timerfd *tfd, struct itimerspec *ots)
1195 {
1196 	struct timespec cts;
1197 
1198 	linux_timerfd_clocktime(tfd, &cts);
1199 	*ots = tfd->tfd_time;
1200 	if (ots->it_value.tv_sec != 0 || ots->it_value.tv_nsec != 0) {
1201 		timespecsub(&ots->it_value, &cts, &ots->it_value);
1202 		if (ots->it_value.tv_sec < 0 ||
1203 		    (ots->it_value.tv_sec == 0 &&
1204 		     ots->it_value.tv_nsec == 0)) {
1205 			ots->it_value.tv_sec  = 0;
1206 			ots->it_value.tv_nsec = 1;
1207 		}
1208 	}
1209 }
1210 
1211 int
1212 linux_timerfd_gettime(struct thread *td, struct linux_timerfd_gettime_args *args)
1213 {
1214 	struct l_itimerspec lots;
1215 	struct itimerspec ots;
1216 	struct timerfd *tfd;
1217 	struct file *fp;
1218 	int error;
1219 
1220 	error = fget(td, args->fd, &cap_read_rights, &fp);
1221 	if (error != 0)
1222 		return (error);
1223 	tfd = fp->f_data;
1224 	if (fp->f_type != DTYPE_LINUXTFD || tfd == NULL) {
1225 		error = EINVAL;
1226 		goto out;
1227 	}
1228 
1229 	mtx_lock(&tfd->tfd_lock);
1230 	linux_timerfd_curval(tfd, &ots);
1231 	mtx_unlock(&tfd->tfd_lock);
1232 
1233 	error = native_to_linux_itimerspec(&lots, &ots);
1234 	if (error == 0)
1235 		error = copyout(&lots, args->old_value, sizeof(lots));
1236 
1237 out:
1238 	fdrop(fp, td);
1239 	return (error);
1240 }
1241 
1242 int
1243 linux_timerfd_settime(struct thread *td, struct linux_timerfd_settime_args *args)
1244 {
1245 	struct l_itimerspec lots;
1246 	struct itimerspec nts, ots;
1247 	struct timespec cts, ts;
1248 	struct timerfd *tfd;
1249 	struct timeval tv;
1250 	struct file *fp;
1251 	int error;
1252 
1253 	if ((args->flags & ~LINUX_TFD_SETTIME_FLAGS) != 0)
1254 		return (EINVAL);
1255 
1256 	error = copyin(args->new_value, &lots, sizeof(lots));
1257 	if (error != 0)
1258 		return (error);
1259 	error = linux_to_native_itimerspec(&nts, &lots);
1260 	if (error != 0)
1261 		return (error);
1262 
1263 	error = fget(td, args->fd, &cap_write_rights, &fp);
1264 	if (error != 0)
1265 		return (error);
1266 	tfd = fp->f_data;
1267 	if (fp->f_type != DTYPE_LINUXTFD || tfd == NULL) {
1268 		error = EINVAL;
1269 		goto out;
1270 	}
1271 
1272 	mtx_lock(&tfd->tfd_lock);
1273 	if (!timespecisset(&nts.it_value))
1274 		timespecclear(&nts.it_interval);
1275 	if (args->old_value != NULL)
1276 		linux_timerfd_curval(tfd, &ots);
1277 
1278 	tfd->tfd_time = nts;
1279 	if (timespecisset(&nts.it_value)) {
1280 		linux_timerfd_clocktime(tfd, &cts);
1281 		ts = nts.it_value;
1282 		if ((args->flags & LINUX_TFD_TIMER_ABSTIME) == 0) {
1283 			timespecadd(&tfd->tfd_time.it_value, &cts,
1284 				&tfd->tfd_time.it_value);
1285 		} else {
1286 			timespecsub(&ts, &cts, &ts);
1287 		}
1288 		TIMESPEC_TO_TIMEVAL(&tv, &ts);
1289 		callout_reset(&tfd->tfd_callout, tvtohz(&tv),
1290 			linux_timerfd_expire, tfd);
1291 		tfd->tfd_canceled = false;
1292 	} else {
1293 		tfd->tfd_canceled = true;
1294 		callout_stop(&tfd->tfd_callout);
1295 	}
1296 	mtx_unlock(&tfd->tfd_lock);
1297 
1298 	if (args->old_value != NULL) {
1299 		error = native_to_linux_itimerspec(&lots, &ots);
1300 		if (error == 0)
1301 			error = copyout(&lots, args->old_value, sizeof(lots));
1302 	}
1303 
1304 out:
1305 	fdrop(fp, td);
1306 	return (error);
1307 }
1308 
1309 static void
1310 linux_timerfd_expire(void *arg)
1311 {
1312 	struct timespec cts, ts;
1313 	struct timeval tv;
1314 	struct timerfd *tfd;
1315 
1316 	tfd = (struct timerfd *)arg;
1317 
1318 	linux_timerfd_clocktime(tfd, &cts);
1319 	if (timespeccmp(&cts, &tfd->tfd_time.it_value, >=)) {
1320 		if (timespecisset(&tfd->tfd_time.it_interval))
1321 			timespecadd(&tfd->tfd_time.it_value,
1322 				    &tfd->tfd_time.it_interval,
1323 				    &tfd->tfd_time.it_value);
1324 		else
1325 			/* single shot timer */
1326 			timespecclear(&tfd->tfd_time.it_value);
1327 		if (timespecisset(&tfd->tfd_time.it_value)) {
1328 			timespecsub(&tfd->tfd_time.it_value, &cts, &ts);
1329 			TIMESPEC_TO_TIMEVAL(&tv, &ts);
1330 			callout_reset(&tfd->tfd_callout, tvtohz(&tv),
1331 				linux_timerfd_expire, tfd);
1332 		}
1333 		tfd->tfd_count++;
1334 		KNOTE_LOCKED(&tfd->tfd_sel.si_note, 0);
1335 		selwakeup(&tfd->tfd_sel);
1336 		wakeup(&tfd->tfd_count);
1337 	} else if (timespecisset(&tfd->tfd_time.it_value)) {
1338 		timespecsub(&tfd->tfd_time.it_value, &cts, &ts);
1339 		TIMESPEC_TO_TIMEVAL(&tv, &ts);
1340 		callout_reset(&tfd->tfd_callout, tvtohz(&tv),
1341 		    linux_timerfd_expire, tfd);
1342 	}
1343 }
1344