1 /*-
2  * Copyright (c) 2010 Isilon Systems, Inc.
3  * Copyright (c) 2010 iX Systems, Inc.
4  * Copyright (c) 2010 Panasas, Inc.
5  * Copyright (c) 2013-2021 Mellanox Technologies, Ltd.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice unmodified, this list of conditions, and the following
13  *    disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include "opt_stack.h"
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/malloc.h>
38 #include <sys/kernel.h>
39 #include <sys/sysctl.h>
40 #include <sys/proc.h>
41 #include <sys/sglist.h>
42 #include <sys/sleepqueue.h>
43 #include <sys/refcount.h>
44 #include <sys/lock.h>
45 #include <sys/mutex.h>
46 #include <sys/bus.h>
47 #include <sys/eventhandler.h>
48 #include <sys/fcntl.h>
49 #include <sys/file.h>
50 #include <sys/filio.h>
51 #include <sys/rwlock.h>
52 #include <sys/mman.h>
53 #include <sys/stack.h>
54 #include <sys/sysent.h>
55 #include <sys/time.h>
56 #include <sys/user.h>
57 
58 #include <vm/vm.h>
59 #include <vm/pmap.h>
60 #include <vm/vm_object.h>
61 #include <vm/vm_page.h>
62 #include <vm/vm_pager.h>
63 
64 #include <machine/stdarg.h>
65 
66 #if defined(__i386__) || defined(__amd64__)
67 #include <machine/md_var.h>
68 #endif
69 
70 #include <linux/kobject.h>
71 #include <linux/cpu.h>
72 #include <linux/device.h>
73 #include <linux/slab.h>
74 #include <linux/module.h>
75 #include <linux/moduleparam.h>
76 #include <linux/cdev.h>
77 #include <linux/file.h>
78 #include <linux/sysfs.h>
79 #include <linux/mm.h>
80 #include <linux/io.h>
81 #include <linux/vmalloc.h>
82 #include <linux/netdevice.h>
83 #include <linux/timer.h>
84 #include <linux/interrupt.h>
85 #include <linux/uaccess.h>
86 #include <linux/utsname.h>
87 #include <linux/list.h>
88 #include <linux/kthread.h>
89 #include <linux/kernel.h>
90 #include <linux/compat.h>
91 #include <linux/io-mapping.h>
92 #include <linux/poll.h>
93 #include <linux/smp.h>
94 #include <linux/wait_bit.h>
95 #include <linux/rcupdate.h>
96 #include <linux/interval_tree.h>
97 #include <linux/interval_tree_generic.h>
98 
99 #if defined(__i386__) || defined(__amd64__)
100 #include <asm/smp.h>
101 #include <asm/processor.h>
102 #endif
103 
104 SYSCTL_NODE(_compat, OID_AUTO, linuxkpi, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
105     "LinuxKPI parameters");
106 
107 int linuxkpi_debug;
108 SYSCTL_INT(_compat_linuxkpi, OID_AUTO, debug, CTLFLAG_RWTUN,
109     &linuxkpi_debug, 0, "Set to enable pr_debug() prints. Clear to disable.");
110 
111 int linuxkpi_warn_dump_stack = 0;
112 SYSCTL_INT(_compat_linuxkpi, OID_AUTO, warn_dump_stack, CTLFLAG_RWTUN,
113     &linuxkpi_warn_dump_stack, 0,
114     "Set to enable stack traces from WARN_ON(). Clear to disable.");
115 
116 static struct timeval lkpi_net_lastlog;
117 static int lkpi_net_curpps;
118 static int lkpi_net_maxpps = 99;
119 SYSCTL_INT(_compat_linuxkpi, OID_AUTO, net_ratelimit, CTLFLAG_RWTUN,
120     &lkpi_net_maxpps, 0, "Limit number of LinuxKPI net messages per second.");
121 
122 MALLOC_DEFINE(M_KMALLOC, "lkpikmalloc", "Linux kmalloc compat");
123 
124 #include <linux/rbtree.h>
125 /* Undo Linux compat changes. */
126 #undef RB_ROOT
127 #undef file
128 #undef cdev
129 #define	RB_ROOT(head)	(head)->rbh_root
130 
131 static void linux_destroy_dev(struct linux_cdev *);
132 static void linux_cdev_deref(struct linux_cdev *ldev);
133 static struct vm_area_struct *linux_cdev_handle_find(void *handle);
134 
135 cpumask_t cpu_online_mask;
136 static cpumask_t static_single_cpu_mask[MAXCPU];
137 struct kobject linux_class_root;
138 struct device linux_root_device;
139 struct class linux_class_misc;
140 struct list_head pci_drivers;
141 struct list_head pci_devices;
142 spinlock_t pci_lock;
143 struct uts_namespace init_uts_ns;
144 
145 unsigned long linux_timer_hz_mask;
146 
147 wait_queue_head_t linux_bit_waitq;
148 wait_queue_head_t linux_var_waitq;
149 
150 int
151 panic_cmp(struct rb_node *one, struct rb_node *two)
152 {
153 	panic("no cmp");
154 }
155 
156 RB_GENERATE(linux_root, rb_node, __entry, panic_cmp);
157 
158 #define	START(node)	((node)->start)
159 #define	LAST(node)	((node)->last)
160 
161 INTERVAL_TREE_DEFINE(struct interval_tree_node, rb, unsigned long,, START,
162     LAST,, lkpi_interval_tree)
163 
164 struct kobject *
165 kobject_create(void)
166 {
167 	struct kobject *kobj;
168 
169 	kobj = kzalloc(sizeof(*kobj), GFP_KERNEL);
170 	if (kobj == NULL)
171 		return (NULL);
172 	kobject_init(kobj, &linux_kfree_type);
173 
174 	return (kobj);
175 }
176 
177 
178 int
179 kobject_set_name_vargs(struct kobject *kobj, const char *fmt, va_list args)
180 {
181 	va_list tmp_va;
182 	int len;
183 	char *old;
184 	char *name;
185 	char dummy;
186 
187 	old = kobj->name;
188 
189 	if (old && fmt == NULL)
190 		return (0);
191 
192 	/* compute length of string */
193 	va_copy(tmp_va, args);
194 	len = vsnprintf(&dummy, 0, fmt, tmp_va);
195 	va_end(tmp_va);
196 
197 	/* account for zero termination */
198 	len++;
199 
200 	/* check for error */
201 	if (len < 1)
202 		return (-EINVAL);
203 
204 	/* allocate memory for string */
205 	name = kzalloc(len, GFP_KERNEL);
206 	if (name == NULL)
207 		return (-ENOMEM);
208 	vsnprintf(name, len, fmt, args);
209 	kobj->name = name;
210 
211 	/* free old string */
212 	kfree(old);
213 
214 	/* filter new string */
215 	for (; *name != '\0'; name++)
216 		if (*name == '/')
217 			*name = '!';
218 	return (0);
219 }
220 
221 int
222 kobject_set_name(struct kobject *kobj, const char *fmt, ...)
223 {
224 	va_list args;
225 	int error;
226 
227 	va_start(args, fmt);
228 	error = kobject_set_name_vargs(kobj, fmt, args);
229 	va_end(args);
230 
231 	return (error);
232 }
233 
234 static int
235 kobject_add_complete(struct kobject *kobj, struct kobject *parent)
236 {
237 	const struct kobj_type *t;
238 	int error;
239 
240 	kobj->parent = parent;
241 	error = sysfs_create_dir(kobj);
242 	if (error == 0 && kobj->ktype && kobj->ktype->default_attrs) {
243 		struct attribute **attr;
244 		t = kobj->ktype;
245 
246 		for (attr = t->default_attrs; *attr != NULL; attr++) {
247 			error = sysfs_create_file(kobj, *attr);
248 			if (error)
249 				break;
250 		}
251 		if (error)
252 			sysfs_remove_dir(kobj);
253 	}
254 	return (error);
255 }
256 
257 int
258 kobject_add(struct kobject *kobj, struct kobject *parent, const char *fmt, ...)
259 {
260 	va_list args;
261 	int error;
262 
263 	va_start(args, fmt);
264 	error = kobject_set_name_vargs(kobj, fmt, args);
265 	va_end(args);
266 	if (error)
267 		return (error);
268 
269 	return kobject_add_complete(kobj, parent);
270 }
271 
272 void
273 linux_kobject_release(struct kref *kref)
274 {
275 	struct kobject *kobj;
276 	char *name;
277 
278 	kobj = container_of(kref, struct kobject, kref);
279 	sysfs_remove_dir(kobj);
280 	name = kobj->name;
281 	if (kobj->ktype && kobj->ktype->release)
282 		kobj->ktype->release(kobj);
283 	kfree(name);
284 }
285 
286 static void
287 linux_kobject_kfree(struct kobject *kobj)
288 {
289 	kfree(kobj);
290 }
291 
292 static void
293 linux_kobject_kfree_name(struct kobject *kobj)
294 {
295 	if (kobj) {
296 		kfree(kobj->name);
297 	}
298 }
299 
300 const struct kobj_type linux_kfree_type = {
301 	.release = linux_kobject_kfree
302 };
303 
304 static ssize_t
305 lkpi_kobj_attr_show(struct kobject *kobj, struct attribute *attr, char *buf)
306 {
307 	struct kobj_attribute *ka =
308 	    container_of(attr, struct kobj_attribute, attr);
309 
310 	if (ka->show == NULL)
311 		return (-EIO);
312 
313 	return (ka->show(kobj, ka, buf));
314 }
315 
316 static ssize_t
317 lkpi_kobj_attr_store(struct kobject *kobj, struct attribute *attr,
318     const char *buf, size_t count)
319 {
320 	struct kobj_attribute *ka =
321 	    container_of(attr, struct kobj_attribute, attr);
322 
323 	if (ka->store == NULL)
324 		return (-EIO);
325 
326 	return (ka->store(kobj, ka, buf, count));
327 }
328 
329 const struct sysfs_ops kobj_sysfs_ops = {
330 	.show	= lkpi_kobj_attr_show,
331 	.store	= lkpi_kobj_attr_store,
332 };
333 
334 static void
335 linux_device_release(struct device *dev)
336 {
337 	pr_debug("linux_device_release: %s\n", dev_name(dev));
338 	kfree(dev);
339 }
340 
341 static ssize_t
342 linux_class_show(struct kobject *kobj, struct attribute *attr, char *buf)
343 {
344 	struct class_attribute *dattr;
345 	ssize_t error;
346 
347 	dattr = container_of(attr, struct class_attribute, attr);
348 	error = -EIO;
349 	if (dattr->show)
350 		error = dattr->show(container_of(kobj, struct class, kobj),
351 		    dattr, buf);
352 	return (error);
353 }
354 
355 static ssize_t
356 linux_class_store(struct kobject *kobj, struct attribute *attr, const char *buf,
357     size_t count)
358 {
359 	struct class_attribute *dattr;
360 	ssize_t error;
361 
362 	dattr = container_of(attr, struct class_attribute, attr);
363 	error = -EIO;
364 	if (dattr->store)
365 		error = dattr->store(container_of(kobj, struct class, kobj),
366 		    dattr, buf, count);
367 	return (error);
368 }
369 
370 static void
371 linux_class_release(struct kobject *kobj)
372 {
373 	struct class *class;
374 
375 	class = container_of(kobj, struct class, kobj);
376 	if (class->class_release)
377 		class->class_release(class);
378 }
379 
380 static const struct sysfs_ops linux_class_sysfs = {
381 	.show  = linux_class_show,
382 	.store = linux_class_store,
383 };
384 
385 const struct kobj_type linux_class_ktype = {
386 	.release = linux_class_release,
387 	.sysfs_ops = &linux_class_sysfs
388 };
389 
390 static void
391 linux_dev_release(struct kobject *kobj)
392 {
393 	struct device *dev;
394 
395 	dev = container_of(kobj, struct device, kobj);
396 	/* This is the precedence defined by linux. */
397 	if (dev->release)
398 		dev->release(dev);
399 	else if (dev->class && dev->class->dev_release)
400 		dev->class->dev_release(dev);
401 }
402 
403 static ssize_t
404 linux_dev_show(struct kobject *kobj, struct attribute *attr, char *buf)
405 {
406 	struct device_attribute *dattr;
407 	ssize_t error;
408 
409 	dattr = container_of(attr, struct device_attribute, attr);
410 	error = -EIO;
411 	if (dattr->show)
412 		error = dattr->show(container_of(kobj, struct device, kobj),
413 		    dattr, buf);
414 	return (error);
415 }
416 
417 static ssize_t
418 linux_dev_store(struct kobject *kobj, struct attribute *attr, const char *buf,
419     size_t count)
420 {
421 	struct device_attribute *dattr;
422 	ssize_t error;
423 
424 	dattr = container_of(attr, struct device_attribute, attr);
425 	error = -EIO;
426 	if (dattr->store)
427 		error = dattr->store(container_of(kobj, struct device, kobj),
428 		    dattr, buf, count);
429 	return (error);
430 }
431 
432 static const struct sysfs_ops linux_dev_sysfs = {
433 	.show  = linux_dev_show,
434 	.store = linux_dev_store,
435 };
436 
437 const struct kobj_type linux_dev_ktype = {
438 	.release = linux_dev_release,
439 	.sysfs_ops = &linux_dev_sysfs
440 };
441 
442 struct device *
443 device_create(struct class *class, struct device *parent, dev_t devt,
444     void *drvdata, const char *fmt, ...)
445 {
446 	struct device *dev;
447 	va_list args;
448 
449 	dev = kzalloc(sizeof(*dev), M_WAITOK);
450 	dev->parent = parent;
451 	dev->class = class;
452 	dev->devt = devt;
453 	dev->driver_data = drvdata;
454 	dev->release = linux_device_release;
455 	va_start(args, fmt);
456 	kobject_set_name_vargs(&dev->kobj, fmt, args);
457 	va_end(args);
458 	device_register(dev);
459 
460 	return (dev);
461 }
462 
463 struct device *
464 device_create_groups_vargs(struct class *class, struct device *parent,
465     dev_t devt, void *drvdata, const struct attribute_group **groups,
466     const char *fmt, va_list args)
467 {
468 	struct device *dev = NULL;
469 	int retval = -ENODEV;
470 
471 	if (class == NULL || IS_ERR(class))
472 		goto error;
473 
474 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
475 	if (!dev) {
476 		retval = -ENOMEM;
477 		goto error;
478 	}
479 
480 	dev->devt = devt;
481 	dev->class = class;
482 	dev->parent = parent;
483 	dev->groups = groups;
484 	dev->release = device_create_release;
485 	/* device_initialize() needs the class and parent to be set */
486 	device_initialize(dev);
487 	dev_set_drvdata(dev, drvdata);
488 
489 	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
490 	if (retval)
491 		goto error;
492 
493 	retval = device_add(dev);
494 	if (retval)
495 		goto error;
496 
497 	return dev;
498 
499 error:
500 	put_device(dev);
501 	return ERR_PTR(retval);
502 }
503 
504 struct class *
505 class_create(struct module *owner, const char *name)
506 {
507 	struct class *class;
508 	int error;
509 
510 	class = kzalloc(sizeof(*class), M_WAITOK);
511 	class->owner = owner;
512 	class->name = name;
513 	class->class_release = linux_class_kfree;
514 	error = class_register(class);
515 	if (error) {
516 		kfree(class);
517 		return (NULL);
518 	}
519 
520 	return (class);
521 }
522 
523 int
524 kobject_init_and_add(struct kobject *kobj, const struct kobj_type *ktype,
525     struct kobject *parent, const char *fmt, ...)
526 {
527 	va_list args;
528 	int error;
529 
530 	kobject_init(kobj, ktype);
531 	kobj->ktype = ktype;
532 	kobj->parent = parent;
533 	kobj->name = NULL;
534 
535 	va_start(args, fmt);
536 	error = kobject_set_name_vargs(kobj, fmt, args);
537 	va_end(args);
538 	if (error)
539 		return (error);
540 	return kobject_add_complete(kobj, parent);
541 }
542 
543 static void
544 linux_kq_lock(void *arg)
545 {
546 	spinlock_t *s = arg;
547 
548 	spin_lock(s);
549 }
550 static void
551 linux_kq_unlock(void *arg)
552 {
553 	spinlock_t *s = arg;
554 
555 	spin_unlock(s);
556 }
557 
558 static void
559 linux_kq_assert_lock(void *arg, int what)
560 {
561 #ifdef INVARIANTS
562 	spinlock_t *s = arg;
563 
564 	if (what == LA_LOCKED)
565 		mtx_assert(&s->m, MA_OWNED);
566 	else
567 		mtx_assert(&s->m, MA_NOTOWNED);
568 #endif
569 }
570 
571 static void
572 linux_file_kqfilter_poll(struct linux_file *, int);
573 
574 struct linux_file *
575 linux_file_alloc(void)
576 {
577 	struct linux_file *filp;
578 
579 	filp = kzalloc(sizeof(*filp), GFP_KERNEL);
580 
581 	/* set initial refcount */
582 	filp->f_count = 1;
583 
584 	/* setup fields needed by kqueue support */
585 	spin_lock_init(&filp->f_kqlock);
586 	knlist_init(&filp->f_selinfo.si_note, &filp->f_kqlock,
587 	    linux_kq_lock, linux_kq_unlock, linux_kq_assert_lock);
588 
589 	return (filp);
590 }
591 
592 void
593 linux_file_free(struct linux_file *filp)
594 {
595 	if (filp->_file == NULL) {
596 		if (filp->f_op != NULL && filp->f_op->release != NULL)
597 			filp->f_op->release(filp->f_vnode, filp);
598 		if (filp->f_shmem != NULL)
599 			vm_object_deallocate(filp->f_shmem);
600 		kfree_rcu(filp, rcu);
601 	} else {
602 		/*
603 		 * The close method of the character device or file
604 		 * will free the linux_file structure:
605 		 */
606 		_fdrop(filp->_file, curthread);
607 	}
608 }
609 
610 struct linux_cdev *
611 cdev_alloc(void)
612 {
613 	struct linux_cdev *cdev;
614 
615 	cdev = kzalloc(sizeof(struct linux_cdev), M_WAITOK);
616 	kobject_init(&cdev->kobj, &linux_cdev_ktype);
617 	cdev->refs = 1;
618 	return (cdev);
619 }
620 
621 static int
622 linux_cdev_pager_fault(vm_object_t vm_obj, vm_ooffset_t offset, int prot,
623     vm_page_t *mres)
624 {
625 	struct vm_area_struct *vmap;
626 
627 	vmap = linux_cdev_handle_find(vm_obj->handle);
628 
629 	MPASS(vmap != NULL);
630 	MPASS(vmap->vm_private_data == vm_obj->handle);
631 
632 	if (likely(vmap->vm_ops != NULL && offset < vmap->vm_len)) {
633 		vm_paddr_t paddr = IDX_TO_OFF(vmap->vm_pfn) + offset;
634 		vm_page_t page;
635 
636 		if (((*mres)->flags & PG_FICTITIOUS) != 0) {
637 			/*
638 			 * If the passed in result page is a fake
639 			 * page, update it with the new physical
640 			 * address.
641 			 */
642 			page = *mres;
643 			vm_page_updatefake(page, paddr, vm_obj->memattr);
644 		} else {
645 			/*
646 			 * Replace the passed in "mres" page with our
647 			 * own fake page and free up the all of the
648 			 * original pages.
649 			 */
650 			VM_OBJECT_WUNLOCK(vm_obj);
651 			page = vm_page_getfake(paddr, vm_obj->memattr);
652 			VM_OBJECT_WLOCK(vm_obj);
653 
654 			vm_page_replace(page, vm_obj, (*mres)->pindex, *mres);
655 			*mres = page;
656 		}
657 		vm_page_valid(page);
658 		return (VM_PAGER_OK);
659 	}
660 	return (VM_PAGER_FAIL);
661 }
662 
663 static int
664 linux_cdev_pager_populate(vm_object_t vm_obj, vm_pindex_t pidx, int fault_type,
665     vm_prot_t max_prot, vm_pindex_t *first, vm_pindex_t *last)
666 {
667 	struct vm_area_struct *vmap;
668 	int err;
669 
670 	/* get VM area structure */
671 	vmap = linux_cdev_handle_find(vm_obj->handle);
672 	MPASS(vmap != NULL);
673 	MPASS(vmap->vm_private_data == vm_obj->handle);
674 
675 	VM_OBJECT_WUNLOCK(vm_obj);
676 
677 	linux_set_current(curthread);
678 
679 	down_write(&vmap->vm_mm->mmap_sem);
680 	if (unlikely(vmap->vm_ops == NULL)) {
681 		err = VM_FAULT_SIGBUS;
682 	} else {
683 		struct vm_fault vmf;
684 
685 		/* fill out VM fault structure */
686 		vmf.virtual_address = (void *)(uintptr_t)IDX_TO_OFF(pidx);
687 		vmf.flags = (fault_type & VM_PROT_WRITE) ? FAULT_FLAG_WRITE : 0;
688 		vmf.pgoff = 0;
689 		vmf.page = NULL;
690 		vmf.vma = vmap;
691 
692 		vmap->vm_pfn_count = 0;
693 		vmap->vm_pfn_pcount = &vmap->vm_pfn_count;
694 		vmap->vm_obj = vm_obj;
695 
696 		err = vmap->vm_ops->fault(&vmf);
697 
698 		while (vmap->vm_pfn_count == 0 && err == VM_FAULT_NOPAGE) {
699 			kern_yield(PRI_USER);
700 			err = vmap->vm_ops->fault(&vmf);
701 		}
702 	}
703 
704 	/* translate return code */
705 	switch (err) {
706 	case VM_FAULT_OOM:
707 		err = VM_PAGER_AGAIN;
708 		break;
709 	case VM_FAULT_SIGBUS:
710 		err = VM_PAGER_BAD;
711 		break;
712 	case VM_FAULT_NOPAGE:
713 		/*
714 		 * By contract the fault handler will return having
715 		 * busied all the pages itself. If pidx is already
716 		 * found in the object, it will simply xbusy the first
717 		 * page and return with vm_pfn_count set to 1.
718 		 */
719 		*first = vmap->vm_pfn_first;
720 		*last = *first + vmap->vm_pfn_count - 1;
721 		err = VM_PAGER_OK;
722 		break;
723 	default:
724 		err = VM_PAGER_ERROR;
725 		break;
726 	}
727 	up_write(&vmap->vm_mm->mmap_sem);
728 	VM_OBJECT_WLOCK(vm_obj);
729 	return (err);
730 }
731 
732 static struct rwlock linux_vma_lock;
733 static TAILQ_HEAD(, vm_area_struct) linux_vma_head =
734     TAILQ_HEAD_INITIALIZER(linux_vma_head);
735 
736 static void
737 linux_cdev_handle_free(struct vm_area_struct *vmap)
738 {
739 	/* Drop reference on vm_file */
740 	if (vmap->vm_file != NULL)
741 		fput(vmap->vm_file);
742 
743 	/* Drop reference on mm_struct */
744 	mmput(vmap->vm_mm);
745 
746 	kfree(vmap);
747 }
748 
749 static void
750 linux_cdev_handle_remove(struct vm_area_struct *vmap)
751 {
752 	rw_wlock(&linux_vma_lock);
753 	TAILQ_REMOVE(&linux_vma_head, vmap, vm_entry);
754 	rw_wunlock(&linux_vma_lock);
755 }
756 
757 static struct vm_area_struct *
758 linux_cdev_handle_find(void *handle)
759 {
760 	struct vm_area_struct *vmap;
761 
762 	rw_rlock(&linux_vma_lock);
763 	TAILQ_FOREACH(vmap, &linux_vma_head, vm_entry) {
764 		if (vmap->vm_private_data == handle)
765 			break;
766 	}
767 	rw_runlock(&linux_vma_lock);
768 	return (vmap);
769 }
770 
771 static int
772 linux_cdev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot,
773 		      vm_ooffset_t foff, struct ucred *cred, u_short *color)
774 {
775 
776 	MPASS(linux_cdev_handle_find(handle) != NULL);
777 	*color = 0;
778 	return (0);
779 }
780 
781 static void
782 linux_cdev_pager_dtor(void *handle)
783 {
784 	const struct vm_operations_struct *vm_ops;
785 	struct vm_area_struct *vmap;
786 
787 	vmap = linux_cdev_handle_find(handle);
788 	MPASS(vmap != NULL);
789 
790 	/*
791 	 * Remove handle before calling close operation to prevent
792 	 * other threads from reusing the handle pointer.
793 	 */
794 	linux_cdev_handle_remove(vmap);
795 
796 	down_write(&vmap->vm_mm->mmap_sem);
797 	vm_ops = vmap->vm_ops;
798 	if (likely(vm_ops != NULL))
799 		vm_ops->close(vmap);
800 	up_write(&vmap->vm_mm->mmap_sem);
801 
802 	linux_cdev_handle_free(vmap);
803 }
804 
805 static struct cdev_pager_ops linux_cdev_pager_ops[2] = {
806   {
807 	/* OBJT_MGTDEVICE */
808 	.cdev_pg_populate	= linux_cdev_pager_populate,
809 	.cdev_pg_ctor	= linux_cdev_pager_ctor,
810 	.cdev_pg_dtor	= linux_cdev_pager_dtor
811   },
812   {
813 	/* OBJT_DEVICE */
814 	.cdev_pg_fault	= linux_cdev_pager_fault,
815 	.cdev_pg_ctor	= linux_cdev_pager_ctor,
816 	.cdev_pg_dtor	= linux_cdev_pager_dtor
817   },
818 };
819 
820 int
821 zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
822     unsigned long size)
823 {
824 	vm_object_t obj;
825 	vm_page_t m;
826 
827 	obj = vma->vm_obj;
828 	if (obj == NULL || (obj->flags & OBJ_UNMANAGED) != 0)
829 		return (-ENOTSUP);
830 	VM_OBJECT_RLOCK(obj);
831 	for (m = vm_page_find_least(obj, OFF_TO_IDX(address));
832 	    m != NULL && m->pindex < OFF_TO_IDX(address + size);
833 	    m = TAILQ_NEXT(m, listq))
834 		pmap_remove_all(m);
835 	VM_OBJECT_RUNLOCK(obj);
836 	return (0);
837 }
838 
839 void
840 vma_set_file(struct vm_area_struct *vma, struct linux_file *file)
841 {
842 	struct linux_file *tmp;
843 
844 	/* Changing an anonymous vma with this is illegal */
845 	get_file(file);
846 	tmp = vma->vm_file;
847 	vma->vm_file = file;
848 	fput(tmp);
849 }
850 
851 static struct file_operations dummy_ldev_ops = {
852 	/* XXXKIB */
853 };
854 
855 static struct linux_cdev dummy_ldev = {
856 	.ops = &dummy_ldev_ops,
857 };
858 
859 #define	LDEV_SI_DTR	0x0001
860 #define	LDEV_SI_REF	0x0002
861 
862 static void
863 linux_get_fop(struct linux_file *filp, const struct file_operations **fop,
864     struct linux_cdev **dev)
865 {
866 	struct linux_cdev *ldev;
867 	u_int siref;
868 
869 	ldev = filp->f_cdev;
870 	*fop = filp->f_op;
871 	if (ldev != NULL) {
872 		if (ldev->kobj.ktype == &linux_cdev_static_ktype) {
873 			refcount_acquire(&ldev->refs);
874 		} else {
875 			for (siref = ldev->siref;;) {
876 				if ((siref & LDEV_SI_DTR) != 0) {
877 					ldev = &dummy_ldev;
878 					*fop = ldev->ops;
879 					siref = ldev->siref;
880 					MPASS((ldev->siref & LDEV_SI_DTR) == 0);
881 				} else if (atomic_fcmpset_int(&ldev->siref,
882 				    &siref, siref + LDEV_SI_REF)) {
883 					break;
884 				}
885 			}
886 		}
887 	}
888 	*dev = ldev;
889 }
890 
891 static void
892 linux_drop_fop(struct linux_cdev *ldev)
893 {
894 
895 	if (ldev == NULL)
896 		return;
897 	if (ldev->kobj.ktype == &linux_cdev_static_ktype) {
898 		linux_cdev_deref(ldev);
899 	} else {
900 		MPASS(ldev->kobj.ktype == &linux_cdev_ktype);
901 		MPASS((ldev->siref & ~LDEV_SI_DTR) != 0);
902 		atomic_subtract_int(&ldev->siref, LDEV_SI_REF);
903 	}
904 }
905 
906 #define	OPW(fp,td,code) ({			\
907 	struct file *__fpop;			\
908 	__typeof(code) __retval;		\
909 						\
910 	__fpop = (td)->td_fpop;			\
911 	(td)->td_fpop = (fp);			\
912 	__retval = (code);			\
913 	(td)->td_fpop = __fpop;			\
914 	__retval;				\
915 })
916 
917 static int
918 linux_dev_fdopen(struct cdev *dev, int fflags, struct thread *td,
919     struct file *file)
920 {
921 	struct linux_cdev *ldev;
922 	struct linux_file *filp;
923 	const struct file_operations *fop;
924 	int error;
925 
926 	ldev = dev->si_drv1;
927 
928 	filp = linux_file_alloc();
929 	filp->f_dentry = &filp->f_dentry_store;
930 	filp->f_op = ldev->ops;
931 	filp->f_mode = file->f_flag;
932 	filp->f_flags = file->f_flag;
933 	filp->f_vnode = file->f_vnode;
934 	filp->_file = file;
935 	refcount_acquire(&ldev->refs);
936 	filp->f_cdev = ldev;
937 
938 	linux_set_current(td);
939 	linux_get_fop(filp, &fop, &ldev);
940 
941 	if (fop->open != NULL) {
942 		error = -fop->open(file->f_vnode, filp);
943 		if (error != 0) {
944 			linux_drop_fop(ldev);
945 			linux_cdev_deref(filp->f_cdev);
946 			kfree(filp);
947 			return (error);
948 		}
949 	}
950 
951 	/* hold on to the vnode - used for fstat() */
952 	vhold(filp->f_vnode);
953 
954 	/* release the file from devfs */
955 	finit(file, filp->f_mode, DTYPE_DEV, filp, &linuxfileops);
956 	linux_drop_fop(ldev);
957 	return (ENXIO);
958 }
959 
960 #define	LINUX_IOCTL_MIN_PTR 0x10000UL
961 #define	LINUX_IOCTL_MAX_PTR (LINUX_IOCTL_MIN_PTR + IOCPARM_MAX)
962 
963 static inline int
964 linux_remap_address(void **uaddr, size_t len)
965 {
966 	uintptr_t uaddr_val = (uintptr_t)(*uaddr);
967 
968 	if (unlikely(uaddr_val >= LINUX_IOCTL_MIN_PTR &&
969 	    uaddr_val < LINUX_IOCTL_MAX_PTR)) {
970 		struct task_struct *pts = current;
971 		if (pts == NULL) {
972 			*uaddr = NULL;
973 			return (1);
974 		}
975 
976 		/* compute data offset */
977 		uaddr_val -= LINUX_IOCTL_MIN_PTR;
978 
979 		/* check that length is within bounds */
980 		if ((len > IOCPARM_MAX) ||
981 		    (uaddr_val + len) > pts->bsd_ioctl_len) {
982 			*uaddr = NULL;
983 			return (1);
984 		}
985 
986 		/* re-add kernel buffer address */
987 		uaddr_val += (uintptr_t)pts->bsd_ioctl_data;
988 
989 		/* update address location */
990 		*uaddr = (void *)uaddr_val;
991 		return (1);
992 	}
993 	return (0);
994 }
995 
996 int
997 linux_copyin(const void *uaddr, void *kaddr, size_t len)
998 {
999 	if (linux_remap_address(__DECONST(void **, &uaddr), len)) {
1000 		if (uaddr == NULL)
1001 			return (-EFAULT);
1002 		memcpy(kaddr, uaddr, len);
1003 		return (0);
1004 	}
1005 	return (-copyin(uaddr, kaddr, len));
1006 }
1007 
1008 int
1009 linux_copyout(const void *kaddr, void *uaddr, size_t len)
1010 {
1011 	if (linux_remap_address(&uaddr, len)) {
1012 		if (uaddr == NULL)
1013 			return (-EFAULT);
1014 		memcpy(uaddr, kaddr, len);
1015 		return (0);
1016 	}
1017 	return (-copyout(kaddr, uaddr, len));
1018 }
1019 
1020 size_t
1021 linux_clear_user(void *_uaddr, size_t _len)
1022 {
1023 	uint8_t *uaddr = _uaddr;
1024 	size_t len = _len;
1025 
1026 	/* make sure uaddr is aligned before going into the fast loop */
1027 	while (((uintptr_t)uaddr & 7) != 0 && len > 7) {
1028 		if (subyte(uaddr, 0))
1029 			return (_len);
1030 		uaddr++;
1031 		len--;
1032 	}
1033 
1034 	/* zero 8 bytes at a time */
1035 	while (len > 7) {
1036 #ifdef __LP64__
1037 		if (suword64(uaddr, 0))
1038 			return (_len);
1039 #else
1040 		if (suword32(uaddr, 0))
1041 			return (_len);
1042 		if (suword32(uaddr + 4, 0))
1043 			return (_len);
1044 #endif
1045 		uaddr += 8;
1046 		len -= 8;
1047 	}
1048 
1049 	/* zero fill end, if any */
1050 	while (len > 0) {
1051 		if (subyte(uaddr, 0))
1052 			return (_len);
1053 		uaddr++;
1054 		len--;
1055 	}
1056 	return (0);
1057 }
1058 
1059 int
1060 linux_access_ok(const void *uaddr, size_t len)
1061 {
1062 	uintptr_t saddr;
1063 	uintptr_t eaddr;
1064 
1065 	/* get start and end address */
1066 	saddr = (uintptr_t)uaddr;
1067 	eaddr = (uintptr_t)uaddr + len;
1068 
1069 	/* verify addresses are valid for userspace */
1070 	return ((saddr == eaddr) ||
1071 	    (eaddr > saddr && eaddr <= VM_MAXUSER_ADDRESS));
1072 }
1073 
1074 /*
1075  * This function should return either EINTR or ERESTART depending on
1076  * the signal type sent to this thread:
1077  */
1078 static int
1079 linux_get_error(struct task_struct *task, int error)
1080 {
1081 	/* check for signal type interrupt code */
1082 	if (error == EINTR || error == ERESTARTSYS || error == ERESTART) {
1083 		error = -linux_schedule_get_interrupt_value(task);
1084 		if (error == 0)
1085 			error = EINTR;
1086 	}
1087 	return (error);
1088 }
1089 
1090 static int
1091 linux_file_ioctl_sub(struct file *fp, struct linux_file *filp,
1092     const struct file_operations *fop, u_long cmd, caddr_t data,
1093     struct thread *td)
1094 {
1095 	struct task_struct *task = current;
1096 	unsigned size;
1097 	int error;
1098 
1099 	size = IOCPARM_LEN(cmd);
1100 	/* refer to logic in sys_ioctl() */
1101 	if (size > 0) {
1102 		/*
1103 		 * Setup hint for linux_copyin() and linux_copyout().
1104 		 *
1105 		 * Background: Linux code expects a user-space address
1106 		 * while FreeBSD supplies a kernel-space address.
1107 		 */
1108 		task->bsd_ioctl_data = data;
1109 		task->bsd_ioctl_len = size;
1110 		data = (void *)LINUX_IOCTL_MIN_PTR;
1111 	} else {
1112 		/* fetch user-space pointer */
1113 		data = *(void **)data;
1114 	}
1115 #ifdef COMPAT_FREEBSD32
1116 	if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
1117 		/* try the compat IOCTL handler first */
1118 		if (fop->compat_ioctl != NULL) {
1119 			error = -OPW(fp, td, fop->compat_ioctl(filp,
1120 			    cmd, (u_long)data));
1121 		} else {
1122 			error = ENOTTY;
1123 		}
1124 
1125 		/* fallback to the regular IOCTL handler, if any */
1126 		if (error == ENOTTY && fop->unlocked_ioctl != NULL) {
1127 			error = -OPW(fp, td, fop->unlocked_ioctl(filp,
1128 			    cmd, (u_long)data));
1129 		}
1130 	} else
1131 #endif
1132 	{
1133 		if (fop->unlocked_ioctl != NULL) {
1134 			error = -OPW(fp, td, fop->unlocked_ioctl(filp,
1135 			    cmd, (u_long)data));
1136 		} else {
1137 			error = ENOTTY;
1138 		}
1139 	}
1140 	if (size > 0) {
1141 		task->bsd_ioctl_data = NULL;
1142 		task->bsd_ioctl_len = 0;
1143 	}
1144 
1145 	if (error == EWOULDBLOCK) {
1146 		/* update kqfilter status, if any */
1147 		linux_file_kqfilter_poll(filp,
1148 		    LINUX_KQ_FLAG_HAS_READ | LINUX_KQ_FLAG_HAS_WRITE);
1149 	} else {
1150 		error = linux_get_error(task, error);
1151 	}
1152 	return (error);
1153 }
1154 
1155 #define	LINUX_POLL_TABLE_NORMAL ((poll_table *)1)
1156 
1157 /*
1158  * This function atomically updates the poll wakeup state and returns
1159  * the previous state at the time of update.
1160  */
1161 static uint8_t
1162 linux_poll_wakeup_state(atomic_t *v, const uint8_t *pstate)
1163 {
1164 	int c, old;
1165 
1166 	c = v->counter;
1167 
1168 	while ((old = atomic_cmpxchg(v, c, pstate[c])) != c)
1169 		c = old;
1170 
1171 	return (c);
1172 }
1173 
1174 static int
1175 linux_poll_wakeup_callback(wait_queue_t *wq, unsigned int wq_state, int flags, void *key)
1176 {
1177 	static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
1178 		[LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_INIT, /* NOP */
1179 		[LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_NOT_READY, /* NOP */
1180 		[LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_READY,
1181 		[LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_READY, /* NOP */
1182 	};
1183 	struct linux_file *filp = container_of(wq, struct linux_file, f_wait_queue.wq);
1184 
1185 	switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
1186 	case LINUX_FWQ_STATE_QUEUED:
1187 		linux_poll_wakeup(filp);
1188 		return (1);
1189 	default:
1190 		return (0);
1191 	}
1192 }
1193 
1194 void
1195 linux_poll_wait(struct linux_file *filp, wait_queue_head_t *wqh, poll_table *p)
1196 {
1197 	static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
1198 		[LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_NOT_READY,
1199 		[LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_NOT_READY, /* NOP */
1200 		[LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_QUEUED, /* NOP */
1201 		[LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_QUEUED,
1202 	};
1203 
1204 	/* check if we are called inside the select system call */
1205 	if (p == LINUX_POLL_TABLE_NORMAL)
1206 		selrecord(curthread, &filp->f_selinfo);
1207 
1208 	switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
1209 	case LINUX_FWQ_STATE_INIT:
1210 		/* NOTE: file handles can only belong to one wait-queue */
1211 		filp->f_wait_queue.wqh = wqh;
1212 		filp->f_wait_queue.wq.func = &linux_poll_wakeup_callback;
1213 		add_wait_queue(wqh, &filp->f_wait_queue.wq);
1214 		atomic_set(&filp->f_wait_queue.state, LINUX_FWQ_STATE_QUEUED);
1215 		break;
1216 	default:
1217 		break;
1218 	}
1219 }
1220 
1221 static void
1222 linux_poll_wait_dequeue(struct linux_file *filp)
1223 {
1224 	static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
1225 		[LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_INIT,	/* NOP */
1226 		[LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_INIT,
1227 		[LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_INIT,
1228 		[LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_INIT,
1229 	};
1230 
1231 	seldrain(&filp->f_selinfo);
1232 
1233 	switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
1234 	case LINUX_FWQ_STATE_NOT_READY:
1235 	case LINUX_FWQ_STATE_QUEUED:
1236 	case LINUX_FWQ_STATE_READY:
1237 		remove_wait_queue(filp->f_wait_queue.wqh, &filp->f_wait_queue.wq);
1238 		break;
1239 	default:
1240 		break;
1241 	}
1242 }
1243 
1244 void
1245 linux_poll_wakeup(struct linux_file *filp)
1246 {
1247 	/* this function should be NULL-safe */
1248 	if (filp == NULL)
1249 		return;
1250 
1251 	selwakeup(&filp->f_selinfo);
1252 
1253 	spin_lock(&filp->f_kqlock);
1254 	filp->f_kqflags |= LINUX_KQ_FLAG_NEED_READ |
1255 	    LINUX_KQ_FLAG_NEED_WRITE;
1256 
1257 	/* make sure the "knote" gets woken up */
1258 	KNOTE_LOCKED(&filp->f_selinfo.si_note, 1);
1259 	spin_unlock(&filp->f_kqlock);
1260 }
1261 
1262 static void
1263 linux_file_kqfilter_detach(struct knote *kn)
1264 {
1265 	struct linux_file *filp = kn->kn_hook;
1266 
1267 	spin_lock(&filp->f_kqlock);
1268 	knlist_remove(&filp->f_selinfo.si_note, kn, 1);
1269 	spin_unlock(&filp->f_kqlock);
1270 }
1271 
1272 static int
1273 linux_file_kqfilter_read_event(struct knote *kn, long hint)
1274 {
1275 	struct linux_file *filp = kn->kn_hook;
1276 
1277 	mtx_assert(&filp->f_kqlock.m, MA_OWNED);
1278 
1279 	return ((filp->f_kqflags & LINUX_KQ_FLAG_NEED_READ) ? 1 : 0);
1280 }
1281 
1282 static int
1283 linux_file_kqfilter_write_event(struct knote *kn, long hint)
1284 {
1285 	struct linux_file *filp = kn->kn_hook;
1286 
1287 	mtx_assert(&filp->f_kqlock.m, MA_OWNED);
1288 
1289 	return ((filp->f_kqflags & LINUX_KQ_FLAG_NEED_WRITE) ? 1 : 0);
1290 }
1291 
1292 static struct filterops linux_dev_kqfiltops_read = {
1293 	.f_isfd = 1,
1294 	.f_detach = linux_file_kqfilter_detach,
1295 	.f_event = linux_file_kqfilter_read_event,
1296 };
1297 
1298 static struct filterops linux_dev_kqfiltops_write = {
1299 	.f_isfd = 1,
1300 	.f_detach = linux_file_kqfilter_detach,
1301 	.f_event = linux_file_kqfilter_write_event,
1302 };
1303 
1304 static void
1305 linux_file_kqfilter_poll(struct linux_file *filp, int kqflags)
1306 {
1307 	struct thread *td;
1308 	const struct file_operations *fop;
1309 	struct linux_cdev *ldev;
1310 	int temp;
1311 
1312 	if ((filp->f_kqflags & kqflags) == 0)
1313 		return;
1314 
1315 	td = curthread;
1316 
1317 	linux_get_fop(filp, &fop, &ldev);
1318 	/* get the latest polling state */
1319 	temp = OPW(filp->_file, td, fop->poll(filp, NULL));
1320 	linux_drop_fop(ldev);
1321 
1322 	spin_lock(&filp->f_kqlock);
1323 	/* clear kqflags */
1324 	filp->f_kqflags &= ~(LINUX_KQ_FLAG_NEED_READ |
1325 	    LINUX_KQ_FLAG_NEED_WRITE);
1326 	/* update kqflags */
1327 	if ((temp & (POLLIN | POLLOUT)) != 0) {
1328 		if ((temp & POLLIN) != 0)
1329 			filp->f_kqflags |= LINUX_KQ_FLAG_NEED_READ;
1330 		if ((temp & POLLOUT) != 0)
1331 			filp->f_kqflags |= LINUX_KQ_FLAG_NEED_WRITE;
1332 
1333 		/* make sure the "knote" gets woken up */
1334 		KNOTE_LOCKED(&filp->f_selinfo.si_note, 0);
1335 	}
1336 	spin_unlock(&filp->f_kqlock);
1337 }
1338 
1339 static int
1340 linux_file_kqfilter(struct file *file, struct knote *kn)
1341 {
1342 	struct linux_file *filp;
1343 	struct thread *td;
1344 	int error;
1345 
1346 	td = curthread;
1347 	filp = (struct linux_file *)file->f_data;
1348 	filp->f_flags = file->f_flag;
1349 	if (filp->f_op->poll == NULL)
1350 		return (EINVAL);
1351 
1352 	spin_lock(&filp->f_kqlock);
1353 	switch (kn->kn_filter) {
1354 	case EVFILT_READ:
1355 		filp->f_kqflags |= LINUX_KQ_FLAG_HAS_READ;
1356 		kn->kn_fop = &linux_dev_kqfiltops_read;
1357 		kn->kn_hook = filp;
1358 		knlist_add(&filp->f_selinfo.si_note, kn, 1);
1359 		error = 0;
1360 		break;
1361 	case EVFILT_WRITE:
1362 		filp->f_kqflags |= LINUX_KQ_FLAG_HAS_WRITE;
1363 		kn->kn_fop = &linux_dev_kqfiltops_write;
1364 		kn->kn_hook = filp;
1365 		knlist_add(&filp->f_selinfo.si_note, kn, 1);
1366 		error = 0;
1367 		break;
1368 	default:
1369 		error = EINVAL;
1370 		break;
1371 	}
1372 	spin_unlock(&filp->f_kqlock);
1373 
1374 	if (error == 0) {
1375 		linux_set_current(td);
1376 
1377 		/* update kqfilter status, if any */
1378 		linux_file_kqfilter_poll(filp,
1379 		    LINUX_KQ_FLAG_HAS_READ | LINUX_KQ_FLAG_HAS_WRITE);
1380 	}
1381 	return (error);
1382 }
1383 
1384 static int
1385 linux_file_mmap_single(struct file *fp, const struct file_operations *fop,
1386     vm_ooffset_t *offset, vm_size_t size, struct vm_object **object,
1387     int nprot, bool is_shared, struct thread *td)
1388 {
1389 	struct task_struct *task;
1390 	struct vm_area_struct *vmap;
1391 	struct mm_struct *mm;
1392 	struct linux_file *filp;
1393 	vm_memattr_t attr;
1394 	int error;
1395 
1396 	filp = (struct linux_file *)fp->f_data;
1397 	filp->f_flags = fp->f_flag;
1398 
1399 	if (fop->mmap == NULL)
1400 		return (EOPNOTSUPP);
1401 
1402 	linux_set_current(td);
1403 
1404 	/*
1405 	 * The same VM object might be shared by multiple processes
1406 	 * and the mm_struct is usually freed when a process exits.
1407 	 *
1408 	 * The atomic reference below makes sure the mm_struct is
1409 	 * available as long as the vmap is in the linux_vma_head.
1410 	 */
1411 	task = current;
1412 	mm = task->mm;
1413 	if (atomic_inc_not_zero(&mm->mm_users) == 0)
1414 		return (EINVAL);
1415 
1416 	vmap = kzalloc(sizeof(*vmap), GFP_KERNEL);
1417 	vmap->vm_start = 0;
1418 	vmap->vm_end = size;
1419 	vmap->vm_pgoff = *offset / PAGE_SIZE;
1420 	vmap->vm_pfn = 0;
1421 	vmap->vm_flags = vmap->vm_page_prot = (nprot & VM_PROT_ALL);
1422 	if (is_shared)
1423 		vmap->vm_flags |= VM_SHARED;
1424 	vmap->vm_ops = NULL;
1425 	vmap->vm_file = get_file(filp);
1426 	vmap->vm_mm = mm;
1427 
1428 	if (unlikely(down_write_killable(&vmap->vm_mm->mmap_sem))) {
1429 		error = linux_get_error(task, EINTR);
1430 	} else {
1431 		error = -OPW(fp, td, fop->mmap(filp, vmap));
1432 		error = linux_get_error(task, error);
1433 		up_write(&vmap->vm_mm->mmap_sem);
1434 	}
1435 
1436 	if (error != 0) {
1437 		linux_cdev_handle_free(vmap);
1438 		return (error);
1439 	}
1440 
1441 	attr = pgprot2cachemode(vmap->vm_page_prot);
1442 
1443 	if (vmap->vm_ops != NULL) {
1444 		struct vm_area_struct *ptr;
1445 		void *vm_private_data;
1446 		bool vm_no_fault;
1447 
1448 		if (vmap->vm_ops->open == NULL ||
1449 		    vmap->vm_ops->close == NULL ||
1450 		    vmap->vm_private_data == NULL) {
1451 			/* free allocated VM area struct */
1452 			linux_cdev_handle_free(vmap);
1453 			return (EINVAL);
1454 		}
1455 
1456 		vm_private_data = vmap->vm_private_data;
1457 
1458 		rw_wlock(&linux_vma_lock);
1459 		TAILQ_FOREACH(ptr, &linux_vma_head, vm_entry) {
1460 			if (ptr->vm_private_data == vm_private_data)
1461 				break;
1462 		}
1463 		/* check if there is an existing VM area struct */
1464 		if (ptr != NULL) {
1465 			/* check if the VM area structure is invalid */
1466 			if (ptr->vm_ops == NULL ||
1467 			    ptr->vm_ops->open == NULL ||
1468 			    ptr->vm_ops->close == NULL) {
1469 				error = ESTALE;
1470 				vm_no_fault = 1;
1471 			} else {
1472 				error = EEXIST;
1473 				vm_no_fault = (ptr->vm_ops->fault == NULL);
1474 			}
1475 		} else {
1476 			/* insert VM area structure into list */
1477 			TAILQ_INSERT_TAIL(&linux_vma_head, vmap, vm_entry);
1478 			error = 0;
1479 			vm_no_fault = (vmap->vm_ops->fault == NULL);
1480 		}
1481 		rw_wunlock(&linux_vma_lock);
1482 
1483 		if (error != 0) {
1484 			/* free allocated VM area struct */
1485 			linux_cdev_handle_free(vmap);
1486 			/* check for stale VM area struct */
1487 			if (error != EEXIST)
1488 				return (error);
1489 		}
1490 
1491 		/* check if there is no fault handler */
1492 		if (vm_no_fault) {
1493 			*object = cdev_pager_allocate(vm_private_data, OBJT_DEVICE,
1494 			    &linux_cdev_pager_ops[1], size, nprot, *offset,
1495 			    td->td_ucred);
1496 		} else {
1497 			*object = cdev_pager_allocate(vm_private_data, OBJT_MGTDEVICE,
1498 			    &linux_cdev_pager_ops[0], size, nprot, *offset,
1499 			    td->td_ucred);
1500 		}
1501 
1502 		/* check if allocating the VM object failed */
1503 		if (*object == NULL) {
1504 			if (error == 0) {
1505 				/* remove VM area struct from list */
1506 				linux_cdev_handle_remove(vmap);
1507 				/* free allocated VM area struct */
1508 				linux_cdev_handle_free(vmap);
1509 			}
1510 			return (EINVAL);
1511 		}
1512 	} else {
1513 		struct sglist *sg;
1514 
1515 		sg = sglist_alloc(1, M_WAITOK);
1516 		sglist_append_phys(sg,
1517 		    (vm_paddr_t)vmap->vm_pfn << PAGE_SHIFT, vmap->vm_len);
1518 
1519 		*object = vm_pager_allocate(OBJT_SG, sg, vmap->vm_len,
1520 		    nprot, 0, td->td_ucred);
1521 
1522 		linux_cdev_handle_free(vmap);
1523 
1524 		if (*object == NULL) {
1525 			sglist_free(sg);
1526 			return (EINVAL);
1527 		}
1528 	}
1529 
1530 	if (attr != VM_MEMATTR_DEFAULT) {
1531 		VM_OBJECT_WLOCK(*object);
1532 		vm_object_set_memattr(*object, attr);
1533 		VM_OBJECT_WUNLOCK(*object);
1534 	}
1535 	*offset = 0;
1536 	return (0);
1537 }
1538 
1539 struct cdevsw linuxcdevsw = {
1540 	.d_version = D_VERSION,
1541 	.d_fdopen = linux_dev_fdopen,
1542 	.d_name = "lkpidev",
1543 };
1544 
1545 static int
1546 linux_file_read(struct file *file, struct uio *uio, struct ucred *active_cred,
1547     int flags, struct thread *td)
1548 {
1549 	struct linux_file *filp;
1550 	const struct file_operations *fop;
1551 	struct linux_cdev *ldev;
1552 	ssize_t bytes;
1553 	int error;
1554 
1555 	error = 0;
1556 	filp = (struct linux_file *)file->f_data;
1557 	filp->f_flags = file->f_flag;
1558 	/* XXX no support for I/O vectors currently */
1559 	if (uio->uio_iovcnt != 1)
1560 		return (EOPNOTSUPP);
1561 	if (uio->uio_resid > DEVFS_IOSIZE_MAX)
1562 		return (EINVAL);
1563 	linux_set_current(td);
1564 	linux_get_fop(filp, &fop, &ldev);
1565 	if (fop->read != NULL) {
1566 		bytes = OPW(file, td, fop->read(filp,
1567 		    uio->uio_iov->iov_base,
1568 		    uio->uio_iov->iov_len, &uio->uio_offset));
1569 		if (bytes >= 0) {
1570 			uio->uio_iov->iov_base =
1571 			    ((uint8_t *)uio->uio_iov->iov_base) + bytes;
1572 			uio->uio_iov->iov_len -= bytes;
1573 			uio->uio_resid -= bytes;
1574 		} else {
1575 			error = linux_get_error(current, -bytes);
1576 		}
1577 	} else
1578 		error = ENXIO;
1579 
1580 	/* update kqfilter status, if any */
1581 	linux_file_kqfilter_poll(filp, LINUX_KQ_FLAG_HAS_READ);
1582 	linux_drop_fop(ldev);
1583 
1584 	return (error);
1585 }
1586 
1587 static int
1588 linux_file_write(struct file *file, struct uio *uio, struct ucred *active_cred,
1589     int flags, struct thread *td)
1590 {
1591 	struct linux_file *filp;
1592 	const struct file_operations *fop;
1593 	struct linux_cdev *ldev;
1594 	ssize_t bytes;
1595 	int error;
1596 
1597 	filp = (struct linux_file *)file->f_data;
1598 	filp->f_flags = file->f_flag;
1599 	/* XXX no support for I/O vectors currently */
1600 	if (uio->uio_iovcnt != 1)
1601 		return (EOPNOTSUPP);
1602 	if (uio->uio_resid > DEVFS_IOSIZE_MAX)
1603 		return (EINVAL);
1604 	linux_set_current(td);
1605 	linux_get_fop(filp, &fop, &ldev);
1606 	if (fop->write != NULL) {
1607 		bytes = OPW(file, td, fop->write(filp,
1608 		    uio->uio_iov->iov_base,
1609 		    uio->uio_iov->iov_len, &uio->uio_offset));
1610 		if (bytes >= 0) {
1611 			uio->uio_iov->iov_base =
1612 			    ((uint8_t *)uio->uio_iov->iov_base) + bytes;
1613 			uio->uio_iov->iov_len -= bytes;
1614 			uio->uio_resid -= bytes;
1615 			error = 0;
1616 		} else {
1617 			error = linux_get_error(current, -bytes);
1618 		}
1619 	} else
1620 		error = ENXIO;
1621 
1622 	/* update kqfilter status, if any */
1623 	linux_file_kqfilter_poll(filp, LINUX_KQ_FLAG_HAS_WRITE);
1624 
1625 	linux_drop_fop(ldev);
1626 
1627 	return (error);
1628 }
1629 
1630 static int
1631 linux_file_poll(struct file *file, int events, struct ucred *active_cred,
1632     struct thread *td)
1633 {
1634 	struct linux_file *filp;
1635 	const struct file_operations *fop;
1636 	struct linux_cdev *ldev;
1637 	int revents;
1638 
1639 	filp = (struct linux_file *)file->f_data;
1640 	filp->f_flags = file->f_flag;
1641 	linux_set_current(td);
1642 	linux_get_fop(filp, &fop, &ldev);
1643 	if (fop->poll != NULL) {
1644 		revents = OPW(file, td, fop->poll(filp,
1645 		    LINUX_POLL_TABLE_NORMAL)) & events;
1646 	} else {
1647 		revents = 0;
1648 	}
1649 	linux_drop_fop(ldev);
1650 	return (revents);
1651 }
1652 
1653 static int
1654 linux_file_close(struct file *file, struct thread *td)
1655 {
1656 	struct linux_file *filp;
1657 	int (*release)(struct inode *, struct linux_file *);
1658 	const struct file_operations *fop;
1659 	struct linux_cdev *ldev;
1660 	int error;
1661 
1662 	filp = (struct linux_file *)file->f_data;
1663 
1664 	KASSERT(file_count(filp) == 0,
1665 	    ("File refcount(%d) is not zero", file_count(filp)));
1666 
1667 	if (td == NULL)
1668 		td = curthread;
1669 
1670 	error = 0;
1671 	filp->f_flags = file->f_flag;
1672 	linux_set_current(td);
1673 	linux_poll_wait_dequeue(filp);
1674 	linux_get_fop(filp, &fop, &ldev);
1675 	/*
1676 	 * Always use the real release function, if any, to avoid
1677 	 * leaking device resources:
1678 	 */
1679 	release = filp->f_op->release;
1680 	if (release != NULL)
1681 		error = -OPW(file, td, release(filp->f_vnode, filp));
1682 	funsetown(&filp->f_sigio);
1683 	if (filp->f_vnode != NULL)
1684 		vdrop(filp->f_vnode);
1685 	linux_drop_fop(ldev);
1686 	ldev = filp->f_cdev;
1687 	if (ldev != NULL)
1688 		linux_cdev_deref(ldev);
1689 	linux_synchronize_rcu(RCU_TYPE_REGULAR);
1690 	kfree(filp);
1691 
1692 	return (error);
1693 }
1694 
1695 static int
1696 linux_file_ioctl(struct file *fp, u_long cmd, void *data, struct ucred *cred,
1697     struct thread *td)
1698 {
1699 	struct linux_file *filp;
1700 	const struct file_operations *fop;
1701 	struct linux_cdev *ldev;
1702 	struct fiodgname_arg *fgn;
1703 	const char *p;
1704 	int error, i;
1705 
1706 	error = 0;
1707 	filp = (struct linux_file *)fp->f_data;
1708 	filp->f_flags = fp->f_flag;
1709 	linux_get_fop(filp, &fop, &ldev);
1710 
1711 	linux_set_current(td);
1712 	switch (cmd) {
1713 	case FIONBIO:
1714 		break;
1715 	case FIOASYNC:
1716 		if (fop->fasync == NULL)
1717 			break;
1718 		error = -OPW(fp, td, fop->fasync(0, filp, fp->f_flag & FASYNC));
1719 		break;
1720 	case FIOSETOWN:
1721 		error = fsetown(*(int *)data, &filp->f_sigio);
1722 		if (error == 0) {
1723 			if (fop->fasync == NULL)
1724 				break;
1725 			error = -OPW(fp, td, fop->fasync(0, filp,
1726 			    fp->f_flag & FASYNC));
1727 		}
1728 		break;
1729 	case FIOGETOWN:
1730 		*(int *)data = fgetown(&filp->f_sigio);
1731 		break;
1732 	case FIODGNAME:
1733 #ifdef	COMPAT_FREEBSD32
1734 	case FIODGNAME_32:
1735 #endif
1736 		if (filp->f_cdev == NULL || filp->f_cdev->cdev == NULL) {
1737 			error = ENXIO;
1738 			break;
1739 		}
1740 		fgn = data;
1741 		p = devtoname(filp->f_cdev->cdev);
1742 		i = strlen(p) + 1;
1743 		if (i > fgn->len) {
1744 			error = EINVAL;
1745 			break;
1746 		}
1747 		error = copyout(p, fiodgname_buf_get_ptr(fgn, cmd), i);
1748 		break;
1749 	default:
1750 		error = linux_file_ioctl_sub(fp, filp, fop, cmd, data, td);
1751 		break;
1752 	}
1753 	linux_drop_fop(ldev);
1754 	return (error);
1755 }
1756 
1757 static int
1758 linux_file_mmap_sub(struct thread *td, vm_size_t objsize, vm_prot_t prot,
1759     vm_prot_t maxprot, int flags, struct file *fp,
1760     vm_ooffset_t *foff, const struct file_operations *fop, vm_object_t *objp)
1761 {
1762 	/*
1763 	 * Character devices do not provide private mappings
1764 	 * of any kind:
1765 	 */
1766 	if ((maxprot & VM_PROT_WRITE) == 0 &&
1767 	    (prot & VM_PROT_WRITE) != 0)
1768 		return (EACCES);
1769 	if ((flags & (MAP_PRIVATE | MAP_COPY)) != 0)
1770 		return (EINVAL);
1771 
1772 	return (linux_file_mmap_single(fp, fop, foff, objsize, objp,
1773 	    (int)prot, (flags & MAP_SHARED) ? true : false, td));
1774 }
1775 
1776 static int
1777 linux_file_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size,
1778     vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff,
1779     struct thread *td)
1780 {
1781 	struct linux_file *filp;
1782 	const struct file_operations *fop;
1783 	struct linux_cdev *ldev;
1784 	struct mount *mp;
1785 	struct vnode *vp;
1786 	vm_object_t object;
1787 	vm_prot_t maxprot;
1788 	int error;
1789 
1790 	filp = (struct linux_file *)fp->f_data;
1791 
1792 	vp = filp->f_vnode;
1793 	if (vp == NULL)
1794 		return (EOPNOTSUPP);
1795 
1796 	/*
1797 	 * Ensure that file and memory protections are
1798 	 * compatible.
1799 	 */
1800 	mp = vp->v_mount;
1801 	if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0) {
1802 		maxprot = VM_PROT_NONE;
1803 		if ((prot & VM_PROT_EXECUTE) != 0)
1804 			return (EACCES);
1805 	} else
1806 		maxprot = VM_PROT_EXECUTE;
1807 	if ((fp->f_flag & FREAD) != 0)
1808 		maxprot |= VM_PROT_READ;
1809 	else if ((prot & VM_PROT_READ) != 0)
1810 		return (EACCES);
1811 
1812 	/*
1813 	 * If we are sharing potential changes via MAP_SHARED and we
1814 	 * are trying to get write permission although we opened it
1815 	 * without asking for it, bail out.
1816 	 *
1817 	 * Note that most character devices always share mappings.
1818 	 *
1819 	 * Rely on linux_file_mmap_sub() to fail invalid MAP_PRIVATE
1820 	 * requests rather than doing it here.
1821 	 */
1822 	if ((flags & MAP_SHARED) != 0) {
1823 		if ((fp->f_flag & FWRITE) != 0)
1824 			maxprot |= VM_PROT_WRITE;
1825 		else if ((prot & VM_PROT_WRITE) != 0)
1826 			return (EACCES);
1827 	}
1828 	maxprot &= cap_maxprot;
1829 
1830 	linux_get_fop(filp, &fop, &ldev);
1831 	error = linux_file_mmap_sub(td, size, prot, maxprot, flags, fp,
1832 	    &foff, fop, &object);
1833 	if (error != 0)
1834 		goto out;
1835 
1836 	error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object,
1837 	    foff, FALSE, td);
1838 	if (error != 0)
1839 		vm_object_deallocate(object);
1840 out:
1841 	linux_drop_fop(ldev);
1842 	return (error);
1843 }
1844 
1845 static int
1846 linux_file_stat(struct file *fp, struct stat *sb, struct ucred *active_cred)
1847 {
1848 	struct linux_file *filp;
1849 	struct vnode *vp;
1850 	int error;
1851 
1852 	filp = (struct linux_file *)fp->f_data;
1853 	if (filp->f_vnode == NULL)
1854 		return (EOPNOTSUPP);
1855 
1856 	vp = filp->f_vnode;
1857 
1858 	vn_lock(vp, LK_SHARED | LK_RETRY);
1859 	error = VOP_STAT(vp, sb, curthread->td_ucred, NOCRED);
1860 	VOP_UNLOCK(vp);
1861 
1862 	return (error);
1863 }
1864 
1865 static int
1866 linux_file_fill_kinfo(struct file *fp, struct kinfo_file *kif,
1867     struct filedesc *fdp)
1868 {
1869 	struct linux_file *filp;
1870 	struct vnode *vp;
1871 	int error;
1872 
1873 	filp = fp->f_data;
1874 	vp = filp->f_vnode;
1875 	if (vp == NULL) {
1876 		error = 0;
1877 		kif->kf_type = KF_TYPE_DEV;
1878 	} else {
1879 		vref(vp);
1880 		FILEDESC_SUNLOCK(fdp);
1881 		error = vn_fill_kinfo_vnode(vp, kif);
1882 		vrele(vp);
1883 		kif->kf_type = KF_TYPE_VNODE;
1884 		FILEDESC_SLOCK(fdp);
1885 	}
1886 	return (error);
1887 }
1888 
1889 unsigned int
1890 linux_iminor(struct inode *inode)
1891 {
1892 	struct linux_cdev *ldev;
1893 
1894 	if (inode == NULL || inode->v_rdev == NULL ||
1895 	    inode->v_rdev->si_devsw != &linuxcdevsw)
1896 		return (-1U);
1897 	ldev = inode->v_rdev->si_drv1;
1898 	if (ldev == NULL)
1899 		return (-1U);
1900 
1901 	return (minor(ldev->dev));
1902 }
1903 
1904 struct fileops linuxfileops = {
1905 	.fo_read = linux_file_read,
1906 	.fo_write = linux_file_write,
1907 	.fo_truncate = invfo_truncate,
1908 	.fo_kqfilter = linux_file_kqfilter,
1909 	.fo_stat = linux_file_stat,
1910 	.fo_fill_kinfo = linux_file_fill_kinfo,
1911 	.fo_poll = linux_file_poll,
1912 	.fo_close = linux_file_close,
1913 	.fo_ioctl = linux_file_ioctl,
1914 	.fo_mmap = linux_file_mmap,
1915 	.fo_chmod = invfo_chmod,
1916 	.fo_chown = invfo_chown,
1917 	.fo_sendfile = invfo_sendfile,
1918 	.fo_flags = DFLAG_PASSABLE,
1919 };
1920 
1921 /*
1922  * Hash of vmmap addresses.  This is infrequently accessed and does not
1923  * need to be particularly large.  This is done because we must store the
1924  * caller's idea of the map size to properly unmap.
1925  */
1926 struct vmmap {
1927 	LIST_ENTRY(vmmap)	vm_next;
1928 	void 			*vm_addr;
1929 	unsigned long		vm_size;
1930 };
1931 
1932 struct vmmaphd {
1933 	struct vmmap *lh_first;
1934 };
1935 #define	VMMAP_HASH_SIZE	64
1936 #define	VMMAP_HASH_MASK	(VMMAP_HASH_SIZE - 1)
1937 #define	VM_HASH(addr)	((uintptr_t)(addr) >> PAGE_SHIFT) & VMMAP_HASH_MASK
1938 static struct vmmaphd vmmaphead[VMMAP_HASH_SIZE];
1939 static struct mtx vmmaplock;
1940 
1941 static void
1942 vmmap_add(void *addr, unsigned long size)
1943 {
1944 	struct vmmap *vmmap;
1945 
1946 	vmmap = kmalloc(sizeof(*vmmap), GFP_KERNEL);
1947 	mtx_lock(&vmmaplock);
1948 	vmmap->vm_size = size;
1949 	vmmap->vm_addr = addr;
1950 	LIST_INSERT_HEAD(&vmmaphead[VM_HASH(addr)], vmmap, vm_next);
1951 	mtx_unlock(&vmmaplock);
1952 }
1953 
1954 static struct vmmap *
1955 vmmap_remove(void *addr)
1956 {
1957 	struct vmmap *vmmap;
1958 
1959 	mtx_lock(&vmmaplock);
1960 	LIST_FOREACH(vmmap, &vmmaphead[VM_HASH(addr)], vm_next)
1961 		if (vmmap->vm_addr == addr)
1962 			break;
1963 	if (vmmap)
1964 		LIST_REMOVE(vmmap, vm_next);
1965 	mtx_unlock(&vmmaplock);
1966 
1967 	return (vmmap);
1968 }
1969 
1970 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) || defined(__aarch64__) || defined(__riscv)
1971 void *
1972 _ioremap_attr(vm_paddr_t phys_addr, unsigned long size, int attr)
1973 {
1974 	void *addr;
1975 
1976 	addr = pmap_mapdev_attr(phys_addr, size, attr);
1977 	if (addr == NULL)
1978 		return (NULL);
1979 	vmmap_add(addr, size);
1980 
1981 	return (addr);
1982 }
1983 #endif
1984 
1985 void
1986 iounmap(void *addr)
1987 {
1988 	struct vmmap *vmmap;
1989 
1990 	vmmap = vmmap_remove(addr);
1991 	if (vmmap == NULL)
1992 		return;
1993 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) || defined(__aarch64__) || defined(__riscv)
1994 	pmap_unmapdev(addr, vmmap->vm_size);
1995 #endif
1996 	kfree(vmmap);
1997 }
1998 
1999 void *
2000 vmap(struct page **pages, unsigned int count, unsigned long flags, int prot)
2001 {
2002 	vm_offset_t off;
2003 	size_t size;
2004 
2005 	size = count * PAGE_SIZE;
2006 	off = kva_alloc(size);
2007 	if (off == 0)
2008 		return (NULL);
2009 	vmmap_add((void *)off, size);
2010 	pmap_qenter(off, pages, count);
2011 
2012 	return ((void *)off);
2013 }
2014 
2015 void
2016 vunmap(void *addr)
2017 {
2018 	struct vmmap *vmmap;
2019 
2020 	vmmap = vmmap_remove(addr);
2021 	if (vmmap == NULL)
2022 		return;
2023 	pmap_qremove((vm_offset_t)addr, vmmap->vm_size / PAGE_SIZE);
2024 	kva_free((vm_offset_t)addr, vmmap->vm_size);
2025 	kfree(vmmap);
2026 }
2027 
2028 static char *
2029 devm_kvasprintf(struct device *dev, gfp_t gfp, const char *fmt, va_list ap)
2030 {
2031 	unsigned int len;
2032 	char *p;
2033 	va_list aq;
2034 
2035 	va_copy(aq, ap);
2036 	len = vsnprintf(NULL, 0, fmt, aq);
2037 	va_end(aq);
2038 
2039 	if (dev != NULL)
2040 		p = devm_kmalloc(dev, len + 1, gfp);
2041 	else
2042 		p = kmalloc(len + 1, gfp);
2043 	if (p != NULL)
2044 		vsnprintf(p, len + 1, fmt, ap);
2045 
2046 	return (p);
2047 }
2048 
2049 char *
2050 kvasprintf(gfp_t gfp, const char *fmt, va_list ap)
2051 {
2052 
2053 	return (devm_kvasprintf(NULL, gfp, fmt, ap));
2054 }
2055 
2056 char *
2057 lkpi_devm_kasprintf(struct device *dev, gfp_t gfp, const char *fmt, ...)
2058 {
2059 	va_list ap;
2060 	char *p;
2061 
2062 	va_start(ap, fmt);
2063 	p = devm_kvasprintf(dev, gfp, fmt, ap);
2064 	va_end(ap);
2065 
2066 	return (p);
2067 }
2068 
2069 char *
2070 kasprintf(gfp_t gfp, const char *fmt, ...)
2071 {
2072 	va_list ap;
2073 	char *p;
2074 
2075 	va_start(ap, fmt);
2076 	p = kvasprintf(gfp, fmt, ap);
2077 	va_end(ap);
2078 
2079 	return (p);
2080 }
2081 
2082 static void
2083 linux_timer_callback_wrapper(void *context)
2084 {
2085 	struct timer_list *timer;
2086 
2087 	timer = context;
2088 
2089 	if (linux_set_current_flags(curthread, M_NOWAIT)) {
2090 		/* try again later */
2091 		callout_reset(&timer->callout, 1,
2092 		    &linux_timer_callback_wrapper, timer);
2093 		return;
2094 	}
2095 
2096 	timer->function(timer->data);
2097 }
2098 
2099 int
2100 mod_timer(struct timer_list *timer, int expires)
2101 {
2102 	int ret;
2103 
2104 	timer->expires = expires;
2105 	ret = callout_reset(&timer->callout,
2106 	    linux_timer_jiffies_until(expires),
2107 	    &linux_timer_callback_wrapper, timer);
2108 
2109 	MPASS(ret == 0 || ret == 1);
2110 
2111 	return (ret == 1);
2112 }
2113 
2114 void
2115 add_timer(struct timer_list *timer)
2116 {
2117 
2118 	callout_reset(&timer->callout,
2119 	    linux_timer_jiffies_until(timer->expires),
2120 	    &linux_timer_callback_wrapper, timer);
2121 }
2122 
2123 void
2124 add_timer_on(struct timer_list *timer, int cpu)
2125 {
2126 
2127 	callout_reset_on(&timer->callout,
2128 	    linux_timer_jiffies_until(timer->expires),
2129 	    &linux_timer_callback_wrapper, timer, cpu);
2130 }
2131 
2132 int
2133 del_timer(struct timer_list *timer)
2134 {
2135 
2136 	if (callout_stop(&(timer)->callout) == -1)
2137 		return (0);
2138 	return (1);
2139 }
2140 
2141 int
2142 del_timer_sync(struct timer_list *timer)
2143 {
2144 
2145 	if (callout_drain(&(timer)->callout) == -1)
2146 		return (0);
2147 	return (1);
2148 }
2149 
2150 int
2151 timer_delete_sync(struct timer_list *timer)
2152 {
2153 
2154 	return (del_timer_sync(timer));
2155 }
2156 
2157 int
2158 timer_shutdown_sync(struct timer_list *timer)
2159 {
2160 
2161 	return (del_timer_sync(timer));
2162 }
2163 
2164 /* greatest common divisor, Euclid equation */
2165 static uint64_t
2166 lkpi_gcd_64(uint64_t a, uint64_t b)
2167 {
2168 	uint64_t an;
2169 	uint64_t bn;
2170 
2171 	while (b != 0) {
2172 		an = b;
2173 		bn = a % b;
2174 		a = an;
2175 		b = bn;
2176 	}
2177 	return (a);
2178 }
2179 
2180 uint64_t lkpi_nsec2hz_rem;
2181 uint64_t lkpi_nsec2hz_div = 1000000000ULL;
2182 uint64_t lkpi_nsec2hz_max;
2183 
2184 uint64_t lkpi_usec2hz_rem;
2185 uint64_t lkpi_usec2hz_div = 1000000ULL;
2186 uint64_t lkpi_usec2hz_max;
2187 
2188 uint64_t lkpi_msec2hz_rem;
2189 uint64_t lkpi_msec2hz_div = 1000ULL;
2190 uint64_t lkpi_msec2hz_max;
2191 
2192 static void
2193 linux_timer_init(void *arg)
2194 {
2195 	uint64_t gcd;
2196 
2197 	/*
2198 	 * Compute an internal HZ value which can divide 2**32 to
2199 	 * avoid timer rounding problems when the tick value wraps
2200 	 * around 2**32:
2201 	 */
2202 	linux_timer_hz_mask = 1;
2203 	while (linux_timer_hz_mask < (unsigned long)hz)
2204 		linux_timer_hz_mask *= 2;
2205 	linux_timer_hz_mask--;
2206 
2207 	/* compute some internal constants */
2208 
2209 	lkpi_nsec2hz_rem = hz;
2210 	lkpi_usec2hz_rem = hz;
2211 	lkpi_msec2hz_rem = hz;
2212 
2213 	gcd = lkpi_gcd_64(lkpi_nsec2hz_rem, lkpi_nsec2hz_div);
2214 	lkpi_nsec2hz_rem /= gcd;
2215 	lkpi_nsec2hz_div /= gcd;
2216 	lkpi_nsec2hz_max = -1ULL / lkpi_nsec2hz_rem;
2217 
2218 	gcd = lkpi_gcd_64(lkpi_usec2hz_rem, lkpi_usec2hz_div);
2219 	lkpi_usec2hz_rem /= gcd;
2220 	lkpi_usec2hz_div /= gcd;
2221 	lkpi_usec2hz_max = -1ULL / lkpi_usec2hz_rem;
2222 
2223 	gcd = lkpi_gcd_64(lkpi_msec2hz_rem, lkpi_msec2hz_div);
2224 	lkpi_msec2hz_rem /= gcd;
2225 	lkpi_msec2hz_div /= gcd;
2226 	lkpi_msec2hz_max = -1ULL / lkpi_msec2hz_rem;
2227 }
2228 SYSINIT(linux_timer, SI_SUB_DRIVERS, SI_ORDER_FIRST, linux_timer_init, NULL);
2229 
2230 void
2231 linux_complete_common(struct completion *c, int all)
2232 {
2233 	int wakeup_swapper;
2234 
2235 	sleepq_lock(c);
2236 	if (all) {
2237 		c->done = UINT_MAX;
2238 		wakeup_swapper = sleepq_broadcast(c, SLEEPQ_SLEEP, 0, 0);
2239 	} else {
2240 		if (c->done != UINT_MAX)
2241 			c->done++;
2242 		wakeup_swapper = sleepq_signal(c, SLEEPQ_SLEEP, 0, 0);
2243 	}
2244 	sleepq_release(c);
2245 	if (wakeup_swapper)
2246 		kick_proc0();
2247 }
2248 
2249 /*
2250  * Indefinite wait for done != 0 with or without signals.
2251  */
2252 int
2253 linux_wait_for_common(struct completion *c, int flags)
2254 {
2255 	struct task_struct *task;
2256 	int error;
2257 
2258 	if (SCHEDULER_STOPPED())
2259 		return (0);
2260 
2261 	task = current;
2262 
2263 	if (flags != 0)
2264 		flags = SLEEPQ_INTERRUPTIBLE | SLEEPQ_SLEEP;
2265 	else
2266 		flags = SLEEPQ_SLEEP;
2267 	error = 0;
2268 	for (;;) {
2269 		sleepq_lock(c);
2270 		if (c->done)
2271 			break;
2272 		sleepq_add(c, NULL, "completion", flags, 0);
2273 		if (flags & SLEEPQ_INTERRUPTIBLE) {
2274 			DROP_GIANT();
2275 			error = -sleepq_wait_sig(c, 0);
2276 			PICKUP_GIANT();
2277 			if (error != 0) {
2278 				linux_schedule_save_interrupt_value(task, error);
2279 				error = -ERESTARTSYS;
2280 				goto intr;
2281 			}
2282 		} else {
2283 			DROP_GIANT();
2284 			sleepq_wait(c, 0);
2285 			PICKUP_GIANT();
2286 		}
2287 	}
2288 	if (c->done != UINT_MAX)
2289 		c->done--;
2290 	sleepq_release(c);
2291 
2292 intr:
2293 	return (error);
2294 }
2295 
2296 /*
2297  * Time limited wait for done != 0 with or without signals.
2298  */
2299 int
2300 linux_wait_for_timeout_common(struct completion *c, int timeout, int flags)
2301 {
2302 	struct task_struct *task;
2303 	int end = jiffies + timeout;
2304 	int error;
2305 
2306 	if (SCHEDULER_STOPPED())
2307 		return (0);
2308 
2309 	task = current;
2310 
2311 	if (flags != 0)
2312 		flags = SLEEPQ_INTERRUPTIBLE | SLEEPQ_SLEEP;
2313 	else
2314 		flags = SLEEPQ_SLEEP;
2315 
2316 	for (;;) {
2317 		sleepq_lock(c);
2318 		if (c->done)
2319 			break;
2320 		sleepq_add(c, NULL, "completion", flags, 0);
2321 		sleepq_set_timeout(c, linux_timer_jiffies_until(end));
2322 
2323 		DROP_GIANT();
2324 		if (flags & SLEEPQ_INTERRUPTIBLE)
2325 			error = -sleepq_timedwait_sig(c, 0);
2326 		else
2327 			error = -sleepq_timedwait(c, 0);
2328 		PICKUP_GIANT();
2329 
2330 		if (error != 0) {
2331 			/* check for timeout */
2332 			if (error == -EWOULDBLOCK) {
2333 				error = 0;	/* timeout */
2334 			} else {
2335 				/* signal happened */
2336 				linux_schedule_save_interrupt_value(task, error);
2337 				error = -ERESTARTSYS;
2338 			}
2339 			goto done;
2340 		}
2341 	}
2342 	if (c->done != UINT_MAX)
2343 		c->done--;
2344 	sleepq_release(c);
2345 
2346 	/* return how many jiffies are left */
2347 	error = linux_timer_jiffies_until(end);
2348 done:
2349 	return (error);
2350 }
2351 
2352 int
2353 linux_try_wait_for_completion(struct completion *c)
2354 {
2355 	int isdone;
2356 
2357 	sleepq_lock(c);
2358 	isdone = (c->done != 0);
2359 	if (c->done != 0 && c->done != UINT_MAX)
2360 		c->done--;
2361 	sleepq_release(c);
2362 	return (isdone);
2363 }
2364 
2365 int
2366 linux_completion_done(struct completion *c)
2367 {
2368 	int isdone;
2369 
2370 	sleepq_lock(c);
2371 	isdone = (c->done != 0);
2372 	sleepq_release(c);
2373 	return (isdone);
2374 }
2375 
2376 static void
2377 linux_cdev_deref(struct linux_cdev *ldev)
2378 {
2379 	if (refcount_release(&ldev->refs) &&
2380 	    ldev->kobj.ktype == &linux_cdev_ktype)
2381 		kfree(ldev);
2382 }
2383 
2384 static void
2385 linux_cdev_release(struct kobject *kobj)
2386 {
2387 	struct linux_cdev *cdev;
2388 	struct kobject *parent;
2389 
2390 	cdev = container_of(kobj, struct linux_cdev, kobj);
2391 	parent = kobj->parent;
2392 	linux_destroy_dev(cdev);
2393 	linux_cdev_deref(cdev);
2394 	kobject_put(parent);
2395 }
2396 
2397 static void
2398 linux_cdev_static_release(struct kobject *kobj)
2399 {
2400 	struct cdev *cdev;
2401 	struct linux_cdev *ldev;
2402 
2403 	ldev = container_of(kobj, struct linux_cdev, kobj);
2404 	cdev = ldev->cdev;
2405 	if (cdev != NULL) {
2406 		destroy_dev(cdev);
2407 		ldev->cdev = NULL;
2408 	}
2409 	kobject_put(kobj->parent);
2410 }
2411 
2412 int
2413 linux_cdev_device_add(struct linux_cdev *ldev, struct device *dev)
2414 {
2415 	int ret;
2416 
2417 	if (dev->devt != 0) {
2418 		/* Set parent kernel object. */
2419 		ldev->kobj.parent = &dev->kobj;
2420 
2421 		/*
2422 		 * Unlike Linux we require the kobject of the
2423 		 * character device structure to have a valid name
2424 		 * before calling this function:
2425 		 */
2426 		if (ldev->kobj.name == NULL)
2427 			return (-EINVAL);
2428 
2429 		ret = cdev_add(ldev, dev->devt, 1);
2430 		if (ret)
2431 			return (ret);
2432 	}
2433 	ret = device_add(dev);
2434 	if (ret != 0 && dev->devt != 0)
2435 		cdev_del(ldev);
2436 	return (ret);
2437 }
2438 
2439 void
2440 linux_cdev_device_del(struct linux_cdev *ldev, struct device *dev)
2441 {
2442 	device_del(dev);
2443 
2444 	if (dev->devt != 0)
2445 		cdev_del(ldev);
2446 }
2447 
2448 static void
2449 linux_destroy_dev(struct linux_cdev *ldev)
2450 {
2451 
2452 	if (ldev->cdev == NULL)
2453 		return;
2454 
2455 	MPASS((ldev->siref & LDEV_SI_DTR) == 0);
2456 	MPASS(ldev->kobj.ktype == &linux_cdev_ktype);
2457 
2458 	atomic_set_int(&ldev->siref, LDEV_SI_DTR);
2459 	while ((atomic_load_int(&ldev->siref) & ~LDEV_SI_DTR) != 0)
2460 		pause("ldevdtr", hz / 4);
2461 
2462 	destroy_dev(ldev->cdev);
2463 	ldev->cdev = NULL;
2464 }
2465 
2466 const struct kobj_type linux_cdev_ktype = {
2467 	.release = linux_cdev_release,
2468 };
2469 
2470 const struct kobj_type linux_cdev_static_ktype = {
2471 	.release = linux_cdev_static_release,
2472 };
2473 
2474 static void
2475 linux_handle_ifnet_link_event(void *arg, struct ifnet *ifp, int linkstate)
2476 {
2477 	struct notifier_block *nb;
2478 	struct netdev_notifier_info ni;
2479 
2480 	nb = arg;
2481 	ni.ifp = ifp;
2482 	ni.dev = (struct net_device *)ifp;
2483 	if (linkstate == LINK_STATE_UP)
2484 		nb->notifier_call(nb, NETDEV_UP, &ni);
2485 	else
2486 		nb->notifier_call(nb, NETDEV_DOWN, &ni);
2487 }
2488 
2489 static void
2490 linux_handle_ifnet_arrival_event(void *arg, struct ifnet *ifp)
2491 {
2492 	struct notifier_block *nb;
2493 	struct netdev_notifier_info ni;
2494 
2495 	nb = arg;
2496 	ni.ifp = ifp;
2497 	ni.dev = (struct net_device *)ifp;
2498 	nb->notifier_call(nb, NETDEV_REGISTER, &ni);
2499 }
2500 
2501 static void
2502 linux_handle_ifnet_departure_event(void *arg, struct ifnet *ifp)
2503 {
2504 	struct notifier_block *nb;
2505 	struct netdev_notifier_info ni;
2506 
2507 	nb = arg;
2508 	ni.ifp = ifp;
2509 	ni.dev = (struct net_device *)ifp;
2510 	nb->notifier_call(nb, NETDEV_UNREGISTER, &ni);
2511 }
2512 
2513 static void
2514 linux_handle_iflladdr_event(void *arg, struct ifnet *ifp)
2515 {
2516 	struct notifier_block *nb;
2517 	struct netdev_notifier_info ni;
2518 
2519 	nb = arg;
2520 	ni.ifp = ifp;
2521 	ni.dev = (struct net_device *)ifp;
2522 	nb->notifier_call(nb, NETDEV_CHANGEADDR, &ni);
2523 }
2524 
2525 static void
2526 linux_handle_ifaddr_event(void *arg, struct ifnet *ifp)
2527 {
2528 	struct notifier_block *nb;
2529 	struct netdev_notifier_info ni;
2530 
2531 	nb = arg;
2532 	ni.ifp = ifp;
2533 	ni.dev = (struct net_device *)ifp;
2534 	nb->notifier_call(nb, NETDEV_CHANGEIFADDR, &ni);
2535 }
2536 
2537 int
2538 register_netdevice_notifier(struct notifier_block *nb)
2539 {
2540 
2541 	nb->tags[NETDEV_UP] = EVENTHANDLER_REGISTER(
2542 	    ifnet_link_event, linux_handle_ifnet_link_event, nb, 0);
2543 	nb->tags[NETDEV_REGISTER] = EVENTHANDLER_REGISTER(
2544 	    ifnet_arrival_event, linux_handle_ifnet_arrival_event, nb, 0);
2545 	nb->tags[NETDEV_UNREGISTER] = EVENTHANDLER_REGISTER(
2546 	    ifnet_departure_event, linux_handle_ifnet_departure_event, nb, 0);
2547 	nb->tags[NETDEV_CHANGEADDR] = EVENTHANDLER_REGISTER(
2548 	    iflladdr_event, linux_handle_iflladdr_event, nb, 0);
2549 
2550 	return (0);
2551 }
2552 
2553 int
2554 register_inetaddr_notifier(struct notifier_block *nb)
2555 {
2556 
2557 	nb->tags[NETDEV_CHANGEIFADDR] = EVENTHANDLER_REGISTER(
2558 	    ifaddr_event, linux_handle_ifaddr_event, nb, 0);
2559 	return (0);
2560 }
2561 
2562 int
2563 unregister_netdevice_notifier(struct notifier_block *nb)
2564 {
2565 
2566 	EVENTHANDLER_DEREGISTER(ifnet_link_event,
2567 	    nb->tags[NETDEV_UP]);
2568 	EVENTHANDLER_DEREGISTER(ifnet_arrival_event,
2569 	    nb->tags[NETDEV_REGISTER]);
2570 	EVENTHANDLER_DEREGISTER(ifnet_departure_event,
2571 	    nb->tags[NETDEV_UNREGISTER]);
2572 	EVENTHANDLER_DEREGISTER(iflladdr_event,
2573 	    nb->tags[NETDEV_CHANGEADDR]);
2574 
2575 	return (0);
2576 }
2577 
2578 int
2579 unregister_inetaddr_notifier(struct notifier_block *nb)
2580 {
2581 
2582 	EVENTHANDLER_DEREGISTER(ifaddr_event,
2583 	    nb->tags[NETDEV_CHANGEIFADDR]);
2584 
2585 	return (0);
2586 }
2587 
2588 struct list_sort_thunk {
2589 	int (*cmp)(void *, struct list_head *, struct list_head *);
2590 	void *priv;
2591 };
2592 
2593 static inline int
2594 linux_le_cmp(const void *d1, const void *d2, void *priv)
2595 {
2596 	struct list_head *le1, *le2;
2597 	struct list_sort_thunk *thunk;
2598 
2599 	thunk = priv;
2600 	le1 = *(__DECONST(struct list_head **, d1));
2601 	le2 = *(__DECONST(struct list_head **, d2));
2602 	return ((thunk->cmp)(thunk->priv, le1, le2));
2603 }
2604 
2605 void
2606 list_sort(void *priv, struct list_head *head, int (*cmp)(void *priv,
2607     struct list_head *a, struct list_head *b))
2608 {
2609 	struct list_sort_thunk thunk;
2610 	struct list_head **ar, *le;
2611 	size_t count, i;
2612 
2613 	count = 0;
2614 	list_for_each(le, head)
2615 		count++;
2616 	ar = malloc(sizeof(struct list_head *) * count, M_KMALLOC, M_WAITOK);
2617 	i = 0;
2618 	list_for_each(le, head)
2619 		ar[i++] = le;
2620 	thunk.cmp = cmp;
2621 	thunk.priv = priv;
2622 	qsort_r(ar, count, sizeof(struct list_head *), linux_le_cmp, &thunk);
2623 	INIT_LIST_HEAD(head);
2624 	for (i = 0; i < count; i++)
2625 		list_add_tail(ar[i], head);
2626 	free(ar, M_KMALLOC);
2627 }
2628 
2629 #if defined(__i386__) || defined(__amd64__)
2630 int
2631 linux_wbinvd_on_all_cpus(void)
2632 {
2633 
2634 	pmap_invalidate_cache();
2635 	return (0);
2636 }
2637 #endif
2638 
2639 int
2640 linux_on_each_cpu(void callback(void *), void *data)
2641 {
2642 
2643 	smp_rendezvous(smp_no_rendezvous_barrier, callback,
2644 	    smp_no_rendezvous_barrier, data);
2645 	return (0);
2646 }
2647 
2648 int
2649 linux_in_atomic(void)
2650 {
2651 
2652 	return ((curthread->td_pflags & TDP_NOFAULTING) != 0);
2653 }
2654 
2655 struct linux_cdev *
2656 linux_find_cdev(const char *name, unsigned major, unsigned minor)
2657 {
2658 	dev_t dev = MKDEV(major, minor);
2659 	struct cdev *cdev;
2660 
2661 	dev_lock();
2662 	LIST_FOREACH(cdev, &linuxcdevsw.d_devs, si_list) {
2663 		struct linux_cdev *ldev = cdev->si_drv1;
2664 		if (ldev->dev == dev &&
2665 		    strcmp(kobject_name(&ldev->kobj), name) == 0) {
2666 			break;
2667 		}
2668 	}
2669 	dev_unlock();
2670 
2671 	return (cdev != NULL ? cdev->si_drv1 : NULL);
2672 }
2673 
2674 int
2675 __register_chrdev(unsigned int major, unsigned int baseminor,
2676     unsigned int count, const char *name,
2677     const struct file_operations *fops)
2678 {
2679 	struct linux_cdev *cdev;
2680 	int ret = 0;
2681 	int i;
2682 
2683 	for (i = baseminor; i < baseminor + count; i++) {
2684 		cdev = cdev_alloc();
2685 		cdev->ops = fops;
2686 		kobject_set_name(&cdev->kobj, name);
2687 
2688 		ret = cdev_add(cdev, makedev(major, i), 1);
2689 		if (ret != 0)
2690 			break;
2691 	}
2692 	return (ret);
2693 }
2694 
2695 int
2696 __register_chrdev_p(unsigned int major, unsigned int baseminor,
2697     unsigned int count, const char *name,
2698     const struct file_operations *fops, uid_t uid,
2699     gid_t gid, int mode)
2700 {
2701 	struct linux_cdev *cdev;
2702 	int ret = 0;
2703 	int i;
2704 
2705 	for (i = baseminor; i < baseminor + count; i++) {
2706 		cdev = cdev_alloc();
2707 		cdev->ops = fops;
2708 		kobject_set_name(&cdev->kobj, name);
2709 
2710 		ret = cdev_add_ext(cdev, makedev(major, i), uid, gid, mode);
2711 		if (ret != 0)
2712 			break;
2713 	}
2714 	return (ret);
2715 }
2716 
2717 void
2718 __unregister_chrdev(unsigned int major, unsigned int baseminor,
2719     unsigned int count, const char *name)
2720 {
2721 	struct linux_cdev *cdevp;
2722 	int i;
2723 
2724 	for (i = baseminor; i < baseminor + count; i++) {
2725 		cdevp = linux_find_cdev(name, major, i);
2726 		if (cdevp != NULL)
2727 			cdev_del(cdevp);
2728 	}
2729 }
2730 
2731 void
2732 linux_dump_stack(void)
2733 {
2734 #ifdef STACK
2735 	struct stack st;
2736 
2737 	stack_save(&st);
2738 	stack_print(&st);
2739 #endif
2740 }
2741 
2742 int
2743 linuxkpi_net_ratelimit(void)
2744 {
2745 
2746 	return (ppsratecheck(&lkpi_net_lastlog, &lkpi_net_curpps,
2747 	   lkpi_net_maxpps));
2748 }
2749 
2750 struct io_mapping *
2751 io_mapping_create_wc(resource_size_t base, unsigned long size)
2752 {
2753 	struct io_mapping *mapping;
2754 
2755 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2756 	if (mapping == NULL)
2757 		return (NULL);
2758 	return (io_mapping_init_wc(mapping, base, size));
2759 }
2760 
2761 #if defined(__i386__) || defined(__amd64__)
2762 bool linux_cpu_has_clflush;
2763 struct cpuinfo_x86 boot_cpu_data;
2764 struct cpuinfo_x86 __cpu_data[MAXCPU];
2765 #endif
2766 
2767 cpumask_t *
2768 lkpi_get_static_single_cpu_mask(int cpuid)
2769 {
2770 
2771 	KASSERT((cpuid >= 0 && cpuid < MAXCPU), ("%s: invalid cpuid %d\n",
2772 	    __func__, cpuid));
2773 
2774 	return (&static_single_cpu_mask[cpuid]);
2775 }
2776 
2777 static void
2778 linux_compat_init(void *arg)
2779 {
2780 	struct sysctl_oid *rootoid;
2781 	int i;
2782 
2783 #if defined(__i386__) || defined(__amd64__)
2784 	linux_cpu_has_clflush = (cpu_feature & CPUID_CLFSH);
2785 	boot_cpu_data.x86_clflush_size = cpu_clflush_line_size;
2786 	boot_cpu_data.x86_max_cores = mp_ncpus;
2787 	boot_cpu_data.x86 = CPUID_TO_FAMILY(cpu_id);
2788 	boot_cpu_data.x86_model = CPUID_TO_MODEL(cpu_id);
2789 
2790 	for (i = 0; i < MAXCPU; i++) {
2791 		__cpu_data[i].x86_clflush_size = cpu_clflush_line_size;
2792 		__cpu_data[i].x86_max_cores = mp_ncpus;
2793 		__cpu_data[i].x86 = CPUID_TO_FAMILY(cpu_id);
2794 		__cpu_data[i].x86_model = CPUID_TO_MODEL(cpu_id);
2795 	}
2796 #endif
2797 	rw_init(&linux_vma_lock, "lkpi-vma-lock");
2798 
2799 	rootoid = SYSCTL_ADD_ROOT_NODE(NULL,
2800 	    OID_AUTO, "sys", CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, "sys");
2801 	kobject_init(&linux_class_root, &linux_class_ktype);
2802 	kobject_set_name(&linux_class_root, "class");
2803 	linux_class_root.oidp = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(rootoid),
2804 	    OID_AUTO, "class", CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, "class");
2805 	kobject_init(&linux_root_device.kobj, &linux_dev_ktype);
2806 	kobject_set_name(&linux_root_device.kobj, "device");
2807 	linux_root_device.kobj.oidp = SYSCTL_ADD_NODE(NULL,
2808 	    SYSCTL_CHILDREN(rootoid), OID_AUTO, "device",
2809 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "device");
2810 	linux_root_device.bsddev = root_bus;
2811 	linux_class_misc.name = "misc";
2812 	class_register(&linux_class_misc);
2813 	INIT_LIST_HEAD(&pci_drivers);
2814 	INIT_LIST_HEAD(&pci_devices);
2815 	spin_lock_init(&pci_lock);
2816 	mtx_init(&vmmaplock, "IO Map lock", NULL, MTX_DEF);
2817 	for (i = 0; i < VMMAP_HASH_SIZE; i++)
2818 		LIST_INIT(&vmmaphead[i]);
2819 	init_waitqueue_head(&linux_bit_waitq);
2820 	init_waitqueue_head(&linux_var_waitq);
2821 
2822 	CPU_COPY(&all_cpus, &cpu_online_mask);
2823 	/*
2824 	 * Generate a single-CPU cpumask_t for each CPU (possibly) in the system.
2825 	 * CPUs are indexed from 0..(MAXCPU-1).  The entry for cpuid 0 will only
2826 	 * have itself in the cpumask, cupid 1 only itself on entry 1, and so on.
2827 	 * This is used by cpumask_of() (and possibly others in the future) for,
2828 	 * e.g., drivers to pass hints to irq_set_affinity_hint().
2829 	 */
2830 	for (i = 0; i < MAXCPU; i++)
2831 		CPU_SET(i, &static_single_cpu_mask[i]);
2832 
2833 	strlcpy(init_uts_ns.name.release, osrelease, sizeof(init_uts_ns.name.release));
2834 }
2835 SYSINIT(linux_compat, SI_SUB_DRIVERS, SI_ORDER_SECOND, linux_compat_init, NULL);
2836 
2837 static void
2838 linux_compat_uninit(void *arg)
2839 {
2840 	linux_kobject_kfree_name(&linux_class_root);
2841 	linux_kobject_kfree_name(&linux_root_device.kobj);
2842 	linux_kobject_kfree_name(&linux_class_misc.kobj);
2843 
2844 	mtx_destroy(&vmmaplock);
2845 	spin_lock_destroy(&pci_lock);
2846 	rw_destroy(&linux_vma_lock);
2847 }
2848 SYSUNINIT(linux_compat, SI_SUB_DRIVERS, SI_ORDER_SECOND, linux_compat_uninit, NULL);
2849 
2850 /*
2851  * NOTE: Linux frequently uses "unsigned long" for pointer to integer
2852  * conversion and vice versa, where in FreeBSD "uintptr_t" would be
2853  * used. Assert these types have the same size, else some parts of the
2854  * LinuxKPI may not work like expected:
2855  */
2856 CTASSERT(sizeof(unsigned long) == sizeof(uintptr_t));
2857