xref: /freebsd/sys/contrib/ck/include/gcc/x86_64/ck_pr.h (revision 1323ec57)
1 /*
2  * Copyright 2009-2015 Samy Al Bahra.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #ifndef CK_PR_X86_64_H
28 #define CK_PR_X86_64_H
29 
30 #ifndef CK_PR_H
31 #error Do not include this file directly, use ck_pr.h
32 #endif
33 
34 #include <ck_cc.h>
35 #include <ck_md.h>
36 #include <ck_stdint.h>
37 
38 /*
39  * The following represent supported atomic operations.
40  * These operations may be emulated.
41  */
42 #include "ck_f_pr.h"
43 
44 /*
45  * Support for TSX extensions.
46  */
47 #ifdef CK_MD_RTM_ENABLE
48 #include "ck_pr_rtm.h"
49 #endif
50 
51 /* Minimum requirements for the CK_PR interface are met. */
52 #define CK_F_PR
53 
54 #ifdef CK_MD_UMP
55 #define CK_PR_LOCK_PREFIX
56 #else
57 #define CK_PR_LOCK_PREFIX "lock "
58 #endif
59 
60 /*
61  * Prevent speculative execution in busy-wait loops (P4 <=) or "predefined
62  * delay".
63  */
64 CK_CC_INLINE static void
65 ck_pr_stall(void)
66 {
67 	__asm__ __volatile__("pause" ::: "memory");
68 	return;
69 }
70 
71 #define CK_PR_FENCE(T, I)				\
72 	CK_CC_INLINE static void			\
73 	ck_pr_fence_strict_##T(void)			\
74 	{						\
75 		__asm__ __volatile__(I ::: "memory");	\
76 	}
77 
78 /* Atomic operations are always serializing. */
79 CK_PR_FENCE(atomic, "")
80 CK_PR_FENCE(atomic_store, "")
81 CK_PR_FENCE(atomic_load, "")
82 CK_PR_FENCE(store_atomic, "")
83 CK_PR_FENCE(load_atomic, "")
84 
85 /* Traditional fence interface. */
86 CK_PR_FENCE(load, "lfence")
87 CK_PR_FENCE(load_store, "mfence")
88 CK_PR_FENCE(store, "sfence")
89 CK_PR_FENCE(store_load, "mfence")
90 CK_PR_FENCE(memory, "mfence")
91 
92 /* Below are stdatomic-style fences. */
93 
94 /*
95  * Provides load-store and store-store ordering. However, Intel specifies that
96  * the WC memory model is relaxed. It is likely an sfence *is* sufficient (in
97  * particular, stores are not re-ordered with respect to prior loads and it is
98  * really just the stores that are subject to re-ordering). However, we take
99  * the conservative route as the manuals are too ambiguous for my taste.
100  */
101 CK_PR_FENCE(release, "mfence")
102 
103 /*
104  * Provides load-load and load-store ordering. The lfence instruction ensures
105  * all prior load operations are complete before any subsequent instructions
106  * actually begin execution. However, the manual also ends up going to describe
107  * WC memory as a relaxed model.
108  */
109 CK_PR_FENCE(acquire, "mfence")
110 
111 CK_PR_FENCE(acqrel, "mfence")
112 CK_PR_FENCE(lock, "mfence")
113 CK_PR_FENCE(unlock, "mfence")
114 
115 #undef CK_PR_FENCE
116 
117 /*
118  * Read for ownership. Older compilers will generate the 32-bit
119  * 3DNow! variant which is binary compatible with x86-64 variant
120  * of prefetchw.
121  */
122 #ifndef CK_F_PR_RFO
123 #define CK_F_PR_RFO
124 CK_CC_INLINE static void
125 ck_pr_rfo(const void *m)
126 {
127 
128 	__asm__ __volatile__("prefetchw (%0)"
129 	    :
130 	    : "r" (m)
131 	    : "memory");
132 
133 	return;
134 }
135 #endif /* CK_F_PR_RFO */
136 
137 /*
138  * Atomic fetch-and-store operations.
139  */
140 #define CK_PR_FAS(S, M, T, C, I)				\
141 	CK_CC_INLINE static T					\
142 	ck_pr_fas_##S(M *target, T v)				\
143 	{							\
144 		__asm__ __volatile__(I " %0, %1"		\
145 					: "+m" (*(C *)target),	\
146 					  "+q" (v)		\
147 					:			\
148 					: "memory");		\
149 		return v;					\
150 	}
151 
152 CK_PR_FAS(ptr, void, void *, uint64_t, "xchgq")
153 
154 #define CK_PR_FAS_S(S, T, I) CK_PR_FAS(S, T, T, T, I)
155 
156 #ifndef CK_PR_DISABLE_DOUBLE
157 CK_PR_FAS_S(double, double, "xchgq")
158 #endif
159 CK_PR_FAS_S(char, char, "xchgb")
160 CK_PR_FAS_S(uint, unsigned int, "xchgl")
161 CK_PR_FAS_S(int, int, "xchgl")
162 CK_PR_FAS_S(64, uint64_t, "xchgq")
163 CK_PR_FAS_S(32, uint32_t, "xchgl")
164 CK_PR_FAS_S(16, uint16_t, "xchgw")
165 CK_PR_FAS_S(8,  uint8_t,  "xchgb")
166 
167 #undef CK_PR_FAS_S
168 #undef CK_PR_FAS
169 
170 /*
171  * Atomic load-from-memory operations.
172  */
173 #define CK_PR_LOAD(S, M, T, C, I)				\
174 	CK_CC_INLINE static T					\
175 	ck_pr_md_load_##S(const M *target)			\
176 	{							\
177 		T r;						\
178 		__asm__ __volatile__(I " %1, %0"		\
179 		    : "=q" (r)					\
180 		    : "m"  (*(const C *)target)			\
181 		    : "memory");				\
182 		return (r);					\
183 	}
184 
185 CK_PR_LOAD(ptr, void, void *, uint64_t, "movq")
186 
187 #define CK_PR_LOAD_S(S, T, I) CK_PR_LOAD(S, T, T, T, I)
188 
189 CK_PR_LOAD_S(char, char, "movb")
190 CK_PR_LOAD_S(uint, unsigned int, "movl")
191 CK_PR_LOAD_S(int, int, "movl")
192 #ifndef CK_PR_DISABLE_DOUBLE
193 CK_PR_LOAD_S(double, double, "movq")
194 #endif
195 CK_PR_LOAD_S(64, uint64_t, "movq")
196 CK_PR_LOAD_S(32, uint32_t, "movl")
197 CK_PR_LOAD_S(16, uint16_t, "movw")
198 CK_PR_LOAD_S(8,  uint8_t,  "movb")
199 
200 #undef CK_PR_LOAD_S
201 #undef CK_PR_LOAD
202 
203 CK_CC_INLINE static void
204 ck_pr_load_64_2(const uint64_t target[2], uint64_t v[2])
205 {
206 	__asm__ __volatile__("movq %%rdx, %%rcx;"
207 			     "movq %%rax, %%rbx;"
208 			     CK_PR_LOCK_PREFIX "cmpxchg16b %2;"
209 				: "=a" (v[0]),
210 				  "=d" (v[1])
211 				: "m" (*(const uint64_t *)target)
212 				: "rbx", "rcx", "memory", "cc");
213 	return;
214 }
215 
216 CK_CC_INLINE static void
217 ck_pr_load_ptr_2(const void *t, void *v)
218 {
219 	ck_pr_load_64_2(CK_CPP_CAST(const uint64_t *, t),
220 			CK_CPP_CAST(uint64_t *, v));
221 	return;
222 }
223 
224 #define CK_PR_LOAD_2(S, W, T)							\
225 	CK_CC_INLINE static void						\
226 	ck_pr_md_load_##S##_##W(const T t[2], T v[2])				\
227 	{									\
228 		ck_pr_load_64_2((const uint64_t *)(const void *)t,		\
229 				(uint64_t *)(void *)v);				\
230 		return;								\
231 	}
232 
233 CK_PR_LOAD_2(char, 16, char)
234 CK_PR_LOAD_2(int, 4, int)
235 CK_PR_LOAD_2(uint, 4, unsigned int)
236 CK_PR_LOAD_2(32, 4, uint32_t)
237 CK_PR_LOAD_2(16, 8, uint16_t)
238 CK_PR_LOAD_2(8, 16, uint8_t)
239 
240 #undef CK_PR_LOAD_2
241 
242 /*
243  * Atomic store-to-memory operations.
244  */
245 #define CK_PR_STORE_IMM(S, M, T, C, I, K)				\
246 	CK_CC_INLINE static void					\
247 	ck_pr_md_store_##S(M *target, T v)				\
248 	{								\
249 		__asm__ __volatile__(I " %1, %0"			\
250 					: "=m" (*(C *)target)		\
251 					: K "q" (v)			\
252 					: "memory");			\
253 		return;							\
254 	}
255 
256 #define CK_PR_STORE(S, M, T, C, I)				\
257 	CK_CC_INLINE static void				\
258 	ck_pr_md_store_##S(M *target, T v)			\
259 	{							\
260 		__asm__ __volatile__(I " %1, %0"		\
261 					: "=m" (*(C *)target)	\
262 					: "q" (v)		\
263 					: "memory");		\
264 		return;						\
265 	}
266 
267 CK_PR_STORE_IMM(ptr, void, const void *, uint64_t, "movq", CK_CC_IMM_U32)
268 #ifndef CK_PR_DISABLE_DOUBLE
269 CK_PR_STORE(double, double, double, double, "movq")
270 #endif
271 
272 #define CK_PR_STORE_S(S, T, I, K) CK_PR_STORE_IMM(S, T, T, T, I, K)
273 
274 CK_PR_STORE_S(char, char, "movb", CK_CC_IMM_S32)
275 CK_PR_STORE_S(int, int, "movl", CK_CC_IMM_S32)
276 CK_PR_STORE_S(uint, unsigned int, "movl", CK_CC_IMM_U32)
277 CK_PR_STORE_S(64, uint64_t, "movq", CK_CC_IMM_U32)
278 CK_PR_STORE_S(32, uint32_t, "movl", CK_CC_IMM_U32)
279 CK_PR_STORE_S(16, uint16_t, "movw", CK_CC_IMM_U32)
280 CK_PR_STORE_S(8,  uint8_t, "movb", CK_CC_IMM_U32)
281 
282 #undef CK_PR_STORE_S
283 #undef CK_PR_STORE_IMM
284 #undef CK_PR_STORE
285 
286 /*
287  * Atomic fetch-and-add operations.
288  */
289 #define CK_PR_FAA(S, M, T, C, I)					\
290 	CK_CC_INLINE static T						\
291 	ck_pr_faa_##S(M *target, T d)					\
292 	{								\
293 		__asm__ __volatile__(CK_PR_LOCK_PREFIX I " %1, %0"	\
294 					: "+m" (*(C *)target),		\
295 					  "+q" (d)			\
296 					:				\
297 					: "memory", "cc");		\
298 		return (d);						\
299 	}
300 
301 CK_PR_FAA(ptr, void, uintptr_t, uint64_t, "xaddq")
302 
303 #define CK_PR_FAA_S(S, T, I) CK_PR_FAA(S, T, T, T, I)
304 
305 CK_PR_FAA_S(char, char, "xaddb")
306 CK_PR_FAA_S(uint, unsigned int, "xaddl")
307 CK_PR_FAA_S(int, int, "xaddl")
308 CK_PR_FAA_S(64, uint64_t, "xaddq")
309 CK_PR_FAA_S(32, uint32_t, "xaddl")
310 CK_PR_FAA_S(16, uint16_t, "xaddw")
311 CK_PR_FAA_S(8,  uint8_t,  "xaddb")
312 
313 #undef CK_PR_FAA_S
314 #undef CK_PR_FAA
315 
316 /*
317  * Atomic store-only unary operations.
318  */
319 #define CK_PR_UNARY(K, S, T, C, I)				\
320 	CK_PR_UNARY_R(K, S, T, C, I)				\
321 	CK_PR_UNARY_V(K, S, T, C, I)
322 
323 #define CK_PR_UNARY_R(K, S, T, C, I)				\
324 	CK_CC_INLINE static void				\
325 	ck_pr_##K##_##S(T *target)				\
326 	{							\
327 		__asm__ __volatile__(CK_PR_LOCK_PREFIX I " %0"	\
328 					: "+m" (*(C *)target)	\
329 					:			\
330 					: "memory", "cc");	\
331 		return;						\
332 	}
333 
334 #define CK_PR_UNARY_V(K, S, T, C, I)					\
335 	CK_CC_INLINE static bool					\
336 	ck_pr_##K##_##S##_is_zero(T *target)				\
337 	{								\
338 		bool ret;						\
339 		__asm__ __volatile__(CK_PR_LOCK_PREFIX I " %0; setz %1"	\
340 					: "+m" (*(C *)target),		\
341 					  "=rm" (ret)			\
342 					:				\
343 					: "memory", "cc");		\
344 		return ret;						\
345 	}
346 
347 #define CK_PR_UNARY_S(K, S, T, I) CK_PR_UNARY(K, S, T, T, I)
348 
349 #define CK_PR_GENERATE(K)				\
350 	CK_PR_UNARY(K, ptr, void, uint64_t, #K "q") 	\
351 	CK_PR_UNARY_S(K, char, char, #K "b")		\
352 	CK_PR_UNARY_S(K, int, int, #K "l")		\
353 	CK_PR_UNARY_S(K, uint, unsigned int, #K "l")	\
354 	CK_PR_UNARY_S(K, 64, uint64_t, #K "q")		\
355 	CK_PR_UNARY_S(K, 32, uint32_t, #K "l")		\
356 	CK_PR_UNARY_S(K, 16, uint16_t, #K "w")		\
357 	CK_PR_UNARY_S(K, 8, uint8_t, #K "b")
358 
359 CK_PR_GENERATE(inc)
360 CK_PR_GENERATE(dec)
361 CK_PR_GENERATE(neg)
362 
363 /* not does not affect condition flags. */
364 #undef CK_PR_UNARY_V
365 #define CK_PR_UNARY_V(a, b, c, d, e)
366 CK_PR_GENERATE(not)
367 
368 #undef CK_PR_GENERATE
369 #undef CK_PR_UNARY_S
370 #undef CK_PR_UNARY_V
371 #undef CK_PR_UNARY_R
372 #undef CK_PR_UNARY
373 
374 /*
375  * Atomic store-only binary operations.
376  */
377 #define CK_PR_BINARY(K, S, M, T, C, I, O)				\
378 	CK_CC_INLINE static void					\
379 	ck_pr_##K##_##S(M *target, T d)					\
380 	{								\
381 		__asm__ __volatile__(CK_PR_LOCK_PREFIX I " %1, %0"	\
382 					: "+m" (*(C *)target)		\
383 					: O "q" (d)			\
384 					: "memory", "cc");		\
385 		return;							\
386 	}
387 
388 #define CK_PR_BINARY_S(K, S, T, I, O) CK_PR_BINARY(K, S, T, T, T, I, O)
389 
390 #define CK_PR_GENERATE(K)							\
391 	CK_PR_BINARY(K, ptr, void, uintptr_t, uint64_t, #K "q", CK_CC_IMM_U32)	\
392 	CK_PR_BINARY_S(K, char, char, #K "b", CK_CC_IMM_S32)			\
393 	CK_PR_BINARY_S(K, int, int, #K "l", CK_CC_IMM_S32)			\
394 	CK_PR_BINARY_S(K, uint, unsigned int, #K "l", CK_CC_IMM_U32)		\
395 	CK_PR_BINARY_S(K, 64, uint64_t, #K "q", CK_CC_IMM_U32)			\
396 	CK_PR_BINARY_S(K, 32, uint32_t, #K "l", CK_CC_IMM_U32)			\
397 	CK_PR_BINARY_S(K, 16, uint16_t, #K "w", CK_CC_IMM_U32)			\
398 	CK_PR_BINARY_S(K, 8, uint8_t, #K "b", CK_CC_IMM_U32)
399 
400 CK_PR_GENERATE(add)
401 CK_PR_GENERATE(sub)
402 CK_PR_GENERATE(and)
403 CK_PR_GENERATE(or)
404 CK_PR_GENERATE(xor)
405 
406 #undef CK_PR_GENERATE
407 #undef CK_PR_BINARY_S
408 #undef CK_PR_BINARY
409 
410 /*
411  * Atomic compare and swap, with a variant that sets *v to the old value of target.
412  */
413 #ifdef __GCC_ASM_FLAG_OUTPUTS__
414 #define CK_PR_CAS(S, M, T, C, I)						\
415 	CK_CC_INLINE static bool						\
416 	ck_pr_cas_##S(M *target, T compare, T set)				\
417 	{									\
418 		bool z;								\
419 		__asm__ __volatile__(CK_PR_LOCK_PREFIX I " %3, %0"		\
420 					: "+m"    (*(C *)target),		\
421 					  "=@ccz" (z),				\
422 					  /* RAX is clobbered by cmpxchg. */	\
423 					  "+a"    (compare)			\
424 					: "q"     (set)				\
425 					: "memory", "cc");			\
426 		return z;							\
427 	}									\
428 										\
429 	CK_CC_INLINE static bool						\
430 	ck_pr_cas_##S##_value(M *target, T compare, T set, M *v)		\
431 	{									\
432 		bool z;								\
433 		__asm__ __volatile__(CK_PR_LOCK_PREFIX I " %3, %0;"		\
434 					: "+m"    (*(C *)target),		\
435 					  "=@ccz" (z),				\
436 					  "+a"    (compare)			\
437 					: "q"     (set)				\
438 					: "memory", "cc");			\
439 		*(T *)v = compare;						\
440 		return z;							\
441 	}
442 #else
443 #define CK_PR_CAS(S, M, T, C, I)						\
444 	CK_CC_INLINE static bool						\
445 	ck_pr_cas_##S(M *target, T compare, T set)				\
446 	{									\
447 		bool z;								\
448 		__asm__ __volatile__(CK_PR_LOCK_PREFIX I " %2, %0; setz %1"	\
449 					: "+m"  (*(C *)target),			\
450 					  "=a"  (z)				\
451 					: "q"   (set),				\
452 					  "a"   (compare)			\
453 					: "memory", "cc");			\
454 		return z;							\
455 	}									\
456 										\
457 	CK_CC_INLINE static bool						\
458 	ck_pr_cas_##S##_value(M *target, T compare, T set, M *v)		\
459 	{									\
460 		bool z;								\
461 		__asm__ __volatile__(CK_PR_LOCK_PREFIX I " %3, %0;"		\
462 				     "setz %1;"					\
463 					: "+m"  (*(C *)target),			\
464 					  "=q"  (z),				\
465 					  "+a"  (compare)			\
466 					: "q"   (set)				\
467 					: "memory", "cc");			\
468 		*(T *)v = compare;						\
469 		return z;							\
470 	}
471 #endif
472 
473 CK_PR_CAS(ptr, void, void *, uint64_t, "cmpxchgq")
474 
475 #define CK_PR_CAS_S(S, T, I) CK_PR_CAS(S, T, T, T, I)
476 
477 CK_PR_CAS_S(char, char, "cmpxchgb")
478 CK_PR_CAS_S(int, int, "cmpxchgl")
479 CK_PR_CAS_S(uint, unsigned int, "cmpxchgl")
480 #ifndef CK_PR_DISABLE_DOUBLE
481 CK_PR_CAS_S(double, double, "cmpxchgq")
482 #endif
483 CK_PR_CAS_S(64, uint64_t, "cmpxchgq")
484 CK_PR_CAS_S(32, uint32_t, "cmpxchgl")
485 CK_PR_CAS_S(16, uint16_t, "cmpxchgw")
486 CK_PR_CAS_S(8,  uint8_t,  "cmpxchgb")
487 
488 #undef CK_PR_CAS_S
489 #undef CK_PR_CAS
490 
491 /*
492  * Contrary to C-interface, alignment requirements are that of uint64_t[2].
493  */
494 CK_CC_INLINE static bool
495 ck_pr_cas_64_2(uint64_t target[2], uint64_t compare[2], uint64_t set[2])
496 {
497 	bool z;
498 
499 	__asm__ __volatile__("movq 0(%4), %%rax;"
500 			     "movq 8(%4), %%rdx;"
501 			     CK_PR_LOCK_PREFIX "cmpxchg16b %0; setz %1"
502 				: "+m" (*target),
503 				  "=q" (z)
504 				: "b"  (set[0]),
505 				  "c"  (set[1]),
506 				  "q"  (compare)
507 				: "memory", "cc", "%rax", "%rdx");
508 	return z;
509 }
510 
511 CK_CC_INLINE static bool
512 ck_pr_cas_ptr_2(void *t, void *c, void *s)
513 {
514 	return ck_pr_cas_64_2(CK_CPP_CAST(uint64_t *, t),
515 			      CK_CPP_CAST(uint64_t *, c),
516 			      CK_CPP_CAST(uint64_t *, s));
517 }
518 
519 CK_CC_INLINE static bool
520 ck_pr_cas_64_2_value(uint64_t target[2],
521 		     uint64_t compare[2],
522 		     uint64_t set[2],
523 		     uint64_t v[2])
524 {
525 	bool z;
526 
527 	__asm__ __volatile__(CK_PR_LOCK_PREFIX "cmpxchg16b %0;"
528 			     "setz %3"
529 				: "+m" (*target),
530 				  "=a" (v[0]),
531 				  "=d" (v[1]),
532 				  "=q" (z)
533 				: "a" (compare[0]),
534 				  "d" (compare[1]),
535 				  "b" (set[0]),
536 				  "c" (set[1])
537 				: "memory", "cc");
538 	return z;
539 }
540 
541 CK_CC_INLINE static bool
542 ck_pr_cas_ptr_2_value(void *t, void *c, void *s, void *v)
543 {
544 	return ck_pr_cas_64_2_value(CK_CPP_CAST(uint64_t *,t),
545 				    CK_CPP_CAST(uint64_t *,c),
546 				    CK_CPP_CAST(uint64_t *,s),
547 				    CK_CPP_CAST(uint64_t *,v));
548 }
549 
550 #define CK_PR_CAS_V(S, W, T)					\
551 CK_CC_INLINE static bool					\
552 ck_pr_cas_##S##_##W(T t[W], T c[W], T s[W])			\
553 {								\
554 	return ck_pr_cas_64_2((uint64_t *)(void *)t,		\
555 			      (uint64_t *)(void *)c,		\
556 			      (uint64_t *)(void *)s);		\
557 }								\
558 CK_CC_INLINE static bool					\
559 ck_pr_cas_##S##_##W##_value(T *t, T c[W], T s[W], T *v)		\
560 {								\
561 	return ck_pr_cas_64_2_value((uint64_t *)(void *)t,	\
562 				    (uint64_t *)(void *)c,	\
563 				    (uint64_t *)(void *)s,	\
564 				    (uint64_t *)(void *)v);	\
565 }
566 
567 #ifndef CK_PR_DISABLE_DOUBLE
568 CK_PR_CAS_V(double, 2, double)
569 #endif
570 CK_PR_CAS_V(char, 16, char)
571 CK_PR_CAS_V(int, 4, int)
572 CK_PR_CAS_V(uint, 4, unsigned int)
573 CK_PR_CAS_V(32, 4, uint32_t)
574 CK_PR_CAS_V(16, 8, uint16_t)
575 CK_PR_CAS_V(8, 16, uint8_t)
576 
577 #undef CK_PR_CAS_V
578 
579 /*
580  * Atomic bit test operations.
581  */
582 #define CK_PR_BT(K, S, T, P, C, I)					\
583 	CK_CC_INLINE static bool					\
584 	ck_pr_##K##_##S(T *target, unsigned int b)			\
585 	{								\
586 		bool c;							\
587 		__asm__ __volatile__(CK_PR_LOCK_PREFIX I "; setc %1"	\
588 					: "+m" (*(C *)target),		\
589 					  "=q" (c)			\
590 					: "q"  ((P)b)			\
591 					: "memory", "cc");		\
592 		return c;						\
593 	}
594 
595 #define CK_PR_BT_S(K, S, T, I) CK_PR_BT(K, S, T, T, T, I)
596 
597 #define CK_PR_GENERATE(K)						\
598 	CK_PR_BT(K, ptr, void, uint64_t, uint64_t, #K "q %2, %0")	\
599 	CK_PR_BT_S(K, uint, unsigned int, #K "l %2, %0")		\
600 	CK_PR_BT_S(K, int, int, #K "l %2, %0")				\
601 	CK_PR_BT_S(K, 64, uint64_t, #K "q %2, %0")			\
602 	CK_PR_BT_S(K, 32, uint32_t, #K "l %2, %0")			\
603 	CK_PR_BT_S(K, 16, uint16_t, #K "w %w2, %0")
604 
605 CK_PR_GENERATE(btc)
606 CK_PR_GENERATE(bts)
607 CK_PR_GENERATE(btr)
608 
609 #undef CK_PR_GENERATE
610 #undef CK_PR_BT
611 
612 #endif /* CK_PR_X86_64_H */
613 
614