xref: /freebsd/sys/contrib/dev/athk/ath10k/pci.c (revision a91a2465)
1 // SPDX-License-Identifier: ISC
2 /*
3  * Copyright (c) 2005-2011 Atheros Communications Inc.
4  * Copyright (c) 2011-2017 Qualcomm Atheros, Inc.
5  */
6 
7 #if defined(__FreeBSD__)
8 #define	LINUXKPI_PARAM_PREFIX	ath10k_pci_
9 #endif
10 
11 #include <linux/pci.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/spinlock.h>
15 #include <linux/bitops.h>
16 #if defined(__FreeBSD__)
17 #include <linux/delay.h>
18 #include <sys/rman.h>
19 #endif
20 
21 #include "core.h"
22 #include "debug.h"
23 #include "coredump.h"
24 
25 #include "targaddrs.h"
26 #include "bmi.h"
27 
28 #include "hif.h"
29 #include "htc.h"
30 
31 #include "ce.h"
32 #include "pci.h"
33 
34 enum ath10k_pci_reset_mode {
35 	ATH10K_PCI_RESET_AUTO = 0,
36 	ATH10K_PCI_RESET_WARM_ONLY = 1,
37 };
38 
39 static unsigned int ath10k_pci_irq_mode = ATH10K_PCI_IRQ_AUTO;
40 static unsigned int ath10k_pci_reset_mode = ATH10K_PCI_RESET_AUTO;
41 
42 module_param_named(irq_mode, ath10k_pci_irq_mode, uint, 0644);
43 MODULE_PARM_DESC(irq_mode, "0: auto, 1: legacy, 2: msi (default: 0)");
44 
45 module_param_named(reset_mode, ath10k_pci_reset_mode, uint, 0644);
46 MODULE_PARM_DESC(reset_mode, "0: auto, 1: warm only (default: 0)");
47 
48 /* how long wait to wait for target to initialise, in ms */
49 #define ATH10K_PCI_TARGET_WAIT 3000
50 #define ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS 3
51 
52 /* Maximum number of bytes that can be handled atomically by
53  * diag read and write.
54  */
55 #define ATH10K_DIAG_TRANSFER_LIMIT	0x5000
56 
57 #define QCA99X0_PCIE_BAR0_START_REG    0x81030
58 #define QCA99X0_CPU_MEM_ADDR_REG       0x4d00c
59 #define QCA99X0_CPU_MEM_DATA_REG       0x4d010
60 
61 static const struct pci_device_id ath10k_pci_id_table[] = {
62 	/* PCI-E QCA988X V2 (Ubiquiti branded) */
63 	{ PCI_VDEVICE(UBIQUITI, QCA988X_2_0_DEVICE_ID_UBNT) },
64 
65 	{ PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */
66 	{ PCI_VDEVICE(ATHEROS, QCA6164_2_1_DEVICE_ID) }, /* PCI-E QCA6164 V2.1 */
67 	{ PCI_VDEVICE(ATHEROS, QCA6174_2_1_DEVICE_ID) }, /* PCI-E QCA6174 V2.1 */
68 	{ PCI_VDEVICE(ATHEROS, QCA99X0_2_0_DEVICE_ID) }, /* PCI-E QCA99X0 V2 */
69 	{ PCI_VDEVICE(ATHEROS, QCA9888_2_0_DEVICE_ID) }, /* PCI-E QCA9888 V2 */
70 	{ PCI_VDEVICE(ATHEROS, QCA9984_1_0_DEVICE_ID) }, /* PCI-E QCA9984 V1 */
71 	{ PCI_VDEVICE(ATHEROS, QCA9377_1_0_DEVICE_ID) }, /* PCI-E QCA9377 V1 */
72 	{ PCI_VDEVICE(ATHEROS, QCA9887_1_0_DEVICE_ID) }, /* PCI-E QCA9887 */
73 	{0}
74 };
75 
76 static const struct ath10k_pci_supp_chip ath10k_pci_supp_chips[] = {
77 	/* QCA988X pre 2.0 chips are not supported because they need some nasty
78 	 * hacks. ath10k doesn't have them and these devices crash horribly
79 	 * because of that.
80 	 */
81 	{ QCA988X_2_0_DEVICE_ID_UBNT, QCA988X_HW_2_0_CHIP_ID_REV },
82 	{ QCA988X_2_0_DEVICE_ID, QCA988X_HW_2_0_CHIP_ID_REV },
83 
84 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
85 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
86 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
87 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
88 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
89 
90 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
91 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
92 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
93 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
94 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
95 
96 	{ QCA99X0_2_0_DEVICE_ID, QCA99X0_HW_2_0_CHIP_ID_REV },
97 
98 	{ QCA9984_1_0_DEVICE_ID, QCA9984_HW_1_0_CHIP_ID_REV },
99 
100 	{ QCA9888_2_0_DEVICE_ID, QCA9888_HW_2_0_CHIP_ID_REV },
101 
102 	{ QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_0_CHIP_ID_REV },
103 	{ QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_1_CHIP_ID_REV },
104 
105 	{ QCA9887_1_0_DEVICE_ID, QCA9887_HW_1_0_CHIP_ID_REV },
106 };
107 
108 static void ath10k_pci_buffer_cleanup(struct ath10k *ar);
109 static int ath10k_pci_cold_reset(struct ath10k *ar);
110 static int ath10k_pci_safe_chip_reset(struct ath10k *ar);
111 static int ath10k_pci_init_irq(struct ath10k *ar);
112 static int ath10k_pci_deinit_irq(struct ath10k *ar);
113 static int ath10k_pci_request_irq(struct ath10k *ar);
114 static void ath10k_pci_free_irq(struct ath10k *ar);
115 static int ath10k_pci_bmi_wait(struct ath10k *ar,
116 			       struct ath10k_ce_pipe *tx_pipe,
117 			       struct ath10k_ce_pipe *rx_pipe,
118 			       struct bmi_xfer *xfer);
119 static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar);
120 static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state);
121 static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
122 static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state);
123 static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state);
124 static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
125 static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state);
126 
127 static const struct ce_attr pci_host_ce_config_wlan[] = {
128 	/* CE0: host->target HTC control and raw streams */
129 	{
130 		.flags = CE_ATTR_FLAGS,
131 		.src_nentries = 16,
132 		.src_sz_max = 256,
133 		.dest_nentries = 0,
134 		.send_cb = ath10k_pci_htc_tx_cb,
135 	},
136 
137 	/* CE1: target->host HTT + HTC control */
138 	{
139 		.flags = CE_ATTR_FLAGS,
140 		.src_nentries = 0,
141 		.src_sz_max = 2048,
142 		.dest_nentries = 512,
143 		.recv_cb = ath10k_pci_htt_htc_rx_cb,
144 	},
145 
146 	/* CE2: target->host WMI */
147 	{
148 		.flags = CE_ATTR_FLAGS,
149 		.src_nentries = 0,
150 		.src_sz_max = 2048,
151 		.dest_nentries = 128,
152 		.recv_cb = ath10k_pci_htc_rx_cb,
153 	},
154 
155 	/* CE3: host->target WMI */
156 	{
157 		.flags = CE_ATTR_FLAGS,
158 		.src_nentries = 32,
159 		.src_sz_max = 2048,
160 		.dest_nentries = 0,
161 		.send_cb = ath10k_pci_htc_tx_cb,
162 	},
163 
164 	/* CE4: host->target HTT */
165 	{
166 		.flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR,
167 		.src_nentries = CE_HTT_H2T_MSG_SRC_NENTRIES,
168 		.src_sz_max = 256,
169 		.dest_nentries = 0,
170 		.send_cb = ath10k_pci_htt_tx_cb,
171 	},
172 
173 	/* CE5: target->host HTT (HIF->HTT) */
174 	{
175 		.flags = CE_ATTR_FLAGS,
176 		.src_nentries = 0,
177 		.src_sz_max = 512,
178 		.dest_nentries = 512,
179 		.recv_cb = ath10k_pci_htt_rx_cb,
180 	},
181 
182 	/* CE6: target autonomous hif_memcpy */
183 	{
184 		.flags = CE_ATTR_FLAGS,
185 		.src_nentries = 0,
186 		.src_sz_max = 0,
187 		.dest_nentries = 0,
188 	},
189 
190 	/* CE7: ce_diag, the Diagnostic Window */
191 	{
192 		.flags = CE_ATTR_FLAGS | CE_ATTR_POLL,
193 		.src_nentries = 2,
194 		.src_sz_max = DIAG_TRANSFER_LIMIT,
195 		.dest_nentries = 2,
196 	},
197 
198 	/* CE8: target->host pktlog */
199 	{
200 		.flags = CE_ATTR_FLAGS,
201 		.src_nentries = 0,
202 		.src_sz_max = 2048,
203 		.dest_nentries = 128,
204 		.recv_cb = ath10k_pci_pktlog_rx_cb,
205 	},
206 
207 	/* CE9 target autonomous qcache memcpy */
208 	{
209 		.flags = CE_ATTR_FLAGS,
210 		.src_nentries = 0,
211 		.src_sz_max = 0,
212 		.dest_nentries = 0,
213 	},
214 
215 	/* CE10: target autonomous hif memcpy */
216 	{
217 		.flags = CE_ATTR_FLAGS,
218 		.src_nentries = 0,
219 		.src_sz_max = 0,
220 		.dest_nentries = 0,
221 	},
222 
223 	/* CE11: target autonomous hif memcpy */
224 	{
225 		.flags = CE_ATTR_FLAGS,
226 		.src_nentries = 0,
227 		.src_sz_max = 0,
228 		.dest_nentries = 0,
229 	},
230 };
231 
232 /* Target firmware's Copy Engine configuration. */
233 static const struct ce_pipe_config pci_target_ce_config_wlan[] = {
234 	/* CE0: host->target HTC control and raw streams */
235 	{
236 		.pipenum = __cpu_to_le32(0),
237 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
238 		.nentries = __cpu_to_le32(32),
239 		.nbytes_max = __cpu_to_le32(256),
240 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
241 		.reserved = __cpu_to_le32(0),
242 	},
243 
244 	/* CE1: target->host HTT + HTC control */
245 	{
246 		.pipenum = __cpu_to_le32(1),
247 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
248 		.nentries = __cpu_to_le32(32),
249 		.nbytes_max = __cpu_to_le32(2048),
250 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
251 		.reserved = __cpu_to_le32(0),
252 	},
253 
254 	/* CE2: target->host WMI */
255 	{
256 		.pipenum = __cpu_to_le32(2),
257 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
258 		.nentries = __cpu_to_le32(64),
259 		.nbytes_max = __cpu_to_le32(2048),
260 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
261 		.reserved = __cpu_to_le32(0),
262 	},
263 
264 	/* CE3: host->target WMI */
265 	{
266 		.pipenum = __cpu_to_le32(3),
267 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
268 		.nentries = __cpu_to_le32(32),
269 		.nbytes_max = __cpu_to_le32(2048),
270 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
271 		.reserved = __cpu_to_le32(0),
272 	},
273 
274 	/* CE4: host->target HTT */
275 	{
276 		.pipenum = __cpu_to_le32(4),
277 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
278 		.nentries = __cpu_to_le32(256),
279 		.nbytes_max = __cpu_to_le32(256),
280 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
281 		.reserved = __cpu_to_le32(0),
282 	},
283 
284 	/* NB: 50% of src nentries, since tx has 2 frags */
285 
286 	/* CE5: target->host HTT (HIF->HTT) */
287 	{
288 		.pipenum = __cpu_to_le32(5),
289 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
290 		.nentries = __cpu_to_le32(32),
291 		.nbytes_max = __cpu_to_le32(512),
292 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
293 		.reserved = __cpu_to_le32(0),
294 	},
295 
296 	/* CE6: Reserved for target autonomous hif_memcpy */
297 	{
298 		.pipenum = __cpu_to_le32(6),
299 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
300 		.nentries = __cpu_to_le32(32),
301 		.nbytes_max = __cpu_to_le32(4096),
302 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
303 		.reserved = __cpu_to_le32(0),
304 	},
305 
306 	/* CE7 used only by Host */
307 	{
308 		.pipenum = __cpu_to_le32(7),
309 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
310 		.nentries = __cpu_to_le32(0),
311 		.nbytes_max = __cpu_to_le32(0),
312 		.flags = __cpu_to_le32(0),
313 		.reserved = __cpu_to_le32(0),
314 	},
315 
316 	/* CE8 target->host packtlog */
317 	{
318 		.pipenum = __cpu_to_le32(8),
319 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
320 		.nentries = __cpu_to_le32(64),
321 		.nbytes_max = __cpu_to_le32(2048),
322 		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
323 		.reserved = __cpu_to_le32(0),
324 	},
325 
326 	/* CE9 target autonomous qcache memcpy */
327 	{
328 		.pipenum = __cpu_to_le32(9),
329 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
330 		.nentries = __cpu_to_le32(32),
331 		.nbytes_max = __cpu_to_le32(2048),
332 		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
333 		.reserved = __cpu_to_le32(0),
334 	},
335 
336 	/* It not necessary to send target wlan configuration for CE10 & CE11
337 	 * as these CEs are not actively used in target.
338 	 */
339 };
340 
341 /*
342  * Map from service/endpoint to Copy Engine.
343  * This table is derived from the CE_PCI TABLE, above.
344  * It is passed to the Target at startup for use by firmware.
345  */
346 static const struct ce_service_to_pipe pci_target_service_to_ce_map_wlan[] = {
347 	{
348 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
349 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
350 		__cpu_to_le32(3),
351 	},
352 	{
353 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
354 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
355 		__cpu_to_le32(2),
356 	},
357 	{
358 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
359 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
360 		__cpu_to_le32(3),
361 	},
362 	{
363 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
364 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
365 		__cpu_to_le32(2),
366 	},
367 	{
368 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
369 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
370 		__cpu_to_le32(3),
371 	},
372 	{
373 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
374 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
375 		__cpu_to_le32(2),
376 	},
377 	{
378 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
379 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
380 		__cpu_to_le32(3),
381 	},
382 	{
383 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
384 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
385 		__cpu_to_le32(2),
386 	},
387 	{
388 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
389 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
390 		__cpu_to_le32(3),
391 	},
392 	{
393 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
394 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
395 		__cpu_to_le32(2),
396 	},
397 	{
398 		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
399 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
400 		__cpu_to_le32(0),
401 	},
402 	{
403 		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
404 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
405 		__cpu_to_le32(1),
406 	},
407 	{ /* not used */
408 		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
409 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
410 		__cpu_to_le32(0),
411 	},
412 	{ /* not used */
413 		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
414 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
415 		__cpu_to_le32(1),
416 	},
417 	{
418 		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
419 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
420 		__cpu_to_le32(4),
421 	},
422 	{
423 		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
424 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
425 		__cpu_to_le32(5),
426 	},
427 
428 	/* (Additions here) */
429 
430 	{ /* must be last */
431 		__cpu_to_le32(0),
432 		__cpu_to_le32(0),
433 		__cpu_to_le32(0),
434 	},
435 };
436 
437 static bool ath10k_pci_is_awake(struct ath10k *ar)
438 {
439 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
440 #if defined(__linux__)
441 	u32 val = ioread32(ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
442 			   RTC_STATE_ADDRESS);
443 #elif defined(__FreeBSD__)
444 	u32 val = bus_read_4((struct resource *)ar_pci->mem, PCIE_LOCAL_BASE_ADDRESS +
445 			   RTC_STATE_ADDRESS);
446 #endif
447 
448 	return RTC_STATE_V_GET(val) == RTC_STATE_V_ON;
449 }
450 
451 static void __ath10k_pci_wake(struct ath10k *ar)
452 {
453 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
454 
455 	lockdep_assert_held(&ar_pci->ps_lock);
456 
457 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake reg refcount %lu awake %d\n",
458 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
459 
460 #if defined(__linux__)
461 	iowrite32(PCIE_SOC_WAKE_V_MASK,
462 		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
463 		  PCIE_SOC_WAKE_ADDRESS);
464 #elif defined(__FreeBSD__)
465 	bus_write_4((struct resource *)ar_pci->mem,
466 	    PCIE_LOCAL_BASE_ADDRESS + PCIE_SOC_WAKE_ADDRESS,
467 	    PCIE_SOC_WAKE_V_MASK);
468 #endif
469 }
470 
471 static void __ath10k_pci_sleep(struct ath10k *ar)
472 {
473 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
474 
475 	lockdep_assert_held(&ar_pci->ps_lock);
476 
477 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep reg refcount %lu awake %d\n",
478 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
479 
480 #if defined(__linux__)
481 	iowrite32(PCIE_SOC_WAKE_RESET,
482 		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
483 		  PCIE_SOC_WAKE_ADDRESS);
484 #elif defined(__FreeBSD__)
485 	bus_write_4((struct resource *)ar_pci->mem,
486 	    PCIE_LOCAL_BASE_ADDRESS + PCIE_SOC_WAKE_ADDRESS,
487 	    PCIE_SOC_WAKE_RESET);
488 #endif
489 	ar_pci->ps_awake = false;
490 }
491 
492 static int ath10k_pci_wake_wait(struct ath10k *ar)
493 {
494 	int tot_delay = 0;
495 	int curr_delay = 5;
496 
497 	while (tot_delay < PCIE_WAKE_TIMEOUT) {
498 		if (ath10k_pci_is_awake(ar)) {
499 			if (tot_delay > PCIE_WAKE_LATE_US)
500 				ath10k_warn(ar, "device wakeup took %d ms which is unusually long, otherwise it works normally.\n",
501 					    tot_delay / 1000);
502 			return 0;
503 		}
504 
505 		udelay(curr_delay);
506 		tot_delay += curr_delay;
507 
508 		if (curr_delay < 50)
509 			curr_delay += 5;
510 	}
511 
512 	return -ETIMEDOUT;
513 }
514 
515 static int ath10k_pci_force_wake(struct ath10k *ar)
516 {
517 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
518 	unsigned long flags;
519 	int ret = 0;
520 
521 	if (ar_pci->pci_ps)
522 		return ret;
523 
524 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
525 
526 	if (!ar_pci->ps_awake) {
527 #if defined(__linux__)
528 		iowrite32(PCIE_SOC_WAKE_V_MASK,
529 			  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
530 			  PCIE_SOC_WAKE_ADDRESS);
531 #elif defined(__FreeBSD__)
532 		bus_write_4((struct resource *)ar_pci->mem,
533 		    PCIE_LOCAL_BASE_ADDRESS + PCIE_SOC_WAKE_ADDRESS,
534 		    PCIE_SOC_WAKE_V_MASK);
535 #endif
536 
537 		ret = ath10k_pci_wake_wait(ar);
538 		if (ret == 0)
539 			ar_pci->ps_awake = true;
540 	}
541 
542 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
543 
544 	return ret;
545 }
546 
547 static void ath10k_pci_force_sleep(struct ath10k *ar)
548 {
549 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
550 	unsigned long flags;
551 
552 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
553 
554 #if defined(__linux__)
555 	iowrite32(PCIE_SOC_WAKE_RESET,
556 		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
557 		  PCIE_SOC_WAKE_ADDRESS);
558 #elif defined(__FreeBSD__)
559 	bus_write_4((struct resource *)ar_pci->mem,
560 	    PCIE_LOCAL_BASE_ADDRESS + PCIE_SOC_WAKE_ADDRESS,
561 	    PCIE_SOC_WAKE_RESET);
562 #endif
563 	ar_pci->ps_awake = false;
564 
565 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
566 }
567 
568 static int ath10k_pci_wake(struct ath10k *ar)
569 {
570 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
571 	unsigned long flags;
572 	int ret = 0;
573 
574 	if (ar_pci->pci_ps == 0)
575 		return ret;
576 
577 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
578 
579 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake refcount %lu awake %d\n",
580 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
581 
582 	/* This function can be called very frequently. To avoid excessive
583 	 * CPU stalls for MMIO reads use a cache var to hold the device state.
584 	 */
585 	if (!ar_pci->ps_awake) {
586 		__ath10k_pci_wake(ar);
587 
588 		ret = ath10k_pci_wake_wait(ar);
589 		if (ret == 0)
590 			ar_pci->ps_awake = true;
591 	}
592 
593 	if (ret == 0) {
594 		ar_pci->ps_wake_refcount++;
595 		WARN_ON(ar_pci->ps_wake_refcount == 0);
596 	}
597 
598 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
599 
600 	return ret;
601 }
602 
603 static void ath10k_pci_sleep(struct ath10k *ar)
604 {
605 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
606 	unsigned long flags;
607 
608 	if (ar_pci->pci_ps == 0)
609 		return;
610 
611 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
612 
613 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep refcount %lu awake %d\n",
614 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
615 
616 	if (WARN_ON(ar_pci->ps_wake_refcount == 0))
617 		goto skip;
618 
619 	ar_pci->ps_wake_refcount--;
620 
621 	mod_timer(&ar_pci->ps_timer, jiffies +
622 		  msecs_to_jiffies(ATH10K_PCI_SLEEP_GRACE_PERIOD_MSEC));
623 
624 skip:
625 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
626 }
627 
628 static void ath10k_pci_ps_timer(struct timer_list *t)
629 {
630 	struct ath10k_pci *ar_pci = from_timer(ar_pci, t, ps_timer);
631 	struct ath10k *ar = ar_pci->ar;
632 	unsigned long flags;
633 
634 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
635 
636 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps timer refcount %lu awake %d\n",
637 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
638 
639 	if (ar_pci->ps_wake_refcount > 0)
640 		goto skip;
641 
642 	__ath10k_pci_sleep(ar);
643 
644 skip:
645 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
646 }
647 
648 static void ath10k_pci_sleep_sync(struct ath10k *ar)
649 {
650 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
651 	unsigned long flags;
652 
653 	if (ar_pci->pci_ps == 0) {
654 		ath10k_pci_force_sleep(ar);
655 		return;
656 	}
657 
658 	del_timer_sync(&ar_pci->ps_timer);
659 
660 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
661 	WARN_ON(ar_pci->ps_wake_refcount > 0);
662 	__ath10k_pci_sleep(ar);
663 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
664 }
665 
666 static void ath10k_bus_pci_write32(struct ath10k *ar, u32 offset, u32 value)
667 {
668 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
669 	int ret;
670 
671 	if (unlikely(offset + sizeof(value) > ar_pci->mem_len)) {
672 		ath10k_warn(ar, "refusing to write mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
673 			    offset, offset + sizeof(value), ar_pci->mem_len);
674 		return;
675 	}
676 
677 	ret = ath10k_pci_wake(ar);
678 	if (ret) {
679 		ath10k_warn(ar, "failed to wake target for write32 of 0x%08x at 0x%08x: %d\n",
680 			    value, offset, ret);
681 		return;
682 	}
683 
684 #if defined(__linux__)
685 	iowrite32(value, ar_pci->mem + offset);
686 #elif defined(__FreeBSD__)
687 	bus_write_4((struct resource *)ar_pci->mem, offset, value);
688 #endif
689 	ath10k_pci_sleep(ar);
690 }
691 
692 static u32 ath10k_bus_pci_read32(struct ath10k *ar, u32 offset)
693 {
694 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
695 	u32 val;
696 	int ret;
697 
698 	if (unlikely(offset + sizeof(val) > ar_pci->mem_len)) {
699 		ath10k_warn(ar, "refusing to read mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
700 			    offset, offset + sizeof(val), ar_pci->mem_len);
701 		return 0;
702 	}
703 
704 	ret = ath10k_pci_wake(ar);
705 	if (ret) {
706 		ath10k_warn(ar, "failed to wake target for read32 at 0x%08x: %d\n",
707 			    offset, ret);
708 		return 0xffffffff;
709 	}
710 
711 #if defined(__linux__)
712 	val = ioread32(ar_pci->mem + offset);
713 #elif defined(__FreeBSD__)
714 	val = bus_read_4((struct resource *)ar_pci->mem, offset);
715 #endif
716 	ath10k_pci_sleep(ar);
717 
718 	return val;
719 }
720 
721 inline void ath10k_pci_write32(struct ath10k *ar, u32 offset, u32 value)
722 {
723 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
724 
725 	ce->bus_ops->write32(ar, offset, value);
726 }
727 
728 inline u32 ath10k_pci_read32(struct ath10k *ar, u32 offset)
729 {
730 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
731 
732 	return ce->bus_ops->read32(ar, offset);
733 }
734 
735 u32 ath10k_pci_soc_read32(struct ath10k *ar, u32 addr)
736 {
737 	return ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS + addr);
738 }
739 
740 void ath10k_pci_soc_write32(struct ath10k *ar, u32 addr, u32 val)
741 {
742 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + addr, val);
743 }
744 
745 u32 ath10k_pci_reg_read32(struct ath10k *ar, u32 addr)
746 {
747 	return ath10k_pci_read32(ar, PCIE_LOCAL_BASE_ADDRESS + addr);
748 }
749 
750 void ath10k_pci_reg_write32(struct ath10k *ar, u32 addr, u32 val)
751 {
752 	ath10k_pci_write32(ar, PCIE_LOCAL_BASE_ADDRESS + addr, val);
753 }
754 
755 bool ath10k_pci_irq_pending(struct ath10k *ar)
756 {
757 	u32 cause;
758 
759 	/* Check if the shared legacy irq is for us */
760 	cause = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
761 				  PCIE_INTR_CAUSE_ADDRESS);
762 	if (cause & (PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL))
763 		return true;
764 
765 	return false;
766 }
767 
768 void ath10k_pci_disable_and_clear_legacy_irq(struct ath10k *ar)
769 {
770 	/* IMPORTANT: INTR_CLR register has to be set after
771 	 * INTR_ENABLE is set to 0, otherwise interrupt can not be
772 	 * really cleared.
773 	 */
774 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
775 			   0);
776 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_CLR_ADDRESS,
777 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
778 
779 	/* IMPORTANT: this extra read transaction is required to
780 	 * flush the posted write buffer.
781 	 */
782 	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
783 				PCIE_INTR_ENABLE_ADDRESS);
784 }
785 
786 void ath10k_pci_enable_legacy_irq(struct ath10k *ar)
787 {
788 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
789 			   PCIE_INTR_ENABLE_ADDRESS,
790 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
791 
792 	/* IMPORTANT: this extra read transaction is required to
793 	 * flush the posted write buffer.
794 	 */
795 	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
796 				PCIE_INTR_ENABLE_ADDRESS);
797 }
798 
799 static inline const char *ath10k_pci_get_irq_method(struct ath10k *ar)
800 {
801 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
802 
803 	if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_MSI)
804 		return "msi";
805 
806 	return "legacy";
807 }
808 
809 static int __ath10k_pci_rx_post_buf(struct ath10k_pci_pipe *pipe)
810 {
811 	struct ath10k *ar = pipe->hif_ce_state;
812 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
813 	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
814 	struct sk_buff *skb;
815 	dma_addr_t paddr;
816 	int ret;
817 
818 	skb = dev_alloc_skb(pipe->buf_sz);
819 	if (!skb)
820 		return -ENOMEM;
821 
822 	WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb");
823 
824 	paddr = dma_map_single(ar->dev, skb->data,
825 			       skb->len + skb_tailroom(skb),
826 			       DMA_FROM_DEVICE);
827 	if (unlikely(dma_mapping_error(ar->dev, paddr))) {
828 		ath10k_warn(ar, "failed to dma map pci rx buf\n");
829 		dev_kfree_skb_any(skb);
830 		return -EIO;
831 	}
832 
833 	ATH10K_SKB_RXCB(skb)->paddr = paddr;
834 
835 	spin_lock_bh(&ce->ce_lock);
836 	ret = ce_pipe->ops->ce_rx_post_buf(ce_pipe, skb, paddr);
837 	spin_unlock_bh(&ce->ce_lock);
838 	if (ret) {
839 		dma_unmap_single(ar->dev, paddr, skb->len + skb_tailroom(skb),
840 				 DMA_FROM_DEVICE);
841 		dev_kfree_skb_any(skb);
842 		return ret;
843 	}
844 
845 	return 0;
846 }
847 
848 static void ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe *pipe)
849 {
850 	struct ath10k *ar = pipe->hif_ce_state;
851 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
852 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
853 	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
854 	int ret, num;
855 
856 	if (pipe->buf_sz == 0)
857 		return;
858 
859 	if (!ce_pipe->dest_ring)
860 		return;
861 
862 	spin_lock_bh(&ce->ce_lock);
863 	num = __ath10k_ce_rx_num_free_bufs(ce_pipe);
864 	spin_unlock_bh(&ce->ce_lock);
865 
866 	while (num >= 0) {
867 		ret = __ath10k_pci_rx_post_buf(pipe);
868 		if (ret) {
869 			if (ret == -ENOSPC)
870 				break;
871 			ath10k_warn(ar, "failed to post pci rx buf: %d\n", ret);
872 			mod_timer(&ar_pci->rx_post_retry, jiffies +
873 				  ATH10K_PCI_RX_POST_RETRY_MS);
874 			break;
875 		}
876 		num--;
877 	}
878 }
879 
880 void ath10k_pci_rx_post(struct ath10k *ar)
881 {
882 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
883 	int i;
884 
885 	for (i = 0; i < CE_COUNT; i++)
886 		ath10k_pci_rx_post_pipe(&ar_pci->pipe_info[i]);
887 }
888 
889 void ath10k_pci_rx_replenish_retry(struct timer_list *t)
890 {
891 	struct ath10k_pci *ar_pci = from_timer(ar_pci, t, rx_post_retry);
892 	struct ath10k *ar = ar_pci->ar;
893 
894 	ath10k_pci_rx_post(ar);
895 }
896 
897 static u32 ath10k_pci_qca988x_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
898 {
899 	u32 val = 0, region = addr & 0xfffff;
900 
901 	val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS)
902 				 & 0x7ff) << 21;
903 	val |= 0x100000 | region;
904 	return val;
905 }
906 
907 /* Refactor from ath10k_pci_qca988x_targ_cpu_to_ce_addr.
908  * Support to access target space below 1M for qca6174 and qca9377.
909  * If target space is below 1M, the bit[20] of converted CE addr is 0.
910  * Otherwise bit[20] of converted CE addr is 1.
911  */
912 static u32 ath10k_pci_qca6174_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
913 {
914 	u32 val = 0, region = addr & 0xfffff;
915 
916 	val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS)
917 				 & 0x7ff) << 21;
918 	val |= ((addr >= 0x100000) ? 0x100000 : 0) | region;
919 	return val;
920 }
921 
922 static u32 ath10k_pci_qca99x0_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
923 {
924 	u32 val = 0, region = addr & 0xfffff;
925 
926 	val = ath10k_pci_read32(ar, PCIE_BAR_REG_ADDRESS);
927 	val |= 0x100000 | region;
928 	return val;
929 }
930 
931 static u32 ath10k_pci_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
932 {
933 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
934 
935 	if (WARN_ON_ONCE(!ar_pci->targ_cpu_to_ce_addr))
936 		return -ENOTSUPP;
937 
938 	return ar_pci->targ_cpu_to_ce_addr(ar, addr);
939 }
940 
941 /*
942  * Diagnostic read/write access is provided for startup/config/debug usage.
943  * Caller must guarantee proper alignment, when applicable, and single user
944  * at any moment.
945  */
946 #if defined(__linux__)
947 static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data,
948 #elif defined(__FreeBSD__)
949 static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, u8 *data,
950 #endif
951 				    int nbytes)
952 {
953 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
954 	int ret = 0;
955 	u32 *buf;
956 	unsigned int completed_nbytes, alloc_nbytes, remaining_bytes;
957 	struct ath10k_ce_pipe *ce_diag;
958 	/* Host buffer address in CE space */
959 	u32 ce_data;
960 	dma_addr_t ce_data_base = 0;
961 	void *data_buf;
962 	int i;
963 
964 	mutex_lock(&ar_pci->ce_diag_mutex);
965 	ce_diag = ar_pci->ce_diag;
966 
967 	/*
968 	 * Allocate a temporary bounce buffer to hold caller's data
969 	 * to be DMA'ed from Target. This guarantees
970 	 *   1) 4-byte alignment
971 	 *   2) Buffer in DMA-able space
972 	 */
973 	alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT);
974 
975 	data_buf = dma_alloc_coherent(ar->dev, alloc_nbytes, &ce_data_base,
976 				      GFP_ATOMIC);
977 	if (!data_buf) {
978 		ret = -ENOMEM;
979 		goto done;
980 	}
981 
982 	/* The address supplied by the caller is in the
983 	 * Target CPU virtual address space.
984 	 *
985 	 * In order to use this address with the diagnostic CE,
986 	 * convert it from Target CPU virtual address space
987 	 * to CE address space
988 	 */
989 	address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
990 
991 	remaining_bytes = nbytes;
992 	ce_data = ce_data_base;
993 	while (remaining_bytes) {
994 		nbytes = min_t(unsigned int, remaining_bytes,
995 			       DIAG_TRANSFER_LIMIT);
996 
997 		ret = ath10k_ce_rx_post_buf(ce_diag, &ce_data, ce_data);
998 		if (ret != 0)
999 			goto done;
1000 
1001 		/* Request CE to send from Target(!) address to Host buffer */
1002 		ret = ath10k_ce_send(ce_diag, NULL, (u32)address, nbytes, 0, 0);
1003 		if (ret)
1004 			goto done;
1005 
1006 		i = 0;
1007 		while (ath10k_ce_completed_send_next(ce_diag, NULL) != 0) {
1008 			udelay(DIAG_ACCESS_CE_WAIT_US);
1009 			i += DIAG_ACCESS_CE_WAIT_US;
1010 
1011 			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
1012 				ret = -EBUSY;
1013 				goto done;
1014 			}
1015 		}
1016 
1017 		i = 0;
1018 		while (ath10k_ce_completed_recv_next(ce_diag, (void **)&buf,
1019 						     &completed_nbytes) != 0) {
1020 			udelay(DIAG_ACCESS_CE_WAIT_US);
1021 			i += DIAG_ACCESS_CE_WAIT_US;
1022 
1023 			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
1024 				ret = -EBUSY;
1025 				goto done;
1026 			}
1027 		}
1028 
1029 		if (nbytes != completed_nbytes) {
1030 			ret = -EIO;
1031 			goto done;
1032 		}
1033 
1034 		if (*buf != ce_data) {
1035 			ret = -EIO;
1036 			goto done;
1037 		}
1038 
1039 		remaining_bytes -= nbytes;
1040 		memcpy(data, data_buf, nbytes);
1041 
1042 		address += nbytes;
1043 		data += nbytes;
1044 	}
1045 
1046 done:
1047 
1048 	if (data_buf)
1049 		dma_free_coherent(ar->dev, alloc_nbytes, data_buf,
1050 				  ce_data_base);
1051 
1052 	mutex_unlock(&ar_pci->ce_diag_mutex);
1053 
1054 	return ret;
1055 }
1056 
1057 static int ath10k_pci_diag_read32(struct ath10k *ar, u32 address, u32 *value)
1058 {
1059 	__le32 val = 0;
1060 	int ret;
1061 
1062 #if defined(__linux__)
1063 	ret = ath10k_pci_diag_read_mem(ar, address, &val, sizeof(val));
1064 #elif defined(__FreeBSD__)
1065 	ret = ath10k_pci_diag_read_mem(ar, address, (u8 *)&val, sizeof(val));
1066 #endif
1067 	*value = __le32_to_cpu(val);
1068 
1069 	return ret;
1070 }
1071 
1072 static int __ath10k_pci_diag_read_hi(struct ath10k *ar, void *dest,
1073 				     u32 src, u32 len)
1074 {
1075 	u32 host_addr, addr;
1076 	int ret;
1077 
1078 	host_addr = host_interest_item_address(src);
1079 
1080 	ret = ath10k_pci_diag_read32(ar, host_addr, &addr);
1081 	if (ret != 0) {
1082 		ath10k_warn(ar, "failed to get memcpy hi address for firmware address %d: %d\n",
1083 			    src, ret);
1084 		return ret;
1085 	}
1086 
1087 	ret = ath10k_pci_diag_read_mem(ar, addr, dest, len);
1088 	if (ret != 0) {
1089 		ath10k_warn(ar, "failed to memcpy firmware memory from %d (%d B): %d\n",
1090 			    addr, len, ret);
1091 		return ret;
1092 	}
1093 
1094 	return 0;
1095 }
1096 
1097 #define ath10k_pci_diag_read_hi(ar, dest, src, len)		\
1098 	__ath10k_pci_diag_read_hi(ar, dest, HI_ITEM(src), len)
1099 
1100 int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address,
1101 #if defined(__linux__)
1102 			      const void *data, int nbytes)
1103 #elif defined(__FreeBSD__)
1104 			      const void *_d, int nbytes)
1105 #endif
1106 {
1107 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1108 	int ret = 0;
1109 	u32 *buf;
1110 	unsigned int completed_nbytes, alloc_nbytes, remaining_bytes;
1111 	struct ath10k_ce_pipe *ce_diag;
1112 	void *data_buf;
1113 	dma_addr_t ce_data_base = 0;
1114 	int i;
1115 #if defined(__FreeBSD__)
1116 	const u8 *data = _d;
1117 #endif
1118 
1119 	mutex_lock(&ar_pci->ce_diag_mutex);
1120 	ce_diag = ar_pci->ce_diag;
1121 
1122 	/*
1123 	 * Allocate a temporary bounce buffer to hold caller's data
1124 	 * to be DMA'ed to Target. This guarantees
1125 	 *   1) 4-byte alignment
1126 	 *   2) Buffer in DMA-able space
1127 	 */
1128 	alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT);
1129 
1130 	data_buf = dma_alloc_coherent(ar->dev, alloc_nbytes, &ce_data_base,
1131 				      GFP_ATOMIC);
1132 	if (!data_buf) {
1133 		ret = -ENOMEM;
1134 		goto done;
1135 	}
1136 
1137 	/*
1138 	 * The address supplied by the caller is in the
1139 	 * Target CPU virtual address space.
1140 	 *
1141 	 * In order to use this address with the diagnostic CE,
1142 	 * convert it from
1143 	 *    Target CPU virtual address space
1144 	 * to
1145 	 *    CE address space
1146 	 */
1147 	address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
1148 
1149 	remaining_bytes = nbytes;
1150 	while (remaining_bytes) {
1151 		/* FIXME: check cast */
1152 		nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT);
1153 
1154 		/* Copy caller's data to allocated DMA buf */
1155 		memcpy(data_buf, data, nbytes);
1156 
1157 		/* Set up to receive directly into Target(!) address */
1158 		ret = ath10k_ce_rx_post_buf(ce_diag, &address, address);
1159 		if (ret != 0)
1160 			goto done;
1161 
1162 		/*
1163 		 * Request CE to send caller-supplied data that
1164 		 * was copied to bounce buffer to Target(!) address.
1165 		 */
1166 		ret = ath10k_ce_send(ce_diag, NULL, ce_data_base, nbytes, 0, 0);
1167 		if (ret != 0)
1168 			goto done;
1169 
1170 		i = 0;
1171 		while (ath10k_ce_completed_send_next(ce_diag, NULL) != 0) {
1172 			udelay(DIAG_ACCESS_CE_WAIT_US);
1173 			i += DIAG_ACCESS_CE_WAIT_US;
1174 
1175 			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
1176 				ret = -EBUSY;
1177 				goto done;
1178 			}
1179 		}
1180 
1181 		i = 0;
1182 		while (ath10k_ce_completed_recv_next(ce_diag, (void **)&buf,
1183 						     &completed_nbytes) != 0) {
1184 			udelay(DIAG_ACCESS_CE_WAIT_US);
1185 			i += DIAG_ACCESS_CE_WAIT_US;
1186 
1187 			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
1188 				ret = -EBUSY;
1189 				goto done;
1190 			}
1191 		}
1192 
1193 		if (nbytes != completed_nbytes) {
1194 			ret = -EIO;
1195 			goto done;
1196 		}
1197 
1198 		if (*buf != address) {
1199 			ret = -EIO;
1200 			goto done;
1201 		}
1202 
1203 		remaining_bytes -= nbytes;
1204 		address += nbytes;
1205 		data += nbytes;
1206 	}
1207 
1208 done:
1209 	if (data_buf) {
1210 		dma_free_coherent(ar->dev, alloc_nbytes, data_buf,
1211 				  ce_data_base);
1212 	}
1213 
1214 	if (ret != 0)
1215 		ath10k_warn(ar, "failed to write diag value at 0x%x: %d\n",
1216 			    address, ret);
1217 
1218 	mutex_unlock(&ar_pci->ce_diag_mutex);
1219 
1220 	return ret;
1221 }
1222 
1223 static int ath10k_pci_diag_write32(struct ath10k *ar, u32 address, u32 value)
1224 {
1225 	__le32 val = __cpu_to_le32(value);
1226 
1227 	return ath10k_pci_diag_write_mem(ar, address, &val, sizeof(val));
1228 }
1229 
1230 /* Called by lower (CE) layer when a send to Target completes. */
1231 static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state)
1232 {
1233 	struct ath10k *ar = ce_state->ar;
1234 	struct sk_buff_head list;
1235 	struct sk_buff *skb;
1236 
1237 	__skb_queue_head_init(&list);
1238 	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1239 		/* no need to call tx completion for NULL pointers */
1240 		if (skb == NULL)
1241 			continue;
1242 
1243 		__skb_queue_tail(&list, skb);
1244 	}
1245 
1246 	while ((skb = __skb_dequeue(&list)))
1247 		ath10k_htc_tx_completion_handler(ar, skb);
1248 }
1249 
1250 static void ath10k_pci_process_rx_cb(struct ath10k_ce_pipe *ce_state,
1251 				     void (*callback)(struct ath10k *ar,
1252 						      struct sk_buff *skb))
1253 {
1254 	struct ath10k *ar = ce_state->ar;
1255 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1256 	struct ath10k_pci_pipe *pipe_info =  &ar_pci->pipe_info[ce_state->id];
1257 	struct sk_buff *skb;
1258 	struct sk_buff_head list;
1259 	void *transfer_context;
1260 	unsigned int nbytes, max_nbytes;
1261 
1262 	__skb_queue_head_init(&list);
1263 	while (ath10k_ce_completed_recv_next(ce_state, &transfer_context,
1264 					     &nbytes) == 0) {
1265 		skb = transfer_context;
1266 		max_nbytes = skb->len + skb_tailroom(skb);
1267 		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1268 				 max_nbytes, DMA_FROM_DEVICE);
1269 
1270 		if (unlikely(max_nbytes < nbytes)) {
1271 			ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1272 				    nbytes, max_nbytes);
1273 			dev_kfree_skb_any(skb);
1274 			continue;
1275 		}
1276 
1277 		skb_put(skb, nbytes);
1278 		__skb_queue_tail(&list, skb);
1279 	}
1280 
1281 	while ((skb = __skb_dequeue(&list))) {
1282 		ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1283 			   ce_state->id, skb->len);
1284 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1285 				skb->data, skb->len);
1286 
1287 		callback(ar, skb);
1288 	}
1289 
1290 	ath10k_pci_rx_post_pipe(pipe_info);
1291 }
1292 
1293 static void ath10k_pci_process_htt_rx_cb(struct ath10k_ce_pipe *ce_state,
1294 					 void (*callback)(struct ath10k *ar,
1295 							  struct sk_buff *skb))
1296 {
1297 	struct ath10k *ar = ce_state->ar;
1298 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1299 	struct ath10k_pci_pipe *pipe_info =  &ar_pci->pipe_info[ce_state->id];
1300 	struct ath10k_ce_pipe *ce_pipe = pipe_info->ce_hdl;
1301 	struct sk_buff *skb;
1302 	struct sk_buff_head list;
1303 	void *transfer_context;
1304 	unsigned int nbytes, max_nbytes, nentries;
1305 	int orig_len;
1306 
1307 	/* No need to acquire ce_lock for CE5, since this is the only place CE5
1308 	 * is processed other than init and deinit. Before releasing CE5
1309 	 * buffers, interrupts are disabled. Thus CE5 access is serialized.
1310 	 */
1311 	__skb_queue_head_init(&list);
1312 	while (ath10k_ce_completed_recv_next_nolock(ce_state, &transfer_context,
1313 						    &nbytes) == 0) {
1314 		skb = transfer_context;
1315 		max_nbytes = skb->len + skb_tailroom(skb);
1316 
1317 		if (unlikely(max_nbytes < nbytes)) {
1318 			ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1319 				    nbytes, max_nbytes);
1320 			continue;
1321 		}
1322 
1323 		dma_sync_single_for_cpu(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1324 					max_nbytes, DMA_FROM_DEVICE);
1325 		skb_put(skb, nbytes);
1326 		__skb_queue_tail(&list, skb);
1327 	}
1328 
1329 	nentries = skb_queue_len(&list);
1330 	while ((skb = __skb_dequeue(&list))) {
1331 		ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1332 			   ce_state->id, skb->len);
1333 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1334 				skb->data, skb->len);
1335 
1336 		orig_len = skb->len;
1337 		callback(ar, skb);
1338 		skb_push(skb, orig_len - skb->len);
1339 		skb_reset_tail_pointer(skb);
1340 		skb_trim(skb, 0);
1341 
1342 		/*let device gain the buffer again*/
1343 		dma_sync_single_for_device(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1344 					   skb->len + skb_tailroom(skb),
1345 					   DMA_FROM_DEVICE);
1346 	}
1347 	ath10k_ce_rx_update_write_idx(ce_pipe, nentries);
1348 }
1349 
1350 /* Called by lower (CE) layer when data is received from the Target. */
1351 static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1352 {
1353 	ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1354 }
1355 
1356 static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1357 {
1358 	/* CE4 polling needs to be done whenever CE pipe which transports
1359 	 * HTT Rx (target->host) is processed.
1360 	 */
1361 	ath10k_ce_per_engine_service(ce_state->ar, 4);
1362 
1363 	ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1364 }
1365 
1366 /* Called by lower (CE) layer when data is received from the Target.
1367  * Only 10.4 firmware uses separate CE to transfer pktlog data.
1368  */
1369 static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state)
1370 {
1371 	ath10k_pci_process_rx_cb(ce_state,
1372 				 ath10k_htt_rx_pktlog_completion_handler);
1373 }
1374 
1375 /* Called by lower (CE) layer when a send to HTT Target completes. */
1376 static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state)
1377 {
1378 	struct ath10k *ar = ce_state->ar;
1379 	struct sk_buff *skb;
1380 
1381 	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1382 		/* no need to call tx completion for NULL pointers */
1383 		if (!skb)
1384 			continue;
1385 
1386 		dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr,
1387 				 skb->len, DMA_TO_DEVICE);
1388 		ath10k_htt_hif_tx_complete(ar, skb);
1389 	}
1390 }
1391 
1392 static void ath10k_pci_htt_rx_deliver(struct ath10k *ar, struct sk_buff *skb)
1393 {
1394 	skb_pull(skb, sizeof(struct ath10k_htc_hdr));
1395 	ath10k_htt_t2h_msg_handler(ar, skb);
1396 }
1397 
1398 /* Called by lower (CE) layer when HTT data is received from the Target. */
1399 static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state)
1400 {
1401 	/* CE4 polling needs to be done whenever CE pipe which transports
1402 	 * HTT Rx (target->host) is processed.
1403 	 */
1404 	ath10k_ce_per_engine_service(ce_state->ar, 4);
1405 
1406 	ath10k_pci_process_htt_rx_cb(ce_state, ath10k_pci_htt_rx_deliver);
1407 }
1408 
1409 int ath10k_pci_hif_tx_sg(struct ath10k *ar, u8 pipe_id,
1410 			 struct ath10k_hif_sg_item *items, int n_items)
1411 {
1412 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1413 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1414 	struct ath10k_pci_pipe *pci_pipe = &ar_pci->pipe_info[pipe_id];
1415 	struct ath10k_ce_pipe *ce_pipe = pci_pipe->ce_hdl;
1416 	struct ath10k_ce_ring *src_ring = ce_pipe->src_ring;
1417 	unsigned int nentries_mask;
1418 	unsigned int sw_index;
1419 	unsigned int write_index;
1420 	int err, i = 0;
1421 
1422 	spin_lock_bh(&ce->ce_lock);
1423 
1424 	nentries_mask = src_ring->nentries_mask;
1425 	sw_index = src_ring->sw_index;
1426 	write_index = src_ring->write_index;
1427 
1428 	if (unlikely(CE_RING_DELTA(nentries_mask,
1429 				   write_index, sw_index - 1) < n_items)) {
1430 		err = -ENOBUFS;
1431 		goto err;
1432 	}
1433 
1434 	for (i = 0; i < n_items - 1; i++) {
1435 		ath10k_dbg(ar, ATH10K_DBG_PCI,
1436 			   "pci tx item %d paddr %pad len %d n_items %d\n",
1437 			   i, &items[i].paddr, items[i].len, n_items);
1438 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1439 				items[i].vaddr, items[i].len);
1440 
1441 		err = ath10k_ce_send_nolock(ce_pipe,
1442 					    items[i].transfer_context,
1443 					    items[i].paddr,
1444 					    items[i].len,
1445 					    items[i].transfer_id,
1446 					    CE_SEND_FLAG_GATHER);
1447 		if (err)
1448 			goto err;
1449 	}
1450 
1451 	/* `i` is equal to `n_items -1` after for() */
1452 
1453 	ath10k_dbg(ar, ATH10K_DBG_PCI,
1454 #if defined(__linux__)
1455 		   "pci tx item %d paddr %pad len %d n_items %d\n",
1456 		   i, &items[i].paddr, items[i].len, n_items);
1457 #elif defined(__FreeBSD__)
1458 		   "pci tx item %d paddr %pad len %d n_items %d pipe_id %u\n",
1459 		   i, &items[i].paddr, items[i].len, n_items, pipe_id);
1460 	/*
1461 	 * XXX-BZ specific debug; the DELAY makes things work for one chipset.
1462 	 * There's likely a race somewhere (here or LinuxKPI).
1463 	 */
1464 	if (n_items == 1 && items[i].len == 140) {
1465 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI, NULL, "pci tx data: ",
1466 				items[i].vaddr, items[i].len);
1467 		dump_stack();
1468 		DELAY(500);
1469 	}
1470 #endif
1471 	ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1472 			items[i].vaddr, items[i].len);
1473 
1474 	err = ath10k_ce_send_nolock(ce_pipe,
1475 				    items[i].transfer_context,
1476 				    items[i].paddr,
1477 				    items[i].len,
1478 				    items[i].transfer_id,
1479 				    0);
1480 	if (err)
1481 		goto err;
1482 
1483 	spin_unlock_bh(&ce->ce_lock);
1484 	return 0;
1485 
1486 err:
1487 	for (; i > 0; i--)
1488 		__ath10k_ce_send_revert(ce_pipe);
1489 
1490 	spin_unlock_bh(&ce->ce_lock);
1491 	return err;
1492 }
1493 
1494 int ath10k_pci_hif_diag_read(struct ath10k *ar, u32 address, void *buf,
1495 			     size_t buf_len)
1496 {
1497 	return ath10k_pci_diag_read_mem(ar, address, buf, buf_len);
1498 }
1499 
1500 u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe)
1501 {
1502 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1503 
1504 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get free queue number\n");
1505 
1506 	return ath10k_ce_num_free_src_entries(ar_pci->pipe_info[pipe].ce_hdl);
1507 }
1508 
1509 static void ath10k_pci_dump_registers(struct ath10k *ar,
1510 				      struct ath10k_fw_crash_data *crash_data)
1511 {
1512 	__le32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {};
1513 	int i, ret;
1514 
1515 	lockdep_assert_held(&ar->dump_mutex);
1516 
1517 	ret = ath10k_pci_diag_read_hi(ar, &reg_dump_values[0],
1518 				      hi_failure_state,
1519 				      REG_DUMP_COUNT_QCA988X * sizeof(__le32));
1520 	if (ret) {
1521 		ath10k_err(ar, "failed to read firmware dump area: %d\n", ret);
1522 		return;
1523 	}
1524 
1525 	BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4);
1526 
1527 	ath10k_err(ar, "firmware register dump:\n");
1528 	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4)
1529 		ath10k_err(ar, "[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n",
1530 			   i,
1531 			   __le32_to_cpu(reg_dump_values[i]),
1532 			   __le32_to_cpu(reg_dump_values[i + 1]),
1533 			   __le32_to_cpu(reg_dump_values[i + 2]),
1534 			   __le32_to_cpu(reg_dump_values[i + 3]));
1535 
1536 	if (!crash_data)
1537 		return;
1538 
1539 	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i++)
1540 		crash_data->registers[i] = reg_dump_values[i];
1541 }
1542 
1543 static int ath10k_pci_dump_memory_section(struct ath10k *ar,
1544 					  const struct ath10k_mem_region *mem_region,
1545 					  u8 *buf, size_t buf_len)
1546 {
1547 	const struct ath10k_mem_section *cur_section, *next_section;
1548 	unsigned int count, section_size, skip_size;
1549 	int ret, i, j;
1550 
1551 	if (!mem_region || !buf)
1552 		return 0;
1553 
1554 	cur_section = &mem_region->section_table.sections[0];
1555 
1556 	if (mem_region->start > cur_section->start) {
1557 		ath10k_warn(ar, "incorrect memdump region 0x%x with section start address 0x%x.\n",
1558 			    mem_region->start, cur_section->start);
1559 		return 0;
1560 	}
1561 
1562 	skip_size = cur_section->start - mem_region->start;
1563 
1564 	/* fill the gap between the first register section and register
1565 	 * start address
1566 	 */
1567 	for (i = 0; i < skip_size; i++) {
1568 		*buf = ATH10K_MAGIC_NOT_COPIED;
1569 		buf++;
1570 	}
1571 
1572 	count = 0;
1573 
1574 	for (i = 0; cur_section != NULL; i++) {
1575 		section_size = cur_section->end - cur_section->start;
1576 
1577 		if (section_size <= 0) {
1578 			ath10k_warn(ar, "incorrect ramdump format with start address 0x%x and stop address 0x%x\n",
1579 				    cur_section->start,
1580 				    cur_section->end);
1581 			break;
1582 		}
1583 
1584 		if ((i + 1) == mem_region->section_table.size) {
1585 			/* last section */
1586 			next_section = NULL;
1587 			skip_size = 0;
1588 		} else {
1589 			next_section = cur_section + 1;
1590 
1591 			if (cur_section->end > next_section->start) {
1592 				ath10k_warn(ar, "next ramdump section 0x%x is smaller than current end address 0x%x\n",
1593 					    next_section->start,
1594 					    cur_section->end);
1595 				break;
1596 			}
1597 
1598 			skip_size = next_section->start - cur_section->end;
1599 		}
1600 
1601 		if (buf_len < (skip_size + section_size)) {
1602 			ath10k_warn(ar, "ramdump buffer is too small: %zu\n", buf_len);
1603 			break;
1604 		}
1605 
1606 		buf_len -= skip_size + section_size;
1607 
1608 		/* read section to dest memory */
1609 		ret = ath10k_pci_diag_read_mem(ar, cur_section->start,
1610 					       buf, section_size);
1611 		if (ret) {
1612 			ath10k_warn(ar, "failed to read ramdump from section 0x%x: %d\n",
1613 				    cur_section->start, ret);
1614 			break;
1615 		}
1616 
1617 		buf += section_size;
1618 		count += section_size;
1619 
1620 		/* fill in the gap between this section and the next */
1621 		for (j = 0; j < skip_size; j++) {
1622 			*buf = ATH10K_MAGIC_NOT_COPIED;
1623 			buf++;
1624 		}
1625 
1626 		count += skip_size;
1627 
1628 		if (!next_section)
1629 			/* this was the last section */
1630 			break;
1631 
1632 		cur_section = next_section;
1633 	}
1634 
1635 	return count;
1636 }
1637 
1638 static int ath10k_pci_set_ram_config(struct ath10k *ar, u32 config)
1639 {
1640 	u32 val;
1641 
1642 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1643 			   FW_RAM_CONFIG_ADDRESS, config);
1644 
1645 	val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1646 				FW_RAM_CONFIG_ADDRESS);
1647 	if (val != config) {
1648 		ath10k_warn(ar, "failed to set RAM config from 0x%x to 0x%x\n",
1649 			    val, config);
1650 		return -EIO;
1651 	}
1652 
1653 	return 0;
1654 }
1655 
1656 /* Always returns the length */
1657 static int ath10k_pci_dump_memory_sram(struct ath10k *ar,
1658 				       const struct ath10k_mem_region *region,
1659 				       u8 *buf)
1660 {
1661 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1662 	u32 base_addr, i;
1663 
1664 #if defined(__linux__)
1665 	base_addr = ioread32(ar_pci->mem + QCA99X0_PCIE_BAR0_START_REG);
1666 #elif defined(__FreeBSD__)
1667 	base_addr = bus_read_4((struct resource *)ar_pci->mem, QCA99X0_PCIE_BAR0_START_REG);
1668 #endif
1669 	base_addr += region->start;
1670 
1671 	for (i = 0; i < region->len; i += 4) {
1672 #if defined(__linux__)
1673 		iowrite32(base_addr + i, ar_pci->mem + QCA99X0_CPU_MEM_ADDR_REG);
1674 		*(u32 *)(buf + i) = ioread32(ar_pci->mem + QCA99X0_CPU_MEM_DATA_REG);
1675 #elif defined(__FreeBSD__)
1676 		bus_write_4((struct resource *)ar_pci->mem, QCA99X0_CPU_MEM_ADDR_REG, base_addr + i);
1677 		*(u32 *)(buf + i) = bus_read_4((struct resource *)ar_pci->mem, QCA99X0_CPU_MEM_DATA_REG);
1678 #endif
1679 	}
1680 
1681 	return region->len;
1682 }
1683 
1684 /* if an error happened returns < 0, otherwise the length */
1685 static int ath10k_pci_dump_memory_reg(struct ath10k *ar,
1686 				      const struct ath10k_mem_region *region,
1687 				      u8 *buf)
1688 {
1689 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1690 	u32 i;
1691 	int ret;
1692 
1693 	mutex_lock(&ar->conf_mutex);
1694 	if (ar->state != ATH10K_STATE_ON) {
1695 		ath10k_warn(ar, "Skipping pci_dump_memory_reg invalid state\n");
1696 		ret = -EIO;
1697 		goto done;
1698 	}
1699 
1700 	for (i = 0; i < region->len; i += 4)
1701 #if defined(__linux__)
1702 		*(u32 *)(buf + i) = ioread32(ar_pci->mem + region->start + i);
1703 #elif defined(__FreeBSD__)
1704 		*(u32 *)(buf + i) = bus_read_4((struct resource *)ar_pci->mem, region->start + i);
1705 #endif
1706 
1707 	ret = region->len;
1708 done:
1709 	mutex_unlock(&ar->conf_mutex);
1710 	return ret;
1711 }
1712 
1713 /* if an error happened returns < 0, otherwise the length */
1714 static int ath10k_pci_dump_memory_generic(struct ath10k *ar,
1715 					  const struct ath10k_mem_region *current_region,
1716 					  u8 *buf)
1717 {
1718 	int ret;
1719 
1720 	if (current_region->section_table.size > 0)
1721 		/* Copy each section individually. */
1722 		return ath10k_pci_dump_memory_section(ar,
1723 						      current_region,
1724 						      buf,
1725 						      current_region->len);
1726 
1727 	/* No individiual memory sections defined so we can
1728 	 * copy the entire memory region.
1729 	 */
1730 	ret = ath10k_pci_diag_read_mem(ar,
1731 				       current_region->start,
1732 				       buf,
1733 				       current_region->len);
1734 	if (ret) {
1735 		ath10k_warn(ar, "failed to copy ramdump region %s: %d\n",
1736 			    current_region->name, ret);
1737 		return ret;
1738 	}
1739 
1740 	return current_region->len;
1741 }
1742 
1743 static void ath10k_pci_dump_memory(struct ath10k *ar,
1744 				   struct ath10k_fw_crash_data *crash_data)
1745 {
1746 	const struct ath10k_hw_mem_layout *mem_layout;
1747 	const struct ath10k_mem_region *current_region;
1748 	struct ath10k_dump_ram_data_hdr *hdr;
1749 	u32 count, shift;
1750 	size_t buf_len;
1751 	int ret, i;
1752 	u8 *buf;
1753 
1754 	lockdep_assert_held(&ar->dump_mutex);
1755 
1756 	if (!crash_data)
1757 		return;
1758 
1759 	mem_layout = ath10k_coredump_get_mem_layout(ar);
1760 	if (!mem_layout)
1761 		return;
1762 
1763 	current_region = &mem_layout->region_table.regions[0];
1764 
1765 	buf = crash_data->ramdump_buf;
1766 	buf_len = crash_data->ramdump_buf_len;
1767 
1768 	memset(buf, 0, buf_len);
1769 
1770 	for (i = 0; i < mem_layout->region_table.size; i++) {
1771 		count = 0;
1772 
1773 		if (current_region->len > buf_len) {
1774 			ath10k_warn(ar, "memory region %s size %d is larger that remaining ramdump buffer size %zu\n",
1775 				    current_region->name,
1776 				    current_region->len,
1777 				    buf_len);
1778 			break;
1779 		}
1780 
1781 		/* To get IRAM dump, the host driver needs to switch target
1782 		 * ram config from DRAM to IRAM.
1783 		 */
1784 		if (current_region->type == ATH10K_MEM_REGION_TYPE_IRAM1 ||
1785 		    current_region->type == ATH10K_MEM_REGION_TYPE_IRAM2) {
1786 			shift = current_region->start >> 20;
1787 
1788 			ret = ath10k_pci_set_ram_config(ar, shift);
1789 			if (ret) {
1790 				ath10k_warn(ar, "failed to switch ram config to IRAM for section %s: %d\n",
1791 					    current_region->name, ret);
1792 				break;
1793 			}
1794 		}
1795 
1796 		/* Reserve space for the header. */
1797 		hdr = (void *)buf;
1798 		buf += sizeof(*hdr);
1799 		buf_len -= sizeof(*hdr);
1800 
1801 		switch (current_region->type) {
1802 		case ATH10K_MEM_REGION_TYPE_IOSRAM:
1803 			count = ath10k_pci_dump_memory_sram(ar, current_region, buf);
1804 			break;
1805 		case ATH10K_MEM_REGION_TYPE_IOREG:
1806 			ret = ath10k_pci_dump_memory_reg(ar, current_region, buf);
1807 			if (ret < 0)
1808 				break;
1809 
1810 			count = ret;
1811 			break;
1812 		default:
1813 			ret = ath10k_pci_dump_memory_generic(ar, current_region, buf);
1814 			if (ret < 0)
1815 				break;
1816 
1817 			count = ret;
1818 			break;
1819 		}
1820 
1821 		hdr->region_type = cpu_to_le32(current_region->type);
1822 		hdr->start = cpu_to_le32(current_region->start);
1823 		hdr->length = cpu_to_le32(count);
1824 
1825 		if (count == 0)
1826 			/* Note: the header remains, just with zero length. */
1827 			break;
1828 
1829 		buf += count;
1830 		buf_len -= count;
1831 
1832 		current_region++;
1833 	}
1834 }
1835 
1836 static void ath10k_pci_fw_dump_work(struct work_struct *work)
1837 {
1838 	struct ath10k_pci *ar_pci = container_of(work, struct ath10k_pci,
1839 						 dump_work);
1840 	struct ath10k_fw_crash_data *crash_data;
1841 	struct ath10k *ar = ar_pci->ar;
1842 	char guid[UUID_STRING_LEN + 1];
1843 
1844 	mutex_lock(&ar->dump_mutex);
1845 
1846 	spin_lock_bh(&ar->data_lock);
1847 	ar->stats.fw_crash_counter++;
1848 	spin_unlock_bh(&ar->data_lock);
1849 
1850 	crash_data = ath10k_coredump_new(ar);
1851 
1852 	if (crash_data)
1853 		scnprintf(guid, sizeof(guid), "%pUl", &crash_data->guid);
1854 	else
1855 		scnprintf(guid, sizeof(guid), "n/a");
1856 
1857 	ath10k_err(ar, "firmware crashed! (guid %s)\n", guid);
1858 	ath10k_print_driver_info(ar);
1859 	ath10k_pci_dump_registers(ar, crash_data);
1860 	ath10k_ce_dump_registers(ar, crash_data);
1861 	ath10k_pci_dump_memory(ar, crash_data);
1862 
1863 	mutex_unlock(&ar->dump_mutex);
1864 
1865 	ath10k_core_start_recovery(ar);
1866 }
1867 
1868 static void ath10k_pci_fw_crashed_dump(struct ath10k *ar)
1869 {
1870 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1871 
1872 	queue_work(ar->workqueue, &ar_pci->dump_work);
1873 }
1874 
1875 void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe,
1876 					int force)
1877 {
1878 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1879 
1880 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif send complete check\n");
1881 
1882 	if (!force) {
1883 		int resources;
1884 		/*
1885 		 * Decide whether to actually poll for completions, or just
1886 		 * wait for a later chance.
1887 		 * If there seem to be plenty of resources left, then just wait
1888 		 * since checking involves reading a CE register, which is a
1889 		 * relatively expensive operation.
1890 		 */
1891 		resources = ath10k_pci_hif_get_free_queue_number(ar, pipe);
1892 
1893 		/*
1894 		 * If at least 50% of the total resources are still available,
1895 		 * don't bother checking again yet.
1896 		 */
1897 		if (resources > (ar_pci->attr[pipe].src_nentries >> 1))
1898 			return;
1899 	}
1900 	ath10k_ce_per_engine_service(ar, pipe);
1901 }
1902 
1903 static void ath10k_pci_rx_retry_sync(struct ath10k *ar)
1904 {
1905 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1906 
1907 	del_timer_sync(&ar_pci->rx_post_retry);
1908 }
1909 
1910 int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar, u16 service_id,
1911 				       u8 *ul_pipe, u8 *dl_pipe)
1912 {
1913 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1914 	const struct ce_service_to_pipe *entry;
1915 	bool ul_set = false, dl_set = false;
1916 	int i;
1917 
1918 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif map service\n");
1919 
1920 	for (i = 0; i < ARRAY_SIZE(pci_target_service_to_ce_map_wlan); i++) {
1921 		entry = &ar_pci->serv_to_pipe[i];
1922 
1923 		if (__le32_to_cpu(entry->service_id) != service_id)
1924 			continue;
1925 
1926 		switch (__le32_to_cpu(entry->pipedir)) {
1927 		case PIPEDIR_NONE:
1928 			break;
1929 		case PIPEDIR_IN:
1930 			WARN_ON(dl_set);
1931 			*dl_pipe = __le32_to_cpu(entry->pipenum);
1932 			dl_set = true;
1933 			break;
1934 		case PIPEDIR_OUT:
1935 			WARN_ON(ul_set);
1936 			*ul_pipe = __le32_to_cpu(entry->pipenum);
1937 			ul_set = true;
1938 			break;
1939 		case PIPEDIR_INOUT:
1940 			WARN_ON(dl_set);
1941 			WARN_ON(ul_set);
1942 			*dl_pipe = __le32_to_cpu(entry->pipenum);
1943 			*ul_pipe = __le32_to_cpu(entry->pipenum);
1944 			dl_set = true;
1945 			ul_set = true;
1946 			break;
1947 		}
1948 	}
1949 
1950 	if (!ul_set || !dl_set)
1951 		return -ENOENT;
1952 
1953 	return 0;
1954 }
1955 
1956 void ath10k_pci_hif_get_default_pipe(struct ath10k *ar,
1957 				     u8 *ul_pipe, u8 *dl_pipe)
1958 {
1959 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get default pipe\n");
1960 
1961 	(void)ath10k_pci_hif_map_service_to_pipe(ar,
1962 						 ATH10K_HTC_SVC_ID_RSVD_CTRL,
1963 						 ul_pipe, dl_pipe);
1964 }
1965 
1966 void ath10k_pci_irq_msi_fw_mask(struct ath10k *ar)
1967 {
1968 	u32 val;
1969 
1970 	switch (ar->hw_rev) {
1971 	case ATH10K_HW_QCA988X:
1972 	case ATH10K_HW_QCA9887:
1973 	case ATH10K_HW_QCA6174:
1974 	case ATH10K_HW_QCA9377:
1975 		val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1976 					CORE_CTRL_ADDRESS);
1977 		val &= ~CORE_CTRL_PCIE_REG_31_MASK;
1978 		ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1979 				   CORE_CTRL_ADDRESS, val);
1980 		break;
1981 	case ATH10K_HW_QCA99X0:
1982 	case ATH10K_HW_QCA9984:
1983 	case ATH10K_HW_QCA9888:
1984 	case ATH10K_HW_QCA4019:
1985 		/* TODO: Find appropriate register configuration for QCA99X0
1986 		 *  to mask irq/MSI.
1987 		 */
1988 		break;
1989 	case ATH10K_HW_WCN3990:
1990 		break;
1991 	}
1992 }
1993 
1994 static void ath10k_pci_irq_msi_fw_unmask(struct ath10k *ar)
1995 {
1996 	u32 val;
1997 
1998 	switch (ar->hw_rev) {
1999 	case ATH10K_HW_QCA988X:
2000 	case ATH10K_HW_QCA9887:
2001 	case ATH10K_HW_QCA6174:
2002 	case ATH10K_HW_QCA9377:
2003 		val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
2004 					CORE_CTRL_ADDRESS);
2005 		val |= CORE_CTRL_PCIE_REG_31_MASK;
2006 		ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
2007 				   CORE_CTRL_ADDRESS, val);
2008 		break;
2009 	case ATH10K_HW_QCA99X0:
2010 	case ATH10K_HW_QCA9984:
2011 	case ATH10K_HW_QCA9888:
2012 	case ATH10K_HW_QCA4019:
2013 		/* TODO: Find appropriate register configuration for QCA99X0
2014 		 *  to unmask irq/MSI.
2015 		 */
2016 		break;
2017 	case ATH10K_HW_WCN3990:
2018 		break;
2019 	}
2020 }
2021 
2022 static void ath10k_pci_irq_disable(struct ath10k *ar)
2023 {
2024 	ath10k_ce_disable_interrupts(ar);
2025 	ath10k_pci_disable_and_clear_legacy_irq(ar);
2026 	ath10k_pci_irq_msi_fw_mask(ar);
2027 }
2028 
2029 static void ath10k_pci_irq_sync(struct ath10k *ar)
2030 {
2031 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2032 
2033 	synchronize_irq(ar_pci->pdev->irq);
2034 }
2035 
2036 static void ath10k_pci_irq_enable(struct ath10k *ar)
2037 {
2038 	ath10k_ce_enable_interrupts(ar);
2039 	ath10k_pci_enable_legacy_irq(ar);
2040 	ath10k_pci_irq_msi_fw_unmask(ar);
2041 }
2042 
2043 static int ath10k_pci_hif_start(struct ath10k *ar)
2044 {
2045 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2046 
2047 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif start\n");
2048 
2049 	ath10k_core_napi_enable(ar);
2050 
2051 	ath10k_pci_irq_enable(ar);
2052 	ath10k_pci_rx_post(ar);
2053 
2054 	pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2055 				   ar_pci->link_ctl);
2056 
2057 	return 0;
2058 }
2059 
2060 static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
2061 {
2062 	struct ath10k *ar;
2063 	struct ath10k_ce_pipe *ce_pipe;
2064 	struct ath10k_ce_ring *ce_ring;
2065 	struct sk_buff *skb;
2066 	int i;
2067 
2068 	ar = pci_pipe->hif_ce_state;
2069 	ce_pipe = pci_pipe->ce_hdl;
2070 	ce_ring = ce_pipe->dest_ring;
2071 
2072 	if (!ce_ring)
2073 		return;
2074 
2075 	if (!pci_pipe->buf_sz)
2076 		return;
2077 
2078 	for (i = 0; i < ce_ring->nentries; i++) {
2079 		skb = ce_ring->per_transfer_context[i];
2080 		if (!skb)
2081 			continue;
2082 
2083 		ce_ring->per_transfer_context[i] = NULL;
2084 
2085 		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
2086 				 skb->len + skb_tailroom(skb),
2087 				 DMA_FROM_DEVICE);
2088 		dev_kfree_skb_any(skb);
2089 	}
2090 }
2091 
2092 static void ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
2093 {
2094 	struct ath10k *ar;
2095 	struct ath10k_ce_pipe *ce_pipe;
2096 	struct ath10k_ce_ring *ce_ring;
2097 	struct sk_buff *skb;
2098 	int i;
2099 
2100 	ar = pci_pipe->hif_ce_state;
2101 	ce_pipe = pci_pipe->ce_hdl;
2102 	ce_ring = ce_pipe->src_ring;
2103 
2104 	if (!ce_ring)
2105 		return;
2106 
2107 	if (!pci_pipe->buf_sz)
2108 		return;
2109 
2110 	for (i = 0; i < ce_ring->nentries; i++) {
2111 		skb = ce_ring->per_transfer_context[i];
2112 		if (!skb)
2113 			continue;
2114 
2115 		ce_ring->per_transfer_context[i] = NULL;
2116 
2117 		ath10k_htc_tx_completion_handler(ar, skb);
2118 	}
2119 }
2120 
2121 /*
2122  * Cleanup residual buffers for device shutdown:
2123  *    buffers that were enqueued for receive
2124  *    buffers that were to be sent
2125  * Note: Buffers that had completed but which were
2126  * not yet processed are on a completion queue. They
2127  * are handled when the completion thread shuts down.
2128  */
2129 static void ath10k_pci_buffer_cleanup(struct ath10k *ar)
2130 {
2131 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2132 	int pipe_num;
2133 
2134 	for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
2135 		struct ath10k_pci_pipe *pipe_info;
2136 
2137 		pipe_info = &ar_pci->pipe_info[pipe_num];
2138 		ath10k_pci_rx_pipe_cleanup(pipe_info);
2139 		ath10k_pci_tx_pipe_cleanup(pipe_info);
2140 	}
2141 }
2142 
2143 void ath10k_pci_ce_deinit(struct ath10k *ar)
2144 {
2145 	int i;
2146 
2147 	for (i = 0; i < CE_COUNT; i++)
2148 		ath10k_ce_deinit_pipe(ar, i);
2149 }
2150 
2151 void ath10k_pci_flush(struct ath10k *ar)
2152 {
2153 	ath10k_pci_rx_retry_sync(ar);
2154 	ath10k_pci_buffer_cleanup(ar);
2155 }
2156 
2157 static void ath10k_pci_hif_stop(struct ath10k *ar)
2158 {
2159 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2160 	unsigned long flags;
2161 
2162 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif stop\n");
2163 
2164 	ath10k_pci_irq_disable(ar);
2165 	ath10k_pci_irq_sync(ar);
2166 
2167 	ath10k_core_napi_sync_disable(ar);
2168 
2169 	cancel_work_sync(&ar_pci->dump_work);
2170 
2171 	/* Most likely the device has HTT Rx ring configured. The only way to
2172 	 * prevent the device from accessing (and possible corrupting) host
2173 	 * memory is to reset the chip now.
2174 	 *
2175 	 * There's also no known way of masking MSI interrupts on the device.
2176 	 * For ranged MSI the CE-related interrupts can be masked. However
2177 	 * regardless how many MSI interrupts are assigned the first one
2178 	 * is always used for firmware indications (crashes) and cannot be
2179 	 * masked. To prevent the device from asserting the interrupt reset it
2180 	 * before proceeding with cleanup.
2181 	 */
2182 	ath10k_pci_safe_chip_reset(ar);
2183 
2184 	ath10k_pci_flush(ar);
2185 
2186 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
2187 	WARN_ON(ar_pci->ps_wake_refcount > 0);
2188 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
2189 }
2190 
2191 int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar,
2192 				    void *req, u32 req_len,
2193 				    void *resp, u32 *resp_len)
2194 {
2195 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2196 	struct ath10k_pci_pipe *pci_tx = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG];
2197 	struct ath10k_pci_pipe *pci_rx = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST];
2198 	struct ath10k_ce_pipe *ce_tx = pci_tx->ce_hdl;
2199 	struct ath10k_ce_pipe *ce_rx = pci_rx->ce_hdl;
2200 	dma_addr_t req_paddr = 0;
2201 	dma_addr_t resp_paddr = 0;
2202 	struct bmi_xfer xfer = {};
2203 	void *treq, *tresp = NULL;
2204 	int ret = 0;
2205 
2206 	might_sleep();
2207 
2208 	if (resp && !resp_len)
2209 		return -EINVAL;
2210 
2211 	if (resp && resp_len && *resp_len == 0)
2212 		return -EINVAL;
2213 
2214 	treq = kmemdup(req, req_len, GFP_KERNEL);
2215 	if (!treq)
2216 		return -ENOMEM;
2217 
2218 	req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE);
2219 	ret = dma_mapping_error(ar->dev, req_paddr);
2220 	if (ret) {
2221 		ret = -EIO;
2222 		goto err_dma;
2223 	}
2224 
2225 	if (resp && resp_len) {
2226 		tresp = kzalloc(*resp_len, GFP_KERNEL);
2227 		if (!tresp) {
2228 			ret = -ENOMEM;
2229 			goto err_req;
2230 		}
2231 
2232 		resp_paddr = dma_map_single(ar->dev, tresp, *resp_len,
2233 					    DMA_FROM_DEVICE);
2234 		ret = dma_mapping_error(ar->dev, resp_paddr);
2235 		if (ret) {
2236 			ret = -EIO;
2237 			goto err_req;
2238 		}
2239 
2240 		xfer.wait_for_resp = true;
2241 		xfer.resp_len = 0;
2242 
2243 		ath10k_ce_rx_post_buf(ce_rx, &xfer, resp_paddr);
2244 	}
2245 
2246 	ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0);
2247 	if (ret)
2248 		goto err_resp;
2249 
2250 	ret = ath10k_pci_bmi_wait(ar, ce_tx, ce_rx, &xfer);
2251 	if (ret) {
2252 		dma_addr_t unused_buffer;
2253 		unsigned int unused_nbytes;
2254 		unsigned int unused_id;
2255 
2256 		ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer,
2257 					   &unused_nbytes, &unused_id);
2258 	} else {
2259 		/* non-zero means we did not time out */
2260 		ret = 0;
2261 	}
2262 
2263 err_resp:
2264 	if (resp) {
2265 		dma_addr_t unused_buffer;
2266 
2267 		ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer);
2268 		dma_unmap_single(ar->dev, resp_paddr,
2269 				 *resp_len, DMA_FROM_DEVICE);
2270 	}
2271 err_req:
2272 	dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE);
2273 
2274 	if (ret == 0 && resp_len) {
2275 		*resp_len = min(*resp_len, xfer.resp_len);
2276 		memcpy(resp, tresp, *resp_len);
2277 	}
2278 err_dma:
2279 	kfree(treq);
2280 	kfree(tresp);
2281 
2282 	return ret;
2283 }
2284 
2285 static void ath10k_pci_bmi_send_done(struct ath10k_ce_pipe *ce_state)
2286 {
2287 	struct bmi_xfer *xfer;
2288 
2289 	if (ath10k_ce_completed_send_next(ce_state, (void **)&xfer))
2290 		return;
2291 
2292 	xfer->tx_done = true;
2293 }
2294 
2295 static void ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe *ce_state)
2296 {
2297 	struct ath10k *ar = ce_state->ar;
2298 	struct bmi_xfer *xfer;
2299 	unsigned int nbytes;
2300 
2301 	if (ath10k_ce_completed_recv_next(ce_state, (void **)&xfer,
2302 					  &nbytes))
2303 		return;
2304 
2305 	if (WARN_ON_ONCE(!xfer))
2306 		return;
2307 
2308 	if (!xfer->wait_for_resp) {
2309 		ath10k_warn(ar, "unexpected: BMI data received; ignoring\n");
2310 		return;
2311 	}
2312 
2313 	xfer->resp_len = nbytes;
2314 	xfer->rx_done = true;
2315 }
2316 
2317 static int ath10k_pci_bmi_wait(struct ath10k *ar,
2318 			       struct ath10k_ce_pipe *tx_pipe,
2319 			       struct ath10k_ce_pipe *rx_pipe,
2320 			       struct bmi_xfer *xfer)
2321 {
2322 	unsigned long timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ;
2323 	unsigned long started = jiffies;
2324 	unsigned long dur;
2325 	int ret;
2326 
2327 	while (time_before_eq(jiffies, timeout)) {
2328 		ath10k_pci_bmi_send_done(tx_pipe);
2329 		ath10k_pci_bmi_recv_data(rx_pipe);
2330 
2331 		if (xfer->tx_done && (xfer->rx_done == xfer->wait_for_resp)) {
2332 			ret = 0;
2333 			goto out;
2334 		}
2335 
2336 #if defined(__linux__)
2337 		schedule();
2338 #elif defined(__FreeBSD__)
2339 		/* Using LinuxKPI we'll hang for-ever as there's no wake_up */
2340 		kern_yield(PRI_USER);
2341 #endif
2342 	}
2343 
2344 	ret = -ETIMEDOUT;
2345 
2346 out:
2347 	dur = jiffies - started;
2348 	if (dur > HZ)
2349 		ath10k_dbg(ar, ATH10K_DBG_BMI,
2350 			   "bmi cmd took %lu jiffies hz %d ret %d\n",
2351 			   dur, HZ, ret);
2352 	return ret;
2353 }
2354 
2355 /*
2356  * Send an interrupt to the device to wake up the Target CPU
2357  * so it has an opportunity to notice any changed state.
2358  */
2359 static int ath10k_pci_wake_target_cpu(struct ath10k *ar)
2360 {
2361 	u32 addr, val;
2362 
2363 	addr = SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS;
2364 	val = ath10k_pci_read32(ar, addr);
2365 	val |= CORE_CTRL_CPU_INTR_MASK;
2366 	ath10k_pci_write32(ar, addr, val);
2367 
2368 	return 0;
2369 }
2370 
2371 static int ath10k_pci_get_num_banks(struct ath10k *ar)
2372 {
2373 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2374 
2375 	switch (ar_pci->pdev->device) {
2376 	case QCA988X_2_0_DEVICE_ID_UBNT:
2377 	case QCA988X_2_0_DEVICE_ID:
2378 	case QCA99X0_2_0_DEVICE_ID:
2379 	case QCA9888_2_0_DEVICE_ID:
2380 	case QCA9984_1_0_DEVICE_ID:
2381 	case QCA9887_1_0_DEVICE_ID:
2382 		return 1;
2383 	case QCA6164_2_1_DEVICE_ID:
2384 	case QCA6174_2_1_DEVICE_ID:
2385 		switch (MS(ar->bus_param.chip_id, SOC_CHIP_ID_REV)) {
2386 		case QCA6174_HW_1_0_CHIP_ID_REV:
2387 		case QCA6174_HW_1_1_CHIP_ID_REV:
2388 		case QCA6174_HW_2_1_CHIP_ID_REV:
2389 		case QCA6174_HW_2_2_CHIP_ID_REV:
2390 			return 3;
2391 		case QCA6174_HW_1_3_CHIP_ID_REV:
2392 			return 2;
2393 		case QCA6174_HW_3_0_CHIP_ID_REV:
2394 		case QCA6174_HW_3_1_CHIP_ID_REV:
2395 		case QCA6174_HW_3_2_CHIP_ID_REV:
2396 			return 9;
2397 		}
2398 		break;
2399 	case QCA9377_1_0_DEVICE_ID:
2400 		return 9;
2401 	}
2402 
2403 	ath10k_warn(ar, "unknown number of banks, assuming 1\n");
2404 	return 1;
2405 }
2406 
2407 static int ath10k_bus_get_num_banks(struct ath10k *ar)
2408 {
2409 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
2410 
2411 	return ce->bus_ops->get_num_banks(ar);
2412 }
2413 
2414 int ath10k_pci_init_config(struct ath10k *ar)
2415 {
2416 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2417 	u32 interconnect_targ_addr;
2418 	u32 pcie_state_targ_addr = 0;
2419 	u32 pipe_cfg_targ_addr = 0;
2420 	u32 svc_to_pipe_map = 0;
2421 	u32 pcie_config_flags = 0;
2422 	u32 ealloc_value;
2423 	u32 ealloc_targ_addr;
2424 	u32 flag2_value;
2425 	u32 flag2_targ_addr;
2426 	int ret = 0;
2427 
2428 	/* Download to Target the CE Config and the service-to-CE map */
2429 	interconnect_targ_addr =
2430 		host_interest_item_address(HI_ITEM(hi_interconnect_state));
2431 
2432 	/* Supply Target-side CE configuration */
2433 	ret = ath10k_pci_diag_read32(ar, interconnect_targ_addr,
2434 				     &pcie_state_targ_addr);
2435 	if (ret != 0) {
2436 		ath10k_err(ar, "Failed to get pcie state addr: %d\n", ret);
2437 		return ret;
2438 	}
2439 
2440 	if (pcie_state_targ_addr == 0) {
2441 		ret = -EIO;
2442 		ath10k_err(ar, "Invalid pcie state addr\n");
2443 		return ret;
2444 	}
2445 
2446 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2447 					  offsetof(struct pcie_state,
2448 						   pipe_cfg_addr)),
2449 				     &pipe_cfg_targ_addr);
2450 	if (ret != 0) {
2451 		ath10k_err(ar, "Failed to get pipe cfg addr: %d\n", ret);
2452 		return ret;
2453 	}
2454 
2455 	if (pipe_cfg_targ_addr == 0) {
2456 		ret = -EIO;
2457 		ath10k_err(ar, "Invalid pipe cfg addr\n");
2458 		return ret;
2459 	}
2460 
2461 	ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr,
2462 					ar_pci->pipe_config,
2463 					sizeof(struct ce_pipe_config) *
2464 					NUM_TARGET_CE_CONFIG_WLAN);
2465 
2466 	if (ret != 0) {
2467 		ath10k_err(ar, "Failed to write pipe cfg: %d\n", ret);
2468 		return ret;
2469 	}
2470 
2471 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2472 					  offsetof(struct pcie_state,
2473 						   svc_to_pipe_map)),
2474 				     &svc_to_pipe_map);
2475 	if (ret != 0) {
2476 		ath10k_err(ar, "Failed to get svc/pipe map: %d\n", ret);
2477 		return ret;
2478 	}
2479 
2480 	if (svc_to_pipe_map == 0) {
2481 		ret = -EIO;
2482 		ath10k_err(ar, "Invalid svc_to_pipe map\n");
2483 		return ret;
2484 	}
2485 
2486 	ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map,
2487 					ar_pci->serv_to_pipe,
2488 					sizeof(pci_target_service_to_ce_map_wlan));
2489 	if (ret != 0) {
2490 		ath10k_err(ar, "Failed to write svc/pipe map: %d\n", ret);
2491 		return ret;
2492 	}
2493 
2494 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2495 					  offsetof(struct pcie_state,
2496 						   config_flags)),
2497 				     &pcie_config_flags);
2498 	if (ret != 0) {
2499 		ath10k_err(ar, "Failed to get pcie config_flags: %d\n", ret);
2500 		return ret;
2501 	}
2502 
2503 	pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1;
2504 
2505 	ret = ath10k_pci_diag_write32(ar, (pcie_state_targ_addr +
2506 					   offsetof(struct pcie_state,
2507 						    config_flags)),
2508 				      pcie_config_flags);
2509 	if (ret != 0) {
2510 		ath10k_err(ar, "Failed to write pcie config_flags: %d\n", ret);
2511 		return ret;
2512 	}
2513 
2514 	/* configure early allocation */
2515 	ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc));
2516 
2517 	ret = ath10k_pci_diag_read32(ar, ealloc_targ_addr, &ealloc_value);
2518 	if (ret != 0) {
2519 		ath10k_err(ar, "Failed to get early alloc val: %d\n", ret);
2520 		return ret;
2521 	}
2522 
2523 	/* first bank is switched to IRAM */
2524 	ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) &
2525 			 HI_EARLY_ALLOC_MAGIC_MASK);
2526 	ealloc_value |= ((ath10k_bus_get_num_banks(ar) <<
2527 			  HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) &
2528 			 HI_EARLY_ALLOC_IRAM_BANKS_MASK);
2529 
2530 	ret = ath10k_pci_diag_write32(ar, ealloc_targ_addr, ealloc_value);
2531 	if (ret != 0) {
2532 		ath10k_err(ar, "Failed to set early alloc val: %d\n", ret);
2533 		return ret;
2534 	}
2535 
2536 	/* Tell Target to proceed with initialization */
2537 	flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2));
2538 
2539 	ret = ath10k_pci_diag_read32(ar, flag2_targ_addr, &flag2_value);
2540 	if (ret != 0) {
2541 		ath10k_err(ar, "Failed to get option val: %d\n", ret);
2542 		return ret;
2543 	}
2544 
2545 	flag2_value |= HI_OPTION_EARLY_CFG_DONE;
2546 
2547 	ret = ath10k_pci_diag_write32(ar, flag2_targ_addr, flag2_value);
2548 	if (ret != 0) {
2549 		ath10k_err(ar, "Failed to set option val: %d\n", ret);
2550 		return ret;
2551 	}
2552 
2553 	return 0;
2554 }
2555 
2556 static void ath10k_pci_override_ce_config(struct ath10k *ar)
2557 {
2558 	struct ce_attr *attr;
2559 	struct ce_pipe_config *config;
2560 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2561 
2562 	/* For QCA6174 we're overriding the Copy Engine 5 configuration,
2563 	 * since it is currently used for other feature.
2564 	 */
2565 
2566 	/* Override Host's Copy Engine 5 configuration */
2567 	attr = &ar_pci->attr[5];
2568 	attr->src_sz_max = 0;
2569 	attr->dest_nentries = 0;
2570 
2571 	/* Override Target firmware's Copy Engine configuration */
2572 	config = &ar_pci->pipe_config[5];
2573 	config->pipedir = __cpu_to_le32(PIPEDIR_OUT);
2574 	config->nbytes_max = __cpu_to_le32(2048);
2575 
2576 	/* Map from service/endpoint to Copy Engine */
2577 	ar_pci->serv_to_pipe[15].pipenum = __cpu_to_le32(1);
2578 }
2579 
2580 int ath10k_pci_alloc_pipes(struct ath10k *ar)
2581 {
2582 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2583 	struct ath10k_pci_pipe *pipe;
2584 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
2585 	int i, ret;
2586 
2587 	for (i = 0; i < CE_COUNT; i++) {
2588 		pipe = &ar_pci->pipe_info[i];
2589 		pipe->ce_hdl = &ce->ce_states[i];
2590 		pipe->pipe_num = i;
2591 		pipe->hif_ce_state = ar;
2592 
2593 		ret = ath10k_ce_alloc_pipe(ar, i, &ar_pci->attr[i]);
2594 		if (ret) {
2595 			ath10k_err(ar, "failed to allocate copy engine pipe %d: %d\n",
2596 				   i, ret);
2597 			return ret;
2598 		}
2599 
2600 		/* Last CE is Diagnostic Window */
2601 		if (i == CE_DIAG_PIPE) {
2602 			ar_pci->ce_diag = pipe->ce_hdl;
2603 			continue;
2604 		}
2605 
2606 		pipe->buf_sz = (size_t)(ar_pci->attr[i].src_sz_max);
2607 	}
2608 
2609 	return 0;
2610 }
2611 
2612 void ath10k_pci_free_pipes(struct ath10k *ar)
2613 {
2614 	int i;
2615 
2616 	for (i = 0; i < CE_COUNT; i++)
2617 		ath10k_ce_free_pipe(ar, i);
2618 }
2619 
2620 int ath10k_pci_init_pipes(struct ath10k *ar)
2621 {
2622 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2623 	int i, ret;
2624 
2625 	for (i = 0; i < CE_COUNT; i++) {
2626 		ret = ath10k_ce_init_pipe(ar, i, &ar_pci->attr[i]);
2627 		if (ret) {
2628 			ath10k_err(ar, "failed to initialize copy engine pipe %d: %d\n",
2629 				   i, ret);
2630 			return ret;
2631 		}
2632 	}
2633 
2634 	return 0;
2635 }
2636 
2637 static bool ath10k_pci_has_fw_crashed(struct ath10k *ar)
2638 {
2639 	return ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS) &
2640 	       FW_IND_EVENT_PENDING;
2641 }
2642 
2643 static void ath10k_pci_fw_crashed_clear(struct ath10k *ar)
2644 {
2645 	u32 val;
2646 
2647 	val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2648 	val &= ~FW_IND_EVENT_PENDING;
2649 	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, val);
2650 }
2651 
2652 static bool ath10k_pci_has_device_gone(struct ath10k *ar)
2653 {
2654 	u32 val;
2655 
2656 	val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2657 	return (val == 0xffffffff);
2658 }
2659 
2660 /* this function effectively clears target memory controller assert line */
2661 static void ath10k_pci_warm_reset_si0(struct ath10k *ar)
2662 {
2663 	u32 val;
2664 
2665 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2666 	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2667 			       val | SOC_RESET_CONTROL_SI0_RST_MASK);
2668 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2669 
2670 	msleep(10);
2671 
2672 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2673 	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2674 			       val & ~SOC_RESET_CONTROL_SI0_RST_MASK);
2675 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2676 
2677 	msleep(10);
2678 }
2679 
2680 static void ath10k_pci_warm_reset_cpu(struct ath10k *ar)
2681 {
2682 	u32 val;
2683 
2684 	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, 0);
2685 
2686 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2687 	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2688 			       val | SOC_RESET_CONTROL_CPU_WARM_RST_MASK);
2689 }
2690 
2691 static void ath10k_pci_warm_reset_ce(struct ath10k *ar)
2692 {
2693 	u32 val;
2694 
2695 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2696 
2697 	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2698 			       val | SOC_RESET_CONTROL_CE_RST_MASK);
2699 	msleep(10);
2700 	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2701 			       val & ~SOC_RESET_CONTROL_CE_RST_MASK);
2702 }
2703 
2704 static void ath10k_pci_warm_reset_clear_lf(struct ath10k *ar)
2705 {
2706 	u32 val;
2707 
2708 	val = ath10k_pci_soc_read32(ar, SOC_LF_TIMER_CONTROL0_ADDRESS);
2709 	ath10k_pci_soc_write32(ar, SOC_LF_TIMER_CONTROL0_ADDRESS,
2710 			       val & ~SOC_LF_TIMER_CONTROL0_ENABLE_MASK);
2711 }
2712 
2713 static int ath10k_pci_warm_reset(struct ath10k *ar)
2714 {
2715 	int ret;
2716 
2717 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset\n");
2718 
2719 	spin_lock_bh(&ar->data_lock);
2720 	ar->stats.fw_warm_reset_counter++;
2721 	spin_unlock_bh(&ar->data_lock);
2722 
2723 	ath10k_pci_irq_disable(ar);
2724 
2725 	/* Make sure the target CPU is not doing anything dangerous, e.g. if it
2726 	 * were to access copy engine while host performs copy engine reset
2727 	 * then it is possible for the device to confuse pci-e controller to
2728 	 * the point of bringing host system to a complete stop (i.e. hang).
2729 	 */
2730 	ath10k_pci_warm_reset_si0(ar);
2731 	ath10k_pci_warm_reset_cpu(ar);
2732 	ath10k_pci_init_pipes(ar);
2733 	ath10k_pci_wait_for_target_init(ar);
2734 
2735 	ath10k_pci_warm_reset_clear_lf(ar);
2736 	ath10k_pci_warm_reset_ce(ar);
2737 	ath10k_pci_warm_reset_cpu(ar);
2738 	ath10k_pci_init_pipes(ar);
2739 
2740 	ret = ath10k_pci_wait_for_target_init(ar);
2741 	if (ret) {
2742 		ath10k_warn(ar, "failed to wait for target init: %d\n", ret);
2743 		return ret;
2744 	}
2745 
2746 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset complete\n");
2747 
2748 	return 0;
2749 }
2750 
2751 static int ath10k_pci_qca99x0_soft_chip_reset(struct ath10k *ar)
2752 {
2753 	ath10k_pci_irq_disable(ar);
2754 	return ath10k_pci_qca99x0_chip_reset(ar);
2755 }
2756 
2757 static int ath10k_pci_safe_chip_reset(struct ath10k *ar)
2758 {
2759 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2760 
2761 	if (!ar_pci->pci_soft_reset)
2762 		return -ENOTSUPP;
2763 
2764 	return ar_pci->pci_soft_reset(ar);
2765 }
2766 
2767 static int ath10k_pci_qca988x_chip_reset(struct ath10k *ar)
2768 {
2769 	int i, ret;
2770 	u32 val;
2771 
2772 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot 988x chip reset\n");
2773 
2774 	/* Some hardware revisions (e.g. CUS223v2) has issues with cold reset.
2775 	 * It is thus preferred to use warm reset which is safer but may not be
2776 	 * able to recover the device from all possible fail scenarios.
2777 	 *
2778 	 * Warm reset doesn't always work on first try so attempt it a few
2779 	 * times before giving up.
2780 	 */
2781 	for (i = 0; i < ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS; i++) {
2782 		ret = ath10k_pci_warm_reset(ar);
2783 		if (ret) {
2784 			ath10k_warn(ar, "failed to warm reset attempt %d of %d: %d\n",
2785 				    i + 1, ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS,
2786 				    ret);
2787 			continue;
2788 		}
2789 
2790 		/* FIXME: Sometimes copy engine doesn't recover after warm
2791 		 * reset. In most cases this needs cold reset. In some of these
2792 		 * cases the device is in such a state that a cold reset may
2793 		 * lock up the host.
2794 		 *
2795 		 * Reading any host interest register via copy engine is
2796 		 * sufficient to verify if device is capable of booting
2797 		 * firmware blob.
2798 		 */
2799 		ret = ath10k_pci_init_pipes(ar);
2800 		if (ret) {
2801 			ath10k_warn(ar, "failed to init copy engine: %d\n",
2802 				    ret);
2803 			continue;
2804 		}
2805 
2806 		ret = ath10k_pci_diag_read32(ar, QCA988X_HOST_INTEREST_ADDRESS,
2807 					     &val);
2808 		if (ret) {
2809 			ath10k_warn(ar, "failed to poke copy engine: %d\n",
2810 				    ret);
2811 			continue;
2812 		}
2813 
2814 		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot chip reset complete (warm)\n");
2815 		return 0;
2816 	}
2817 
2818 	if (ath10k_pci_reset_mode == ATH10K_PCI_RESET_WARM_ONLY) {
2819 		ath10k_warn(ar, "refusing cold reset as requested\n");
2820 		return -EPERM;
2821 	}
2822 
2823 	ret = ath10k_pci_cold_reset(ar);
2824 	if (ret) {
2825 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2826 		return ret;
2827 	}
2828 
2829 	ret = ath10k_pci_wait_for_target_init(ar);
2830 	if (ret) {
2831 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2832 			    ret);
2833 		return ret;
2834 	}
2835 
2836 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca988x chip reset complete (cold)\n");
2837 
2838 	return 0;
2839 }
2840 
2841 static int ath10k_pci_qca6174_chip_reset(struct ath10k *ar)
2842 {
2843 	int ret;
2844 
2845 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset\n");
2846 
2847 	/* FIXME: QCA6174 requires cold + warm reset to work. */
2848 
2849 	ret = ath10k_pci_cold_reset(ar);
2850 	if (ret) {
2851 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2852 		return ret;
2853 	}
2854 
2855 	ret = ath10k_pci_wait_for_target_init(ar);
2856 	if (ret) {
2857 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2858 			    ret);
2859 		return ret;
2860 	}
2861 
2862 	ret = ath10k_pci_warm_reset(ar);
2863 	if (ret) {
2864 		ath10k_warn(ar, "failed to warm reset: %d\n", ret);
2865 		return ret;
2866 	}
2867 
2868 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset complete (cold)\n");
2869 
2870 	return 0;
2871 }
2872 
2873 static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar)
2874 {
2875 	int ret;
2876 
2877 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset\n");
2878 
2879 	ret = ath10k_pci_cold_reset(ar);
2880 	if (ret) {
2881 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2882 		return ret;
2883 	}
2884 
2885 	ret = ath10k_pci_wait_for_target_init(ar);
2886 	if (ret) {
2887 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2888 			    ret);
2889 		return ret;
2890 	}
2891 
2892 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset complete (cold)\n");
2893 
2894 	return 0;
2895 }
2896 
2897 static int ath10k_pci_chip_reset(struct ath10k *ar)
2898 {
2899 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2900 
2901 	if (WARN_ON(!ar_pci->pci_hard_reset))
2902 		return -ENOTSUPP;
2903 
2904 	return ar_pci->pci_hard_reset(ar);
2905 }
2906 
2907 static int ath10k_pci_hif_power_up(struct ath10k *ar,
2908 				   enum ath10k_firmware_mode fw_mode)
2909 {
2910 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2911 	int ret;
2912 
2913 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power up\n");
2914 
2915 	pcie_capability_read_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2916 				  &ar_pci->link_ctl);
2917 	pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2918 				   ar_pci->link_ctl & ~PCI_EXP_LNKCTL_ASPMC);
2919 
2920 	/*
2921 	 * Bring the target up cleanly.
2922 	 *
2923 	 * The target may be in an undefined state with an AUX-powered Target
2924 	 * and a Host in WoW mode. If the Host crashes, loses power, or is
2925 	 * restarted (without unloading the driver) then the Target is left
2926 	 * (aux) powered and running. On a subsequent driver load, the Target
2927 	 * is in an unexpected state. We try to catch that here in order to
2928 	 * reset the Target and retry the probe.
2929 	 */
2930 	ret = ath10k_pci_chip_reset(ar);
2931 	if (ret) {
2932 		if (ath10k_pci_has_fw_crashed(ar)) {
2933 			ath10k_warn(ar, "firmware crashed during chip reset\n");
2934 			ath10k_pci_fw_crashed_clear(ar);
2935 			ath10k_pci_fw_crashed_dump(ar);
2936 		}
2937 
2938 		ath10k_err(ar, "failed to reset chip: %d\n", ret);
2939 		goto err_sleep;
2940 	}
2941 
2942 	ret = ath10k_pci_init_pipes(ar);
2943 	if (ret) {
2944 		ath10k_err(ar, "failed to initialize CE: %d\n", ret);
2945 		goto err_sleep;
2946 	}
2947 
2948 	ret = ath10k_pci_init_config(ar);
2949 	if (ret) {
2950 		ath10k_err(ar, "failed to setup init config: %d\n", ret);
2951 		goto err_ce;
2952 	}
2953 
2954 	ret = ath10k_pci_wake_target_cpu(ar);
2955 	if (ret) {
2956 		ath10k_err(ar, "could not wake up target CPU: %d\n", ret);
2957 		goto err_ce;
2958 	}
2959 
2960 	return 0;
2961 
2962 err_ce:
2963 	ath10k_pci_ce_deinit(ar);
2964 
2965 err_sleep:
2966 	return ret;
2967 }
2968 
2969 void ath10k_pci_hif_power_down(struct ath10k *ar)
2970 {
2971 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power down\n");
2972 
2973 	/* Currently hif_power_up performs effectively a reset and hif_stop
2974 	 * resets the chip as well so there's no point in resetting here.
2975 	 */
2976 }
2977 
2978 static int ath10k_pci_hif_suspend(struct ath10k *ar)
2979 {
2980 	/* Nothing to do; the important stuff is in the driver suspend. */
2981 	return 0;
2982 }
2983 
2984 #ifdef CONFIG_PM
2985 static int ath10k_pci_suspend(struct ath10k *ar)
2986 {
2987 	/* The grace timer can still be counting down and ar->ps_awake be true.
2988 	 * It is known that the device may be asleep after resuming regardless
2989 	 * of the SoC powersave state before suspending. Hence make sure the
2990 	 * device is asleep before proceeding.
2991 	 */
2992 	ath10k_pci_sleep_sync(ar);
2993 
2994 	return 0;
2995 }
2996 #endif
2997 
2998 static int ath10k_pci_hif_resume(struct ath10k *ar)
2999 {
3000 	/* Nothing to do; the important stuff is in the driver resume. */
3001 	return 0;
3002 }
3003 
3004 #ifdef CONFIG_PM
3005 static int ath10k_pci_resume(struct ath10k *ar)
3006 {
3007 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3008 	struct pci_dev *pdev = ar_pci->pdev;
3009 	u32 val;
3010 	int ret = 0;
3011 
3012 	ret = ath10k_pci_force_wake(ar);
3013 	if (ret) {
3014 		ath10k_err(ar, "failed to wake up target: %d\n", ret);
3015 		return ret;
3016 	}
3017 
3018 	/* Suspend/Resume resets the PCI configuration space, so we have to
3019 	 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
3020 	 * from interfering with C3 CPU state. pci_restore_state won't help
3021 	 * here since it only restores the first 64 bytes pci config header.
3022 	 */
3023 	pci_read_config_dword(pdev, 0x40, &val);
3024 	if ((val & 0x0000ff00) != 0)
3025 		pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
3026 
3027 	return ret;
3028 }
3029 #endif
3030 
3031 static bool ath10k_pci_validate_cal(void *data, size_t size)
3032 {
3033 	__le16 *cal_words = data;
3034 	u16 checksum = 0;
3035 	size_t i;
3036 
3037 	if (size % 2 != 0)
3038 		return false;
3039 
3040 	for (i = 0; i < size / 2; i++)
3041 		checksum ^= le16_to_cpu(cal_words[i]);
3042 
3043 	return checksum == 0xffff;
3044 }
3045 
3046 static void ath10k_pci_enable_eeprom(struct ath10k *ar)
3047 {
3048 	/* Enable SI clock */
3049 	ath10k_pci_soc_write32(ar, CLOCK_CONTROL_OFFSET, 0x0);
3050 
3051 	/* Configure GPIOs for I2C operation */
3052 	ath10k_pci_write32(ar,
3053 			   GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
3054 			   4 * QCA9887_1_0_I2C_SDA_GPIO_PIN,
3055 			   SM(QCA9887_1_0_I2C_SDA_PIN_CONFIG,
3056 			      GPIO_PIN0_CONFIG) |
3057 			   SM(1, GPIO_PIN0_PAD_PULL));
3058 
3059 	ath10k_pci_write32(ar,
3060 			   GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
3061 			   4 * QCA9887_1_0_SI_CLK_GPIO_PIN,
3062 			   SM(QCA9887_1_0_SI_CLK_PIN_CONFIG, GPIO_PIN0_CONFIG) |
3063 			   SM(1, GPIO_PIN0_PAD_PULL));
3064 
3065 	ath10k_pci_write32(ar,
3066 			   GPIO_BASE_ADDRESS +
3067 			   QCA9887_1_0_GPIO_ENABLE_W1TS_LOW_ADDRESS,
3068 			   1u << QCA9887_1_0_SI_CLK_GPIO_PIN);
3069 
3070 	/* In Swift ASIC - EEPROM clock will be (110MHz/512) = 214KHz */
3071 	ath10k_pci_write32(ar,
3072 			   SI_BASE_ADDRESS + SI_CONFIG_OFFSET,
3073 			   SM(1, SI_CONFIG_ERR_INT) |
3074 			   SM(1, SI_CONFIG_BIDIR_OD_DATA) |
3075 			   SM(1, SI_CONFIG_I2C) |
3076 			   SM(1, SI_CONFIG_POS_SAMPLE) |
3077 			   SM(1, SI_CONFIG_INACTIVE_DATA) |
3078 			   SM(1, SI_CONFIG_INACTIVE_CLK) |
3079 			   SM(8, SI_CONFIG_DIVIDER));
3080 }
3081 
3082 static int ath10k_pci_read_eeprom(struct ath10k *ar, u16 addr, u8 *out)
3083 {
3084 	u32 reg;
3085 	int wait_limit;
3086 
3087 	/* set device select byte and for the read operation */
3088 	reg = QCA9887_EEPROM_SELECT_READ |
3089 	      SM(addr, QCA9887_EEPROM_ADDR_LO) |
3090 	      SM(addr >> 8, QCA9887_EEPROM_ADDR_HI);
3091 	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_TX_DATA0_OFFSET, reg);
3092 
3093 	/* write transmit data, transfer length, and START bit */
3094 	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET,
3095 			   SM(1, SI_CS_START) | SM(1, SI_CS_RX_CNT) |
3096 			   SM(4, SI_CS_TX_CNT));
3097 
3098 	/* wait max 1 sec */
3099 	wait_limit = 100000;
3100 
3101 	/* wait for SI_CS_DONE_INT */
3102 	do {
3103 		reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET);
3104 		if (MS(reg, SI_CS_DONE_INT))
3105 			break;
3106 
3107 		wait_limit--;
3108 		udelay(10);
3109 	} while (wait_limit > 0);
3110 
3111 	if (!MS(reg, SI_CS_DONE_INT)) {
3112 		ath10k_err(ar, "timeout while reading device EEPROM at %04x\n",
3113 			   addr);
3114 		return -ETIMEDOUT;
3115 	}
3116 
3117 	/* clear SI_CS_DONE_INT */
3118 	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET, reg);
3119 
3120 	if (MS(reg, SI_CS_DONE_ERR)) {
3121 		ath10k_err(ar, "failed to read device EEPROM at %04x\n", addr);
3122 		return -EIO;
3123 	}
3124 
3125 	/* extract receive data */
3126 	reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_RX_DATA0_OFFSET);
3127 	*out = reg;
3128 
3129 	return 0;
3130 }
3131 
3132 static int ath10k_pci_hif_fetch_cal_eeprom(struct ath10k *ar, void **data,
3133 					   size_t *data_len)
3134 {
3135 	u8 *caldata = NULL;
3136 	size_t calsize, i;
3137 	int ret;
3138 
3139 	if (!QCA_REV_9887(ar))
3140 		return -EOPNOTSUPP;
3141 
3142 	calsize = ar->hw_params.cal_data_len;
3143 	caldata = kmalloc(calsize, GFP_KERNEL);
3144 	if (!caldata)
3145 		return -ENOMEM;
3146 
3147 	ath10k_pci_enable_eeprom(ar);
3148 
3149 	for (i = 0; i < calsize; i++) {
3150 		ret = ath10k_pci_read_eeprom(ar, i, &caldata[i]);
3151 		if (ret)
3152 			goto err_free;
3153 	}
3154 
3155 	if (!ath10k_pci_validate_cal(caldata, calsize))
3156 		goto err_free;
3157 
3158 	*data = caldata;
3159 	*data_len = calsize;
3160 
3161 	return 0;
3162 
3163 err_free:
3164 	kfree(caldata);
3165 
3166 	return -EINVAL;
3167 }
3168 
3169 static const struct ath10k_hif_ops ath10k_pci_hif_ops = {
3170 	.tx_sg			= ath10k_pci_hif_tx_sg,
3171 	.diag_read		= ath10k_pci_hif_diag_read,
3172 	.diag_write		= ath10k_pci_diag_write_mem,
3173 	.exchange_bmi_msg	= ath10k_pci_hif_exchange_bmi_msg,
3174 	.start			= ath10k_pci_hif_start,
3175 	.stop			= ath10k_pci_hif_stop,
3176 	.map_service_to_pipe	= ath10k_pci_hif_map_service_to_pipe,
3177 	.get_default_pipe	= ath10k_pci_hif_get_default_pipe,
3178 	.send_complete_check	= ath10k_pci_hif_send_complete_check,
3179 	.get_free_queue_number	= ath10k_pci_hif_get_free_queue_number,
3180 	.power_up		= ath10k_pci_hif_power_up,
3181 	.power_down		= ath10k_pci_hif_power_down,
3182 	.read32			= ath10k_pci_read32,
3183 	.write32		= ath10k_pci_write32,
3184 	.suspend		= ath10k_pci_hif_suspend,
3185 	.resume			= ath10k_pci_hif_resume,
3186 	.fetch_cal_eeprom	= ath10k_pci_hif_fetch_cal_eeprom,
3187 };
3188 
3189 /*
3190  * Top-level interrupt handler for all PCI interrupts from a Target.
3191  * When a block of MSI interrupts is allocated, this top-level handler
3192  * is not used; instead, we directly call the correct sub-handler.
3193  */
3194 static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg)
3195 {
3196 	struct ath10k *ar = arg;
3197 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3198 	int ret;
3199 
3200 	if (ath10k_pci_has_device_gone(ar))
3201 		return IRQ_NONE;
3202 
3203 	ret = ath10k_pci_force_wake(ar);
3204 	if (ret) {
3205 		ath10k_warn(ar, "failed to wake device up on irq: %d\n", ret);
3206 		return IRQ_NONE;
3207 	}
3208 
3209 	if ((ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY) &&
3210 	    !ath10k_pci_irq_pending(ar))
3211 		return IRQ_NONE;
3212 
3213 	ath10k_pci_disable_and_clear_legacy_irq(ar);
3214 	ath10k_pci_irq_msi_fw_mask(ar);
3215 	napi_schedule(&ar->napi);
3216 
3217 	return IRQ_HANDLED;
3218 }
3219 
3220 static int ath10k_pci_napi_poll(struct napi_struct *ctx, int budget)
3221 {
3222 	struct ath10k *ar = container_of(ctx, struct ath10k, napi);
3223 	int done = 0;
3224 
3225 	if (ath10k_pci_has_fw_crashed(ar)) {
3226 		ath10k_pci_fw_crashed_clear(ar);
3227 		ath10k_pci_fw_crashed_dump(ar);
3228 		napi_complete(ctx);
3229 		return done;
3230 	}
3231 
3232 	ath10k_ce_per_engine_service_any(ar);
3233 
3234 	done = ath10k_htt_txrx_compl_task(ar, budget);
3235 
3236 	if (done < budget) {
3237 		napi_complete_done(ctx, done);
3238 		/* In case of MSI, it is possible that interrupts are received
3239 		 * while NAPI poll is inprogress. So pending interrupts that are
3240 		 * received after processing all copy engine pipes by NAPI poll
3241 		 * will not be handled again. This is causing failure to
3242 		 * complete boot sequence in x86 platform. So before enabling
3243 		 * interrupts safer to check for pending interrupts for
3244 		 * immediate servicing.
3245 		 */
3246 		if (ath10k_ce_interrupt_summary(ar)) {
3247 			napi_reschedule(ctx);
3248 			goto out;
3249 		}
3250 		ath10k_pci_enable_legacy_irq(ar);
3251 		ath10k_pci_irq_msi_fw_unmask(ar);
3252 	}
3253 
3254 out:
3255 	return done;
3256 }
3257 
3258 static int ath10k_pci_request_irq_msi(struct ath10k *ar)
3259 {
3260 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3261 	int ret;
3262 
3263 	ret = request_irq(ar_pci->pdev->irq,
3264 			  ath10k_pci_interrupt_handler,
3265 			  IRQF_SHARED, "ath10k_pci", ar);
3266 	if (ret) {
3267 		ath10k_warn(ar, "failed to request MSI irq %d: %d\n",
3268 			    ar_pci->pdev->irq, ret);
3269 		return ret;
3270 	}
3271 
3272 	return 0;
3273 }
3274 
3275 static int ath10k_pci_request_irq_legacy(struct ath10k *ar)
3276 {
3277 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3278 	int ret;
3279 
3280 	ret = request_irq(ar_pci->pdev->irq,
3281 			  ath10k_pci_interrupt_handler,
3282 			  IRQF_SHARED, "ath10k_pci", ar);
3283 	if (ret) {
3284 		ath10k_warn(ar, "failed to request legacy irq %d: %d\n",
3285 			    ar_pci->pdev->irq, ret);
3286 		return ret;
3287 	}
3288 
3289 	return 0;
3290 }
3291 
3292 static int ath10k_pci_request_irq(struct ath10k *ar)
3293 {
3294 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3295 
3296 	switch (ar_pci->oper_irq_mode) {
3297 	case ATH10K_PCI_IRQ_LEGACY:
3298 		return ath10k_pci_request_irq_legacy(ar);
3299 	case ATH10K_PCI_IRQ_MSI:
3300 		return ath10k_pci_request_irq_msi(ar);
3301 	default:
3302 		return -EINVAL;
3303 	}
3304 }
3305 
3306 static void ath10k_pci_free_irq(struct ath10k *ar)
3307 {
3308 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3309 
3310 	free_irq(ar_pci->pdev->irq, ar);
3311 }
3312 
3313 void ath10k_pci_init_napi(struct ath10k *ar)
3314 {
3315 	netif_napi_add(&ar->napi_dev, &ar->napi, ath10k_pci_napi_poll);
3316 }
3317 
3318 static int ath10k_pci_init_irq(struct ath10k *ar)
3319 {
3320 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3321 	int ret;
3322 
3323 	ath10k_pci_init_napi(ar);
3324 
3325 	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_AUTO)
3326 		ath10k_info(ar, "limiting irq mode to: %d\n",
3327 			    ath10k_pci_irq_mode);
3328 
3329 	/* Try MSI */
3330 	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_LEGACY) {
3331 		ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_MSI;
3332 		ret = pci_enable_msi(ar_pci->pdev);
3333 		if (ret == 0)
3334 			return 0;
3335 
3336 		/* MHI failed, try legacy irq next */
3337 	}
3338 
3339 	/* Try legacy irq
3340 	 *
3341 	 * A potential race occurs here: The CORE_BASE write
3342 	 * depends on target correctly decoding AXI address but
3343 	 * host won't know when target writes BAR to CORE_CTRL.
3344 	 * This write might get lost if target has NOT written BAR.
3345 	 * For now, fix the race by repeating the write in below
3346 	 * synchronization checking.
3347 	 */
3348 	ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_LEGACY;
3349 
3350 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
3351 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
3352 
3353 	return 0;
3354 }
3355 
3356 static void ath10k_pci_deinit_irq_legacy(struct ath10k *ar)
3357 {
3358 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
3359 			   0);
3360 }
3361 
3362 static int ath10k_pci_deinit_irq(struct ath10k *ar)
3363 {
3364 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3365 
3366 	switch (ar_pci->oper_irq_mode) {
3367 	case ATH10K_PCI_IRQ_LEGACY:
3368 		ath10k_pci_deinit_irq_legacy(ar);
3369 		break;
3370 	default:
3371 		pci_disable_msi(ar_pci->pdev);
3372 		break;
3373 	}
3374 
3375 	return 0;
3376 }
3377 
3378 int ath10k_pci_wait_for_target_init(struct ath10k *ar)
3379 {
3380 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3381 	unsigned long timeout;
3382 	u32 val;
3383 
3384 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot waiting target to initialise\n");
3385 
3386 	timeout = jiffies + msecs_to_jiffies(ATH10K_PCI_TARGET_WAIT);
3387 
3388 	do {
3389 		val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
3390 
3391 		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target indicator %x\n",
3392 			   val);
3393 
3394 		/* target should never return this */
3395 		if (val == 0xffffffff)
3396 			continue;
3397 
3398 		/* the device has crashed so don't bother trying anymore */
3399 		if (val & FW_IND_EVENT_PENDING)
3400 			break;
3401 
3402 		if (val & FW_IND_INITIALIZED)
3403 			break;
3404 
3405 		if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY)
3406 			/* Fix potential race by repeating CORE_BASE writes */
3407 			ath10k_pci_enable_legacy_irq(ar);
3408 
3409 		mdelay(10);
3410 	} while (time_before(jiffies, timeout));
3411 
3412 	ath10k_pci_disable_and_clear_legacy_irq(ar);
3413 	ath10k_pci_irq_msi_fw_mask(ar);
3414 
3415 	if (val == 0xffffffff) {
3416 		ath10k_err(ar, "failed to read device register, device is gone\n");
3417 		return -EIO;
3418 	}
3419 
3420 	if (val & FW_IND_EVENT_PENDING) {
3421 		ath10k_warn(ar, "device has crashed during init\n");
3422 		return -ECOMM;
3423 	}
3424 
3425 	if (!(val & FW_IND_INITIALIZED)) {
3426 		ath10k_err(ar, "failed to receive initialized event from target: %08x\n",
3427 			   val);
3428 		return -ETIMEDOUT;
3429 	}
3430 
3431 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target initialised\n");
3432 	return 0;
3433 }
3434 
3435 static int ath10k_pci_cold_reset(struct ath10k *ar)
3436 {
3437 	u32 val;
3438 
3439 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset\n");
3440 
3441 	spin_lock_bh(&ar->data_lock);
3442 
3443 	ar->stats.fw_cold_reset_counter++;
3444 
3445 	spin_unlock_bh(&ar->data_lock);
3446 
3447 	/* Put Target, including PCIe, into RESET. */
3448 	val = ath10k_pci_reg_read32(ar, SOC_GLOBAL_RESET_ADDRESS);
3449 	val |= 1;
3450 	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3451 
3452 	/* After writing into SOC_GLOBAL_RESET to put device into
3453 	 * reset and pulling out of reset pcie may not be stable
3454 	 * for any immediate pcie register access and cause bus error,
3455 	 * add delay before any pcie access request to fix this issue.
3456 	 */
3457 	msleep(20);
3458 
3459 	/* Pull Target, including PCIe, out of RESET. */
3460 	val &= ~1;
3461 	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3462 
3463 	msleep(20);
3464 
3465 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset complete\n");
3466 
3467 	return 0;
3468 }
3469 
3470 static int ath10k_pci_claim(struct ath10k *ar)
3471 {
3472 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3473 	struct pci_dev *pdev = ar_pci->pdev;
3474 	int ret;
3475 
3476 	pci_set_drvdata(pdev, ar);
3477 
3478 	ret = pci_enable_device(pdev);
3479 	if (ret) {
3480 		ath10k_err(ar, "failed to enable pci device: %d\n", ret);
3481 		return ret;
3482 	}
3483 
3484 	ret = pci_request_region(pdev, BAR_NUM, "ath");
3485 	if (ret) {
3486 		ath10k_err(ar, "failed to request region BAR%d: %d\n", BAR_NUM,
3487 			   ret);
3488 		goto err_device;
3489 	}
3490 
3491 	/* Target expects 32 bit DMA. Enforce it. */
3492 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3493 	if (ret) {
3494 		ath10k_err(ar, "failed to set dma mask to 32-bit: %d\n", ret);
3495 		goto err_region;
3496 	}
3497 
3498 	pci_set_master(pdev);
3499 
3500 #if defined(__FreeBSD__)
3501 	linuxkpi_pcim_want_to_use_bus_functions(pdev);
3502 #endif
3503 
3504 	/* Arrange for access to Target SoC registers. */
3505 	ar_pci->mem_len = pci_resource_len(pdev, BAR_NUM);
3506 	ar_pci->mem = pci_iomap(pdev, BAR_NUM, 0);
3507 	if (!ar_pci->mem) {
3508 		ath10k_err(ar, "failed to iomap BAR%d\n", BAR_NUM);
3509 		ret = -EIO;
3510 		goto err_region;
3511 	}
3512 
3513 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot pci_mem 0x%pK\n", ar_pci->mem);
3514 	return 0;
3515 
3516 err_region:
3517 	pci_release_region(pdev, BAR_NUM);
3518 
3519 err_device:
3520 	pci_disable_device(pdev);
3521 
3522 	return ret;
3523 }
3524 
3525 static void ath10k_pci_release(struct ath10k *ar)
3526 {
3527 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3528 	struct pci_dev *pdev = ar_pci->pdev;
3529 
3530 	pci_iounmap(pdev, ar_pci->mem);
3531 	pci_release_region(pdev, BAR_NUM);
3532 	pci_disable_device(pdev);
3533 }
3534 
3535 static bool ath10k_pci_chip_is_supported(u32 dev_id, u32 chip_id)
3536 {
3537 	const struct ath10k_pci_supp_chip *supp_chip;
3538 	int i;
3539 	u32 rev_id = MS(chip_id, SOC_CHIP_ID_REV);
3540 
3541 	for (i = 0; i < ARRAY_SIZE(ath10k_pci_supp_chips); i++) {
3542 		supp_chip = &ath10k_pci_supp_chips[i];
3543 
3544 		if (supp_chip->dev_id == dev_id &&
3545 		    supp_chip->rev_id == rev_id)
3546 			return true;
3547 	}
3548 
3549 	return false;
3550 }
3551 
3552 int ath10k_pci_setup_resource(struct ath10k *ar)
3553 {
3554 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3555 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
3556 	int ret;
3557 
3558 	spin_lock_init(&ce->ce_lock);
3559 	spin_lock_init(&ar_pci->ps_lock);
3560 	mutex_init(&ar_pci->ce_diag_mutex);
3561 
3562 	INIT_WORK(&ar_pci->dump_work, ath10k_pci_fw_dump_work);
3563 
3564 	timer_setup(&ar_pci->rx_post_retry, ath10k_pci_rx_replenish_retry, 0);
3565 
3566 	ar_pci->attr = kmemdup(pci_host_ce_config_wlan,
3567 			       sizeof(pci_host_ce_config_wlan),
3568 			       GFP_KERNEL);
3569 	if (!ar_pci->attr)
3570 		return -ENOMEM;
3571 
3572 	ar_pci->pipe_config = kmemdup(pci_target_ce_config_wlan,
3573 				      sizeof(pci_target_ce_config_wlan),
3574 				      GFP_KERNEL);
3575 	if (!ar_pci->pipe_config) {
3576 		ret = -ENOMEM;
3577 		goto err_free_attr;
3578 	}
3579 
3580 	ar_pci->serv_to_pipe = kmemdup(pci_target_service_to_ce_map_wlan,
3581 				       sizeof(pci_target_service_to_ce_map_wlan),
3582 				       GFP_KERNEL);
3583 	if (!ar_pci->serv_to_pipe) {
3584 		ret = -ENOMEM;
3585 		goto err_free_pipe_config;
3586 	}
3587 
3588 	if (QCA_REV_6174(ar) || QCA_REV_9377(ar))
3589 		ath10k_pci_override_ce_config(ar);
3590 
3591 	ret = ath10k_pci_alloc_pipes(ar);
3592 	if (ret) {
3593 		ath10k_err(ar, "failed to allocate copy engine pipes: %d\n",
3594 			   ret);
3595 		goto err_free_serv_to_pipe;
3596 	}
3597 
3598 	return 0;
3599 
3600 err_free_serv_to_pipe:
3601 	kfree(ar_pci->serv_to_pipe);
3602 err_free_pipe_config:
3603 	kfree(ar_pci->pipe_config);
3604 err_free_attr:
3605 	kfree(ar_pci->attr);
3606 	return ret;
3607 }
3608 
3609 void ath10k_pci_release_resource(struct ath10k *ar)
3610 {
3611 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3612 
3613 	ath10k_pci_rx_retry_sync(ar);
3614 	netif_napi_del(&ar->napi);
3615 	ath10k_pci_ce_deinit(ar);
3616 	ath10k_pci_free_pipes(ar);
3617 	kfree(ar_pci->attr);
3618 	kfree(ar_pci->pipe_config);
3619 	kfree(ar_pci->serv_to_pipe);
3620 }
3621 
3622 static const struct ath10k_bus_ops ath10k_pci_bus_ops = {
3623 	.read32		= ath10k_bus_pci_read32,
3624 	.write32	= ath10k_bus_pci_write32,
3625 	.get_num_banks	= ath10k_pci_get_num_banks,
3626 };
3627 
3628 static int ath10k_pci_probe(struct pci_dev *pdev,
3629 			    const struct pci_device_id *pci_dev)
3630 {
3631 	int ret = 0;
3632 	struct ath10k *ar;
3633 	struct ath10k_pci *ar_pci;
3634 	enum ath10k_hw_rev hw_rev;
3635 	struct ath10k_bus_params bus_params = {};
3636 	bool pci_ps, is_qca988x = false;
3637 	int (*pci_soft_reset)(struct ath10k *ar);
3638 	int (*pci_hard_reset)(struct ath10k *ar);
3639 	u32 (*targ_cpu_to_ce_addr)(struct ath10k *ar, u32 addr);
3640 
3641 	switch (pci_dev->device) {
3642 	case QCA988X_2_0_DEVICE_ID_UBNT:
3643 	case QCA988X_2_0_DEVICE_ID:
3644 		hw_rev = ATH10K_HW_QCA988X;
3645 		pci_ps = false;
3646 		is_qca988x = true;
3647 		pci_soft_reset = ath10k_pci_warm_reset;
3648 		pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3649 		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3650 		break;
3651 	case QCA9887_1_0_DEVICE_ID:
3652 		hw_rev = ATH10K_HW_QCA9887;
3653 		pci_ps = false;
3654 		pci_soft_reset = ath10k_pci_warm_reset;
3655 		pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3656 		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3657 		break;
3658 	case QCA6164_2_1_DEVICE_ID:
3659 	case QCA6174_2_1_DEVICE_ID:
3660 		hw_rev = ATH10K_HW_QCA6174;
3661 		pci_ps = true;
3662 		pci_soft_reset = ath10k_pci_warm_reset;
3663 		pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3664 		targ_cpu_to_ce_addr = ath10k_pci_qca6174_targ_cpu_to_ce_addr;
3665 		break;
3666 	case QCA99X0_2_0_DEVICE_ID:
3667 		hw_rev = ATH10K_HW_QCA99X0;
3668 		pci_ps = false;
3669 		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3670 		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3671 		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3672 		break;
3673 	case QCA9984_1_0_DEVICE_ID:
3674 		hw_rev = ATH10K_HW_QCA9984;
3675 		pci_ps = false;
3676 		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3677 		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3678 		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3679 		break;
3680 	case QCA9888_2_0_DEVICE_ID:
3681 		hw_rev = ATH10K_HW_QCA9888;
3682 		pci_ps = false;
3683 		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3684 		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3685 		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3686 		break;
3687 	case QCA9377_1_0_DEVICE_ID:
3688 		hw_rev = ATH10K_HW_QCA9377;
3689 		pci_ps = true;
3690 		pci_soft_reset = ath10k_pci_warm_reset;
3691 		pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3692 		targ_cpu_to_ce_addr = ath10k_pci_qca6174_targ_cpu_to_ce_addr;
3693 		break;
3694 	default:
3695 		WARN_ON(1);
3696 		return -ENOTSUPP;
3697 	}
3698 
3699 	ar = ath10k_core_create(sizeof(*ar_pci), &pdev->dev, ATH10K_BUS_PCI,
3700 				hw_rev, &ath10k_pci_hif_ops);
3701 	if (!ar) {
3702 		dev_err(&pdev->dev, "failed to allocate core\n");
3703 		return -ENOMEM;
3704 	}
3705 
3706 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "pci probe %04x:%04x %04x:%04x\n",
3707 		   pdev->vendor, pdev->device,
3708 		   pdev->subsystem_vendor, pdev->subsystem_device);
3709 
3710 	ar_pci = ath10k_pci_priv(ar);
3711 	ar_pci->pdev = pdev;
3712 	ar_pci->dev = &pdev->dev;
3713 	ar_pci->ar = ar;
3714 	ar->dev_id = pci_dev->device;
3715 	ar_pci->pci_ps = pci_ps;
3716 	ar_pci->ce.bus_ops = &ath10k_pci_bus_ops;
3717 	ar_pci->pci_soft_reset = pci_soft_reset;
3718 	ar_pci->pci_hard_reset = pci_hard_reset;
3719 	ar_pci->targ_cpu_to_ce_addr = targ_cpu_to_ce_addr;
3720 	ar->ce_priv = &ar_pci->ce;
3721 
3722 	ar->id.vendor = pdev->vendor;
3723 	ar->id.device = pdev->device;
3724 	ar->id.subsystem_vendor = pdev->subsystem_vendor;
3725 	ar->id.subsystem_device = pdev->subsystem_device;
3726 
3727 	timer_setup(&ar_pci->ps_timer, ath10k_pci_ps_timer, 0);
3728 
3729 	ret = ath10k_pci_setup_resource(ar);
3730 	if (ret) {
3731 		ath10k_err(ar, "failed to setup resource: %d\n", ret);
3732 		goto err_core_destroy;
3733 	}
3734 
3735 	ret = ath10k_pci_claim(ar);
3736 	if (ret) {
3737 		ath10k_err(ar, "failed to claim device: %d\n", ret);
3738 		goto err_free_pipes;
3739 	}
3740 
3741 	ret = ath10k_pci_force_wake(ar);
3742 	if (ret) {
3743 		ath10k_warn(ar, "failed to wake up device : %d\n", ret);
3744 		goto err_sleep;
3745 	}
3746 
3747 	ath10k_pci_ce_deinit(ar);
3748 	ath10k_pci_irq_disable(ar);
3749 
3750 	ret = ath10k_pci_init_irq(ar);
3751 	if (ret) {
3752 		ath10k_err(ar, "failed to init irqs: %d\n", ret);
3753 		goto err_sleep;
3754 	}
3755 
3756 	ath10k_info(ar, "pci irq %s oper_irq_mode %d irq_mode %d reset_mode %d\n",
3757 		    ath10k_pci_get_irq_method(ar), ar_pci->oper_irq_mode,
3758 		    ath10k_pci_irq_mode, ath10k_pci_reset_mode);
3759 
3760 	ret = ath10k_pci_request_irq(ar);
3761 	if (ret) {
3762 		ath10k_warn(ar, "failed to request irqs: %d\n", ret);
3763 		goto err_deinit_irq;
3764 	}
3765 
3766 	bus_params.dev_type = ATH10K_DEV_TYPE_LL;
3767 	bus_params.link_can_suspend = true;
3768 	/* Read CHIP_ID before reset to catch QCA9880-AR1A v1 devices that
3769 	 * fall off the bus during chip_reset. These chips have the same pci
3770 	 * device id as the QCA9880 BR4A or 2R4E. So that's why the check.
3771 	 */
3772 	if (is_qca988x) {
3773 		bus_params.chip_id =
3774 			ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
3775 		if (bus_params.chip_id != 0xffffffff) {
3776 			if (!ath10k_pci_chip_is_supported(pdev->device,
3777 							  bus_params.chip_id)) {
3778 				ret = -ENODEV;
3779 				goto err_unsupported;
3780 			}
3781 		}
3782 	}
3783 
3784 	ret = ath10k_pci_chip_reset(ar);
3785 	if (ret) {
3786 		ath10k_err(ar, "failed to reset chip: %d\n", ret);
3787 		goto err_free_irq;
3788 	}
3789 
3790 	bus_params.chip_id = ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
3791 	if (bus_params.chip_id == 0xffffffff) {
3792 		ret = -ENODEV;
3793 		goto err_unsupported;
3794 	}
3795 
3796 	if (!ath10k_pci_chip_is_supported(pdev->device, bus_params.chip_id)) {
3797 		ret = -ENODEV;
3798 		goto err_unsupported;
3799 	}
3800 
3801 	ret = ath10k_core_register(ar, &bus_params);
3802 	if (ret) {
3803 		ath10k_err(ar, "failed to register driver core: %d\n", ret);
3804 		goto err_free_irq;
3805 	}
3806 
3807 	return 0;
3808 
3809 err_unsupported:
3810 	ath10k_err(ar, "device %04x with chip_id %08x isn't supported\n",
3811 		   pdev->device, bus_params.chip_id);
3812 
3813 err_free_irq:
3814 	ath10k_pci_free_irq(ar);
3815 
3816 err_deinit_irq:
3817 	ath10k_pci_release_resource(ar);
3818 
3819 err_sleep:
3820 	ath10k_pci_sleep_sync(ar);
3821 	ath10k_pci_release(ar);
3822 
3823 err_free_pipes:
3824 	ath10k_pci_free_pipes(ar);
3825 
3826 err_core_destroy:
3827 	ath10k_core_destroy(ar);
3828 
3829 	return ret;
3830 }
3831 
3832 static void ath10k_pci_remove(struct pci_dev *pdev)
3833 {
3834 	struct ath10k *ar = pci_get_drvdata(pdev);
3835 
3836 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci remove\n");
3837 
3838 	if (!ar)
3839 		return;
3840 
3841 	ath10k_core_unregister(ar);
3842 	ath10k_pci_free_irq(ar);
3843 	ath10k_pci_deinit_irq(ar);
3844 	ath10k_pci_release_resource(ar);
3845 	ath10k_pci_sleep_sync(ar);
3846 	ath10k_pci_release(ar);
3847 	ath10k_core_destroy(ar);
3848 }
3849 
3850 MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table);
3851 
3852 #ifdef CONFIG_PM
3853 static __maybe_unused int ath10k_pci_pm_suspend(struct device *dev)
3854 {
3855 	struct ath10k *ar = dev_get_drvdata(dev);
3856 	int ret;
3857 
3858 	ret = ath10k_pci_suspend(ar);
3859 	if (ret)
3860 		ath10k_warn(ar, "failed to suspend hif: %d\n", ret);
3861 
3862 	return ret;
3863 }
3864 
3865 static __maybe_unused int ath10k_pci_pm_resume(struct device *dev)
3866 {
3867 	struct ath10k *ar = dev_get_drvdata(dev);
3868 	int ret;
3869 
3870 	ret = ath10k_pci_resume(ar);
3871 	if (ret)
3872 		ath10k_warn(ar, "failed to resume hif: %d\n", ret);
3873 
3874 	return ret;
3875 }
3876 
3877 static SIMPLE_DEV_PM_OPS(ath10k_pci_pm_ops,
3878 			 ath10k_pci_pm_suspend,
3879 			 ath10k_pci_pm_resume);
3880 #endif
3881 
3882 static struct pci_driver ath10k_pci_driver = {
3883 	.name = "ath10k_pci",
3884 	.id_table = ath10k_pci_id_table,
3885 	.probe = ath10k_pci_probe,
3886 	.remove = ath10k_pci_remove,
3887 #ifdef CONFIG_PM
3888 	.driver.pm = &ath10k_pci_pm_ops,
3889 #endif
3890 #if defined(__FreeBSD__)
3891 	.bsddriver.name	= KBUILD_MODNAME,
3892 	/* Allow a possible native driver to attach. */
3893 	.bsd_probe_return = (BUS_PROBE_DEFAULT - 1),
3894 #endif
3895 };
3896 
3897 static int __init ath10k_pci_init(void)
3898 {
3899 	int ret1, ret2;
3900 
3901 	ret1 = pci_register_driver(&ath10k_pci_driver);
3902 	if (ret1)
3903 		printk(KERN_ERR "failed to register ath10k pci driver: %d\n",
3904 		       ret1);
3905 
3906 	ret2 = ath10k_ahb_init();
3907 	if (ret2)
3908 		printk(KERN_ERR "ahb init failed: %d\n", ret2);
3909 
3910 	if (ret1 && ret2)
3911 		return ret1;
3912 
3913 	/* registered to at least one bus */
3914 	return 0;
3915 }
3916 module_init(ath10k_pci_init);
3917 
3918 static void __exit ath10k_pci_exit(void)
3919 {
3920 	pci_unregister_driver(&ath10k_pci_driver);
3921 	ath10k_ahb_exit();
3922 }
3923 
3924 module_exit(ath10k_pci_exit);
3925 
3926 MODULE_AUTHOR("Qualcomm Atheros");
3927 MODULE_DESCRIPTION("Driver support for Qualcomm Atheros 802.11ac WLAN PCIe/AHB devices");
3928 MODULE_LICENSE("Dual BSD/GPL");
3929 #if defined(__FreeBSD__)
3930 MODULE_VERSION(ath10k_pci, 1);
3931 MODULE_DEPEND(ath10k_pci, linuxkpi, 1, 1, 1);
3932 MODULE_DEPEND(ath10k_pci, linuxkpi_wlan, 1, 1, 1);
3933 MODULE_DEPEND(ath10k_pci, athk_common, 1, 1, 1);
3934 #ifdef CONFIG_ATH10K_DEBUGFS
3935 MODULE_DEPEND(ath10k_pci, debugfs, 1, 1, 1);
3936 #endif
3937 #endif
3938 
3939 /* QCA988x 2.0 firmware files */
3940 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API2_FILE);
3941 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API3_FILE);
3942 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3943 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3944 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_BOARD_DATA_FILE);
3945 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3946 
3947 /* QCA9887 1.0 firmware files */
3948 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3949 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" QCA9887_HW_1_0_BOARD_DATA_FILE);
3950 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3951 
3952 /* QCA6174 2.1 firmware files */
3953 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API4_FILE);
3954 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API5_FILE);
3955 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" QCA6174_HW_2_1_BOARD_DATA_FILE);
3956 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3957 
3958 /* QCA6174 3.1 firmware files */
3959 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3960 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3961 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API6_FILE);
3962 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" QCA6174_HW_3_0_BOARD_DATA_FILE);
3963 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3964 
3965 /* QCA9377 1.0 firmware files */
3966 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API6_FILE);
3967 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3968 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" QCA9377_HW_1_0_BOARD_DATA_FILE);
3969