1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright (C) 2005-2014, 2018-2021 Intel Corporation
4  * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5  * Copyright (C) 2016-2017 Intel Deutschland GmbH
6  */
7 #include <linux/types.h>
8 #include <linux/slab.h>
9 #include <linux/export.h>
10 #include <linux/etherdevice.h>
11 #include <linux/pci.h>
12 #include <linux/firmware.h>
13 
14 #include "iwl-drv.h"
15 #include "iwl-modparams.h"
16 #include "iwl-nvm-parse.h"
17 #include "iwl-prph.h"
18 #include "iwl-io.h"
19 #include "iwl-csr.h"
20 #include "fw/acpi.h"
21 #include "fw/api/nvm-reg.h"
22 #include "fw/api/commands.h"
23 #include "fw/api/cmdhdr.h"
24 #include "fw/img.h"
25 #include "mei/iwl-mei.h"
26 
27 /* NVM offsets (in words) definitions */
28 enum nvm_offsets {
29 	/* NVM HW-Section offset (in words) definitions */
30 	SUBSYSTEM_ID = 0x0A,
31 	HW_ADDR = 0x15,
32 
33 	/* NVM SW-Section offset (in words) definitions */
34 	NVM_SW_SECTION = 0x1C0,
35 	NVM_VERSION = 0,
36 	RADIO_CFG = 1,
37 	SKU = 2,
38 	N_HW_ADDRS = 3,
39 	NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,
40 
41 	/* NVM calibration section offset (in words) definitions */
42 	NVM_CALIB_SECTION = 0x2B8,
43 	XTAL_CALIB = 0x316 - NVM_CALIB_SECTION,
44 
45 	/* NVM REGULATORY -Section offset (in words) definitions */
46 	NVM_CHANNELS_SDP = 0,
47 };
48 
49 enum ext_nvm_offsets {
50 	/* NVM HW-Section offset (in words) definitions */
51 	MAC_ADDRESS_OVERRIDE_EXT_NVM = 1,
52 
53 	/* NVM SW-Section offset (in words) definitions */
54 	NVM_VERSION_EXT_NVM = 0,
55 	N_HW_ADDRS_FAMILY_8000 = 3,
56 
57 	/* NVM PHY_SKU-Section offset (in words) definitions */
58 	RADIO_CFG_FAMILY_EXT_NVM = 0,
59 	SKU_FAMILY_8000 = 2,
60 
61 	/* NVM REGULATORY -Section offset (in words) definitions */
62 	NVM_CHANNELS_EXTENDED = 0,
63 	NVM_LAR_OFFSET_OLD = 0x4C7,
64 	NVM_LAR_OFFSET = 0x507,
65 	NVM_LAR_ENABLED = 0x7,
66 };
67 
68 /* SKU Capabilities (actual values from NVM definition) */
69 enum nvm_sku_bits {
70 	NVM_SKU_CAP_BAND_24GHZ		= BIT(0),
71 	NVM_SKU_CAP_BAND_52GHZ		= BIT(1),
72 	NVM_SKU_CAP_11N_ENABLE		= BIT(2),
73 	NVM_SKU_CAP_11AC_ENABLE		= BIT(3),
74 	NVM_SKU_CAP_MIMO_DISABLE	= BIT(5),
75 };
76 
77 /*
78  * These are the channel numbers in the order that they are stored in the NVM
79  */
80 static const u16 iwl_nvm_channels[] = {
81 	/* 2.4 GHz */
82 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
83 	/* 5 GHz */
84 	36, 40, 44 , 48, 52, 56, 60, 64,
85 	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
86 	149, 153, 157, 161, 165
87 };
88 
89 static const u16 iwl_ext_nvm_channels[] = {
90 	/* 2.4 GHz */
91 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
92 	/* 5 GHz */
93 	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
94 	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
95 	149, 153, 157, 161, 165, 169, 173, 177, 181
96 };
97 
98 static const u16 iwl_uhb_nvm_channels[] = {
99 	/* 2.4 GHz */
100 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
101 	/* 5 GHz */
102 	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
103 	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
104 	149, 153, 157, 161, 165, 169, 173, 177, 181,
105 	/* 6-7 GHz */
106 	1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69,
107 	73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129,
108 	133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 177, 181, 185,
109 	189, 193, 197, 201, 205, 209, 213, 217, 221, 225, 229, 233
110 };
111 
112 #define IWL_NVM_NUM_CHANNELS		ARRAY_SIZE(iwl_nvm_channels)
113 #define IWL_NVM_NUM_CHANNELS_EXT	ARRAY_SIZE(iwl_ext_nvm_channels)
114 #define IWL_NVM_NUM_CHANNELS_UHB	ARRAY_SIZE(iwl_uhb_nvm_channels)
115 #define NUM_2GHZ_CHANNELS		14
116 #define NUM_5GHZ_CHANNELS		37
117 #define FIRST_2GHZ_HT_MINUS		5
118 #define LAST_2GHZ_HT_PLUS		9
119 #define N_HW_ADDR_MASK			0xF
120 
121 /* rate data (static) */
122 static struct ieee80211_rate iwl_cfg80211_rates[] = {
123 	{ .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
124 	{ .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
125 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
126 	{ .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
127 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
128 	{ .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
129 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
130 	{ .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
131 	{ .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
132 	{ .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
133 	{ .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
134 	{ .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
135 	{ .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
136 	{ .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
137 	{ .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
138 };
139 #define RATES_24_OFFS	0
140 #define N_RATES_24	ARRAY_SIZE(iwl_cfg80211_rates)
141 #define RATES_52_OFFS	4
142 #define N_RATES_52	(N_RATES_24 - RATES_52_OFFS)
143 
144 /**
145  * enum iwl_nvm_channel_flags - channel flags in NVM
146  * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
147  * @NVM_CHANNEL_IBSS: usable as an IBSS channel
148  * @NVM_CHANNEL_ACTIVE: active scanning allowed
149  * @NVM_CHANNEL_RADAR: radar detection required
150  * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
151  * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
152  *	on same channel on 2.4 or same UNII band on 5.2
153  * @NVM_CHANNEL_UNIFORM: uniform spreading required
154  * @NVM_CHANNEL_20MHZ: 20 MHz channel okay
155  * @NVM_CHANNEL_40MHZ: 40 MHz channel okay
156  * @NVM_CHANNEL_80MHZ: 80 MHz channel okay
157  * @NVM_CHANNEL_160MHZ: 160 MHz channel okay
158  * @NVM_CHANNEL_DC_HIGH: DC HIGH required/allowed (?)
159  */
160 enum iwl_nvm_channel_flags {
161 	NVM_CHANNEL_VALID		= BIT(0),
162 	NVM_CHANNEL_IBSS		= BIT(1),
163 	NVM_CHANNEL_ACTIVE		= BIT(3),
164 	NVM_CHANNEL_RADAR		= BIT(4),
165 	NVM_CHANNEL_INDOOR_ONLY		= BIT(5),
166 	NVM_CHANNEL_GO_CONCURRENT	= BIT(6),
167 	NVM_CHANNEL_UNIFORM		= BIT(7),
168 	NVM_CHANNEL_20MHZ		= BIT(8),
169 	NVM_CHANNEL_40MHZ		= BIT(9),
170 	NVM_CHANNEL_80MHZ		= BIT(10),
171 	NVM_CHANNEL_160MHZ		= BIT(11),
172 	NVM_CHANNEL_DC_HIGH		= BIT(12),
173 };
174 
175 /**
176  * enum iwl_reg_capa_flags - global flags applied for the whole regulatory
177  * domain.
178  * @REG_CAPA_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
179  *	2.4Ghz band is allowed.
180  * @REG_CAPA_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
181  *	5Ghz band is allowed.
182  * @REG_CAPA_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
183  *	for this regulatory domain (valid only in 5Ghz).
184  * @REG_CAPA_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
185  *	for this regulatory domain (valid only in 5Ghz).
186  * @REG_CAPA_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
187  * @REG_CAPA_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
188  * @REG_CAPA_40MHZ_FORBIDDEN: 11n channel with a width of 40Mhz is forbidden
189  *	for this regulatory domain (valid only in 5Ghz).
190  * @REG_CAPA_DC_HIGH_ENABLED: DC HIGH allowed.
191  * @REG_CAPA_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
192  */
193 enum iwl_reg_capa_flags {
194 	REG_CAPA_BF_CCD_LOW_BAND	= BIT(0),
195 	REG_CAPA_BF_CCD_HIGH_BAND	= BIT(1),
196 	REG_CAPA_160MHZ_ALLOWED		= BIT(2),
197 	REG_CAPA_80MHZ_ALLOWED		= BIT(3),
198 	REG_CAPA_MCS_8_ALLOWED		= BIT(4),
199 	REG_CAPA_MCS_9_ALLOWED		= BIT(5),
200 	REG_CAPA_40MHZ_FORBIDDEN	= BIT(7),
201 	REG_CAPA_DC_HIGH_ENABLED	= BIT(9),
202 	REG_CAPA_11AX_DISABLED		= BIT(10),
203 };
204 
205 /**
206  * enum iwl_reg_capa_flags_v2 - global flags applied for the whole regulatory
207  * domain (version 2).
208  * @REG_CAPA_V2_STRADDLE_DISABLED: Straddle channels (144, 142, 138) are
209  *	disabled.
210  * @REG_CAPA_V2_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
211  *	2.4Ghz band is allowed.
212  * @REG_CAPA_V2_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
213  *	5Ghz band is allowed.
214  * @REG_CAPA_V2_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
215  *	for this regulatory domain (valid only in 5Ghz).
216  * @REG_CAPA_V2_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
217  *	for this regulatory domain (valid only in 5Ghz).
218  * @REG_CAPA_V2_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
219  * @REG_CAPA_V2_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
220  * @REG_CAPA_V2_WEATHER_DISABLED: Weather radar channels (120, 124, 128, 118,
221  *	126, 122) are disabled.
222  * @REG_CAPA_V2_40MHZ_ALLOWED: 11n channel with a width of 40Mhz is allowed
223  *	for this regulatory domain (uvalid only in 5Ghz).
224  * @REG_CAPA_V2_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
225  */
226 enum iwl_reg_capa_flags_v2 {
227 	REG_CAPA_V2_STRADDLE_DISABLED	= BIT(0),
228 	REG_CAPA_V2_BF_CCD_LOW_BAND	= BIT(1),
229 	REG_CAPA_V2_BF_CCD_HIGH_BAND	= BIT(2),
230 	REG_CAPA_V2_160MHZ_ALLOWED	= BIT(3),
231 	REG_CAPA_V2_80MHZ_ALLOWED	= BIT(4),
232 	REG_CAPA_V2_MCS_8_ALLOWED	= BIT(5),
233 	REG_CAPA_V2_MCS_9_ALLOWED	= BIT(6),
234 	REG_CAPA_V2_WEATHER_DISABLED	= BIT(7),
235 	REG_CAPA_V2_40MHZ_ALLOWED	= BIT(8),
236 	REG_CAPA_V2_11AX_DISABLED	= BIT(10),
237 };
238 
239 /*
240 * API v2 for reg_capa_flags is relevant from version 6 and onwards of the
241 * MCC update command response.
242 */
243 #define REG_CAPA_V2_RESP_VER	6
244 
245 /**
246  * struct iwl_reg_capa - struct for global regulatory capabilities, Used for
247  * handling the different APIs of reg_capa_flags.
248  *
249  * @allow_40mhz: 11n channel with a width of 40Mhz is allowed
250  *	for this regulatory domain (valid only in 5Ghz).
251  * @allow_80mhz: 11ac channel with a width of 80Mhz is allowed
252  *	for this regulatory domain (valid only in 5Ghz).
253  * @allow_160mhz: 11ac channel with a width of 160Mhz is allowed
254  *	for this regulatory domain (valid only in 5Ghz).
255  * @disable_11ax: 11ax is forbidden for this regulatory domain.
256  */
257 struct iwl_reg_capa {
258 	u16 allow_40mhz;
259 	u16 allow_80mhz;
260 	u16 allow_160mhz;
261 	u16 disable_11ax;
262 };
263 
264 static inline void iwl_nvm_print_channel_flags(struct device *dev, u32 level,
265 					       int chan, u32 flags)
266 {
267 #define CHECK_AND_PRINT_I(x)	\
268 	((flags & NVM_CHANNEL_##x) ? " " #x : "")
269 
270 	if (!(flags & NVM_CHANNEL_VALID)) {
271 		IWL_DEBUG_DEV(dev, level, "Ch. %d: 0x%x: No traffic\n",
272 			      chan, flags);
273 		return;
274 	}
275 
276 	/* Note: already can print up to 101 characters, 110 is the limit! */
277 	IWL_DEBUG_DEV(dev, level,
278 		      "Ch. %d: 0x%x:%s%s%s%s%s%s%s%s%s%s%s%s\n",
279 		      chan, flags,
280 		      CHECK_AND_PRINT_I(VALID),
281 		      CHECK_AND_PRINT_I(IBSS),
282 		      CHECK_AND_PRINT_I(ACTIVE),
283 		      CHECK_AND_PRINT_I(RADAR),
284 		      CHECK_AND_PRINT_I(INDOOR_ONLY),
285 		      CHECK_AND_PRINT_I(GO_CONCURRENT),
286 		      CHECK_AND_PRINT_I(UNIFORM),
287 		      CHECK_AND_PRINT_I(20MHZ),
288 		      CHECK_AND_PRINT_I(40MHZ),
289 		      CHECK_AND_PRINT_I(80MHZ),
290 		      CHECK_AND_PRINT_I(160MHZ),
291 		      CHECK_AND_PRINT_I(DC_HIGH));
292 #undef CHECK_AND_PRINT_I
293 }
294 
295 static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, enum nl80211_band band,
296 				 u32 nvm_flags, const struct iwl_cfg *cfg)
297 {
298 	u32 flags = IEEE80211_CHAN_NO_HT40;
299 
300 	if (band == NL80211_BAND_2GHZ && (nvm_flags & NVM_CHANNEL_40MHZ)) {
301 		if (ch_num <= LAST_2GHZ_HT_PLUS)
302 			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
303 		if (ch_num >= FIRST_2GHZ_HT_MINUS)
304 			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
305 	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
306 		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
307 			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
308 		else
309 			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
310 	}
311 	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
312 		flags |= IEEE80211_CHAN_NO_80MHZ;
313 	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
314 		flags |= IEEE80211_CHAN_NO_160MHZ;
315 
316 	if (!(nvm_flags & NVM_CHANNEL_IBSS))
317 		flags |= IEEE80211_CHAN_NO_IR;
318 
319 	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
320 		flags |= IEEE80211_CHAN_NO_IR;
321 
322 	if (nvm_flags & NVM_CHANNEL_RADAR)
323 		flags |= IEEE80211_CHAN_RADAR;
324 
325 	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
326 		flags |= IEEE80211_CHAN_INDOOR_ONLY;
327 
328 	/* Set the GO concurrent flag only in case that NO_IR is set.
329 	 * Otherwise it is meaningless
330 	 */
331 	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
332 	    (flags & IEEE80211_CHAN_NO_IR))
333 		flags |= IEEE80211_CHAN_IR_CONCURRENT;
334 
335 	return flags;
336 }
337 
338 static enum nl80211_band iwl_nl80211_band_from_channel_idx(int ch_idx)
339 {
340 	if (ch_idx >= NUM_2GHZ_CHANNELS + NUM_5GHZ_CHANNELS) {
341 		return NL80211_BAND_6GHZ;
342 	}
343 
344 	if (ch_idx >= NUM_2GHZ_CHANNELS)
345 		return NL80211_BAND_5GHZ;
346 	return NL80211_BAND_2GHZ;
347 }
348 
349 static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
350 				struct iwl_nvm_data *data,
351 				const void * const nvm_ch_flags,
352 				u32 sbands_flags, bool v4)
353 {
354 	int ch_idx;
355 	int n_channels = 0;
356 	struct ieee80211_channel *channel;
357 	u32 ch_flags;
358 	int num_of_ch;
359 	const u16 *nvm_chan;
360 
361 	if (cfg->uhb_supported) {
362 		num_of_ch = IWL_NVM_NUM_CHANNELS_UHB;
363 		nvm_chan = iwl_uhb_nvm_channels;
364 	} else if (cfg->nvm_type == IWL_NVM_EXT) {
365 		num_of_ch = IWL_NVM_NUM_CHANNELS_EXT;
366 		nvm_chan = iwl_ext_nvm_channels;
367 	} else {
368 		num_of_ch = IWL_NVM_NUM_CHANNELS;
369 		nvm_chan = iwl_nvm_channels;
370 	}
371 
372 	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
373 		enum nl80211_band band =
374 			iwl_nl80211_band_from_channel_idx(ch_idx);
375 
376 		if (v4)
377 			ch_flags =
378 				__le32_to_cpup((const __le32 *)nvm_ch_flags + ch_idx);
379 		else
380 			ch_flags =
381 				__le16_to_cpup((const __le16 *)nvm_ch_flags + ch_idx);
382 
383 		if (band == NL80211_BAND_5GHZ &&
384 		    !data->sku_cap_band_52ghz_enable)
385 			continue;
386 
387 		/* workaround to disable wide channels in 5GHz */
388 		if ((sbands_flags & IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ) &&
389 		    band == NL80211_BAND_5GHZ) {
390 			ch_flags &= ~(NVM_CHANNEL_40MHZ |
391 				     NVM_CHANNEL_80MHZ |
392 				     NVM_CHANNEL_160MHZ);
393 		}
394 
395 		if (ch_flags & NVM_CHANNEL_160MHZ)
396 			data->vht160_supported = true;
397 
398 		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR) &&
399 		    !(ch_flags & NVM_CHANNEL_VALID)) {
400 			/*
401 			 * Channels might become valid later if lar is
402 			 * supported, hence we still want to add them to
403 			 * the list of supported channels to cfg80211.
404 			 */
405 			iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
406 						    nvm_chan[ch_idx], ch_flags);
407 			continue;
408 		}
409 
410 		channel = &data->channels[n_channels];
411 		n_channels++;
412 
413 		channel->hw_value = nvm_chan[ch_idx];
414 		channel->band = band;
415 		channel->center_freq =
416 			ieee80211_channel_to_frequency(
417 				channel->hw_value, channel->band);
418 
419 		/* Initialize regulatory-based run-time data */
420 
421 		/*
422 		 * Default value - highest tx power value.  max_power
423 		 * is not used in mvm, and is used for backwards compatibility
424 		 */
425 		channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
426 
427 		/* don't put limitations in case we're using LAR */
428 		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR))
429 			channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
430 							       ch_idx, band,
431 							       ch_flags, cfg);
432 		else
433 			channel->flags = 0;
434 
435 		/* TODO: Don't put limitations on UHB devices as we still don't
436 		 * have NVM for them
437 		 */
438 		if (cfg->uhb_supported)
439 			channel->flags = 0;
440 		iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
441 					    channel->hw_value, ch_flags);
442 		IWL_DEBUG_EEPROM(dev, "Ch. %d: %ddBm\n",
443 				 channel->hw_value, channel->max_power);
444 	}
445 
446 	return n_channels;
447 }
448 
449 static void iwl_init_vht_hw_capab(struct iwl_trans *trans,
450 				  struct iwl_nvm_data *data,
451 				  struct ieee80211_sta_vht_cap *vht_cap,
452 				  u8 tx_chains, u8 rx_chains)
453 {
454 	const struct iwl_cfg *cfg = trans->cfg;
455 	int num_rx_ants = num_of_ant(rx_chains);
456 	int num_tx_ants = num_of_ant(tx_chains);
457 
458 	vht_cap->vht_supported = true;
459 
460 	vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
461 		       IEEE80211_VHT_CAP_RXSTBC_1 |
462 		       IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
463 		       3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
464 		       IEEE80211_VHT_MAX_AMPDU_1024K <<
465 		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
466 
467 	if (data->vht160_supported)
468 		vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ |
469 				IEEE80211_VHT_CAP_SHORT_GI_160;
470 
471 	if (cfg->vht_mu_mimo_supported)
472 		vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;
473 
474 	if (cfg->ht_params->ldpc)
475 		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
476 
477 	if (data->sku_cap_mimo_disabled) {
478 		num_rx_ants = 1;
479 		num_tx_ants = 1;
480 	}
481 
482 	if (num_tx_ants > 1)
483 		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
484 	else
485 		vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
486 
487 	switch (iwlwifi_mod_params.amsdu_size) {
488 	case IWL_AMSDU_DEF:
489 		if (trans->trans_cfg->mq_rx_supported)
490 			vht_cap->cap |=
491 				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
492 		else
493 			vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
494 		break;
495 	case IWL_AMSDU_2K:
496 		if (trans->trans_cfg->mq_rx_supported)
497 			vht_cap->cap |=
498 				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
499 		else
500 			WARN(1, "RB size of 2K is not supported by this device\n");
501 		break;
502 	case IWL_AMSDU_4K:
503 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
504 		break;
505 	case IWL_AMSDU_8K:
506 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
507 		break;
508 	case IWL_AMSDU_12K:
509 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
510 		break;
511 	default:
512 		break;
513 	}
514 
515 	vht_cap->vht_mcs.rx_mcs_map =
516 		cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
517 			    IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
518 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
519 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
520 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
521 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
522 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
523 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);
524 
525 	if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
526 		vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
527 		/* this works because NOT_SUPPORTED == 3 */
528 		vht_cap->vht_mcs.rx_mcs_map |=
529 			cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
530 	}
531 
532 	vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
533 
534 	vht_cap->vht_mcs.tx_highest |=
535 		cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE);
536 }
537 
538 static const u8 iwl_vendor_caps[] = {
539 	0xdd,			/* vendor element */
540 	0x06,			/* length */
541 	0x00, 0x17, 0x35,	/* Intel OUI */
542 	0x08,			/* type (Intel Capabilities) */
543 	/* followed by 16 bits of capabilities */
544 #define IWL_VENDOR_CAP_IMPROVED_BF_FDBK_HE	BIT(0)
545 	IWL_VENDOR_CAP_IMPROVED_BF_FDBK_HE,
546 	0x00
547 };
548 
549 static const struct ieee80211_sband_iftype_data iwl_he_capa[] = {
550 	{
551 		.types_mask = BIT(NL80211_IFTYPE_STATION),
552 		.he_cap = {
553 			.has_he = true,
554 			.he_cap_elem = {
555 				.mac_cap_info[0] =
556 					IEEE80211_HE_MAC_CAP0_HTC_HE |
557 					IEEE80211_HE_MAC_CAP0_TWT_REQ,
558 				.mac_cap_info[1] =
559 					IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
560 					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
561 				.mac_cap_info[2] =
562 					IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP,
563 				.mac_cap_info[3] =
564 					IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
565 					IEEE80211_HE_MAC_CAP3_RX_CTRL_FRAME_TO_MULTIBSS,
566 				.mac_cap_info[4] =
567 					IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU |
568 					IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39,
569 				.mac_cap_info[5] =
570 					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40 |
571 					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41 |
572 					IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU |
573 					IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS |
574 					IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX,
575 				.phy_cap_info[0] =
576 					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G |
577 					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
578 					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G,
579 				.phy_cap_info[1] =
580 					IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK |
581 					IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A |
582 					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
583 				.phy_cap_info[2] =
584 					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US |
585 					IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ,
586 				.phy_cap_info[3] =
587 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK |
588 					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
589 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK |
590 					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
591 				.phy_cap_info[4] =
592 					IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE |
593 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 |
594 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8,
595 				.phy_cap_info[6] =
596 					IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB |
597 					IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB |
598 					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
599 				.phy_cap_info[7] =
600 					IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_SUPP |
601 					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI,
602 				.phy_cap_info[8] =
603 					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
604 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
605 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
606 					IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
607 					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242,
608 				.phy_cap_info[9] =
609 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
610 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB |
611 					(IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED <<
612 					IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS),
613 				.phy_cap_info[10] =
614 					IEEE80211_HE_PHY_CAP10_HE_MU_M1RU_MAX_LTF,
615 			},
616 			/*
617 			 * Set default Tx/Rx HE MCS NSS Support field.
618 			 * Indicate support for up to 2 spatial streams and all
619 			 * MCS, without any special cases
620 			 */
621 			.he_mcs_nss_supp = {
622 				.rx_mcs_80 = cpu_to_le16(0xfffa),
623 				.tx_mcs_80 = cpu_to_le16(0xfffa),
624 				.rx_mcs_160 = cpu_to_le16(0xfffa),
625 				.tx_mcs_160 = cpu_to_le16(0xfffa),
626 				.rx_mcs_80p80 = cpu_to_le16(0xffff),
627 				.tx_mcs_80p80 = cpu_to_le16(0xffff),
628 			},
629 			/*
630 			 * Set default PPE thresholds, with PPET16 set to 0,
631 			 * PPET8 set to 7
632 			 */
633 			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
634 		},
635 	},
636 	{
637 		.types_mask = BIT(NL80211_IFTYPE_AP),
638 		.he_cap = {
639 			.has_he = true,
640 			.he_cap_elem = {
641 				.mac_cap_info[0] =
642 					IEEE80211_HE_MAC_CAP0_HTC_HE,
643 				.mac_cap_info[1] =
644 					IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
645 					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
646 				.mac_cap_info[3] =
647 					IEEE80211_HE_MAC_CAP3_OMI_CONTROL,
648 				.phy_cap_info[0] =
649 					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G |
650 					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G,
651 				.phy_cap_info[1] =
652 					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
653 				.phy_cap_info[2] =
654 					IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ |
655 					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US,
656 				.phy_cap_info[3] =
657 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK |
658 					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
659 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK |
660 					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
661 				.phy_cap_info[6] =
662 					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
663 				.phy_cap_info[7] =
664 					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI,
665 				.phy_cap_info[8] =
666 					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
667 					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242,
668 				.phy_cap_info[9] =
669 					IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED
670 					<< IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS,
671 			},
672 			/*
673 			 * Set default Tx/Rx HE MCS NSS Support field.
674 			 * Indicate support for up to 2 spatial streams and all
675 			 * MCS, without any special cases
676 			 */
677 			.he_mcs_nss_supp = {
678 				.rx_mcs_80 = cpu_to_le16(0xfffa),
679 				.tx_mcs_80 = cpu_to_le16(0xfffa),
680 				.rx_mcs_160 = cpu_to_le16(0xfffa),
681 				.tx_mcs_160 = cpu_to_le16(0xfffa),
682 				.rx_mcs_80p80 = cpu_to_le16(0xffff),
683 				.tx_mcs_80p80 = cpu_to_le16(0xffff),
684 			},
685 			/*
686 			 * Set default PPE thresholds, with PPET16 set to 0,
687 			 * PPET8 set to 7
688 			 */
689 			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
690 		},
691 	},
692 };
693 
694 static void iwl_init_he_6ghz_capa(struct iwl_trans *trans,
695 				  struct iwl_nvm_data *data,
696 				  struct ieee80211_supported_band *sband,
697 				  u8 tx_chains, u8 rx_chains)
698 {
699 	struct ieee80211_sta_ht_cap ht_cap;
700 	struct ieee80211_sta_vht_cap vht_cap = {};
701 	struct ieee80211_sband_iftype_data *iftype_data;
702 	u16 he_6ghz_capa = 0;
703 	u32 exp;
704 	int i;
705 
706 	if (sband->band != NL80211_BAND_6GHZ)
707 		return;
708 
709 	/* grab HT/VHT capabilities and calculate HE 6 GHz capabilities */
710 	iwl_init_ht_hw_capab(trans, data, &ht_cap, NL80211_BAND_5GHZ,
711 			     tx_chains, rx_chains);
712 	WARN_ON(!ht_cap.ht_supported);
713 	iwl_init_vht_hw_capab(trans, data, &vht_cap, tx_chains, rx_chains);
714 	WARN_ON(!vht_cap.vht_supported);
715 
716 	he_6ghz_capa |=
717 		u16_encode_bits(ht_cap.ampdu_density,
718 				IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START);
719 	exp = u32_get_bits(vht_cap.cap,
720 			   IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK);
721 	he_6ghz_capa |=
722 		u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP);
723 	exp = u32_get_bits(vht_cap.cap, IEEE80211_VHT_CAP_MAX_MPDU_MASK);
724 	he_6ghz_capa |=
725 		u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN);
726 	/* we don't support extended_ht_cap_info anywhere, so no RD_RESPONDER */
727 	if (vht_cap.cap & IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN)
728 		he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS;
729 	if (vht_cap.cap & IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN)
730 		he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS;
731 
732 	IWL_DEBUG_EEPROM(trans->dev, "he_6ghz_capa=0x%x\n", he_6ghz_capa);
733 
734 	/* we know it's writable - we set it before ourselves */
735 	iftype_data = (void *)(uintptr_t)sband->iftype_data;
736 	for (i = 0; i < sband->n_iftype_data; i++)
737 		iftype_data[i].he_6ghz_capa.capa = cpu_to_le16(he_6ghz_capa);
738 }
739 
740 static void
741 iwl_nvm_fixup_sband_iftd(struct iwl_trans *trans,
742 			 struct ieee80211_supported_band *sband,
743 			 struct ieee80211_sband_iftype_data *iftype_data,
744 			 u8 tx_chains, u8 rx_chains,
745 			 const struct iwl_fw *fw)
746 {
747 	bool is_ap = iftype_data->types_mask & BIT(NL80211_IFTYPE_AP);
748 
749 	/* Advertise an A-MPDU exponent extension based on
750 	 * operating band
751 	 */
752 	if (sband->band != NL80211_BAND_2GHZ)
753 		iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
754 			IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_1;
755 	else
756 		iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
757 			IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3;
758 
759 	if (is_ap && iwlwifi_mod_params.nvm_file)
760 		iftype_data->he_cap.he_cap_elem.phy_cap_info[0] |=
761 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G;
762 
763 	if ((tx_chains & rx_chains) == ANT_AB) {
764 		iftype_data->he_cap.he_cap_elem.phy_cap_info[2] |=
765 			IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ;
766 		iftype_data->he_cap.he_cap_elem.phy_cap_info[5] |=
767 			IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 |
768 			IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2;
769 		if (!is_ap)
770 			iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |=
771 				IEEE80211_HE_PHY_CAP7_MAX_NC_2;
772 	} else if (!is_ap) {
773 		/* If not 2x2, we need to indicate 1x1 in the
774 		 * Midamble RX Max NSTS - but not for AP mode
775 		 */
776 		iftype_data->he_cap.he_cap_elem.phy_cap_info[1] &=
777 			~IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS;
778 		iftype_data->he_cap.he_cap_elem.phy_cap_info[2] &=
779 			~IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS;
780 		iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |=
781 			IEEE80211_HE_PHY_CAP7_MAX_NC_1;
782 	}
783 
784 	switch (CSR_HW_RFID_TYPE(trans->hw_rf_id)) {
785 	case IWL_CFG_RF_TYPE_GF:
786 	case IWL_CFG_RF_TYPE_MR:
787 	case IWL_CFG_RF_TYPE_MS:
788 		iftype_data->he_cap.he_cap_elem.phy_cap_info[9] |=
789 			IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU;
790 		if (!is_ap)
791 			iftype_data->he_cap.he_cap_elem.phy_cap_info[9] |=
792 				IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU;
793 		break;
794 	}
795 
796 	if (fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_BROADCAST_TWT))
797 		iftype_data->he_cap.he_cap_elem.mac_cap_info[2] |=
798 			IEEE80211_HE_MAC_CAP2_BCAST_TWT;
799 
800 	if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_22000 &&
801 	    !is_ap) {
802 		iftype_data->vendor_elems.data = iwl_vendor_caps;
803 		iftype_data->vendor_elems.len = ARRAY_SIZE(iwl_vendor_caps);
804 	}
805 }
806 
807 static void iwl_init_he_hw_capab(struct iwl_trans *trans,
808 				 struct iwl_nvm_data *data,
809 				 struct ieee80211_supported_band *sband,
810 				 u8 tx_chains, u8 rx_chains,
811 				 const struct iwl_fw *fw)
812 {
813 	struct ieee80211_sband_iftype_data *iftype_data;
814 	int i;
815 
816 	/* should only initialize once */
817 	if (WARN_ON(sband->iftype_data))
818 		return;
819 
820 	BUILD_BUG_ON(sizeof(data->iftd.low) != sizeof(iwl_he_capa));
821 	BUILD_BUG_ON(sizeof(data->iftd.high) != sizeof(iwl_he_capa));
822 
823 	switch (sband->band) {
824 	case NL80211_BAND_2GHZ:
825 		iftype_data = data->iftd.low;
826 		break;
827 	case NL80211_BAND_5GHZ:
828 	case NL80211_BAND_6GHZ:
829 		iftype_data = data->iftd.high;
830 		break;
831 	default:
832 		WARN_ON(1);
833 		return;
834 	}
835 
836 	memcpy(iftype_data, iwl_he_capa, sizeof(iwl_he_capa));
837 
838 	sband->iftype_data = iftype_data;
839 	sband->n_iftype_data = ARRAY_SIZE(iwl_he_capa);
840 
841 	for (i = 0; i < sband->n_iftype_data; i++)
842 		iwl_nvm_fixup_sband_iftd(trans, sband, &iftype_data[i],
843 					 tx_chains, rx_chains, fw);
844 
845 	iwl_init_he_6ghz_capa(trans, data, sband, tx_chains, rx_chains);
846 }
847 
848 static void iwl_init_sbands(struct iwl_trans *trans,
849 			    struct iwl_nvm_data *data,
850 			    const void *nvm_ch_flags, u8 tx_chains,
851 			    u8 rx_chains, u32 sbands_flags, bool v4,
852 			    const struct iwl_fw *fw)
853 {
854 	struct device *dev = trans->dev;
855 	const struct iwl_cfg *cfg = trans->cfg;
856 	int n_channels;
857 	int n_used = 0;
858 	struct ieee80211_supported_band *sband;
859 
860 	n_channels = iwl_init_channel_map(dev, cfg, data, nvm_ch_flags,
861 					  sbands_flags, v4);
862 	sband = &data->bands[NL80211_BAND_2GHZ];
863 	sband->band = NL80211_BAND_2GHZ;
864 	sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
865 	sband->n_bitrates = N_RATES_24;
866 	n_used += iwl_init_sband_channels(data, sband, n_channels,
867 					  NL80211_BAND_2GHZ);
868 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ,
869 			     tx_chains, rx_chains);
870 
871 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
872 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
873 				     fw);
874 
875 	sband = &data->bands[NL80211_BAND_5GHZ];
876 	sband->band = NL80211_BAND_5GHZ;
877 	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
878 	sband->n_bitrates = N_RATES_52;
879 	n_used += iwl_init_sband_channels(data, sband, n_channels,
880 					  NL80211_BAND_5GHZ);
881 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ,
882 			     tx_chains, rx_chains);
883 	if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
884 		iwl_init_vht_hw_capab(trans, data, &sband->vht_cap,
885 				      tx_chains, rx_chains);
886 
887 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
888 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
889 				     fw);
890 
891 	/* 6GHz band. */
892 	sband = &data->bands[NL80211_BAND_6GHZ];
893 	sband->band = NL80211_BAND_6GHZ;
894 	/* use the same rates as 5GHz band */
895 	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
896 	sband->n_bitrates = N_RATES_52;
897 	n_used += iwl_init_sband_channels(data, sband, n_channels,
898 					  NL80211_BAND_6GHZ);
899 
900 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
901 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
902 				     fw);
903 	else
904 		sband->n_channels = 0;
905 	if (n_channels != n_used)
906 		IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
907 			    n_used, n_channels);
908 }
909 
910 static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
911 		       const __le16 *phy_sku)
912 {
913 	if (cfg->nvm_type != IWL_NVM_EXT)
914 		return le16_to_cpup(nvm_sw + SKU);
915 
916 	return le32_to_cpup((const __le32 *)(phy_sku + SKU_FAMILY_8000));
917 }
918 
919 static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
920 {
921 	if (cfg->nvm_type != IWL_NVM_EXT)
922 		return le16_to_cpup(nvm_sw + NVM_VERSION);
923 	else
924 		return le32_to_cpup((const __le32 *)(nvm_sw +
925 						     NVM_VERSION_EXT_NVM));
926 }
927 
928 static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
929 			     const __le16 *phy_sku)
930 {
931 	if (cfg->nvm_type != IWL_NVM_EXT)
932 		return le16_to_cpup(nvm_sw + RADIO_CFG);
933 
934 	return le32_to_cpup((const __le32 *)(phy_sku + RADIO_CFG_FAMILY_EXT_NVM));
935 
936 }
937 
938 static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
939 {
940 	int n_hw_addr;
941 
942 	if (cfg->nvm_type != IWL_NVM_EXT)
943 		return le16_to_cpup(nvm_sw + N_HW_ADDRS);
944 
945 	n_hw_addr = le32_to_cpup((const __le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));
946 
947 	return n_hw_addr & N_HW_ADDR_MASK;
948 }
949 
950 static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
951 			      struct iwl_nvm_data *data,
952 			      u32 radio_cfg)
953 {
954 	if (cfg->nvm_type != IWL_NVM_EXT) {
955 		data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
956 		data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
957 		data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
958 		data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
959 		return;
960 	}
961 
962 	/* set the radio configuration for family 8000 */
963 	data->radio_cfg_type = EXT_NVM_RF_CFG_TYPE_MSK(radio_cfg);
964 	data->radio_cfg_step = EXT_NVM_RF_CFG_STEP_MSK(radio_cfg);
965 	data->radio_cfg_dash = EXT_NVM_RF_CFG_DASH_MSK(radio_cfg);
966 	data->radio_cfg_pnum = EXT_NVM_RF_CFG_FLAVOR_MSK(radio_cfg);
967 	data->valid_tx_ant = EXT_NVM_RF_CFG_TX_ANT_MSK(radio_cfg);
968 	data->valid_rx_ant = EXT_NVM_RF_CFG_RX_ANT_MSK(radio_cfg);
969 }
970 
971 static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest)
972 {
973 	const u8 *hw_addr;
974 
975 	hw_addr = (const u8 *)&mac_addr0;
976 	dest[0] = hw_addr[3];
977 	dest[1] = hw_addr[2];
978 	dest[2] = hw_addr[1];
979 	dest[3] = hw_addr[0];
980 
981 	hw_addr = (const u8 *)&mac_addr1;
982 	dest[4] = hw_addr[1];
983 	dest[5] = hw_addr[0];
984 }
985 
986 static void iwl_set_hw_address_from_csr(struct iwl_trans *trans,
987 					struct iwl_nvm_data *data)
988 {
989 	__le32 mac_addr0 = cpu_to_le32(iwl_read32(trans,
990 						  CSR_MAC_ADDR0_STRAP(trans)));
991 	__le32 mac_addr1 = cpu_to_le32(iwl_read32(trans,
992 						  CSR_MAC_ADDR1_STRAP(trans)));
993 
994 	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
995 	/*
996 	 * If the OEM fused a valid address, use it instead of the one in the
997 	 * OTP
998 	 */
999 	if (is_valid_ether_addr(data->hw_addr))
1000 		return;
1001 
1002 	mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_OTP(trans)));
1003 	mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_OTP(trans)));
1004 
1005 	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1006 }
1007 
1008 static void iwl_set_hw_address_family_8000(struct iwl_trans *trans,
1009 					   const struct iwl_cfg *cfg,
1010 					   struct iwl_nvm_data *data,
1011 					   const __le16 *mac_override,
1012 					   const __be16 *nvm_hw)
1013 {
1014 	const u8 *hw_addr;
1015 
1016 	if (mac_override) {
1017 		static const u8 reserved_mac[] = {
1018 			0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
1019 		};
1020 
1021 		hw_addr = (const u8 *)(mac_override +
1022 				 MAC_ADDRESS_OVERRIDE_EXT_NVM);
1023 
1024 		/*
1025 		 * Store the MAC address from MAO section.
1026 		 * No byte swapping is required in MAO section
1027 		 */
1028 		memcpy(data->hw_addr, hw_addr, ETH_ALEN);
1029 
1030 		/*
1031 		 * Force the use of the OTP MAC address in case of reserved MAC
1032 		 * address in the NVM, or if address is given but invalid.
1033 		 */
1034 		if (is_valid_ether_addr(data->hw_addr) &&
1035 		    memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0)
1036 			return;
1037 
1038 		IWL_ERR(trans,
1039 			"mac address from nvm override section is not valid\n");
1040 	}
1041 
1042 	if (nvm_hw) {
1043 		/* read the mac address from WFMP registers */
1044 		__le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans,
1045 						WFMP_MAC_ADDR_0));
1046 		__le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans,
1047 						WFMP_MAC_ADDR_1));
1048 
1049 		iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1050 
1051 		return;
1052 	}
1053 
1054 	IWL_ERR(trans, "mac address is not found\n");
1055 }
1056 
1057 static int iwl_set_hw_address(struct iwl_trans *trans,
1058 			      const struct iwl_cfg *cfg,
1059 			      struct iwl_nvm_data *data, const __be16 *nvm_hw,
1060 			      const __le16 *mac_override)
1061 {
1062 	if (cfg->mac_addr_from_csr) {
1063 		iwl_set_hw_address_from_csr(trans, data);
1064 	} else if (cfg->nvm_type != IWL_NVM_EXT) {
1065 		const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR);
1066 
1067 		/* The byte order is little endian 16 bit, meaning 214365 */
1068 		data->hw_addr[0] = hw_addr[1];
1069 		data->hw_addr[1] = hw_addr[0];
1070 		data->hw_addr[2] = hw_addr[3];
1071 		data->hw_addr[3] = hw_addr[2];
1072 		data->hw_addr[4] = hw_addr[5];
1073 		data->hw_addr[5] = hw_addr[4];
1074 	} else {
1075 		iwl_set_hw_address_family_8000(trans, cfg, data,
1076 					       mac_override, nvm_hw);
1077 	}
1078 
1079 	if (!is_valid_ether_addr(data->hw_addr)) {
1080 		IWL_ERR(trans, "no valid mac address was found\n");
1081 		return -EINVAL;
1082 	}
1083 
1084 	if (!trans->csme_own)
1085 #if defined(__linux__)
1086 		IWL_INFO(trans, "base HW address: %pM, OTP minor version: 0x%x\n",
1087 			 data->hw_addr, iwl_read_prph(trans, REG_OTP_MINOR));
1088 #elif defined(__FreeBSD__)
1089 		IWL_INFO(trans, "base HW address: %6D, OTP minor version: 0x%x\n",
1090 			 data->hw_addr, ":", iwl_read_prph(trans, REG_OTP_MINOR));
1091 #endif
1092 
1093 	return 0;
1094 }
1095 
1096 static bool
1097 iwl_nvm_no_wide_in_5ghz(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1098 			const __be16 *nvm_hw)
1099 {
1100 	/*
1101 	 * Workaround a bug in Indonesia SKUs where the regulatory in
1102 	 * some 7000-family OTPs erroneously allow wide channels in
1103 	 * 5GHz.  To check for Indonesia, we take the SKU value from
1104 	 * bits 1-4 in the subsystem ID and check if it is either 5 or
1105 	 * 9.  In those cases, we need to force-disable wide channels
1106 	 * in 5GHz otherwise the FW will throw a sysassert when we try
1107 	 * to use them.
1108 	 */
1109 	if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_7000) {
1110 		/*
1111 		 * Unlike the other sections in the NVM, the hw
1112 		 * section uses big-endian.
1113 		 */
1114 		u16 subsystem_id = be16_to_cpup(nvm_hw + SUBSYSTEM_ID);
1115 		u8 sku = (subsystem_id & 0x1e) >> 1;
1116 
1117 		if (sku == 5 || sku == 9) {
1118 			IWL_DEBUG_EEPROM(trans->dev,
1119 					 "disabling wide channels in 5GHz (0x%0x %d)\n",
1120 					 subsystem_id, sku);
1121 			return true;
1122 		}
1123 	}
1124 
1125 	return false;
1126 }
1127 
1128 struct iwl_nvm_data *
1129 iwl_parse_mei_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1130 		       const struct iwl_mei_nvm *mei_nvm,
1131 		       const struct iwl_fw *fw)
1132 {
1133 	struct iwl_nvm_data *data;
1134 	u32 sbands_flags = 0;
1135 	u8 rx_chains = fw->valid_rx_ant;
1136 	u8 tx_chains = fw->valid_rx_ant;
1137 
1138 	if (cfg->uhb_supported)
1139 		data = kzalloc(struct_size(data, channels,
1140 					   IWL_NVM_NUM_CHANNELS_UHB),
1141 					   GFP_KERNEL);
1142 	else
1143 		data = kzalloc(struct_size(data, channels,
1144 					   IWL_NVM_NUM_CHANNELS_EXT),
1145 					   GFP_KERNEL);
1146 	if (!data)
1147 		return NULL;
1148 
1149 	BUILD_BUG_ON(ARRAY_SIZE(mei_nvm->channels) !=
1150 		     IWL_NVM_NUM_CHANNELS_UHB);
1151 	data->nvm_version = mei_nvm->nvm_version;
1152 
1153 	iwl_set_radio_cfg(cfg, data, mei_nvm->radio_cfg);
1154 	if (data->valid_tx_ant)
1155 		tx_chains &= data->valid_tx_ant;
1156 	if (data->valid_rx_ant)
1157 		rx_chains &= data->valid_rx_ant;
1158 
1159 	data->sku_cap_mimo_disabled = false;
1160 	data->sku_cap_band_24ghz_enable = true;
1161 	data->sku_cap_band_52ghz_enable = true;
1162 	data->sku_cap_11n_enable =
1163 		!(iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL);
1164 	data->sku_cap_11ac_enable = true;
1165 	data->sku_cap_11ax_enable =
1166 		mei_nvm->caps & MEI_NVM_CAPS_11AX_SUPPORT;
1167 
1168 	data->lar_enabled = mei_nvm->caps & MEI_NVM_CAPS_LARI_SUPPORT;
1169 
1170 	data->n_hw_addrs = mei_nvm->n_hw_addrs;
1171 	/* If no valid mac address was found - bail out */
1172 	if (iwl_set_hw_address(trans, cfg, data, NULL, NULL)) {
1173 		kfree(data);
1174 		return NULL;
1175 	}
1176 
1177 	if (data->lar_enabled &&
1178 	    fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT))
1179 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1180 
1181 	iwl_init_sbands(trans, data, mei_nvm->channels, tx_chains, rx_chains,
1182 			sbands_flags, true, fw);
1183 
1184 	return data;
1185 }
1186 IWL_EXPORT_SYMBOL(iwl_parse_mei_nvm_data);
1187 
1188 struct iwl_nvm_data *
1189 iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1190 		   const struct iwl_fw *fw,
1191 		   const __be16 *nvm_hw, const __le16 *nvm_sw,
1192 		   const __le16 *nvm_calib, const __le16 *regulatory,
1193 		   const __le16 *mac_override, const __le16 *phy_sku,
1194 		   u8 tx_chains, u8 rx_chains)
1195 {
1196 	struct iwl_nvm_data *data;
1197 	bool lar_enabled;
1198 	u32 sku, radio_cfg;
1199 	u32 sbands_flags = 0;
1200 	u16 lar_config;
1201 	const __le16 *ch_section;
1202 
1203 	if (cfg->uhb_supported)
1204 		data = kzalloc(struct_size(data, channels,
1205 					   IWL_NVM_NUM_CHANNELS_UHB),
1206 					   GFP_KERNEL);
1207 	else if (cfg->nvm_type != IWL_NVM_EXT)
1208 		data = kzalloc(struct_size(data, channels,
1209 					   IWL_NVM_NUM_CHANNELS),
1210 					   GFP_KERNEL);
1211 	else
1212 		data = kzalloc(struct_size(data, channels,
1213 					   IWL_NVM_NUM_CHANNELS_EXT),
1214 					   GFP_KERNEL);
1215 	if (!data)
1216 		return NULL;
1217 
1218 	data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
1219 
1220 	radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku);
1221 	iwl_set_radio_cfg(cfg, data, radio_cfg);
1222 	if (data->valid_tx_ant)
1223 		tx_chains &= data->valid_tx_ant;
1224 	if (data->valid_rx_ant)
1225 		rx_chains &= data->valid_rx_ant;
1226 
1227 	sku = iwl_get_sku(cfg, nvm_sw, phy_sku);
1228 	data->sku_cap_band_24ghz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
1229 	data->sku_cap_band_52ghz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
1230 	data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
1231 	if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
1232 		data->sku_cap_11n_enable = false;
1233 	data->sku_cap_11ac_enable = data->sku_cap_11n_enable &&
1234 				    (sku & NVM_SKU_CAP_11AC_ENABLE);
1235 	data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE;
1236 
1237 	data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
1238 
1239 	if (cfg->nvm_type != IWL_NVM_EXT) {
1240 		/* Checking for required sections */
1241 		if (!nvm_calib) {
1242 			IWL_ERR(trans,
1243 				"Can't parse empty Calib NVM sections\n");
1244 			kfree(data);
1245 			return NULL;
1246 		}
1247 
1248 		ch_section = cfg->nvm_type == IWL_NVM_SDP ?
1249 			     &regulatory[NVM_CHANNELS_SDP] :
1250 			     &nvm_sw[NVM_CHANNELS];
1251 
1252 		/* in family 8000 Xtal calibration values moved to OTP */
1253 		data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB);
1254 		data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1);
1255 		lar_enabled = true;
1256 	} else {
1257 		u16 lar_offset = data->nvm_version < 0xE39 ?
1258 				 NVM_LAR_OFFSET_OLD :
1259 				 NVM_LAR_OFFSET;
1260 
1261 		lar_config = le16_to_cpup(regulatory + lar_offset);
1262 		data->lar_enabled = !!(lar_config &
1263 				       NVM_LAR_ENABLED);
1264 		lar_enabled = data->lar_enabled;
1265 		ch_section = &regulatory[NVM_CHANNELS_EXTENDED];
1266 	}
1267 
1268 	/* If no valid mac address was found - bail out */
1269 	if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) {
1270 		kfree(data);
1271 		return NULL;
1272 	}
1273 
1274 	if (lar_enabled &&
1275 	    fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT))
1276 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1277 
1278 	if (iwl_nvm_no_wide_in_5ghz(trans, cfg, nvm_hw))
1279 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ;
1280 
1281 	iwl_init_sbands(trans, data, ch_section, tx_chains, rx_chains,
1282 			sbands_flags, false, fw);
1283 	data->calib_version = 255;
1284 
1285 	return data;
1286 }
1287 IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
1288 
1289 static u32 iwl_nvm_get_regdom_bw_flags(const u16 *nvm_chan,
1290 				       int ch_idx, u16 nvm_flags,
1291 				       struct iwl_reg_capa reg_capa,
1292 				       const struct iwl_cfg *cfg)
1293 {
1294 	u32 flags = NL80211_RRF_NO_HT40;
1295 
1296 	if (ch_idx < NUM_2GHZ_CHANNELS &&
1297 	    (nvm_flags & NVM_CHANNEL_40MHZ)) {
1298 		if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
1299 			flags &= ~NL80211_RRF_NO_HT40PLUS;
1300 		if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
1301 			flags &= ~NL80211_RRF_NO_HT40MINUS;
1302 	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
1303 		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
1304 			flags &= ~NL80211_RRF_NO_HT40PLUS;
1305 		else
1306 			flags &= ~NL80211_RRF_NO_HT40MINUS;
1307 	}
1308 
1309 	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
1310 		flags |= NL80211_RRF_NO_80MHZ;
1311 	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
1312 		flags |= NL80211_RRF_NO_160MHZ;
1313 
1314 	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
1315 		flags |= NL80211_RRF_NO_IR;
1316 
1317 	if (nvm_flags & NVM_CHANNEL_RADAR)
1318 		flags |= NL80211_RRF_DFS;
1319 
1320 	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
1321 		flags |= NL80211_RRF_NO_OUTDOOR;
1322 
1323 	/* Set the GO concurrent flag only in case that NO_IR is set.
1324 	 * Otherwise it is meaningless
1325 	 */
1326 	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
1327 	    (flags & NL80211_RRF_NO_IR))
1328 		flags |= NL80211_RRF_GO_CONCURRENT;
1329 
1330 	/*
1331 	 * reg_capa is per regulatory domain so apply it for every channel
1332 	 */
1333 	if (ch_idx >= NUM_2GHZ_CHANNELS) {
1334 		if (!reg_capa.allow_40mhz)
1335 			flags |= NL80211_RRF_NO_HT40;
1336 
1337 		if (!reg_capa.allow_80mhz)
1338 			flags |= NL80211_RRF_NO_80MHZ;
1339 
1340 		if (!reg_capa.allow_160mhz)
1341 			flags |= NL80211_RRF_NO_160MHZ;
1342 	}
1343 	if (reg_capa.disable_11ax)
1344 		flags |= NL80211_RRF_NO_HE;
1345 
1346 	return flags;
1347 }
1348 
1349 static struct iwl_reg_capa iwl_get_reg_capa(u16 flags, u8 resp_ver)
1350 {
1351 	struct iwl_reg_capa reg_capa;
1352 
1353 	if (resp_ver >= REG_CAPA_V2_RESP_VER) {
1354 		reg_capa.allow_40mhz = flags & REG_CAPA_V2_40MHZ_ALLOWED;
1355 		reg_capa.allow_80mhz = flags & REG_CAPA_V2_80MHZ_ALLOWED;
1356 		reg_capa.allow_160mhz = flags & REG_CAPA_V2_160MHZ_ALLOWED;
1357 		reg_capa.disable_11ax = flags & REG_CAPA_V2_11AX_DISABLED;
1358 	} else {
1359 		reg_capa.allow_40mhz = !(flags & REG_CAPA_40MHZ_FORBIDDEN);
1360 		reg_capa.allow_80mhz = flags & REG_CAPA_80MHZ_ALLOWED;
1361 		reg_capa.allow_160mhz = flags & REG_CAPA_160MHZ_ALLOWED;
1362 		reg_capa.disable_11ax = flags & REG_CAPA_11AX_DISABLED;
1363 	}
1364 	return reg_capa;
1365 }
1366 
1367 struct ieee80211_regdomain *
1368 iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg,
1369 		       int num_of_ch, __le32 *channels, u16 fw_mcc,
1370 		       u16 geo_info, u16 cap, u8 resp_ver)
1371 {
1372 	int ch_idx;
1373 	u16 ch_flags;
1374 	u32 reg_rule_flags, prev_reg_rule_flags = 0;
1375 	const u16 *nvm_chan;
1376 	struct ieee80211_regdomain *regd, *copy_rd;
1377 	struct ieee80211_reg_rule *rule;
1378 	enum nl80211_band band;
1379 	int center_freq, prev_center_freq = 0;
1380 	int valid_rules = 0;
1381 	bool new_rule;
1382 	int max_num_ch;
1383 	struct iwl_reg_capa reg_capa;
1384 
1385 	if (cfg->uhb_supported) {
1386 		max_num_ch = IWL_NVM_NUM_CHANNELS_UHB;
1387 		nvm_chan = iwl_uhb_nvm_channels;
1388 	} else if (cfg->nvm_type == IWL_NVM_EXT) {
1389 		max_num_ch = IWL_NVM_NUM_CHANNELS_EXT;
1390 		nvm_chan = iwl_ext_nvm_channels;
1391 	} else {
1392 		max_num_ch = IWL_NVM_NUM_CHANNELS;
1393 		nvm_chan = iwl_nvm_channels;
1394 	}
1395 
1396 	if (num_of_ch > max_num_ch) {
1397 		IWL_DEBUG_DEV(dev, IWL_DL_LAR,
1398 			      "Num of channels (%d) is greater than expected. Truncating to %d\n",
1399 			      num_of_ch, max_num_ch);
1400 		num_of_ch = max_num_ch;
1401 	}
1402 
1403 	if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
1404 		return ERR_PTR(-EINVAL);
1405 
1406 	IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
1407 		      num_of_ch);
1408 
1409 	/* build a regdomain rule for every valid channel */
1410 	regd = kzalloc(struct_size(regd, reg_rules, num_of_ch), GFP_KERNEL);
1411 	if (!regd)
1412 		return ERR_PTR(-ENOMEM);
1413 
1414 	/* set alpha2 from FW. */
1415 	regd->alpha2[0] = fw_mcc >> 8;
1416 	regd->alpha2[1] = fw_mcc & 0xff;
1417 
1418 	/* parse regulatory capability flags */
1419 	reg_capa = iwl_get_reg_capa(cap, resp_ver);
1420 
1421 	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
1422 		ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
1423 		band = iwl_nl80211_band_from_channel_idx(ch_idx);
1424 		center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
1425 							     band);
1426 		new_rule = false;
1427 
1428 		if (!(ch_flags & NVM_CHANNEL_VALID)) {
1429 			iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1430 						    nvm_chan[ch_idx], ch_flags);
1431 			continue;
1432 		}
1433 
1434 		reg_rule_flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
1435 							     ch_flags, reg_capa,
1436 							     cfg);
1437 
1438 		/* we can't continue the same rule */
1439 		if (ch_idx == 0 || prev_reg_rule_flags != reg_rule_flags ||
1440 		    center_freq - prev_center_freq > 20) {
1441 			valid_rules++;
1442 			new_rule = true;
1443 		}
1444 
1445 		rule = &regd->reg_rules[valid_rules - 1];
1446 
1447 		if (new_rule)
1448 			rule->freq_range.start_freq_khz =
1449 						MHZ_TO_KHZ(center_freq - 10);
1450 
1451 		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);
1452 
1453 		/* this doesn't matter - not used by FW */
1454 		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1455 		rule->power_rule.max_eirp =
1456 			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1457 
1458 		rule->flags = reg_rule_flags;
1459 
1460 		/* rely on auto-calculation to merge BW of contiguous chans */
1461 		rule->flags |= NL80211_RRF_AUTO_BW;
1462 		rule->freq_range.max_bandwidth_khz = 0;
1463 
1464 		prev_center_freq = center_freq;
1465 		prev_reg_rule_flags = reg_rule_flags;
1466 
1467 		iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1468 					    nvm_chan[ch_idx], ch_flags);
1469 
1470 		if (!(geo_info & GEO_WMM_ETSI_5GHZ_INFO) ||
1471 		    band == NL80211_BAND_2GHZ)
1472 			continue;
1473 
1474 		reg_query_regdb_wmm(regd->alpha2, center_freq, rule);
1475 	}
1476 
1477 	/*
1478 	 * Certain firmware versions might report no valid channels
1479 	 * if booted in RF-kill, i.e. not all calibrations etc. are
1480 	 * running. We'll get out of this situation later when the
1481 	 * rfkill is removed and we update the regdomain again, but
1482 	 * since cfg80211 doesn't accept an empty regdomain, add a
1483 	 * dummy (unusable) rule here in this case so we can init.
1484 	 */
1485 	if (!valid_rules) {
1486 		valid_rules = 1;
1487 		rule = &regd->reg_rules[valid_rules - 1];
1488 		rule->freq_range.start_freq_khz = MHZ_TO_KHZ(2412);
1489 		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(2413);
1490 		rule->freq_range.max_bandwidth_khz = MHZ_TO_KHZ(1);
1491 		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1492 		rule->power_rule.max_eirp =
1493 			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1494 	}
1495 
1496 	regd->n_reg_rules = valid_rules;
1497 
1498 	/*
1499 	 * Narrow down regdom for unused regulatory rules to prevent hole
1500 	 * between reg rules to wmm rules.
1501 	 */
1502 	copy_rd = kmemdup(regd, struct_size(regd, reg_rules, valid_rules),
1503 			  GFP_KERNEL);
1504 	if (!copy_rd)
1505 		copy_rd = ERR_PTR(-ENOMEM);
1506 
1507 	kfree(regd);
1508 	return copy_rd;
1509 }
1510 IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);
1511 
1512 #define IWL_MAX_NVM_SECTION_SIZE	0x1b58
1513 #define IWL_MAX_EXT_NVM_SECTION_SIZE	0x1ffc
1514 #define MAX_NVM_FILE_LEN	16384
1515 
1516 void iwl_nvm_fixups(u32 hw_id, unsigned int section, u8 *data,
1517 		    unsigned int len)
1518 {
1519 #define IWL_4165_DEVICE_ID	0x5501
1520 #define NVM_SKU_CAP_MIMO_DISABLE BIT(5)
1521 
1522 	if (section == NVM_SECTION_TYPE_PHY_SKU &&
1523 	    hw_id == IWL_4165_DEVICE_ID && data && len >= 5 &&
1524 	    (data[4] & NVM_SKU_CAP_MIMO_DISABLE))
1525 		/* OTP 0x52 bug work around: it's a 1x1 device */
1526 		data[3] = ANT_B | (ANT_B << 4);
1527 }
1528 IWL_EXPORT_SYMBOL(iwl_nvm_fixups);
1529 
1530 /*
1531  * Reads external NVM from a file into mvm->nvm_sections
1532  *
1533  * HOW TO CREATE THE NVM FILE FORMAT:
1534  * ------------------------------
1535  * 1. create hex file, format:
1536  *      3800 -> header
1537  *      0000 -> header
1538  *      5a40 -> data
1539  *
1540  *   rev - 6 bit (word1)
1541  *   len - 10 bit (word1)
1542  *   id - 4 bit (word2)
1543  *   rsv - 12 bit (word2)
1544  *
1545  * 2. flip 8bits with 8 bits per line to get the right NVM file format
1546  *
1547  * 3. create binary file from the hex file
1548  *
1549  * 4. save as "iNVM_xxx.bin" under /lib/firmware
1550  */
1551 int iwl_read_external_nvm(struct iwl_trans *trans,
1552 			  const char *nvm_file_name,
1553 			  struct iwl_nvm_section *nvm_sections)
1554 {
1555 	int ret, section_size;
1556 	u16 section_id;
1557 	const struct firmware *fw_entry;
1558 	const struct {
1559 		__le16 word1;
1560 		__le16 word2;
1561 		u8 data[];
1562 	} *file_sec;
1563 	const u8 *eof;
1564 	u8 *temp;
1565 	int max_section_size;
1566 	const __le32 *dword_buff;
1567 
1568 #define NVM_WORD1_LEN(x) (8 * (x & 0x03FF))
1569 #define NVM_WORD2_ID(x) (x >> 12)
1570 #define EXT_NVM_WORD2_LEN(x) (2 * (((x) & 0xFF) << 8 | (x) >> 8))
1571 #define EXT_NVM_WORD1_ID(x) ((x) >> 4)
1572 #define NVM_HEADER_0	(0x2A504C54)
1573 #define NVM_HEADER_1	(0x4E564D2A)
1574 #define NVM_HEADER_SIZE	(4 * sizeof(u32))
1575 
1576 	IWL_DEBUG_EEPROM(trans->dev, "Read from external NVM\n");
1577 
1578 	/* Maximal size depends on NVM version */
1579 	if (trans->cfg->nvm_type != IWL_NVM_EXT)
1580 		max_section_size = IWL_MAX_NVM_SECTION_SIZE;
1581 	else
1582 		max_section_size = IWL_MAX_EXT_NVM_SECTION_SIZE;
1583 
1584 	/*
1585 	 * Obtain NVM image via request_firmware. Since we already used
1586 	 * request_firmware_nowait() for the firmware binary load and only
1587 	 * get here after that we assume the NVM request can be satisfied
1588 	 * synchronously.
1589 	 */
1590 	ret = request_firmware(&fw_entry, nvm_file_name, trans->dev);
1591 	if (ret) {
1592 		IWL_ERR(trans, "ERROR: %s isn't available %d\n",
1593 			nvm_file_name, ret);
1594 		return ret;
1595 	}
1596 
1597 	IWL_INFO(trans, "Loaded NVM file %s (%zu bytes)\n",
1598 		 nvm_file_name, fw_entry->size);
1599 
1600 	if (fw_entry->size > MAX_NVM_FILE_LEN) {
1601 		IWL_ERR(trans, "NVM file too large\n");
1602 		ret = -EINVAL;
1603 		goto out;
1604 	}
1605 
1606 	eof = fw_entry->data + fw_entry->size;
1607 	dword_buff = (const __le32 *)fw_entry->data;
1608 
1609 	/* some NVM file will contain a header.
1610 	 * The header is identified by 2 dwords header as follow:
1611 	 * dword[0] = 0x2A504C54
1612 	 * dword[1] = 0x4E564D2A
1613 	 *
1614 	 * This header must be skipped when providing the NVM data to the FW.
1615 	 */
1616 	if (fw_entry->size > NVM_HEADER_SIZE &&
1617 	    dword_buff[0] == cpu_to_le32(NVM_HEADER_0) &&
1618 	    dword_buff[1] == cpu_to_le32(NVM_HEADER_1)) {
1619 		file_sec = (const void *)(fw_entry->data + NVM_HEADER_SIZE);
1620 		IWL_INFO(trans, "NVM Version %08X\n", le32_to_cpu(dword_buff[2]));
1621 		IWL_INFO(trans, "NVM Manufacturing date %08X\n",
1622 			 le32_to_cpu(dword_buff[3]));
1623 
1624 		/* nvm file validation, dword_buff[2] holds the file version */
1625 		if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_8000 &&
1626 		    trans->hw_rev_step == SILICON_C_STEP &&
1627 		    le32_to_cpu(dword_buff[2]) < 0xE4A) {
1628 			ret = -EFAULT;
1629 			goto out;
1630 		}
1631 	} else {
1632 		file_sec = (const void *)fw_entry->data;
1633 	}
1634 
1635 	while (true) {
1636 		if (file_sec->data > eof) {
1637 			IWL_ERR(trans,
1638 				"ERROR - NVM file too short for section header\n");
1639 			ret = -EINVAL;
1640 			break;
1641 		}
1642 
1643 		/* check for EOF marker */
1644 		if (!file_sec->word1 && !file_sec->word2) {
1645 			ret = 0;
1646 			break;
1647 		}
1648 
1649 		if (trans->cfg->nvm_type != IWL_NVM_EXT) {
1650 			section_size =
1651 				2 * NVM_WORD1_LEN(le16_to_cpu(file_sec->word1));
1652 			section_id = NVM_WORD2_ID(le16_to_cpu(file_sec->word2));
1653 		} else {
1654 			section_size = 2 * EXT_NVM_WORD2_LEN(
1655 						le16_to_cpu(file_sec->word2));
1656 			section_id = EXT_NVM_WORD1_ID(
1657 						le16_to_cpu(file_sec->word1));
1658 		}
1659 
1660 		if (section_size > max_section_size) {
1661 			IWL_ERR(trans, "ERROR - section too large (%d)\n",
1662 				section_size);
1663 			ret = -EINVAL;
1664 			break;
1665 		}
1666 
1667 		if (!section_size) {
1668 			IWL_ERR(trans, "ERROR - section empty\n");
1669 			ret = -EINVAL;
1670 			break;
1671 		}
1672 
1673 		if (file_sec->data + section_size > eof) {
1674 			IWL_ERR(trans,
1675 				"ERROR - NVM file too short for section (%d bytes)\n",
1676 				section_size);
1677 			ret = -EINVAL;
1678 			break;
1679 		}
1680 
1681 		if (WARN(section_id >= NVM_MAX_NUM_SECTIONS,
1682 			 "Invalid NVM section ID %d\n", section_id)) {
1683 			ret = -EINVAL;
1684 			break;
1685 		}
1686 
1687 		temp = kmemdup(file_sec->data, section_size, GFP_KERNEL);
1688 		if (!temp) {
1689 			ret = -ENOMEM;
1690 			break;
1691 		}
1692 
1693 		iwl_nvm_fixups(trans->hw_id, section_id, temp, section_size);
1694 
1695 		kfree(nvm_sections[section_id].data);
1696 		nvm_sections[section_id].data = temp;
1697 		nvm_sections[section_id].length = section_size;
1698 
1699 		/* advance to the next section */
1700 		file_sec = (const void *)(file_sec->data + section_size);
1701 	}
1702 out:
1703 	release_firmware(fw_entry);
1704 	return ret;
1705 }
1706 IWL_EXPORT_SYMBOL(iwl_read_external_nvm);
1707 
1708 struct iwl_nvm_data *iwl_get_nvm(struct iwl_trans *trans,
1709 				 const struct iwl_fw *fw)
1710 {
1711 	struct iwl_nvm_get_info cmd = {};
1712 	struct iwl_nvm_data *nvm;
1713 	struct iwl_host_cmd hcmd = {
1714 		.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
1715 		.data = { &cmd, },
1716 		.len = { sizeof(cmd) },
1717 		.id = WIDE_ID(REGULATORY_AND_NVM_GROUP, NVM_GET_INFO)
1718 	};
1719 	int  ret;
1720 	bool empty_otp;
1721 	u32 mac_flags;
1722 	u32 sbands_flags = 0;
1723 	/*
1724 	 * All the values in iwl_nvm_get_info_rsp v4 are the same as
1725 	 * in v3, except for the channel profile part of the
1726 	 * regulatory.  So we can just access the new struct, with the
1727 	 * exception of the latter.
1728 	 */
1729 	struct iwl_nvm_get_info_rsp *rsp;
1730 	struct iwl_nvm_get_info_rsp_v3 *rsp_v3;
1731 	bool v4 = fw_has_api(&fw->ucode_capa,
1732 			     IWL_UCODE_TLV_API_REGULATORY_NVM_INFO);
1733 	size_t rsp_size = v4 ? sizeof(*rsp) : sizeof(*rsp_v3);
1734 	void *channel_profile;
1735 
1736 	ret = iwl_trans_send_cmd(trans, &hcmd);
1737 	if (ret)
1738 		return ERR_PTR(ret);
1739 
1740 	if (WARN(iwl_rx_packet_payload_len(hcmd.resp_pkt) != rsp_size,
1741 		 "Invalid payload len in NVM response from FW %d",
1742 		 iwl_rx_packet_payload_len(hcmd.resp_pkt))) {
1743 		ret = -EINVAL;
1744 		goto out;
1745 	}
1746 
1747 	rsp = (void *)hcmd.resp_pkt->data;
1748 	empty_otp = !!(le32_to_cpu(rsp->general.flags) &
1749 		       NVM_GENERAL_FLAGS_EMPTY_OTP);
1750 	if (empty_otp)
1751 		IWL_INFO(trans, "OTP is empty\n");
1752 
1753 	nvm = kzalloc(struct_size(nvm, channels, IWL_NUM_CHANNELS), GFP_KERNEL);
1754 	if (!nvm) {
1755 		ret = -ENOMEM;
1756 		goto out;
1757 	}
1758 
1759 	iwl_set_hw_address_from_csr(trans, nvm);
1760 	/* TODO: if platform NVM has MAC address - override it here */
1761 
1762 	if (!is_valid_ether_addr(nvm->hw_addr)) {
1763 		IWL_ERR(trans, "no valid mac address was found\n");
1764 		ret = -EINVAL;
1765 		goto err_free;
1766 	}
1767 
1768 #if defined(__linux__)
1769 	IWL_INFO(trans, "base HW address: %pM\n", nvm->hw_addr);
1770 #elif defined(__FreeBSD__)
1771 	IWL_INFO(trans, "base HW address: %6D\n", nvm->hw_addr, ":");
1772 #endif
1773 
1774 	/* Initialize general data */
1775 	nvm->nvm_version = le16_to_cpu(rsp->general.nvm_version);
1776 	nvm->n_hw_addrs = rsp->general.n_hw_addrs;
1777 	if (nvm->n_hw_addrs == 0)
1778 		IWL_WARN(trans,
1779 			 "Firmware declares no reserved mac addresses. OTP is empty: %d\n",
1780 			 empty_otp);
1781 
1782 	/* Initialize MAC sku data */
1783 	mac_flags = le32_to_cpu(rsp->mac_sku.mac_sku_flags);
1784 	nvm->sku_cap_11ac_enable =
1785 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AC_ENABLED);
1786 	nvm->sku_cap_11n_enable =
1787 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11N_ENABLED);
1788 	nvm->sku_cap_11ax_enable =
1789 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AX_ENABLED);
1790 	nvm->sku_cap_band_24ghz_enable =
1791 		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_2_4_ENABLED);
1792 	nvm->sku_cap_band_52ghz_enable =
1793 		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_5_2_ENABLED);
1794 	nvm->sku_cap_mimo_disabled =
1795 		!!(mac_flags & NVM_MAC_SKU_FLAGS_MIMO_DISABLED);
1796 
1797 	/* Initialize PHY sku data */
1798 	nvm->valid_tx_ant = (u8)le32_to_cpu(rsp->phy_sku.tx_chains);
1799 	nvm->valid_rx_ant = (u8)le32_to_cpu(rsp->phy_sku.rx_chains);
1800 
1801 	if (le32_to_cpu(rsp->regulatory.lar_enabled) &&
1802 	    fw_has_capa(&fw->ucode_capa,
1803 			IWL_UCODE_TLV_CAPA_LAR_SUPPORT)) {
1804 		nvm->lar_enabled = true;
1805 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1806 	}
1807 
1808 	rsp_v3 = (void *)rsp;
1809 	channel_profile = v4 ? (void *)rsp->regulatory.channel_profile :
1810 			  (void *)rsp_v3->regulatory.channel_profile;
1811 
1812 	iwl_init_sbands(trans, nvm,
1813 			channel_profile,
1814 			nvm->valid_tx_ant & fw->valid_tx_ant,
1815 			nvm->valid_rx_ant & fw->valid_rx_ant,
1816 			sbands_flags, v4, fw);
1817 
1818 	iwl_free_resp(&hcmd);
1819 	return nvm;
1820 
1821 err_free:
1822 	kfree(nvm);
1823 out:
1824 	iwl_free_resp(&hcmd);
1825 	return ERR_PTR(ret);
1826 }
1827 IWL_EXPORT_SYMBOL(iwl_get_nvm);
1828