xref: /freebsd/sys/contrib/dev/iwlwifi/pcie/rx.c (revision f374ba41)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright (C) 2003-2014, 2018-2022 Intel Corporation
4  * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5  * Copyright (C) 2016-2017 Intel Deutschland GmbH
6  */
7 #include <linux/sched.h>
8 #include <linux/wait.h>
9 #include <linux/gfp.h>
10 
11 #include "iwl-prph.h"
12 #include "iwl-io.h"
13 #include "internal.h"
14 #include "iwl-op-mode.h"
15 #include "iwl-context-info-gen3.h"
16 
17 /******************************************************************************
18  *
19  * RX path functions
20  *
21  ******************************************************************************/
22 
23 /*
24  * Rx theory of operation
25  *
26  * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
27  * each of which point to Receive Buffers to be filled by the NIC.  These get
28  * used not only for Rx frames, but for any command response or notification
29  * from the NIC.  The driver and NIC manage the Rx buffers by means
30  * of indexes into the circular buffer.
31  *
32  * Rx Queue Indexes
33  * The host/firmware share two index registers for managing the Rx buffers.
34  *
35  * The READ index maps to the first position that the firmware may be writing
36  * to -- the driver can read up to (but not including) this position and get
37  * good data.
38  * The READ index is managed by the firmware once the card is enabled.
39  *
40  * The WRITE index maps to the last position the driver has read from -- the
41  * position preceding WRITE is the last slot the firmware can place a packet.
42  *
43  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
44  * WRITE = READ.
45  *
46  * During initialization, the host sets up the READ queue position to the first
47  * INDEX position, and WRITE to the last (READ - 1 wrapped)
48  *
49  * When the firmware places a packet in a buffer, it will advance the READ index
50  * and fire the RX interrupt.  The driver can then query the READ index and
51  * process as many packets as possible, moving the WRITE index forward as it
52  * resets the Rx queue buffers with new memory.
53  *
54  * The management in the driver is as follows:
55  * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free.
56  *   When the interrupt handler is called, the request is processed.
57  *   The page is either stolen - transferred to the upper layer
58  *   or reused - added immediately to the iwl->rxq->rx_free list.
59  * + When the page is stolen - the driver updates the matching queue's used
60  *   count, detaches the RBD and transfers it to the queue used list.
61  *   When there are two used RBDs - they are transferred to the allocator empty
62  *   list. Work is then scheduled for the allocator to start allocating
63  *   eight buffers.
64  *   When there are another 6 used RBDs - they are transferred to the allocator
65  *   empty list and the driver tries to claim the pre-allocated buffers and
66  *   add them to iwl->rxq->rx_free. If it fails - it continues to claim them
67  *   until ready.
68  *   When there are 8+ buffers in the free list - either from allocation or from
69  *   8 reused unstolen pages - restock is called to update the FW and indexes.
70  * + In order to make sure the allocator always has RBDs to use for allocation
71  *   the allocator has initial pool in the size of num_queues*(8-2) - the
72  *   maximum missing RBDs per allocation request (request posted with 2
73  *    empty RBDs, there is no guarantee when the other 6 RBDs are supplied).
74  *   The queues supplies the recycle of the rest of the RBDs.
75  * + A received packet is processed and handed to the kernel network stack,
76  *   detached from the iwl->rxq.  The driver 'processed' index is updated.
77  * + If there are no allocated buffers in iwl->rxq->rx_free,
78  *   the READ INDEX is not incremented and iwl->status(RX_STALLED) is set.
79  *   If there were enough free buffers and RX_STALLED is set it is cleared.
80  *
81  *
82  * Driver sequence:
83  *
84  * iwl_rxq_alloc()            Allocates rx_free
85  * iwl_pcie_rx_replenish()    Replenishes rx_free list from rx_used, and calls
86  *                            iwl_pcie_rxq_restock.
87  *                            Used only during initialization.
88  * iwl_pcie_rxq_restock()     Moves available buffers from rx_free into Rx
89  *                            queue, updates firmware pointers, and updates
90  *                            the WRITE index.
91  * iwl_pcie_rx_allocator()     Background work for allocating pages.
92  *
93  * -- enable interrupts --
94  * ISR - iwl_rx()             Detach iwl_rx_mem_buffers from pool up to the
95  *                            READ INDEX, detaching the SKB from the pool.
96  *                            Moves the packet buffer from queue to rx_used.
97  *                            Posts and claims requests to the allocator.
98  *                            Calls iwl_pcie_rxq_restock to refill any empty
99  *                            slots.
100  *
101  * RBD life-cycle:
102  *
103  * Init:
104  * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue
105  *
106  * Regular Receive interrupt:
107  * Page Stolen:
108  * rxq.queue -> rxq.rx_used -> allocator.rbd_empty ->
109  * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue
110  * Page not Stolen:
111  * rxq.queue -> rxq.rx_free -> rxq.queue
112  * ...
113  *
114  */
115 
116 /*
117  * iwl_rxq_space - Return number of free slots available in queue.
118  */
119 static int iwl_rxq_space(const struct iwl_rxq *rxq)
120 {
121 	/* Make sure rx queue size is a power of 2 */
122 	WARN_ON(rxq->queue_size & (rxq->queue_size - 1));
123 
124 	/*
125 	 * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity
126 	 * between empty and completely full queues.
127 	 * The following is equivalent to modulo by RX_QUEUE_SIZE and is well
128 	 * defined for negative dividends.
129 	 */
130 	return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1);
131 }
132 
133 /*
134  * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
135  */
136 static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr)
137 {
138 	return cpu_to_le32((u32)(dma_addr >> 8));
139 }
140 
141 /*
142  * iwl_pcie_rx_stop - stops the Rx DMA
143  */
144 int iwl_pcie_rx_stop(struct iwl_trans *trans)
145 {
146 	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
147 		/* TODO: remove this once fw does it */
148 		iwl_write_umac_prph(trans, RFH_RXF_DMA_CFG_GEN3, 0);
149 		return iwl_poll_umac_prph_bit(trans, RFH_GEN_STATUS_GEN3,
150 					      RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
151 	} else if (trans->trans_cfg->mq_rx_supported) {
152 		iwl_write_prph(trans, RFH_RXF_DMA_CFG, 0);
153 		return iwl_poll_prph_bit(trans, RFH_GEN_STATUS,
154 					   RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
155 	} else {
156 		iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
157 		return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG,
158 					   FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE,
159 					   1000);
160 	}
161 }
162 
163 /*
164  * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue
165  */
166 static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans,
167 				    struct iwl_rxq *rxq)
168 {
169 	u32 reg;
170 
171 	lockdep_assert_held(&rxq->lock);
172 
173 	/*
174 	 * explicitly wake up the NIC if:
175 	 * 1. shadow registers aren't enabled
176 	 * 2. there is a chance that the NIC is asleep
177 	 */
178 	if (!trans->trans_cfg->base_params->shadow_reg_enable &&
179 	    test_bit(STATUS_TPOWER_PMI, &trans->status)) {
180 		reg = iwl_read32(trans, CSR_UCODE_DRV_GP1);
181 
182 		if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
183 			IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n",
184 				       reg);
185 			iwl_set_bit(trans, CSR_GP_CNTRL,
186 				    CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
187 			rxq->need_update = true;
188 			return;
189 		}
190 	}
191 
192 	rxq->write_actual = round_down(rxq->write, 8);
193 	if (!trans->trans_cfg->mq_rx_supported)
194 		iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual);
195 	else if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ)
196 		iwl_write32(trans, HBUS_TARG_WRPTR, rxq->write_actual |
197 			    HBUS_TARG_WRPTR_RX_Q(rxq->id));
198 	else
199 		iwl_write32(trans, RFH_Q_FRBDCB_WIDX_TRG(rxq->id),
200 			    rxq->write_actual);
201 }
202 
203 static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans)
204 {
205 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
206 	int i;
207 
208 	for (i = 0; i < trans->num_rx_queues; i++) {
209 		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
210 
211 		if (!rxq->need_update)
212 			continue;
213 		spin_lock_bh(&rxq->lock);
214 		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
215 		rxq->need_update = false;
216 		spin_unlock_bh(&rxq->lock);
217 	}
218 }
219 
220 static void iwl_pcie_restock_bd(struct iwl_trans *trans,
221 				struct iwl_rxq *rxq,
222 				struct iwl_rx_mem_buffer *rxb)
223 {
224 	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
225 		struct iwl_rx_transfer_desc *bd = rxq->bd;
226 
227 		BUILD_BUG_ON(sizeof(*bd) != 2 * sizeof(u64));
228 
229 		bd[rxq->write].addr = cpu_to_le64(rxb->page_dma);
230 		bd[rxq->write].rbid = cpu_to_le16(rxb->vid);
231 	} else {
232 		__le64 *bd = rxq->bd;
233 
234 		bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid);
235 	}
236 
237 #if defined(__linux__)
238 	IWL_DEBUG_RX(trans, "Assigned virtual RB ID %u to queue %d index %d\n",
239 #elif defined(__FreeBSD__)
240 	IWL_DEBUG_PCI_RW(trans, "Assigned virtual RB ID %u to queue %d index %d\n",
241 		     (u32)rxb->vid, rxq->id, rxq->write);
242 #endif
243 }
244 
245 /*
246  * iwl_pcie_rxmq_restock - restock implementation for multi-queue rx
247  */
248 static void iwl_pcie_rxmq_restock(struct iwl_trans *trans,
249 				  struct iwl_rxq *rxq)
250 {
251 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
252 	struct iwl_rx_mem_buffer *rxb;
253 
254 	/*
255 	 * If the device isn't enabled - no need to try to add buffers...
256 	 * This can happen when we stop the device and still have an interrupt
257 	 * pending. We stop the APM before we sync the interrupts because we
258 	 * have to (see comment there). On the other hand, since the APM is
259 	 * stopped, we cannot access the HW (in particular not prph).
260 	 * So don't try to restock if the APM has been already stopped.
261 	 */
262 	if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
263 		return;
264 
265 	spin_lock_bh(&rxq->lock);
266 	while (rxq->free_count) {
267 		/* Get next free Rx buffer, remove from free list */
268 		rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
269 				       list);
270 		list_del(&rxb->list);
271 		rxb->invalid = false;
272 		/* some low bits are expected to be unset (depending on hw) */
273 		WARN_ON(rxb->page_dma & trans_pcie->supported_dma_mask);
274 		/* Point to Rx buffer via next RBD in circular buffer */
275 		iwl_pcie_restock_bd(trans, rxq, rxb);
276 		rxq->write = (rxq->write + 1) & (rxq->queue_size - 1);
277 		rxq->free_count--;
278 	}
279 	spin_unlock_bh(&rxq->lock);
280 
281 	/*
282 	 * If we've added more space for the firmware to place data, tell it.
283 	 * Increment device's write pointer in multiples of 8.
284 	 */
285 	if (rxq->write_actual != (rxq->write & ~0x7)) {
286 		spin_lock_bh(&rxq->lock);
287 		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
288 		spin_unlock_bh(&rxq->lock);
289 	}
290 }
291 
292 /*
293  * iwl_pcie_rxsq_restock - restock implementation for single queue rx
294  */
295 static void iwl_pcie_rxsq_restock(struct iwl_trans *trans,
296 				  struct iwl_rxq *rxq)
297 {
298 	struct iwl_rx_mem_buffer *rxb;
299 
300 	/*
301 	 * If the device isn't enabled - not need to try to add buffers...
302 	 * This can happen when we stop the device and still have an interrupt
303 	 * pending. We stop the APM before we sync the interrupts because we
304 	 * have to (see comment there). On the other hand, since the APM is
305 	 * stopped, we cannot access the HW (in particular not prph).
306 	 * So don't try to restock if the APM has been already stopped.
307 	 */
308 	if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
309 		return;
310 
311 	spin_lock_bh(&rxq->lock);
312 	while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) {
313 		__le32 *bd = (__le32 *)rxq->bd;
314 		/* The overwritten rxb must be a used one */
315 		rxb = rxq->queue[rxq->write];
316 		BUG_ON(rxb && rxb->page);
317 
318 		/* Get next free Rx buffer, remove from free list */
319 		rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
320 				       list);
321 		list_del(&rxb->list);
322 		rxb->invalid = false;
323 
324 		/* Point to Rx buffer via next RBD in circular buffer */
325 		bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma);
326 		rxq->queue[rxq->write] = rxb;
327 		rxq->write = (rxq->write + 1) & RX_QUEUE_MASK;
328 		rxq->free_count--;
329 	}
330 	spin_unlock_bh(&rxq->lock);
331 
332 	/* If we've added more space for the firmware to place data, tell it.
333 	 * Increment device's write pointer in multiples of 8. */
334 	if (rxq->write_actual != (rxq->write & ~0x7)) {
335 		spin_lock_bh(&rxq->lock);
336 		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
337 		spin_unlock_bh(&rxq->lock);
338 	}
339 }
340 
341 /*
342  * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool
343  *
344  * If there are slots in the RX queue that need to be restocked,
345  * and we have free pre-allocated buffers, fill the ranks as much
346  * as we can, pulling from rx_free.
347  *
348  * This moves the 'write' index forward to catch up with 'processed', and
349  * also updates the memory address in the firmware to reference the new
350  * target buffer.
351  */
352 static
353 void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq)
354 {
355 	if (trans->trans_cfg->mq_rx_supported)
356 		iwl_pcie_rxmq_restock(trans, rxq);
357 	else
358 		iwl_pcie_rxsq_restock(trans, rxq);
359 }
360 
361 /*
362  * iwl_pcie_rx_alloc_page - allocates and returns a page.
363  *
364  */
365 static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans,
366 					   u32 *offset, gfp_t priority)
367 {
368 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
369 	unsigned int rbsize = iwl_trans_get_rb_size(trans_pcie->rx_buf_size);
370 	unsigned int allocsize = PAGE_SIZE << trans_pcie->rx_page_order;
371 	struct page *page;
372 	gfp_t gfp_mask = priority;
373 
374 	if (trans_pcie->rx_page_order > 0)
375 		gfp_mask |= __GFP_COMP;
376 
377 	if (trans_pcie->alloc_page) {
378 		spin_lock_bh(&trans_pcie->alloc_page_lock);
379 		/* recheck */
380 		if (trans_pcie->alloc_page) {
381 			*offset = trans_pcie->alloc_page_used;
382 			page = trans_pcie->alloc_page;
383 			trans_pcie->alloc_page_used += rbsize;
384 			if (trans_pcie->alloc_page_used >= allocsize)
385 				trans_pcie->alloc_page = NULL;
386 			else
387 				get_page(page);
388 			spin_unlock_bh(&trans_pcie->alloc_page_lock);
389 			return page;
390 		}
391 		spin_unlock_bh(&trans_pcie->alloc_page_lock);
392 	}
393 
394 	/* Alloc a new receive buffer */
395 	page = alloc_pages(gfp_mask, trans_pcie->rx_page_order);
396 	if (!page) {
397 		if (net_ratelimit())
398 			IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n",
399 				       trans_pcie->rx_page_order);
400 		/*
401 		 * Issue an error if we don't have enough pre-allocated
402 		  * buffers.
403 		 */
404 		if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit())
405 			IWL_CRIT(trans,
406 				 "Failed to alloc_pages\n");
407 		return NULL;
408 	}
409 
410 	if (2 * rbsize <= allocsize) {
411 		spin_lock_bh(&trans_pcie->alloc_page_lock);
412 		if (!trans_pcie->alloc_page) {
413 			get_page(page);
414 			trans_pcie->alloc_page = page;
415 			trans_pcie->alloc_page_used = rbsize;
416 		}
417 		spin_unlock_bh(&trans_pcie->alloc_page_lock);
418 	}
419 
420 	*offset = 0;
421 	return page;
422 }
423 
424 /*
425  * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD
426  *
427  * A used RBD is an Rx buffer that has been given to the stack. To use it again
428  * a page must be allocated and the RBD must point to the page. This function
429  * doesn't change the HW pointer but handles the list of pages that is used by
430  * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly
431  * allocated buffers.
432  */
433 void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority,
434 			    struct iwl_rxq *rxq)
435 {
436 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
437 	struct iwl_rx_mem_buffer *rxb;
438 	struct page *page;
439 
440 	while (1) {
441 		unsigned int offset;
442 
443 		spin_lock_bh(&rxq->lock);
444 		if (list_empty(&rxq->rx_used)) {
445 			spin_unlock_bh(&rxq->lock);
446 			return;
447 		}
448 		spin_unlock_bh(&rxq->lock);
449 
450 		page = iwl_pcie_rx_alloc_page(trans, &offset, priority);
451 		if (!page)
452 			return;
453 
454 		spin_lock_bh(&rxq->lock);
455 
456 		if (list_empty(&rxq->rx_used)) {
457 			spin_unlock_bh(&rxq->lock);
458 			__free_pages(page, trans_pcie->rx_page_order);
459 			return;
460 		}
461 		rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer,
462 				       list);
463 		list_del(&rxb->list);
464 		spin_unlock_bh(&rxq->lock);
465 
466 		BUG_ON(rxb->page);
467 		rxb->page = page;
468 		rxb->offset = offset;
469 		/* Get physical address of the RB */
470 		rxb->page_dma =
471 			dma_map_page(trans->dev, page, rxb->offset,
472 				     trans_pcie->rx_buf_bytes,
473 				     DMA_FROM_DEVICE);
474 		if (dma_mapping_error(trans->dev, rxb->page_dma)) {
475 			rxb->page = NULL;
476 			spin_lock_bh(&rxq->lock);
477 			list_add(&rxb->list, &rxq->rx_used);
478 			spin_unlock_bh(&rxq->lock);
479 			__free_pages(page, trans_pcie->rx_page_order);
480 			return;
481 		}
482 
483 		spin_lock_bh(&rxq->lock);
484 
485 		list_add_tail(&rxb->list, &rxq->rx_free);
486 		rxq->free_count++;
487 
488 		spin_unlock_bh(&rxq->lock);
489 	}
490 }
491 
492 void iwl_pcie_free_rbs_pool(struct iwl_trans *trans)
493 {
494 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
495 	int i;
496 
497 	if (!trans_pcie->rx_pool)
498 		return;
499 
500 	for (i = 0; i < RX_POOL_SIZE(trans_pcie->num_rx_bufs); i++) {
501 		if (!trans_pcie->rx_pool[i].page)
502 			continue;
503 		dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma,
504 			       trans_pcie->rx_buf_bytes, DMA_FROM_DEVICE);
505 		__free_pages(trans_pcie->rx_pool[i].page,
506 			     trans_pcie->rx_page_order);
507 		trans_pcie->rx_pool[i].page = NULL;
508 	}
509 }
510 
511 /*
512  * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues
513  *
514  * Allocates for each received request 8 pages
515  * Called as a scheduled work item.
516  */
517 static void iwl_pcie_rx_allocator(struct iwl_trans *trans)
518 {
519 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
520 	struct iwl_rb_allocator *rba = &trans_pcie->rba;
521 	struct list_head local_empty;
522 	int pending = atomic_read(&rba->req_pending);
523 
524 	IWL_DEBUG_TPT(trans, "Pending allocation requests = %d\n", pending);
525 
526 	/* If we were scheduled - there is at least one request */
527 	spin_lock_bh(&rba->lock);
528 	/* swap out the rba->rbd_empty to a local list */
529 	list_replace_init(&rba->rbd_empty, &local_empty);
530 	spin_unlock_bh(&rba->lock);
531 
532 	while (pending) {
533 		int i;
534 		LIST_HEAD(local_allocated);
535 		gfp_t gfp_mask = GFP_KERNEL;
536 
537 		/* Do not post a warning if there are only a few requests */
538 		if (pending < RX_PENDING_WATERMARK)
539 			gfp_mask |= __GFP_NOWARN;
540 
541 		for (i = 0; i < RX_CLAIM_REQ_ALLOC;) {
542 			struct iwl_rx_mem_buffer *rxb;
543 			struct page *page;
544 
545 			/* List should never be empty - each reused RBD is
546 			 * returned to the list, and initial pool covers any
547 			 * possible gap between the time the page is allocated
548 			 * to the time the RBD is added.
549 			 */
550 			BUG_ON(list_empty(&local_empty));
551 			/* Get the first rxb from the rbd list */
552 			rxb = list_first_entry(&local_empty,
553 					       struct iwl_rx_mem_buffer, list);
554 			BUG_ON(rxb->page);
555 
556 			/* Alloc a new receive buffer */
557 			page = iwl_pcie_rx_alloc_page(trans, &rxb->offset,
558 						      gfp_mask);
559 			if (!page)
560 				continue;
561 			rxb->page = page;
562 
563 			/* Get physical address of the RB */
564 			rxb->page_dma = dma_map_page(trans->dev, page,
565 						     rxb->offset,
566 						     trans_pcie->rx_buf_bytes,
567 						     DMA_FROM_DEVICE);
568 			if (dma_mapping_error(trans->dev, rxb->page_dma)) {
569 				rxb->page = NULL;
570 				__free_pages(page, trans_pcie->rx_page_order);
571 				continue;
572 			}
573 
574 			/* move the allocated entry to the out list */
575 			list_move(&rxb->list, &local_allocated);
576 			i++;
577 		}
578 
579 		atomic_dec(&rba->req_pending);
580 		pending--;
581 
582 		if (!pending) {
583 			pending = atomic_read(&rba->req_pending);
584 			if (pending)
585 				IWL_DEBUG_TPT(trans,
586 					      "Got more pending allocation requests = %d\n",
587 					      pending);
588 		}
589 
590 		spin_lock_bh(&rba->lock);
591 		/* add the allocated rbds to the allocator allocated list */
592 		list_splice_tail(&local_allocated, &rba->rbd_allocated);
593 		/* get more empty RBDs for current pending requests */
594 		list_splice_tail_init(&rba->rbd_empty, &local_empty);
595 		spin_unlock_bh(&rba->lock);
596 
597 		atomic_inc(&rba->req_ready);
598 
599 	}
600 
601 	spin_lock_bh(&rba->lock);
602 	/* return unused rbds to the allocator empty list */
603 	list_splice_tail(&local_empty, &rba->rbd_empty);
604 	spin_unlock_bh(&rba->lock);
605 
606 	IWL_DEBUG_TPT(trans, "%s, exit.\n", __func__);
607 }
608 
609 /*
610  * iwl_pcie_rx_allocator_get - returns the pre-allocated pages
611 .*
612 .* Called by queue when the queue posted allocation request and
613  * has freed 8 RBDs in order to restock itself.
614  * This function directly moves the allocated RBs to the queue's ownership
615  * and updates the relevant counters.
616  */
617 static void iwl_pcie_rx_allocator_get(struct iwl_trans *trans,
618 				      struct iwl_rxq *rxq)
619 {
620 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
621 	struct iwl_rb_allocator *rba = &trans_pcie->rba;
622 	int i;
623 
624 	lockdep_assert_held(&rxq->lock);
625 
626 	/*
627 	 * atomic_dec_if_positive returns req_ready - 1 for any scenario.
628 	 * If req_ready is 0 atomic_dec_if_positive will return -1 and this
629 	 * function will return early, as there are no ready requests.
630 	 * atomic_dec_if_positive will perofrm the *actual* decrement only if
631 	 * req_ready > 0, i.e. - there are ready requests and the function
632 	 * hands one request to the caller.
633 	 */
634 	if (atomic_dec_if_positive(&rba->req_ready) < 0)
635 		return;
636 
637 	spin_lock(&rba->lock);
638 	for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) {
639 		/* Get next free Rx buffer, remove it from free list */
640 		struct iwl_rx_mem_buffer *rxb =
641 			list_first_entry(&rba->rbd_allocated,
642 					 struct iwl_rx_mem_buffer, list);
643 
644 		list_move(&rxb->list, &rxq->rx_free);
645 	}
646 	spin_unlock(&rba->lock);
647 
648 	rxq->used_count -= RX_CLAIM_REQ_ALLOC;
649 	rxq->free_count += RX_CLAIM_REQ_ALLOC;
650 }
651 
652 void iwl_pcie_rx_allocator_work(struct work_struct *data)
653 {
654 	struct iwl_rb_allocator *rba_p =
655 		container_of(data, struct iwl_rb_allocator, rx_alloc);
656 	struct iwl_trans_pcie *trans_pcie =
657 		container_of(rba_p, struct iwl_trans_pcie, rba);
658 
659 	iwl_pcie_rx_allocator(trans_pcie->trans);
660 }
661 
662 static int iwl_pcie_free_bd_size(struct iwl_trans *trans)
663 {
664 	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
665 		return sizeof(struct iwl_rx_transfer_desc);
666 
667 	return trans->trans_cfg->mq_rx_supported ?
668 			sizeof(__le64) : sizeof(__le32);
669 }
670 
671 static int iwl_pcie_used_bd_size(struct iwl_trans *trans)
672 {
673 	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ)
674 		return sizeof(struct iwl_rx_completion_desc_bz);
675 
676 	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
677 		return sizeof(struct iwl_rx_completion_desc);
678 
679 	return sizeof(__le32);
680 }
681 
682 static void iwl_pcie_free_rxq_dma(struct iwl_trans *trans,
683 				  struct iwl_rxq *rxq)
684 {
685 	int free_size = iwl_pcie_free_bd_size(trans);
686 
687 	if (rxq->bd)
688 		dma_free_coherent(trans->dev,
689 				  free_size * rxq->queue_size,
690 				  rxq->bd, rxq->bd_dma);
691 	rxq->bd_dma = 0;
692 	rxq->bd = NULL;
693 
694 	rxq->rb_stts_dma = 0;
695 	rxq->rb_stts = NULL;
696 
697 	if (rxq->used_bd)
698 		dma_free_coherent(trans->dev,
699 				  iwl_pcie_used_bd_size(trans) *
700 					rxq->queue_size,
701 				  rxq->used_bd, rxq->used_bd_dma);
702 	rxq->used_bd_dma = 0;
703 	rxq->used_bd = NULL;
704 }
705 
706 static int iwl_pcie_alloc_rxq_dma(struct iwl_trans *trans,
707 				  struct iwl_rxq *rxq)
708 {
709 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
710 	struct device *dev = trans->dev;
711 	int i;
712 	int free_size;
713 	bool use_rx_td = (trans->trans_cfg->device_family >=
714 			  IWL_DEVICE_FAMILY_AX210);
715 	size_t rb_stts_size = use_rx_td ? sizeof(__le16) :
716 			      sizeof(struct iwl_rb_status);
717 
718 	spin_lock_init(&rxq->lock);
719 	if (trans->trans_cfg->mq_rx_supported)
720 		rxq->queue_size = trans->cfg->num_rbds;
721 	else
722 		rxq->queue_size = RX_QUEUE_SIZE;
723 
724 	free_size = iwl_pcie_free_bd_size(trans);
725 
726 	/*
727 	 * Allocate the circular buffer of Read Buffer Descriptors
728 	 * (RBDs)
729 	 */
730 	rxq->bd = dma_alloc_coherent(dev, free_size * rxq->queue_size,
731 				     &rxq->bd_dma, GFP_KERNEL);
732 	if (!rxq->bd)
733 		goto err;
734 
735 	if (trans->trans_cfg->mq_rx_supported) {
736 		rxq->used_bd = dma_alloc_coherent(dev,
737 						  iwl_pcie_used_bd_size(trans) *
738 							rxq->queue_size,
739 						  &rxq->used_bd_dma,
740 						  GFP_KERNEL);
741 		if (!rxq->used_bd)
742 			goto err;
743 	}
744 
745 	rxq->rb_stts = (u8 *)trans_pcie->base_rb_stts + rxq->id * rb_stts_size;
746 	rxq->rb_stts_dma =
747 		trans_pcie->base_rb_stts_dma + rxq->id * rb_stts_size;
748 
749 	return 0;
750 
751 err:
752 	for (i = 0; i < trans->num_rx_queues; i++) {
753 		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
754 
755 		iwl_pcie_free_rxq_dma(trans, rxq);
756 	}
757 
758 	return -ENOMEM;
759 }
760 
761 static int iwl_pcie_rx_alloc(struct iwl_trans *trans)
762 {
763 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
764 	struct iwl_rb_allocator *rba = &trans_pcie->rba;
765 	int i, ret;
766 	size_t rb_stts_size = trans->trans_cfg->device_family >=
767 				IWL_DEVICE_FAMILY_AX210 ?
768 			      sizeof(__le16) : sizeof(struct iwl_rb_status);
769 
770 	if (WARN_ON(trans_pcie->rxq))
771 		return -EINVAL;
772 
773 	trans_pcie->rxq = kcalloc(trans->num_rx_queues, sizeof(struct iwl_rxq),
774 				  GFP_KERNEL);
775 	trans_pcie->rx_pool = kcalloc(RX_POOL_SIZE(trans_pcie->num_rx_bufs),
776 				      sizeof(trans_pcie->rx_pool[0]),
777 				      GFP_KERNEL);
778 	trans_pcie->global_table =
779 		kcalloc(RX_POOL_SIZE(trans_pcie->num_rx_bufs),
780 			sizeof(trans_pcie->global_table[0]),
781 			GFP_KERNEL);
782 	if (!trans_pcie->rxq || !trans_pcie->rx_pool ||
783 	    !trans_pcie->global_table) {
784 		ret = -ENOMEM;
785 		goto err;
786 	}
787 
788 	spin_lock_init(&rba->lock);
789 
790 	/*
791 	 * Allocate the driver's pointer to receive buffer status.
792 	 * Allocate for all queues continuously (HW requirement).
793 	 */
794 	trans_pcie->base_rb_stts =
795 			dma_alloc_coherent(trans->dev,
796 					   rb_stts_size * trans->num_rx_queues,
797 					   &trans_pcie->base_rb_stts_dma,
798 					   GFP_KERNEL);
799 	if (!trans_pcie->base_rb_stts) {
800 		ret = -ENOMEM;
801 		goto err;
802 	}
803 
804 	for (i = 0; i < trans->num_rx_queues; i++) {
805 		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
806 
807 		rxq->id = i;
808 		ret = iwl_pcie_alloc_rxq_dma(trans, rxq);
809 		if (ret)
810 			goto err;
811 	}
812 	return 0;
813 
814 err:
815 	if (trans_pcie->base_rb_stts) {
816 		dma_free_coherent(trans->dev,
817 				  rb_stts_size * trans->num_rx_queues,
818 				  trans_pcie->base_rb_stts,
819 				  trans_pcie->base_rb_stts_dma);
820 		trans_pcie->base_rb_stts = NULL;
821 		trans_pcie->base_rb_stts_dma = 0;
822 	}
823 	kfree(trans_pcie->rx_pool);
824 	trans_pcie->rx_pool = NULL;
825 	kfree(trans_pcie->global_table);
826 	trans_pcie->global_table = NULL;
827 	kfree(trans_pcie->rxq);
828 	trans_pcie->rxq = NULL;
829 
830 	return ret;
831 }
832 
833 static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq)
834 {
835 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
836 	u32 rb_size;
837 	const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */
838 
839 	switch (trans_pcie->rx_buf_size) {
840 	case IWL_AMSDU_4K:
841 		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
842 		break;
843 	case IWL_AMSDU_8K:
844 		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K;
845 		break;
846 	case IWL_AMSDU_12K:
847 		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K;
848 		break;
849 	default:
850 		WARN_ON(1);
851 		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
852 	}
853 
854 	if (!iwl_trans_grab_nic_access(trans))
855 		return;
856 
857 	/* Stop Rx DMA */
858 	iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
859 	/* reset and flush pointers */
860 	iwl_write32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
861 	iwl_write32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
862 	iwl_write32(trans, FH_RSCSR_CHNL0_RDPTR, 0);
863 
864 	/* Reset driver's Rx queue write index */
865 	iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
866 
867 	/* Tell device where to find RBD circular buffer in DRAM */
868 	iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG,
869 		    (u32)(rxq->bd_dma >> 8));
870 
871 	/* Tell device where in DRAM to update its Rx status */
872 	iwl_write32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG,
873 		    rxq->rb_stts_dma >> 4);
874 
875 	/* Enable Rx DMA
876 	 * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
877 	 *      the credit mechanism in 5000 HW RX FIFO
878 	 * Direct rx interrupts to hosts
879 	 * Rx buffer size 4 or 8k or 12k
880 	 * RB timeout 0x10
881 	 * 256 RBDs
882 	 */
883 	iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG,
884 		    FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
885 		    FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY |
886 		    FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
887 		    rb_size |
888 		    (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
889 		    (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS));
890 
891 	iwl_trans_release_nic_access(trans);
892 
893 	/* Set interrupt coalescing timer to default (2048 usecs) */
894 	iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
895 
896 	/* W/A for interrupt coalescing bug in 7260 and 3160 */
897 	if (trans->cfg->host_interrupt_operation_mode)
898 		iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE);
899 }
900 
901 static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans)
902 {
903 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
904 	u32 rb_size, enabled = 0;
905 	int i;
906 
907 	switch (trans_pcie->rx_buf_size) {
908 	case IWL_AMSDU_2K:
909 		rb_size = RFH_RXF_DMA_RB_SIZE_2K;
910 		break;
911 	case IWL_AMSDU_4K:
912 		rb_size = RFH_RXF_DMA_RB_SIZE_4K;
913 		break;
914 	case IWL_AMSDU_8K:
915 		rb_size = RFH_RXF_DMA_RB_SIZE_8K;
916 		break;
917 	case IWL_AMSDU_12K:
918 		rb_size = RFH_RXF_DMA_RB_SIZE_12K;
919 		break;
920 	default:
921 		WARN_ON(1);
922 		rb_size = RFH_RXF_DMA_RB_SIZE_4K;
923 	}
924 
925 	if (!iwl_trans_grab_nic_access(trans))
926 		return;
927 
928 	/* Stop Rx DMA */
929 	iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 0);
930 	/* disable free amd used rx queue operation */
931 	iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, 0);
932 
933 	for (i = 0; i < trans->num_rx_queues; i++) {
934 		/* Tell device where to find RBD free table in DRAM */
935 		iwl_write_prph64_no_grab(trans,
936 					 RFH_Q_FRBDCB_BA_LSB(i),
937 					 trans_pcie->rxq[i].bd_dma);
938 		/* Tell device where to find RBD used table in DRAM */
939 		iwl_write_prph64_no_grab(trans,
940 					 RFH_Q_URBDCB_BA_LSB(i),
941 					 trans_pcie->rxq[i].used_bd_dma);
942 		/* Tell device where in DRAM to update its Rx status */
943 		iwl_write_prph64_no_grab(trans,
944 					 RFH_Q_URBD_STTS_WPTR_LSB(i),
945 					 trans_pcie->rxq[i].rb_stts_dma);
946 		/* Reset device indice tables */
947 		iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_WIDX(i), 0);
948 		iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_RIDX(i), 0);
949 		iwl_write_prph_no_grab(trans, RFH_Q_URBDCB_WIDX(i), 0);
950 
951 		enabled |= BIT(i) | BIT(i + 16);
952 	}
953 
954 	/*
955 	 * Enable Rx DMA
956 	 * Rx buffer size 4 or 8k or 12k
957 	 * Min RB size 4 or 8
958 	 * Drop frames that exceed RB size
959 	 * 512 RBDs
960 	 */
961 	iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG,
962 			       RFH_DMA_EN_ENABLE_VAL | rb_size |
963 			       RFH_RXF_DMA_MIN_RB_4_8 |
964 			       RFH_RXF_DMA_DROP_TOO_LARGE_MASK |
965 			       RFH_RXF_DMA_RBDCB_SIZE_512);
966 
967 	/*
968 	 * Activate DMA snooping.
969 	 * Set RX DMA chunk size to 64B for IOSF and 128B for PCIe
970 	 * Default queue is 0
971 	 */
972 	iwl_write_prph_no_grab(trans, RFH_GEN_CFG,
973 			       RFH_GEN_CFG_RFH_DMA_SNOOP |
974 			       RFH_GEN_CFG_VAL(DEFAULT_RXQ_NUM, 0) |
975 			       RFH_GEN_CFG_SERVICE_DMA_SNOOP |
976 			       RFH_GEN_CFG_VAL(RB_CHUNK_SIZE,
977 					       trans->trans_cfg->integrated ?
978 					       RFH_GEN_CFG_RB_CHUNK_SIZE_64 :
979 					       RFH_GEN_CFG_RB_CHUNK_SIZE_128));
980 	/* Enable the relevant rx queues */
981 	iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, enabled);
982 
983 	iwl_trans_release_nic_access(trans);
984 
985 	/* Set interrupt coalescing timer to default (2048 usecs) */
986 	iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
987 }
988 
989 void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq)
990 {
991 	lockdep_assert_held(&rxq->lock);
992 
993 	INIT_LIST_HEAD(&rxq->rx_free);
994 	INIT_LIST_HEAD(&rxq->rx_used);
995 	rxq->free_count = 0;
996 	rxq->used_count = 0;
997 }
998 
999 static int iwl_pcie_rx_handle(struct iwl_trans *trans, int queue, int budget);
1000 
1001 static int iwl_pcie_napi_poll(struct napi_struct *napi, int budget)
1002 {
1003 	struct iwl_rxq *rxq = container_of(napi, struct iwl_rxq, napi);
1004 	struct iwl_trans_pcie *trans_pcie;
1005 	struct iwl_trans *trans;
1006 	int ret;
1007 
1008 	trans_pcie = container_of(napi->dev, struct iwl_trans_pcie, napi_dev);
1009 	trans = trans_pcie->trans;
1010 
1011 	ret = iwl_pcie_rx_handle(trans, rxq->id, budget);
1012 
1013 	IWL_DEBUG_ISR(trans, "[%d] handled %d, budget %d\n",
1014 		      rxq->id, ret, budget);
1015 
1016 	if (ret < budget) {
1017 		spin_lock(&trans_pcie->irq_lock);
1018 		if (test_bit(STATUS_INT_ENABLED, &trans->status))
1019 			_iwl_enable_interrupts(trans);
1020 		spin_unlock(&trans_pcie->irq_lock);
1021 
1022 		napi_complete_done(&rxq->napi, ret);
1023 	}
1024 
1025 	return ret;
1026 }
1027 
1028 static int iwl_pcie_napi_poll_msix(struct napi_struct *napi, int budget)
1029 {
1030 	struct iwl_rxq *rxq = container_of(napi, struct iwl_rxq, napi);
1031 	struct iwl_trans_pcie *trans_pcie;
1032 	struct iwl_trans *trans;
1033 	int ret;
1034 
1035 	trans_pcie = container_of(napi->dev, struct iwl_trans_pcie, napi_dev);
1036 	trans = trans_pcie->trans;
1037 
1038 	ret = iwl_pcie_rx_handle(trans, rxq->id, budget);
1039 	IWL_DEBUG_ISR(trans, "[%d] handled %d, budget %d\n", rxq->id, ret,
1040 		      budget);
1041 
1042 	if (ret < budget) {
1043 		int irq_line = rxq->id;
1044 
1045 		/* FIRST_RSS is shared with line 0 */
1046 		if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS &&
1047 		    rxq->id == 1)
1048 			irq_line = 0;
1049 
1050 		spin_lock(&trans_pcie->irq_lock);
1051 		iwl_pcie_clear_irq(trans, irq_line);
1052 		spin_unlock(&trans_pcie->irq_lock);
1053 
1054 		napi_complete_done(&rxq->napi, ret);
1055 	}
1056 
1057 	return ret;
1058 }
1059 
1060 static int _iwl_pcie_rx_init(struct iwl_trans *trans)
1061 {
1062 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1063 	struct iwl_rxq *def_rxq;
1064 	struct iwl_rb_allocator *rba = &trans_pcie->rba;
1065 	int i, err, queue_size, allocator_pool_size, num_alloc;
1066 
1067 	if (!trans_pcie->rxq) {
1068 		err = iwl_pcie_rx_alloc(trans);
1069 		if (err)
1070 			return err;
1071 	}
1072 	def_rxq = trans_pcie->rxq;
1073 
1074 	cancel_work_sync(&rba->rx_alloc);
1075 
1076 	spin_lock_bh(&rba->lock);
1077 	atomic_set(&rba->req_pending, 0);
1078 	atomic_set(&rba->req_ready, 0);
1079 	INIT_LIST_HEAD(&rba->rbd_allocated);
1080 	INIT_LIST_HEAD(&rba->rbd_empty);
1081 	spin_unlock_bh(&rba->lock);
1082 
1083 	/* free all first - we overwrite everything here */
1084 	iwl_pcie_free_rbs_pool(trans);
1085 
1086 	for (i = 0; i < RX_QUEUE_SIZE; i++)
1087 		def_rxq->queue[i] = NULL;
1088 
1089 	for (i = 0; i < trans->num_rx_queues; i++) {
1090 		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1091 
1092 		spin_lock_bh(&rxq->lock);
1093 		/*
1094 		 * Set read write pointer to reflect that we have processed
1095 		 * and used all buffers, but have not restocked the Rx queue
1096 		 * with fresh buffers
1097 		 */
1098 		rxq->read = 0;
1099 		rxq->write = 0;
1100 		rxq->write_actual = 0;
1101 		memset(rxq->rb_stts, 0,
1102 		       (trans->trans_cfg->device_family >=
1103 			IWL_DEVICE_FAMILY_AX210) ?
1104 		       sizeof(__le16) : sizeof(struct iwl_rb_status));
1105 
1106 		iwl_pcie_rx_init_rxb_lists(rxq);
1107 
1108 		spin_unlock_bh(&rxq->lock);
1109 
1110 		if (!rxq->napi.poll) {
1111 			int (*poll)(struct napi_struct *, int) = iwl_pcie_napi_poll;
1112 
1113 			if (trans_pcie->msix_enabled)
1114 				poll = iwl_pcie_napi_poll_msix;
1115 
1116 			netif_napi_add(&trans_pcie->napi_dev, &rxq->napi, poll);
1117 			napi_enable(&rxq->napi);
1118 		}
1119 
1120 	}
1121 
1122 	/* move the pool to the default queue and allocator ownerships */
1123 	queue_size = trans->trans_cfg->mq_rx_supported ?
1124 			trans_pcie->num_rx_bufs - 1 : RX_QUEUE_SIZE;
1125 	allocator_pool_size = trans->num_rx_queues *
1126 		(RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC);
1127 	num_alloc = queue_size + allocator_pool_size;
1128 
1129 	for (i = 0; i < num_alloc; i++) {
1130 		struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i];
1131 
1132 		if (i < allocator_pool_size)
1133 			list_add(&rxb->list, &rba->rbd_empty);
1134 		else
1135 			list_add(&rxb->list, &def_rxq->rx_used);
1136 		trans_pcie->global_table[i] = rxb;
1137 		rxb->vid = (u16)(i + 1);
1138 		rxb->invalid = true;
1139 	}
1140 
1141 	iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq);
1142 
1143 	return 0;
1144 }
1145 
1146 int iwl_pcie_rx_init(struct iwl_trans *trans)
1147 {
1148 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1149 	int ret = _iwl_pcie_rx_init(trans);
1150 
1151 	if (ret)
1152 		return ret;
1153 
1154 	if (trans->trans_cfg->mq_rx_supported)
1155 		iwl_pcie_rx_mq_hw_init(trans);
1156 	else
1157 		iwl_pcie_rx_hw_init(trans, trans_pcie->rxq);
1158 
1159 	iwl_pcie_rxq_restock(trans, trans_pcie->rxq);
1160 
1161 	spin_lock_bh(&trans_pcie->rxq->lock);
1162 	iwl_pcie_rxq_inc_wr_ptr(trans, trans_pcie->rxq);
1163 	spin_unlock_bh(&trans_pcie->rxq->lock);
1164 
1165 	return 0;
1166 }
1167 
1168 int iwl_pcie_gen2_rx_init(struct iwl_trans *trans)
1169 {
1170 	/* Set interrupt coalescing timer to default (2048 usecs) */
1171 	iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
1172 
1173 	/*
1174 	 * We don't configure the RFH.
1175 	 * Restock will be done at alive, after firmware configured the RFH.
1176 	 */
1177 	return _iwl_pcie_rx_init(trans);
1178 }
1179 
1180 void iwl_pcie_rx_free(struct iwl_trans *trans)
1181 {
1182 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1183 	struct iwl_rb_allocator *rba = &trans_pcie->rba;
1184 	int i;
1185 	size_t rb_stts_size = trans->trans_cfg->device_family >=
1186 				IWL_DEVICE_FAMILY_AX210 ?
1187 			      sizeof(__le16) : sizeof(struct iwl_rb_status);
1188 
1189 	/*
1190 	 * if rxq is NULL, it means that nothing has been allocated,
1191 	 * exit now
1192 	 */
1193 	if (!trans_pcie->rxq) {
1194 		IWL_DEBUG_INFO(trans, "Free NULL rx context\n");
1195 		return;
1196 	}
1197 
1198 	cancel_work_sync(&rba->rx_alloc);
1199 
1200 	iwl_pcie_free_rbs_pool(trans);
1201 
1202 	if (trans_pcie->base_rb_stts) {
1203 		dma_free_coherent(trans->dev,
1204 				  rb_stts_size * trans->num_rx_queues,
1205 				  trans_pcie->base_rb_stts,
1206 				  trans_pcie->base_rb_stts_dma);
1207 		trans_pcie->base_rb_stts = NULL;
1208 		trans_pcie->base_rb_stts_dma = 0;
1209 	}
1210 
1211 	for (i = 0; i < trans->num_rx_queues; i++) {
1212 		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1213 
1214 		iwl_pcie_free_rxq_dma(trans, rxq);
1215 
1216 		if (rxq->napi.poll) {
1217 			napi_disable(&rxq->napi);
1218 			netif_napi_del(&rxq->napi);
1219 		}
1220 	}
1221 	kfree(trans_pcie->rx_pool);
1222 	kfree(trans_pcie->global_table);
1223 	kfree(trans_pcie->rxq);
1224 
1225 	if (trans_pcie->alloc_page)
1226 		__free_pages(trans_pcie->alloc_page, trans_pcie->rx_page_order);
1227 }
1228 
1229 static void iwl_pcie_rx_move_to_allocator(struct iwl_rxq *rxq,
1230 					  struct iwl_rb_allocator *rba)
1231 {
1232 	spin_lock(&rba->lock);
1233 	list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
1234 	spin_unlock(&rba->lock);
1235 }
1236 
1237 /*
1238  * iwl_pcie_rx_reuse_rbd - Recycle used RBDs
1239  *
1240  * Called when a RBD can be reused. The RBD is transferred to the allocator.
1241  * When there are 2 empty RBDs - a request for allocation is posted
1242  */
1243 static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans,
1244 				  struct iwl_rx_mem_buffer *rxb,
1245 				  struct iwl_rxq *rxq, bool emergency)
1246 {
1247 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1248 	struct iwl_rb_allocator *rba = &trans_pcie->rba;
1249 
1250 	/* Move the RBD to the used list, will be moved to allocator in batches
1251 	 * before claiming or posting a request*/
1252 	list_add_tail(&rxb->list, &rxq->rx_used);
1253 
1254 	if (unlikely(emergency))
1255 		return;
1256 
1257 	/* Count the allocator owned RBDs */
1258 	rxq->used_count++;
1259 
1260 	/* If we have RX_POST_REQ_ALLOC new released rx buffers -
1261 	 * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is
1262 	 * used for the case we failed to claim RX_CLAIM_REQ_ALLOC,
1263 	 * after but we still need to post another request.
1264 	 */
1265 	if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) {
1266 		/* Move the 2 RBDs to the allocator ownership.
1267 		 Allocator has another 6 from pool for the request completion*/
1268 		iwl_pcie_rx_move_to_allocator(rxq, rba);
1269 
1270 		atomic_inc(&rba->req_pending);
1271 		queue_work(rba->alloc_wq, &rba->rx_alloc);
1272 	}
1273 }
1274 
1275 static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans,
1276 				struct iwl_rxq *rxq,
1277 				struct iwl_rx_mem_buffer *rxb,
1278 				bool emergency,
1279 				int i)
1280 {
1281 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1282 	struct iwl_txq *txq = trans->txqs.txq[trans->txqs.cmd.q_id];
1283 	bool page_stolen = false;
1284 	int max_len = trans_pcie->rx_buf_bytes;
1285 	u32 offset = 0;
1286 
1287 	if (WARN_ON(!rxb))
1288 		return;
1289 
1290 	dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE);
1291 
1292 	while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) {
1293 		struct iwl_rx_packet *pkt;
1294 		bool reclaim;
1295 		int len;
1296 		struct iwl_rx_cmd_buffer rxcb = {
1297 			._offset = rxb->offset + offset,
1298 			._rx_page_order = trans_pcie->rx_page_order,
1299 			._page = rxb->page,
1300 			._page_stolen = false,
1301 			.truesize = max_len,
1302 		};
1303 
1304 		pkt = rxb_addr(&rxcb);
1305 
1306 		if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID)) {
1307 			IWL_DEBUG_RX(trans,
1308 				     "Q %d: RB end marker at offset %d\n",
1309 				     rxq->id, offset);
1310 			break;
1311 		}
1312 
1313 		WARN((le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1314 			FH_RSCSR_RXQ_POS != rxq->id,
1315 		     "frame on invalid queue - is on %d and indicates %d\n",
1316 		     rxq->id,
1317 		     (le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1318 			FH_RSCSR_RXQ_POS);
1319 
1320 		IWL_DEBUG_RX(trans,
1321 			     "Q %d: cmd at offset %d: %s (%.2x.%2x, seq 0x%x)\n",
1322 			     rxq->id, offset,
1323 			     iwl_get_cmd_string(trans,
1324 						WIDE_ID(pkt->hdr.group_id, pkt->hdr.cmd)),
1325 			     pkt->hdr.group_id, pkt->hdr.cmd,
1326 			     le16_to_cpu(pkt->hdr.sequence));
1327 
1328 		len = iwl_rx_packet_len(pkt);
1329 		len += sizeof(u32); /* account for status word */
1330 
1331 		offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN);
1332 
1333 		/* check that what the device tells us made sense */
1334 		if (len < sizeof(*pkt) || offset > max_len)
1335 			break;
1336 
1337 		trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len);
1338 		trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len);
1339 
1340 		/* Reclaim a command buffer only if this packet is a response
1341 		 *   to a (driver-originated) command.
1342 		 * If the packet (e.g. Rx frame) originated from uCode,
1343 		 *   there is no command buffer to reclaim.
1344 		 * Ucode should set SEQ_RX_FRAME bit if ucode-originated,
1345 		 *   but apparently a few don't get set; catch them here. */
1346 		reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME);
1347 		if (reclaim && !pkt->hdr.group_id) {
1348 			int i;
1349 
1350 			for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) {
1351 				if (trans_pcie->no_reclaim_cmds[i] ==
1352 							pkt->hdr.cmd) {
1353 					reclaim = false;
1354 					break;
1355 				}
1356 			}
1357 		}
1358 
1359 		if (rxq->id == trans_pcie->def_rx_queue)
1360 			iwl_op_mode_rx(trans->op_mode, &rxq->napi,
1361 				       &rxcb);
1362 		else
1363 			iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi,
1364 					   &rxcb, rxq->id);
1365 
1366 		/*
1367 		 * After here, we should always check rxcb._page_stolen,
1368 		 * if it is true then one of the handlers took the page.
1369 		 */
1370 
1371 		if (reclaim) {
1372 			u16 sequence = le16_to_cpu(pkt->hdr.sequence);
1373 			int index = SEQ_TO_INDEX(sequence);
1374 			int cmd_index = iwl_txq_get_cmd_index(txq, index);
1375 
1376 			kfree_sensitive(txq->entries[cmd_index].free_buf);
1377 			txq->entries[cmd_index].free_buf = NULL;
1378 
1379 			/* Invoke any callbacks, transfer the buffer to caller,
1380 			 * and fire off the (possibly) blocking
1381 			 * iwl_trans_send_cmd()
1382 			 * as we reclaim the driver command queue */
1383 			if (!rxcb._page_stolen)
1384 				iwl_pcie_hcmd_complete(trans, &rxcb);
1385 			else
1386 				IWL_WARN(trans, "Claim null rxb?\n");
1387 		}
1388 
1389 		page_stolen |= rxcb._page_stolen;
1390 		if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
1391 			break;
1392 	}
1393 
1394 	/* page was stolen from us -- free our reference */
1395 	if (page_stolen) {
1396 		__free_pages(rxb->page, trans_pcie->rx_page_order);
1397 		rxb->page = NULL;
1398 	}
1399 
1400 	/* Reuse the page if possible. For notification packets and
1401 	 * SKBs that fail to Rx correctly, add them back into the
1402 	 * rx_free list for reuse later. */
1403 	if (rxb->page != NULL) {
1404 		rxb->page_dma =
1405 			dma_map_page(trans->dev, rxb->page, rxb->offset,
1406 				     trans_pcie->rx_buf_bytes,
1407 				     DMA_FROM_DEVICE);
1408 		if (dma_mapping_error(trans->dev, rxb->page_dma)) {
1409 			/*
1410 			 * free the page(s) as well to not break
1411 			 * the invariant that the items on the used
1412 			 * list have no page(s)
1413 			 */
1414 			__free_pages(rxb->page, trans_pcie->rx_page_order);
1415 			rxb->page = NULL;
1416 			iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1417 		} else {
1418 			list_add_tail(&rxb->list, &rxq->rx_free);
1419 			rxq->free_count++;
1420 		}
1421 	} else
1422 		iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1423 }
1424 
1425 static struct iwl_rx_mem_buffer *iwl_pcie_get_rxb(struct iwl_trans *trans,
1426 						  struct iwl_rxq *rxq, int i,
1427 						  bool *join)
1428 {
1429 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1430 	struct iwl_rx_mem_buffer *rxb;
1431 	u16 vid;
1432 
1433 	BUILD_BUG_ON(sizeof(struct iwl_rx_completion_desc) != 32);
1434 	BUILD_BUG_ON(sizeof(struct iwl_rx_completion_desc_bz) != 4);
1435 
1436 	if (!trans->trans_cfg->mq_rx_supported) {
1437 		rxb = rxq->queue[i];
1438 		rxq->queue[i] = NULL;
1439 		return rxb;
1440 	}
1441 
1442 	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ) {
1443 		struct iwl_rx_completion_desc_bz *cd = rxq->used_bd;
1444 
1445 		vid = le16_to_cpu(cd[i].rbid);
1446 		*join = cd[i].flags & IWL_RX_CD_FLAGS_FRAGMENTED;
1447 	} else if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
1448 		struct iwl_rx_completion_desc *cd = rxq->used_bd;
1449 
1450 		vid = le16_to_cpu(cd[i].rbid);
1451 		*join = cd[i].flags & IWL_RX_CD_FLAGS_FRAGMENTED;
1452 	} else {
1453 		__le32 *cd = rxq->used_bd;
1454 
1455 		vid = le32_to_cpu(cd[i]) & 0x0FFF; /* 12-bit VID */
1456 	}
1457 
1458 	if (!vid || vid > RX_POOL_SIZE(trans_pcie->num_rx_bufs))
1459 		goto out_err;
1460 
1461 	rxb = trans_pcie->global_table[vid - 1];
1462 	if (rxb->invalid)
1463 		goto out_err;
1464 
1465 	IWL_DEBUG_RX(trans, "Got virtual RB ID %u\n", (u32)rxb->vid);
1466 
1467 	rxb->invalid = true;
1468 
1469 	return rxb;
1470 
1471 out_err:
1472 	WARN(1, "Invalid rxb from HW %u\n", (u32)vid);
1473 	iwl_force_nmi(trans);
1474 	return NULL;
1475 }
1476 
1477 /*
1478  * iwl_pcie_rx_handle - Main entry function for receiving responses from fw
1479  */
1480 static int iwl_pcie_rx_handle(struct iwl_trans *trans, int queue, int budget)
1481 {
1482 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1483 	struct iwl_rxq *rxq;
1484 	u32 r, i, count = 0, handled = 0;
1485 	bool emergency = false;
1486 
1487 	if (WARN_ON_ONCE(!trans_pcie->rxq || !trans_pcie->rxq[queue].bd))
1488 		return budget;
1489 
1490 	rxq = &trans_pcie->rxq[queue];
1491 
1492 restart:
1493 	spin_lock(&rxq->lock);
1494 	/* uCode's read index (stored in shared DRAM) indicates the last Rx
1495 	 * buffer that the driver may process (last buffer filled by ucode). */
1496 	r = le16_to_cpu(iwl_get_closed_rb_stts(trans, rxq)) & 0x0FFF;
1497 	i = rxq->read;
1498 
1499 	/* W/A 9000 device step A0 wrap-around bug */
1500 	r &= (rxq->queue_size - 1);
1501 
1502 	/* Rx interrupt, but nothing sent from uCode */
1503 	if (i == r)
1504 		IWL_DEBUG_RX(trans, "Q %d: HW = SW = %d\n", rxq->id, r);
1505 
1506 	while (i != r && ++handled < budget) {
1507 		struct iwl_rb_allocator *rba = &trans_pcie->rba;
1508 		struct iwl_rx_mem_buffer *rxb;
1509 		/* number of RBDs still waiting for page allocation */
1510 		u32 rb_pending_alloc =
1511 			atomic_read(&trans_pcie->rba.req_pending) *
1512 			RX_CLAIM_REQ_ALLOC;
1513 		bool join = false;
1514 
1515 		if (unlikely(rb_pending_alloc >= rxq->queue_size / 2 &&
1516 			     !emergency)) {
1517 			iwl_pcie_rx_move_to_allocator(rxq, rba);
1518 			emergency = true;
1519 			IWL_DEBUG_TPT(trans,
1520 				      "RX path is in emergency. Pending allocations %d\n",
1521 				      rb_pending_alloc);
1522 		}
1523 
1524 		IWL_DEBUG_RX(trans, "Q %d: HW = %d, SW = %d\n", rxq->id, r, i);
1525 
1526 		rxb = iwl_pcie_get_rxb(trans, rxq, i, &join);
1527 		if (!rxb)
1528 			goto out;
1529 
1530 		if (unlikely(join || rxq->next_rb_is_fragment)) {
1531 			rxq->next_rb_is_fragment = join;
1532 			/*
1533 			 * We can only get a multi-RB in the following cases:
1534 			 *  - firmware issue, sending a too big notification
1535 			 *  - sniffer mode with a large A-MSDU
1536 			 *  - large MTU frames (>2k)
1537 			 * since the multi-RB functionality is limited to newer
1538 			 * hardware that cannot put multiple entries into a
1539 			 * single RB.
1540 			 *
1541 			 * Right now, the higher layers aren't set up to deal
1542 			 * with that, so discard all of these.
1543 			 */
1544 			list_add_tail(&rxb->list, &rxq->rx_free);
1545 			rxq->free_count++;
1546 		} else {
1547 			iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency, i);
1548 		}
1549 
1550 		i = (i + 1) & (rxq->queue_size - 1);
1551 
1552 		/*
1553 		 * If we have RX_CLAIM_REQ_ALLOC released rx buffers -
1554 		 * try to claim the pre-allocated buffers from the allocator.
1555 		 * If not ready - will try to reclaim next time.
1556 		 * There is no need to reschedule work - allocator exits only
1557 		 * on success
1558 		 */
1559 		if (rxq->used_count >= RX_CLAIM_REQ_ALLOC)
1560 			iwl_pcie_rx_allocator_get(trans, rxq);
1561 
1562 		if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 && !emergency) {
1563 			/* Add the remaining empty RBDs for allocator use */
1564 			iwl_pcie_rx_move_to_allocator(rxq, rba);
1565 		} else if (emergency) {
1566 			count++;
1567 			if (count == 8) {
1568 				count = 0;
1569 				if (rb_pending_alloc < rxq->queue_size / 3) {
1570 					IWL_DEBUG_TPT(trans,
1571 						      "RX path exited emergency. Pending allocations %d\n",
1572 						      rb_pending_alloc);
1573 					emergency = false;
1574 				}
1575 
1576 				rxq->read = i;
1577 				spin_unlock(&rxq->lock);
1578 				iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1579 				iwl_pcie_rxq_restock(trans, rxq);
1580 				goto restart;
1581 			}
1582 		}
1583 	}
1584 out:
1585 	/* Backtrack one entry */
1586 	rxq->read = i;
1587 	spin_unlock(&rxq->lock);
1588 
1589 	/*
1590 	 * handle a case where in emergency there are some unallocated RBDs.
1591 	 * those RBDs are in the used list, but are not tracked by the queue's
1592 	 * used_count which counts allocator owned RBDs.
1593 	 * unallocated emergency RBDs must be allocated on exit, otherwise
1594 	 * when called again the function may not be in emergency mode and
1595 	 * they will be handed to the allocator with no tracking in the RBD
1596 	 * allocator counters, which will lead to them never being claimed back
1597 	 * by the queue.
1598 	 * by allocating them here, they are now in the queue free list, and
1599 	 * will be restocked by the next call of iwl_pcie_rxq_restock.
1600 	 */
1601 	if (unlikely(emergency && count))
1602 		iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1603 
1604 	iwl_pcie_rxq_restock(trans, rxq);
1605 
1606 	return handled;
1607 }
1608 
1609 static struct iwl_trans_pcie *iwl_pcie_get_trans_pcie(struct msix_entry *entry)
1610 {
1611 	u8 queue = entry->entry;
1612 	struct msix_entry *entries = entry - queue;
1613 
1614 	return container_of(entries, struct iwl_trans_pcie, msix_entries[0]);
1615 }
1616 
1617 /*
1618  * iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw
1619  * This interrupt handler should be used with RSS queue only.
1620  */
1621 irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id)
1622 {
1623 	struct msix_entry *entry = dev_id;
1624 	struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
1625 	struct iwl_trans *trans = trans_pcie->trans;
1626 	struct iwl_rxq *rxq = &trans_pcie->rxq[entry->entry];
1627 
1628 	trace_iwlwifi_dev_irq_msix(trans->dev, entry, false, 0, 0);
1629 
1630 	if (WARN_ON(entry->entry >= trans->num_rx_queues))
1631 		return IRQ_NONE;
1632 
1633 	if (!rxq) {
1634 		if (net_ratelimit())
1635 			IWL_ERR(trans,
1636 				"[%d] Got MSI-X interrupt before we have Rx queues\n",
1637 				entry->entry);
1638 		return IRQ_NONE;
1639 	}
1640 
1641 	lock_map_acquire(&trans->sync_cmd_lockdep_map);
1642 	IWL_DEBUG_ISR(trans, "[%d] Got interrupt\n", entry->entry);
1643 
1644 	local_bh_disable();
1645 	if (napi_schedule_prep(&rxq->napi))
1646 		__napi_schedule(&rxq->napi);
1647 	else
1648 		iwl_pcie_clear_irq(trans, entry->entry);
1649 	local_bh_enable();
1650 
1651 	lock_map_release(&trans->sync_cmd_lockdep_map);
1652 
1653 	return IRQ_HANDLED;
1654 }
1655 
1656 /*
1657  * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card
1658  */
1659 static void iwl_pcie_irq_handle_error(struct iwl_trans *trans)
1660 {
1661 	int i;
1662 
1663 	/* W/A for WiFi/WiMAX coex and WiMAX own the RF */
1664 	if (trans->cfg->internal_wimax_coex &&
1665 	    !trans->cfg->apmg_not_supported &&
1666 	    (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) &
1667 			     APMS_CLK_VAL_MRB_FUNC_MODE) ||
1668 	     (iwl_read_prph(trans, APMG_PS_CTRL_REG) &
1669 			    APMG_PS_CTRL_VAL_RESET_REQ))) {
1670 		clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1671 		iwl_op_mode_wimax_active(trans->op_mode);
1672 		wake_up(&trans->wait_command_queue);
1673 		return;
1674 	}
1675 
1676 	for (i = 0; i < trans->trans_cfg->base_params->num_of_queues; i++) {
1677 		if (!trans->txqs.txq[i])
1678 			continue;
1679 		del_timer(&trans->txqs.txq[i]->stuck_timer);
1680 	}
1681 
1682 	/* The STATUS_FW_ERROR bit is set in this function. This must happen
1683 	 * before we wake up the command caller, to ensure a proper cleanup. */
1684 	iwl_trans_fw_error(trans, false);
1685 
1686 	clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1687 	wake_up(&trans->wait_command_queue);
1688 }
1689 
1690 static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans)
1691 {
1692 	u32 inta;
1693 
1694 	lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock);
1695 
1696 	trace_iwlwifi_dev_irq(trans->dev);
1697 
1698 	/* Discover which interrupts are active/pending */
1699 	inta = iwl_read32(trans, CSR_INT);
1700 
1701 	/* the thread will service interrupts and re-enable them */
1702 	return inta;
1703 }
1704 
1705 /* a device (PCI-E) page is 4096 bytes long */
1706 #define ICT_SHIFT	12
1707 #define ICT_SIZE	(1 << ICT_SHIFT)
1708 #define ICT_COUNT	(ICT_SIZE / sizeof(u32))
1709 
1710 /* interrupt handler using ict table, with this interrupt driver will
1711  * stop using INTA register to get device's interrupt, reading this register
1712  * is expensive, device will write interrupts in ICT dram table, increment
1713  * index then will fire interrupt to driver, driver will OR all ICT table
1714  * entries from current index up to table entry with 0 value. the result is
1715  * the interrupt we need to service, driver will set the entries back to 0 and
1716  * set index.
1717  */
1718 static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans)
1719 {
1720 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1721 	u32 inta;
1722 	u32 val = 0;
1723 	u32 read;
1724 
1725 	trace_iwlwifi_dev_irq(trans->dev);
1726 
1727 	/* Ignore interrupt if there's nothing in NIC to service.
1728 	 * This may be due to IRQ shared with another device,
1729 	 * or due to sporadic interrupts thrown from our NIC. */
1730 	read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1731 	trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read);
1732 	if (!read)
1733 		return 0;
1734 
1735 	/*
1736 	 * Collect all entries up to the first 0, starting from ict_index;
1737 	 * note we already read at ict_index.
1738 	 */
1739 	do {
1740 		val |= read;
1741 		IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n",
1742 				trans_pcie->ict_index, read);
1743 		trans_pcie->ict_tbl[trans_pcie->ict_index] = 0;
1744 		trans_pcie->ict_index =
1745 			((trans_pcie->ict_index + 1) & (ICT_COUNT - 1));
1746 
1747 		read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1748 		trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index,
1749 					   read);
1750 	} while (read);
1751 
1752 	/* We should not get this value, just ignore it. */
1753 	if (val == 0xffffffff)
1754 		val = 0;
1755 
1756 	/*
1757 	 * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
1758 	 * (bit 15 before shifting it to 31) to clear when using interrupt
1759 	 * coalescing. fortunately, bits 18 and 19 stay set when this happens
1760 	 * so we use them to decide on the real state of the Rx bit.
1761 	 * In order words, bit 15 is set if bit 18 or bit 19 are set.
1762 	 */
1763 	if (val & 0xC0000)
1764 		val |= 0x8000;
1765 
1766 	inta = (0xff & val) | ((0xff00 & val) << 16);
1767 	return inta;
1768 }
1769 
1770 void iwl_pcie_handle_rfkill_irq(struct iwl_trans *trans)
1771 {
1772 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1773 	struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1774 	bool hw_rfkill, prev, report;
1775 
1776 	mutex_lock(&trans_pcie->mutex);
1777 	prev = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1778 	hw_rfkill = iwl_is_rfkill_set(trans);
1779 	if (hw_rfkill) {
1780 		set_bit(STATUS_RFKILL_OPMODE, &trans->status);
1781 		set_bit(STATUS_RFKILL_HW, &trans->status);
1782 	}
1783 	if (trans_pcie->opmode_down)
1784 		report = hw_rfkill;
1785 	else
1786 		report = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1787 
1788 	IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
1789 		 hw_rfkill ? "disable radio" : "enable radio");
1790 
1791 	isr_stats->rfkill++;
1792 
1793 	if (prev != report)
1794 		iwl_trans_pcie_rf_kill(trans, report);
1795 	mutex_unlock(&trans_pcie->mutex);
1796 
1797 	if (hw_rfkill) {
1798 		if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
1799 				       &trans->status))
1800 			IWL_DEBUG_RF_KILL(trans,
1801 					  "Rfkill while SYNC HCMD in flight\n");
1802 		wake_up(&trans->wait_command_queue);
1803 	} else {
1804 		clear_bit(STATUS_RFKILL_HW, &trans->status);
1805 		if (trans_pcie->opmode_down)
1806 			clear_bit(STATUS_RFKILL_OPMODE, &trans->status);
1807 	}
1808 }
1809 
1810 irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id)
1811 {
1812 	struct iwl_trans *trans = dev_id;
1813 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1814 	struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1815 	u32 inta = 0;
1816 	u32 handled = 0;
1817 	bool polling = false;
1818 
1819 	lock_map_acquire(&trans->sync_cmd_lockdep_map);
1820 
1821 	spin_lock_bh(&trans_pcie->irq_lock);
1822 
1823 	/* dram interrupt table not set yet,
1824 	 * use legacy interrupt.
1825 	 */
1826 	if (likely(trans_pcie->use_ict))
1827 		inta = iwl_pcie_int_cause_ict(trans);
1828 	else
1829 		inta = iwl_pcie_int_cause_non_ict(trans);
1830 
1831 #ifdef CONFIG_IWLWIFI_DEBUG
1832 	if (iwl_have_debug_level(IWL_DL_ISR)) {
1833 		IWL_DEBUG_ISR(trans,
1834 			      "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n",
1835 			      inta, trans_pcie->inta_mask,
1836 			      iwl_read32(trans, CSR_INT_MASK),
1837 			      iwl_read32(trans, CSR_FH_INT_STATUS));
1838 		if (inta & (~trans_pcie->inta_mask))
1839 			IWL_DEBUG_ISR(trans,
1840 				      "We got a masked interrupt (0x%08x)\n",
1841 				      inta & (~trans_pcie->inta_mask));
1842 	}
1843 #endif
1844 
1845 	inta &= trans_pcie->inta_mask;
1846 
1847 	/*
1848 	 * Ignore interrupt if there's nothing in NIC to service.
1849 	 * This may be due to IRQ shared with another device,
1850 	 * or due to sporadic interrupts thrown from our NIC.
1851 	 */
1852 	if (unlikely(!inta)) {
1853 		IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
1854 		/*
1855 		 * Re-enable interrupts here since we don't
1856 		 * have anything to service
1857 		 */
1858 		if (test_bit(STATUS_INT_ENABLED, &trans->status))
1859 			_iwl_enable_interrupts(trans);
1860 		spin_unlock_bh(&trans_pcie->irq_lock);
1861 		lock_map_release(&trans->sync_cmd_lockdep_map);
1862 		return IRQ_NONE;
1863 	}
1864 
1865 	if (unlikely(inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0)) {
1866 		/*
1867 		 * Hardware disappeared. It might have
1868 		 * already raised an interrupt.
1869 		 */
1870 		IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta);
1871 		spin_unlock_bh(&trans_pcie->irq_lock);
1872 		goto out;
1873 	}
1874 
1875 	/* Ack/clear/reset pending uCode interrupts.
1876 	 * Note:  Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
1877 	 */
1878 	/* There is a hardware bug in the interrupt mask function that some
1879 	 * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
1880 	 * they are disabled in the CSR_INT_MASK register. Furthermore the
1881 	 * ICT interrupt handling mechanism has another bug that might cause
1882 	 * these unmasked interrupts fail to be detected. We workaround the
1883 	 * hardware bugs here by ACKing all the possible interrupts so that
1884 	 * interrupt coalescing can still be achieved.
1885 	 */
1886 	iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask);
1887 
1888 #ifdef CONFIG_IWLWIFI_DEBUG
1889 	if (iwl_have_debug_level(IWL_DL_ISR))
1890 		IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n",
1891 			      inta, iwl_read32(trans, CSR_INT_MASK));
1892 #endif
1893 
1894 	spin_unlock_bh(&trans_pcie->irq_lock);
1895 
1896 	/* Now service all interrupt bits discovered above. */
1897 	if (inta & CSR_INT_BIT_HW_ERR) {
1898 		IWL_ERR(trans, "Hardware error detected.  Restarting.\n");
1899 
1900 		/* Tell the device to stop sending interrupts */
1901 		iwl_disable_interrupts(trans);
1902 
1903 		isr_stats->hw++;
1904 		iwl_pcie_irq_handle_error(trans);
1905 
1906 		handled |= CSR_INT_BIT_HW_ERR;
1907 
1908 		goto out;
1909 	}
1910 
1911 	/* NIC fires this, but we don't use it, redundant with WAKEUP */
1912 	if (inta & CSR_INT_BIT_SCD) {
1913 		IWL_DEBUG_ISR(trans,
1914 			      "Scheduler finished to transmit the frame/frames.\n");
1915 		isr_stats->sch++;
1916 	}
1917 
1918 	/* Alive notification via Rx interrupt will do the real work */
1919 	if (inta & CSR_INT_BIT_ALIVE) {
1920 		IWL_DEBUG_ISR(trans, "Alive interrupt\n");
1921 		isr_stats->alive++;
1922 		if (trans->trans_cfg->gen2) {
1923 			/*
1924 			 * We can restock, since firmware configured
1925 			 * the RFH
1926 			 */
1927 			iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
1928 		}
1929 
1930 		handled |= CSR_INT_BIT_ALIVE;
1931 	}
1932 
1933 	/* Safely ignore these bits for debug checks below */
1934 	inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE);
1935 
1936 	/* HW RF KILL switch toggled */
1937 	if (inta & CSR_INT_BIT_RF_KILL) {
1938 		iwl_pcie_handle_rfkill_irq(trans);
1939 		handled |= CSR_INT_BIT_RF_KILL;
1940 	}
1941 
1942 	/* Chip got too hot and stopped itself */
1943 	if (inta & CSR_INT_BIT_CT_KILL) {
1944 		IWL_ERR(trans, "Microcode CT kill error detected.\n");
1945 		isr_stats->ctkill++;
1946 		handled |= CSR_INT_BIT_CT_KILL;
1947 	}
1948 
1949 	/* Error detected by uCode */
1950 	if (inta & CSR_INT_BIT_SW_ERR) {
1951 		IWL_ERR(trans, "Microcode SW error detected. "
1952 			" Restarting 0x%X.\n", inta);
1953 		isr_stats->sw++;
1954 		iwl_pcie_irq_handle_error(trans);
1955 		handled |= CSR_INT_BIT_SW_ERR;
1956 	}
1957 
1958 	/* uCode wakes up after power-down sleep */
1959 	if (inta & CSR_INT_BIT_WAKEUP) {
1960 		IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
1961 		iwl_pcie_rxq_check_wrptr(trans);
1962 		iwl_pcie_txq_check_wrptrs(trans);
1963 
1964 		isr_stats->wakeup++;
1965 
1966 		handled |= CSR_INT_BIT_WAKEUP;
1967 	}
1968 
1969 	/* All uCode command responses, including Tx command responses,
1970 	 * Rx "responses" (frame-received notification), and other
1971 	 * notifications from uCode come through here*/
1972 	if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX |
1973 		    CSR_INT_BIT_RX_PERIODIC)) {
1974 		IWL_DEBUG_ISR(trans, "Rx interrupt\n");
1975 		if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) {
1976 			handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX);
1977 			iwl_write32(trans, CSR_FH_INT_STATUS,
1978 					CSR_FH_INT_RX_MASK);
1979 		}
1980 		if (inta & CSR_INT_BIT_RX_PERIODIC) {
1981 			handled |= CSR_INT_BIT_RX_PERIODIC;
1982 			iwl_write32(trans,
1983 				CSR_INT, CSR_INT_BIT_RX_PERIODIC);
1984 		}
1985 		/* Sending RX interrupt require many steps to be done in the
1986 		 * device:
1987 		 * 1- write interrupt to current index in ICT table.
1988 		 * 2- dma RX frame.
1989 		 * 3- update RX shared data to indicate last write index.
1990 		 * 4- send interrupt.
1991 		 * This could lead to RX race, driver could receive RX interrupt
1992 		 * but the shared data changes does not reflect this;
1993 		 * periodic interrupt will detect any dangling Rx activity.
1994 		 */
1995 
1996 		/* Disable periodic interrupt; we use it as just a one-shot. */
1997 		iwl_write8(trans, CSR_INT_PERIODIC_REG,
1998 			    CSR_INT_PERIODIC_DIS);
1999 
2000 		/*
2001 		 * Enable periodic interrupt in 8 msec only if we received
2002 		 * real RX interrupt (instead of just periodic int), to catch
2003 		 * any dangling Rx interrupt.  If it was just the periodic
2004 		 * interrupt, there was no dangling Rx activity, and no need
2005 		 * to extend the periodic interrupt; one-shot is enough.
2006 		 */
2007 		if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX))
2008 			iwl_write8(trans, CSR_INT_PERIODIC_REG,
2009 				   CSR_INT_PERIODIC_ENA);
2010 
2011 		isr_stats->rx++;
2012 
2013 		local_bh_disable();
2014 		if (napi_schedule_prep(&trans_pcie->rxq[0].napi)) {
2015 			polling = true;
2016 			__napi_schedule(&trans_pcie->rxq[0].napi);
2017 		}
2018 		local_bh_enable();
2019 	}
2020 
2021 	/* This "Tx" DMA channel is used only for loading uCode */
2022 	if (inta & CSR_INT_BIT_FH_TX) {
2023 		iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK);
2024 		IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
2025 		isr_stats->tx++;
2026 		handled |= CSR_INT_BIT_FH_TX;
2027 		/* Wake up uCode load routine, now that load is complete */
2028 		trans_pcie->ucode_write_complete = true;
2029 		wake_up(&trans_pcie->ucode_write_waitq);
2030 		/* Wake up IMR write routine, now that write to SRAM is complete */
2031 		if (trans_pcie->imr_status == IMR_D2S_REQUESTED) {
2032 			trans_pcie->imr_status = IMR_D2S_COMPLETED;
2033 			wake_up(&trans_pcie->ucode_write_waitq);
2034 		}
2035 	}
2036 
2037 	if (inta & ~handled) {
2038 		IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled);
2039 		isr_stats->unhandled++;
2040 	}
2041 
2042 	if (inta & ~(trans_pcie->inta_mask)) {
2043 		IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n",
2044 			 inta & ~trans_pcie->inta_mask);
2045 	}
2046 
2047 	if (!polling) {
2048 		spin_lock_bh(&trans_pcie->irq_lock);
2049 		/* only Re-enable all interrupt if disabled by irq */
2050 		if (test_bit(STATUS_INT_ENABLED, &trans->status))
2051 			_iwl_enable_interrupts(trans);
2052 		/* we are loading the firmware, enable FH_TX interrupt only */
2053 		else if (handled & CSR_INT_BIT_FH_TX)
2054 			iwl_enable_fw_load_int(trans);
2055 		/* Re-enable RF_KILL if it occurred */
2056 		else if (handled & CSR_INT_BIT_RF_KILL)
2057 			iwl_enable_rfkill_int(trans);
2058 		/* Re-enable the ALIVE / Rx interrupt if it occurred */
2059 		else if (handled & (CSR_INT_BIT_ALIVE | CSR_INT_BIT_FH_RX))
2060 			iwl_enable_fw_load_int_ctx_info(trans);
2061 		spin_unlock_bh(&trans_pcie->irq_lock);
2062 	}
2063 
2064 out:
2065 	lock_map_release(&trans->sync_cmd_lockdep_map);
2066 	return IRQ_HANDLED;
2067 }
2068 
2069 /******************************************************************************
2070  *
2071  * ICT functions
2072  *
2073  ******************************************************************************/
2074 
2075 /* Free dram table */
2076 void iwl_pcie_free_ict(struct iwl_trans *trans)
2077 {
2078 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2079 
2080 	if (trans_pcie->ict_tbl) {
2081 		dma_free_coherent(trans->dev, ICT_SIZE,
2082 				  trans_pcie->ict_tbl,
2083 				  trans_pcie->ict_tbl_dma);
2084 		trans_pcie->ict_tbl = NULL;
2085 		trans_pcie->ict_tbl_dma = 0;
2086 	}
2087 }
2088 
2089 /*
2090  * allocate dram shared table, it is an aligned memory
2091  * block of ICT_SIZE.
2092  * also reset all data related to ICT table interrupt.
2093  */
2094 int iwl_pcie_alloc_ict(struct iwl_trans *trans)
2095 {
2096 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2097 
2098 	trans_pcie->ict_tbl =
2099 		dma_alloc_coherent(trans->dev, ICT_SIZE,
2100 				   &trans_pcie->ict_tbl_dma, GFP_KERNEL);
2101 	if (!trans_pcie->ict_tbl)
2102 		return -ENOMEM;
2103 
2104 	/* just an API sanity check ... it is guaranteed to be aligned */
2105 	if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) {
2106 		iwl_pcie_free_ict(trans);
2107 		return -EINVAL;
2108 	}
2109 
2110 	return 0;
2111 }
2112 
2113 /* Device is going up inform it about using ICT interrupt table,
2114  * also we need to tell the driver to start using ICT interrupt.
2115  */
2116 void iwl_pcie_reset_ict(struct iwl_trans *trans)
2117 {
2118 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2119 	u32 val;
2120 
2121 	if (!trans_pcie->ict_tbl)
2122 		return;
2123 
2124 	spin_lock_bh(&trans_pcie->irq_lock);
2125 	_iwl_disable_interrupts(trans);
2126 
2127 	memset(trans_pcie->ict_tbl, 0, ICT_SIZE);
2128 
2129 	val = trans_pcie->ict_tbl_dma >> ICT_SHIFT;
2130 
2131 	val |= CSR_DRAM_INT_TBL_ENABLE |
2132 	       CSR_DRAM_INIT_TBL_WRAP_CHECK |
2133 	       CSR_DRAM_INIT_TBL_WRITE_POINTER;
2134 
2135 	IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val);
2136 
2137 	iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val);
2138 	trans_pcie->use_ict = true;
2139 	trans_pcie->ict_index = 0;
2140 	iwl_write32(trans, CSR_INT, trans_pcie->inta_mask);
2141 	_iwl_enable_interrupts(trans);
2142 	spin_unlock_bh(&trans_pcie->irq_lock);
2143 }
2144 
2145 /* Device is going down disable ict interrupt usage */
2146 void iwl_pcie_disable_ict(struct iwl_trans *trans)
2147 {
2148 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2149 
2150 	spin_lock_bh(&trans_pcie->irq_lock);
2151 	trans_pcie->use_ict = false;
2152 	spin_unlock_bh(&trans_pcie->irq_lock);
2153 }
2154 
2155 irqreturn_t iwl_pcie_isr(int irq, void *data)
2156 {
2157 	struct iwl_trans *trans = data;
2158 
2159 	if (!trans)
2160 		return IRQ_NONE;
2161 
2162 	/* Disable (but don't clear!) interrupts here to avoid
2163 	 * back-to-back ISRs and sporadic interrupts from our NIC.
2164 	 * If we have something to service, the tasklet will re-enable ints.
2165 	 * If we *don't* have something, we'll re-enable before leaving here.
2166 	 */
2167 	iwl_write32(trans, CSR_INT_MASK, 0x00000000);
2168 
2169 	return IRQ_WAKE_THREAD;
2170 }
2171 
2172 irqreturn_t iwl_pcie_msix_isr(int irq, void *data)
2173 {
2174 	return IRQ_WAKE_THREAD;
2175 }
2176 
2177 irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id)
2178 {
2179 	struct msix_entry *entry = dev_id;
2180 	struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
2181 	struct iwl_trans *trans = trans_pcie->trans;
2182 	struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
2183 	u32 inta_fh_msk = ~MSIX_FH_INT_CAUSES_DATA_QUEUE;
2184 	u32 inta_fh, inta_hw;
2185 	bool polling = false;
2186 	bool sw_err;
2187 
2188 	if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX)
2189 		inta_fh_msk |= MSIX_FH_INT_CAUSES_Q0;
2190 
2191 	if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS)
2192 		inta_fh_msk |= MSIX_FH_INT_CAUSES_Q1;
2193 
2194 	lock_map_acquire(&trans->sync_cmd_lockdep_map);
2195 
2196 	spin_lock_bh(&trans_pcie->irq_lock);
2197 	inta_fh = iwl_read32(trans, CSR_MSIX_FH_INT_CAUSES_AD);
2198 	inta_hw = iwl_read32(trans, CSR_MSIX_HW_INT_CAUSES_AD);
2199 	/*
2200 	 * Clear causes registers to avoid being handling the same cause.
2201 	 */
2202 	iwl_write32(trans, CSR_MSIX_FH_INT_CAUSES_AD, inta_fh & inta_fh_msk);
2203 	iwl_write32(trans, CSR_MSIX_HW_INT_CAUSES_AD, inta_hw);
2204 	spin_unlock_bh(&trans_pcie->irq_lock);
2205 
2206 	trace_iwlwifi_dev_irq_msix(trans->dev, entry, true, inta_fh, inta_hw);
2207 
2208 	if (unlikely(!(inta_fh | inta_hw))) {
2209 		IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
2210 		lock_map_release(&trans->sync_cmd_lockdep_map);
2211 		return IRQ_NONE;
2212 	}
2213 
2214 #ifdef CONFIG_IWLWIFI_DEBUG
2215 	if (iwl_have_debug_level(IWL_DL_ISR)) {
2216 		IWL_DEBUG_ISR(trans,
2217 			      "ISR[%d] inta_fh 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n",
2218 			      entry->entry, inta_fh, trans_pcie->fh_mask,
2219 			      iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD));
2220 		if (inta_fh & ~trans_pcie->fh_mask)
2221 			IWL_DEBUG_ISR(trans,
2222 				      "We got a masked interrupt (0x%08x)\n",
2223 				      inta_fh & ~trans_pcie->fh_mask);
2224 	}
2225 #endif
2226 
2227 	inta_fh &= trans_pcie->fh_mask;
2228 
2229 	if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) &&
2230 	    inta_fh & MSIX_FH_INT_CAUSES_Q0) {
2231 		local_bh_disable();
2232 		if (napi_schedule_prep(&trans_pcie->rxq[0].napi)) {
2233 			polling = true;
2234 			__napi_schedule(&trans_pcie->rxq[0].napi);
2235 		}
2236 		local_bh_enable();
2237 	}
2238 
2239 	if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) &&
2240 	    inta_fh & MSIX_FH_INT_CAUSES_Q1) {
2241 		local_bh_disable();
2242 		if (napi_schedule_prep(&trans_pcie->rxq[1].napi)) {
2243 			polling = true;
2244 			__napi_schedule(&trans_pcie->rxq[1].napi);
2245 		}
2246 		local_bh_enable();
2247 	}
2248 
2249 	/* This "Tx" DMA channel is used only for loading uCode */
2250 	if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM &&
2251 	    trans_pcie->imr_status == IMR_D2S_REQUESTED) {
2252 		IWL_DEBUG_ISR(trans, "IMR Complete interrupt\n");
2253 		isr_stats->tx++;
2254 
2255 		/* Wake up IMR routine once write to SRAM is complete */
2256 		if (trans_pcie->imr_status == IMR_D2S_REQUESTED) {
2257 			trans_pcie->imr_status = IMR_D2S_COMPLETED;
2258 			wake_up(&trans_pcie->ucode_write_waitq);
2259 		}
2260 	} else if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM) {
2261 		IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
2262 		isr_stats->tx++;
2263 		/*
2264 		 * Wake up uCode load routine,
2265 		 * now that load is complete
2266 		 */
2267 		trans_pcie->ucode_write_complete = true;
2268 		wake_up(&trans_pcie->ucode_write_waitq);
2269 
2270 		/* Wake up IMR routine once write to SRAM is complete */
2271 		if (trans_pcie->imr_status == IMR_D2S_REQUESTED) {
2272 			trans_pcie->imr_status = IMR_D2S_COMPLETED;
2273 			wake_up(&trans_pcie->ucode_write_waitq);
2274 		}
2275 	}
2276 
2277 	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ)
2278 		sw_err = inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR_BZ;
2279 	else
2280 		sw_err = inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR;
2281 
2282 	/* Error detected by uCode */
2283 	if ((inta_fh & MSIX_FH_INT_CAUSES_FH_ERR) || sw_err) {
2284 		IWL_ERR(trans,
2285 			"Microcode SW error detected. Restarting 0x%X.\n",
2286 			inta_fh);
2287 		isr_stats->sw++;
2288 		/* during FW reset flow report errors from there */
2289 		if (trans_pcie->imr_status == IMR_D2S_REQUESTED) {
2290 			trans_pcie->imr_status = IMR_D2S_ERROR;
2291 			wake_up(&trans_pcie->imr_waitq);
2292 		} else if (trans_pcie->fw_reset_state == FW_RESET_REQUESTED) {
2293 			trans_pcie->fw_reset_state = FW_RESET_ERROR;
2294 			wake_up(&trans_pcie->fw_reset_waitq);
2295 		} else {
2296 			iwl_pcie_irq_handle_error(trans);
2297 		}
2298 	}
2299 
2300 	/* After checking FH register check HW register */
2301 #ifdef CONFIG_IWLWIFI_DEBUG
2302 	if (iwl_have_debug_level(IWL_DL_ISR)) {
2303 		IWL_DEBUG_ISR(trans,
2304 			      "ISR[%d] inta_hw 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n",
2305 			      entry->entry, inta_hw, trans_pcie->hw_mask,
2306 			      iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD));
2307 		if (inta_hw & ~trans_pcie->hw_mask)
2308 			IWL_DEBUG_ISR(trans,
2309 				      "We got a masked interrupt 0x%08x\n",
2310 				      inta_hw & ~trans_pcie->hw_mask);
2311 	}
2312 #endif
2313 
2314 	inta_hw &= trans_pcie->hw_mask;
2315 
2316 	/* Alive notification via Rx interrupt will do the real work */
2317 	if (inta_hw & MSIX_HW_INT_CAUSES_REG_ALIVE) {
2318 		IWL_DEBUG_ISR(trans, "Alive interrupt\n");
2319 		isr_stats->alive++;
2320 		if (trans->trans_cfg->gen2) {
2321 			/* We can restock, since firmware configured the RFH */
2322 			iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
2323 		}
2324 	}
2325 
2326 	/*
2327 	 * In some rare cases when the HW is in a bad state, we may
2328 	 * get this interrupt too early, when prph_info is still NULL.
2329 	 * So make sure that it's not NULL to prevent crashing.
2330 	 */
2331 	if (inta_hw & MSIX_HW_INT_CAUSES_REG_WAKEUP && trans_pcie->prph_info) {
2332 		u32 sleep_notif =
2333 			le32_to_cpu(trans_pcie->prph_info->sleep_notif);
2334 		if (sleep_notif == IWL_D3_SLEEP_STATUS_SUSPEND ||
2335 		    sleep_notif == IWL_D3_SLEEP_STATUS_RESUME) {
2336 			IWL_DEBUG_ISR(trans,
2337 				      "Sx interrupt: sleep notification = 0x%x\n",
2338 				      sleep_notif);
2339 			trans_pcie->sx_complete = true;
2340 			wake_up(&trans_pcie->sx_waitq);
2341 		} else {
2342 			/* uCode wakes up after power-down sleep */
2343 			IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
2344 			iwl_pcie_rxq_check_wrptr(trans);
2345 			iwl_pcie_txq_check_wrptrs(trans);
2346 
2347 			isr_stats->wakeup++;
2348 		}
2349 	}
2350 
2351 	/* Chip got too hot and stopped itself */
2352 	if (inta_hw & MSIX_HW_INT_CAUSES_REG_CT_KILL) {
2353 		IWL_ERR(trans, "Microcode CT kill error detected.\n");
2354 		isr_stats->ctkill++;
2355 	}
2356 
2357 	/* HW RF KILL switch toggled */
2358 	if (inta_hw & MSIX_HW_INT_CAUSES_REG_RF_KILL)
2359 		iwl_pcie_handle_rfkill_irq(trans);
2360 
2361 	if (inta_hw & MSIX_HW_INT_CAUSES_REG_HW_ERR) {
2362 		IWL_ERR(trans,
2363 			"Hardware error detected. Restarting.\n");
2364 
2365 		isr_stats->hw++;
2366 		trans->dbg.hw_error = true;
2367 		iwl_pcie_irq_handle_error(trans);
2368 	}
2369 
2370 	if (inta_hw & MSIX_HW_INT_CAUSES_REG_RESET_DONE) {
2371 		IWL_DEBUG_ISR(trans, "Reset flow completed\n");
2372 		trans_pcie->fw_reset_state = FW_RESET_OK;
2373 		wake_up(&trans_pcie->fw_reset_waitq);
2374 	}
2375 
2376 	if (!polling)
2377 		iwl_pcie_clear_irq(trans, entry->entry);
2378 
2379 	lock_map_release(&trans->sync_cmd_lockdep_map);
2380 
2381 	return IRQ_HANDLED;
2382 }
2383