1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012 by Delphix. All rights reserved.
24  * Copyright 2014 Nexenta Systems, Inc. All rights reserved.
25  * Copyright (c) 2016, 2017, Intel Corporation.
26  * Copyright (c) 2017 Open-E, Inc. All Rights Reserved.
27  */
28 
29 /*
30  * ZFS syseventd module.
31  *
32  * file origin: openzfs/usr/src/cmd/syseventd/modules/zfs_mod/zfs_mod.c
33  *
34  * The purpose of this module is to identify when devices are added to the
35  * system, and appropriately online or replace the affected vdevs.
36  *
37  * When a device is added to the system:
38  *
39  * 	1. Search for any vdevs whose devid matches that of the newly added
40  *	   device.
41  *
42  * 	2. If no vdevs are found, then search for any vdevs whose udev path
43  *	   matches that of the new device.
44  *
45  *	3. If no vdevs match by either method, then ignore the event.
46  *
47  * 	4. Attempt to online the device with a flag to indicate that it should
48  *	   be unspared when resilvering completes.  If this succeeds, then the
49  *	   same device was inserted and we should continue normally.
50  *
51  *	5. If the pool does not have the 'autoreplace' property set, attempt to
52  *	   online the device again without the unspare flag, which will
53  *	   generate a FMA fault.
54  *
55  *	6. If the pool has the 'autoreplace' property set, and the matching vdev
56  *	   is a whole disk, then label the new disk and attempt a 'zpool
57  *	   replace'.
58  *
59  * The module responds to EC_DEV_ADD events.  The special ESC_ZFS_VDEV_CHECK
60  * event indicates that a device failed to open during pool load, but the
61  * autoreplace property was set.  In this case, we deferred the associated
62  * FMA fault until our module had a chance to process the autoreplace logic.
63  * If the device could not be replaced, then the second online attempt will
64  * trigger the FMA fault that we skipped earlier.
65  *
66  * On Linux udev provides a disk insert for both the disk and the partition.
67  */
68 
69 #include <ctype.h>
70 #include <fcntl.h>
71 #include <libnvpair.h>
72 #include <libzfs.h>
73 #include <libzutil.h>
74 #include <limits.h>
75 #include <stddef.h>
76 #include <stdlib.h>
77 #include <string.h>
78 #include <syslog.h>
79 #include <sys/list.h>
80 #include <sys/sunddi.h>
81 #include <sys/sysevent/eventdefs.h>
82 #include <sys/sysevent/dev.h>
83 #include <thread_pool.h>
84 #include <pthread.h>
85 #include <unistd.h>
86 #include <errno.h>
87 #include "zfs_agents.h"
88 #include "../zed_log.h"
89 
90 #define	DEV_BYID_PATH	"/dev/disk/by-id/"
91 #define	DEV_BYPATH_PATH	"/dev/disk/by-path/"
92 #define	DEV_BYVDEV_PATH	"/dev/disk/by-vdev/"
93 
94 typedef void (*zfs_process_func_t)(zpool_handle_t *, nvlist_t *, boolean_t);
95 
96 libzfs_handle_t *g_zfshdl;
97 list_t g_pool_list;	/* list of unavailable pools at initialization */
98 list_t g_device_list;	/* list of disks with asynchronous label request */
99 tpool_t *g_tpool;
100 boolean_t g_enumeration_done;
101 pthread_t g_zfs_tid;	/* zfs_enum_pools() thread */
102 
103 typedef struct unavailpool {
104 	zpool_handle_t	*uap_zhp;
105 	list_node_t	uap_node;
106 } unavailpool_t;
107 
108 typedef struct pendingdev {
109 	char		pd_physpath[128];
110 	list_node_t	pd_node;
111 } pendingdev_t;
112 
113 static int
114 zfs_toplevel_state(zpool_handle_t *zhp)
115 {
116 	nvlist_t *nvroot;
117 	vdev_stat_t *vs;
118 	unsigned int c;
119 
120 	verify(nvlist_lookup_nvlist(zpool_get_config(zhp, NULL),
121 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
122 	verify(nvlist_lookup_uint64_array(nvroot, ZPOOL_CONFIG_VDEV_STATS,
123 	    (uint64_t **)&vs, &c) == 0);
124 	return (vs->vs_state);
125 }
126 
127 static int
128 zfs_unavail_pool(zpool_handle_t *zhp, void *data)
129 {
130 	zed_log_msg(LOG_INFO, "zfs_unavail_pool: examining '%s' (state %d)",
131 	    zpool_get_name(zhp), (int)zfs_toplevel_state(zhp));
132 
133 	if (zfs_toplevel_state(zhp) < VDEV_STATE_DEGRADED) {
134 		unavailpool_t *uap;
135 		uap = malloc(sizeof (unavailpool_t));
136 		if (uap == NULL) {
137 			perror("malloc");
138 			exit(EXIT_FAILURE);
139 		}
140 
141 		uap->uap_zhp = zhp;
142 		list_insert_tail((list_t *)data, uap);
143 	} else {
144 		zpool_close(zhp);
145 	}
146 	return (0);
147 }
148 
149 /*
150  * Two stage replace on Linux
151  * since we get disk notifications
152  * we can wait for partitioned disk slice to show up!
153  *
154  * First stage tags the disk, initiates async partitioning, and returns
155  * Second stage finds the tag and proceeds to ZFS labeling/replace
156  *
157  * disk-add --> label-disk + tag-disk --> partition-add --> zpool_vdev_attach
158  *
159  * 1. physical match with no fs, no partition
160  *	tag it top, partition disk
161  *
162  * 2. physical match again, see partition and tag
163  *
164  */
165 
166 /*
167  * The device associated with the given vdev (either by devid or physical path)
168  * has been added to the system.  If 'isdisk' is set, then we only attempt a
169  * replacement if it's a whole disk.  This also implies that we should label the
170  * disk first.
171  *
172  * First, we attempt to online the device (making sure to undo any spare
173  * operation when finished).  If this succeeds, then we're done.  If it fails,
174  * and the new state is VDEV_CANT_OPEN, it indicates that the device was opened,
175  * but that the label was not what we expected.  If the 'autoreplace' property
176  * is enabled, then we relabel the disk (if specified), and attempt a 'zpool
177  * replace'.  If the online is successful, but the new state is something else
178  * (REMOVED or FAULTED), it indicates that we're out of sync or in some sort of
179  * race, and we should avoid attempting to relabel the disk.
180  *
181  * Also can arrive here from a ESC_ZFS_VDEV_CHECK event
182  */
183 static void
184 zfs_process_add(zpool_handle_t *zhp, nvlist_t *vdev, boolean_t labeled)
185 {
186 	const char *path;
187 	vdev_state_t newstate;
188 	nvlist_t *nvroot, *newvd;
189 	pendingdev_t *device;
190 	uint64_t wholedisk = 0ULL;
191 	uint64_t offline = 0ULL, faulted = 0ULL;
192 	uint64_t guid = 0ULL;
193 	uint64_t is_spare = 0;
194 	const char *physpath = NULL, *new_devid = NULL, *enc_sysfs_path = NULL;
195 	char rawpath[PATH_MAX], fullpath[PATH_MAX];
196 	char devpath[PATH_MAX];
197 	int ret;
198 	int online_flag = ZFS_ONLINE_CHECKREMOVE | ZFS_ONLINE_UNSPARE;
199 	boolean_t is_sd = B_FALSE;
200 	boolean_t is_mpath_wholedisk = B_FALSE;
201 	uint_t c;
202 	vdev_stat_t *vs;
203 
204 	if (nvlist_lookup_string(vdev, ZPOOL_CONFIG_PATH, &path) != 0)
205 		return;
206 
207 	/* Skip healthy disks */
208 	verify(nvlist_lookup_uint64_array(vdev, ZPOOL_CONFIG_VDEV_STATS,
209 	    (uint64_t **)&vs, &c) == 0);
210 	if (vs->vs_state == VDEV_STATE_HEALTHY) {
211 		zed_log_msg(LOG_INFO, "%s: %s is already healthy, skip it.",
212 		    __func__, path);
213 		return;
214 	}
215 
216 	(void) nvlist_lookup_string(vdev, ZPOOL_CONFIG_PHYS_PATH, &physpath);
217 	(void) nvlist_lookup_string(vdev, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
218 	    &enc_sysfs_path);
219 	(void) nvlist_lookup_uint64(vdev, ZPOOL_CONFIG_WHOLE_DISK, &wholedisk);
220 	(void) nvlist_lookup_uint64(vdev, ZPOOL_CONFIG_OFFLINE, &offline);
221 	(void) nvlist_lookup_uint64(vdev, ZPOOL_CONFIG_FAULTED, &faulted);
222 
223 	(void) nvlist_lookup_uint64(vdev, ZPOOL_CONFIG_GUID, &guid);
224 	(void) nvlist_lookup_uint64(vdev, ZPOOL_CONFIG_IS_SPARE, &is_spare);
225 
226 	/*
227 	 * Special case:
228 	 *
229 	 * We've seen times where a disk won't have a ZPOOL_CONFIG_PHYS_PATH
230 	 * entry in their config. For example, on this force-faulted disk:
231 	 *
232 	 *	children[0]:
233 	 *	   type: 'disk'
234 	 *	   id: 0
235 	 *	   guid: 14309659774640089719
236 	 *        path: '/dev/disk/by-vdev/L28'
237 	 *        whole_disk: 0
238 	 *        DTL: 654
239 	 *        create_txg: 4
240 	 *        com.delphix:vdev_zap_leaf: 1161
241 	 *        faulted: 1
242 	 *        aux_state: 'external'
243 	 *	children[1]:
244 	 *        type: 'disk'
245 	 *        id: 1
246 	 *        guid: 16002508084177980912
247 	 *        path: '/dev/disk/by-vdev/L29'
248 	 *        devid: 'dm-uuid-mpath-35000c500a61d68a3'
249 	 *        phys_path: 'L29'
250 	 *        vdev_enc_sysfs_path: '/sys/class/enclosure/0:0:1:0/SLOT 30 32'
251 	 *        whole_disk: 0
252 	 *        DTL: 1028
253 	 *        create_txg: 4
254 	 *        com.delphix:vdev_zap_leaf: 131
255 	 *
256 	 * If the disk's path is a /dev/disk/by-vdev/ path, then we can infer
257 	 * the ZPOOL_CONFIG_PHYS_PATH from the by-vdev disk name.
258 	 */
259 	if (physpath == NULL && path != NULL) {
260 		/* If path begins with "/dev/disk/by-vdev/" ... */
261 		if (strncmp(path, DEV_BYVDEV_PATH,
262 		    strlen(DEV_BYVDEV_PATH)) == 0) {
263 			/* Set physpath to the char after "/dev/disk/by-vdev" */
264 			physpath = &path[strlen(DEV_BYVDEV_PATH)];
265 		}
266 	}
267 
268 	/*
269 	 * We don't want to autoreplace offlined disks.  However, we do want to
270 	 * replace force-faulted disks (`zpool offline -f`).  Force-faulted
271 	 * disks have both offline=1 and faulted=1 in the nvlist.
272 	 */
273 	if (offline && !faulted) {
274 		zed_log_msg(LOG_INFO, "%s: %s is offline, skip autoreplace",
275 		    __func__, path);
276 		return;
277 	}
278 
279 	is_mpath_wholedisk = is_mpath_whole_disk(path);
280 	zed_log_msg(LOG_INFO, "zfs_process_add: pool '%s' vdev '%s', phys '%s'"
281 	    " %s blank disk, %s mpath blank disk, %s labeled, enc sysfs '%s', "
282 	    "(guid %llu)",
283 	    zpool_get_name(zhp), path,
284 	    physpath ? physpath : "NULL",
285 	    wholedisk ? "is" : "not",
286 	    is_mpath_wholedisk? "is" : "not",
287 	    labeled ? "is" : "not",
288 	    enc_sysfs_path,
289 	    (long long unsigned int)guid);
290 
291 	/*
292 	 * The VDEV guid is preferred for identification (gets passed in path)
293 	 */
294 	if (guid != 0) {
295 		(void) snprintf(fullpath, sizeof (fullpath), "%llu",
296 		    (long long unsigned int)guid);
297 	} else {
298 		/*
299 		 * otherwise use path sans partition suffix for whole disks
300 		 */
301 		(void) strlcpy(fullpath, path, sizeof (fullpath));
302 		if (wholedisk) {
303 			char *spath = zfs_strip_partition(fullpath);
304 			if (!spath) {
305 				zed_log_msg(LOG_INFO, "%s: Can't alloc",
306 				    __func__);
307 				return;
308 			}
309 
310 			(void) strlcpy(fullpath, spath, sizeof (fullpath));
311 			free(spath);
312 		}
313 	}
314 
315 	if (is_spare)
316 		online_flag |= ZFS_ONLINE_SPARE;
317 
318 	/*
319 	 * Attempt to online the device.
320 	 */
321 	if (zpool_vdev_online(zhp, fullpath, online_flag, &newstate) == 0 &&
322 	    (newstate == VDEV_STATE_HEALTHY ||
323 	    newstate == VDEV_STATE_DEGRADED)) {
324 		zed_log_msg(LOG_INFO,
325 		    "  zpool_vdev_online: vdev '%s' ('%s') is "
326 		    "%s", fullpath, physpath, (newstate == VDEV_STATE_HEALTHY) ?
327 		    "HEALTHY" : "DEGRADED");
328 		return;
329 	}
330 
331 	/*
332 	 * vdev_id alias rule for using scsi_debug devices (FMA automated
333 	 * testing)
334 	 */
335 	if (physpath != NULL && strcmp("scsidebug", physpath) == 0)
336 		is_sd = B_TRUE;
337 
338 	/*
339 	 * If the pool doesn't have the autoreplace property set, then use
340 	 * vdev online to trigger a FMA fault by posting an ereport.
341 	 */
342 	if (!zpool_get_prop_int(zhp, ZPOOL_PROP_AUTOREPLACE, NULL) ||
343 	    !(wholedisk || is_mpath_wholedisk) || (physpath == NULL)) {
344 		(void) zpool_vdev_online(zhp, fullpath, ZFS_ONLINE_FORCEFAULT,
345 		    &newstate);
346 		zed_log_msg(LOG_INFO, "Pool's autoreplace is not enabled or "
347 		    "not a blank disk for '%s' ('%s')", fullpath,
348 		    physpath);
349 		return;
350 	}
351 
352 	/*
353 	 * Convert physical path into its current device node.  Rawpath
354 	 * needs to be /dev/disk/by-vdev for a scsi_debug device since
355 	 * /dev/disk/by-path will not be present.
356 	 */
357 	(void) snprintf(rawpath, sizeof (rawpath), "%s%s",
358 	    is_sd ? DEV_BYVDEV_PATH : DEV_BYPATH_PATH, physpath);
359 
360 	if (realpath(rawpath, devpath) == NULL && !is_mpath_wholedisk) {
361 		zed_log_msg(LOG_INFO, "  realpath: %s failed (%s)",
362 		    rawpath, strerror(errno));
363 
364 		(void) zpool_vdev_online(zhp, fullpath, ZFS_ONLINE_FORCEFAULT,
365 		    &newstate);
366 
367 		zed_log_msg(LOG_INFO, "  zpool_vdev_online: %s FORCEFAULT (%s)",
368 		    fullpath, libzfs_error_description(g_zfshdl));
369 		return;
370 	}
371 
372 	/* Only autoreplace bad disks */
373 	if ((vs->vs_state != VDEV_STATE_DEGRADED) &&
374 	    (vs->vs_state != VDEV_STATE_FAULTED) &&
375 	    (vs->vs_state != VDEV_STATE_CANT_OPEN)) {
376 		zed_log_msg(LOG_INFO, "  not autoreplacing since disk isn't in "
377 		    "a bad state (currently %llu)", vs->vs_state);
378 		return;
379 	}
380 
381 	nvlist_lookup_string(vdev, "new_devid", &new_devid);
382 
383 	if (is_mpath_wholedisk) {
384 		/* Don't label device mapper or multipath disks. */
385 	} else if (!labeled) {
386 		/*
387 		 * we're auto-replacing a raw disk, so label it first
388 		 */
389 		char *leafname;
390 
391 		/*
392 		 * If this is a request to label a whole disk, then attempt to
393 		 * write out the label.  Before we can label the disk, we need
394 		 * to map the physical string that was matched on to the under
395 		 * lying device node.
396 		 *
397 		 * If any part of this process fails, then do a force online
398 		 * to trigger a ZFS fault for the device (and any hot spare
399 		 * replacement).
400 		 */
401 		leafname = strrchr(devpath, '/') + 1;
402 
403 		/*
404 		 * If this is a request to label a whole disk, then attempt to
405 		 * write out the label.
406 		 */
407 		if (zpool_label_disk(g_zfshdl, zhp, leafname) != 0) {
408 			zed_log_msg(LOG_INFO, "  zpool_label_disk: could not "
409 			    "label '%s' (%s)", leafname,
410 			    libzfs_error_description(g_zfshdl));
411 
412 			(void) zpool_vdev_online(zhp, fullpath,
413 			    ZFS_ONLINE_FORCEFAULT, &newstate);
414 			return;
415 		}
416 
417 		/*
418 		 * The disk labeling is asynchronous on Linux. Just record
419 		 * this label request and return as there will be another
420 		 * disk add event for the partition after the labeling is
421 		 * completed.
422 		 */
423 		device = malloc(sizeof (pendingdev_t));
424 		if (device == NULL) {
425 			perror("malloc");
426 			exit(EXIT_FAILURE);
427 		}
428 
429 		(void) strlcpy(device->pd_physpath, physpath,
430 		    sizeof (device->pd_physpath));
431 		list_insert_tail(&g_device_list, device);
432 
433 		zed_log_msg(LOG_INFO, "  zpool_label_disk: async '%s' (%llu)",
434 		    leafname, (u_longlong_t)guid);
435 
436 		return;	/* resumes at EC_DEV_ADD.ESC_DISK for partition */
437 
438 	} else /* labeled */ {
439 		boolean_t found = B_FALSE;
440 		/*
441 		 * match up with request above to label the disk
442 		 */
443 		for (device = list_head(&g_device_list); device != NULL;
444 		    device = list_next(&g_device_list, device)) {
445 			if (strcmp(physpath, device->pd_physpath) == 0) {
446 				list_remove(&g_device_list, device);
447 				free(device);
448 				found = B_TRUE;
449 				break;
450 			}
451 			zed_log_msg(LOG_INFO, "zpool_label_disk: %s != %s",
452 			    physpath, device->pd_physpath);
453 		}
454 		if (!found) {
455 			/* unexpected partition slice encountered */
456 			zed_log_msg(LOG_INFO, "labeled disk %s unexpected here",
457 			    fullpath);
458 			(void) zpool_vdev_online(zhp, fullpath,
459 			    ZFS_ONLINE_FORCEFAULT, &newstate);
460 			return;
461 		}
462 
463 		zed_log_msg(LOG_INFO, "  zpool_label_disk: resume '%s' (%llu)",
464 		    physpath, (u_longlong_t)guid);
465 
466 		(void) snprintf(devpath, sizeof (devpath), "%s%s",
467 		    DEV_BYID_PATH, new_devid);
468 	}
469 
470 	/*
471 	 * Construct the root vdev to pass to zpool_vdev_attach().  While adding
472 	 * the entire vdev structure is harmless, we construct a reduced set of
473 	 * path/physpath/wholedisk to keep it simple.
474 	 */
475 	if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0) {
476 		zed_log_msg(LOG_WARNING, "zfs_mod: nvlist_alloc out of memory");
477 		return;
478 	}
479 	if (nvlist_alloc(&newvd, NV_UNIQUE_NAME, 0) != 0) {
480 		zed_log_msg(LOG_WARNING, "zfs_mod: nvlist_alloc out of memory");
481 		nvlist_free(nvroot);
482 		return;
483 	}
484 
485 	if (nvlist_add_string(newvd, ZPOOL_CONFIG_TYPE, VDEV_TYPE_DISK) != 0 ||
486 	    nvlist_add_string(newvd, ZPOOL_CONFIG_PATH, path) != 0 ||
487 	    nvlist_add_string(newvd, ZPOOL_CONFIG_DEVID, new_devid) != 0 ||
488 	    (physpath != NULL && nvlist_add_string(newvd,
489 	    ZPOOL_CONFIG_PHYS_PATH, physpath) != 0) ||
490 	    (enc_sysfs_path != NULL && nvlist_add_string(newvd,
491 	    ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH, enc_sysfs_path) != 0) ||
492 	    nvlist_add_uint64(newvd, ZPOOL_CONFIG_WHOLE_DISK, wholedisk) != 0 ||
493 	    nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) != 0 ||
494 	    nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
495 	    (const nvlist_t **)&newvd, 1) != 0) {
496 		zed_log_msg(LOG_WARNING, "zfs_mod: unable to add nvlist pairs");
497 		nvlist_free(newvd);
498 		nvlist_free(nvroot);
499 		return;
500 	}
501 
502 	nvlist_free(newvd);
503 
504 	/*
505 	 * Wait for udev to verify the links exist, then auto-replace
506 	 * the leaf disk at same physical location.
507 	 */
508 	if (zpool_label_disk_wait(path, 3000) != 0) {
509 		zed_log_msg(LOG_WARNING, "zfs_mod: expected replacement "
510 		    "disk %s is missing", path);
511 		nvlist_free(nvroot);
512 		return;
513 	}
514 
515 	/*
516 	 * Prefer sequential resilvering when supported (mirrors and dRAID),
517 	 * otherwise fallback to a traditional healing resilver.
518 	 */
519 	ret = zpool_vdev_attach(zhp, fullpath, path, nvroot, B_TRUE, B_TRUE);
520 	if (ret != 0) {
521 		ret = zpool_vdev_attach(zhp, fullpath, path, nvroot,
522 		    B_TRUE, B_FALSE);
523 	}
524 
525 	zed_log_msg(LOG_INFO, "  zpool_vdev_replace: %s with %s (%s)",
526 	    fullpath, path, (ret == 0) ? "no errors" :
527 	    libzfs_error_description(g_zfshdl));
528 
529 	nvlist_free(nvroot);
530 }
531 
532 /*
533  * Utility functions to find a vdev matching given criteria.
534  */
535 typedef struct dev_data {
536 	const char		*dd_compare;
537 	const char		*dd_prop;
538 	zfs_process_func_t	dd_func;
539 	boolean_t		dd_found;
540 	boolean_t		dd_islabeled;
541 	uint64_t		dd_pool_guid;
542 	uint64_t		dd_vdev_guid;
543 	uint64_t		dd_new_vdev_guid;
544 	const char		*dd_new_devid;
545 	uint64_t		dd_num_spares;
546 } dev_data_t;
547 
548 static void
549 zfs_iter_vdev(zpool_handle_t *zhp, nvlist_t *nvl, void *data)
550 {
551 	dev_data_t *dp = data;
552 	const char *path = NULL;
553 	uint_t c, children;
554 	nvlist_t **child;
555 	uint64_t guid = 0;
556 	uint64_t isspare = 0;
557 
558 	/*
559 	 * First iterate over any children.
560 	 */
561 	if (nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN,
562 	    &child, &children) == 0) {
563 		for (c = 0; c < children; c++)
564 			zfs_iter_vdev(zhp, child[c], data);
565 	}
566 
567 	/*
568 	 * Iterate over any spares and cache devices
569 	 */
570 	if (nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_SPARES,
571 	    &child, &children) == 0) {
572 		for (c = 0; c < children; c++)
573 			zfs_iter_vdev(zhp, child[c], data);
574 	}
575 	if (nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_L2CACHE,
576 	    &child, &children) == 0) {
577 		for (c = 0; c < children; c++)
578 			zfs_iter_vdev(zhp, child[c], data);
579 	}
580 
581 	/* once a vdev was matched and processed there is nothing left to do */
582 	if (dp->dd_found && dp->dd_num_spares == 0)
583 		return;
584 	(void) nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_GUID, &guid);
585 
586 	/*
587 	 * Match by GUID if available otherwise fallback to devid or physical
588 	 */
589 	if (dp->dd_vdev_guid != 0) {
590 		if (guid != dp->dd_vdev_guid)
591 			return;
592 		zed_log_msg(LOG_INFO, "  zfs_iter_vdev: matched on %llu", guid);
593 		dp->dd_found = B_TRUE;
594 
595 	} else if (dp->dd_compare != NULL) {
596 		/*
597 		 * NOTE: On Linux there is an event for partition, so unlike
598 		 * illumos, substring matching is not required to accommodate
599 		 * the partition suffix. An exact match will be present in
600 		 * the dp->dd_compare value.
601 		 * If the attached disk already contains a vdev GUID, it means
602 		 * the disk is not clean. In such a scenario, the physical path
603 		 * would be a match that makes the disk faulted when trying to
604 		 * online it. So, we would only want to proceed if either GUID
605 		 * matches with the last attached disk or the disk is in clean
606 		 * state.
607 		 */
608 		if (nvlist_lookup_string(nvl, dp->dd_prop, &path) != 0 ||
609 		    strcmp(dp->dd_compare, path) != 0) {
610 			zed_log_msg(LOG_INFO, "  %s: no match (%s != vdev %s)",
611 			    __func__, dp->dd_compare, path);
612 			return;
613 		}
614 		if (dp->dd_new_vdev_guid != 0 && dp->dd_new_vdev_guid != guid) {
615 			zed_log_msg(LOG_INFO, "  %s: no match (GUID:%llu"
616 			    " != vdev GUID:%llu)", __func__,
617 			    dp->dd_new_vdev_guid, guid);
618 			return;
619 		}
620 
621 		zed_log_msg(LOG_INFO, "  zfs_iter_vdev: matched %s on %s",
622 		    dp->dd_prop, path);
623 		dp->dd_found = B_TRUE;
624 
625 		/* pass the new devid for use by replacing code */
626 		if (dp->dd_new_devid != NULL) {
627 			(void) nvlist_add_string(nvl, "new_devid",
628 			    dp->dd_new_devid);
629 		}
630 	}
631 
632 	if (dp->dd_found == B_TRUE && nvlist_lookup_uint64(nvl,
633 	    ZPOOL_CONFIG_IS_SPARE, &isspare) == 0 && isspare)
634 		dp->dd_num_spares++;
635 
636 	(dp->dd_func)(zhp, nvl, dp->dd_islabeled);
637 }
638 
639 static void
640 zfs_enable_ds(void *arg)
641 {
642 	unavailpool_t *pool = (unavailpool_t *)arg;
643 
644 	(void) zpool_enable_datasets(pool->uap_zhp, NULL, 0);
645 	zpool_close(pool->uap_zhp);
646 	free(pool);
647 }
648 
649 static int
650 zfs_iter_pool(zpool_handle_t *zhp, void *data)
651 {
652 	nvlist_t *config, *nvl;
653 	dev_data_t *dp = data;
654 	uint64_t pool_guid;
655 	unavailpool_t *pool;
656 
657 	zed_log_msg(LOG_INFO, "zfs_iter_pool: evaluating vdevs on %s (by %s)",
658 	    zpool_get_name(zhp), dp->dd_vdev_guid ? "GUID" : dp->dd_prop);
659 
660 	/*
661 	 * For each vdev in this pool, look for a match to apply dd_func
662 	 */
663 	if ((config = zpool_get_config(zhp, NULL)) != NULL) {
664 		if (dp->dd_pool_guid == 0 ||
665 		    (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
666 		    &pool_guid) == 0 && pool_guid == dp->dd_pool_guid)) {
667 			(void) nvlist_lookup_nvlist(config,
668 			    ZPOOL_CONFIG_VDEV_TREE, &nvl);
669 			zfs_iter_vdev(zhp, nvl, data);
670 		}
671 	} else {
672 		zed_log_msg(LOG_INFO, "%s: no config\n", __func__);
673 	}
674 
675 	/*
676 	 * if this pool was originally unavailable,
677 	 * then enable its datasets asynchronously
678 	 */
679 	if (g_enumeration_done)  {
680 		for (pool = list_head(&g_pool_list); pool != NULL;
681 		    pool = list_next(&g_pool_list, pool)) {
682 
683 			if (strcmp(zpool_get_name(zhp),
684 			    zpool_get_name(pool->uap_zhp)))
685 				continue;
686 			if (zfs_toplevel_state(zhp) >= VDEV_STATE_DEGRADED) {
687 				list_remove(&g_pool_list, pool);
688 				(void) tpool_dispatch(g_tpool, zfs_enable_ds,
689 				    pool);
690 				break;
691 			}
692 		}
693 	}
694 
695 	zpool_close(zhp);
696 
697 	/* cease iteration after a match */
698 	return (dp->dd_found && dp->dd_num_spares == 0);
699 }
700 
701 /*
702  * Given a physical device location, iterate over all
703  * (pool, vdev) pairs which correspond to that location.
704  */
705 static boolean_t
706 devphys_iter(const char *physical, const char *devid, zfs_process_func_t func,
707     boolean_t is_slice, uint64_t new_vdev_guid)
708 {
709 	dev_data_t data = { 0 };
710 
711 	data.dd_compare = physical;
712 	data.dd_func = func;
713 	data.dd_prop = ZPOOL_CONFIG_PHYS_PATH;
714 	data.dd_found = B_FALSE;
715 	data.dd_islabeled = is_slice;
716 	data.dd_new_devid = devid;	/* used by auto replace code */
717 	data.dd_new_vdev_guid = new_vdev_guid;
718 
719 	(void) zpool_iter(g_zfshdl, zfs_iter_pool, &data);
720 
721 	return (data.dd_found);
722 }
723 
724 /*
725  * Given a device identifier, find any vdevs with a matching by-vdev
726  * path.  Normally we shouldn't need this as the comparison would be
727  * made earlier in the devphys_iter().  For example, if we were replacing
728  * /dev/disk/by-vdev/L28, normally devphys_iter() would match the
729  * ZPOOL_CONFIG_PHYS_PATH of "L28" from the old disk config to "L28"
730  * of the new disk config.  However, we've seen cases where
731  * ZPOOL_CONFIG_PHYS_PATH was not in the config for the old disk.  Here's
732  * an example of a real 2-disk mirror pool where one disk was force
733  * faulted:
734  *
735  *       com.delphix:vdev_zap_top: 129
736  *           children[0]:
737  *               type: 'disk'
738  *               id: 0
739  *               guid: 14309659774640089719
740  *               path: '/dev/disk/by-vdev/L28'
741  *               whole_disk: 0
742  *               DTL: 654
743  *               create_txg: 4
744  *               com.delphix:vdev_zap_leaf: 1161
745  *               faulted: 1
746  *               aux_state: 'external'
747  *           children[1]:
748  *               type: 'disk'
749  *               id: 1
750  *               guid: 16002508084177980912
751  *               path: '/dev/disk/by-vdev/L29'
752  *               devid: 'dm-uuid-mpath-35000c500a61d68a3'
753  *               phys_path: 'L29'
754  *               vdev_enc_sysfs_path: '/sys/class/enclosure/0:0:1:0/SLOT 30 32'
755  *               whole_disk: 0
756  *               DTL: 1028
757  *               create_txg: 4
758  *               com.delphix:vdev_zap_leaf: 131
759  *
760  * So in the case above, the only thing we could compare is the path.
761  *
762  * We can do this because we assume by-vdev paths are authoritative as physical
763  * paths.  We could not assume this for normal paths like /dev/sda since the
764  * physical location /dev/sda points to could change over time.
765  */
766 static boolean_t
767 by_vdev_path_iter(const char *by_vdev_path, const char *devid,
768     zfs_process_func_t func, boolean_t is_slice)
769 {
770 	dev_data_t data = { 0 };
771 
772 	data.dd_compare = by_vdev_path;
773 	data.dd_func = func;
774 	data.dd_prop = ZPOOL_CONFIG_PATH;
775 	data.dd_found = B_FALSE;
776 	data.dd_islabeled = is_slice;
777 	data.dd_new_devid = devid;
778 
779 	if (strncmp(by_vdev_path, DEV_BYVDEV_PATH,
780 	    strlen(DEV_BYVDEV_PATH)) != 0) {
781 		/* by_vdev_path doesn't start with "/dev/disk/by-vdev/" */
782 		return (B_FALSE);
783 	}
784 
785 	(void) zpool_iter(g_zfshdl, zfs_iter_pool, &data);
786 
787 	return (data.dd_found);
788 }
789 
790 /*
791  * Given a device identifier, find any vdevs with a matching devid.
792  * On Linux we can match devid directly which is always a whole disk.
793  */
794 static boolean_t
795 devid_iter(const char *devid, zfs_process_func_t func, boolean_t is_slice)
796 {
797 	dev_data_t data = { 0 };
798 
799 	data.dd_compare = devid;
800 	data.dd_func = func;
801 	data.dd_prop = ZPOOL_CONFIG_DEVID;
802 	data.dd_found = B_FALSE;
803 	data.dd_islabeled = is_slice;
804 	data.dd_new_devid = devid;
805 
806 	(void) zpool_iter(g_zfshdl, zfs_iter_pool, &data);
807 
808 	return (data.dd_found);
809 }
810 
811 /*
812  * Given a device guid, find any vdevs with a matching guid.
813  */
814 static boolean_t
815 guid_iter(uint64_t pool_guid, uint64_t vdev_guid, const char *devid,
816     zfs_process_func_t func, boolean_t is_slice)
817 {
818 	dev_data_t data = { 0 };
819 
820 	data.dd_func = func;
821 	data.dd_found = B_FALSE;
822 	data.dd_pool_guid = pool_guid;
823 	data.dd_vdev_guid = vdev_guid;
824 	data.dd_islabeled = is_slice;
825 	data.dd_new_devid = devid;
826 
827 	(void) zpool_iter(g_zfshdl, zfs_iter_pool, &data);
828 
829 	return (data.dd_found);
830 }
831 
832 /*
833  * Handle a EC_DEV_ADD.ESC_DISK event.
834  *
835  * illumos
836  *	Expects: DEV_PHYS_PATH string in schema
837  *	Matches: vdev's ZPOOL_CONFIG_PHYS_PATH or ZPOOL_CONFIG_DEVID
838  *
839  *      path: '/dev/dsk/c0t1d0s0' (persistent)
840  *     devid: 'id1,sd@SATA_____Hitachi_HDS72101______JP2940HZ3H74MC/a'
841  * phys_path: '/pci@0,0/pci103c,1609@11/disk@1,0:a'
842  *
843  * linux
844  *	provides: DEV_PHYS_PATH and DEV_IDENTIFIER strings in schema
845  *	Matches: vdev's ZPOOL_CONFIG_PHYS_PATH or ZPOOL_CONFIG_DEVID
846  *
847  *      path: '/dev/sdc1' (not persistent)
848  *     devid: 'ata-SAMSUNG_HD204UI_S2HGJD2Z805891-part1'
849  * phys_path: 'pci-0000:04:00.0-sas-0x4433221106000000-lun-0'
850  */
851 static int
852 zfs_deliver_add(nvlist_t *nvl)
853 {
854 	const char *devpath = NULL, *devid = NULL;
855 	uint64_t pool_guid = 0, vdev_guid = 0;
856 	boolean_t is_slice;
857 
858 	/*
859 	 * Expecting a devid string and an optional physical location and guid
860 	 */
861 	if (nvlist_lookup_string(nvl, DEV_IDENTIFIER, &devid) != 0) {
862 		zed_log_msg(LOG_INFO, "%s: no dev identifier\n", __func__);
863 		return (-1);
864 	}
865 
866 	(void) nvlist_lookup_string(nvl, DEV_PHYS_PATH, &devpath);
867 	(void) nvlist_lookup_uint64(nvl, ZFS_EV_POOL_GUID, &pool_guid);
868 	(void) nvlist_lookup_uint64(nvl, ZFS_EV_VDEV_GUID, &vdev_guid);
869 
870 	is_slice = (nvlist_lookup_boolean(nvl, DEV_IS_PART) == 0);
871 
872 	zed_log_msg(LOG_INFO, "zfs_deliver_add: adding %s (%s) (is_slice %d)",
873 	    devid, devpath ? devpath : "NULL", is_slice);
874 
875 	/*
876 	 * Iterate over all vdevs looking for a match in the following order:
877 	 * 1. ZPOOL_CONFIG_DEVID (identifies the unique disk)
878 	 * 2. ZPOOL_CONFIG_PHYS_PATH (identifies disk physical location).
879 	 * 3. ZPOOL_CONFIG_GUID (identifies unique vdev).
880 	 * 4. ZPOOL_CONFIG_PATH for /dev/disk/by-vdev devices only (since
881 	 *    by-vdev paths represent physical paths).
882 	 */
883 	if (devid_iter(devid, zfs_process_add, is_slice))
884 		return (0);
885 	if (devpath != NULL && devphys_iter(devpath, devid, zfs_process_add,
886 	    is_slice, vdev_guid))
887 		return (0);
888 	if (vdev_guid != 0)
889 		(void) guid_iter(pool_guid, vdev_guid, devid, zfs_process_add,
890 		    is_slice);
891 
892 	if (devpath != NULL) {
893 		/* Can we match a /dev/disk/by-vdev/ path? */
894 		char by_vdev_path[MAXPATHLEN];
895 		snprintf(by_vdev_path, sizeof (by_vdev_path),
896 		    "/dev/disk/by-vdev/%s", devpath);
897 		if (by_vdev_path_iter(by_vdev_path, devid, zfs_process_add,
898 		    is_slice))
899 			return (0);
900 	}
901 
902 	return (0);
903 }
904 
905 /*
906  * Called when we receive a VDEV_CHECK event, which indicates a device could not
907  * be opened during initial pool open, but the autoreplace property was set on
908  * the pool.  In this case, we treat it as if it were an add event.
909  */
910 static int
911 zfs_deliver_check(nvlist_t *nvl)
912 {
913 	dev_data_t data = { 0 };
914 
915 	if (nvlist_lookup_uint64(nvl, ZFS_EV_POOL_GUID,
916 	    &data.dd_pool_guid) != 0 ||
917 	    nvlist_lookup_uint64(nvl, ZFS_EV_VDEV_GUID,
918 	    &data.dd_vdev_guid) != 0 ||
919 	    data.dd_vdev_guid == 0)
920 		return (0);
921 
922 	zed_log_msg(LOG_INFO, "zfs_deliver_check: pool '%llu', vdev %llu",
923 	    data.dd_pool_guid, data.dd_vdev_guid);
924 
925 	data.dd_func = zfs_process_add;
926 
927 	(void) zpool_iter(g_zfshdl, zfs_iter_pool, &data);
928 
929 	return (0);
930 }
931 
932 /*
933  * Given a path to a vdev, lookup the vdev's physical size from its
934  * config nvlist.
935  *
936  * Returns the vdev's physical size in bytes on success, 0 on error.
937  */
938 static uint64_t
939 vdev_size_from_config(zpool_handle_t *zhp, const char *vdev_path)
940 {
941 	nvlist_t *nvl = NULL;
942 	boolean_t avail_spare, l2cache, log;
943 	vdev_stat_t *vs = NULL;
944 	uint_t c;
945 
946 	nvl = zpool_find_vdev(zhp, vdev_path, &avail_spare, &l2cache, &log);
947 	if (!nvl)
948 		return (0);
949 
950 	verify(nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_VDEV_STATS,
951 	    (uint64_t **)&vs, &c) == 0);
952 	if (!vs) {
953 		zed_log_msg(LOG_INFO, "%s: no nvlist for '%s'", __func__,
954 		    vdev_path);
955 		return (0);
956 	}
957 
958 	return (vs->vs_pspace);
959 }
960 
961 /*
962  * Given a path to a vdev, lookup if the vdev is a "whole disk" in the
963  * config nvlist.  "whole disk" means that ZFS was passed a whole disk
964  * at pool creation time, which it partitioned up and has full control over.
965  * Thus a partition with wholedisk=1 set tells us that zfs created the
966  * partition at creation time.  A partition without whole disk set would have
967  * been created by externally (like with fdisk) and passed to ZFS.
968  *
969  * Returns the whole disk value (either 0 or 1).
970  */
971 static uint64_t
972 vdev_whole_disk_from_config(zpool_handle_t *zhp, const char *vdev_path)
973 {
974 	nvlist_t *nvl = NULL;
975 	boolean_t avail_spare, l2cache, log;
976 	uint64_t wholedisk = 0;
977 
978 	nvl = zpool_find_vdev(zhp, vdev_path, &avail_spare, &l2cache, &log);
979 	if (!nvl)
980 		return (0);
981 
982 	(void) nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_WHOLE_DISK, &wholedisk);
983 
984 	return (wholedisk);
985 }
986 
987 /*
988  * If the device size grew more than 1% then return true.
989  */
990 #define	DEVICE_GREW(oldsize, newsize) \
991 		    ((newsize > oldsize) && \
992 		    ((newsize / (newsize - oldsize)) <= 100))
993 
994 static int
995 zfsdle_vdev_online(zpool_handle_t *zhp, void *data)
996 {
997 	boolean_t avail_spare, l2cache;
998 	nvlist_t *udev_nvl = data;
999 	nvlist_t *tgt;
1000 	int error;
1001 
1002 	const char *tmp_devname;
1003 	char devname[MAXPATHLEN] = "";
1004 	uint64_t guid;
1005 
1006 	if (nvlist_lookup_uint64(udev_nvl, ZFS_EV_VDEV_GUID, &guid) == 0) {
1007 		sprintf(devname, "%llu", (u_longlong_t)guid);
1008 	} else if (nvlist_lookup_string(udev_nvl, DEV_PHYS_PATH,
1009 	    &tmp_devname) == 0) {
1010 		strlcpy(devname, tmp_devname, MAXPATHLEN);
1011 		zfs_append_partition(devname, MAXPATHLEN);
1012 	} else {
1013 		zed_log_msg(LOG_INFO, "%s: no guid or physpath", __func__);
1014 	}
1015 
1016 	zed_log_msg(LOG_INFO, "zfsdle_vdev_online: searching for '%s' in '%s'",
1017 	    devname, zpool_get_name(zhp));
1018 
1019 	if ((tgt = zpool_find_vdev_by_physpath(zhp, devname,
1020 	    &avail_spare, &l2cache, NULL)) != NULL) {
1021 		const char *path;
1022 		char fullpath[MAXPATHLEN];
1023 		uint64_t wholedisk = 0;
1024 
1025 		error = nvlist_lookup_string(tgt, ZPOOL_CONFIG_PATH, &path);
1026 		if (error) {
1027 			zpool_close(zhp);
1028 			return (0);
1029 		}
1030 
1031 		(void) nvlist_lookup_uint64(tgt, ZPOOL_CONFIG_WHOLE_DISK,
1032 		    &wholedisk);
1033 
1034 		if (wholedisk) {
1035 			char *tmp;
1036 			path = strrchr(path, '/');
1037 			if (path != NULL) {
1038 				tmp = zfs_strip_partition(path + 1);
1039 				if (tmp == NULL) {
1040 					zpool_close(zhp);
1041 					return (0);
1042 				}
1043 			} else {
1044 				zpool_close(zhp);
1045 				return (0);
1046 			}
1047 
1048 			(void) strlcpy(fullpath, tmp, sizeof (fullpath));
1049 			free(tmp);
1050 
1051 			/*
1052 			 * We need to reopen the pool associated with this
1053 			 * device so that the kernel can update the size of
1054 			 * the expanded device.  When expanding there is no
1055 			 * need to restart the scrub from the beginning.
1056 			 */
1057 			boolean_t scrub_restart = B_FALSE;
1058 			(void) zpool_reopen_one(zhp, &scrub_restart);
1059 		} else {
1060 			(void) strlcpy(fullpath, path, sizeof (fullpath));
1061 		}
1062 
1063 		if (zpool_get_prop_int(zhp, ZPOOL_PROP_AUTOEXPAND, NULL)) {
1064 			vdev_state_t newstate;
1065 
1066 			if (zpool_get_state(zhp) != POOL_STATE_UNAVAIL) {
1067 				/*
1068 				 * If this disk size has not changed, then
1069 				 * there's no need to do an autoexpand.  To
1070 				 * check we look at the disk's size in its
1071 				 * config, and compare it to the disk size
1072 				 * that udev is reporting.
1073 				 */
1074 				uint64_t udev_size = 0, conf_size = 0,
1075 				    wholedisk = 0, udev_parent_size = 0;
1076 
1077 				/*
1078 				 * Get the size of our disk that udev is
1079 				 * reporting.
1080 				 */
1081 				if (nvlist_lookup_uint64(udev_nvl, DEV_SIZE,
1082 				    &udev_size) != 0) {
1083 					udev_size = 0;
1084 				}
1085 
1086 				/*
1087 				 * Get the size of our disk's parent device
1088 				 * from udev (where sda1's parent is sda).
1089 				 */
1090 				if (nvlist_lookup_uint64(udev_nvl,
1091 				    DEV_PARENT_SIZE, &udev_parent_size) != 0) {
1092 					udev_parent_size = 0;
1093 				}
1094 
1095 				conf_size = vdev_size_from_config(zhp,
1096 				    fullpath);
1097 
1098 				wholedisk = vdev_whole_disk_from_config(zhp,
1099 				    fullpath);
1100 
1101 				/*
1102 				 * Only attempt an autoexpand if the vdev size
1103 				 * changed.  There are two different cases
1104 				 * to consider.
1105 				 *
1106 				 * 1. wholedisk=1
1107 				 * If you do a 'zpool create' on a whole disk
1108 				 * (like /dev/sda), then zfs will create
1109 				 * partitions on the disk (like /dev/sda1).  In
1110 				 * that case, wholedisk=1 will be set in the
1111 				 * partition's nvlist config.  So zed will need
1112 				 * to see if your parent device (/dev/sda)
1113 				 * expanded in size, and if so, then attempt
1114 				 * the autoexpand.
1115 				 *
1116 				 * 2. wholedisk=0
1117 				 * If you do a 'zpool create' on an existing
1118 				 * partition, or a device that doesn't allow
1119 				 * partitions, then wholedisk=0, and you will
1120 				 * simply need to check if the device itself
1121 				 * expanded in size.
1122 				 */
1123 				if (DEVICE_GREW(conf_size, udev_size) ||
1124 				    (wholedisk && DEVICE_GREW(conf_size,
1125 				    udev_parent_size))) {
1126 					error = zpool_vdev_online(zhp, fullpath,
1127 					    0, &newstate);
1128 
1129 					zed_log_msg(LOG_INFO,
1130 					    "%s: autoexpanding '%s' from %llu"
1131 					    " to %llu bytes in pool '%s': %d",
1132 					    __func__, fullpath, conf_size,
1133 					    MAX(udev_size, udev_parent_size),
1134 					    zpool_get_name(zhp), error);
1135 				}
1136 			}
1137 		}
1138 		zpool_close(zhp);
1139 		return (1);
1140 	}
1141 	zpool_close(zhp);
1142 	return (0);
1143 }
1144 
1145 /*
1146  * This function handles the ESC_DEV_DLE device change event.  Use the
1147  * provided vdev guid when looking up a disk or partition, when the guid
1148  * is not present assume the entire disk is owned by ZFS and append the
1149  * expected -part1 partition information then lookup by physical path.
1150  */
1151 static int
1152 zfs_deliver_dle(nvlist_t *nvl)
1153 {
1154 	const char *devname;
1155 	char name[MAXPATHLEN];
1156 	uint64_t guid;
1157 
1158 	if (nvlist_lookup_uint64(nvl, ZFS_EV_VDEV_GUID, &guid) == 0) {
1159 		sprintf(name, "%llu", (u_longlong_t)guid);
1160 	} else if (nvlist_lookup_string(nvl, DEV_PHYS_PATH, &devname) == 0) {
1161 		strlcpy(name, devname, MAXPATHLEN);
1162 		zfs_append_partition(name, MAXPATHLEN);
1163 	} else {
1164 		sprintf(name, "unknown");
1165 		zed_log_msg(LOG_INFO, "zfs_deliver_dle: no guid or physpath");
1166 	}
1167 
1168 	if (zpool_iter(g_zfshdl, zfsdle_vdev_online, nvl) != 1) {
1169 		zed_log_msg(LOG_INFO, "zfs_deliver_dle: device '%s' not "
1170 		    "found", name);
1171 		return (1);
1172 	}
1173 
1174 	return (0);
1175 }
1176 
1177 /*
1178  * syseventd daemon module event handler
1179  *
1180  * Handles syseventd daemon zfs device related events:
1181  *
1182  *	EC_DEV_ADD.ESC_DISK
1183  *	EC_DEV_STATUS.ESC_DEV_DLE
1184  *	EC_ZFS.ESC_ZFS_VDEV_CHECK
1185  *
1186  * Note: assumes only one thread active at a time (not thread safe)
1187  */
1188 static int
1189 zfs_slm_deliver_event(const char *class, const char *subclass, nvlist_t *nvl)
1190 {
1191 	int ret;
1192 	boolean_t is_check = B_FALSE, is_dle = B_FALSE;
1193 
1194 	if (strcmp(class, EC_DEV_ADD) == 0) {
1195 		/*
1196 		 * We're mainly interested in disk additions, but we also listen
1197 		 * for new loop devices, to allow for simplified testing.
1198 		 */
1199 		if (strcmp(subclass, ESC_DISK) != 0 &&
1200 		    strcmp(subclass, ESC_LOFI) != 0)
1201 			return (0);
1202 
1203 		is_check = B_FALSE;
1204 	} else if (strcmp(class, EC_ZFS) == 0 &&
1205 	    strcmp(subclass, ESC_ZFS_VDEV_CHECK) == 0) {
1206 		/*
1207 		 * This event signifies that a device failed to open
1208 		 * during pool load, but the 'autoreplace' property was
1209 		 * set, so we should pretend it's just been added.
1210 		 */
1211 		is_check = B_TRUE;
1212 	} else if (strcmp(class, EC_DEV_STATUS) == 0 &&
1213 	    strcmp(subclass, ESC_DEV_DLE) == 0) {
1214 		is_dle = B_TRUE;
1215 	} else {
1216 		return (0);
1217 	}
1218 
1219 	if (is_dle)
1220 		ret = zfs_deliver_dle(nvl);
1221 	else if (is_check)
1222 		ret = zfs_deliver_check(nvl);
1223 	else
1224 		ret = zfs_deliver_add(nvl);
1225 
1226 	return (ret);
1227 }
1228 
1229 static void *
1230 zfs_enum_pools(void *arg)
1231 {
1232 	(void) arg;
1233 
1234 	(void) zpool_iter(g_zfshdl, zfs_unavail_pool, (void *)&g_pool_list);
1235 	/*
1236 	 * Linux - instead of using a thread pool, each list entry
1237 	 * will spawn a thread when an unavailable pool transitions
1238 	 * to available. zfs_slm_fini will wait for these threads.
1239 	 */
1240 	g_enumeration_done = B_TRUE;
1241 	return (NULL);
1242 }
1243 
1244 /*
1245  * called from zed daemon at startup
1246  *
1247  * sent messages from zevents or udev monitor
1248  *
1249  * For now, each agent has its own libzfs instance
1250  */
1251 int
1252 zfs_slm_init(void)
1253 {
1254 	if ((g_zfshdl = libzfs_init()) == NULL)
1255 		return (-1);
1256 
1257 	/*
1258 	 * collect a list of unavailable pools (asynchronously,
1259 	 * since this can take a while)
1260 	 */
1261 	list_create(&g_pool_list, sizeof (struct unavailpool),
1262 	    offsetof(struct unavailpool, uap_node));
1263 
1264 	if (pthread_create(&g_zfs_tid, NULL, zfs_enum_pools, NULL) != 0) {
1265 		list_destroy(&g_pool_list);
1266 		libzfs_fini(g_zfshdl);
1267 		return (-1);
1268 	}
1269 
1270 	pthread_setname_np(g_zfs_tid, "enum-pools");
1271 	list_create(&g_device_list, sizeof (struct pendingdev),
1272 	    offsetof(struct pendingdev, pd_node));
1273 
1274 	return (0);
1275 }
1276 
1277 void
1278 zfs_slm_fini(void)
1279 {
1280 	unavailpool_t *pool;
1281 	pendingdev_t *device;
1282 
1283 	/* wait for zfs_enum_pools thread to complete */
1284 	(void) pthread_join(g_zfs_tid, NULL);
1285 	/* destroy the thread pool */
1286 	if (g_tpool != NULL) {
1287 		tpool_wait(g_tpool);
1288 		tpool_destroy(g_tpool);
1289 	}
1290 
1291 	while ((pool = list_remove_head(&g_pool_list)) != NULL) {
1292 		zpool_close(pool->uap_zhp);
1293 		free(pool);
1294 	}
1295 	list_destroy(&g_pool_list);
1296 
1297 	while ((device = list_remove_head(&g_device_list)) != NULL)
1298 		free(device);
1299 	list_destroy(&g_device_list);
1300 
1301 	libzfs_fini(g_zfshdl);
1302 }
1303 
1304 void
1305 zfs_slm_event(const char *class, const char *subclass, nvlist_t *nvl)
1306 {
1307 	zed_log_msg(LOG_INFO, "zfs_slm_event: %s.%s", class, subclass);
1308 	(void) zfs_slm_deliver_event(class, subclass, nvl);
1309 }
1310