xref: /freebsd/sys/contrib/openzfs/include/sys/avl.h (revision 19261079)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Copyright (c) 2014 by Delphix. All rights reserved.
28  */
29 
30 #ifndef	_AVL_H
31 #define	_AVL_H extern __attribute__((visibility("default")))
32 
33 /*
34  * This is a private header file.  Applications should not directly include
35  * this file.
36  */
37 
38 #ifdef	__cplusplus
39 extern "C" {
40 #endif
41 
42 #include <sys/types.h>
43 #include <sys/avl_impl.h>
44 
45 /*
46  * This is a generic implementation of AVL trees for use in the Solaris kernel.
47  * The interfaces provide an efficient way of implementing an ordered set of
48  * data structures.
49  *
50  * AVL trees provide an alternative to using an ordered linked list. Using AVL
51  * trees will usually be faster, however they requires more storage. An ordered
52  * linked list in general requires 2 pointers in each data structure. The
53  * AVL tree implementation uses 3 pointers. The following chart gives the
54  * approximate performance of operations with the different approaches:
55  *
56  *	Operation	 Link List	AVL tree
57  *	---------	 --------	--------
58  *	lookup		   O(n)		O(log(n))
59  *
60  *	insert 1 node	 constant	constant
61  *
62  *	delete 1 node	 constant	between constant and O(log(n))
63  *
64  *	delete all nodes   O(n)		O(n)
65  *
66  *	visit the next
67  *	or prev node	 constant	between constant and O(log(n))
68  *
69  *
70  * The data structure nodes are anchored at an "avl_tree_t" (the equivalent
71  * of a list header) and the individual nodes will have a field of
72  * type "avl_node_t" (corresponding to list pointers).
73  *
74  * The type "avl_index_t" is used to indicate a position in the list for
75  * certain calls.
76  *
77  * The usage scenario is generally:
78  *
79  * 1. Create the list/tree with: avl_create()
80  *
81  * followed by any mixture of:
82  *
83  * 2a. Insert nodes with: avl_add(), or avl_find() and avl_insert()
84  *
85  * 2b. Visited elements with:
86  *	 avl_first() - returns the lowest valued node
87  *	 avl_last() - returns the highest valued node
88  *	 AVL_NEXT() - given a node go to next higher one
89  *	 AVL_PREV() - given a node go to previous lower one
90  *
91  * 2c.  Find the node with the closest value either less than or greater
92  *	than a given value with avl_nearest().
93  *
94  * 2d. Remove individual nodes from the list/tree with avl_remove().
95  *
96  * and finally when the list is being destroyed
97  *
98  * 3. Use avl_destroy_nodes() to quickly process/free up any remaining nodes.
99  *    Note that once you use avl_destroy_nodes(), you can no longer
100  *    use any routine except avl_destroy_nodes() and avl_destroy().
101  *
102  * 4. Use avl_destroy() to destroy the AVL tree itself.
103  *
104  * Any locking for multiple thread access is up to the user to provide, just
105  * as is needed for any linked list implementation.
106  */
107 
108 /*
109  * AVL comparator helpers
110  */
111 #define	TREE_ISIGN(a)	(((a) > 0) - ((a) < 0))
112 #define	TREE_CMP(a, b)	(((a) > (b)) - ((a) < (b)))
113 #define	TREE_PCMP(a, b)	\
114 	(((uintptr_t)(a) > (uintptr_t)(b)) - ((uintptr_t)(a) < (uintptr_t)(b)))
115 
116 /*
117  * Type used for the root of the AVL tree.
118  */
119 typedef struct avl_tree avl_tree_t;
120 
121 /*
122  * The data nodes in the AVL tree must have a field of this type.
123  */
124 typedef struct avl_node avl_node_t;
125 
126 /*
127  * An opaque type used to locate a position in the tree where a node
128  * would be inserted.
129  */
130 typedef uintptr_t avl_index_t;
131 
132 
133 /*
134  * Direction constants used for avl_nearest().
135  */
136 #define	AVL_BEFORE	(0)
137 #define	AVL_AFTER	(1)
138 
139 
140 /*
141  * Prototypes
142  *
143  * Where not otherwise mentioned, "void *" arguments are a pointer to the
144  * user data structure which must contain a field of type avl_node_t.
145  *
146  * Also assume the user data structures looks like:
147  *	struct my_type {
148  *		...
149  *		avl_node_t	my_link;
150  *		...
151  *	};
152  */
153 
154 /*
155  * Initialize an AVL tree. Arguments are:
156  *
157  * tree   - the tree to be initialized
158  * compar - function to compare two nodes, it must return exactly: -1, 0, or +1
159  *          -1 for <, 0 for ==, and +1 for >
160  * size   - the value of sizeof(struct my_type)
161  * offset - the value of OFFSETOF(struct my_type, my_link)
162  */
163 _AVL_H void avl_create(avl_tree_t *tree,
164 	int (*compar) (const void *, const void *), size_t size, size_t offset);
165 
166 
167 /*
168  * Find a node with a matching value in the tree. Returns the matching node
169  * found. If not found, it returns NULL and then if "where" is not NULL it sets
170  * "where" for use with avl_insert() or avl_nearest().
171  *
172  * node   - node that has the value being looked for
173  * where  - position for use with avl_nearest() or avl_insert(), may be NULL
174  */
175 _AVL_H void *avl_find(avl_tree_t *tree, const void *node, avl_index_t *where);
176 
177 /*
178  * Insert a node into the tree.
179  *
180  * node   - the node to insert
181  * where  - position as returned from avl_find()
182  */
183 _AVL_H void avl_insert(avl_tree_t *tree, void *node, avl_index_t where);
184 
185 /*
186  * Insert "new_data" in "tree" in the given "direction" either after
187  * or before the data "here".
188  *
189  * This might be useful for avl clients caching recently accessed
190  * data to avoid doing avl_find() again for insertion.
191  *
192  * new_data	- new data to insert
193  * here		- existing node in "tree"
194  * direction	- either AVL_AFTER or AVL_BEFORE the data "here".
195  */
196 _AVL_H void avl_insert_here(avl_tree_t *tree, void *new_data, void *here,
197     int direction);
198 
199 
200 /*
201  * Return the first or last valued node in the tree. Will return NULL
202  * if the tree is empty.
203  *
204  */
205 _AVL_H void *avl_first(avl_tree_t *tree);
206 _AVL_H void *avl_last(avl_tree_t *tree);
207 
208 
209 /*
210  * Return the next or previous valued node in the tree.
211  * AVL_NEXT() will return NULL if at the last node.
212  * AVL_PREV() will return NULL if at the first node.
213  *
214  * node   - the node from which the next or previous node is found
215  */
216 #define	AVL_NEXT(tree, node)	avl_walk(tree, node, AVL_AFTER)
217 #define	AVL_PREV(tree, node)	avl_walk(tree, node, AVL_BEFORE)
218 
219 
220 /*
221  * Find the node with the nearest value either greater or less than
222  * the value from a previous avl_find(). Returns the node or NULL if
223  * there isn't a matching one.
224  *
225  * where     - position as returned from avl_find()
226  * direction - either AVL_BEFORE or AVL_AFTER
227  *
228  * EXAMPLE get the greatest node that is less than a given value:
229  *
230  *	avl_tree_t *tree;
231  *	struct my_data look_for_value = {....};
232  *	struct my_data *node;
233  *	struct my_data *less;
234  *	avl_index_t where;
235  *
236  *	node = avl_find(tree, &look_for_value, &where);
237  *	if (node != NULL)
238  *		less = AVL_PREV(tree, node);
239  *	else
240  *		less = avl_nearest(tree, where, AVL_BEFORE);
241  */
242 _AVL_H void *avl_nearest(avl_tree_t *tree, avl_index_t where, int direction);
243 
244 
245 /*
246  * Add a single node to the tree.
247  * The node must not be in the tree, and it must not
248  * compare equal to any other node already in the tree.
249  *
250  * node   - the node to add
251  */
252 _AVL_H void avl_add(avl_tree_t *tree, void *node);
253 
254 
255 /*
256  * Remove a single node from the tree.  The node must be in the tree.
257  *
258  * node   - the node to remove
259  */
260 _AVL_H void avl_remove(avl_tree_t *tree, void *node);
261 
262 /*
263  * Reinsert a node only if its order has changed relative to its nearest
264  * neighbors. To optimize performance avl_update_lt() checks only the previous
265  * node and avl_update_gt() checks only the next node. Use avl_update_lt() and
266  * avl_update_gt() only if you know the direction in which the order of the
267  * node may change.
268  */
269 _AVL_H boolean_t avl_update(avl_tree_t *, void *);
270 _AVL_H boolean_t avl_update_lt(avl_tree_t *, void *);
271 _AVL_H boolean_t avl_update_gt(avl_tree_t *, void *);
272 
273 /*
274  * Swaps the contents of the two trees.
275  */
276 _AVL_H void avl_swap(avl_tree_t *tree1, avl_tree_t *tree2);
277 
278 /*
279  * Return the number of nodes in the tree
280  */
281 _AVL_H ulong_t avl_numnodes(avl_tree_t *tree);
282 
283 /*
284  * Return B_TRUE if there are zero nodes in the tree, B_FALSE otherwise.
285  */
286 _AVL_H boolean_t avl_is_empty(avl_tree_t *tree);
287 
288 /*
289  * Used to destroy any remaining nodes in a tree. The cookie argument should
290  * be initialized to NULL before the first call. Returns a node that has been
291  * removed from the tree and may be free()'d. Returns NULL when the tree is
292  * empty.
293  *
294  * Once you call avl_destroy_nodes(), you can only continuing calling it and
295  * finally avl_destroy(). No other AVL routines will be valid.
296  *
297  * cookie - a "void *" used to save state between calls to avl_destroy_nodes()
298  *
299  * EXAMPLE:
300  *	avl_tree_t *tree;
301  *	struct my_data *node;
302  *	void *cookie;
303  *
304  *	cookie = NULL;
305  *	while ((node = avl_destroy_nodes(tree, &cookie)) != NULL)
306  *		free(node);
307  *	avl_destroy(tree);
308  */
309 _AVL_H void *avl_destroy_nodes(avl_tree_t *tree, void **cookie);
310 
311 
312 /*
313  * Final destroy of an AVL tree. Arguments are:
314  *
315  * tree   - the empty tree to destroy
316  */
317 _AVL_H void avl_destroy(avl_tree_t *tree);
318 
319 
320 
321 #ifdef	__cplusplus
322 }
323 #endif
324 
325 #endif	/* _AVL_H */
326