xref: /freebsd/sys/contrib/openzfs/include/sys/dmu.h (revision 19261079)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25  * Copyright (c) 2012, Joyent, Inc. All rights reserved.
26  * Copyright 2014 HybridCluster. All rights reserved.
27  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28  * Copyright 2013 Saso Kiselkov. All rights reserved.
29  * Copyright (c) 2017, Intel Corporation.
30  */
31 
32 /* Portions Copyright 2010 Robert Milkowski */
33 
34 #ifndef	_SYS_DMU_H
35 #define	_SYS_DMU_H
36 
37 /*
38  * This file describes the interface that the DMU provides for its
39  * consumers.
40  *
41  * The DMU also interacts with the SPA.  That interface is described in
42  * dmu_spa.h.
43  */
44 
45 #include <sys/zfs_context.h>
46 #include <sys/inttypes.h>
47 #include <sys/cred.h>
48 #include <sys/fs/zfs.h>
49 #include <sys/zio_compress.h>
50 #include <sys/zio_priority.h>
51 #include <sys/uio.h>
52 #include <sys/zfs_file.h>
53 
54 #ifdef	__cplusplus
55 extern "C" {
56 #endif
57 
58 struct page;
59 struct vnode;
60 struct spa;
61 struct zilog;
62 struct zio;
63 struct blkptr;
64 struct zap_cursor;
65 struct dsl_dataset;
66 struct dsl_pool;
67 struct dnode;
68 struct drr_begin;
69 struct drr_end;
70 struct zbookmark_phys;
71 struct spa;
72 struct nvlist;
73 struct arc_buf;
74 struct zio_prop;
75 struct sa_handle;
76 struct dsl_crypto_params;
77 struct locked_range;
78 
79 typedef struct objset objset_t;
80 typedef struct dmu_tx dmu_tx_t;
81 typedef struct dsl_dir dsl_dir_t;
82 typedef struct dnode dnode_t;
83 
84 typedef enum dmu_object_byteswap {
85 	DMU_BSWAP_UINT8,
86 	DMU_BSWAP_UINT16,
87 	DMU_BSWAP_UINT32,
88 	DMU_BSWAP_UINT64,
89 	DMU_BSWAP_ZAP,
90 	DMU_BSWAP_DNODE,
91 	DMU_BSWAP_OBJSET,
92 	DMU_BSWAP_ZNODE,
93 	DMU_BSWAP_OLDACL,
94 	DMU_BSWAP_ACL,
95 	/*
96 	 * Allocating a new byteswap type number makes the on-disk format
97 	 * incompatible with any other format that uses the same number.
98 	 *
99 	 * Data can usually be structured to work with one of the
100 	 * DMU_BSWAP_UINT* or DMU_BSWAP_ZAP types.
101 	 */
102 	DMU_BSWAP_NUMFUNCS
103 } dmu_object_byteswap_t;
104 
105 #define	DMU_OT_NEWTYPE 0x80
106 #define	DMU_OT_METADATA 0x40
107 #define	DMU_OT_ENCRYPTED 0x20
108 #define	DMU_OT_BYTESWAP_MASK 0x1f
109 
110 /*
111  * Defines a uint8_t object type. Object types specify if the data
112  * in the object is metadata (boolean) and how to byteswap the data
113  * (dmu_object_byteswap_t). All of the types created by this method
114  * are cached in the dbuf metadata cache.
115  */
116 #define	DMU_OT(byteswap, metadata, encrypted) \
117 	(DMU_OT_NEWTYPE | \
118 	((metadata) ? DMU_OT_METADATA : 0) | \
119 	((encrypted) ? DMU_OT_ENCRYPTED : 0) | \
120 	((byteswap) & DMU_OT_BYTESWAP_MASK))
121 
122 #define	DMU_OT_IS_VALID(ot) (((ot) & DMU_OT_NEWTYPE) ? \
123 	((ot) & DMU_OT_BYTESWAP_MASK) < DMU_BSWAP_NUMFUNCS : \
124 	(ot) < DMU_OT_NUMTYPES)
125 
126 #define	DMU_OT_IS_METADATA_CACHED(ot) (((ot) & DMU_OT_NEWTYPE) ? \
127 	B_TRUE : dmu_ot[(ot)].ot_dbuf_metadata_cache)
128 
129 /*
130  * MDB doesn't have dmu_ot; it defines these macros itself.
131  */
132 #ifndef ZFS_MDB
133 #define	DMU_OT_IS_METADATA_IMPL(ot) (dmu_ot[ot].ot_metadata)
134 #define	DMU_OT_IS_ENCRYPTED_IMPL(ot) (dmu_ot[ot].ot_encrypt)
135 #define	DMU_OT_BYTESWAP_IMPL(ot) (dmu_ot[ot].ot_byteswap)
136 #endif
137 
138 #define	DMU_OT_IS_METADATA(ot) (((ot) & DMU_OT_NEWTYPE) ? \
139 	((ot) & DMU_OT_METADATA) : \
140 	DMU_OT_IS_METADATA_IMPL(ot))
141 
142 #define	DMU_OT_IS_DDT(ot) \
143 	((ot) == DMU_OT_DDT_ZAP)
144 
145 /* Note: ztest uses DMU_OT_UINT64_OTHER as a proxy for file blocks */
146 #define	DMU_OT_IS_FILE(ot) \
147 	((ot) == DMU_OT_PLAIN_FILE_CONTENTS || (ot) == DMU_OT_UINT64_OTHER)
148 
149 #define	DMU_OT_IS_ENCRYPTED(ot) (((ot) & DMU_OT_NEWTYPE) ? \
150 	((ot) & DMU_OT_ENCRYPTED) : \
151 	DMU_OT_IS_ENCRYPTED_IMPL(ot))
152 
153 /*
154  * These object types use bp_fill != 1 for their L0 bp's. Therefore they can't
155  * have their data embedded (i.e. use a BP_IS_EMBEDDED() bp), because bp_fill
156  * is repurposed for embedded BPs.
157  */
158 #define	DMU_OT_HAS_FILL(ot) \
159 	((ot) == DMU_OT_DNODE || (ot) == DMU_OT_OBJSET)
160 
161 #define	DMU_OT_BYTESWAP(ot) (((ot) & DMU_OT_NEWTYPE) ? \
162 	((ot) & DMU_OT_BYTESWAP_MASK) : \
163 	DMU_OT_BYTESWAP_IMPL(ot))
164 
165 typedef enum dmu_object_type {
166 	DMU_OT_NONE,
167 	/* general: */
168 	DMU_OT_OBJECT_DIRECTORY,	/* ZAP */
169 	DMU_OT_OBJECT_ARRAY,		/* UINT64 */
170 	DMU_OT_PACKED_NVLIST,		/* UINT8 (XDR by nvlist_pack/unpack) */
171 	DMU_OT_PACKED_NVLIST_SIZE,	/* UINT64 */
172 	DMU_OT_BPOBJ,			/* UINT64 */
173 	DMU_OT_BPOBJ_HDR,		/* UINT64 */
174 	/* spa: */
175 	DMU_OT_SPACE_MAP_HEADER,	/* UINT64 */
176 	DMU_OT_SPACE_MAP,		/* UINT64 */
177 	/* zil: */
178 	DMU_OT_INTENT_LOG,		/* UINT64 */
179 	/* dmu: */
180 	DMU_OT_DNODE,			/* DNODE */
181 	DMU_OT_OBJSET,			/* OBJSET */
182 	/* dsl: */
183 	DMU_OT_DSL_DIR,			/* UINT64 */
184 	DMU_OT_DSL_DIR_CHILD_MAP,	/* ZAP */
185 	DMU_OT_DSL_DS_SNAP_MAP,		/* ZAP */
186 	DMU_OT_DSL_PROPS,		/* ZAP */
187 	DMU_OT_DSL_DATASET,		/* UINT64 */
188 	/* zpl: */
189 	DMU_OT_ZNODE,			/* ZNODE */
190 	DMU_OT_OLDACL,			/* Old ACL */
191 	DMU_OT_PLAIN_FILE_CONTENTS,	/* UINT8 */
192 	DMU_OT_DIRECTORY_CONTENTS,	/* ZAP */
193 	DMU_OT_MASTER_NODE,		/* ZAP */
194 	DMU_OT_UNLINKED_SET,		/* ZAP */
195 	/* zvol: */
196 	DMU_OT_ZVOL,			/* UINT8 */
197 	DMU_OT_ZVOL_PROP,		/* ZAP */
198 	/* other; for testing only! */
199 	DMU_OT_PLAIN_OTHER,		/* UINT8 */
200 	DMU_OT_UINT64_OTHER,		/* UINT64 */
201 	DMU_OT_ZAP_OTHER,		/* ZAP */
202 	/* new object types: */
203 	DMU_OT_ERROR_LOG,		/* ZAP */
204 	DMU_OT_SPA_HISTORY,		/* UINT8 */
205 	DMU_OT_SPA_HISTORY_OFFSETS,	/* spa_his_phys_t */
206 	DMU_OT_POOL_PROPS,		/* ZAP */
207 	DMU_OT_DSL_PERMS,		/* ZAP */
208 	DMU_OT_ACL,			/* ACL */
209 	DMU_OT_SYSACL,			/* SYSACL */
210 	DMU_OT_FUID,			/* FUID table (Packed NVLIST UINT8) */
211 	DMU_OT_FUID_SIZE,		/* FUID table size UINT64 */
212 	DMU_OT_NEXT_CLONES,		/* ZAP */
213 	DMU_OT_SCAN_QUEUE,		/* ZAP */
214 	DMU_OT_USERGROUP_USED,		/* ZAP */
215 	DMU_OT_USERGROUP_QUOTA,		/* ZAP */
216 	DMU_OT_USERREFS,		/* ZAP */
217 	DMU_OT_DDT_ZAP,			/* ZAP */
218 	DMU_OT_DDT_STATS,		/* ZAP */
219 	DMU_OT_SA,			/* System attr */
220 	DMU_OT_SA_MASTER_NODE,		/* ZAP */
221 	DMU_OT_SA_ATTR_REGISTRATION,	/* ZAP */
222 	DMU_OT_SA_ATTR_LAYOUTS,		/* ZAP */
223 	DMU_OT_SCAN_XLATE,		/* ZAP */
224 	DMU_OT_DEDUP,			/* fake dedup BP from ddt_bp_create() */
225 	DMU_OT_DEADLIST,		/* ZAP */
226 	DMU_OT_DEADLIST_HDR,		/* UINT64 */
227 	DMU_OT_DSL_CLONES,		/* ZAP */
228 	DMU_OT_BPOBJ_SUBOBJ,		/* UINT64 */
229 	/*
230 	 * Do not allocate new object types here. Doing so makes the on-disk
231 	 * format incompatible with any other format that uses the same object
232 	 * type number.
233 	 *
234 	 * When creating an object which does not have one of the above types
235 	 * use the DMU_OTN_* type with the correct byteswap and metadata
236 	 * values.
237 	 *
238 	 * The DMU_OTN_* types do not have entries in the dmu_ot table,
239 	 * use the DMU_OT_IS_METADATA() and DMU_OT_BYTESWAP() macros instead
240 	 * of indexing into dmu_ot directly (this works for both DMU_OT_* types
241 	 * and DMU_OTN_* types).
242 	 */
243 	DMU_OT_NUMTYPES,
244 
245 	/*
246 	 * Names for valid types declared with DMU_OT().
247 	 */
248 	DMU_OTN_UINT8_DATA = DMU_OT(DMU_BSWAP_UINT8, B_FALSE, B_FALSE),
249 	DMU_OTN_UINT8_METADATA = DMU_OT(DMU_BSWAP_UINT8, B_TRUE, B_FALSE),
250 	DMU_OTN_UINT16_DATA = DMU_OT(DMU_BSWAP_UINT16, B_FALSE, B_FALSE),
251 	DMU_OTN_UINT16_METADATA = DMU_OT(DMU_BSWAP_UINT16, B_TRUE, B_FALSE),
252 	DMU_OTN_UINT32_DATA = DMU_OT(DMU_BSWAP_UINT32, B_FALSE, B_FALSE),
253 	DMU_OTN_UINT32_METADATA = DMU_OT(DMU_BSWAP_UINT32, B_TRUE, B_FALSE),
254 	DMU_OTN_UINT64_DATA = DMU_OT(DMU_BSWAP_UINT64, B_FALSE, B_FALSE),
255 	DMU_OTN_UINT64_METADATA = DMU_OT(DMU_BSWAP_UINT64, B_TRUE, B_FALSE),
256 	DMU_OTN_ZAP_DATA = DMU_OT(DMU_BSWAP_ZAP, B_FALSE, B_FALSE),
257 	DMU_OTN_ZAP_METADATA = DMU_OT(DMU_BSWAP_ZAP, B_TRUE, B_FALSE),
258 
259 	DMU_OTN_UINT8_ENC_DATA = DMU_OT(DMU_BSWAP_UINT8, B_FALSE, B_TRUE),
260 	DMU_OTN_UINT8_ENC_METADATA = DMU_OT(DMU_BSWAP_UINT8, B_TRUE, B_TRUE),
261 	DMU_OTN_UINT16_ENC_DATA = DMU_OT(DMU_BSWAP_UINT16, B_FALSE, B_TRUE),
262 	DMU_OTN_UINT16_ENC_METADATA = DMU_OT(DMU_BSWAP_UINT16, B_TRUE, B_TRUE),
263 	DMU_OTN_UINT32_ENC_DATA = DMU_OT(DMU_BSWAP_UINT32, B_FALSE, B_TRUE),
264 	DMU_OTN_UINT32_ENC_METADATA = DMU_OT(DMU_BSWAP_UINT32, B_TRUE, B_TRUE),
265 	DMU_OTN_UINT64_ENC_DATA = DMU_OT(DMU_BSWAP_UINT64, B_FALSE, B_TRUE),
266 	DMU_OTN_UINT64_ENC_METADATA = DMU_OT(DMU_BSWAP_UINT64, B_TRUE, B_TRUE),
267 	DMU_OTN_ZAP_ENC_DATA = DMU_OT(DMU_BSWAP_ZAP, B_FALSE, B_TRUE),
268 	DMU_OTN_ZAP_ENC_METADATA = DMU_OT(DMU_BSWAP_ZAP, B_TRUE, B_TRUE),
269 } dmu_object_type_t;
270 
271 /*
272  * These flags are intended to be used to specify the "txg_how"
273  * parameter when calling the dmu_tx_assign() function. See the comment
274  * above dmu_tx_assign() for more details on the meaning of these flags.
275  */
276 #define	TXG_NOWAIT	(0ULL)
277 #define	TXG_WAIT	(1ULL<<0)
278 #define	TXG_NOTHROTTLE	(1ULL<<1)
279 
280 void byteswap_uint64_array(void *buf, size_t size);
281 void byteswap_uint32_array(void *buf, size_t size);
282 void byteswap_uint16_array(void *buf, size_t size);
283 void byteswap_uint8_array(void *buf, size_t size);
284 void zap_byteswap(void *buf, size_t size);
285 void zfs_oldacl_byteswap(void *buf, size_t size);
286 void zfs_acl_byteswap(void *buf, size_t size);
287 void zfs_znode_byteswap(void *buf, size_t size);
288 
289 #define	DS_FIND_SNAPSHOTS	(1<<0)
290 #define	DS_FIND_CHILDREN	(1<<1)
291 #define	DS_FIND_SERIALIZE	(1<<2)
292 
293 /*
294  * The maximum number of bytes that can be accessed as part of one
295  * operation, including metadata.
296  */
297 #define	DMU_MAX_ACCESS (64 * 1024 * 1024) /* 64MB */
298 #define	DMU_MAX_DELETEBLKCNT (20480) /* ~5MB of indirect blocks */
299 
300 #define	DMU_USERUSED_OBJECT	(-1ULL)
301 #define	DMU_GROUPUSED_OBJECT	(-2ULL)
302 #define	DMU_PROJECTUSED_OBJECT	(-3ULL)
303 
304 /*
305  * Zap prefix for object accounting in DMU_{USER,GROUP,PROJECT}USED_OBJECT.
306  */
307 #define	DMU_OBJACCT_PREFIX	"obj-"
308 #define	DMU_OBJACCT_PREFIX_LEN	4
309 
310 /*
311  * artificial blkids for bonus buffer and spill blocks
312  */
313 #define	DMU_BONUS_BLKID		(-1ULL)
314 #define	DMU_SPILL_BLKID		(-2ULL)
315 
316 /*
317  * Public routines to create, destroy, open, and close objsets.
318  */
319 typedef void dmu_objset_create_sync_func_t(objset_t *os, void *arg,
320     cred_t *cr, dmu_tx_t *tx);
321 
322 int dmu_objset_hold(const char *name, void *tag, objset_t **osp);
323 int dmu_objset_own(const char *name, dmu_objset_type_t type,
324     boolean_t readonly, boolean_t key_required, void *tag, objset_t **osp);
325 void dmu_objset_rele(objset_t *os, void *tag);
326 void dmu_objset_disown(objset_t *os, boolean_t key_required, void *tag);
327 int dmu_objset_open_ds(struct dsl_dataset *ds, objset_t **osp);
328 
329 void dmu_objset_evict_dbufs(objset_t *os);
330 int dmu_objset_create(const char *name, dmu_objset_type_t type, uint64_t flags,
331     struct dsl_crypto_params *dcp, dmu_objset_create_sync_func_t func,
332     void *arg);
333 int dmu_objset_clone(const char *name, const char *origin);
334 int dsl_destroy_snapshots_nvl(struct nvlist *snaps, boolean_t defer,
335     struct nvlist *errlist);
336 int dmu_objset_snapshot_one(const char *fsname, const char *snapname);
337 int dmu_objset_find(const char *name, int func(const char *, void *), void *arg,
338     int flags);
339 void dmu_objset_byteswap(void *buf, size_t size);
340 int dsl_dataset_rename_snapshot(const char *fsname,
341     const char *oldsnapname, const char *newsnapname, boolean_t recursive);
342 
343 typedef struct dmu_buf {
344 	uint64_t db_object;		/* object that this buffer is part of */
345 	uint64_t db_offset;		/* byte offset in this object */
346 	uint64_t db_size;		/* size of buffer in bytes */
347 	void *db_data;			/* data in buffer */
348 } dmu_buf_t;
349 
350 /*
351  * The names of zap entries in the DIRECTORY_OBJECT of the MOS.
352  */
353 #define	DMU_POOL_DIRECTORY_OBJECT	1
354 #define	DMU_POOL_CONFIG			"config"
355 #define	DMU_POOL_FEATURES_FOR_WRITE	"features_for_write"
356 #define	DMU_POOL_FEATURES_FOR_READ	"features_for_read"
357 #define	DMU_POOL_FEATURE_DESCRIPTIONS	"feature_descriptions"
358 #define	DMU_POOL_FEATURE_ENABLED_TXG	"feature_enabled_txg"
359 #define	DMU_POOL_ROOT_DATASET		"root_dataset"
360 #define	DMU_POOL_SYNC_BPOBJ		"sync_bplist"
361 #define	DMU_POOL_ERRLOG_SCRUB		"errlog_scrub"
362 #define	DMU_POOL_ERRLOG_LAST		"errlog_last"
363 #define	DMU_POOL_SPARES			"spares"
364 #define	DMU_POOL_DEFLATE		"deflate"
365 #define	DMU_POOL_HISTORY		"history"
366 #define	DMU_POOL_PROPS			"pool_props"
367 #define	DMU_POOL_L2CACHE		"l2cache"
368 #define	DMU_POOL_TMP_USERREFS		"tmp_userrefs"
369 #define	DMU_POOL_DDT			"DDT-%s-%s-%s"
370 #define	DMU_POOL_DDT_STATS		"DDT-statistics"
371 #define	DMU_POOL_CREATION_VERSION	"creation_version"
372 #define	DMU_POOL_SCAN			"scan"
373 #define	DMU_POOL_FREE_BPOBJ		"free_bpobj"
374 #define	DMU_POOL_BPTREE_OBJ		"bptree_obj"
375 #define	DMU_POOL_EMPTY_BPOBJ		"empty_bpobj"
376 #define	DMU_POOL_CHECKSUM_SALT		"org.illumos:checksum_salt"
377 #define	DMU_POOL_VDEV_ZAP_MAP		"com.delphix:vdev_zap_map"
378 #define	DMU_POOL_REMOVING		"com.delphix:removing"
379 #define	DMU_POOL_OBSOLETE_BPOBJ		"com.delphix:obsolete_bpobj"
380 #define	DMU_POOL_CONDENSING_INDIRECT	"com.delphix:condensing_indirect"
381 #define	DMU_POOL_ZPOOL_CHECKPOINT	"com.delphix:zpool_checkpoint"
382 #define	DMU_POOL_LOG_SPACEMAP_ZAP	"com.delphix:log_spacemap_zap"
383 #define	DMU_POOL_DELETED_CLONES		"com.delphix:deleted_clones"
384 
385 /*
386  * Allocate an object from this objset.  The range of object numbers
387  * available is (0, DN_MAX_OBJECT).  Object 0 is the meta-dnode.
388  *
389  * The transaction must be assigned to a txg.  The newly allocated
390  * object will be "held" in the transaction (ie. you can modify the
391  * newly allocated object in this transaction).
392  *
393  * dmu_object_alloc() chooses an object and returns it in *objectp.
394  *
395  * dmu_object_claim() allocates a specific object number.  If that
396  * number is already allocated, it fails and returns EEXIST.
397  *
398  * Return 0 on success, or ENOSPC or EEXIST as specified above.
399  */
400 uint64_t dmu_object_alloc(objset_t *os, dmu_object_type_t ot,
401     int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx);
402 uint64_t dmu_object_alloc_ibs(objset_t *os, dmu_object_type_t ot, int blocksize,
403     int indirect_blockshift,
404     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
405 uint64_t dmu_object_alloc_dnsize(objset_t *os, dmu_object_type_t ot,
406     int blocksize, dmu_object_type_t bonus_type, int bonus_len,
407     int dnodesize, dmu_tx_t *tx);
408 uint64_t dmu_object_alloc_hold(objset_t *os, dmu_object_type_t ot,
409     int blocksize, int indirect_blockshift, dmu_object_type_t bonustype,
410     int bonuslen, int dnodesize, dnode_t **allocated_dnode, void *tag,
411     dmu_tx_t *tx);
412 int dmu_object_claim(objset_t *os, uint64_t object, dmu_object_type_t ot,
413     int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx);
414 int dmu_object_claim_dnsize(objset_t *os, uint64_t object, dmu_object_type_t ot,
415     int blocksize, dmu_object_type_t bonus_type, int bonus_len,
416     int dnodesize, dmu_tx_t *tx);
417 int dmu_object_reclaim(objset_t *os, uint64_t object, dmu_object_type_t ot,
418     int blocksize, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *txp);
419 int dmu_object_reclaim_dnsize(objset_t *os, uint64_t object,
420     dmu_object_type_t ot, int blocksize, dmu_object_type_t bonustype,
421     int bonuslen, int dnodesize, boolean_t keep_spill, dmu_tx_t *tx);
422 int dmu_object_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx);
423 
424 /*
425  * Free an object from this objset.
426  *
427  * The object's data will be freed as well (ie. you don't need to call
428  * dmu_free(object, 0, -1, tx)).
429  *
430  * The object need not be held in the transaction.
431  *
432  * If there are any holds on this object's buffers (via dmu_buf_hold()),
433  * or tx holds on the object (via dmu_tx_hold_object()), you can not
434  * free it; it fails and returns EBUSY.
435  *
436  * If the object is not allocated, it fails and returns ENOENT.
437  *
438  * Return 0 on success, or EBUSY or ENOENT as specified above.
439  */
440 int dmu_object_free(objset_t *os, uint64_t object, dmu_tx_t *tx);
441 
442 /*
443  * Find the next allocated or free object.
444  *
445  * The objectp parameter is in-out.  It will be updated to be the next
446  * object which is allocated.  Ignore objects which have not been
447  * modified since txg.
448  *
449  * XXX Can only be called on a objset with no dirty data.
450  *
451  * Returns 0 on success, or ENOENT if there are no more objects.
452  */
453 int dmu_object_next(objset_t *os, uint64_t *objectp,
454     boolean_t hole, uint64_t txg);
455 
456 /*
457  * Set the number of levels on a dnode. nlevels must be greater than the
458  * current number of levels or an EINVAL will be returned.
459  */
460 int dmu_object_set_nlevels(objset_t *os, uint64_t object, int nlevels,
461     dmu_tx_t *tx);
462 
463 /*
464  * Set the data blocksize for an object.
465  *
466  * The object cannot have any blocks allocated beyond the first.  If
467  * the first block is allocated already, the new size must be greater
468  * than the current block size.  If these conditions are not met,
469  * ENOTSUP will be returned.
470  *
471  * Returns 0 on success, or EBUSY if there are any holds on the object
472  * contents, or ENOTSUP as described above.
473  */
474 int dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size,
475     int ibs, dmu_tx_t *tx);
476 
477 /*
478  * Manually set the maxblkid on a dnode. This will adjust nlevels accordingly
479  * to accommodate the change. When calling this function, the caller must
480  * ensure that the object's nlevels can sufficiently support the new maxblkid.
481  */
482 int dmu_object_set_maxblkid(objset_t *os, uint64_t object, uint64_t maxblkid,
483     dmu_tx_t *tx);
484 
485 /*
486  * Set the checksum property on a dnode.  The new checksum algorithm will
487  * apply to all newly written blocks; existing blocks will not be affected.
488  */
489 void dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
490     dmu_tx_t *tx);
491 
492 /*
493  * Set the compress property on a dnode.  The new compression algorithm will
494  * apply to all newly written blocks; existing blocks will not be affected.
495  */
496 void dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
497     dmu_tx_t *tx);
498 
499 void dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
500     void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
501     int compressed_size, int byteorder, dmu_tx_t *tx);
502 void dmu_redact(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
503     dmu_tx_t *tx);
504 
505 /*
506  * Decide how to write a block: checksum, compression, number of copies, etc.
507  */
508 #define	WP_NOFILL	0x1
509 #define	WP_DMU_SYNC	0x2
510 #define	WP_SPILL	0x4
511 
512 void dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp,
513     struct zio_prop *zp);
514 
515 /*
516  * The bonus data is accessed more or less like a regular buffer.
517  * You must dmu_bonus_hold() to get the buffer, which will give you a
518  * dmu_buf_t with db_offset==-1ULL, and db_size = the size of the bonus
519  * data.  As with any normal buffer, you must call dmu_buf_will_dirty()
520  * before modifying it, and the
521  * object must be held in an assigned transaction before calling
522  * dmu_buf_will_dirty.  You may use dmu_buf_set_user() on the bonus
523  * buffer as well.  You must release what you hold with dmu_buf_rele().
524  *
525  * Returns ENOENT, EIO, or 0.
526  */
527 int dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp);
528 int dmu_bonus_hold_by_dnode(dnode_t *dn, void *tag, dmu_buf_t **dbp,
529     uint32_t flags);
530 int dmu_bonus_max(void);
531 int dmu_set_bonus(dmu_buf_t *, int, dmu_tx_t *);
532 int dmu_set_bonustype(dmu_buf_t *, dmu_object_type_t, dmu_tx_t *);
533 dmu_object_type_t dmu_get_bonustype(dmu_buf_t *);
534 int dmu_rm_spill(objset_t *, uint64_t, dmu_tx_t *);
535 
536 /*
537  * Special spill buffer support used by "SA" framework
538  */
539 
540 int dmu_spill_hold_by_bonus(dmu_buf_t *bonus, uint32_t flags, void *tag,
541     dmu_buf_t **dbp);
542 int dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags,
543     void *tag, dmu_buf_t **dbp);
544 int dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp);
545 
546 /*
547  * Obtain the DMU buffer from the specified object which contains the
548  * specified offset.  dmu_buf_hold() puts a "hold" on the buffer, so
549  * that it will remain in memory.  You must release the hold with
550  * dmu_buf_rele().  You must not access the dmu_buf_t after releasing
551  * what you hold.  You must have a hold on any dmu_buf_t* you pass to the DMU.
552  *
553  * You must call dmu_buf_read, dmu_buf_will_dirty, or dmu_buf_will_fill
554  * on the returned buffer before reading or writing the buffer's
555  * db_data.  The comments for those routines describe what particular
556  * operations are valid after calling them.
557  *
558  * The object number must be a valid, allocated object number.
559  */
560 int dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
561     void *tag, dmu_buf_t **, int flags);
562 int dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset,
563     void *tag, dmu_buf_t **dbp, int flags);
564 int dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset,
565     uint64_t length, boolean_t read, void *tag, int *numbufsp,
566     dmu_buf_t ***dbpp, uint32_t flags);
567 /*
568  * Add a reference to a dmu buffer that has already been held via
569  * dmu_buf_hold() in the current context.
570  */
571 void dmu_buf_add_ref(dmu_buf_t *db, void* tag);
572 
573 /*
574  * Attempt to add a reference to a dmu buffer that is in an unknown state,
575  * using a pointer that may have been invalidated by eviction processing.
576  * The request will succeed if the passed in dbuf still represents the
577  * same os/object/blkid, is ineligible for eviction, and has at least
578  * one hold by a user other than the syncer.
579  */
580 boolean_t dmu_buf_try_add_ref(dmu_buf_t *, objset_t *os, uint64_t object,
581     uint64_t blkid, void *tag);
582 
583 void dmu_buf_rele(dmu_buf_t *db, void *tag);
584 uint64_t dmu_buf_refcount(dmu_buf_t *db);
585 uint64_t dmu_buf_user_refcount(dmu_buf_t *db);
586 
587 /*
588  * dmu_buf_hold_array holds the DMU buffers which contain all bytes in a
589  * range of an object.  A pointer to an array of dmu_buf_t*'s is
590  * returned (in *dbpp).
591  *
592  * dmu_buf_rele_array releases the hold on an array of dmu_buf_t*'s, and
593  * frees the array.  The hold on the array of buffers MUST be released
594  * with dmu_buf_rele_array.  You can NOT release the hold on each buffer
595  * individually with dmu_buf_rele.
596  */
597 int dmu_buf_hold_array_by_bonus(dmu_buf_t *db, uint64_t offset,
598     uint64_t length, boolean_t read, void *tag,
599     int *numbufsp, dmu_buf_t ***dbpp);
600 void dmu_buf_rele_array(dmu_buf_t **, int numbufs, void *tag);
601 
602 typedef void dmu_buf_evict_func_t(void *user_ptr);
603 
604 /*
605  * A DMU buffer user object may be associated with a dbuf for the
606  * duration of its lifetime.  This allows the user of a dbuf (client)
607  * to attach private data to a dbuf (e.g. in-core only data such as a
608  * dnode_children_t, zap_t, or zap_leaf_t) and be optionally notified
609  * when that dbuf has been evicted.  Clients typically respond to the
610  * eviction notification by freeing their private data, thus ensuring
611  * the same lifetime for both dbuf and private data.
612  *
613  * The mapping from a dmu_buf_user_t to any client private data is the
614  * client's responsibility.  All current consumers of the API with private
615  * data embed a dmu_buf_user_t as the first member of the structure for
616  * their private data.  This allows conversions between the two types
617  * with a simple cast.  Since the DMU buf user API never needs access
618  * to the private data, other strategies can be employed if necessary
619  * or convenient for the client (e.g. using container_of() to do the
620  * conversion for private data that cannot have the dmu_buf_user_t as
621  * its first member).
622  *
623  * Eviction callbacks are executed without the dbuf mutex held or any
624  * other type of mechanism to guarantee that the dbuf is still available.
625  * For this reason, users must assume the dbuf has already been freed
626  * and not reference the dbuf from the callback context.
627  *
628  * Users requesting "immediate eviction" are notified as soon as the dbuf
629  * is only referenced by dirty records (dirties == holds).  Otherwise the
630  * notification occurs after eviction processing for the dbuf begins.
631  */
632 typedef struct dmu_buf_user {
633 	/*
634 	 * Asynchronous user eviction callback state.
635 	 */
636 	taskq_ent_t	dbu_tqent;
637 
638 	/*
639 	 * This instance's eviction function pointers.
640 	 *
641 	 * dbu_evict_func_sync is called synchronously and then
642 	 * dbu_evict_func_async is executed asynchronously on a taskq.
643 	 */
644 	dmu_buf_evict_func_t *dbu_evict_func_sync;
645 	dmu_buf_evict_func_t *dbu_evict_func_async;
646 #ifdef ZFS_DEBUG
647 	/*
648 	 * Pointer to user's dbuf pointer.  NULL for clients that do
649 	 * not associate a dbuf with their user data.
650 	 *
651 	 * The dbuf pointer is cleared upon eviction so as to catch
652 	 * use-after-evict bugs in clients.
653 	 */
654 	dmu_buf_t **dbu_clear_on_evict_dbufp;
655 #endif
656 } dmu_buf_user_t;
657 
658 /*
659  * Initialize the given dmu_buf_user_t instance with the eviction function
660  * evict_func, to be called when the user is evicted.
661  *
662  * NOTE: This function should only be called once on a given dmu_buf_user_t.
663  *       To allow enforcement of this, dbu must already be zeroed on entry.
664  */
665 /*ARGSUSED*/
666 static inline void
667 dmu_buf_init_user(dmu_buf_user_t *dbu, dmu_buf_evict_func_t *evict_func_sync,
668     dmu_buf_evict_func_t *evict_func_async,
669     dmu_buf_t **clear_on_evict_dbufp __maybe_unused)
670 {
671 	ASSERT(dbu->dbu_evict_func_sync == NULL);
672 	ASSERT(dbu->dbu_evict_func_async == NULL);
673 
674 	/* must have at least one evict func */
675 	IMPLY(evict_func_sync == NULL, evict_func_async != NULL);
676 	dbu->dbu_evict_func_sync = evict_func_sync;
677 	dbu->dbu_evict_func_async = evict_func_async;
678 	taskq_init_ent(&dbu->dbu_tqent);
679 #ifdef ZFS_DEBUG
680 	dbu->dbu_clear_on_evict_dbufp = clear_on_evict_dbufp;
681 #endif
682 }
683 
684 /*
685  * Attach user data to a dbuf and mark it for normal (when the dbuf's
686  * data is cleared or its reference count goes to zero) eviction processing.
687  *
688  * Returns NULL on success, or the existing user if another user currently
689  * owns the buffer.
690  */
691 void *dmu_buf_set_user(dmu_buf_t *db, dmu_buf_user_t *user);
692 
693 /*
694  * Attach user data to a dbuf and mark it for immediate (its dirty and
695  * reference counts are equal) eviction processing.
696  *
697  * Returns NULL on success, or the existing user if another user currently
698  * owns the buffer.
699  */
700 void *dmu_buf_set_user_ie(dmu_buf_t *db, dmu_buf_user_t *user);
701 
702 /*
703  * Replace the current user of a dbuf.
704  *
705  * If given the current user of a dbuf, replaces the dbuf's user with
706  * "new_user" and returns the user data pointer that was replaced.
707  * Otherwise returns the current, and unmodified, dbuf user pointer.
708  */
709 void *dmu_buf_replace_user(dmu_buf_t *db,
710     dmu_buf_user_t *old_user, dmu_buf_user_t *new_user);
711 
712 /*
713  * Remove the specified user data for a DMU buffer.
714  *
715  * Returns the user that was removed on success, or the current user if
716  * another user currently owns the buffer.
717  */
718 void *dmu_buf_remove_user(dmu_buf_t *db, dmu_buf_user_t *user);
719 
720 /*
721  * Returns the user data (dmu_buf_user_t *) associated with this dbuf.
722  */
723 void *dmu_buf_get_user(dmu_buf_t *db);
724 
725 objset_t *dmu_buf_get_objset(dmu_buf_t *db);
726 dnode_t *dmu_buf_dnode_enter(dmu_buf_t *db);
727 void dmu_buf_dnode_exit(dmu_buf_t *db);
728 
729 /* Block until any in-progress dmu buf user evictions complete. */
730 void dmu_buf_user_evict_wait(void);
731 
732 /*
733  * Returns the blkptr associated with this dbuf, or NULL if not set.
734  */
735 struct blkptr *dmu_buf_get_blkptr(dmu_buf_t *db);
736 
737 /*
738  * Indicate that you are going to modify the buffer's data (db_data).
739  *
740  * The transaction (tx) must be assigned to a txg (ie. you've called
741  * dmu_tx_assign()).  The buffer's object must be held in the tx
742  * (ie. you've called dmu_tx_hold_object(tx, db->db_object)).
743  */
744 void dmu_buf_will_dirty(dmu_buf_t *db, dmu_tx_t *tx);
745 boolean_t dmu_buf_is_dirty(dmu_buf_t *db, dmu_tx_t *tx);
746 void dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder,
747     const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx);
748 
749 /*
750  * You must create a transaction, then hold the objects which you will
751  * (or might) modify as part of this transaction.  Then you must assign
752  * the transaction to a transaction group.  Once the transaction has
753  * been assigned, you can modify buffers which belong to held objects as
754  * part of this transaction.  You can't modify buffers before the
755  * transaction has been assigned; you can't modify buffers which don't
756  * belong to objects which this transaction holds; you can't hold
757  * objects once the transaction has been assigned.  You may hold an
758  * object which you are going to free (with dmu_object_free()), but you
759  * don't have to.
760  *
761  * You can abort the transaction before it has been assigned.
762  *
763  * Note that you may hold buffers (with dmu_buf_hold) at any time,
764  * regardless of transaction state.
765  */
766 
767 #define	DMU_NEW_OBJECT	(-1ULL)
768 #define	DMU_OBJECT_END	(-1ULL)
769 
770 dmu_tx_t *dmu_tx_create(objset_t *os);
771 void dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len);
772 void dmu_tx_hold_write_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off,
773     int len);
774 void dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off,
775     uint64_t len);
776 void dmu_tx_hold_free_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off,
777     uint64_t len);
778 void dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name);
779 void dmu_tx_hold_zap_by_dnode(dmu_tx_t *tx, dnode_t *dn, int add,
780     const char *name);
781 void dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object);
782 void dmu_tx_hold_bonus_by_dnode(dmu_tx_t *tx, dnode_t *dn);
783 void dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object);
784 void dmu_tx_hold_sa(dmu_tx_t *tx, struct sa_handle *hdl, boolean_t may_grow);
785 void dmu_tx_hold_sa_create(dmu_tx_t *tx, int total_size);
786 void dmu_tx_abort(dmu_tx_t *tx);
787 int dmu_tx_assign(dmu_tx_t *tx, uint64_t txg_how);
788 void dmu_tx_wait(dmu_tx_t *tx);
789 void dmu_tx_commit(dmu_tx_t *tx);
790 void dmu_tx_mark_netfree(dmu_tx_t *tx);
791 
792 /*
793  * To register a commit callback, dmu_tx_callback_register() must be called.
794  *
795  * dcb_data is a pointer to caller private data that is passed on as a
796  * callback parameter. The caller is responsible for properly allocating and
797  * freeing it.
798  *
799  * When registering a callback, the transaction must be already created, but
800  * it cannot be committed or aborted. It can be assigned to a txg or not.
801  *
802  * The callback will be called after the transaction has been safely written
803  * to stable storage and will also be called if the dmu_tx is aborted.
804  * If there is any error which prevents the transaction from being committed to
805  * disk, the callback will be called with a value of error != 0.
806  *
807  * When multiple callbacks are registered to the transaction, the callbacks
808  * will be called in reverse order to let Lustre, the only user of commit
809  * callback currently, take the fast path of its commit callback handling.
810  */
811 typedef void dmu_tx_callback_func_t(void *dcb_data, int error);
812 
813 void dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *dcb_func,
814     void *dcb_data);
815 void dmu_tx_do_callbacks(list_t *cb_list, int error);
816 
817 /*
818  * Free up the data blocks for a defined range of a file.  If size is
819  * -1, the range from offset to end-of-file is freed.
820  */
821 int dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
822     uint64_t size, dmu_tx_t *tx);
823 int dmu_free_long_range(objset_t *os, uint64_t object, uint64_t offset,
824     uint64_t size);
825 int dmu_free_long_object(objset_t *os, uint64_t object);
826 
827 /*
828  * Convenience functions.
829  *
830  * Canfail routines will return 0 on success, or an errno if there is a
831  * nonrecoverable I/O error.
832  */
833 #define	DMU_READ_PREFETCH	0 /* prefetch */
834 #define	DMU_READ_NO_PREFETCH	1 /* don't prefetch */
835 #define	DMU_READ_NO_DECRYPT	2 /* don't decrypt */
836 int dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
837 	void *buf, uint32_t flags);
838 int dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf,
839     uint32_t flags);
840 void dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
841 	const void *buf, dmu_tx_t *tx);
842 void dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size,
843     const void *buf, dmu_tx_t *tx);
844 void dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
845 	dmu_tx_t *tx);
846 #ifdef _KERNEL
847 int dmu_read_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size);
848 int dmu_read_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size);
849 int dmu_read_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size);
850 int dmu_write_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size,
851 	dmu_tx_t *tx);
852 int dmu_write_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size,
853 	dmu_tx_t *tx);
854 int dmu_write_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size,
855 	dmu_tx_t *tx);
856 #endif
857 struct arc_buf *dmu_request_arcbuf(dmu_buf_t *handle, int size);
858 void dmu_return_arcbuf(struct arc_buf *buf);
859 int dmu_assign_arcbuf_by_dnode(dnode_t *dn, uint64_t offset,
860     struct arc_buf *buf, dmu_tx_t *tx);
861 int dmu_assign_arcbuf_by_dbuf(dmu_buf_t *handle, uint64_t offset,
862     struct arc_buf *buf, dmu_tx_t *tx);
863 #define	dmu_assign_arcbuf	dmu_assign_arcbuf_by_dbuf
864 extern int zfs_prefetch_disable;
865 extern int zfs_max_recordsize;
866 
867 /*
868  * Asynchronously try to read in the data.
869  */
870 void dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
871 	uint64_t len, enum zio_priority pri);
872 
873 typedef struct dmu_object_info {
874 	/* All sizes are in bytes unless otherwise indicated. */
875 	uint32_t doi_data_block_size;
876 	uint32_t doi_metadata_block_size;
877 	dmu_object_type_t doi_type;
878 	dmu_object_type_t doi_bonus_type;
879 	uint64_t doi_bonus_size;
880 	uint8_t doi_indirection;		/* 2 = dnode->indirect->data */
881 	uint8_t doi_checksum;
882 	uint8_t doi_compress;
883 	uint8_t doi_nblkptr;
884 	uint8_t doi_pad[4];
885 	uint64_t doi_dnodesize;
886 	uint64_t doi_physical_blocks_512;	/* data + metadata, 512b blks */
887 	uint64_t doi_max_offset;
888 	uint64_t doi_fill_count;		/* number of non-empty blocks */
889 } dmu_object_info_t;
890 
891 typedef void (*const arc_byteswap_func_t)(void *buf, size_t size);
892 
893 typedef struct dmu_object_type_info {
894 	dmu_object_byteswap_t	ot_byteswap;
895 	boolean_t		ot_metadata;
896 	boolean_t		ot_dbuf_metadata_cache;
897 	boolean_t		ot_encrypt;
898 	char			*ot_name;
899 } dmu_object_type_info_t;
900 
901 typedef const struct dmu_object_byteswap_info {
902 	arc_byteswap_func_t	 ob_func;
903 	char			*ob_name;
904 } dmu_object_byteswap_info_t;
905 
906 extern const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES];
907 extern const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS];
908 
909 /*
910  * Get information on a DMU object.
911  *
912  * Return 0 on success or ENOENT if object is not allocated.
913  *
914  * If doi is NULL, just indicates whether the object exists.
915  */
916 int dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi);
917 void __dmu_object_info_from_dnode(struct dnode *dn, dmu_object_info_t *doi);
918 /* Like dmu_object_info, but faster if you have a held dnode in hand. */
919 void dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi);
920 /* Like dmu_object_info, but faster if you have a held dbuf in hand. */
921 void dmu_object_info_from_db(dmu_buf_t *db, dmu_object_info_t *doi);
922 /*
923  * Like dmu_object_info_from_db, but faster still when you only care about
924  * the size.
925  */
926 void dmu_object_size_from_db(dmu_buf_t *db, uint32_t *blksize,
927     u_longlong_t *nblk512);
928 
929 void dmu_object_dnsize_from_db(dmu_buf_t *db, int *dnsize);
930 
931 typedef struct dmu_objset_stats {
932 	uint64_t dds_num_clones; /* number of clones of this */
933 	uint64_t dds_creation_txg;
934 	uint64_t dds_guid;
935 	dmu_objset_type_t dds_type;
936 	uint8_t dds_is_snapshot;
937 	uint8_t dds_inconsistent;
938 	uint8_t dds_redacted;
939 	char dds_origin[ZFS_MAX_DATASET_NAME_LEN];
940 } dmu_objset_stats_t;
941 
942 /*
943  * Get stats on a dataset.
944  */
945 void dmu_objset_fast_stat(objset_t *os, dmu_objset_stats_t *stat);
946 
947 /*
948  * Add entries to the nvlist for all the objset's properties.  See
949  * zfs_prop_table[] and zfs(1m) for details on the properties.
950  */
951 void dmu_objset_stats(objset_t *os, struct nvlist *nv);
952 
953 /*
954  * Get the space usage statistics for statvfs().
955  *
956  * refdbytes is the amount of space "referenced" by this objset.
957  * availbytes is the amount of space available to this objset, taking
958  * into account quotas & reservations, assuming that no other objsets
959  * use the space first.  These values correspond to the 'referenced' and
960  * 'available' properties, described in the zfs(1m) manpage.
961  *
962  * usedobjs and availobjs are the number of objects currently allocated,
963  * and available.
964  */
965 void dmu_objset_space(objset_t *os, uint64_t *refdbytesp, uint64_t *availbytesp,
966     uint64_t *usedobjsp, uint64_t *availobjsp);
967 
968 /*
969  * The fsid_guid is a 56-bit ID that can change to avoid collisions.
970  * (Contrast with the ds_guid which is a 64-bit ID that will never
971  * change, so there is a small probability that it will collide.)
972  */
973 uint64_t dmu_objset_fsid_guid(objset_t *os);
974 
975 /*
976  * Get the [cm]time for an objset's snapshot dir
977  */
978 inode_timespec_t dmu_objset_snap_cmtime(objset_t *os);
979 
980 int dmu_objset_is_snapshot(objset_t *os);
981 
982 extern struct spa *dmu_objset_spa(objset_t *os);
983 extern struct zilog *dmu_objset_zil(objset_t *os);
984 extern struct dsl_pool *dmu_objset_pool(objset_t *os);
985 extern struct dsl_dataset *dmu_objset_ds(objset_t *os);
986 extern void dmu_objset_name(objset_t *os, char *buf);
987 extern dmu_objset_type_t dmu_objset_type(objset_t *os);
988 extern uint64_t dmu_objset_id(objset_t *os);
989 extern uint64_t dmu_objset_dnodesize(objset_t *os);
990 extern zfs_sync_type_t dmu_objset_syncprop(objset_t *os);
991 extern zfs_logbias_op_t dmu_objset_logbias(objset_t *os);
992 extern int dmu_objset_blksize(objset_t *os);
993 extern int dmu_snapshot_list_next(objset_t *os, int namelen, char *name,
994     uint64_t *id, uint64_t *offp, boolean_t *case_conflict);
995 extern int dmu_snapshot_lookup(objset_t *os, const char *name, uint64_t *val);
996 extern int dmu_snapshot_realname(objset_t *os, const char *name, char *real,
997     int maxlen, boolean_t *conflict);
998 extern int dmu_dir_list_next(objset_t *os, int namelen, char *name,
999     uint64_t *idp, uint64_t *offp);
1000 
1001 typedef struct zfs_file_info {
1002 	uint64_t zfi_user;
1003 	uint64_t zfi_group;
1004 	uint64_t zfi_project;
1005 	uint64_t zfi_generation;
1006 } zfs_file_info_t;
1007 
1008 typedef int file_info_cb_t(dmu_object_type_t bonustype, const void *data,
1009     struct zfs_file_info *zoi);
1010 extern void dmu_objset_register_type(dmu_objset_type_t ost,
1011     file_info_cb_t *cb);
1012 extern void dmu_objset_set_user(objset_t *os, void *user_ptr);
1013 extern void *dmu_objset_get_user(objset_t *os);
1014 
1015 /*
1016  * Return the txg number for the given assigned transaction.
1017  */
1018 uint64_t dmu_tx_get_txg(dmu_tx_t *tx);
1019 
1020 /*
1021  * Synchronous write.
1022  * If a parent zio is provided this function initiates a write on the
1023  * provided buffer as a child of the parent zio.
1024  * In the absence of a parent zio, the write is completed synchronously.
1025  * At write completion, blk is filled with the bp of the written block.
1026  * Note that while the data covered by this function will be on stable
1027  * storage when the write completes this new data does not become a
1028  * permanent part of the file until the associated transaction commits.
1029  */
1030 
1031 /*
1032  * {zfs,zvol,ztest}_get_done() args
1033  */
1034 typedef struct zgd {
1035 	struct lwb	*zgd_lwb;
1036 	struct blkptr	*zgd_bp;
1037 	dmu_buf_t	*zgd_db;
1038 	struct zfs_locked_range *zgd_lr;
1039 	void		*zgd_private;
1040 } zgd_t;
1041 
1042 typedef void dmu_sync_cb_t(zgd_t *arg, int error);
1043 int dmu_sync(struct zio *zio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd);
1044 
1045 /*
1046  * Find the next hole or data block in file starting at *off
1047  * Return found offset in *off. Return ESRCH for end of file.
1048  */
1049 int dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole,
1050     uint64_t *off);
1051 
1052 /*
1053  * Initial setup and final teardown.
1054  */
1055 extern void dmu_init(void);
1056 extern void dmu_fini(void);
1057 
1058 typedef void (*dmu_traverse_cb_t)(objset_t *os, void *arg, struct blkptr *bp,
1059     uint64_t object, uint64_t offset, int len);
1060 void dmu_traverse_objset(objset_t *os, uint64_t txg_start,
1061     dmu_traverse_cb_t cb, void *arg);
1062 
1063 int dmu_diff(const char *tosnap_name, const char *fromsnap_name,
1064     zfs_file_t *fp, offset_t *offp);
1065 
1066 /* CRC64 table */
1067 #define	ZFS_CRC64_POLY	0xC96C5795D7870F42ULL	/* ECMA-182, reflected form */
1068 extern uint64_t zfs_crc64_table[256];
1069 
1070 #ifdef	__cplusplus
1071 }
1072 #endif
1073 
1074 #endif	/* _SYS_DMU_H */
1075