1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2013, 2016 by Delphix. All rights reserved.
25  * Copyright 2017 Nexenta Systems, Inc.
26  */
27 
28 #include <sys/types.h>
29 #include <sys/param.h>
30 #include <sys/time.h>
31 #include <sys/systm.h>
32 #include <sys/sysmacros.h>
33 #include <sys/resource.h>
34 #include <sys/vfs.h>
35 #include <sys/vnode.h>
36 #include <sys/file.h>
37 #include <sys/kmem.h>
38 #include <sys/uio.h>
39 #include <sys/cmn_err.h>
40 #include <sys/errno.h>
41 #include <sys/stat.h>
42 #include <sys/unistd.h>
43 #include <sys/sunddi.h>
44 #include <sys/random.h>
45 #include <sys/policy.h>
46 #include <sys/condvar.h>
47 #include <sys/callb.h>
48 #include <sys/smp.h>
49 #include <sys/zfs_dir.h>
50 #include <sys/zfs_acl.h>
51 #include <sys/fs/zfs.h>
52 #include <sys/zap.h>
53 #include <sys/dmu.h>
54 #include <sys/atomic.h>
55 #include <sys/zfs_ctldir.h>
56 #include <sys/zfs_fuid.h>
57 #include <sys/sa.h>
58 #include <sys/zfs_sa.h>
59 #include <sys/dmu_objset.h>
60 #include <sys/dsl_dir.h>
61 
62 #include <sys/ccompat.h>
63 
64 /*
65  * zfs_match_find() is used by zfs_dirent_lookup() to perform zap lookups
66  * of names after deciding which is the appropriate lookup interface.
67  */
68 static int
69 zfs_match_find(zfsvfs_t *zfsvfs, znode_t *dzp, const char *name,
70     matchtype_t mt, uint64_t *zoid)
71 {
72 	int error;
73 
74 	if (zfsvfs->z_norm) {
75 
76 		/*
77 		 * In the non-mixed case we only expect there would ever
78 		 * be one match, but we need to use the normalizing lookup.
79 		 */
80 		error = zap_lookup_norm(zfsvfs->z_os, dzp->z_id, name, 8, 1,
81 		    zoid, mt, NULL, 0, NULL);
82 	} else {
83 		error = zap_lookup(zfsvfs->z_os, dzp->z_id, name, 8, 1, zoid);
84 	}
85 	*zoid = ZFS_DIRENT_OBJ(*zoid);
86 
87 	return (error);
88 }
89 
90 /*
91  * Look up a directory entry under a locked vnode.
92  * dvp being locked gives us a guarantee that there are no concurrent
93  * modification of the directory and, thus, if a node can be found in
94  * the directory, then it must not be unlinked.
95  *
96  * Input arguments:
97  *	dzp	- znode for directory
98  *	name	- name of entry to lock
99  *	flag	- ZNEW: if the entry already exists, fail with EEXIST.
100  *		  ZEXISTS: if the entry does not exist, fail with ENOENT.
101  *		  ZXATTR: we want dzp's xattr directory
102  *
103  * Output arguments:
104  *	zpp	- pointer to the znode for the entry (NULL if there isn't one)
105  *
106  * Return value: 0 on success or errno on failure.
107  *
108  * NOTE: Always checks for, and rejects, '.' and '..'.
109  */
110 int
111 zfs_dirent_lookup(znode_t *dzp, const char *name, znode_t **zpp, int flag)
112 {
113 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
114 	znode_t		*zp;
115 	matchtype_t	mt = 0;
116 	uint64_t	zoid;
117 	int		error = 0;
118 
119 	if (zfsvfs->z_replay == B_FALSE)
120 		ASSERT_VOP_LOCKED(ZTOV(dzp), __func__);
121 
122 	*zpp = NULL;
123 
124 	/*
125 	 * Verify that we are not trying to lock '.', '..', or '.zfs'
126 	 */
127 	if (name[0] == '.' &&
128 	    (((name[1] == '\0') || (name[1] == '.' && name[2] == '\0')) ||
129 	    (zfs_has_ctldir(dzp) && strcmp(name, ZFS_CTLDIR_NAME) == 0)))
130 		return (SET_ERROR(EEXIST));
131 
132 	/*
133 	 * Case sensitivity and normalization preferences are set when
134 	 * the file system is created.  These are stored in the
135 	 * zfsvfs->z_case and zfsvfs->z_norm fields.  These choices
136 	 * affect how we perform zap lookups.
137 	 *
138 	 * When matching we may need to normalize & change case according to
139 	 * FS settings.
140 	 *
141 	 * Note that a normalized match is necessary for a case insensitive
142 	 * filesystem when the lookup request is not exact because normalization
143 	 * can fold case independent of normalizing code point sequences.
144 	 *
145 	 * See the table above zfs_dropname().
146 	 */
147 	if (zfsvfs->z_norm != 0) {
148 		mt = MT_NORMALIZE;
149 
150 		/*
151 		 * Determine if the match needs to honor the case specified in
152 		 * lookup, and if so keep track of that so that during
153 		 * normalization we don't fold case.
154 		 */
155 		if (zfsvfs->z_case == ZFS_CASE_MIXED) {
156 			mt |= MT_MATCH_CASE;
157 		}
158 	}
159 
160 	/*
161 	 * Only look in or update the DNLC if we are looking for the
162 	 * name on a file system that does not require normalization
163 	 * or case folding.  We can also look there if we happen to be
164 	 * on a non-normalizing, mixed sensitivity file system IF we
165 	 * are looking for the exact name.
166 	 *
167 	 * NB: we do not need to worry about this flag for ZFS_CASE_SENSITIVE
168 	 * because in that case MT_EXACT and MT_FIRST should produce exactly
169 	 * the same result.
170 	 */
171 
172 	if (dzp->z_unlinked && !(flag & ZXATTR))
173 		return (ENOENT);
174 	if (flag & ZXATTR) {
175 		error = sa_lookup(dzp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), &zoid,
176 		    sizeof (zoid));
177 		if (error == 0)
178 			error = (zoid == 0 ? ENOENT : 0);
179 	} else {
180 		error = zfs_match_find(zfsvfs, dzp, name, mt, &zoid);
181 	}
182 	if (error) {
183 		if (error != ENOENT || (flag & ZEXISTS)) {
184 			return (error);
185 		}
186 	} else {
187 		if (flag & ZNEW) {
188 			return (SET_ERROR(EEXIST));
189 		}
190 		error = zfs_zget(zfsvfs, zoid, &zp);
191 		if (error)
192 			return (error);
193 		ASSERT(!zp->z_unlinked);
194 		*zpp = zp;
195 	}
196 
197 	return (0);
198 }
199 
200 static int
201 zfs_dd_lookup(znode_t *dzp, znode_t **zpp)
202 {
203 	zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
204 	znode_t *zp;
205 	uint64_t parent;
206 	int error;
207 
208 #ifdef ZFS_DEBUG
209 	if (zfsvfs->z_replay == B_FALSE)
210 		ASSERT_VOP_LOCKED(ZTOV(dzp), __func__);
211 #endif
212 	if (dzp->z_unlinked)
213 		return (ENOENT);
214 
215 	if ((error = sa_lookup(dzp->z_sa_hdl,
216 	    SA_ZPL_PARENT(zfsvfs), &parent, sizeof (parent))) != 0)
217 		return (error);
218 
219 	error = zfs_zget(zfsvfs, parent, &zp);
220 	if (error == 0)
221 		*zpp = zp;
222 	return (error);
223 }
224 
225 int
226 zfs_dirlook(znode_t *dzp, const char *name, znode_t **zpp)
227 {
228 	zfsvfs_t *zfsvfs __unused = dzp->z_zfsvfs;
229 	znode_t *zp = NULL;
230 	int error = 0;
231 
232 #ifdef ZFS_DEBUG
233 	if (zfsvfs->z_replay == B_FALSE)
234 		ASSERT_VOP_LOCKED(ZTOV(dzp), __func__);
235 #endif
236 	if (dzp->z_unlinked)
237 		return (SET_ERROR(ENOENT));
238 
239 	if (name[0] == 0 || (name[0] == '.' && name[1] == 0)) {
240 		*zpp = dzp;
241 	} else if (name[0] == '.' && name[1] == '.' && name[2] == 0) {
242 		error = zfs_dd_lookup(dzp, &zp);
243 		if (error == 0)
244 			*zpp = zp;
245 	} else {
246 		error = zfs_dirent_lookup(dzp, name, &zp, ZEXISTS);
247 		if (error == 0) {
248 			dzp->z_zn_prefetch = B_TRUE; /* enable prefetching */
249 			*zpp = zp;
250 		}
251 	}
252 	return (error);
253 }
254 
255 /*
256  * unlinked Set (formerly known as the "delete queue") Error Handling
257  *
258  * When dealing with the unlinked set, we dmu_tx_hold_zap(), but we
259  * don't specify the name of the entry that we will be manipulating.  We
260  * also fib and say that we won't be adding any new entries to the
261  * unlinked set, even though we might (this is to lower the minimum file
262  * size that can be deleted in a full filesystem).  So on the small
263  * chance that the nlink list is using a fat zap (ie. has more than
264  * 2000 entries), we *may* not pre-read a block that's needed.
265  * Therefore it is remotely possible for some of the assertions
266  * regarding the unlinked set below to fail due to i/o error.  On a
267  * nondebug system, this will result in the space being leaked.
268  */
269 void
270 zfs_unlinked_add(znode_t *zp, dmu_tx_t *tx)
271 {
272 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
273 
274 	ASSERT(zp->z_unlinked);
275 	ASSERT3U(zp->z_links, ==, 0);
276 
277 	VERIFY0(zap_add_int(zfsvfs->z_os, zfsvfs->z_unlinkedobj, zp->z_id, tx));
278 
279 	dataset_kstats_update_nunlinks_kstat(&zfsvfs->z_kstat, 1);
280 }
281 
282 /*
283  * Clean up any znodes that had no links when we either crashed or
284  * (force) umounted the file system.
285  */
286 void
287 zfs_unlinked_drain(zfsvfs_t *zfsvfs)
288 {
289 	zap_cursor_t	zc;
290 	zap_attribute_t zap;
291 	dmu_object_info_t doi;
292 	znode_t		*zp;
293 	dmu_tx_t	*tx;
294 	int		error;
295 
296 	/*
297 	 * Iterate over the contents of the unlinked set.
298 	 */
299 	for (zap_cursor_init(&zc, zfsvfs->z_os, zfsvfs->z_unlinkedobj);
300 	    zap_cursor_retrieve(&zc, &zap) == 0;
301 	    zap_cursor_advance(&zc)) {
302 
303 		/*
304 		 * See what kind of object we have in list
305 		 */
306 
307 		error = dmu_object_info(zfsvfs->z_os,
308 		    zap.za_first_integer, &doi);
309 		if (error != 0)
310 			continue;
311 
312 		ASSERT((doi.doi_type == DMU_OT_PLAIN_FILE_CONTENTS) ||
313 		    (doi.doi_type == DMU_OT_DIRECTORY_CONTENTS));
314 		/*
315 		 * We need to re-mark these list entries for deletion,
316 		 * so we pull them back into core and set zp->z_unlinked.
317 		 */
318 		error = zfs_zget(zfsvfs, zap.za_first_integer, &zp);
319 
320 		/*
321 		 * We may pick up znodes that are already marked for deletion.
322 		 * This could happen during the purge of an extended attribute
323 		 * directory.  All we need to do is skip over them, since they
324 		 * are already in the system marked z_unlinked.
325 		 */
326 		if (error != 0)
327 			continue;
328 
329 		vn_lock(ZTOV(zp), LK_EXCLUSIVE | LK_RETRY);
330 
331 		/*
332 		 * Due to changes in zfs_rmnode we need to make sure the
333 		 * link count is set to zero here.
334 		 */
335 		if (zp->z_links != 0) {
336 			tx = dmu_tx_create(zfsvfs->z_os);
337 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
338 			error = dmu_tx_assign(tx, TXG_WAIT);
339 			if (error != 0) {
340 				dmu_tx_abort(tx);
341 				vput(ZTOV(zp));
342 				continue;
343 			}
344 			zp->z_links = 0;
345 			VERIFY0(sa_update(zp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
346 			    &zp->z_links, sizeof (zp->z_links), tx));
347 			dmu_tx_commit(tx);
348 		}
349 
350 		zp->z_unlinked = B_TRUE;
351 		vput(ZTOV(zp));
352 	}
353 	zap_cursor_fini(&zc);
354 }
355 
356 /*
357  * Delete the entire contents of a directory.  Return a count
358  * of the number of entries that could not be deleted. If we encounter
359  * an error, return a count of at least one so that the directory stays
360  * in the unlinked set.
361  *
362  * NOTE: this function assumes that the directory is inactive,
363  *	so there is no need to lock its entries before deletion.
364  *	Also, it assumes the directory contents is *only* regular
365  *	files.
366  */
367 static int
368 zfs_purgedir(znode_t *dzp)
369 {
370 	zap_cursor_t	zc;
371 	zap_attribute_t	zap;
372 	znode_t		*xzp;
373 	dmu_tx_t	*tx;
374 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
375 	int skipped = 0;
376 	int error;
377 
378 	for (zap_cursor_init(&zc, zfsvfs->z_os, dzp->z_id);
379 	    (error = zap_cursor_retrieve(&zc, &zap)) == 0;
380 	    zap_cursor_advance(&zc)) {
381 		error = zfs_zget(zfsvfs,
382 		    ZFS_DIRENT_OBJ(zap.za_first_integer), &xzp);
383 		if (error) {
384 			skipped += 1;
385 			continue;
386 		}
387 
388 		vn_lock(ZTOV(xzp), LK_EXCLUSIVE | LK_RETRY);
389 		ASSERT((ZTOV(xzp)->v_type == VREG) ||
390 		    (ZTOV(xzp)->v_type == VLNK));
391 
392 		tx = dmu_tx_create(zfsvfs->z_os);
393 		dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
394 		dmu_tx_hold_zap(tx, dzp->z_id, FALSE, zap.za_name);
395 		dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
396 		dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
397 		/* Is this really needed ? */
398 		zfs_sa_upgrade_txholds(tx, xzp);
399 		dmu_tx_mark_netfree(tx);
400 		error = dmu_tx_assign(tx, TXG_WAIT);
401 		if (error) {
402 			dmu_tx_abort(tx);
403 			vput(ZTOV(xzp));
404 			skipped += 1;
405 			continue;
406 		}
407 
408 		error = zfs_link_destroy(dzp, zap.za_name, xzp, tx, 0, NULL);
409 		if (error)
410 			skipped += 1;
411 		dmu_tx_commit(tx);
412 
413 		vput(ZTOV(xzp));
414 	}
415 	zap_cursor_fini(&zc);
416 	if (error != ENOENT)
417 		skipped += 1;
418 	return (skipped);
419 }
420 
421 extern taskq_t *zfsvfs_taskq;
422 
423 void
424 zfs_rmnode(znode_t *zp)
425 {
426 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
427 	objset_t	*os = zfsvfs->z_os;
428 	dmu_tx_t	*tx;
429 	uint64_t	acl_obj;
430 	uint64_t	xattr_obj;
431 	uint64_t	count;
432 	int		error;
433 
434 	ASSERT3U(zp->z_links, ==, 0);
435 	if (zfsvfs->z_replay == B_FALSE)
436 		ASSERT_VOP_ELOCKED(ZTOV(zp), __func__);
437 
438 	/*
439 	 * If this is an attribute directory, purge its contents.
440 	 */
441 	if (ZTOV(zp) != NULL && ZTOV(zp)->v_type == VDIR &&
442 	    (zp->z_pflags & ZFS_XATTR)) {
443 		if (zfs_purgedir(zp) != 0) {
444 			/*
445 			 * Not enough space to delete some xattrs.
446 			 * Leave it in the unlinked set.
447 			 */
448 			zfs_znode_dmu_fini(zp);
449 			zfs_znode_free(zp);
450 			return;
451 		}
452 	} else {
453 		/*
454 		 * Free up all the data in the file.  We don't do this for
455 		 * XATTR directories because we need truncate and remove to be
456 		 * in the same tx, like in zfs_znode_delete(). Otherwise, if
457 		 * we crash here we'll end up with an inconsistent truncated
458 		 * zap object in the delete queue.  Note a truncated file is
459 		 * harmless since it only contains user data.
460 		 */
461 		error = dmu_free_long_range(os, zp->z_id, 0, DMU_OBJECT_END);
462 		if (error) {
463 			/*
464 			 * Not enough space or we were interrupted by unmount.
465 			 * Leave the file in the unlinked set.
466 			 */
467 			zfs_znode_dmu_fini(zp);
468 			zfs_znode_free(zp);
469 			return;
470 		}
471 	}
472 
473 	/*
474 	 * If the file has extended attributes, we're going to unlink
475 	 * the xattr dir.
476 	 */
477 	error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
478 	    &xattr_obj, sizeof (xattr_obj));
479 	if (error)
480 		xattr_obj = 0;
481 
482 	acl_obj = zfs_external_acl(zp);
483 
484 	/*
485 	 * Set up the final transaction.
486 	 */
487 	tx = dmu_tx_create(os);
488 	dmu_tx_hold_free(tx, zp->z_id, 0, DMU_OBJECT_END);
489 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
490 	if (xattr_obj)
491 		dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, TRUE, NULL);
492 	if (acl_obj)
493 		dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
494 
495 	zfs_sa_upgrade_txholds(tx, zp);
496 	error = dmu_tx_assign(tx, TXG_WAIT);
497 	if (error) {
498 		/*
499 		 * Not enough space to delete the file.  Leave it in the
500 		 * unlinked set, leaking it until the fs is remounted (at
501 		 * which point we'll call zfs_unlinked_drain() to process it).
502 		 */
503 		dmu_tx_abort(tx);
504 		zfs_znode_dmu_fini(zp);
505 		zfs_znode_free(zp);
506 		return;
507 	}
508 
509 	/*
510 	 * FreeBSD's implementation of zfs_zget requires a vnode to back it.
511 	 * This means that we could end up calling into getnewvnode while
512 	 * calling zfs_rmnode as a result of a prior call to getnewvnode
513 	 * trying to clear vnodes out of the cache. If this repeats we can
514 	 * recurse enough that we overflow our stack. To avoid this, we
515 	 * avoid calling zfs_zget on the xattr znode and instead simply add
516 	 * it to the unlinked set and schedule a call to zfs_unlinked_drain.
517 	 */
518 	if (xattr_obj) {
519 		/* Add extended attribute directory to the unlinked set. */
520 		VERIFY3U(0, ==,
521 		    zap_add_int(os, zfsvfs->z_unlinkedobj, xattr_obj, tx));
522 	}
523 
524 	mutex_enter(&os->os_dsl_dataset->ds_dir->dd_activity_lock);
525 
526 	/* Remove this znode from the unlinked set */
527 	VERIFY3U(0, ==,
528 	    zap_remove_int(os, zfsvfs->z_unlinkedobj, zp->z_id, tx));
529 
530 	if (zap_count(os, zfsvfs->z_unlinkedobj, &count) == 0 && count == 0) {
531 		cv_broadcast(&os->os_dsl_dataset->ds_dir->dd_activity_cv);
532 	}
533 
534 	mutex_exit(&os->os_dsl_dataset->ds_dir->dd_activity_lock);
535 
536 	dataset_kstats_update_nunlinked_kstat(&zfsvfs->z_kstat, 1);
537 
538 	zfs_znode_delete(zp, tx);
539 
540 	dmu_tx_commit(tx);
541 
542 	if (xattr_obj) {
543 		/*
544 		 * We're using the FreeBSD taskqueue API here instead of
545 		 * the Solaris taskq API since the FreeBSD API allows for a
546 		 * task to be enqueued multiple times but executed once.
547 		 */
548 		taskqueue_enqueue(zfsvfs_taskq->tq_queue,
549 		    &zfsvfs->z_unlinked_drain_task);
550 	}
551 }
552 
553 static uint64_t
554 zfs_dirent(znode_t *zp, uint64_t mode)
555 {
556 	uint64_t de = zp->z_id;
557 
558 	if (zp->z_zfsvfs->z_version >= ZPL_VERSION_DIRENT_TYPE)
559 		de |= IFTODT(mode) << 60;
560 	return (de);
561 }
562 
563 /*
564  * Link zp into dzp.  Can only fail if zp has been unlinked.
565  */
566 int
567 zfs_link_create(znode_t *dzp, const char *name, znode_t *zp, dmu_tx_t *tx,
568     int flag)
569 {
570 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
571 	vnode_t *vp = ZTOV(zp);
572 	uint64_t value;
573 	int zp_is_dir = (vp->v_type == VDIR);
574 	sa_bulk_attr_t bulk[5];
575 	uint64_t mtime[2], ctime[2];
576 	int count = 0;
577 	int error;
578 
579 	if (zfsvfs->z_replay == B_FALSE) {
580 		ASSERT_VOP_ELOCKED(ZTOV(dzp), __func__);
581 		ASSERT_VOP_ELOCKED(ZTOV(zp), __func__);
582 	}
583 	if (zp_is_dir) {
584 		if (dzp->z_links >= ZFS_LINK_MAX)
585 			return (SET_ERROR(EMLINK));
586 	}
587 	if (!(flag & ZRENAMING)) {
588 		if (zp->z_unlinked) {	/* no new links to unlinked zp */
589 			ASSERT(!(flag & (ZNEW | ZEXISTS)));
590 			return (SET_ERROR(ENOENT));
591 		}
592 		if (zp->z_links >= ZFS_LINK_MAX - zp_is_dir) {
593 			return (SET_ERROR(EMLINK));
594 		}
595 		zp->z_links++;
596 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL,
597 		    &zp->z_links, sizeof (zp->z_links));
598 
599 	} else {
600 		ASSERT(!zp->z_unlinked);
601 	}
602 	value = zfs_dirent(zp, zp->z_mode);
603 	error = zap_add(zp->z_zfsvfs->z_os, dzp->z_id, name,
604 	    8, 1, &value, tx);
605 
606 	/*
607 	 * zap_add could fail to add the entry if it exceeds the capacity of the
608 	 * leaf-block and zap_leaf_split() failed to help.
609 	 * The caller of this routine is responsible for failing the transaction
610 	 * which will rollback the SA updates done above.
611 	 */
612 	if (error != 0) {
613 		if (!(flag & ZRENAMING) && !(flag & ZNEW))
614 			zp->z_links--;
615 		return (error);
616 	}
617 
618 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PARENT(zfsvfs), NULL,
619 	    &dzp->z_id, sizeof (dzp->z_id));
620 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
621 	    &zp->z_pflags, sizeof (zp->z_pflags));
622 
623 	if (!(flag & ZNEW)) {
624 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
625 		    ctime, sizeof (ctime));
626 		zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime,
627 		    ctime);
628 	}
629 	error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
630 	ASSERT0(error);
631 
632 	dzp->z_size++;
633 	dzp->z_links += zp_is_dir;
634 	count = 0;
635 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
636 	    &dzp->z_size, sizeof (dzp->z_size));
637 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL,
638 	    &dzp->z_links, sizeof (dzp->z_links));
639 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
640 	    mtime, sizeof (mtime));
641 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
642 	    ctime, sizeof (ctime));
643 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
644 	    &dzp->z_pflags, sizeof (dzp->z_pflags));
645 	zfs_tstamp_update_setup(dzp, CONTENT_MODIFIED, mtime, ctime);
646 	error = sa_bulk_update(dzp->z_sa_hdl, bulk, count, tx);
647 	ASSERT0(error);
648 	return (0);
649 }
650 
651 /*
652  * The match type in the code for this function should conform to:
653  *
654  * ------------------------------------------------------------------------
655  * fs type  | z_norm      | lookup type | match type
656  * ---------|-------------|-------------|----------------------------------
657  * CS !norm | 0           |           0 | 0 (exact)
658  * CS  norm | formX       |           0 | MT_NORMALIZE
659  * CI !norm | upper       |   !ZCIEXACT | MT_NORMALIZE
660  * CI !norm | upper       |    ZCIEXACT | MT_NORMALIZE | MT_MATCH_CASE
661  * CI  norm | upper|formX |   !ZCIEXACT | MT_NORMALIZE
662  * CI  norm | upper|formX |    ZCIEXACT | MT_NORMALIZE | MT_MATCH_CASE
663  * CM !norm | upper       |    !ZCILOOK | MT_NORMALIZE | MT_MATCH_CASE
664  * CM !norm | upper       |     ZCILOOK | MT_NORMALIZE
665  * CM  norm | upper|formX |    !ZCILOOK | MT_NORMALIZE | MT_MATCH_CASE
666  * CM  norm | upper|formX |     ZCILOOK | MT_NORMALIZE
667  *
668  * Abbreviations:
669  *    CS = Case Sensitive, CI = Case Insensitive, CM = Case Mixed
670  *    upper = case folding set by fs type on creation (U8_TEXTPREP_TOUPPER)
671  *    formX = unicode normalization form set on fs creation
672  */
673 static int
674 zfs_dropname(znode_t *dzp, const char *name, znode_t *zp, dmu_tx_t *tx,
675     int flag)
676 {
677 	int error;
678 
679 	if (zp->z_zfsvfs->z_norm) {
680 		matchtype_t mt = MT_NORMALIZE;
681 
682 		if (zp->z_zfsvfs->z_case == ZFS_CASE_MIXED) {
683 			mt |= MT_MATCH_CASE;
684 		}
685 
686 		error = zap_remove_norm(zp->z_zfsvfs->z_os, dzp->z_id,
687 		    name, mt, tx);
688 	} else {
689 		error = zap_remove(zp->z_zfsvfs->z_os, dzp->z_id, name, tx);
690 	}
691 
692 	return (error);
693 }
694 
695 /*
696  * Unlink zp from dzp, and mark zp for deletion if this was the last link.
697  * Can fail if zp is a mount point (EBUSY) or a non-empty directory (EEXIST).
698  * If 'unlinkedp' is NULL, we put unlinked znodes on the unlinked list.
699  * If it's non-NULL, we use it to indicate whether the znode needs deletion,
700  * and it's the caller's job to do it.
701  */
702 int
703 zfs_link_destroy(znode_t *dzp, const char *name, znode_t *zp, dmu_tx_t *tx,
704     int flag, boolean_t *unlinkedp)
705 {
706 	zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
707 	vnode_t *vp = ZTOV(zp);
708 	int zp_is_dir = (vp->v_type == VDIR);
709 	boolean_t unlinked = B_FALSE;
710 	sa_bulk_attr_t bulk[5];
711 	uint64_t mtime[2], ctime[2];
712 	int count = 0;
713 	int error;
714 
715 	if (zfsvfs->z_replay == B_FALSE) {
716 		ASSERT_VOP_ELOCKED(ZTOV(dzp), __func__);
717 		ASSERT_VOP_ELOCKED(ZTOV(zp), __func__);
718 	}
719 	if (!(flag & ZRENAMING)) {
720 
721 		if (zp_is_dir && !zfs_dirempty(zp))
722 			return (SET_ERROR(ENOTEMPTY));
723 
724 		/*
725 		 * If we get here, we are going to try to remove the object.
726 		 * First try removing the name from the directory; if that
727 		 * fails, return the error.
728 		 */
729 		error = zfs_dropname(dzp, name, zp, tx, flag);
730 		if (error != 0) {
731 			return (error);
732 		}
733 
734 		if (zp->z_links <= zp_is_dir) {
735 			zfs_panic_recover("zfs: link count on vnode %p is %u, "
736 			    "should be at least %u", zp->z_vnode,
737 			    (int)zp->z_links,
738 			    zp_is_dir + 1);
739 			zp->z_links = zp_is_dir + 1;
740 		}
741 		if (--zp->z_links == zp_is_dir) {
742 			zp->z_unlinked = B_TRUE;
743 			zp->z_links = 0;
744 			unlinked = B_TRUE;
745 		} else {
746 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs),
747 			    NULL, &ctime, sizeof (ctime));
748 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs),
749 			    NULL, &zp->z_pflags, sizeof (zp->z_pflags));
750 			zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime,
751 			    ctime);
752 		}
753 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs),
754 		    NULL, &zp->z_links, sizeof (zp->z_links));
755 		error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
756 		count = 0;
757 		ASSERT0(error);
758 	} else {
759 		ASSERT(!zp->z_unlinked);
760 		error = zfs_dropname(dzp, name, zp, tx, flag);
761 		if (error != 0)
762 			return (error);
763 	}
764 
765 	dzp->z_size--;		/* one dirent removed */
766 	dzp->z_links -= zp_is_dir;	/* ".." link from zp */
767 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs),
768 	    NULL, &dzp->z_links, sizeof (dzp->z_links));
769 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs),
770 	    NULL, &dzp->z_size, sizeof (dzp->z_size));
771 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs),
772 	    NULL, ctime, sizeof (ctime));
773 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs),
774 	    NULL, mtime, sizeof (mtime));
775 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs),
776 	    NULL, &dzp->z_pflags, sizeof (dzp->z_pflags));
777 	zfs_tstamp_update_setup(dzp, CONTENT_MODIFIED, mtime, ctime);
778 	error = sa_bulk_update(dzp->z_sa_hdl, bulk, count, tx);
779 	ASSERT0(error);
780 
781 	if (unlinkedp != NULL)
782 		*unlinkedp = unlinked;
783 	else if (unlinked)
784 		zfs_unlinked_add(zp, tx);
785 
786 	return (0);
787 }
788 
789 /*
790  * Indicate whether the directory is empty.
791  */
792 boolean_t
793 zfs_dirempty(znode_t *dzp)
794 {
795 	return (dzp->z_size == 2);
796 }
797 
798 int
799 zfs_make_xattrdir(znode_t *zp, vattr_t *vap, znode_t **xvpp, cred_t *cr)
800 {
801 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
802 	znode_t *xzp;
803 	dmu_tx_t *tx;
804 	int error;
805 	zfs_acl_ids_t acl_ids;
806 	boolean_t fuid_dirtied;
807 	uint64_t parent __maybe_unused;
808 
809 	*xvpp = NULL;
810 
811 	if ((error = zfs_acl_ids_create(zp, IS_XATTR, vap, cr, NULL,
812 	    &acl_ids)) != 0)
813 		return (error);
814 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, 0)) {
815 		zfs_acl_ids_free(&acl_ids);
816 		return (SET_ERROR(EDQUOT));
817 	}
818 
819 	getnewvnode_reserve_();
820 
821 	tx = dmu_tx_create(zfsvfs->z_os);
822 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
823 	    ZFS_SA_BASE_ATTR_SIZE);
824 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
825 	dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
826 	fuid_dirtied = zfsvfs->z_fuid_dirty;
827 	if (fuid_dirtied)
828 		zfs_fuid_txhold(zfsvfs, tx);
829 	error = dmu_tx_assign(tx, TXG_WAIT);
830 	if (error) {
831 		zfs_acl_ids_free(&acl_ids);
832 		dmu_tx_abort(tx);
833 		getnewvnode_drop_reserve();
834 		return (error);
835 	}
836 	zfs_mknode(zp, vap, tx, cr, IS_XATTR, &xzp, &acl_ids);
837 
838 	if (fuid_dirtied)
839 		zfs_fuid_sync(zfsvfs, tx);
840 
841 	ASSERT0(sa_lookup(xzp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), &parent,
842 	    sizeof (parent)));
843 	ASSERT3U(parent, ==, zp->z_id);
844 
845 	VERIFY0(sa_update(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), &xzp->z_id,
846 	    sizeof (xzp->z_id), tx));
847 
848 	zfs_log_create(zfsvfs->z_log, tx, TX_MKXATTR, zp, xzp, "", NULL,
849 	    acl_ids.z_fuidp, vap);
850 
851 	zfs_acl_ids_free(&acl_ids);
852 	dmu_tx_commit(tx);
853 
854 	getnewvnode_drop_reserve();
855 
856 	*xvpp = xzp;
857 
858 	return (0);
859 }
860 
861 /*
862  * Return a znode for the extended attribute directory for zp.
863  * ** If the directory does not already exist, it is created **
864  *
865  *	IN:	zp	- znode to obtain attribute directory from
866  *		cr	- credentials of caller
867  *		flags	- flags from the VOP_LOOKUP call
868  *
869  *	OUT:	xzpp	- pointer to extended attribute znode
870  *
871  *	RETURN:	0 on success
872  *		error number on failure
873  */
874 int
875 zfs_get_xattrdir(znode_t *zp, znode_t **xzpp, cred_t *cr, int flags)
876 {
877 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
878 	znode_t		*xzp;
879 	vattr_t		va;
880 	int		error;
881 top:
882 	error = zfs_dirent_lookup(zp, "", &xzp, ZXATTR);
883 	if (error)
884 		return (error);
885 
886 	if (xzp != NULL) {
887 		*xzpp = xzp;
888 		return (0);
889 	}
890 
891 
892 	if (!(flags & CREATE_XATTR_DIR))
893 		return (SET_ERROR(ENOATTR));
894 
895 	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
896 		return (SET_ERROR(EROFS));
897 	}
898 
899 	/*
900 	 * The ability to 'create' files in an attribute
901 	 * directory comes from the write_xattr permission on the base file.
902 	 *
903 	 * The ability to 'search' an attribute directory requires
904 	 * read_xattr permission on the base file.
905 	 *
906 	 * Once in a directory the ability to read/write attributes
907 	 * is controlled by the permissions on the attribute file.
908 	 */
909 	va.va_mask = AT_MODE | AT_UID | AT_GID;
910 	va.va_type = VDIR;
911 	va.va_mode = S_IFDIR | S_ISVTX | 0777;
912 	zfs_fuid_map_ids(zp, cr, &va.va_uid, &va.va_gid);
913 
914 	error = zfs_make_xattrdir(zp, &va, xzpp, cr);
915 
916 	if (error == ERESTART) {
917 		/* NB: we already did dmu_tx_wait() if necessary */
918 		goto top;
919 	}
920 	if (error == 0)
921 		VOP_UNLOCK1(ZTOV(*xzpp));
922 
923 	return (error);
924 }
925 
926 /*
927  * Decide whether it is okay to remove within a sticky directory.
928  *
929  * In sticky directories, write access is not sufficient;
930  * you can remove entries from a directory only if:
931  *
932  *	you own the directory,
933  *	you own the entry,
934  *	the entry is a plain file and you have write access,
935  *	or you are privileged (checked in secpolicy...).
936  *
937  * The function returns 0 if remove access is granted.
938  */
939 int
940 zfs_sticky_remove_access(znode_t *zdp, znode_t *zp, cred_t *cr)
941 {
942 	uid_t  		uid;
943 	uid_t		downer;
944 	uid_t		fowner;
945 	zfsvfs_t	*zfsvfs = zdp->z_zfsvfs;
946 
947 	if (zdp->z_zfsvfs->z_replay)
948 		return (0);
949 
950 	if ((zdp->z_mode & S_ISVTX) == 0)
951 		return (0);
952 
953 	downer = zfs_fuid_map_id(zfsvfs, zdp->z_uid, cr, ZFS_OWNER);
954 	fowner = zfs_fuid_map_id(zfsvfs, zp->z_uid, cr, ZFS_OWNER);
955 
956 	if ((uid = crgetuid(cr)) == downer || uid == fowner ||
957 	    (ZTOV(zp)->v_type == VREG &&
958 	    zfs_zaccess(zp, ACE_WRITE_DATA, 0, B_FALSE, cr) == 0))
959 		return (0);
960 	else
961 		return (secpolicy_vnode_remove(ZTOV(zp), cr));
962 }
963