1eda14cbcSMatt Macy /*
2eda14cbcSMatt Macy  *  Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
3eda14cbcSMatt Macy  *  Copyright (C) 2007 The Regents of the University of California.
4eda14cbcSMatt Macy  *  Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
5eda14cbcSMatt Macy  *  Written by Brian Behlendorf <behlendorf1@llnl.gov>.
6eda14cbcSMatt Macy  *  UCRL-CODE-235197
7eda14cbcSMatt Macy  *
8eda14cbcSMatt Macy  *  This file is part of the SPL, Solaris Porting Layer.
9eda14cbcSMatt Macy  *
10eda14cbcSMatt Macy  *  The SPL is free software; you can redistribute it and/or modify it
11eda14cbcSMatt Macy  *  under the terms of the GNU General Public License as published by the
12eda14cbcSMatt Macy  *  Free Software Foundation; either version 2 of the License, or (at your
13eda14cbcSMatt Macy  *  option) any later version.
14eda14cbcSMatt Macy  *
15eda14cbcSMatt Macy  *  The SPL is distributed in the hope that it will be useful, but WITHOUT
16eda14cbcSMatt Macy  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17eda14cbcSMatt Macy  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18eda14cbcSMatt Macy  *  for more details.
19eda14cbcSMatt Macy  *
20eda14cbcSMatt Macy  *  You should have received a copy of the GNU General Public License along
21eda14cbcSMatt Macy  *  with the SPL.  If not, see <http://www.gnu.org/licenses/>.
22eda14cbcSMatt Macy  */
23eda14cbcSMatt Macy 
2475e1fea6SMartin Matuska #define	SPL_KMEM_CACHE_IMPLEMENTING
2575e1fea6SMartin Matuska 
26eda14cbcSMatt Macy #include <linux/percpu_compat.h>
27eda14cbcSMatt Macy #include <sys/kmem.h>
28eda14cbcSMatt Macy #include <sys/kmem_cache.h>
29eda14cbcSMatt Macy #include <sys/taskq.h>
30eda14cbcSMatt Macy #include <sys/timer.h>
31eda14cbcSMatt Macy #include <sys/vmem.h>
32eda14cbcSMatt Macy #include <sys/wait.h>
33fd45b686SMartin Matuska #include <sys/string.h>
34eda14cbcSMatt Macy #include <linux/slab.h>
35eda14cbcSMatt Macy #include <linux/swap.h>
36eda14cbcSMatt Macy #include <linux/prefetch.h>
37eda14cbcSMatt Macy 
38eda14cbcSMatt Macy /*
39eda14cbcSMatt Macy  * Linux 3.16 replaced smp_mb__{before,after}_{atomic,clear}_{dec,inc,bit}()
40eda14cbcSMatt Macy  * with smp_mb__{before,after}_atomic() because they were redundant. This is
41eda14cbcSMatt Macy  * only used inside our SLAB allocator, so we implement an internal wrapper
42eda14cbcSMatt Macy  * here to give us smp_mb__{before,after}_atomic() on older kernels.
43eda14cbcSMatt Macy  */
44eda14cbcSMatt Macy #ifndef smp_mb__before_atomic
45eda14cbcSMatt Macy #define	smp_mb__before_atomic(x) smp_mb__before_clear_bit(x)
46eda14cbcSMatt Macy #endif
47eda14cbcSMatt Macy 
48eda14cbcSMatt Macy #ifndef smp_mb__after_atomic
49eda14cbcSMatt Macy #define	smp_mb__after_atomic(x) smp_mb__after_clear_bit(x)
50eda14cbcSMatt Macy #endif
51eda14cbcSMatt Macy 
52eda14cbcSMatt Macy /* BEGIN CSTYLED */
53eda14cbcSMatt Macy /*
54eda14cbcSMatt Macy  * Cache magazines are an optimization designed to minimize the cost of
55eda14cbcSMatt Macy  * allocating memory.  They do this by keeping a per-cpu cache of recently
56eda14cbcSMatt Macy  * freed objects, which can then be reallocated without taking a lock. This
57eda14cbcSMatt Macy  * can improve performance on highly contended caches.  However, because
58eda14cbcSMatt Macy  * objects in magazines will prevent otherwise empty slabs from being
59eda14cbcSMatt Macy  * immediately released this may not be ideal for low memory machines.
60eda14cbcSMatt Macy  *
61eda14cbcSMatt Macy  * For this reason spl_kmem_cache_magazine_size can be used to set a maximum
62eda14cbcSMatt Macy  * magazine size.  When this value is set to 0 the magazine size will be
63eda14cbcSMatt Macy  * automatically determined based on the object size.  Otherwise magazines
64eda14cbcSMatt Macy  * will be limited to 2-256 objects per magazine (i.e per cpu).  Magazines
65eda14cbcSMatt Macy  * may never be entirely disabled in this implementation.
66eda14cbcSMatt Macy  */
67e92ffd9bSMartin Matuska static unsigned int spl_kmem_cache_magazine_size = 0;
68eda14cbcSMatt Macy module_param(spl_kmem_cache_magazine_size, uint, 0444);
69eda14cbcSMatt Macy MODULE_PARM_DESC(spl_kmem_cache_magazine_size,
70eda14cbcSMatt Macy 	"Default magazine size (2-256), set automatically (0)");
71eda14cbcSMatt Macy 
72e92ffd9bSMartin Matuska static unsigned int spl_kmem_cache_obj_per_slab = SPL_KMEM_CACHE_OBJ_PER_SLAB;
73eda14cbcSMatt Macy module_param(spl_kmem_cache_obj_per_slab, uint, 0644);
74eda14cbcSMatt Macy MODULE_PARM_DESC(spl_kmem_cache_obj_per_slab, "Number of objects per slab");
75eda14cbcSMatt Macy 
76e92ffd9bSMartin Matuska static unsigned int spl_kmem_cache_max_size = SPL_KMEM_CACHE_MAX_SIZE;
77eda14cbcSMatt Macy module_param(spl_kmem_cache_max_size, uint, 0644);
78eda14cbcSMatt Macy MODULE_PARM_DESC(spl_kmem_cache_max_size, "Maximum size of slab in MB");
79eda14cbcSMatt Macy 
80eda14cbcSMatt Macy /*
81eda14cbcSMatt Macy  * For small objects the Linux slab allocator should be used to make the most
82eda14cbcSMatt Macy  * efficient use of the memory.  However, large objects are not supported by
83eda14cbcSMatt Macy  * the Linux slab and therefore the SPL implementation is preferred.  A cutoff
8416038816SMartin Matuska  * of 16K was determined to be optimal for architectures using 4K pages and
8516038816SMartin Matuska  * to also work well on architecutres using larger 64K page sizes.
86eda14cbcSMatt Macy  */
8778ae60b4SMartin Matuska static unsigned int spl_kmem_cache_slab_limit =
8878ae60b4SMartin Matuska     SPL_MAX_KMEM_ORDER_NR_PAGES * PAGE_SIZE;
89eda14cbcSMatt Macy module_param(spl_kmem_cache_slab_limit, uint, 0644);
90eda14cbcSMatt Macy MODULE_PARM_DESC(spl_kmem_cache_slab_limit,
91eda14cbcSMatt Macy 	"Objects less than N bytes use the Linux slab");
92eda14cbcSMatt Macy 
93eda14cbcSMatt Macy /*
94eda14cbcSMatt Macy  * The number of threads available to allocate new slabs for caches.  This
95eda14cbcSMatt Macy  * should not need to be tuned but it is available for performance analysis.
96eda14cbcSMatt Macy  */
97e92ffd9bSMartin Matuska static unsigned int spl_kmem_cache_kmem_threads = 4;
98eda14cbcSMatt Macy module_param(spl_kmem_cache_kmem_threads, uint, 0444);
99eda14cbcSMatt Macy MODULE_PARM_DESC(spl_kmem_cache_kmem_threads,
100eda14cbcSMatt Macy 	"Number of spl_kmem_cache threads");
101eda14cbcSMatt Macy /* END CSTYLED */
102eda14cbcSMatt Macy 
103eda14cbcSMatt Macy /*
104eda14cbcSMatt Macy  * Slab allocation interfaces
105eda14cbcSMatt Macy  *
106eda14cbcSMatt Macy  * While the Linux slab implementation was inspired by the Solaris
107eda14cbcSMatt Macy  * implementation I cannot use it to emulate the Solaris APIs.  I
108eda14cbcSMatt Macy  * require two features which are not provided by the Linux slab.
109eda14cbcSMatt Macy  *
110eda14cbcSMatt Macy  * 1) Constructors AND destructors.  Recent versions of the Linux
111eda14cbcSMatt Macy  *    kernel have removed support for destructors.  This is a deal
112eda14cbcSMatt Macy  *    breaker for the SPL which contains particularly expensive
113eda14cbcSMatt Macy  *    initializers for mutex's, condition variables, etc.  We also
114eda14cbcSMatt Macy  *    require a minimal level of cleanup for these data types unlike
115eda14cbcSMatt Macy  *    many Linux data types which do need to be explicitly destroyed.
116eda14cbcSMatt Macy  *
117eda14cbcSMatt Macy  * 2) Virtual address space backed slab.  Callers of the Solaris slab
118eda14cbcSMatt Macy  *    expect it to work well for both small are very large allocations.
119eda14cbcSMatt Macy  *    Because of memory fragmentation the Linux slab which is backed
120eda14cbcSMatt Macy  *    by kmalloc'ed memory performs very badly when confronted with
121eda14cbcSMatt Macy  *    large numbers of large allocations.  Basing the slab on the
122eda14cbcSMatt Macy  *    virtual address space removes the need for contiguous pages
123eda14cbcSMatt Macy  *    and greatly improve performance for large allocations.
124eda14cbcSMatt Macy  *
125eda14cbcSMatt Macy  * For these reasons, the SPL has its own slab implementation with
126eda14cbcSMatt Macy  * the needed features.  It is not as highly optimized as either the
127eda14cbcSMatt Macy  * Solaris or Linux slabs, but it should get me most of what is
128eda14cbcSMatt Macy  * needed until it can be optimized or obsoleted by another approach.
129eda14cbcSMatt Macy  *
130eda14cbcSMatt Macy  * One serious concern I do have about this method is the relatively
131eda14cbcSMatt Macy  * small virtual address space on 32bit arches.  This will seriously
132eda14cbcSMatt Macy  * constrain the size of the slab caches and their performance.
133eda14cbcSMatt Macy  */
134eda14cbcSMatt Macy 
135eda14cbcSMatt Macy struct list_head spl_kmem_cache_list;   /* List of caches */
136eda14cbcSMatt Macy struct rw_semaphore spl_kmem_cache_sem; /* Cache list lock */
137dbd5678dSMartin Matuska static taskq_t *spl_kmem_cache_taskq;   /* Task queue for aging / reclaim */
138eda14cbcSMatt Macy 
139eda14cbcSMatt Macy static void spl_cache_shrink(spl_kmem_cache_t *skc, void *obj);
140eda14cbcSMatt Macy 
141eda14cbcSMatt Macy static void *
kv_alloc(spl_kmem_cache_t * skc,int size,int flags)142eda14cbcSMatt Macy kv_alloc(spl_kmem_cache_t *skc, int size, int flags)
143eda14cbcSMatt Macy {
144eda14cbcSMatt Macy 	gfp_t lflags = kmem_flags_convert(flags);
145eda14cbcSMatt Macy 	void *ptr;
146eda14cbcSMatt Macy 
147*ce4dcb97SMartin Matuska 	if (skc->skc_flags & KMC_RECLAIMABLE)
148*ce4dcb97SMartin Matuska 		lflags |= __GFP_RECLAIMABLE;
149eda14cbcSMatt Macy 	ptr = spl_vmalloc(size, lflags | __GFP_HIGHMEM);
150eda14cbcSMatt Macy 
151eda14cbcSMatt Macy 	/* Resulting allocated memory will be page aligned */
152eda14cbcSMatt Macy 	ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
153eda14cbcSMatt Macy 
154eda14cbcSMatt Macy 	return (ptr);
155eda14cbcSMatt Macy }
156eda14cbcSMatt Macy 
157eda14cbcSMatt Macy static void
kv_free(spl_kmem_cache_t * skc,void * ptr,int size)158eda14cbcSMatt Macy kv_free(spl_kmem_cache_t *skc, void *ptr, int size)
159eda14cbcSMatt Macy {
160eda14cbcSMatt Macy 	ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
161eda14cbcSMatt Macy 
162eda14cbcSMatt Macy 	/*
163eda14cbcSMatt Macy 	 * The Linux direct reclaim path uses this out of band value to
164eda14cbcSMatt Macy 	 * determine if forward progress is being made.  Normally this is
165eda14cbcSMatt Macy 	 * incremented by kmem_freepages() which is part of the various
166eda14cbcSMatt Macy 	 * Linux slab implementations.  However, since we are using none
167eda14cbcSMatt Macy 	 * of that infrastructure we are responsible for incrementing it.
168eda14cbcSMatt Macy 	 */
169eda14cbcSMatt Macy 	if (current->reclaim_state)
1704e8d558cSMartin Matuska #ifdef	HAVE_RECLAIM_STATE_RECLAIMED
1714e8d558cSMartin Matuska 		current->reclaim_state->reclaimed += size >> PAGE_SHIFT;
1724e8d558cSMartin Matuska #else
173eda14cbcSMatt Macy 		current->reclaim_state->reclaimed_slab += size >> PAGE_SHIFT;
1744e8d558cSMartin Matuska #endif
175eda14cbcSMatt Macy 	vfree(ptr);
176eda14cbcSMatt Macy }
177eda14cbcSMatt Macy 
178eda14cbcSMatt Macy /*
179eda14cbcSMatt Macy  * Required space for each aligned sks.
180eda14cbcSMatt Macy  */
181eda14cbcSMatt Macy static inline uint32_t
spl_sks_size(spl_kmem_cache_t * skc)182eda14cbcSMatt Macy spl_sks_size(spl_kmem_cache_t *skc)
183eda14cbcSMatt Macy {
184eda14cbcSMatt Macy 	return (P2ROUNDUP_TYPED(sizeof (spl_kmem_slab_t),
185eda14cbcSMatt Macy 	    skc->skc_obj_align, uint32_t));
186eda14cbcSMatt Macy }
187eda14cbcSMatt Macy 
188eda14cbcSMatt Macy /*
189eda14cbcSMatt Macy  * Required space for each aligned object.
190eda14cbcSMatt Macy  */
191eda14cbcSMatt Macy static inline uint32_t
spl_obj_size(spl_kmem_cache_t * skc)192eda14cbcSMatt Macy spl_obj_size(spl_kmem_cache_t *skc)
193eda14cbcSMatt Macy {
194eda14cbcSMatt Macy 	uint32_t align = skc->skc_obj_align;
195eda14cbcSMatt Macy 
196eda14cbcSMatt Macy 	return (P2ROUNDUP_TYPED(skc->skc_obj_size, align, uint32_t) +
197eda14cbcSMatt Macy 	    P2ROUNDUP_TYPED(sizeof (spl_kmem_obj_t), align, uint32_t));
198eda14cbcSMatt Macy }
199eda14cbcSMatt Macy 
200eda14cbcSMatt Macy uint64_t
spl_kmem_cache_inuse(kmem_cache_t * cache)201eda14cbcSMatt Macy spl_kmem_cache_inuse(kmem_cache_t *cache)
202eda14cbcSMatt Macy {
203eda14cbcSMatt Macy 	return (cache->skc_obj_total);
204eda14cbcSMatt Macy }
205eda14cbcSMatt Macy EXPORT_SYMBOL(spl_kmem_cache_inuse);
206eda14cbcSMatt Macy 
207eda14cbcSMatt Macy uint64_t
spl_kmem_cache_entry_size(kmem_cache_t * cache)208eda14cbcSMatt Macy spl_kmem_cache_entry_size(kmem_cache_t *cache)
209eda14cbcSMatt Macy {
210eda14cbcSMatt Macy 	return (cache->skc_obj_size);
211eda14cbcSMatt Macy }
212eda14cbcSMatt Macy EXPORT_SYMBOL(spl_kmem_cache_entry_size);
213eda14cbcSMatt Macy 
214eda14cbcSMatt Macy /*
215eda14cbcSMatt Macy  * Lookup the spl_kmem_object_t for an object given that object.
216eda14cbcSMatt Macy  */
217eda14cbcSMatt Macy static inline spl_kmem_obj_t *
spl_sko_from_obj(spl_kmem_cache_t * skc,void * obj)218eda14cbcSMatt Macy spl_sko_from_obj(spl_kmem_cache_t *skc, void *obj)
219eda14cbcSMatt Macy {
220eda14cbcSMatt Macy 	return (obj + P2ROUNDUP_TYPED(skc->skc_obj_size,
221eda14cbcSMatt Macy 	    skc->skc_obj_align, uint32_t));
222eda14cbcSMatt Macy }
223eda14cbcSMatt Macy 
224eda14cbcSMatt Macy /*
225eda14cbcSMatt Macy  * It's important that we pack the spl_kmem_obj_t structure and the
226eda14cbcSMatt Macy  * actual objects in to one large address space to minimize the number
227eda14cbcSMatt Macy  * of calls to the allocator.  It is far better to do a few large
228eda14cbcSMatt Macy  * allocations and then subdivide it ourselves.  Now which allocator
229eda14cbcSMatt Macy  * we use requires balancing a few trade offs.
230eda14cbcSMatt Macy  *
231eda14cbcSMatt Macy  * For small objects we use kmem_alloc() because as long as you are
232eda14cbcSMatt Macy  * only requesting a small number of pages (ideally just one) its cheap.
233eda14cbcSMatt Macy  * However, when you start requesting multiple pages with kmem_alloc()
234eda14cbcSMatt Macy  * it gets increasingly expensive since it requires contiguous pages.
235eda14cbcSMatt Macy  * For this reason we shift to vmem_alloc() for slabs of large objects
236eda14cbcSMatt Macy  * which removes the need for contiguous pages.  We do not use
237eda14cbcSMatt Macy  * vmem_alloc() in all cases because there is significant locking
238eda14cbcSMatt Macy  * overhead in __get_vm_area_node().  This function takes a single
239eda14cbcSMatt Macy  * global lock when acquiring an available virtual address range which
240eda14cbcSMatt Macy  * serializes all vmem_alloc()'s for all slab caches.  Using slightly
241eda14cbcSMatt Macy  * different allocation functions for small and large objects should
242eda14cbcSMatt Macy  * give us the best of both worlds.
243eda14cbcSMatt Macy  *
244eda14cbcSMatt Macy  * +------------------------+
245eda14cbcSMatt Macy  * | spl_kmem_slab_t --+-+  |
246eda14cbcSMatt Macy  * | skc_obj_size    <-+ |  |
247eda14cbcSMatt Macy  * | spl_kmem_obj_t      |  |
248eda14cbcSMatt Macy  * | skc_obj_size    <---+  |
249eda14cbcSMatt Macy  * | spl_kmem_obj_t      |  |
250eda14cbcSMatt Macy  * | ...                 v  |
251eda14cbcSMatt Macy  * +------------------------+
252eda14cbcSMatt Macy  */
253eda14cbcSMatt Macy static spl_kmem_slab_t *
spl_slab_alloc(spl_kmem_cache_t * skc,int flags)254eda14cbcSMatt Macy spl_slab_alloc(spl_kmem_cache_t *skc, int flags)
255eda14cbcSMatt Macy {
256eda14cbcSMatt Macy 	spl_kmem_slab_t *sks;
257eda14cbcSMatt Macy 	void *base;
258eda14cbcSMatt Macy 	uint32_t obj_size;
259eda14cbcSMatt Macy 
260eda14cbcSMatt Macy 	base = kv_alloc(skc, skc->skc_slab_size, flags);
261eda14cbcSMatt Macy 	if (base == NULL)
262eda14cbcSMatt Macy 		return (NULL);
263eda14cbcSMatt Macy 
264eda14cbcSMatt Macy 	sks = (spl_kmem_slab_t *)base;
265eda14cbcSMatt Macy 	sks->sks_magic = SKS_MAGIC;
266eda14cbcSMatt Macy 	sks->sks_objs = skc->skc_slab_objs;
267eda14cbcSMatt Macy 	sks->sks_age = jiffies;
268eda14cbcSMatt Macy 	sks->sks_cache = skc;
269eda14cbcSMatt Macy 	INIT_LIST_HEAD(&sks->sks_list);
270eda14cbcSMatt Macy 	INIT_LIST_HEAD(&sks->sks_free_list);
271eda14cbcSMatt Macy 	sks->sks_ref = 0;
272eda14cbcSMatt Macy 	obj_size = spl_obj_size(skc);
273eda14cbcSMatt Macy 
274eda14cbcSMatt Macy 	for (int i = 0; i < sks->sks_objs; i++) {
275eda14cbcSMatt Macy 		void *obj = base + spl_sks_size(skc) + (i * obj_size);
276eda14cbcSMatt Macy 
277eda14cbcSMatt Macy 		ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
278eda14cbcSMatt Macy 		spl_kmem_obj_t *sko = spl_sko_from_obj(skc, obj);
279eda14cbcSMatt Macy 		sko->sko_addr = obj;
280eda14cbcSMatt Macy 		sko->sko_magic = SKO_MAGIC;
281eda14cbcSMatt Macy 		sko->sko_slab = sks;
282eda14cbcSMatt Macy 		INIT_LIST_HEAD(&sko->sko_list);
283eda14cbcSMatt Macy 		list_add_tail(&sko->sko_list, &sks->sks_free_list);
284eda14cbcSMatt Macy 	}
285eda14cbcSMatt Macy 
286eda14cbcSMatt Macy 	return (sks);
287eda14cbcSMatt Macy }
288eda14cbcSMatt Macy 
289eda14cbcSMatt Macy /*
290eda14cbcSMatt Macy  * Remove a slab from complete or partial list, it must be called with
291eda14cbcSMatt Macy  * the 'skc->skc_lock' held but the actual free must be performed
292eda14cbcSMatt Macy  * outside the lock to prevent deadlocking on vmem addresses.
293eda14cbcSMatt Macy  */
294eda14cbcSMatt Macy static void
spl_slab_free(spl_kmem_slab_t * sks,struct list_head * sks_list,struct list_head * sko_list)295eda14cbcSMatt Macy spl_slab_free(spl_kmem_slab_t *sks,
296eda14cbcSMatt Macy     struct list_head *sks_list, struct list_head *sko_list)
297eda14cbcSMatt Macy {
298eda14cbcSMatt Macy 	spl_kmem_cache_t *skc;
299eda14cbcSMatt Macy 
300eda14cbcSMatt Macy 	ASSERT(sks->sks_magic == SKS_MAGIC);
301eda14cbcSMatt Macy 	ASSERT(sks->sks_ref == 0);
302eda14cbcSMatt Macy 
303eda14cbcSMatt Macy 	skc = sks->sks_cache;
304eda14cbcSMatt Macy 	ASSERT(skc->skc_magic == SKC_MAGIC);
305eda14cbcSMatt Macy 
306eda14cbcSMatt Macy 	/*
307eda14cbcSMatt Macy 	 * Update slab/objects counters in the cache, then remove the
308eda14cbcSMatt Macy 	 * slab from the skc->skc_partial_list.  Finally add the slab
309eda14cbcSMatt Macy 	 * and all its objects in to the private work lists where the
310eda14cbcSMatt Macy 	 * destructors will be called and the memory freed to the system.
311eda14cbcSMatt Macy 	 */
312eda14cbcSMatt Macy 	skc->skc_obj_total -= sks->sks_objs;
313eda14cbcSMatt Macy 	skc->skc_slab_total--;
314eda14cbcSMatt Macy 	list_del(&sks->sks_list);
315eda14cbcSMatt Macy 	list_add(&sks->sks_list, sks_list);
316eda14cbcSMatt Macy 	list_splice_init(&sks->sks_free_list, sko_list);
317eda14cbcSMatt Macy }
318eda14cbcSMatt Macy 
319eda14cbcSMatt Macy /*
320eda14cbcSMatt Macy  * Reclaim empty slabs at the end of the partial list.
321eda14cbcSMatt Macy  */
322eda14cbcSMatt Macy static void
spl_slab_reclaim(spl_kmem_cache_t * skc)323eda14cbcSMatt Macy spl_slab_reclaim(spl_kmem_cache_t *skc)
324eda14cbcSMatt Macy {
325eda14cbcSMatt Macy 	spl_kmem_slab_t *sks = NULL, *m = NULL;
326eda14cbcSMatt Macy 	spl_kmem_obj_t *sko = NULL, *n = NULL;
327eda14cbcSMatt Macy 	LIST_HEAD(sks_list);
328eda14cbcSMatt Macy 	LIST_HEAD(sko_list);
329eda14cbcSMatt Macy 
330eda14cbcSMatt Macy 	/*
331eda14cbcSMatt Macy 	 * Empty slabs and objects must be moved to a private list so they
332eda14cbcSMatt Macy 	 * can be safely freed outside the spin lock.  All empty slabs are
333eda14cbcSMatt Macy 	 * at the end of skc->skc_partial_list, therefore once a non-empty
334eda14cbcSMatt Macy 	 * slab is found we can stop scanning.
335eda14cbcSMatt Macy 	 */
336eda14cbcSMatt Macy 	spin_lock(&skc->skc_lock);
337eda14cbcSMatt Macy 	list_for_each_entry_safe_reverse(sks, m,
338eda14cbcSMatt Macy 	    &skc->skc_partial_list, sks_list) {
339eda14cbcSMatt Macy 
340eda14cbcSMatt Macy 		if (sks->sks_ref > 0)
341eda14cbcSMatt Macy 			break;
342eda14cbcSMatt Macy 
343eda14cbcSMatt Macy 		spl_slab_free(sks, &sks_list, &sko_list);
344eda14cbcSMatt Macy 	}
345eda14cbcSMatt Macy 	spin_unlock(&skc->skc_lock);
346eda14cbcSMatt Macy 
347eda14cbcSMatt Macy 	/*
348eda14cbcSMatt Macy 	 * The following two loops ensure all the object destructors are run,
349eda14cbcSMatt Macy 	 * and the slabs themselves are freed.  This is all done outside the
350eda14cbcSMatt Macy 	 * skc->skc_lock since this allows the destructor to sleep, and
351eda14cbcSMatt Macy 	 * allows us to perform a conditional reschedule when a freeing a
352eda14cbcSMatt Macy 	 * large number of objects and slabs back to the system.
353eda14cbcSMatt Macy 	 */
354eda14cbcSMatt Macy 
355eda14cbcSMatt Macy 	list_for_each_entry_safe(sko, n, &sko_list, sko_list) {
356eda14cbcSMatt Macy 		ASSERT(sko->sko_magic == SKO_MAGIC);
357eda14cbcSMatt Macy 	}
358eda14cbcSMatt Macy 
359eda14cbcSMatt Macy 	list_for_each_entry_safe(sks, m, &sks_list, sks_list) {
360eda14cbcSMatt Macy 		ASSERT(sks->sks_magic == SKS_MAGIC);
361eda14cbcSMatt Macy 		kv_free(skc, sks, skc->skc_slab_size);
362eda14cbcSMatt Macy 	}
363eda14cbcSMatt Macy }
364eda14cbcSMatt Macy 
365eda14cbcSMatt Macy static spl_kmem_emergency_t *
spl_emergency_search(struct rb_root * root,void * obj)366eda14cbcSMatt Macy spl_emergency_search(struct rb_root *root, void *obj)
367eda14cbcSMatt Macy {
368eda14cbcSMatt Macy 	struct rb_node *node = root->rb_node;
369eda14cbcSMatt Macy 	spl_kmem_emergency_t *ske;
370eda14cbcSMatt Macy 	unsigned long address = (unsigned long)obj;
371eda14cbcSMatt Macy 
372eda14cbcSMatt Macy 	while (node) {
373eda14cbcSMatt Macy 		ske = container_of(node, spl_kmem_emergency_t, ske_node);
374eda14cbcSMatt Macy 
375eda14cbcSMatt Macy 		if (address < ske->ske_obj)
376eda14cbcSMatt Macy 			node = node->rb_left;
377eda14cbcSMatt Macy 		else if (address > ske->ske_obj)
378eda14cbcSMatt Macy 			node = node->rb_right;
379eda14cbcSMatt Macy 		else
380eda14cbcSMatt Macy 			return (ske);
381eda14cbcSMatt Macy 	}
382eda14cbcSMatt Macy 
383eda14cbcSMatt Macy 	return (NULL);
384eda14cbcSMatt Macy }
385eda14cbcSMatt Macy 
386eda14cbcSMatt Macy static int
spl_emergency_insert(struct rb_root * root,spl_kmem_emergency_t * ske)387eda14cbcSMatt Macy spl_emergency_insert(struct rb_root *root, spl_kmem_emergency_t *ske)
388eda14cbcSMatt Macy {
389eda14cbcSMatt Macy 	struct rb_node **new = &(root->rb_node), *parent = NULL;
390eda14cbcSMatt Macy 	spl_kmem_emergency_t *ske_tmp;
391eda14cbcSMatt Macy 	unsigned long address = ske->ske_obj;
392eda14cbcSMatt Macy 
393eda14cbcSMatt Macy 	while (*new) {
394eda14cbcSMatt Macy 		ske_tmp = container_of(*new, spl_kmem_emergency_t, ske_node);
395eda14cbcSMatt Macy 
396eda14cbcSMatt Macy 		parent = *new;
397eda14cbcSMatt Macy 		if (address < ske_tmp->ske_obj)
398eda14cbcSMatt Macy 			new = &((*new)->rb_left);
399eda14cbcSMatt Macy 		else if (address > ske_tmp->ske_obj)
400eda14cbcSMatt Macy 			new = &((*new)->rb_right);
401eda14cbcSMatt Macy 		else
402eda14cbcSMatt Macy 			return (0);
403eda14cbcSMatt Macy 	}
404eda14cbcSMatt Macy 
405eda14cbcSMatt Macy 	rb_link_node(&ske->ske_node, parent, new);
406eda14cbcSMatt Macy 	rb_insert_color(&ske->ske_node, root);
407eda14cbcSMatt Macy 
408eda14cbcSMatt Macy 	return (1);
409eda14cbcSMatt Macy }
410eda14cbcSMatt Macy 
411eda14cbcSMatt Macy /*
412eda14cbcSMatt Macy  * Allocate a single emergency object and track it in a red black tree.
413eda14cbcSMatt Macy  */
414eda14cbcSMatt Macy static int
spl_emergency_alloc(spl_kmem_cache_t * skc,int flags,void ** obj)415eda14cbcSMatt Macy spl_emergency_alloc(spl_kmem_cache_t *skc, int flags, void **obj)
416eda14cbcSMatt Macy {
417eda14cbcSMatt Macy 	gfp_t lflags = kmem_flags_convert(flags);
418eda14cbcSMatt Macy 	spl_kmem_emergency_t *ske;
419eda14cbcSMatt Macy 	int order = get_order(skc->skc_obj_size);
420eda14cbcSMatt Macy 	int empty;
421eda14cbcSMatt Macy 
422eda14cbcSMatt Macy 	/* Last chance use a partial slab if one now exists */
423eda14cbcSMatt Macy 	spin_lock(&skc->skc_lock);
424eda14cbcSMatt Macy 	empty = list_empty(&skc->skc_partial_list);
425eda14cbcSMatt Macy 	spin_unlock(&skc->skc_lock);
426eda14cbcSMatt Macy 	if (!empty)
427eda14cbcSMatt Macy 		return (-EEXIST);
428eda14cbcSMatt Macy 
429*ce4dcb97SMartin Matuska 	if (skc->skc_flags & KMC_RECLAIMABLE)
430*ce4dcb97SMartin Matuska 		lflags |= __GFP_RECLAIMABLE;
431eda14cbcSMatt Macy 	ske = kmalloc(sizeof (*ske), lflags);
432eda14cbcSMatt Macy 	if (ske == NULL)
433eda14cbcSMatt Macy 		return (-ENOMEM);
434eda14cbcSMatt Macy 
435eda14cbcSMatt Macy 	ske->ske_obj = __get_free_pages(lflags, order);
436eda14cbcSMatt Macy 	if (ske->ske_obj == 0) {
437eda14cbcSMatt Macy 		kfree(ske);
438eda14cbcSMatt Macy 		return (-ENOMEM);
439eda14cbcSMatt Macy 	}
440eda14cbcSMatt Macy 
441eda14cbcSMatt Macy 	spin_lock(&skc->skc_lock);
442eda14cbcSMatt Macy 	empty = spl_emergency_insert(&skc->skc_emergency_tree, ske);
443eda14cbcSMatt Macy 	if (likely(empty)) {
444eda14cbcSMatt Macy 		skc->skc_obj_total++;
445eda14cbcSMatt Macy 		skc->skc_obj_emergency++;
446eda14cbcSMatt Macy 		if (skc->skc_obj_emergency > skc->skc_obj_emergency_max)
447eda14cbcSMatt Macy 			skc->skc_obj_emergency_max = skc->skc_obj_emergency;
448eda14cbcSMatt Macy 	}
449eda14cbcSMatt Macy 	spin_unlock(&skc->skc_lock);
450eda14cbcSMatt Macy 
451eda14cbcSMatt Macy 	if (unlikely(!empty)) {
452eda14cbcSMatt Macy 		free_pages(ske->ske_obj, order);
453eda14cbcSMatt Macy 		kfree(ske);
454eda14cbcSMatt Macy 		return (-EINVAL);
455eda14cbcSMatt Macy 	}
456eda14cbcSMatt Macy 
457eda14cbcSMatt Macy 	*obj = (void *)ske->ske_obj;
458eda14cbcSMatt Macy 
459eda14cbcSMatt Macy 	return (0);
460eda14cbcSMatt Macy }
461eda14cbcSMatt Macy 
462eda14cbcSMatt Macy /*
463eda14cbcSMatt Macy  * Locate the passed object in the red black tree and free it.
464eda14cbcSMatt Macy  */
465eda14cbcSMatt Macy static int
spl_emergency_free(spl_kmem_cache_t * skc,void * obj)466eda14cbcSMatt Macy spl_emergency_free(spl_kmem_cache_t *skc, void *obj)
467eda14cbcSMatt Macy {
468eda14cbcSMatt Macy 	spl_kmem_emergency_t *ske;
469eda14cbcSMatt Macy 	int order = get_order(skc->skc_obj_size);
470eda14cbcSMatt Macy 
471eda14cbcSMatt Macy 	spin_lock(&skc->skc_lock);
472eda14cbcSMatt Macy 	ske = spl_emergency_search(&skc->skc_emergency_tree, obj);
473eda14cbcSMatt Macy 	if (ske) {
474eda14cbcSMatt Macy 		rb_erase(&ske->ske_node, &skc->skc_emergency_tree);
475eda14cbcSMatt Macy 		skc->skc_obj_emergency--;
476eda14cbcSMatt Macy 		skc->skc_obj_total--;
477eda14cbcSMatt Macy 	}
478eda14cbcSMatt Macy 	spin_unlock(&skc->skc_lock);
479eda14cbcSMatt Macy 
480eda14cbcSMatt Macy 	if (ske == NULL)
481eda14cbcSMatt Macy 		return (-ENOENT);
482eda14cbcSMatt Macy 
483eda14cbcSMatt Macy 	free_pages(ske->ske_obj, order);
484eda14cbcSMatt Macy 	kfree(ske);
485eda14cbcSMatt Macy 
486eda14cbcSMatt Macy 	return (0);
487eda14cbcSMatt Macy }
488eda14cbcSMatt Macy 
489eda14cbcSMatt Macy /*
490eda14cbcSMatt Macy  * Release objects from the per-cpu magazine back to their slab.  The flush
491eda14cbcSMatt Macy  * argument contains the max number of entries to remove from the magazine.
492eda14cbcSMatt Macy  */
493eda14cbcSMatt Macy static void
spl_cache_flush(spl_kmem_cache_t * skc,spl_kmem_magazine_t * skm,int flush)494eda14cbcSMatt Macy spl_cache_flush(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flush)
495eda14cbcSMatt Macy {
496eda14cbcSMatt Macy 	spin_lock(&skc->skc_lock);
497eda14cbcSMatt Macy 
498eda14cbcSMatt Macy 	ASSERT(skc->skc_magic == SKC_MAGIC);
499eda14cbcSMatt Macy 	ASSERT(skm->skm_magic == SKM_MAGIC);
500eda14cbcSMatt Macy 
501eda14cbcSMatt Macy 	int count = MIN(flush, skm->skm_avail);
502eda14cbcSMatt Macy 	for (int i = 0; i < count; i++)
503eda14cbcSMatt Macy 		spl_cache_shrink(skc, skm->skm_objs[i]);
504eda14cbcSMatt Macy 
505eda14cbcSMatt Macy 	skm->skm_avail -= count;
506eda14cbcSMatt Macy 	memmove(skm->skm_objs, &(skm->skm_objs[count]),
507eda14cbcSMatt Macy 	    sizeof (void *) * skm->skm_avail);
508eda14cbcSMatt Macy 
509eda14cbcSMatt Macy 	spin_unlock(&skc->skc_lock);
510eda14cbcSMatt Macy }
511eda14cbcSMatt Macy 
512eda14cbcSMatt Macy /*
513eda14cbcSMatt Macy  * Size a slab based on the size of each aligned object plus spl_kmem_obj_t.
514eda14cbcSMatt Macy  * When on-slab we want to target spl_kmem_cache_obj_per_slab.  However,
515eda14cbcSMatt Macy  * for very small objects we may end up with more than this so as not
51616038816SMartin Matuska  * to waste space in the minimal allocation of a single page.
517eda14cbcSMatt Macy  */
518eda14cbcSMatt Macy static int
spl_slab_size(spl_kmem_cache_t * skc,uint32_t * objs,uint32_t * size)519eda14cbcSMatt Macy spl_slab_size(spl_kmem_cache_t *skc, uint32_t *objs, uint32_t *size)
520eda14cbcSMatt Macy {
521eda14cbcSMatt Macy 	uint32_t sks_size, obj_size, max_size, tgt_size, tgt_objs;
522eda14cbcSMatt Macy 
523eda14cbcSMatt Macy 	sks_size = spl_sks_size(skc);
524eda14cbcSMatt Macy 	obj_size = spl_obj_size(skc);
525eda14cbcSMatt Macy 	max_size = (spl_kmem_cache_max_size * 1024 * 1024);
526eda14cbcSMatt Macy 	tgt_size = (spl_kmem_cache_obj_per_slab * obj_size + sks_size);
527eda14cbcSMatt Macy 
528eda14cbcSMatt Macy 	if (tgt_size <= max_size) {
529eda14cbcSMatt Macy 		tgt_objs = (tgt_size - sks_size) / obj_size;
530eda14cbcSMatt Macy 	} else {
531eda14cbcSMatt Macy 		tgt_objs = (max_size - sks_size) / obj_size;
532eda14cbcSMatt Macy 		tgt_size = (tgt_objs * obj_size) + sks_size;
533eda14cbcSMatt Macy 	}
534eda14cbcSMatt Macy 
535eda14cbcSMatt Macy 	if (tgt_objs == 0)
536eda14cbcSMatt Macy 		return (-ENOSPC);
537eda14cbcSMatt Macy 
538eda14cbcSMatt Macy 	*objs = tgt_objs;
539eda14cbcSMatt Macy 	*size = tgt_size;
540eda14cbcSMatt Macy 
541eda14cbcSMatt Macy 	return (0);
542eda14cbcSMatt Macy }
543eda14cbcSMatt Macy 
544eda14cbcSMatt Macy /*
545eda14cbcSMatt Macy  * Make a guess at reasonable per-cpu magazine size based on the size of
546eda14cbcSMatt Macy  * each object and the cost of caching N of them in each magazine.  Long
547eda14cbcSMatt Macy  * term this should really adapt based on an observed usage heuristic.
548eda14cbcSMatt Macy  */
549eda14cbcSMatt Macy static int
spl_magazine_size(spl_kmem_cache_t * skc)550eda14cbcSMatt Macy spl_magazine_size(spl_kmem_cache_t *skc)
551eda14cbcSMatt Macy {
552eda14cbcSMatt Macy 	uint32_t obj_size = spl_obj_size(skc);
553eda14cbcSMatt Macy 	int size;
554eda14cbcSMatt Macy 
555eda14cbcSMatt Macy 	if (spl_kmem_cache_magazine_size > 0)
556eda14cbcSMatt Macy 		return (MAX(MIN(spl_kmem_cache_magazine_size, 256), 2));
557eda14cbcSMatt Macy 
558eda14cbcSMatt Macy 	/* Per-magazine sizes below assume a 4Kib page size */
559eda14cbcSMatt Macy 	if (obj_size > (PAGE_SIZE * 256))
560eda14cbcSMatt Macy 		size = 4;  /* Minimum 4Mib per-magazine */
561eda14cbcSMatt Macy 	else if (obj_size > (PAGE_SIZE * 32))
562eda14cbcSMatt Macy 		size = 16; /* Minimum 2Mib per-magazine */
563eda14cbcSMatt Macy 	else if (obj_size > (PAGE_SIZE))
564eda14cbcSMatt Macy 		size = 64; /* Minimum 256Kib per-magazine */
565eda14cbcSMatt Macy 	else if (obj_size > (PAGE_SIZE / 4))
566eda14cbcSMatt Macy 		size = 128; /* Minimum 128Kib per-magazine */
567eda14cbcSMatt Macy 	else
568eda14cbcSMatt Macy 		size = 256;
569eda14cbcSMatt Macy 
570eda14cbcSMatt Macy 	return (size);
571eda14cbcSMatt Macy }
572eda14cbcSMatt Macy 
573eda14cbcSMatt Macy /*
574eda14cbcSMatt Macy  * Allocate a per-cpu magazine to associate with a specific core.
575eda14cbcSMatt Macy  */
576eda14cbcSMatt Macy static spl_kmem_magazine_t *
spl_magazine_alloc(spl_kmem_cache_t * skc,int cpu)577eda14cbcSMatt Macy spl_magazine_alloc(spl_kmem_cache_t *skc, int cpu)
578eda14cbcSMatt Macy {
579eda14cbcSMatt Macy 	spl_kmem_magazine_t *skm;
580eda14cbcSMatt Macy 	int size = sizeof (spl_kmem_magazine_t) +
581eda14cbcSMatt Macy 	    sizeof (void *) * skc->skc_mag_size;
582eda14cbcSMatt Macy 
583eda14cbcSMatt Macy 	skm = kmalloc_node(size, GFP_KERNEL, cpu_to_node(cpu));
584eda14cbcSMatt Macy 	if (skm) {
585eda14cbcSMatt Macy 		skm->skm_magic = SKM_MAGIC;
586eda14cbcSMatt Macy 		skm->skm_avail = 0;
587eda14cbcSMatt Macy 		skm->skm_size = skc->skc_mag_size;
588eda14cbcSMatt Macy 		skm->skm_refill = skc->skc_mag_refill;
589eda14cbcSMatt Macy 		skm->skm_cache = skc;
590eda14cbcSMatt Macy 		skm->skm_cpu = cpu;
591eda14cbcSMatt Macy 	}
592eda14cbcSMatt Macy 
593eda14cbcSMatt Macy 	return (skm);
594eda14cbcSMatt Macy }
595eda14cbcSMatt Macy 
596eda14cbcSMatt Macy /*
597eda14cbcSMatt Macy  * Free a per-cpu magazine associated with a specific core.
598eda14cbcSMatt Macy  */
599eda14cbcSMatt Macy static void
spl_magazine_free(spl_kmem_magazine_t * skm)600eda14cbcSMatt Macy spl_magazine_free(spl_kmem_magazine_t *skm)
601eda14cbcSMatt Macy {
602eda14cbcSMatt Macy 	ASSERT(skm->skm_magic == SKM_MAGIC);
603eda14cbcSMatt Macy 	ASSERT(skm->skm_avail == 0);
604eda14cbcSMatt Macy 	kfree(skm);
605eda14cbcSMatt Macy }
606eda14cbcSMatt Macy 
607eda14cbcSMatt Macy /*
608eda14cbcSMatt Macy  * Create all pre-cpu magazines of reasonable sizes.
609eda14cbcSMatt Macy  */
610eda14cbcSMatt Macy static int
spl_magazine_create(spl_kmem_cache_t * skc)611eda14cbcSMatt Macy spl_magazine_create(spl_kmem_cache_t *skc)
612eda14cbcSMatt Macy {
613eda14cbcSMatt Macy 	int i = 0;
614eda14cbcSMatt Macy 
615eda14cbcSMatt Macy 	ASSERT((skc->skc_flags & KMC_SLAB) == 0);
616eda14cbcSMatt Macy 
617eda14cbcSMatt Macy 	skc->skc_mag = kzalloc(sizeof (spl_kmem_magazine_t *) *
618eda14cbcSMatt Macy 	    num_possible_cpus(), kmem_flags_convert(KM_SLEEP));
619eda14cbcSMatt Macy 	skc->skc_mag_size = spl_magazine_size(skc);
620eda14cbcSMatt Macy 	skc->skc_mag_refill = (skc->skc_mag_size + 1) / 2;
621eda14cbcSMatt Macy 
622eda14cbcSMatt Macy 	for_each_possible_cpu(i) {
623eda14cbcSMatt Macy 		skc->skc_mag[i] = spl_magazine_alloc(skc, i);
624eda14cbcSMatt Macy 		if (!skc->skc_mag[i]) {
625eda14cbcSMatt Macy 			for (i--; i >= 0; i--)
626eda14cbcSMatt Macy 				spl_magazine_free(skc->skc_mag[i]);
627eda14cbcSMatt Macy 
628eda14cbcSMatt Macy 			kfree(skc->skc_mag);
629eda14cbcSMatt Macy 			return (-ENOMEM);
630eda14cbcSMatt Macy 		}
631eda14cbcSMatt Macy 	}
632eda14cbcSMatt Macy 
633eda14cbcSMatt Macy 	return (0);
634eda14cbcSMatt Macy }
635eda14cbcSMatt Macy 
636eda14cbcSMatt Macy /*
637eda14cbcSMatt Macy  * Destroy all pre-cpu magazines.
638eda14cbcSMatt Macy  */
639eda14cbcSMatt Macy static void
spl_magazine_destroy(spl_kmem_cache_t * skc)640eda14cbcSMatt Macy spl_magazine_destroy(spl_kmem_cache_t *skc)
641eda14cbcSMatt Macy {
642eda14cbcSMatt Macy 	spl_kmem_magazine_t *skm;
643eda14cbcSMatt Macy 	int i = 0;
644eda14cbcSMatt Macy 
645eda14cbcSMatt Macy 	ASSERT((skc->skc_flags & KMC_SLAB) == 0);
646eda14cbcSMatt Macy 
647eda14cbcSMatt Macy 	for_each_possible_cpu(i) {
648eda14cbcSMatt Macy 		skm = skc->skc_mag[i];
649eda14cbcSMatt Macy 		spl_cache_flush(skc, skm, skm->skm_avail);
650eda14cbcSMatt Macy 		spl_magazine_free(skm);
651eda14cbcSMatt Macy 	}
652eda14cbcSMatt Macy 
653eda14cbcSMatt Macy 	kfree(skc->skc_mag);
654eda14cbcSMatt Macy }
655eda14cbcSMatt Macy 
656eda14cbcSMatt Macy /*
657eda14cbcSMatt Macy  * Create a object cache based on the following arguments:
658eda14cbcSMatt Macy  * name		cache name
659eda14cbcSMatt Macy  * size		cache object size
660eda14cbcSMatt Macy  * align	cache object alignment
661eda14cbcSMatt Macy  * ctor		cache object constructor
662eda14cbcSMatt Macy  * dtor		cache object destructor
663eda14cbcSMatt Macy  * reclaim	cache object reclaim
664eda14cbcSMatt Macy  * priv		cache private data for ctor/dtor/reclaim
665eda14cbcSMatt Macy  * vmp		unused must be NULL
666eda14cbcSMatt Macy  * flags
667eda14cbcSMatt Macy  *	KMC_KVMEM       Force kvmem backed SPL cache
668eda14cbcSMatt Macy  *	KMC_SLAB        Force Linux slab backed cache
669eda14cbcSMatt Macy  *	KMC_NODEBUG	Disable debugging (unsupported)
670*ce4dcb97SMartin Matuska  *	KMC_RECLAIMABLE	Memory can be freed under pressure
671eda14cbcSMatt Macy  */
672eda14cbcSMatt Macy spl_kmem_cache_t *
spl_kmem_cache_create(const char * name,size_t size,size_t align,spl_kmem_ctor_t ctor,spl_kmem_dtor_t dtor,void * reclaim,void * priv,void * vmp,int flags)673a0b956f5SMartin Matuska spl_kmem_cache_create(const char *name, size_t size, size_t align,
674eda14cbcSMatt Macy     spl_kmem_ctor_t ctor, spl_kmem_dtor_t dtor, void *reclaim,
675eda14cbcSMatt Macy     void *priv, void *vmp, int flags)
676eda14cbcSMatt Macy {
677eda14cbcSMatt Macy 	gfp_t lflags = kmem_flags_convert(KM_SLEEP);
678eda14cbcSMatt Macy 	spl_kmem_cache_t *skc;
679eda14cbcSMatt Macy 	int rc;
680eda14cbcSMatt Macy 
681eda14cbcSMatt Macy 	/*
682eda14cbcSMatt Macy 	 * Unsupported flags
683eda14cbcSMatt Macy 	 */
684eda14cbcSMatt Macy 	ASSERT(vmp == NULL);
685eda14cbcSMatt Macy 	ASSERT(reclaim == NULL);
686eda14cbcSMatt Macy 
687eda14cbcSMatt Macy 	might_sleep();
688eda14cbcSMatt Macy 
689eda14cbcSMatt Macy 	skc = kzalloc(sizeof (*skc), lflags);
690eda14cbcSMatt Macy 	if (skc == NULL)
691eda14cbcSMatt Macy 		return (NULL);
692eda14cbcSMatt Macy 
693eda14cbcSMatt Macy 	skc->skc_magic = SKC_MAGIC;
694eda14cbcSMatt Macy 	skc->skc_name_size = strlen(name) + 1;
69515f0b8c3SMartin Matuska 	skc->skc_name = kmalloc(skc->skc_name_size, lflags);
696eda14cbcSMatt Macy 	if (skc->skc_name == NULL) {
697eda14cbcSMatt Macy 		kfree(skc);
698eda14cbcSMatt Macy 		return (NULL);
699eda14cbcSMatt Macy 	}
700be181ee2SMartin Matuska 	strlcpy(skc->skc_name, name, skc->skc_name_size);
701eda14cbcSMatt Macy 
702eda14cbcSMatt Macy 	skc->skc_ctor = ctor;
703eda14cbcSMatt Macy 	skc->skc_dtor = dtor;
704eda14cbcSMatt Macy 	skc->skc_private = priv;
705eda14cbcSMatt Macy 	skc->skc_vmp = vmp;
706eda14cbcSMatt Macy 	skc->skc_linux_cache = NULL;
707eda14cbcSMatt Macy 	skc->skc_flags = flags;
708eda14cbcSMatt Macy 	skc->skc_obj_size = size;
709eda14cbcSMatt Macy 	skc->skc_obj_align = SPL_KMEM_CACHE_ALIGN;
710eda14cbcSMatt Macy 	atomic_set(&skc->skc_ref, 0);
711eda14cbcSMatt Macy 
712eda14cbcSMatt Macy 	INIT_LIST_HEAD(&skc->skc_list);
713eda14cbcSMatt Macy 	INIT_LIST_HEAD(&skc->skc_complete_list);
714eda14cbcSMatt Macy 	INIT_LIST_HEAD(&skc->skc_partial_list);
715eda14cbcSMatt Macy 	skc->skc_emergency_tree = RB_ROOT;
716eda14cbcSMatt Macy 	spin_lock_init(&skc->skc_lock);
717eda14cbcSMatt Macy 	init_waitqueue_head(&skc->skc_waitq);
718eda14cbcSMatt Macy 	skc->skc_slab_fail = 0;
719eda14cbcSMatt Macy 	skc->skc_slab_create = 0;
720eda14cbcSMatt Macy 	skc->skc_slab_destroy = 0;
721eda14cbcSMatt Macy 	skc->skc_slab_total = 0;
722eda14cbcSMatt Macy 	skc->skc_slab_alloc = 0;
723eda14cbcSMatt Macy 	skc->skc_slab_max = 0;
724eda14cbcSMatt Macy 	skc->skc_obj_total = 0;
725eda14cbcSMatt Macy 	skc->skc_obj_alloc = 0;
726eda14cbcSMatt Macy 	skc->skc_obj_max = 0;
727eda14cbcSMatt Macy 	skc->skc_obj_deadlock = 0;
728eda14cbcSMatt Macy 	skc->skc_obj_emergency = 0;
729eda14cbcSMatt Macy 	skc->skc_obj_emergency_max = 0;
730eda14cbcSMatt Macy 
731eda14cbcSMatt Macy 	rc = percpu_counter_init_common(&skc->skc_linux_alloc, 0,
732eda14cbcSMatt Macy 	    GFP_KERNEL);
733eda14cbcSMatt Macy 	if (rc != 0) {
734eda14cbcSMatt Macy 		kfree(skc);
735eda14cbcSMatt Macy 		return (NULL);
736eda14cbcSMatt Macy 	}
737eda14cbcSMatt Macy 
738eda14cbcSMatt Macy 	/*
739eda14cbcSMatt Macy 	 * Verify the requested alignment restriction is sane.
740eda14cbcSMatt Macy 	 */
741eda14cbcSMatt Macy 	if (align) {
742eda14cbcSMatt Macy 		VERIFY(ISP2(align));
743eda14cbcSMatt Macy 		VERIFY3U(align, >=, SPL_KMEM_CACHE_ALIGN);
744eda14cbcSMatt Macy 		VERIFY3U(align, <=, PAGE_SIZE);
745eda14cbcSMatt Macy 		skc->skc_obj_align = align;
746eda14cbcSMatt Macy 	}
747eda14cbcSMatt Macy 
748eda14cbcSMatt Macy 	/*
749eda14cbcSMatt Macy 	 * When no specific type of slab is requested (kmem, vmem, or
750eda14cbcSMatt Macy 	 * linuxslab) then select a cache type based on the object size
751eda14cbcSMatt Macy 	 * and default tunables.
752eda14cbcSMatt Macy 	 */
753eda14cbcSMatt Macy 	if (!(skc->skc_flags & (KMC_SLAB | KMC_KVMEM))) {
754eda14cbcSMatt Macy 		if (spl_kmem_cache_slab_limit &&
755eda14cbcSMatt Macy 		    size <= (size_t)spl_kmem_cache_slab_limit) {
756eda14cbcSMatt Macy 			/*
757eda14cbcSMatt Macy 			 * Objects smaller than spl_kmem_cache_slab_limit can
758eda14cbcSMatt Macy 			 * use the Linux slab for better space-efficiency.
759eda14cbcSMatt Macy 			 */
760eda14cbcSMatt Macy 			skc->skc_flags |= KMC_SLAB;
761eda14cbcSMatt Macy 		} else {
762eda14cbcSMatt Macy 			/*
763eda14cbcSMatt Macy 			 * All other objects are considered large and are
764eda14cbcSMatt Macy 			 * placed on kvmem backed slabs.
765eda14cbcSMatt Macy 			 */
766eda14cbcSMatt Macy 			skc->skc_flags |= KMC_KVMEM;
767eda14cbcSMatt Macy 		}
768eda14cbcSMatt Macy 	}
769eda14cbcSMatt Macy 
770eda14cbcSMatt Macy 	/*
771eda14cbcSMatt Macy 	 * Given the type of slab allocate the required resources.
772eda14cbcSMatt Macy 	 */
773eda14cbcSMatt Macy 	if (skc->skc_flags & KMC_KVMEM) {
774eda14cbcSMatt Macy 		rc = spl_slab_size(skc,
775eda14cbcSMatt Macy 		    &skc->skc_slab_objs, &skc->skc_slab_size);
776eda14cbcSMatt Macy 		if (rc)
777eda14cbcSMatt Macy 			goto out;
778eda14cbcSMatt Macy 
779eda14cbcSMatt Macy 		rc = spl_magazine_create(skc);
780eda14cbcSMatt Macy 		if (rc)
781eda14cbcSMatt Macy 			goto out;
782eda14cbcSMatt Macy 	} else {
783eda14cbcSMatt Macy 		unsigned long slabflags = 0;
784eda14cbcSMatt Macy 
78578ae60b4SMartin Matuska 		if (size > spl_kmem_cache_slab_limit)
786eda14cbcSMatt Macy 			goto out;
787eda14cbcSMatt Macy 
788*ce4dcb97SMartin Matuska 		if (skc->skc_flags & KMC_RECLAIMABLE)
789*ce4dcb97SMartin Matuska 			slabflags |= SLAB_RECLAIM_ACCOUNT;
790*ce4dcb97SMartin Matuska 
791eda14cbcSMatt Macy #if defined(SLAB_USERCOPY)
792eda14cbcSMatt Macy 		/*
793eda14cbcSMatt Macy 		 * Required for PAX-enabled kernels if the slab is to be
794eda14cbcSMatt Macy 		 * used for copying between user and kernel space.
795eda14cbcSMatt Macy 		 */
796eda14cbcSMatt Macy 		slabflags |= SLAB_USERCOPY;
797eda14cbcSMatt Macy #endif
798eda14cbcSMatt Macy 
799eda14cbcSMatt Macy #if defined(HAVE_KMEM_CACHE_CREATE_USERCOPY)
800eda14cbcSMatt Macy 		/*
801eda14cbcSMatt Macy 		 * Newer grsec patchset uses kmem_cache_create_usercopy()
802eda14cbcSMatt Macy 		 * instead of SLAB_USERCOPY flag
803eda14cbcSMatt Macy 		 */
804eda14cbcSMatt Macy 		skc->skc_linux_cache = kmem_cache_create_usercopy(
805eda14cbcSMatt Macy 		    skc->skc_name, size, align, slabflags, 0, size, NULL);
806eda14cbcSMatt Macy #else
807eda14cbcSMatt Macy 		skc->skc_linux_cache = kmem_cache_create(
808eda14cbcSMatt Macy 		    skc->skc_name, size, align, slabflags, NULL);
809eda14cbcSMatt Macy #endif
81015f0b8c3SMartin Matuska 		if (skc->skc_linux_cache == NULL)
811eda14cbcSMatt Macy 			goto out;
812eda14cbcSMatt Macy 	}
813eda14cbcSMatt Macy 
814eda14cbcSMatt Macy 	down_write(&spl_kmem_cache_sem);
815eda14cbcSMatt Macy 	list_add_tail(&skc->skc_list, &spl_kmem_cache_list);
816eda14cbcSMatt Macy 	up_write(&spl_kmem_cache_sem);
817eda14cbcSMatt Macy 
818eda14cbcSMatt Macy 	return (skc);
819eda14cbcSMatt Macy out:
820eda14cbcSMatt Macy 	kfree(skc->skc_name);
821eda14cbcSMatt Macy 	percpu_counter_destroy(&skc->skc_linux_alloc);
822eda14cbcSMatt Macy 	kfree(skc);
823eda14cbcSMatt Macy 	return (NULL);
824eda14cbcSMatt Macy }
825eda14cbcSMatt Macy EXPORT_SYMBOL(spl_kmem_cache_create);
826eda14cbcSMatt Macy 
827eda14cbcSMatt Macy /*
828eda14cbcSMatt Macy  * Register a move callback for cache defragmentation.
829eda14cbcSMatt Macy  * XXX: Unimplemented but harmless to stub out for now.
830eda14cbcSMatt Macy  */
831eda14cbcSMatt Macy void
spl_kmem_cache_set_move(spl_kmem_cache_t * skc,kmem_cbrc_t (move)(void *,void *,size_t,void *))832eda14cbcSMatt Macy spl_kmem_cache_set_move(spl_kmem_cache_t *skc,
833eda14cbcSMatt Macy     kmem_cbrc_t (move)(void *, void *, size_t, void *))
834eda14cbcSMatt Macy {
835eda14cbcSMatt Macy 	ASSERT(move != NULL);
836eda14cbcSMatt Macy }
837eda14cbcSMatt Macy EXPORT_SYMBOL(spl_kmem_cache_set_move);
838eda14cbcSMatt Macy 
839eda14cbcSMatt Macy /*
840eda14cbcSMatt Macy  * Destroy a cache and all objects associated with the cache.
841eda14cbcSMatt Macy  */
842eda14cbcSMatt Macy void
spl_kmem_cache_destroy(spl_kmem_cache_t * skc)843eda14cbcSMatt Macy spl_kmem_cache_destroy(spl_kmem_cache_t *skc)
844eda14cbcSMatt Macy {
845eda14cbcSMatt Macy 	DECLARE_WAIT_QUEUE_HEAD(wq);
846eda14cbcSMatt Macy 	taskqid_t id;
847eda14cbcSMatt Macy 
848eda14cbcSMatt Macy 	ASSERT(skc->skc_magic == SKC_MAGIC);
849eda14cbcSMatt Macy 	ASSERT(skc->skc_flags & (KMC_KVMEM | KMC_SLAB));
850eda14cbcSMatt Macy 
851eda14cbcSMatt Macy 	down_write(&spl_kmem_cache_sem);
852eda14cbcSMatt Macy 	list_del_init(&skc->skc_list);
853eda14cbcSMatt Macy 	up_write(&spl_kmem_cache_sem);
854eda14cbcSMatt Macy 
855eda14cbcSMatt Macy 	/* Cancel any and wait for any pending delayed tasks */
856eda14cbcSMatt Macy 	VERIFY(!test_and_set_bit(KMC_BIT_DESTROY, &skc->skc_flags));
857eda14cbcSMatt Macy 
858eda14cbcSMatt Macy 	spin_lock(&skc->skc_lock);
859eda14cbcSMatt Macy 	id = skc->skc_taskqid;
860eda14cbcSMatt Macy 	spin_unlock(&skc->skc_lock);
861eda14cbcSMatt Macy 
862eda14cbcSMatt Macy 	taskq_cancel_id(spl_kmem_cache_taskq, id);
863eda14cbcSMatt Macy 
864eda14cbcSMatt Macy 	/*
865eda14cbcSMatt Macy 	 * Wait until all current callers complete, this is mainly
866eda14cbcSMatt Macy 	 * to catch the case where a low memory situation triggers a
867eda14cbcSMatt Macy 	 * cache reaping action which races with this destroy.
868eda14cbcSMatt Macy 	 */
869eda14cbcSMatt Macy 	wait_event(wq, atomic_read(&skc->skc_ref) == 0);
870eda14cbcSMatt Macy 
871eda14cbcSMatt Macy 	if (skc->skc_flags & KMC_KVMEM) {
872eda14cbcSMatt Macy 		spl_magazine_destroy(skc);
873eda14cbcSMatt Macy 		spl_slab_reclaim(skc);
874eda14cbcSMatt Macy 	} else {
875eda14cbcSMatt Macy 		ASSERT(skc->skc_flags & KMC_SLAB);
876eda14cbcSMatt Macy 		kmem_cache_destroy(skc->skc_linux_cache);
877eda14cbcSMatt Macy 	}
878eda14cbcSMatt Macy 
879eda14cbcSMatt Macy 	spin_lock(&skc->skc_lock);
880eda14cbcSMatt Macy 
881eda14cbcSMatt Macy 	/*
882eda14cbcSMatt Macy 	 * Validate there are no objects in use and free all the
883eda14cbcSMatt Macy 	 * spl_kmem_slab_t, spl_kmem_obj_t, and object buffers.
884eda14cbcSMatt Macy 	 */
885eda14cbcSMatt Macy 	ASSERT3U(skc->skc_slab_alloc, ==, 0);
886eda14cbcSMatt Macy 	ASSERT3U(skc->skc_obj_alloc, ==, 0);
887eda14cbcSMatt Macy 	ASSERT3U(skc->skc_slab_total, ==, 0);
888eda14cbcSMatt Macy 	ASSERT3U(skc->skc_obj_total, ==, 0);
889eda14cbcSMatt Macy 	ASSERT3U(skc->skc_obj_emergency, ==, 0);
890eda14cbcSMatt Macy 	ASSERT(list_empty(&skc->skc_complete_list));
891eda14cbcSMatt Macy 
892eda14cbcSMatt Macy 	ASSERT3U(percpu_counter_sum(&skc->skc_linux_alloc), ==, 0);
893eda14cbcSMatt Macy 	percpu_counter_destroy(&skc->skc_linux_alloc);
894eda14cbcSMatt Macy 
895eda14cbcSMatt Macy 	spin_unlock(&skc->skc_lock);
896eda14cbcSMatt Macy 
897eda14cbcSMatt Macy 	kfree(skc->skc_name);
898eda14cbcSMatt Macy 	kfree(skc);
899eda14cbcSMatt Macy }
900eda14cbcSMatt Macy EXPORT_SYMBOL(spl_kmem_cache_destroy);
901eda14cbcSMatt Macy 
902eda14cbcSMatt Macy /*
903eda14cbcSMatt Macy  * Allocate an object from a slab attached to the cache.  This is used to
904eda14cbcSMatt Macy  * repopulate the per-cpu magazine caches in batches when they run low.
905eda14cbcSMatt Macy  */
906eda14cbcSMatt Macy static void *
spl_cache_obj(spl_kmem_cache_t * skc,spl_kmem_slab_t * sks)907eda14cbcSMatt Macy spl_cache_obj(spl_kmem_cache_t *skc, spl_kmem_slab_t *sks)
908eda14cbcSMatt Macy {
909eda14cbcSMatt Macy 	spl_kmem_obj_t *sko;
910eda14cbcSMatt Macy 
911eda14cbcSMatt Macy 	ASSERT(skc->skc_magic == SKC_MAGIC);
912eda14cbcSMatt Macy 	ASSERT(sks->sks_magic == SKS_MAGIC);
913eda14cbcSMatt Macy 
914eda14cbcSMatt Macy 	sko = list_entry(sks->sks_free_list.next, spl_kmem_obj_t, sko_list);
915eda14cbcSMatt Macy 	ASSERT(sko->sko_magic == SKO_MAGIC);
916eda14cbcSMatt Macy 	ASSERT(sko->sko_addr != NULL);
917eda14cbcSMatt Macy 
918eda14cbcSMatt Macy 	/* Remove from sks_free_list */
919eda14cbcSMatt Macy 	list_del_init(&sko->sko_list);
920eda14cbcSMatt Macy 
921eda14cbcSMatt Macy 	sks->sks_age = jiffies;
922eda14cbcSMatt Macy 	sks->sks_ref++;
923eda14cbcSMatt Macy 	skc->skc_obj_alloc++;
924eda14cbcSMatt Macy 
925eda14cbcSMatt Macy 	/* Track max obj usage statistics */
926eda14cbcSMatt Macy 	if (skc->skc_obj_alloc > skc->skc_obj_max)
927eda14cbcSMatt Macy 		skc->skc_obj_max = skc->skc_obj_alloc;
928eda14cbcSMatt Macy 
929eda14cbcSMatt Macy 	/* Track max slab usage statistics */
930eda14cbcSMatt Macy 	if (sks->sks_ref == 1) {
931eda14cbcSMatt Macy 		skc->skc_slab_alloc++;
932eda14cbcSMatt Macy 
933eda14cbcSMatt Macy 		if (skc->skc_slab_alloc > skc->skc_slab_max)
934eda14cbcSMatt Macy 			skc->skc_slab_max = skc->skc_slab_alloc;
935eda14cbcSMatt Macy 	}
936eda14cbcSMatt Macy 
937eda14cbcSMatt Macy 	return (sko->sko_addr);
938eda14cbcSMatt Macy }
939eda14cbcSMatt Macy 
940eda14cbcSMatt Macy /*
941eda14cbcSMatt Macy  * Generic slab allocation function to run by the global work queues.
942eda14cbcSMatt Macy  * It is responsible for allocating a new slab, linking it in to the list
943eda14cbcSMatt Macy  * of partial slabs, and then waking any waiters.
944eda14cbcSMatt Macy  */
945eda14cbcSMatt Macy static int
__spl_cache_grow(spl_kmem_cache_t * skc,int flags)946eda14cbcSMatt Macy __spl_cache_grow(spl_kmem_cache_t *skc, int flags)
947eda14cbcSMatt Macy {
948eda14cbcSMatt Macy 	spl_kmem_slab_t *sks;
949eda14cbcSMatt Macy 
950eda14cbcSMatt Macy 	fstrans_cookie_t cookie = spl_fstrans_mark();
951eda14cbcSMatt Macy 	sks = spl_slab_alloc(skc, flags);
952eda14cbcSMatt Macy 	spl_fstrans_unmark(cookie);
953eda14cbcSMatt Macy 
954eda14cbcSMatt Macy 	spin_lock(&skc->skc_lock);
955eda14cbcSMatt Macy 	if (sks) {
956eda14cbcSMatt Macy 		skc->skc_slab_total++;
957eda14cbcSMatt Macy 		skc->skc_obj_total += sks->sks_objs;
958eda14cbcSMatt Macy 		list_add_tail(&sks->sks_list, &skc->skc_partial_list);
959eda14cbcSMatt Macy 
960eda14cbcSMatt Macy 		smp_mb__before_atomic();
961eda14cbcSMatt Macy 		clear_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags);
962eda14cbcSMatt Macy 		smp_mb__after_atomic();
963eda14cbcSMatt Macy 	}
964eda14cbcSMatt Macy 	spin_unlock(&skc->skc_lock);
965eda14cbcSMatt Macy 
966eda14cbcSMatt Macy 	return (sks == NULL ? -ENOMEM : 0);
967eda14cbcSMatt Macy }
968eda14cbcSMatt Macy 
969eda14cbcSMatt Macy static void
spl_cache_grow_work(void * data)970eda14cbcSMatt Macy spl_cache_grow_work(void *data)
971eda14cbcSMatt Macy {
972eda14cbcSMatt Macy 	spl_kmem_alloc_t *ska = (spl_kmem_alloc_t *)data;
973eda14cbcSMatt Macy 	spl_kmem_cache_t *skc = ska->ska_cache;
974eda14cbcSMatt Macy 
975eda14cbcSMatt Macy 	int error = __spl_cache_grow(skc, ska->ska_flags);
976eda14cbcSMatt Macy 
977eda14cbcSMatt Macy 	atomic_dec(&skc->skc_ref);
978eda14cbcSMatt Macy 	smp_mb__before_atomic();
979eda14cbcSMatt Macy 	clear_bit(KMC_BIT_GROWING, &skc->skc_flags);
980eda14cbcSMatt Macy 	smp_mb__after_atomic();
981eda14cbcSMatt Macy 	if (error == 0)
982eda14cbcSMatt Macy 		wake_up_all(&skc->skc_waitq);
983eda14cbcSMatt Macy 
984eda14cbcSMatt Macy 	kfree(ska);
985eda14cbcSMatt Macy }
986eda14cbcSMatt Macy 
987eda14cbcSMatt Macy /*
988eda14cbcSMatt Macy  * Returns non-zero when a new slab should be available.
989eda14cbcSMatt Macy  */
990eda14cbcSMatt Macy static int
spl_cache_grow_wait(spl_kmem_cache_t * skc)991eda14cbcSMatt Macy spl_cache_grow_wait(spl_kmem_cache_t *skc)
992eda14cbcSMatt Macy {
993eda14cbcSMatt Macy 	return (!test_bit(KMC_BIT_GROWING, &skc->skc_flags));
994eda14cbcSMatt Macy }
995eda14cbcSMatt Macy 
996eda14cbcSMatt Macy /*
997eda14cbcSMatt Macy  * No available objects on any slabs, create a new slab.  Note that this
998eda14cbcSMatt Macy  * functionality is disabled for KMC_SLAB caches which are backed by the
999eda14cbcSMatt Macy  * Linux slab.
1000eda14cbcSMatt Macy  */
1001eda14cbcSMatt Macy static int
spl_cache_grow(spl_kmem_cache_t * skc,int flags,void ** obj)1002eda14cbcSMatt Macy spl_cache_grow(spl_kmem_cache_t *skc, int flags, void **obj)
1003eda14cbcSMatt Macy {
1004eda14cbcSMatt Macy 	int remaining, rc = 0;
1005eda14cbcSMatt Macy 
1006eda14cbcSMatt Macy 	ASSERT0(flags & ~KM_PUBLIC_MASK);
1007eda14cbcSMatt Macy 	ASSERT(skc->skc_magic == SKC_MAGIC);
1008eda14cbcSMatt Macy 	ASSERT((skc->skc_flags & KMC_SLAB) == 0);
10094e8d558cSMartin Matuska 
1010eda14cbcSMatt Macy 	*obj = NULL;
1011eda14cbcSMatt Macy 
1012eda14cbcSMatt Macy 	/*
10134e8d558cSMartin Matuska 	 * Since we can't sleep attempt an emergency allocation to satisfy
10144e8d558cSMartin Matuska 	 * the request.  The only alterative is to fail the allocation but
10154e8d558cSMartin Matuska 	 * it's preferable try.  The use of KM_NOSLEEP is expected to be rare.
10164e8d558cSMartin Matuska 	 */
10174e8d558cSMartin Matuska 	if (flags & KM_NOSLEEP)
10184e8d558cSMartin Matuska 		return (spl_emergency_alloc(skc, flags, obj));
10194e8d558cSMartin Matuska 
10204e8d558cSMartin Matuska 	might_sleep();
10214e8d558cSMartin Matuska 
10224e8d558cSMartin Matuska 	/*
1023eda14cbcSMatt Macy 	 * Before allocating a new slab wait for any reaping to complete and
1024eda14cbcSMatt Macy 	 * then return so the local magazine can be rechecked for new objects.
1025eda14cbcSMatt Macy 	 */
1026eda14cbcSMatt Macy 	if (test_bit(KMC_BIT_REAPING, &skc->skc_flags)) {
1027eda14cbcSMatt Macy 		rc = spl_wait_on_bit(&skc->skc_flags, KMC_BIT_REAPING,
1028eda14cbcSMatt Macy 		    TASK_UNINTERRUPTIBLE);
1029eda14cbcSMatt Macy 		return (rc ? rc : -EAGAIN);
1030eda14cbcSMatt Macy 	}
1031eda14cbcSMatt Macy 
1032eda14cbcSMatt Macy 	/*
1033eda14cbcSMatt Macy 	 * Note: It would be nice to reduce the overhead of context switch
1034eda14cbcSMatt Macy 	 * and improve NUMA locality, by trying to allocate a new slab in the
1035eda14cbcSMatt Macy 	 * current process context with KM_NOSLEEP flag.
1036eda14cbcSMatt Macy 	 *
1037eda14cbcSMatt Macy 	 * However, this can't be applied to vmem/kvmem due to a bug that
1038eda14cbcSMatt Macy 	 * spl_vmalloc() doesn't honor gfp flags in page table allocation.
1039eda14cbcSMatt Macy 	 */
1040eda14cbcSMatt Macy 
1041eda14cbcSMatt Macy 	/*
1042eda14cbcSMatt Macy 	 * This is handled by dispatching a work request to the global work
1043eda14cbcSMatt Macy 	 * queue.  This allows us to asynchronously allocate a new slab while
1044eda14cbcSMatt Macy 	 * retaining the ability to safely fall back to a smaller synchronous
1045eda14cbcSMatt Macy 	 * allocations to ensure forward progress is always maintained.
1046eda14cbcSMatt Macy 	 */
1047eda14cbcSMatt Macy 	if (test_and_set_bit(KMC_BIT_GROWING, &skc->skc_flags) == 0) {
1048eda14cbcSMatt Macy 		spl_kmem_alloc_t *ska;
1049eda14cbcSMatt Macy 
1050eda14cbcSMatt Macy 		ska = kmalloc(sizeof (*ska), kmem_flags_convert(flags));
1051eda14cbcSMatt Macy 		if (ska == NULL) {
1052eda14cbcSMatt Macy 			clear_bit_unlock(KMC_BIT_GROWING, &skc->skc_flags);
1053eda14cbcSMatt Macy 			smp_mb__after_atomic();
1054eda14cbcSMatt Macy 			wake_up_all(&skc->skc_waitq);
1055eda14cbcSMatt Macy 			return (-ENOMEM);
1056eda14cbcSMatt Macy 		}
1057eda14cbcSMatt Macy 
1058eda14cbcSMatt Macy 		atomic_inc(&skc->skc_ref);
1059eda14cbcSMatt Macy 		ska->ska_cache = skc;
1060eda14cbcSMatt Macy 		ska->ska_flags = flags;
1061eda14cbcSMatt Macy 		taskq_init_ent(&ska->ska_tqe);
1062eda14cbcSMatt Macy 		taskq_dispatch_ent(spl_kmem_cache_taskq,
1063eda14cbcSMatt Macy 		    spl_cache_grow_work, ska, 0, &ska->ska_tqe);
1064eda14cbcSMatt Macy 	}
1065eda14cbcSMatt Macy 
1066eda14cbcSMatt Macy 	/*
1067eda14cbcSMatt Macy 	 * The goal here is to only detect the rare case where a virtual slab
1068eda14cbcSMatt Macy 	 * allocation has deadlocked.  We must be careful to minimize the use
1069eda14cbcSMatt Macy 	 * of emergency objects which are more expensive to track.  Therefore,
1070eda14cbcSMatt Macy 	 * we set a very long timeout for the asynchronous allocation and if
1071eda14cbcSMatt Macy 	 * the timeout is reached the cache is flagged as deadlocked.  From
1072eda14cbcSMatt Macy 	 * this point only new emergency objects will be allocated until the
1073eda14cbcSMatt Macy 	 * asynchronous allocation completes and clears the deadlocked flag.
1074eda14cbcSMatt Macy 	 */
1075eda14cbcSMatt Macy 	if (test_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags)) {
1076eda14cbcSMatt Macy 		rc = spl_emergency_alloc(skc, flags, obj);
1077eda14cbcSMatt Macy 	} else {
1078eda14cbcSMatt Macy 		remaining = wait_event_timeout(skc->skc_waitq,
1079eda14cbcSMatt Macy 		    spl_cache_grow_wait(skc), HZ / 10);
1080eda14cbcSMatt Macy 
1081eda14cbcSMatt Macy 		if (!remaining) {
1082eda14cbcSMatt Macy 			spin_lock(&skc->skc_lock);
1083eda14cbcSMatt Macy 			if (test_bit(KMC_BIT_GROWING, &skc->skc_flags)) {
1084eda14cbcSMatt Macy 				set_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags);
1085eda14cbcSMatt Macy 				skc->skc_obj_deadlock++;
1086eda14cbcSMatt Macy 			}
1087eda14cbcSMatt Macy 			spin_unlock(&skc->skc_lock);
1088eda14cbcSMatt Macy 		}
1089eda14cbcSMatt Macy 
1090eda14cbcSMatt Macy 		rc = -ENOMEM;
1091eda14cbcSMatt Macy 	}
1092eda14cbcSMatt Macy 
1093eda14cbcSMatt Macy 	return (rc);
1094eda14cbcSMatt Macy }
1095eda14cbcSMatt Macy 
1096eda14cbcSMatt Macy /*
1097eda14cbcSMatt Macy  * Refill a per-cpu magazine with objects from the slabs for this cache.
1098eda14cbcSMatt Macy  * Ideally the magazine can be repopulated using existing objects which have
1099eda14cbcSMatt Macy  * been released, however if we are unable to locate enough free objects new
1100eda14cbcSMatt Macy  * slabs of objects will be created.  On success NULL is returned, otherwise
1101eda14cbcSMatt Macy  * the address of a single emergency object is returned for use by the caller.
1102eda14cbcSMatt Macy  */
1103eda14cbcSMatt Macy static void *
spl_cache_refill(spl_kmem_cache_t * skc,spl_kmem_magazine_t * skm,int flags)1104eda14cbcSMatt Macy spl_cache_refill(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flags)
1105eda14cbcSMatt Macy {
1106eda14cbcSMatt Macy 	spl_kmem_slab_t *sks;
1107eda14cbcSMatt Macy 	int count = 0, rc, refill;
1108eda14cbcSMatt Macy 	void *obj = NULL;
1109eda14cbcSMatt Macy 
1110eda14cbcSMatt Macy 	ASSERT(skc->skc_magic == SKC_MAGIC);
1111eda14cbcSMatt Macy 	ASSERT(skm->skm_magic == SKM_MAGIC);
1112eda14cbcSMatt Macy 
1113eda14cbcSMatt Macy 	refill = MIN(skm->skm_refill, skm->skm_size - skm->skm_avail);
1114eda14cbcSMatt Macy 	spin_lock(&skc->skc_lock);
1115eda14cbcSMatt Macy 
1116eda14cbcSMatt Macy 	while (refill > 0) {
1117eda14cbcSMatt Macy 		/* No slabs available we may need to grow the cache */
1118eda14cbcSMatt Macy 		if (list_empty(&skc->skc_partial_list)) {
1119eda14cbcSMatt Macy 			spin_unlock(&skc->skc_lock);
1120eda14cbcSMatt Macy 
1121eda14cbcSMatt Macy 			local_irq_enable();
1122eda14cbcSMatt Macy 			rc = spl_cache_grow(skc, flags, &obj);
1123eda14cbcSMatt Macy 			local_irq_disable();
1124eda14cbcSMatt Macy 
1125eda14cbcSMatt Macy 			/* Emergency object for immediate use by caller */
1126eda14cbcSMatt Macy 			if (rc == 0 && obj != NULL)
1127eda14cbcSMatt Macy 				return (obj);
1128eda14cbcSMatt Macy 
1129eda14cbcSMatt Macy 			if (rc)
1130eda14cbcSMatt Macy 				goto out;
1131eda14cbcSMatt Macy 
1132eda14cbcSMatt Macy 			/* Rescheduled to different CPU skm is not local */
1133eda14cbcSMatt Macy 			if (skm != skc->skc_mag[smp_processor_id()])
1134eda14cbcSMatt Macy 				goto out;
1135eda14cbcSMatt Macy 
1136eda14cbcSMatt Macy 			/*
1137eda14cbcSMatt Macy 			 * Potentially rescheduled to the same CPU but
1138eda14cbcSMatt Macy 			 * allocations may have occurred from this CPU while
1139eda14cbcSMatt Macy 			 * we were sleeping so recalculate max refill.
1140eda14cbcSMatt Macy 			 */
1141eda14cbcSMatt Macy 			refill = MIN(refill, skm->skm_size - skm->skm_avail);
1142eda14cbcSMatt Macy 
1143eda14cbcSMatt Macy 			spin_lock(&skc->skc_lock);
1144eda14cbcSMatt Macy 			continue;
1145eda14cbcSMatt Macy 		}
1146eda14cbcSMatt Macy 
1147eda14cbcSMatt Macy 		/* Grab the next available slab */
1148eda14cbcSMatt Macy 		sks = list_entry((&skc->skc_partial_list)->next,
1149eda14cbcSMatt Macy 		    spl_kmem_slab_t, sks_list);
1150eda14cbcSMatt Macy 		ASSERT(sks->sks_magic == SKS_MAGIC);
1151eda14cbcSMatt Macy 		ASSERT(sks->sks_ref < sks->sks_objs);
1152eda14cbcSMatt Macy 		ASSERT(!list_empty(&sks->sks_free_list));
1153eda14cbcSMatt Macy 
1154eda14cbcSMatt Macy 		/*
1155eda14cbcSMatt Macy 		 * Consume as many objects as needed to refill the requested
1156eda14cbcSMatt Macy 		 * cache.  We must also be careful not to overfill it.
1157eda14cbcSMatt Macy 		 */
1158eda14cbcSMatt Macy 		while (sks->sks_ref < sks->sks_objs && refill-- > 0 &&
1159eda14cbcSMatt Macy 		    ++count) {
1160eda14cbcSMatt Macy 			ASSERT(skm->skm_avail < skm->skm_size);
1161eda14cbcSMatt Macy 			ASSERT(count < skm->skm_size);
1162eda14cbcSMatt Macy 			skm->skm_objs[skm->skm_avail++] =
1163eda14cbcSMatt Macy 			    spl_cache_obj(skc, sks);
1164eda14cbcSMatt Macy 		}
1165eda14cbcSMatt Macy 
1166eda14cbcSMatt Macy 		/* Move slab to skc_complete_list when full */
1167eda14cbcSMatt Macy 		if (sks->sks_ref == sks->sks_objs) {
1168eda14cbcSMatt Macy 			list_del(&sks->sks_list);
1169eda14cbcSMatt Macy 			list_add(&sks->sks_list, &skc->skc_complete_list);
1170eda14cbcSMatt Macy 		}
1171eda14cbcSMatt Macy 	}
1172eda14cbcSMatt Macy 
1173eda14cbcSMatt Macy 	spin_unlock(&skc->skc_lock);
1174eda14cbcSMatt Macy out:
1175eda14cbcSMatt Macy 	return (NULL);
1176eda14cbcSMatt Macy }
1177eda14cbcSMatt Macy 
1178eda14cbcSMatt Macy /*
1179eda14cbcSMatt Macy  * Release an object back to the slab from which it came.
1180eda14cbcSMatt Macy  */
1181eda14cbcSMatt Macy static void
spl_cache_shrink(spl_kmem_cache_t * skc,void * obj)1182eda14cbcSMatt Macy spl_cache_shrink(spl_kmem_cache_t *skc, void *obj)
1183eda14cbcSMatt Macy {
1184eda14cbcSMatt Macy 	spl_kmem_slab_t *sks = NULL;
1185eda14cbcSMatt Macy 	spl_kmem_obj_t *sko = NULL;
1186eda14cbcSMatt Macy 
1187eda14cbcSMatt Macy 	ASSERT(skc->skc_magic == SKC_MAGIC);
1188eda14cbcSMatt Macy 
1189eda14cbcSMatt Macy 	sko = spl_sko_from_obj(skc, obj);
1190eda14cbcSMatt Macy 	ASSERT(sko->sko_magic == SKO_MAGIC);
1191eda14cbcSMatt Macy 	sks = sko->sko_slab;
1192eda14cbcSMatt Macy 	ASSERT(sks->sks_magic == SKS_MAGIC);
1193eda14cbcSMatt Macy 	ASSERT(sks->sks_cache == skc);
1194eda14cbcSMatt Macy 	list_add(&sko->sko_list, &sks->sks_free_list);
1195eda14cbcSMatt Macy 
1196eda14cbcSMatt Macy 	sks->sks_age = jiffies;
1197eda14cbcSMatt Macy 	sks->sks_ref--;
1198eda14cbcSMatt Macy 	skc->skc_obj_alloc--;
1199eda14cbcSMatt Macy 
1200eda14cbcSMatt Macy 	/*
1201eda14cbcSMatt Macy 	 * Move slab to skc_partial_list when no longer full.  Slabs
1202eda14cbcSMatt Macy 	 * are added to the head to keep the partial list is quasi-full
1203eda14cbcSMatt Macy 	 * sorted order.  Fuller at the head, emptier at the tail.
1204eda14cbcSMatt Macy 	 */
1205eda14cbcSMatt Macy 	if (sks->sks_ref == (sks->sks_objs - 1)) {
1206eda14cbcSMatt Macy 		list_del(&sks->sks_list);
1207eda14cbcSMatt Macy 		list_add(&sks->sks_list, &skc->skc_partial_list);
1208eda14cbcSMatt Macy 	}
1209eda14cbcSMatt Macy 
1210eda14cbcSMatt Macy 	/*
1211eda14cbcSMatt Macy 	 * Move empty slabs to the end of the partial list so
1212eda14cbcSMatt Macy 	 * they can be easily found and freed during reclamation.
1213eda14cbcSMatt Macy 	 */
1214eda14cbcSMatt Macy 	if (sks->sks_ref == 0) {
1215eda14cbcSMatt Macy 		list_del(&sks->sks_list);
1216eda14cbcSMatt Macy 		list_add_tail(&sks->sks_list, &skc->skc_partial_list);
1217eda14cbcSMatt Macy 		skc->skc_slab_alloc--;
1218eda14cbcSMatt Macy 	}
1219eda14cbcSMatt Macy }
1220eda14cbcSMatt Macy 
1221eda14cbcSMatt Macy /*
1222eda14cbcSMatt Macy  * Allocate an object from the per-cpu magazine, or if the magazine
1223eda14cbcSMatt Macy  * is empty directly allocate from a slab and repopulate the magazine.
1224eda14cbcSMatt Macy  */
1225eda14cbcSMatt Macy void *
spl_kmem_cache_alloc(spl_kmem_cache_t * skc,int flags)1226eda14cbcSMatt Macy spl_kmem_cache_alloc(spl_kmem_cache_t *skc, int flags)
1227eda14cbcSMatt Macy {
1228eda14cbcSMatt Macy 	spl_kmem_magazine_t *skm;
1229eda14cbcSMatt Macy 	void *obj = NULL;
1230eda14cbcSMatt Macy 
1231eda14cbcSMatt Macy 	ASSERT0(flags & ~KM_PUBLIC_MASK);
1232eda14cbcSMatt Macy 	ASSERT(skc->skc_magic == SKC_MAGIC);
1233eda14cbcSMatt Macy 	ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1234eda14cbcSMatt Macy 
1235eda14cbcSMatt Macy 	/*
1236eda14cbcSMatt Macy 	 * Allocate directly from a Linux slab.  All optimizations are left
1237eda14cbcSMatt Macy 	 * to the underlying cache we only need to guarantee that KM_SLEEP
1238eda14cbcSMatt Macy 	 * callers will never fail.
1239eda14cbcSMatt Macy 	 */
1240eda14cbcSMatt Macy 	if (skc->skc_flags & KMC_SLAB) {
1241eda14cbcSMatt Macy 		struct kmem_cache *slc = skc->skc_linux_cache;
1242eda14cbcSMatt Macy 		do {
1243eda14cbcSMatt Macy 			obj = kmem_cache_alloc(slc, kmem_flags_convert(flags));
1244eda14cbcSMatt Macy 		} while ((obj == NULL) && !(flags & KM_NOSLEEP));
1245eda14cbcSMatt Macy 
1246eda14cbcSMatt Macy 		if (obj != NULL) {
1247eda14cbcSMatt Macy 			/*
1248eda14cbcSMatt Macy 			 * Even though we leave everything up to the
1249eda14cbcSMatt Macy 			 * underlying cache we still keep track of
1250eda14cbcSMatt Macy 			 * how many objects we've allocated in it for
1251eda14cbcSMatt Macy 			 * better debuggability.
1252eda14cbcSMatt Macy 			 */
1253eda14cbcSMatt Macy 			percpu_counter_inc(&skc->skc_linux_alloc);
1254eda14cbcSMatt Macy 		}
1255eda14cbcSMatt Macy 		goto ret;
1256eda14cbcSMatt Macy 	}
1257eda14cbcSMatt Macy 
1258eda14cbcSMatt Macy 	local_irq_disable();
1259eda14cbcSMatt Macy 
1260eda14cbcSMatt Macy restart:
1261eda14cbcSMatt Macy 	/*
1262eda14cbcSMatt Macy 	 * Safe to update per-cpu structure without lock, but
1263eda14cbcSMatt Macy 	 * in the restart case we must be careful to reacquire
1264eda14cbcSMatt Macy 	 * the local magazine since this may have changed
1265eda14cbcSMatt Macy 	 * when we need to grow the cache.
1266eda14cbcSMatt Macy 	 */
1267eda14cbcSMatt Macy 	skm = skc->skc_mag[smp_processor_id()];
1268eda14cbcSMatt Macy 	ASSERT(skm->skm_magic == SKM_MAGIC);
1269eda14cbcSMatt Macy 
1270eda14cbcSMatt Macy 	if (likely(skm->skm_avail)) {
1271eda14cbcSMatt Macy 		/* Object available in CPU cache, use it */
1272eda14cbcSMatt Macy 		obj = skm->skm_objs[--skm->skm_avail];
1273eda14cbcSMatt Macy 	} else {
1274eda14cbcSMatt Macy 		obj = spl_cache_refill(skc, skm, flags);
1275eda14cbcSMatt Macy 		if ((obj == NULL) && !(flags & KM_NOSLEEP))
1276eda14cbcSMatt Macy 			goto restart;
1277eda14cbcSMatt Macy 
1278eda14cbcSMatt Macy 		local_irq_enable();
1279eda14cbcSMatt Macy 		goto ret;
1280eda14cbcSMatt Macy 	}
1281eda14cbcSMatt Macy 
1282eda14cbcSMatt Macy 	local_irq_enable();
1283eda14cbcSMatt Macy 	ASSERT(obj);
1284eda14cbcSMatt Macy 	ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
1285eda14cbcSMatt Macy 
1286eda14cbcSMatt Macy ret:
1287eda14cbcSMatt Macy 	/* Pre-emptively migrate object to CPU L1 cache */
1288eda14cbcSMatt Macy 	if (obj) {
1289eda14cbcSMatt Macy 		if (obj && skc->skc_ctor)
1290eda14cbcSMatt Macy 			skc->skc_ctor(obj, skc->skc_private, flags);
1291eda14cbcSMatt Macy 		else
1292eda14cbcSMatt Macy 			prefetchw(obj);
1293eda14cbcSMatt Macy 	}
1294eda14cbcSMatt Macy 
1295eda14cbcSMatt Macy 	return (obj);
1296eda14cbcSMatt Macy }
1297eda14cbcSMatt Macy EXPORT_SYMBOL(spl_kmem_cache_alloc);
1298eda14cbcSMatt Macy 
1299eda14cbcSMatt Macy /*
1300eda14cbcSMatt Macy  * Free an object back to the local per-cpu magazine, there is no
1301eda14cbcSMatt Macy  * guarantee that this is the same magazine the object was originally
1302eda14cbcSMatt Macy  * allocated from.  We may need to flush entire from the magazine
1303eda14cbcSMatt Macy  * back to the slabs to make space.
1304eda14cbcSMatt Macy  */
1305eda14cbcSMatt Macy void
spl_kmem_cache_free(spl_kmem_cache_t * skc,void * obj)1306eda14cbcSMatt Macy spl_kmem_cache_free(spl_kmem_cache_t *skc, void *obj)
1307eda14cbcSMatt Macy {
1308eda14cbcSMatt Macy 	spl_kmem_magazine_t *skm;
1309eda14cbcSMatt Macy 	unsigned long flags;
1310eda14cbcSMatt Macy 	int do_reclaim = 0;
1311eda14cbcSMatt Macy 	int do_emergency = 0;
1312eda14cbcSMatt Macy 
1313eda14cbcSMatt Macy 	ASSERT(skc->skc_magic == SKC_MAGIC);
1314eda14cbcSMatt Macy 	ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1315eda14cbcSMatt Macy 
1316eda14cbcSMatt Macy 	/*
1317eda14cbcSMatt Macy 	 * Run the destructor
1318eda14cbcSMatt Macy 	 */
1319eda14cbcSMatt Macy 	if (skc->skc_dtor)
1320eda14cbcSMatt Macy 		skc->skc_dtor(obj, skc->skc_private);
1321eda14cbcSMatt Macy 
1322eda14cbcSMatt Macy 	/*
1323eda14cbcSMatt Macy 	 * Free the object from the Linux underlying Linux slab.
1324eda14cbcSMatt Macy 	 */
1325eda14cbcSMatt Macy 	if (skc->skc_flags & KMC_SLAB) {
1326eda14cbcSMatt Macy 		kmem_cache_free(skc->skc_linux_cache, obj);
1327eda14cbcSMatt Macy 		percpu_counter_dec(&skc->skc_linux_alloc);
1328eda14cbcSMatt Macy 		return;
1329eda14cbcSMatt Macy 	}
1330eda14cbcSMatt Macy 
1331eda14cbcSMatt Macy 	/*
1332eda14cbcSMatt Macy 	 * While a cache has outstanding emergency objects all freed objects
1333eda14cbcSMatt Macy 	 * must be checked.  However, since emergency objects will never use
1334eda14cbcSMatt Macy 	 * a virtual address these objects can be safely excluded as an
1335eda14cbcSMatt Macy 	 * optimization.
1336eda14cbcSMatt Macy 	 */
1337eda14cbcSMatt Macy 	if (!is_vmalloc_addr(obj)) {
1338eda14cbcSMatt Macy 		spin_lock(&skc->skc_lock);
1339eda14cbcSMatt Macy 		do_emergency = (skc->skc_obj_emergency > 0);
1340eda14cbcSMatt Macy 		spin_unlock(&skc->skc_lock);
1341eda14cbcSMatt Macy 
1342eda14cbcSMatt Macy 		if (do_emergency && (spl_emergency_free(skc, obj) == 0))
1343eda14cbcSMatt Macy 			return;
1344eda14cbcSMatt Macy 	}
1345eda14cbcSMatt Macy 
1346eda14cbcSMatt Macy 	local_irq_save(flags);
1347eda14cbcSMatt Macy 
1348eda14cbcSMatt Macy 	/*
1349eda14cbcSMatt Macy 	 * Safe to update per-cpu structure without lock, but
1350eda14cbcSMatt Macy 	 * no remote memory allocation tracking is being performed
1351eda14cbcSMatt Macy 	 * it is entirely possible to allocate an object from one
1352eda14cbcSMatt Macy 	 * CPU cache and return it to another.
1353eda14cbcSMatt Macy 	 */
1354eda14cbcSMatt Macy 	skm = skc->skc_mag[smp_processor_id()];
1355eda14cbcSMatt Macy 	ASSERT(skm->skm_magic == SKM_MAGIC);
1356eda14cbcSMatt Macy 
1357eda14cbcSMatt Macy 	/*
1358eda14cbcSMatt Macy 	 * Per-CPU cache full, flush it to make space for this object,
1359eda14cbcSMatt Macy 	 * this may result in an empty slab which can be reclaimed once
1360eda14cbcSMatt Macy 	 * interrupts are re-enabled.
1361eda14cbcSMatt Macy 	 */
1362eda14cbcSMatt Macy 	if (unlikely(skm->skm_avail >= skm->skm_size)) {
1363eda14cbcSMatt Macy 		spl_cache_flush(skc, skm, skm->skm_refill);
1364eda14cbcSMatt Macy 		do_reclaim = 1;
1365eda14cbcSMatt Macy 	}
1366eda14cbcSMatt Macy 
1367eda14cbcSMatt Macy 	/* Available space in cache, use it */
1368eda14cbcSMatt Macy 	skm->skm_objs[skm->skm_avail++] = obj;
1369eda14cbcSMatt Macy 
1370eda14cbcSMatt Macy 	local_irq_restore(flags);
1371eda14cbcSMatt Macy 
1372eda14cbcSMatt Macy 	if (do_reclaim)
1373eda14cbcSMatt Macy 		spl_slab_reclaim(skc);
1374eda14cbcSMatt Macy }
1375eda14cbcSMatt Macy EXPORT_SYMBOL(spl_kmem_cache_free);
1376eda14cbcSMatt Macy 
1377eda14cbcSMatt Macy /*
1378eda14cbcSMatt Macy  * Depending on how many and which objects are released it may simply
1379eda14cbcSMatt Macy  * repopulate the local magazine which will then need to age-out.  Objects
1380eda14cbcSMatt Macy  * which cannot fit in the magazine will be released back to their slabs
1381eda14cbcSMatt Macy  * which will also need to age out before being released.  This is all just
1382eda14cbcSMatt Macy  * best effort and we do not want to thrash creating and destroying slabs.
1383eda14cbcSMatt Macy  */
1384eda14cbcSMatt Macy void
spl_kmem_cache_reap_now(spl_kmem_cache_t * skc)1385eda14cbcSMatt Macy spl_kmem_cache_reap_now(spl_kmem_cache_t *skc)
1386eda14cbcSMatt Macy {
1387eda14cbcSMatt Macy 	ASSERT(skc->skc_magic == SKC_MAGIC);
1388eda14cbcSMatt Macy 	ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1389eda14cbcSMatt Macy 
1390eda14cbcSMatt Macy 	if (skc->skc_flags & KMC_SLAB)
1391eda14cbcSMatt Macy 		return;
1392eda14cbcSMatt Macy 
1393eda14cbcSMatt Macy 	atomic_inc(&skc->skc_ref);
1394eda14cbcSMatt Macy 
1395eda14cbcSMatt Macy 	/*
1396eda14cbcSMatt Macy 	 * Prevent concurrent cache reaping when contended.
1397eda14cbcSMatt Macy 	 */
1398eda14cbcSMatt Macy 	if (test_and_set_bit(KMC_BIT_REAPING, &skc->skc_flags))
1399eda14cbcSMatt Macy 		goto out;
1400eda14cbcSMatt Macy 
1401eda14cbcSMatt Macy 	/* Reclaim from the magazine and free all now empty slabs. */
1402eda14cbcSMatt Macy 	unsigned long irq_flags;
1403eda14cbcSMatt Macy 	local_irq_save(irq_flags);
1404eda14cbcSMatt Macy 	spl_kmem_magazine_t *skm = skc->skc_mag[smp_processor_id()];
1405eda14cbcSMatt Macy 	spl_cache_flush(skc, skm, skm->skm_avail);
1406eda14cbcSMatt Macy 	local_irq_restore(irq_flags);
1407eda14cbcSMatt Macy 
1408eda14cbcSMatt Macy 	spl_slab_reclaim(skc);
1409eda14cbcSMatt Macy 	clear_bit_unlock(KMC_BIT_REAPING, &skc->skc_flags);
1410eda14cbcSMatt Macy 	smp_mb__after_atomic();
1411eda14cbcSMatt Macy 	wake_up_bit(&skc->skc_flags, KMC_BIT_REAPING);
1412eda14cbcSMatt Macy out:
1413eda14cbcSMatt Macy 	atomic_dec(&skc->skc_ref);
1414eda14cbcSMatt Macy }
1415eda14cbcSMatt Macy EXPORT_SYMBOL(spl_kmem_cache_reap_now);
1416eda14cbcSMatt Macy 
1417eda14cbcSMatt Macy /*
1418eda14cbcSMatt Macy  * This is stubbed out for code consistency with other platforms.  There
1419eda14cbcSMatt Macy  * is existing logic to prevent concurrent reaping so while this is ugly
1420eda14cbcSMatt Macy  * it should do no harm.
1421eda14cbcSMatt Macy  */
1422eda14cbcSMatt Macy int
spl_kmem_cache_reap_active(void)1423716fd348SMartin Matuska spl_kmem_cache_reap_active(void)
1424eda14cbcSMatt Macy {
1425eda14cbcSMatt Macy 	return (0);
1426eda14cbcSMatt Macy }
1427eda14cbcSMatt Macy EXPORT_SYMBOL(spl_kmem_cache_reap_active);
1428eda14cbcSMatt Macy 
1429eda14cbcSMatt Macy /*
1430eda14cbcSMatt Macy  * Reap all free slabs from all registered caches.
1431eda14cbcSMatt Macy  */
1432eda14cbcSMatt Macy void
spl_kmem_reap(void)1433eda14cbcSMatt Macy spl_kmem_reap(void)
1434eda14cbcSMatt Macy {
1435eda14cbcSMatt Macy 	spl_kmem_cache_t *skc = NULL;
1436eda14cbcSMatt Macy 
1437eda14cbcSMatt Macy 	down_read(&spl_kmem_cache_sem);
1438eda14cbcSMatt Macy 	list_for_each_entry(skc, &spl_kmem_cache_list, skc_list) {
1439eda14cbcSMatt Macy 		spl_kmem_cache_reap_now(skc);
1440eda14cbcSMatt Macy 	}
1441eda14cbcSMatt Macy 	up_read(&spl_kmem_cache_sem);
1442eda14cbcSMatt Macy }
1443eda14cbcSMatt Macy EXPORT_SYMBOL(spl_kmem_reap);
1444eda14cbcSMatt Macy 
1445eda14cbcSMatt Macy int
spl_kmem_cache_init(void)1446eda14cbcSMatt Macy spl_kmem_cache_init(void)
1447eda14cbcSMatt Macy {
1448eda14cbcSMatt Macy 	init_rwsem(&spl_kmem_cache_sem);
1449eda14cbcSMatt Macy 	INIT_LIST_HEAD(&spl_kmem_cache_list);
1450eda14cbcSMatt Macy 	spl_kmem_cache_taskq = taskq_create("spl_kmem_cache",
1451eda14cbcSMatt Macy 	    spl_kmem_cache_kmem_threads, maxclsyspri,
1452eda14cbcSMatt Macy 	    spl_kmem_cache_kmem_threads * 8, INT_MAX,
1453eda14cbcSMatt Macy 	    TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
1454eda14cbcSMatt Macy 
1455c7046f76SMartin Matuska 	if (spl_kmem_cache_taskq == NULL)
1456c7046f76SMartin Matuska 		return (-ENOMEM);
1457c7046f76SMartin Matuska 
1458eda14cbcSMatt Macy 	return (0);
1459eda14cbcSMatt Macy }
1460eda14cbcSMatt Macy 
1461eda14cbcSMatt Macy void
spl_kmem_cache_fini(void)1462eda14cbcSMatt Macy spl_kmem_cache_fini(void)
1463eda14cbcSMatt Macy {
1464eda14cbcSMatt Macy 	taskq_destroy(spl_kmem_cache_taskq);
1465eda14cbcSMatt Macy }
1466