1 /*
2  * CDDL HEADER START
3  *
4  * This file and its contents are supplied under the terms of the
5  * Common Development and Distribution License ("CDDL"), version 1.0.
6  * You may only use this file in accordance with the terms of version
7  * 1.0 of the CDDL.
8  *
9  * A full copy of the text of the CDDL should have accompanied this
10  * source.  A copy of the CDDL is also available via the Internet at
11  * http://www.illumos.org/license/CDDL.
12  *
13  * CDDL HEADER END
14  */
15 
16 /*
17  * Copyright (c) 2017, Datto, Inc. All rights reserved.
18  */
19 
20 #include <sys/zio_crypt.h>
21 #include <sys/dmu.h>
22 #include <sys/dmu_objset.h>
23 #include <sys/dnode.h>
24 #include <sys/fs/zfs.h>
25 #include <sys/zio.h>
26 #include <sys/zil.h>
27 #include <sys/sha2.h>
28 #include <sys/hkdf.h>
29 #include <sys/qat.h>
30 
31 /*
32  * This file is responsible for handling all of the details of generating
33  * encryption parameters and performing encryption and authentication.
34  *
35  * BLOCK ENCRYPTION PARAMETERS:
36  * Encryption /Authentication Algorithm Suite (crypt):
37  * The encryption algorithm, mode, and key length we are going to use. We
38  * currently support AES in either GCM or CCM modes with 128, 192, and 256 bit
39  * keys. All authentication is currently done with SHA512-HMAC.
40  *
41  * Plaintext:
42  * The unencrypted data that we want to encrypt.
43  *
44  * Initialization Vector (IV):
45  * An initialization vector for the encryption algorithms. This is used to
46  * "tweak" the encryption algorithms so that two blocks of the same data are
47  * encrypted into different ciphertext outputs, thus obfuscating block patterns.
48  * The supported encryption modes (AES-GCM and AES-CCM) require that an IV is
49  * never reused with the same encryption key. This value is stored unencrypted
50  * and must simply be provided to the decryption function. We use a 96 bit IV
51  * (as recommended by NIST) for all block encryption. For non-dedup blocks we
52  * derive the IV randomly. The first 64 bits of the IV are stored in the second
53  * word of DVA[2] and the remaining 32 bits are stored in the upper 32 bits of
54  * blk_fill. This is safe because encrypted blocks can't use the upper 32 bits
55  * of blk_fill. We only encrypt level 0 blocks, which normally have a fill count
56  * of 1. The only exception is for DMU_OT_DNODE objects, where the fill count of
57  * level 0 blocks is the number of allocated dnodes in that block. The on-disk
58  * format supports at most 2^15 slots per L0 dnode block, because the maximum
59  * block size is 16MB (2^24). In either case, for level 0 blocks this number
60  * will still be smaller than UINT32_MAX so it is safe to store the IV in the
61  * top 32 bits of blk_fill, while leaving the bottom 32 bits of the fill count
62  * for the dnode code.
63  *
64  * Master key:
65  * This is the most important secret data of an encrypted dataset. It is used
66  * along with the salt to generate that actual encryption keys via HKDF. We
67  * do not use the master key to directly encrypt any data because there are
68  * theoretical limits on how much data can actually be safely encrypted with
69  * any encryption mode. The master key is stored encrypted on disk with the
70  * user's wrapping key. Its length is determined by the encryption algorithm.
71  * For details on how this is stored see the block comment in dsl_crypt.c
72  *
73  * Salt:
74  * Used as an input to the HKDF function, along with the master key. We use a
75  * 64 bit salt, stored unencrypted in the first word of DVA[2]. Any given salt
76  * can be used for encrypting many blocks, so we cache the current salt and the
77  * associated derived key in zio_crypt_t so we do not need to derive it again
78  * needlessly.
79  *
80  * Encryption Key:
81  * A secret binary key, generated from an HKDF function used to encrypt and
82  * decrypt data.
83  *
84  * Message Authentication Code (MAC)
85  * The MAC is an output of authenticated encryption modes such as AES-GCM and
86  * AES-CCM. Its purpose is to ensure that an attacker cannot modify encrypted
87  * data on disk and return garbage to the application. Effectively, it is a
88  * checksum that can not be reproduced by an attacker. We store the MAC in the
89  * second 128 bits of blk_cksum, leaving the first 128 bits for a truncated
90  * regular checksum of the ciphertext which can be used for scrubbing.
91  *
92  * OBJECT AUTHENTICATION:
93  * Some object types, such as DMU_OT_MASTER_NODE cannot be encrypted because
94  * they contain some info that always needs to be readable. To prevent this
95  * data from being altered, we authenticate this data using SHA512-HMAC. This
96  * will produce a MAC (similar to the one produced via encryption) which can
97  * be used to verify the object was not modified. HMACs do not require key
98  * rotation or IVs, so we can keep up to the full 3 copies of authenticated
99  * data.
100  *
101  * ZIL ENCRYPTION:
102  * ZIL blocks have their bp written to disk ahead of the associated data, so we
103  * cannot store the MAC there as we normally do. For these blocks the MAC is
104  * stored in the embedded checksum within the zil_chain_t header. The salt and
105  * IV are generated for the block on bp allocation instead of at encryption
106  * time. In addition, ZIL blocks have some pieces that must be left in plaintext
107  * for claiming even though all of the sensitive user data still needs to be
108  * encrypted. The function zio_crypt_init_uios_zil() handles parsing which
109  * pieces of the block need to be encrypted. All data that is not encrypted is
110  * authenticated using the AAD mechanisms that the supported encryption modes
111  * provide for. In order to preserve the semantics of the ZIL for encrypted
112  * datasets, the ZIL is not protected at the objset level as described below.
113  *
114  * DNODE ENCRYPTION:
115  * Similarly to ZIL blocks, the core part of each dnode_phys_t needs to be left
116  * in plaintext for scrubbing and claiming, but the bonus buffers might contain
117  * sensitive user data. The function zio_crypt_init_uios_dnode() handles parsing
118  * which pieces of the block need to be encrypted. For more details about
119  * dnode authentication and encryption, see zio_crypt_init_uios_dnode().
120  *
121  * OBJECT SET AUTHENTICATION:
122  * Up to this point, everything we have encrypted and authenticated has been
123  * at level 0 (or -2 for the ZIL). If we did not do any further work the
124  * on-disk format would be susceptible to attacks that deleted or rearranged
125  * the order of level 0 blocks. Ideally, the cleanest solution would be to
126  * maintain a tree of authentication MACs going up the bp tree. However, this
127  * presents a problem for raw sends. Send files do not send information about
128  * indirect blocks so there would be no convenient way to transfer the MACs and
129  * they cannot be recalculated on the receive side without the master key which
130  * would defeat one of the purposes of raw sends in the first place. Instead,
131  * for the indirect levels of the bp tree, we use a regular SHA512 of the MACs
132  * from the level below. We also include some portable fields from blk_prop such
133  * as the lsize and compression algorithm to prevent the data from being
134  * misinterpreted.
135  *
136  * At the objset level, we maintain 2 separate 256 bit MACs in the
137  * objset_phys_t. The first one is "portable" and is the logical root of the
138  * MAC tree maintained in the metadnode's bps. The second, is "local" and is
139  * used as the root MAC for the user accounting objects, which are also not
140  * transferred via "zfs send". The portable MAC is sent in the DRR_BEGIN payload
141  * of the send file. The useraccounting code ensures that the useraccounting
142  * info is not present upon a receive, so the local MAC can simply be cleared
143  * out at that time. For more info about objset_phys_t authentication, see
144  * zio_crypt_do_objset_hmacs().
145  *
146  * CONSIDERATIONS FOR DEDUP:
147  * In order for dedup to work, blocks that we want to dedup with one another
148  * need to use the same IV and encryption key, so that they will have the same
149  * ciphertext. Normally, one should never reuse an IV with the same encryption
150  * key or else AES-GCM and AES-CCM can both actually leak the plaintext of both
151  * blocks. In this case, however, since we are using the same plaintext as
152  * well all that we end up with is a duplicate of the original ciphertext we
153  * already had. As a result, an attacker with read access to the raw disk will
154  * be able to tell which blocks are the same but this information is given away
155  * by dedup anyway. In order to get the same IVs and encryption keys for
156  * equivalent blocks of data we use an HMAC of the plaintext. We use an HMAC
157  * here so that a reproducible checksum of the plaintext is never available to
158  * the attacker. The HMAC key is kept alongside the master key, encrypted on
159  * disk. The first 64 bits of the HMAC are used in place of the random salt, and
160  * the next 96 bits are used as the IV. As a result of this mechanism, dedup
161  * will only work within a clone family since encrypted dedup requires use of
162  * the same master and HMAC keys.
163  */
164 
165 /*
166  * After encrypting many blocks with the same key we may start to run up
167  * against the theoretical limits of how much data can securely be encrypted
168  * with a single key using the supported encryption modes. The most obvious
169  * limitation is that our risk of generating 2 equivalent 96 bit IVs increases
170  * the more IVs we generate (which both GCM and CCM modes strictly forbid).
171  * This risk actually grows surprisingly quickly over time according to the
172  * Birthday Problem. With a total IV space of 2^(96 bits), and assuming we have
173  * generated n IVs with a cryptographically secure RNG, the approximate
174  * probability p(n) of a collision is given as:
175  *
176  * p(n) ~= e^(-n*(n-1)/(2*(2^96)))
177  *
178  * [http://www.math.cornell.edu/~mec/2008-2009/TianyiZheng/Birthday.html]
179  *
180  * Assuming that we want to ensure that p(n) never goes over 1 / 1 trillion
181  * we must not write more than 398,065,730 blocks with the same encryption key.
182  * Therefore, we rotate our keys after 400,000,000 blocks have been written by
183  * generating a new random 64 bit salt for our HKDF encryption key generation
184  * function.
185  */
186 #define	ZFS_KEY_MAX_SALT_USES_DEFAULT	400000000
187 #define	ZFS_CURRENT_MAX_SALT_USES	\
188 	(MIN(zfs_key_max_salt_uses, ZFS_KEY_MAX_SALT_USES_DEFAULT))
189 static unsigned long zfs_key_max_salt_uses = ZFS_KEY_MAX_SALT_USES_DEFAULT;
190 
191 typedef struct blkptr_auth_buf {
192 	uint64_t bab_prop;			/* blk_prop - portable mask */
193 	uint8_t bab_mac[ZIO_DATA_MAC_LEN];	/* MAC from blk_cksum */
194 	uint64_t bab_pad;			/* reserved for future use */
195 } blkptr_auth_buf_t;
196 
197 const zio_crypt_info_t zio_crypt_table[ZIO_CRYPT_FUNCTIONS] = {
198 	{"",			ZC_TYPE_NONE,	0,	"inherit"},
199 	{"",			ZC_TYPE_NONE,	0,	"on"},
200 	{"",			ZC_TYPE_NONE,	0,	"off"},
201 	{SUN_CKM_AES_CCM,	ZC_TYPE_CCM,	16,	"aes-128-ccm"},
202 	{SUN_CKM_AES_CCM,	ZC_TYPE_CCM,	24,	"aes-192-ccm"},
203 	{SUN_CKM_AES_CCM,	ZC_TYPE_CCM,	32,	"aes-256-ccm"},
204 	{SUN_CKM_AES_GCM,	ZC_TYPE_GCM,	16,	"aes-128-gcm"},
205 	{SUN_CKM_AES_GCM,	ZC_TYPE_GCM,	24,	"aes-192-gcm"},
206 	{SUN_CKM_AES_GCM,	ZC_TYPE_GCM,	32,	"aes-256-gcm"}
207 };
208 
209 void
210 zio_crypt_key_destroy(zio_crypt_key_t *key)
211 {
212 	rw_destroy(&key->zk_salt_lock);
213 
214 	/* free crypto templates */
215 	crypto_destroy_ctx_template(key->zk_current_tmpl);
216 	crypto_destroy_ctx_template(key->zk_hmac_tmpl);
217 
218 	/* zero out sensitive data */
219 	memset(key, 0, sizeof (zio_crypt_key_t));
220 }
221 
222 int
223 zio_crypt_key_init(uint64_t crypt, zio_crypt_key_t *key)
224 {
225 	int ret;
226 	crypto_mechanism_t mech = {0};
227 	uint_t keydata_len;
228 
229 	ASSERT(key != NULL);
230 	ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS);
231 
232 /*
233  * Workaround for GCC 12+ with UBSan enabled deficencies.
234  *
235  * GCC 12+ invoked with -fsanitize=undefined incorrectly reports the code
236  * below as violating -Warray-bounds
237  */
238 #if defined(__GNUC__) && !defined(__clang__) && \
239 	((!defined(_KERNEL) && defined(ZFS_UBSAN_ENABLED)) || \
240 	    defined(CONFIG_UBSAN))
241 #pragma GCC diagnostic push
242 #pragma GCC diagnostic ignored "-Warray-bounds"
243 #endif
244 	keydata_len = zio_crypt_table[crypt].ci_keylen;
245 #if defined(__GNUC__) && !defined(__clang__) && \
246 	((!defined(_KERNEL) && defined(ZFS_UBSAN_ENABLED)) || \
247 	    defined(CONFIG_UBSAN))
248 #pragma GCC diagnostic pop
249 #endif
250 	memset(key, 0, sizeof (zio_crypt_key_t));
251 	rw_init(&key->zk_salt_lock, NULL, RW_DEFAULT, NULL);
252 
253 	/* fill keydata buffers and salt with random data */
254 	ret = random_get_bytes((uint8_t *)&key->zk_guid, sizeof (uint64_t));
255 	if (ret != 0)
256 		goto error;
257 
258 	ret = random_get_bytes(key->zk_master_keydata, keydata_len);
259 	if (ret != 0)
260 		goto error;
261 
262 	ret = random_get_bytes(key->zk_hmac_keydata, SHA512_HMAC_KEYLEN);
263 	if (ret != 0)
264 		goto error;
265 
266 	ret = random_get_bytes(key->zk_salt, ZIO_DATA_SALT_LEN);
267 	if (ret != 0)
268 		goto error;
269 
270 	/* derive the current key from the master key */
271 	ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0,
272 	    key->zk_salt, ZIO_DATA_SALT_LEN, key->zk_current_keydata,
273 	    keydata_len);
274 	if (ret != 0)
275 		goto error;
276 
277 	/* initialize keys for the ICP */
278 	key->zk_current_key.ck_data = key->zk_current_keydata;
279 	key->zk_current_key.ck_length = CRYPTO_BYTES2BITS(keydata_len);
280 
281 	key->zk_hmac_key.ck_data = &key->zk_hmac_key;
282 	key->zk_hmac_key.ck_length = CRYPTO_BYTES2BITS(SHA512_HMAC_KEYLEN);
283 
284 	/*
285 	 * Initialize the crypto templates. It's ok if this fails because
286 	 * this is just an optimization.
287 	 */
288 	mech.cm_type = crypto_mech2id(zio_crypt_table[crypt].ci_mechname);
289 	ret = crypto_create_ctx_template(&mech, &key->zk_current_key,
290 	    &key->zk_current_tmpl);
291 	if (ret != CRYPTO_SUCCESS)
292 		key->zk_current_tmpl = NULL;
293 
294 	mech.cm_type = crypto_mech2id(SUN_CKM_SHA512_HMAC);
295 	ret = crypto_create_ctx_template(&mech, &key->zk_hmac_key,
296 	    &key->zk_hmac_tmpl);
297 	if (ret != CRYPTO_SUCCESS)
298 		key->zk_hmac_tmpl = NULL;
299 
300 	key->zk_crypt = crypt;
301 	key->zk_version = ZIO_CRYPT_KEY_CURRENT_VERSION;
302 	key->zk_salt_count = 0;
303 
304 	return (0);
305 
306 error:
307 	zio_crypt_key_destroy(key);
308 	return (ret);
309 }
310 
311 static int
312 zio_crypt_key_change_salt(zio_crypt_key_t *key)
313 {
314 	int ret = 0;
315 	uint8_t salt[ZIO_DATA_SALT_LEN];
316 	crypto_mechanism_t mech;
317 	uint_t keydata_len = zio_crypt_table[key->zk_crypt].ci_keylen;
318 
319 	/* generate a new salt */
320 	ret = random_get_bytes(salt, ZIO_DATA_SALT_LEN);
321 	if (ret != 0)
322 		goto error;
323 
324 	rw_enter(&key->zk_salt_lock, RW_WRITER);
325 
326 	/* someone beat us to the salt rotation, just unlock and return */
327 	if (key->zk_salt_count < ZFS_CURRENT_MAX_SALT_USES)
328 		goto out_unlock;
329 
330 	/* derive the current key from the master key and the new salt */
331 	ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0,
332 	    salt, ZIO_DATA_SALT_LEN, key->zk_current_keydata, keydata_len);
333 	if (ret != 0)
334 		goto out_unlock;
335 
336 	/* assign the salt and reset the usage count */
337 	memcpy(key->zk_salt, salt, ZIO_DATA_SALT_LEN);
338 	key->zk_salt_count = 0;
339 
340 	/* destroy the old context template and create the new one */
341 	crypto_destroy_ctx_template(key->zk_current_tmpl);
342 	ret = crypto_create_ctx_template(&mech, &key->zk_current_key,
343 	    &key->zk_current_tmpl);
344 	if (ret != CRYPTO_SUCCESS)
345 		key->zk_current_tmpl = NULL;
346 
347 	rw_exit(&key->zk_salt_lock);
348 
349 	return (0);
350 
351 out_unlock:
352 	rw_exit(&key->zk_salt_lock);
353 error:
354 	return (ret);
355 }
356 
357 /* See comment above zfs_key_max_salt_uses definition for details */
358 int
359 zio_crypt_key_get_salt(zio_crypt_key_t *key, uint8_t *salt)
360 {
361 	int ret;
362 	boolean_t salt_change;
363 
364 	rw_enter(&key->zk_salt_lock, RW_READER);
365 
366 	memcpy(salt, key->zk_salt, ZIO_DATA_SALT_LEN);
367 	salt_change = (atomic_inc_64_nv(&key->zk_salt_count) >=
368 	    ZFS_CURRENT_MAX_SALT_USES);
369 
370 	rw_exit(&key->zk_salt_lock);
371 
372 	if (salt_change) {
373 		ret = zio_crypt_key_change_salt(key);
374 		if (ret != 0)
375 			goto error;
376 	}
377 
378 	return (0);
379 
380 error:
381 	return (ret);
382 }
383 
384 /*
385  * This function handles all encryption and decryption in zfs. When
386  * encrypting it expects puio to reference the plaintext and cuio to
387  * reference the ciphertext. cuio must have enough space for the
388  * ciphertext + room for a MAC. datalen should be the length of the
389  * plaintext / ciphertext alone.
390  */
391 static int
392 zio_do_crypt_uio(boolean_t encrypt, uint64_t crypt, crypto_key_t *key,
393     crypto_ctx_template_t tmpl, uint8_t *ivbuf, uint_t datalen,
394     zfs_uio_t *puio, zfs_uio_t *cuio, uint8_t *authbuf, uint_t auth_len)
395 {
396 	int ret;
397 	crypto_data_t plaindata, cipherdata;
398 	CK_AES_CCM_PARAMS ccmp;
399 	CK_AES_GCM_PARAMS gcmp;
400 	crypto_mechanism_t mech;
401 	zio_crypt_info_t crypt_info;
402 	uint_t plain_full_len, maclen;
403 
404 	ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS);
405 
406 	/* lookup the encryption info */
407 	crypt_info = zio_crypt_table[crypt];
408 
409 	/* the mac will always be the last iovec_t in the cipher uio */
410 	maclen = cuio->uio_iov[cuio->uio_iovcnt - 1].iov_len;
411 
412 	ASSERT(maclen <= ZIO_DATA_MAC_LEN);
413 
414 	/* setup encryption mechanism (same as crypt) */
415 	mech.cm_type = crypto_mech2id(crypt_info.ci_mechname);
416 
417 	/*
418 	 * Strangely, the ICP requires that plain_full_len must include
419 	 * the MAC length when decrypting, even though the UIO does not
420 	 * need to have the extra space allocated.
421 	 */
422 	if (encrypt) {
423 		plain_full_len = datalen;
424 	} else {
425 		plain_full_len = datalen + maclen;
426 	}
427 
428 	/*
429 	 * setup encryption params (currently only AES CCM and AES GCM
430 	 * are supported)
431 	 */
432 	if (crypt_info.ci_crypt_type == ZC_TYPE_CCM) {
433 		ccmp.ulNonceSize = ZIO_DATA_IV_LEN;
434 		ccmp.ulAuthDataSize = auth_len;
435 		ccmp.authData = authbuf;
436 		ccmp.ulMACSize = maclen;
437 		ccmp.nonce = ivbuf;
438 		ccmp.ulDataSize = plain_full_len;
439 
440 		mech.cm_param = (char *)(&ccmp);
441 		mech.cm_param_len = sizeof (CK_AES_CCM_PARAMS);
442 	} else {
443 		gcmp.ulIvLen = ZIO_DATA_IV_LEN;
444 		gcmp.ulIvBits = CRYPTO_BYTES2BITS(ZIO_DATA_IV_LEN);
445 		gcmp.ulAADLen = auth_len;
446 		gcmp.pAAD = authbuf;
447 		gcmp.ulTagBits = CRYPTO_BYTES2BITS(maclen);
448 		gcmp.pIv = ivbuf;
449 
450 		mech.cm_param = (char *)(&gcmp);
451 		mech.cm_param_len = sizeof (CK_AES_GCM_PARAMS);
452 	}
453 
454 	/* populate the cipher and plain data structs. */
455 	plaindata.cd_format = CRYPTO_DATA_UIO;
456 	plaindata.cd_offset = 0;
457 	plaindata.cd_uio = puio;
458 	plaindata.cd_length = plain_full_len;
459 
460 	cipherdata.cd_format = CRYPTO_DATA_UIO;
461 	cipherdata.cd_offset = 0;
462 	cipherdata.cd_uio = cuio;
463 	cipherdata.cd_length = datalen + maclen;
464 
465 	/* perform the actual encryption */
466 	if (encrypt) {
467 		ret = crypto_encrypt(&mech, &plaindata, key, tmpl, &cipherdata);
468 		if (ret != CRYPTO_SUCCESS) {
469 			ret = SET_ERROR(EIO);
470 			goto error;
471 		}
472 	} else {
473 		ret = crypto_decrypt(&mech, &cipherdata, key, tmpl, &plaindata);
474 		if (ret != CRYPTO_SUCCESS) {
475 			ASSERT3U(ret, ==, CRYPTO_INVALID_MAC);
476 			ret = SET_ERROR(ECKSUM);
477 			goto error;
478 		}
479 	}
480 
481 	return (0);
482 
483 error:
484 	return (ret);
485 }
486 
487 int
488 zio_crypt_key_wrap(crypto_key_t *cwkey, zio_crypt_key_t *key, uint8_t *iv,
489     uint8_t *mac, uint8_t *keydata_out, uint8_t *hmac_keydata_out)
490 {
491 	int ret;
492 	zfs_uio_t puio, cuio;
493 	uint64_t aad[3];
494 	iovec_t plain_iovecs[2], cipher_iovecs[3];
495 	uint64_t crypt = key->zk_crypt;
496 	uint_t enc_len, keydata_len, aad_len;
497 
498 	ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS);
499 
500 	keydata_len = zio_crypt_table[crypt].ci_keylen;
501 
502 	/* generate iv for wrapping the master and hmac key */
503 	ret = random_get_pseudo_bytes(iv, WRAPPING_IV_LEN);
504 	if (ret != 0)
505 		goto error;
506 
507 	/* initialize zfs_uio_ts */
508 	plain_iovecs[0].iov_base = key->zk_master_keydata;
509 	plain_iovecs[0].iov_len = keydata_len;
510 	plain_iovecs[1].iov_base = key->zk_hmac_keydata;
511 	plain_iovecs[1].iov_len = SHA512_HMAC_KEYLEN;
512 
513 	cipher_iovecs[0].iov_base = keydata_out;
514 	cipher_iovecs[0].iov_len = keydata_len;
515 	cipher_iovecs[1].iov_base = hmac_keydata_out;
516 	cipher_iovecs[1].iov_len = SHA512_HMAC_KEYLEN;
517 	cipher_iovecs[2].iov_base = mac;
518 	cipher_iovecs[2].iov_len = WRAPPING_MAC_LEN;
519 
520 	/*
521 	 * Although we don't support writing to the old format, we do
522 	 * support rewrapping the key so that the user can move and
523 	 * quarantine datasets on the old format.
524 	 */
525 	if (key->zk_version == 0) {
526 		aad_len = sizeof (uint64_t);
527 		aad[0] = LE_64(key->zk_guid);
528 	} else {
529 		ASSERT3U(key->zk_version, ==, ZIO_CRYPT_KEY_CURRENT_VERSION);
530 		aad_len = sizeof (uint64_t) * 3;
531 		aad[0] = LE_64(key->zk_guid);
532 		aad[1] = LE_64(crypt);
533 		aad[2] = LE_64(key->zk_version);
534 	}
535 
536 	enc_len = zio_crypt_table[crypt].ci_keylen + SHA512_HMAC_KEYLEN;
537 	puio.uio_iov = plain_iovecs;
538 	puio.uio_iovcnt = 2;
539 	puio.uio_segflg = UIO_SYSSPACE;
540 	cuio.uio_iov = cipher_iovecs;
541 	cuio.uio_iovcnt = 3;
542 	cuio.uio_segflg = UIO_SYSSPACE;
543 
544 	/* encrypt the keys and store the resulting ciphertext and mac */
545 	ret = zio_do_crypt_uio(B_TRUE, crypt, cwkey, NULL, iv, enc_len,
546 	    &puio, &cuio, (uint8_t *)aad, aad_len);
547 	if (ret != 0)
548 		goto error;
549 
550 	return (0);
551 
552 error:
553 	return (ret);
554 }
555 
556 int
557 zio_crypt_key_unwrap(crypto_key_t *cwkey, uint64_t crypt, uint64_t version,
558     uint64_t guid, uint8_t *keydata, uint8_t *hmac_keydata, uint8_t *iv,
559     uint8_t *mac, zio_crypt_key_t *key)
560 {
561 	crypto_mechanism_t mech;
562 	zfs_uio_t puio, cuio;
563 	uint64_t aad[3];
564 	iovec_t plain_iovecs[2], cipher_iovecs[3];
565 	uint_t enc_len, keydata_len, aad_len;
566 	int ret;
567 
568 	ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS);
569 
570 	rw_init(&key->zk_salt_lock, NULL, RW_DEFAULT, NULL);
571 
572 	keydata_len = zio_crypt_table[crypt].ci_keylen;
573 
574 	/* initialize zfs_uio_ts */
575 	plain_iovecs[0].iov_base = key->zk_master_keydata;
576 	plain_iovecs[0].iov_len = keydata_len;
577 	plain_iovecs[1].iov_base = key->zk_hmac_keydata;
578 	plain_iovecs[1].iov_len = SHA512_HMAC_KEYLEN;
579 
580 	cipher_iovecs[0].iov_base = keydata;
581 	cipher_iovecs[0].iov_len = keydata_len;
582 	cipher_iovecs[1].iov_base = hmac_keydata;
583 	cipher_iovecs[1].iov_len = SHA512_HMAC_KEYLEN;
584 	cipher_iovecs[2].iov_base = mac;
585 	cipher_iovecs[2].iov_len = WRAPPING_MAC_LEN;
586 
587 	if (version == 0) {
588 		aad_len = sizeof (uint64_t);
589 		aad[0] = LE_64(guid);
590 	} else {
591 		ASSERT3U(version, ==, ZIO_CRYPT_KEY_CURRENT_VERSION);
592 		aad_len = sizeof (uint64_t) * 3;
593 		aad[0] = LE_64(guid);
594 		aad[1] = LE_64(crypt);
595 		aad[2] = LE_64(version);
596 	}
597 
598 	enc_len = keydata_len + SHA512_HMAC_KEYLEN;
599 	puio.uio_iov = plain_iovecs;
600 	puio.uio_segflg = UIO_SYSSPACE;
601 	puio.uio_iovcnt = 2;
602 	cuio.uio_iov = cipher_iovecs;
603 	cuio.uio_iovcnt = 3;
604 	cuio.uio_segflg = UIO_SYSSPACE;
605 
606 	/* decrypt the keys and store the result in the output buffers */
607 	ret = zio_do_crypt_uio(B_FALSE, crypt, cwkey, NULL, iv, enc_len,
608 	    &puio, &cuio, (uint8_t *)aad, aad_len);
609 	if (ret != 0)
610 		goto error;
611 
612 	/* generate a fresh salt */
613 	ret = random_get_bytes(key->zk_salt, ZIO_DATA_SALT_LEN);
614 	if (ret != 0)
615 		goto error;
616 
617 	/* derive the current key from the master key */
618 	ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0,
619 	    key->zk_salt, ZIO_DATA_SALT_LEN, key->zk_current_keydata,
620 	    keydata_len);
621 	if (ret != 0)
622 		goto error;
623 
624 	/* initialize keys for ICP */
625 	key->zk_current_key.ck_data = key->zk_current_keydata;
626 	key->zk_current_key.ck_length = CRYPTO_BYTES2BITS(keydata_len);
627 
628 	key->zk_hmac_key.ck_data = key->zk_hmac_keydata;
629 	key->zk_hmac_key.ck_length = CRYPTO_BYTES2BITS(SHA512_HMAC_KEYLEN);
630 
631 	/*
632 	 * Initialize the crypto templates. It's ok if this fails because
633 	 * this is just an optimization.
634 	 */
635 	mech.cm_type = crypto_mech2id(zio_crypt_table[crypt].ci_mechname);
636 	ret = crypto_create_ctx_template(&mech, &key->zk_current_key,
637 	    &key->zk_current_tmpl);
638 	if (ret != CRYPTO_SUCCESS)
639 		key->zk_current_tmpl = NULL;
640 
641 	mech.cm_type = crypto_mech2id(SUN_CKM_SHA512_HMAC);
642 	ret = crypto_create_ctx_template(&mech, &key->zk_hmac_key,
643 	    &key->zk_hmac_tmpl);
644 	if (ret != CRYPTO_SUCCESS)
645 		key->zk_hmac_tmpl = NULL;
646 
647 	key->zk_crypt = crypt;
648 	key->zk_version = version;
649 	key->zk_guid = guid;
650 	key->zk_salt_count = 0;
651 
652 	return (0);
653 
654 error:
655 	zio_crypt_key_destroy(key);
656 	return (ret);
657 }
658 
659 int
660 zio_crypt_generate_iv(uint8_t *ivbuf)
661 {
662 	int ret;
663 
664 	/* randomly generate the IV */
665 	ret = random_get_pseudo_bytes(ivbuf, ZIO_DATA_IV_LEN);
666 	if (ret != 0)
667 		goto error;
668 
669 	return (0);
670 
671 error:
672 	memset(ivbuf, 0, ZIO_DATA_IV_LEN);
673 	return (ret);
674 }
675 
676 int
677 zio_crypt_do_hmac(zio_crypt_key_t *key, uint8_t *data, uint_t datalen,
678     uint8_t *digestbuf, uint_t digestlen)
679 {
680 	int ret;
681 	crypto_mechanism_t mech;
682 	crypto_data_t in_data, digest_data;
683 	uint8_t raw_digestbuf[SHA512_DIGEST_LENGTH];
684 
685 	ASSERT3U(digestlen, <=, SHA512_DIGEST_LENGTH);
686 
687 	/* initialize sha512-hmac mechanism and crypto data */
688 	mech.cm_type = crypto_mech2id(SUN_CKM_SHA512_HMAC);
689 	mech.cm_param = NULL;
690 	mech.cm_param_len = 0;
691 
692 	/* initialize the crypto data */
693 	in_data.cd_format = CRYPTO_DATA_RAW;
694 	in_data.cd_offset = 0;
695 	in_data.cd_length = datalen;
696 	in_data.cd_raw.iov_base = (char *)data;
697 	in_data.cd_raw.iov_len = in_data.cd_length;
698 
699 	digest_data.cd_format = CRYPTO_DATA_RAW;
700 	digest_data.cd_offset = 0;
701 	digest_data.cd_length = SHA512_DIGEST_LENGTH;
702 	digest_data.cd_raw.iov_base = (char *)raw_digestbuf;
703 	digest_data.cd_raw.iov_len = digest_data.cd_length;
704 
705 	/* generate the hmac */
706 	ret = crypto_mac(&mech, &in_data, &key->zk_hmac_key, key->zk_hmac_tmpl,
707 	    &digest_data);
708 	if (ret != CRYPTO_SUCCESS) {
709 		ret = SET_ERROR(EIO);
710 		goto error;
711 	}
712 
713 	memcpy(digestbuf, raw_digestbuf, digestlen);
714 
715 	return (0);
716 
717 error:
718 	memset(digestbuf, 0, digestlen);
719 	return (ret);
720 }
721 
722 int
723 zio_crypt_generate_iv_salt_dedup(zio_crypt_key_t *key, uint8_t *data,
724     uint_t datalen, uint8_t *ivbuf, uint8_t *salt)
725 {
726 	int ret;
727 	uint8_t digestbuf[SHA512_DIGEST_LENGTH];
728 
729 	ret = zio_crypt_do_hmac(key, data, datalen,
730 	    digestbuf, SHA512_DIGEST_LENGTH);
731 	if (ret != 0)
732 		return (ret);
733 
734 	memcpy(salt, digestbuf, ZIO_DATA_SALT_LEN);
735 	memcpy(ivbuf, digestbuf + ZIO_DATA_SALT_LEN, ZIO_DATA_IV_LEN);
736 
737 	return (0);
738 }
739 
740 /*
741  * The following functions are used to encode and decode encryption parameters
742  * into blkptr_t and zil_header_t. The ICP wants to use these parameters as
743  * byte strings, which normally means that these strings would not need to deal
744  * with byteswapping at all. However, both blkptr_t and zil_header_t may be
745  * byteswapped by lower layers and so we must "undo" that byteswap here upon
746  * decoding and encoding in a non-native byteorder. These functions require
747  * that the byteorder bit is correct before being called.
748  */
749 void
750 zio_crypt_encode_params_bp(blkptr_t *bp, uint8_t *salt, uint8_t *iv)
751 {
752 	uint64_t val64;
753 	uint32_t val32;
754 
755 	ASSERT(BP_IS_ENCRYPTED(bp));
756 
757 	if (!BP_SHOULD_BYTESWAP(bp)) {
758 		memcpy(&bp->blk_dva[2].dva_word[0], salt, sizeof (uint64_t));
759 		memcpy(&bp->blk_dva[2].dva_word[1], iv, sizeof (uint64_t));
760 		memcpy(&val32, iv + sizeof (uint64_t), sizeof (uint32_t));
761 		BP_SET_IV2(bp, val32);
762 	} else {
763 		memcpy(&val64, salt, sizeof (uint64_t));
764 		bp->blk_dva[2].dva_word[0] = BSWAP_64(val64);
765 
766 		memcpy(&val64, iv, sizeof (uint64_t));
767 		bp->blk_dva[2].dva_word[1] = BSWAP_64(val64);
768 
769 		memcpy(&val32, iv + sizeof (uint64_t), sizeof (uint32_t));
770 		BP_SET_IV2(bp, BSWAP_32(val32));
771 	}
772 }
773 
774 void
775 zio_crypt_decode_params_bp(const blkptr_t *bp, uint8_t *salt, uint8_t *iv)
776 {
777 	uint64_t val64;
778 	uint32_t val32;
779 
780 	ASSERT(BP_IS_PROTECTED(bp));
781 
782 	/* for convenience, so callers don't need to check */
783 	if (BP_IS_AUTHENTICATED(bp)) {
784 		memset(salt, 0, ZIO_DATA_SALT_LEN);
785 		memset(iv, 0, ZIO_DATA_IV_LEN);
786 		return;
787 	}
788 
789 	if (!BP_SHOULD_BYTESWAP(bp)) {
790 		memcpy(salt, &bp->blk_dva[2].dva_word[0], sizeof (uint64_t));
791 		memcpy(iv, &bp->blk_dva[2].dva_word[1], sizeof (uint64_t));
792 
793 		val32 = (uint32_t)BP_GET_IV2(bp);
794 		memcpy(iv + sizeof (uint64_t), &val32, sizeof (uint32_t));
795 	} else {
796 		val64 = BSWAP_64(bp->blk_dva[2].dva_word[0]);
797 		memcpy(salt, &val64, sizeof (uint64_t));
798 
799 		val64 = BSWAP_64(bp->blk_dva[2].dva_word[1]);
800 		memcpy(iv, &val64, sizeof (uint64_t));
801 
802 		val32 = BSWAP_32((uint32_t)BP_GET_IV2(bp));
803 		memcpy(iv + sizeof (uint64_t), &val32, sizeof (uint32_t));
804 	}
805 }
806 
807 void
808 zio_crypt_encode_mac_bp(blkptr_t *bp, uint8_t *mac)
809 {
810 	uint64_t val64;
811 
812 	ASSERT(BP_USES_CRYPT(bp));
813 	ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_OBJSET);
814 
815 	if (!BP_SHOULD_BYTESWAP(bp)) {
816 		memcpy(&bp->blk_cksum.zc_word[2], mac, sizeof (uint64_t));
817 		memcpy(&bp->blk_cksum.zc_word[3], mac + sizeof (uint64_t),
818 		    sizeof (uint64_t));
819 	} else {
820 		memcpy(&val64, mac, sizeof (uint64_t));
821 		bp->blk_cksum.zc_word[2] = BSWAP_64(val64);
822 
823 		memcpy(&val64, mac + sizeof (uint64_t), sizeof (uint64_t));
824 		bp->blk_cksum.zc_word[3] = BSWAP_64(val64);
825 	}
826 }
827 
828 void
829 zio_crypt_decode_mac_bp(const blkptr_t *bp, uint8_t *mac)
830 {
831 	uint64_t val64;
832 
833 	ASSERT(BP_USES_CRYPT(bp) || BP_IS_HOLE(bp));
834 
835 	/* for convenience, so callers don't need to check */
836 	if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
837 		memset(mac, 0, ZIO_DATA_MAC_LEN);
838 		return;
839 	}
840 
841 	if (!BP_SHOULD_BYTESWAP(bp)) {
842 		memcpy(mac, &bp->blk_cksum.zc_word[2], sizeof (uint64_t));
843 		memcpy(mac + sizeof (uint64_t), &bp->blk_cksum.zc_word[3],
844 		    sizeof (uint64_t));
845 	} else {
846 		val64 = BSWAP_64(bp->blk_cksum.zc_word[2]);
847 		memcpy(mac, &val64, sizeof (uint64_t));
848 
849 		val64 = BSWAP_64(bp->blk_cksum.zc_word[3]);
850 		memcpy(mac + sizeof (uint64_t), &val64, sizeof (uint64_t));
851 	}
852 }
853 
854 void
855 zio_crypt_encode_mac_zil(void *data, uint8_t *mac)
856 {
857 	zil_chain_t *zilc = data;
858 
859 	memcpy(&zilc->zc_eck.zec_cksum.zc_word[2], mac, sizeof (uint64_t));
860 	memcpy(&zilc->zc_eck.zec_cksum.zc_word[3], mac + sizeof (uint64_t),
861 	    sizeof (uint64_t));
862 }
863 
864 void
865 zio_crypt_decode_mac_zil(const void *data, uint8_t *mac)
866 {
867 	/*
868 	 * The ZIL MAC is embedded in the block it protects, which will
869 	 * not have been byteswapped by the time this function has been called.
870 	 * As a result, we don't need to worry about byteswapping the MAC.
871 	 */
872 	const zil_chain_t *zilc = data;
873 
874 	memcpy(mac, &zilc->zc_eck.zec_cksum.zc_word[2], sizeof (uint64_t));
875 	memcpy(mac + sizeof (uint64_t), &zilc->zc_eck.zec_cksum.zc_word[3],
876 	    sizeof (uint64_t));
877 }
878 
879 /*
880  * This routine takes a block of dnodes (src_abd) and copies only the bonus
881  * buffers to the same offsets in the dst buffer. datalen should be the size
882  * of both the src_abd and the dst buffer (not just the length of the bonus
883  * buffers).
884  */
885 void
886 zio_crypt_copy_dnode_bonus(abd_t *src_abd, uint8_t *dst, uint_t datalen)
887 {
888 	uint_t i, max_dnp = datalen >> DNODE_SHIFT;
889 	uint8_t *src;
890 	dnode_phys_t *dnp, *sdnp, *ddnp;
891 
892 	src = abd_borrow_buf_copy(src_abd, datalen);
893 
894 	sdnp = (dnode_phys_t *)src;
895 	ddnp = (dnode_phys_t *)dst;
896 
897 	for (i = 0; i < max_dnp; i += sdnp[i].dn_extra_slots + 1) {
898 		dnp = &sdnp[i];
899 		if (dnp->dn_type != DMU_OT_NONE &&
900 		    DMU_OT_IS_ENCRYPTED(dnp->dn_bonustype) &&
901 		    dnp->dn_bonuslen != 0) {
902 			memcpy(DN_BONUS(&ddnp[i]), DN_BONUS(dnp),
903 			    DN_MAX_BONUS_LEN(dnp));
904 		}
905 	}
906 
907 	abd_return_buf(src_abd, src, datalen);
908 }
909 
910 /*
911  * This function decides what fields from blk_prop are included in
912  * the on-disk various MAC algorithms.
913  */
914 static void
915 zio_crypt_bp_zero_nonportable_blkprop(blkptr_t *bp, uint64_t version)
916 {
917 	/*
918 	 * Version 0 did not properly zero out all non-portable fields
919 	 * as it should have done. We maintain this code so that we can
920 	 * do read-only imports of pools on this version.
921 	 */
922 	if (version == 0) {
923 		BP_SET_DEDUP(bp, 0);
924 		BP_SET_CHECKSUM(bp, 0);
925 		BP_SET_PSIZE(bp, SPA_MINBLOCKSIZE);
926 		return;
927 	}
928 
929 	ASSERT3U(version, ==, ZIO_CRYPT_KEY_CURRENT_VERSION);
930 
931 	/*
932 	 * The hole_birth feature might set these fields even if this bp
933 	 * is a hole. We zero them out here to guarantee that raw sends
934 	 * will function with or without the feature.
935 	 */
936 	if (BP_IS_HOLE(bp)) {
937 		bp->blk_prop = 0ULL;
938 		return;
939 	}
940 
941 	/*
942 	 * At L0 we want to verify these fields to ensure that data blocks
943 	 * can not be reinterpreted. For instance, we do not want an attacker
944 	 * to trick us into returning raw lz4 compressed data to the user
945 	 * by modifying the compression bits. At higher levels, we cannot
946 	 * enforce this policy since raw sends do not convey any information
947 	 * about indirect blocks, so these values might be different on the
948 	 * receive side. Fortunately, this does not open any new attack
949 	 * vectors, since any alterations that can be made to a higher level
950 	 * bp must still verify the correct order of the layer below it.
951 	 */
952 	if (BP_GET_LEVEL(bp) != 0) {
953 		BP_SET_BYTEORDER(bp, 0);
954 		BP_SET_COMPRESS(bp, 0);
955 
956 		/*
957 		 * psize cannot be set to zero or it will trigger
958 		 * asserts, but the value doesn't really matter as
959 		 * long as it is constant.
960 		 */
961 		BP_SET_PSIZE(bp, SPA_MINBLOCKSIZE);
962 	}
963 
964 	BP_SET_DEDUP(bp, 0);
965 	BP_SET_CHECKSUM(bp, 0);
966 }
967 
968 static void
969 zio_crypt_bp_auth_init(uint64_t version, boolean_t should_bswap, blkptr_t *bp,
970     blkptr_auth_buf_t *bab, uint_t *bab_len)
971 {
972 	blkptr_t tmpbp = *bp;
973 
974 	if (should_bswap)
975 		byteswap_uint64_array(&tmpbp, sizeof (blkptr_t));
976 
977 	ASSERT(BP_USES_CRYPT(&tmpbp) || BP_IS_HOLE(&tmpbp));
978 	ASSERT0(BP_IS_EMBEDDED(&tmpbp));
979 
980 	zio_crypt_decode_mac_bp(&tmpbp, bab->bab_mac);
981 
982 	/*
983 	 * We always MAC blk_prop in LE to ensure portability. This
984 	 * must be done after decoding the mac, since the endianness
985 	 * will get zero'd out here.
986 	 */
987 	zio_crypt_bp_zero_nonportable_blkprop(&tmpbp, version);
988 	bab->bab_prop = LE_64(tmpbp.blk_prop);
989 	bab->bab_pad = 0ULL;
990 
991 	/* version 0 did not include the padding */
992 	*bab_len = sizeof (blkptr_auth_buf_t);
993 	if (version == 0)
994 		*bab_len -= sizeof (uint64_t);
995 }
996 
997 static int
998 zio_crypt_bp_do_hmac_updates(crypto_context_t ctx, uint64_t version,
999     boolean_t should_bswap, blkptr_t *bp)
1000 {
1001 	int ret;
1002 	uint_t bab_len;
1003 	blkptr_auth_buf_t bab;
1004 	crypto_data_t cd;
1005 
1006 	zio_crypt_bp_auth_init(version, should_bswap, bp, &bab, &bab_len);
1007 	cd.cd_format = CRYPTO_DATA_RAW;
1008 	cd.cd_offset = 0;
1009 	cd.cd_length = bab_len;
1010 	cd.cd_raw.iov_base = (char *)&bab;
1011 	cd.cd_raw.iov_len = cd.cd_length;
1012 
1013 	ret = crypto_mac_update(ctx, &cd);
1014 	if (ret != CRYPTO_SUCCESS) {
1015 		ret = SET_ERROR(EIO);
1016 		goto error;
1017 	}
1018 
1019 	return (0);
1020 
1021 error:
1022 	return (ret);
1023 }
1024 
1025 static void
1026 zio_crypt_bp_do_indrect_checksum_updates(SHA2_CTX *ctx, uint64_t version,
1027     boolean_t should_bswap, blkptr_t *bp)
1028 {
1029 	uint_t bab_len;
1030 	blkptr_auth_buf_t bab;
1031 
1032 	zio_crypt_bp_auth_init(version, should_bswap, bp, &bab, &bab_len);
1033 	SHA2Update(ctx, &bab, bab_len);
1034 }
1035 
1036 static void
1037 zio_crypt_bp_do_aad_updates(uint8_t **aadp, uint_t *aad_len, uint64_t version,
1038     boolean_t should_bswap, blkptr_t *bp)
1039 {
1040 	uint_t bab_len;
1041 	blkptr_auth_buf_t bab;
1042 
1043 	zio_crypt_bp_auth_init(version, should_bswap, bp, &bab, &bab_len);
1044 	memcpy(*aadp, &bab, bab_len);
1045 	*aadp += bab_len;
1046 	*aad_len += bab_len;
1047 }
1048 
1049 static int
1050 zio_crypt_do_dnode_hmac_updates(crypto_context_t ctx, uint64_t version,
1051     boolean_t should_bswap, dnode_phys_t *dnp)
1052 {
1053 	int ret, i;
1054 	dnode_phys_t *adnp, tmp_dncore;
1055 	size_t dn_core_size = offsetof(dnode_phys_t, dn_blkptr);
1056 	boolean_t le_bswap = (should_bswap == ZFS_HOST_BYTEORDER);
1057 	crypto_data_t cd;
1058 
1059 	cd.cd_format = CRYPTO_DATA_RAW;
1060 	cd.cd_offset = 0;
1061 
1062 	/*
1063 	 * Authenticate the core dnode (masking out non-portable bits).
1064 	 * We only copy the first 64 bytes we operate on to avoid the overhead
1065 	 * of copying 512-64 unneeded bytes. The compiler seems to be fine
1066 	 * with that.
1067 	 */
1068 	memcpy(&tmp_dncore, dnp, dn_core_size);
1069 	adnp = &tmp_dncore;
1070 
1071 	if (le_bswap) {
1072 		adnp->dn_datablkszsec = BSWAP_16(adnp->dn_datablkszsec);
1073 		adnp->dn_bonuslen = BSWAP_16(adnp->dn_bonuslen);
1074 		adnp->dn_maxblkid = BSWAP_64(adnp->dn_maxblkid);
1075 		adnp->dn_used = BSWAP_64(adnp->dn_used);
1076 	}
1077 	adnp->dn_flags &= DNODE_CRYPT_PORTABLE_FLAGS_MASK;
1078 	adnp->dn_used = 0;
1079 
1080 	cd.cd_length = dn_core_size;
1081 	cd.cd_raw.iov_base = (char *)adnp;
1082 	cd.cd_raw.iov_len = cd.cd_length;
1083 
1084 	ret = crypto_mac_update(ctx, &cd);
1085 	if (ret != CRYPTO_SUCCESS) {
1086 		ret = SET_ERROR(EIO);
1087 		goto error;
1088 	}
1089 
1090 	for (i = 0; i < dnp->dn_nblkptr; i++) {
1091 		ret = zio_crypt_bp_do_hmac_updates(ctx, version,
1092 		    should_bswap, &dnp->dn_blkptr[i]);
1093 		if (ret != 0)
1094 			goto error;
1095 	}
1096 
1097 	if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1098 		ret = zio_crypt_bp_do_hmac_updates(ctx, version,
1099 		    should_bswap, DN_SPILL_BLKPTR(dnp));
1100 		if (ret != 0)
1101 			goto error;
1102 	}
1103 
1104 	return (0);
1105 
1106 error:
1107 	return (ret);
1108 }
1109 
1110 /*
1111  * objset_phys_t blocks introduce a number of exceptions to the normal
1112  * authentication process. objset_phys_t's contain 2 separate HMACS for
1113  * protecting the integrity of their data. The portable_mac protects the
1114  * metadnode. This MAC can be sent with a raw send and protects against
1115  * reordering of data within the metadnode. The local_mac protects the user
1116  * accounting objects which are not sent from one system to another.
1117  *
1118  * In addition, objset blocks are the only blocks that can be modified and
1119  * written to disk without the key loaded under certain circumstances. During
1120  * zil_claim() we need to be able to update the zil_header_t to complete
1121  * claiming log blocks and during raw receives we need to write out the
1122  * portable_mac from the send file. Both of these actions are possible
1123  * because these fields are not protected by either MAC so neither one will
1124  * need to modify the MACs without the key. However, when the modified blocks
1125  * are written out they will be byteswapped into the host machine's native
1126  * endianness which will modify fields protected by the MAC. As a result, MAC
1127  * calculation for objset blocks works slightly differently from other block
1128  * types. Where other block types MAC the data in whatever endianness is
1129  * written to disk, objset blocks always MAC little endian version of their
1130  * values. In the code, should_bswap is the value from BP_SHOULD_BYTESWAP()
1131  * and le_bswap indicates whether a byteswap is needed to get this block
1132  * into little endian format.
1133  */
1134 int
1135 zio_crypt_do_objset_hmacs(zio_crypt_key_t *key, void *data, uint_t datalen,
1136     boolean_t should_bswap, uint8_t *portable_mac, uint8_t *local_mac)
1137 {
1138 	int ret;
1139 	crypto_mechanism_t mech;
1140 	crypto_context_t ctx;
1141 	crypto_data_t cd;
1142 	objset_phys_t *osp = data;
1143 	uint64_t intval;
1144 	boolean_t le_bswap = (should_bswap == ZFS_HOST_BYTEORDER);
1145 	uint8_t raw_portable_mac[SHA512_DIGEST_LENGTH];
1146 	uint8_t raw_local_mac[SHA512_DIGEST_LENGTH];
1147 
1148 	/* initialize HMAC mechanism */
1149 	mech.cm_type = crypto_mech2id(SUN_CKM_SHA512_HMAC);
1150 	mech.cm_param = NULL;
1151 	mech.cm_param_len = 0;
1152 
1153 	cd.cd_format = CRYPTO_DATA_RAW;
1154 	cd.cd_offset = 0;
1155 
1156 	/* calculate the portable MAC from the portable fields and metadnode */
1157 	ret = crypto_mac_init(&mech, &key->zk_hmac_key, NULL, &ctx);
1158 	if (ret != CRYPTO_SUCCESS) {
1159 		ret = SET_ERROR(EIO);
1160 		goto error;
1161 	}
1162 
1163 	/* add in the os_type */
1164 	intval = (le_bswap) ? osp->os_type : BSWAP_64(osp->os_type);
1165 	cd.cd_length = sizeof (uint64_t);
1166 	cd.cd_raw.iov_base = (char *)&intval;
1167 	cd.cd_raw.iov_len = cd.cd_length;
1168 
1169 	ret = crypto_mac_update(ctx, &cd);
1170 	if (ret != CRYPTO_SUCCESS) {
1171 		ret = SET_ERROR(EIO);
1172 		goto error;
1173 	}
1174 
1175 	/* add in the portable os_flags */
1176 	intval = osp->os_flags;
1177 	if (should_bswap)
1178 		intval = BSWAP_64(intval);
1179 	intval &= OBJSET_CRYPT_PORTABLE_FLAGS_MASK;
1180 	if (!ZFS_HOST_BYTEORDER)
1181 		intval = BSWAP_64(intval);
1182 
1183 	cd.cd_length = sizeof (uint64_t);
1184 	cd.cd_raw.iov_base = (char *)&intval;
1185 	cd.cd_raw.iov_len = cd.cd_length;
1186 
1187 	ret = crypto_mac_update(ctx, &cd);
1188 	if (ret != CRYPTO_SUCCESS) {
1189 		ret = SET_ERROR(EIO);
1190 		goto error;
1191 	}
1192 
1193 	/* add in fields from the metadnode */
1194 	ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version,
1195 	    should_bswap, &osp->os_meta_dnode);
1196 	if (ret)
1197 		goto error;
1198 
1199 	/* store the final digest in a temporary buffer and copy what we need */
1200 	cd.cd_length = SHA512_DIGEST_LENGTH;
1201 	cd.cd_raw.iov_base = (char *)raw_portable_mac;
1202 	cd.cd_raw.iov_len = cd.cd_length;
1203 
1204 	ret = crypto_mac_final(ctx, &cd);
1205 	if (ret != CRYPTO_SUCCESS) {
1206 		ret = SET_ERROR(EIO);
1207 		goto error;
1208 	}
1209 
1210 	memcpy(portable_mac, raw_portable_mac, ZIO_OBJSET_MAC_LEN);
1211 
1212 	/*
1213 	 * This is necessary here as we check next whether
1214 	 * OBJSET_FLAG_USERACCOUNTING_COMPLETE is set in order to
1215 	 * decide if the local_mac should be zeroed out. That flag will always
1216 	 * be set by dmu_objset_id_quota_upgrade_cb() and
1217 	 * dmu_objset_userspace_upgrade_cb() if useraccounting has been
1218 	 * completed.
1219 	 */
1220 	intval = osp->os_flags;
1221 	if (should_bswap)
1222 		intval = BSWAP_64(intval);
1223 	boolean_t uacct_incomplete =
1224 	    !(intval & OBJSET_FLAG_USERACCOUNTING_COMPLETE);
1225 
1226 	/*
1227 	 * The local MAC protects the user, group and project accounting.
1228 	 * If these objects are not present, the local MAC is zeroed out.
1229 	 */
1230 	if (uacct_incomplete ||
1231 	    (datalen >= OBJSET_PHYS_SIZE_V3 &&
1232 	    osp->os_userused_dnode.dn_type == DMU_OT_NONE &&
1233 	    osp->os_groupused_dnode.dn_type == DMU_OT_NONE &&
1234 	    osp->os_projectused_dnode.dn_type == DMU_OT_NONE) ||
1235 	    (datalen >= OBJSET_PHYS_SIZE_V2 &&
1236 	    osp->os_userused_dnode.dn_type == DMU_OT_NONE &&
1237 	    osp->os_groupused_dnode.dn_type == DMU_OT_NONE) ||
1238 	    (datalen <= OBJSET_PHYS_SIZE_V1)) {
1239 		memset(local_mac, 0, ZIO_OBJSET_MAC_LEN);
1240 		return (0);
1241 	}
1242 
1243 	/* calculate the local MAC from the userused and groupused dnodes */
1244 	ret = crypto_mac_init(&mech, &key->zk_hmac_key, NULL, &ctx);
1245 	if (ret != CRYPTO_SUCCESS) {
1246 		ret = SET_ERROR(EIO);
1247 		goto error;
1248 	}
1249 
1250 	/* add in the non-portable os_flags */
1251 	intval = osp->os_flags;
1252 	if (should_bswap)
1253 		intval = BSWAP_64(intval);
1254 	intval &= ~OBJSET_CRYPT_PORTABLE_FLAGS_MASK;
1255 	if (!ZFS_HOST_BYTEORDER)
1256 		intval = BSWAP_64(intval);
1257 
1258 	cd.cd_length = sizeof (uint64_t);
1259 	cd.cd_raw.iov_base = (char *)&intval;
1260 	cd.cd_raw.iov_len = cd.cd_length;
1261 
1262 	ret = crypto_mac_update(ctx, &cd);
1263 	if (ret != CRYPTO_SUCCESS) {
1264 		ret = SET_ERROR(EIO);
1265 		goto error;
1266 	}
1267 
1268 	/* add in fields from the user accounting dnodes */
1269 	if (osp->os_userused_dnode.dn_type != DMU_OT_NONE) {
1270 		ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version,
1271 		    should_bswap, &osp->os_userused_dnode);
1272 		if (ret)
1273 			goto error;
1274 	}
1275 
1276 	if (osp->os_groupused_dnode.dn_type != DMU_OT_NONE) {
1277 		ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version,
1278 		    should_bswap, &osp->os_groupused_dnode);
1279 		if (ret)
1280 			goto error;
1281 	}
1282 
1283 	if (osp->os_projectused_dnode.dn_type != DMU_OT_NONE &&
1284 	    datalen >= OBJSET_PHYS_SIZE_V3) {
1285 		ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version,
1286 		    should_bswap, &osp->os_projectused_dnode);
1287 		if (ret)
1288 			goto error;
1289 	}
1290 
1291 	/* store the final digest in a temporary buffer and copy what we need */
1292 	cd.cd_length = SHA512_DIGEST_LENGTH;
1293 	cd.cd_raw.iov_base = (char *)raw_local_mac;
1294 	cd.cd_raw.iov_len = cd.cd_length;
1295 
1296 	ret = crypto_mac_final(ctx, &cd);
1297 	if (ret != CRYPTO_SUCCESS) {
1298 		ret = SET_ERROR(EIO);
1299 		goto error;
1300 	}
1301 
1302 	memcpy(local_mac, raw_local_mac, ZIO_OBJSET_MAC_LEN);
1303 
1304 	return (0);
1305 
1306 error:
1307 	memset(portable_mac, 0, ZIO_OBJSET_MAC_LEN);
1308 	memset(local_mac, 0, ZIO_OBJSET_MAC_LEN);
1309 	return (ret);
1310 }
1311 
1312 static void
1313 zio_crypt_destroy_uio(zfs_uio_t *uio)
1314 {
1315 	if (uio->uio_iov)
1316 		kmem_free(uio->uio_iov, uio->uio_iovcnt * sizeof (iovec_t));
1317 }
1318 
1319 /*
1320  * This function parses an uncompressed indirect block and returns a checksum
1321  * of all the portable fields from all of the contained bps. The portable
1322  * fields are the MAC and all of the fields from blk_prop except for the dedup,
1323  * checksum, and psize bits. For an explanation of the purpose of this, see
1324  * the comment block on object set authentication.
1325  */
1326 static int
1327 zio_crypt_do_indirect_mac_checksum_impl(boolean_t generate, void *buf,
1328     uint_t datalen, uint64_t version, boolean_t byteswap, uint8_t *cksum)
1329 {
1330 	blkptr_t *bp;
1331 	int i, epb = datalen >> SPA_BLKPTRSHIFT;
1332 	SHA2_CTX ctx;
1333 	uint8_t digestbuf[SHA512_DIGEST_LENGTH];
1334 
1335 	/* checksum all of the MACs from the layer below */
1336 	SHA2Init(SHA512, &ctx);
1337 	for (i = 0, bp = buf; i < epb; i++, bp++) {
1338 		zio_crypt_bp_do_indrect_checksum_updates(&ctx, version,
1339 		    byteswap, bp);
1340 	}
1341 	SHA2Final(digestbuf, &ctx);
1342 
1343 	if (generate) {
1344 		memcpy(cksum, digestbuf, ZIO_DATA_MAC_LEN);
1345 		return (0);
1346 	}
1347 
1348 	if (memcmp(digestbuf, cksum, ZIO_DATA_MAC_LEN) != 0)
1349 		return (SET_ERROR(ECKSUM));
1350 
1351 	return (0);
1352 }
1353 
1354 int
1355 zio_crypt_do_indirect_mac_checksum(boolean_t generate, void *buf,
1356     uint_t datalen, boolean_t byteswap, uint8_t *cksum)
1357 {
1358 	int ret;
1359 
1360 	/*
1361 	 * Unfortunately, callers of this function will not always have
1362 	 * easy access to the on-disk format version. This info is
1363 	 * normally found in the DSL Crypto Key, but the checksum-of-MACs
1364 	 * is expected to be verifiable even when the key isn't loaded.
1365 	 * Here, instead of doing a ZAP lookup for the version for each
1366 	 * zio, we simply try both existing formats.
1367 	 */
1368 	ret = zio_crypt_do_indirect_mac_checksum_impl(generate, buf,
1369 	    datalen, ZIO_CRYPT_KEY_CURRENT_VERSION, byteswap, cksum);
1370 	if (ret == ECKSUM) {
1371 		ASSERT(!generate);
1372 		ret = zio_crypt_do_indirect_mac_checksum_impl(generate,
1373 		    buf, datalen, 0, byteswap, cksum);
1374 	}
1375 
1376 	return (ret);
1377 }
1378 
1379 int
1380 zio_crypt_do_indirect_mac_checksum_abd(boolean_t generate, abd_t *abd,
1381     uint_t datalen, boolean_t byteswap, uint8_t *cksum)
1382 {
1383 	int ret;
1384 	void *buf;
1385 
1386 	buf = abd_borrow_buf_copy(abd, datalen);
1387 	ret = zio_crypt_do_indirect_mac_checksum(generate, buf, datalen,
1388 	    byteswap, cksum);
1389 	abd_return_buf(abd, buf, datalen);
1390 
1391 	return (ret);
1392 }
1393 
1394 /*
1395  * Special case handling routine for encrypting / decrypting ZIL blocks.
1396  * We do not check for the older ZIL chain because the encryption feature
1397  * was not available before the newer ZIL chain was introduced. The goal
1398  * here is to encrypt everything except the blkptr_t of a lr_write_t and
1399  * the zil_chain_t header. Everything that is not encrypted is authenticated.
1400  */
1401 static int
1402 zio_crypt_init_uios_zil(boolean_t encrypt, uint8_t *plainbuf,
1403     uint8_t *cipherbuf, uint_t datalen, boolean_t byteswap, zfs_uio_t *puio,
1404     zfs_uio_t *cuio, uint_t *enc_len, uint8_t **authbuf, uint_t *auth_len,
1405     boolean_t *no_crypt)
1406 {
1407 	int ret;
1408 	uint64_t txtype, lr_len;
1409 	uint_t nr_src, nr_dst, crypt_len;
1410 	uint_t aad_len = 0, nr_iovecs = 0, total_len = 0;
1411 	iovec_t *src_iovecs = NULL, *dst_iovecs = NULL;
1412 	uint8_t *src, *dst, *slrp, *dlrp, *blkend, *aadp;
1413 	zil_chain_t *zilc;
1414 	lr_t *lr;
1415 	uint8_t *aadbuf = zio_buf_alloc(datalen);
1416 
1417 	/* cipherbuf always needs an extra iovec for the MAC */
1418 	if (encrypt) {
1419 		src = plainbuf;
1420 		dst = cipherbuf;
1421 		nr_src = 0;
1422 		nr_dst = 1;
1423 	} else {
1424 		src = cipherbuf;
1425 		dst = plainbuf;
1426 		nr_src = 1;
1427 		nr_dst = 0;
1428 	}
1429 	memset(dst, 0, datalen);
1430 
1431 	/* find the start and end record of the log block */
1432 	zilc = (zil_chain_t *)src;
1433 	slrp = src + sizeof (zil_chain_t);
1434 	aadp = aadbuf;
1435 	blkend = src + ((byteswap) ? BSWAP_64(zilc->zc_nused) : zilc->zc_nused);
1436 
1437 	/* calculate the number of encrypted iovecs we will need */
1438 	for (; slrp < blkend; slrp += lr_len) {
1439 		lr = (lr_t *)slrp;
1440 
1441 		if (!byteswap) {
1442 			txtype = lr->lrc_txtype;
1443 			lr_len = lr->lrc_reclen;
1444 		} else {
1445 			txtype = BSWAP_64(lr->lrc_txtype);
1446 			lr_len = BSWAP_64(lr->lrc_reclen);
1447 		}
1448 
1449 		nr_iovecs++;
1450 		if (txtype == TX_WRITE && lr_len != sizeof (lr_write_t))
1451 			nr_iovecs++;
1452 	}
1453 
1454 	nr_src += nr_iovecs;
1455 	nr_dst += nr_iovecs;
1456 
1457 	/* allocate the iovec arrays */
1458 	if (nr_src != 0) {
1459 		src_iovecs = kmem_alloc(nr_src * sizeof (iovec_t), KM_SLEEP);
1460 		if (src_iovecs == NULL) {
1461 			ret = SET_ERROR(ENOMEM);
1462 			goto error;
1463 		}
1464 	}
1465 
1466 	if (nr_dst != 0) {
1467 		dst_iovecs = kmem_alloc(nr_dst * sizeof (iovec_t), KM_SLEEP);
1468 		if (dst_iovecs == NULL) {
1469 			ret = SET_ERROR(ENOMEM);
1470 			goto error;
1471 		}
1472 	}
1473 
1474 	/*
1475 	 * Copy the plain zil header over and authenticate everything except
1476 	 * the checksum that will store our MAC. If we are writing the data
1477 	 * the embedded checksum will not have been calculated yet, so we don't
1478 	 * authenticate that.
1479 	 */
1480 	memcpy(dst, src, sizeof (zil_chain_t));
1481 	memcpy(aadp, src, sizeof (zil_chain_t) - sizeof (zio_eck_t));
1482 	aadp += sizeof (zil_chain_t) - sizeof (zio_eck_t);
1483 	aad_len += sizeof (zil_chain_t) - sizeof (zio_eck_t);
1484 
1485 	/* loop over records again, filling in iovecs */
1486 	nr_iovecs = 0;
1487 	slrp = src + sizeof (zil_chain_t);
1488 	dlrp = dst + sizeof (zil_chain_t);
1489 
1490 	for (; slrp < blkend; slrp += lr_len, dlrp += lr_len) {
1491 		lr = (lr_t *)slrp;
1492 
1493 		if (!byteswap) {
1494 			txtype = lr->lrc_txtype;
1495 			lr_len = lr->lrc_reclen;
1496 		} else {
1497 			txtype = BSWAP_64(lr->lrc_txtype);
1498 			lr_len = BSWAP_64(lr->lrc_reclen);
1499 		}
1500 
1501 		/* copy the common lr_t */
1502 		memcpy(dlrp, slrp, sizeof (lr_t));
1503 		memcpy(aadp, slrp, sizeof (lr_t));
1504 		aadp += sizeof (lr_t);
1505 		aad_len += sizeof (lr_t);
1506 
1507 		ASSERT3P(src_iovecs, !=, NULL);
1508 		ASSERT3P(dst_iovecs, !=, NULL);
1509 
1510 		/*
1511 		 * If this is a TX_WRITE record we want to encrypt everything
1512 		 * except the bp if exists. If the bp does exist we want to
1513 		 * authenticate it.
1514 		 */
1515 		if (txtype == TX_WRITE) {
1516 			crypt_len = sizeof (lr_write_t) -
1517 			    sizeof (lr_t) - sizeof (blkptr_t);
1518 			src_iovecs[nr_iovecs].iov_base = slrp + sizeof (lr_t);
1519 			src_iovecs[nr_iovecs].iov_len = crypt_len;
1520 			dst_iovecs[nr_iovecs].iov_base = dlrp + sizeof (lr_t);
1521 			dst_iovecs[nr_iovecs].iov_len = crypt_len;
1522 
1523 			/* copy the bp now since it will not be encrypted */
1524 			memcpy(dlrp + sizeof (lr_write_t) - sizeof (blkptr_t),
1525 			    slrp + sizeof (lr_write_t) - sizeof (blkptr_t),
1526 			    sizeof (blkptr_t));
1527 			memcpy(aadp,
1528 			    slrp + sizeof (lr_write_t) - sizeof (blkptr_t),
1529 			    sizeof (blkptr_t));
1530 			aadp += sizeof (blkptr_t);
1531 			aad_len += sizeof (blkptr_t);
1532 			nr_iovecs++;
1533 			total_len += crypt_len;
1534 
1535 			if (lr_len != sizeof (lr_write_t)) {
1536 				crypt_len = lr_len - sizeof (lr_write_t);
1537 				src_iovecs[nr_iovecs].iov_base =
1538 				    slrp + sizeof (lr_write_t);
1539 				src_iovecs[nr_iovecs].iov_len = crypt_len;
1540 				dst_iovecs[nr_iovecs].iov_base =
1541 				    dlrp + sizeof (lr_write_t);
1542 				dst_iovecs[nr_iovecs].iov_len = crypt_len;
1543 				nr_iovecs++;
1544 				total_len += crypt_len;
1545 			}
1546 		} else {
1547 			crypt_len = lr_len - sizeof (lr_t);
1548 			src_iovecs[nr_iovecs].iov_base = slrp + sizeof (lr_t);
1549 			src_iovecs[nr_iovecs].iov_len = crypt_len;
1550 			dst_iovecs[nr_iovecs].iov_base = dlrp + sizeof (lr_t);
1551 			dst_iovecs[nr_iovecs].iov_len = crypt_len;
1552 			nr_iovecs++;
1553 			total_len += crypt_len;
1554 		}
1555 	}
1556 
1557 	*no_crypt = (nr_iovecs == 0);
1558 	*enc_len = total_len;
1559 	*authbuf = aadbuf;
1560 	*auth_len = aad_len;
1561 
1562 	if (encrypt) {
1563 		puio->uio_iov = src_iovecs;
1564 		puio->uio_iovcnt = nr_src;
1565 		cuio->uio_iov = dst_iovecs;
1566 		cuio->uio_iovcnt = nr_dst;
1567 	} else {
1568 		puio->uio_iov = dst_iovecs;
1569 		puio->uio_iovcnt = nr_dst;
1570 		cuio->uio_iov = src_iovecs;
1571 		cuio->uio_iovcnt = nr_src;
1572 	}
1573 
1574 	return (0);
1575 
1576 error:
1577 	zio_buf_free(aadbuf, datalen);
1578 	if (src_iovecs != NULL)
1579 		kmem_free(src_iovecs, nr_src * sizeof (iovec_t));
1580 	if (dst_iovecs != NULL)
1581 		kmem_free(dst_iovecs, nr_dst * sizeof (iovec_t));
1582 
1583 	*enc_len = 0;
1584 	*authbuf = NULL;
1585 	*auth_len = 0;
1586 	*no_crypt = B_FALSE;
1587 	puio->uio_iov = NULL;
1588 	puio->uio_iovcnt = 0;
1589 	cuio->uio_iov = NULL;
1590 	cuio->uio_iovcnt = 0;
1591 	return (ret);
1592 }
1593 
1594 /*
1595  * Special case handling routine for encrypting / decrypting dnode blocks.
1596  */
1597 static int
1598 zio_crypt_init_uios_dnode(boolean_t encrypt, uint64_t version,
1599     uint8_t *plainbuf, uint8_t *cipherbuf, uint_t datalen, boolean_t byteswap,
1600     zfs_uio_t *puio, zfs_uio_t *cuio, uint_t *enc_len, uint8_t **authbuf,
1601     uint_t *auth_len, boolean_t *no_crypt)
1602 {
1603 	int ret;
1604 	uint_t nr_src, nr_dst, crypt_len;
1605 	uint_t aad_len = 0, nr_iovecs = 0, total_len = 0;
1606 	uint_t i, j, max_dnp = datalen >> DNODE_SHIFT;
1607 	iovec_t *src_iovecs = NULL, *dst_iovecs = NULL;
1608 	uint8_t *src, *dst, *aadp;
1609 	dnode_phys_t *dnp, *adnp, *sdnp, *ddnp;
1610 	uint8_t *aadbuf = zio_buf_alloc(datalen);
1611 
1612 	if (encrypt) {
1613 		src = plainbuf;
1614 		dst = cipherbuf;
1615 		nr_src = 0;
1616 		nr_dst = 1;
1617 	} else {
1618 		src = cipherbuf;
1619 		dst = plainbuf;
1620 		nr_src = 1;
1621 		nr_dst = 0;
1622 	}
1623 
1624 	sdnp = (dnode_phys_t *)src;
1625 	ddnp = (dnode_phys_t *)dst;
1626 	aadp = aadbuf;
1627 
1628 	/*
1629 	 * Count the number of iovecs we will need to do the encryption by
1630 	 * counting the number of bonus buffers that need to be encrypted.
1631 	 */
1632 	for (i = 0; i < max_dnp; i += sdnp[i].dn_extra_slots + 1) {
1633 		/*
1634 		 * This block may still be byteswapped. However, all of the
1635 		 * values we use are either uint8_t's (for which byteswapping
1636 		 * is a noop) or a * != 0 check, which will work regardless
1637 		 * of whether or not we byteswap.
1638 		 */
1639 		if (sdnp[i].dn_type != DMU_OT_NONE &&
1640 		    DMU_OT_IS_ENCRYPTED(sdnp[i].dn_bonustype) &&
1641 		    sdnp[i].dn_bonuslen != 0) {
1642 			nr_iovecs++;
1643 		}
1644 	}
1645 
1646 	nr_src += nr_iovecs;
1647 	nr_dst += nr_iovecs;
1648 
1649 	if (nr_src != 0) {
1650 		src_iovecs = kmem_alloc(nr_src * sizeof (iovec_t), KM_SLEEP);
1651 		if (src_iovecs == NULL) {
1652 			ret = SET_ERROR(ENOMEM);
1653 			goto error;
1654 		}
1655 	}
1656 
1657 	if (nr_dst != 0) {
1658 		dst_iovecs = kmem_alloc(nr_dst * sizeof (iovec_t), KM_SLEEP);
1659 		if (dst_iovecs == NULL) {
1660 			ret = SET_ERROR(ENOMEM);
1661 			goto error;
1662 		}
1663 	}
1664 
1665 	nr_iovecs = 0;
1666 
1667 	/*
1668 	 * Iterate through the dnodes again, this time filling in the uios
1669 	 * we allocated earlier. We also concatenate any data we want to
1670 	 * authenticate onto aadbuf.
1671 	 */
1672 	for (i = 0; i < max_dnp; i += sdnp[i].dn_extra_slots + 1) {
1673 		dnp = &sdnp[i];
1674 
1675 		/* copy over the core fields and blkptrs (kept as plaintext) */
1676 		memcpy(&ddnp[i], dnp,
1677 		    (uint8_t *)DN_BONUS(dnp) - (uint8_t *)dnp);
1678 
1679 		if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1680 			memcpy(DN_SPILL_BLKPTR(&ddnp[i]), DN_SPILL_BLKPTR(dnp),
1681 			    sizeof (blkptr_t));
1682 		}
1683 
1684 		/*
1685 		 * Handle authenticated data. We authenticate everything in
1686 		 * the dnode that can be brought over when we do a raw send.
1687 		 * This includes all of the core fields as well as the MACs
1688 		 * stored in the bp checksums and all of the portable bits
1689 		 * from blk_prop. We include the dnode padding here in case it
1690 		 * ever gets used in the future. Some dn_flags and dn_used are
1691 		 * not portable so we mask those out values out of the
1692 		 * authenticated data.
1693 		 */
1694 		crypt_len = offsetof(dnode_phys_t, dn_blkptr);
1695 		memcpy(aadp, dnp, crypt_len);
1696 		adnp = (dnode_phys_t *)aadp;
1697 		adnp->dn_flags &= DNODE_CRYPT_PORTABLE_FLAGS_MASK;
1698 		adnp->dn_used = 0;
1699 		aadp += crypt_len;
1700 		aad_len += crypt_len;
1701 
1702 		for (j = 0; j < dnp->dn_nblkptr; j++) {
1703 			zio_crypt_bp_do_aad_updates(&aadp, &aad_len,
1704 			    version, byteswap, &dnp->dn_blkptr[j]);
1705 		}
1706 
1707 		if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1708 			zio_crypt_bp_do_aad_updates(&aadp, &aad_len,
1709 			    version, byteswap, DN_SPILL_BLKPTR(dnp));
1710 		}
1711 
1712 		/*
1713 		 * If this bonus buffer needs to be encrypted, we prepare an
1714 		 * iovec_t. The encryption / decryption functions will fill
1715 		 * this in for us with the encrypted or decrypted data.
1716 		 * Otherwise we add the bonus buffer to the authenticated
1717 		 * data buffer and copy it over to the destination. The
1718 		 * encrypted iovec extends to DN_MAX_BONUS_LEN(dnp) so that
1719 		 * we can guarantee alignment with the AES block size
1720 		 * (128 bits).
1721 		 */
1722 		crypt_len = DN_MAX_BONUS_LEN(dnp);
1723 		if (dnp->dn_type != DMU_OT_NONE &&
1724 		    DMU_OT_IS_ENCRYPTED(dnp->dn_bonustype) &&
1725 		    dnp->dn_bonuslen != 0) {
1726 			ASSERT3U(nr_iovecs, <, nr_src);
1727 			ASSERT3U(nr_iovecs, <, nr_dst);
1728 			ASSERT3P(src_iovecs, !=, NULL);
1729 			ASSERT3P(dst_iovecs, !=, NULL);
1730 			src_iovecs[nr_iovecs].iov_base = DN_BONUS(dnp);
1731 			src_iovecs[nr_iovecs].iov_len = crypt_len;
1732 			dst_iovecs[nr_iovecs].iov_base = DN_BONUS(&ddnp[i]);
1733 			dst_iovecs[nr_iovecs].iov_len = crypt_len;
1734 
1735 			nr_iovecs++;
1736 			total_len += crypt_len;
1737 		} else {
1738 			memcpy(DN_BONUS(&ddnp[i]), DN_BONUS(dnp), crypt_len);
1739 			memcpy(aadp, DN_BONUS(dnp), crypt_len);
1740 			aadp += crypt_len;
1741 			aad_len += crypt_len;
1742 		}
1743 	}
1744 
1745 	*no_crypt = (nr_iovecs == 0);
1746 	*enc_len = total_len;
1747 	*authbuf = aadbuf;
1748 	*auth_len = aad_len;
1749 
1750 	if (encrypt) {
1751 		puio->uio_iov = src_iovecs;
1752 		puio->uio_iovcnt = nr_src;
1753 		cuio->uio_iov = dst_iovecs;
1754 		cuio->uio_iovcnt = nr_dst;
1755 	} else {
1756 		puio->uio_iov = dst_iovecs;
1757 		puio->uio_iovcnt = nr_dst;
1758 		cuio->uio_iov = src_iovecs;
1759 		cuio->uio_iovcnt = nr_src;
1760 	}
1761 
1762 	return (0);
1763 
1764 error:
1765 	zio_buf_free(aadbuf, datalen);
1766 	if (src_iovecs != NULL)
1767 		kmem_free(src_iovecs, nr_src * sizeof (iovec_t));
1768 	if (dst_iovecs != NULL)
1769 		kmem_free(dst_iovecs, nr_dst * sizeof (iovec_t));
1770 
1771 	*enc_len = 0;
1772 	*authbuf = NULL;
1773 	*auth_len = 0;
1774 	*no_crypt = B_FALSE;
1775 	puio->uio_iov = NULL;
1776 	puio->uio_iovcnt = 0;
1777 	cuio->uio_iov = NULL;
1778 	cuio->uio_iovcnt = 0;
1779 	return (ret);
1780 }
1781 
1782 static int
1783 zio_crypt_init_uios_normal(boolean_t encrypt, uint8_t *plainbuf,
1784     uint8_t *cipherbuf, uint_t datalen, zfs_uio_t *puio, zfs_uio_t *cuio,
1785     uint_t *enc_len)
1786 {
1787 	(void) encrypt;
1788 	int ret;
1789 	uint_t nr_plain = 1, nr_cipher = 2;
1790 	iovec_t *plain_iovecs = NULL, *cipher_iovecs = NULL;
1791 
1792 	/* allocate the iovecs for the plain and cipher data */
1793 	plain_iovecs = kmem_alloc(nr_plain * sizeof (iovec_t),
1794 	    KM_SLEEP);
1795 	if (!plain_iovecs) {
1796 		ret = SET_ERROR(ENOMEM);
1797 		goto error;
1798 	}
1799 
1800 	cipher_iovecs = kmem_alloc(nr_cipher * sizeof (iovec_t),
1801 	    KM_SLEEP);
1802 	if (!cipher_iovecs) {
1803 		ret = SET_ERROR(ENOMEM);
1804 		goto error;
1805 	}
1806 
1807 	plain_iovecs[0].iov_base = plainbuf;
1808 	plain_iovecs[0].iov_len = datalen;
1809 	cipher_iovecs[0].iov_base = cipherbuf;
1810 	cipher_iovecs[0].iov_len = datalen;
1811 
1812 	*enc_len = datalen;
1813 	puio->uio_iov = plain_iovecs;
1814 	puio->uio_iovcnt = nr_plain;
1815 	cuio->uio_iov = cipher_iovecs;
1816 	cuio->uio_iovcnt = nr_cipher;
1817 
1818 	return (0);
1819 
1820 error:
1821 	if (plain_iovecs != NULL)
1822 		kmem_free(plain_iovecs, nr_plain * sizeof (iovec_t));
1823 	if (cipher_iovecs != NULL)
1824 		kmem_free(cipher_iovecs, nr_cipher * sizeof (iovec_t));
1825 
1826 	*enc_len = 0;
1827 	puio->uio_iov = NULL;
1828 	puio->uio_iovcnt = 0;
1829 	cuio->uio_iov = NULL;
1830 	cuio->uio_iovcnt = 0;
1831 	return (ret);
1832 }
1833 
1834 /*
1835  * This function builds up the plaintext (puio) and ciphertext (cuio) uios so
1836  * that they can be used for encryption and decryption by zio_do_crypt_uio().
1837  * Most blocks will use zio_crypt_init_uios_normal(), with ZIL and dnode blocks
1838  * requiring special handling to parse out pieces that are to be encrypted. The
1839  * authbuf is used by these special cases to store additional authenticated
1840  * data (AAD) for the encryption modes.
1841  */
1842 static int
1843 zio_crypt_init_uios(boolean_t encrypt, uint64_t version, dmu_object_type_t ot,
1844     uint8_t *plainbuf, uint8_t *cipherbuf, uint_t datalen, boolean_t byteswap,
1845     uint8_t *mac, zfs_uio_t *puio, zfs_uio_t *cuio, uint_t *enc_len,
1846     uint8_t **authbuf, uint_t *auth_len, boolean_t *no_crypt)
1847 {
1848 	int ret;
1849 	iovec_t *mac_iov;
1850 
1851 	ASSERT(DMU_OT_IS_ENCRYPTED(ot) || ot == DMU_OT_NONE);
1852 
1853 	/* route to handler */
1854 	switch (ot) {
1855 	case DMU_OT_INTENT_LOG:
1856 		ret = zio_crypt_init_uios_zil(encrypt, plainbuf, cipherbuf,
1857 		    datalen, byteswap, puio, cuio, enc_len, authbuf, auth_len,
1858 		    no_crypt);
1859 		break;
1860 	case DMU_OT_DNODE:
1861 		ret = zio_crypt_init_uios_dnode(encrypt, version, plainbuf,
1862 		    cipherbuf, datalen, byteswap, puio, cuio, enc_len, authbuf,
1863 		    auth_len, no_crypt);
1864 		break;
1865 	default:
1866 		ret = zio_crypt_init_uios_normal(encrypt, plainbuf, cipherbuf,
1867 		    datalen, puio, cuio, enc_len);
1868 		*authbuf = NULL;
1869 		*auth_len = 0;
1870 		*no_crypt = B_FALSE;
1871 		break;
1872 	}
1873 
1874 	if (ret != 0)
1875 		goto error;
1876 
1877 	/* populate the uios */
1878 	puio->uio_segflg = UIO_SYSSPACE;
1879 	cuio->uio_segflg = UIO_SYSSPACE;
1880 
1881 	mac_iov = ((iovec_t *)&cuio->uio_iov[cuio->uio_iovcnt - 1]);
1882 	mac_iov->iov_base = mac;
1883 	mac_iov->iov_len = ZIO_DATA_MAC_LEN;
1884 
1885 	return (0);
1886 
1887 error:
1888 	return (ret);
1889 }
1890 
1891 /*
1892  * Primary encryption / decryption entrypoint for zio data.
1893  */
1894 int
1895 zio_do_crypt_data(boolean_t encrypt, zio_crypt_key_t *key,
1896     dmu_object_type_t ot, boolean_t byteswap, uint8_t *salt, uint8_t *iv,
1897     uint8_t *mac, uint_t datalen, uint8_t *plainbuf, uint8_t *cipherbuf,
1898     boolean_t *no_crypt)
1899 {
1900 	int ret;
1901 	boolean_t locked = B_FALSE;
1902 	uint64_t crypt = key->zk_crypt;
1903 	uint_t keydata_len = zio_crypt_table[crypt].ci_keylen;
1904 	uint_t enc_len, auth_len;
1905 	zfs_uio_t puio, cuio;
1906 	uint8_t enc_keydata[MASTER_KEY_MAX_LEN];
1907 	crypto_key_t tmp_ckey, *ckey = NULL;
1908 	crypto_ctx_template_t tmpl;
1909 	uint8_t *authbuf = NULL;
1910 
1911 	memset(&puio, 0, sizeof (puio));
1912 	memset(&cuio, 0, sizeof (cuio));
1913 
1914 	/*
1915 	 * If the needed key is the current one, just use it. Otherwise we
1916 	 * need to generate a temporary one from the given salt + master key.
1917 	 * If we are encrypting, we must return a copy of the current salt
1918 	 * so that it can be stored in the blkptr_t.
1919 	 */
1920 	rw_enter(&key->zk_salt_lock, RW_READER);
1921 	locked = B_TRUE;
1922 
1923 	if (memcmp(salt, key->zk_salt, ZIO_DATA_SALT_LEN) == 0) {
1924 		ckey = &key->zk_current_key;
1925 		tmpl = key->zk_current_tmpl;
1926 	} else {
1927 		rw_exit(&key->zk_salt_lock);
1928 		locked = B_FALSE;
1929 
1930 		ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0,
1931 		    salt, ZIO_DATA_SALT_LEN, enc_keydata, keydata_len);
1932 		if (ret != 0)
1933 			goto error;
1934 
1935 		tmp_ckey.ck_data = enc_keydata;
1936 		tmp_ckey.ck_length = CRYPTO_BYTES2BITS(keydata_len);
1937 
1938 		ckey = &tmp_ckey;
1939 		tmpl = NULL;
1940 	}
1941 
1942 	/*
1943 	 * Attempt to use QAT acceleration if we can. We currently don't
1944 	 * do this for metadnode and ZIL blocks, since they have a much
1945 	 * more involved buffer layout and the qat_crypt() function only
1946 	 * works in-place.
1947 	 */
1948 	if (qat_crypt_use_accel(datalen) &&
1949 	    ot != DMU_OT_INTENT_LOG && ot != DMU_OT_DNODE) {
1950 		uint8_t *srcbuf, *dstbuf;
1951 
1952 		if (encrypt) {
1953 			srcbuf = plainbuf;
1954 			dstbuf = cipherbuf;
1955 		} else {
1956 			srcbuf = cipherbuf;
1957 			dstbuf = plainbuf;
1958 		}
1959 
1960 		ret = qat_crypt((encrypt) ? QAT_ENCRYPT : QAT_DECRYPT, srcbuf,
1961 		    dstbuf, NULL, 0, iv, mac, ckey, key->zk_crypt, datalen);
1962 		if (ret == CPA_STATUS_SUCCESS) {
1963 			if (locked) {
1964 				rw_exit(&key->zk_salt_lock);
1965 				locked = B_FALSE;
1966 			}
1967 
1968 			return (0);
1969 		}
1970 		/* If the hardware implementation fails fall back to software */
1971 	}
1972 
1973 	/* create uios for encryption */
1974 	ret = zio_crypt_init_uios(encrypt, key->zk_version, ot, plainbuf,
1975 	    cipherbuf, datalen, byteswap, mac, &puio, &cuio, &enc_len,
1976 	    &authbuf, &auth_len, no_crypt);
1977 	if (ret != 0)
1978 		goto error;
1979 
1980 	/* perform the encryption / decryption in software */
1981 	ret = zio_do_crypt_uio(encrypt, key->zk_crypt, ckey, tmpl, iv, enc_len,
1982 	    &puio, &cuio, authbuf, auth_len);
1983 	if (ret != 0)
1984 		goto error;
1985 
1986 	if (locked) {
1987 		rw_exit(&key->zk_salt_lock);
1988 	}
1989 
1990 	if (authbuf != NULL)
1991 		zio_buf_free(authbuf, datalen);
1992 	if (ckey == &tmp_ckey)
1993 		memset(enc_keydata, 0, keydata_len);
1994 	zio_crypt_destroy_uio(&puio);
1995 	zio_crypt_destroy_uio(&cuio);
1996 
1997 	return (0);
1998 
1999 error:
2000 	if (locked)
2001 		rw_exit(&key->zk_salt_lock);
2002 	if (authbuf != NULL)
2003 		zio_buf_free(authbuf, datalen);
2004 	if (ckey == &tmp_ckey)
2005 		memset(enc_keydata, 0, keydata_len);
2006 	zio_crypt_destroy_uio(&puio);
2007 	zio_crypt_destroy_uio(&cuio);
2008 
2009 	return (ret);
2010 }
2011 
2012 /*
2013  * Simple wrapper around zio_do_crypt_data() to work with abd's instead of
2014  * linear buffers.
2015  */
2016 int
2017 zio_do_crypt_abd(boolean_t encrypt, zio_crypt_key_t *key, dmu_object_type_t ot,
2018     boolean_t byteswap, uint8_t *salt, uint8_t *iv, uint8_t *mac,
2019     uint_t datalen, abd_t *pabd, abd_t *cabd, boolean_t *no_crypt)
2020 {
2021 	int ret;
2022 	void *ptmp, *ctmp;
2023 
2024 	if (encrypt) {
2025 		ptmp = abd_borrow_buf_copy(pabd, datalen);
2026 		ctmp = abd_borrow_buf(cabd, datalen);
2027 	} else {
2028 		ptmp = abd_borrow_buf(pabd, datalen);
2029 		ctmp = abd_borrow_buf_copy(cabd, datalen);
2030 	}
2031 
2032 	ret = zio_do_crypt_data(encrypt, key, ot, byteswap, salt, iv, mac,
2033 	    datalen, ptmp, ctmp, no_crypt);
2034 	if (ret != 0)
2035 		goto error;
2036 
2037 	if (encrypt) {
2038 		abd_return_buf(pabd, ptmp, datalen);
2039 		abd_return_buf_copy(cabd, ctmp, datalen);
2040 	} else {
2041 		abd_return_buf_copy(pabd, ptmp, datalen);
2042 		abd_return_buf(cabd, ctmp, datalen);
2043 	}
2044 
2045 	return (0);
2046 
2047 error:
2048 	if (encrypt) {
2049 		abd_return_buf(pabd, ptmp, datalen);
2050 		abd_return_buf_copy(cabd, ctmp, datalen);
2051 	} else {
2052 		abd_return_buf_copy(pabd, ptmp, datalen);
2053 		abd_return_buf(cabd, ctmp, datalen);
2054 	}
2055 
2056 	return (ret);
2057 }
2058 
2059 #if defined(_KERNEL)
2060 /* CSTYLED */
2061 module_param(zfs_key_max_salt_uses, ulong, 0644);
2062 MODULE_PARM_DESC(zfs_key_max_salt_uses, "Max number of times a salt value "
2063 	"can be used for generating encryption keys before it is rotated");
2064 #endif
2065