xref: /freebsd/sys/contrib/openzfs/module/zfs/arc.c (revision 19261079)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2018, Joyent, Inc.
24  * Copyright (c) 2011, 2020, Delphix. All rights reserved.
25  * Copyright (c) 2014, Saso Kiselkov. All rights reserved.
26  * Copyright (c) 2017, Nexenta Systems, Inc.  All rights reserved.
27  * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
28  * Copyright (c) 2020, George Amanakis. All rights reserved.
29  * Copyright (c) 2019, Klara Inc.
30  * Copyright (c) 2019, Allan Jude
31  * Copyright (c) 2020, The FreeBSD Foundation [1]
32  *
33  * [1] Portions of this software were developed by Allan Jude
34  *     under sponsorship from the FreeBSD Foundation.
35  */
36 
37 /*
38  * DVA-based Adjustable Replacement Cache
39  *
40  * While much of the theory of operation used here is
41  * based on the self-tuning, low overhead replacement cache
42  * presented by Megiddo and Modha at FAST 2003, there are some
43  * significant differences:
44  *
45  * 1. The Megiddo and Modha model assumes any page is evictable.
46  * Pages in its cache cannot be "locked" into memory.  This makes
47  * the eviction algorithm simple: evict the last page in the list.
48  * This also make the performance characteristics easy to reason
49  * about.  Our cache is not so simple.  At any given moment, some
50  * subset of the blocks in the cache are un-evictable because we
51  * have handed out a reference to them.  Blocks are only evictable
52  * when there are no external references active.  This makes
53  * eviction far more problematic:  we choose to evict the evictable
54  * blocks that are the "lowest" in the list.
55  *
56  * There are times when it is not possible to evict the requested
57  * space.  In these circumstances we are unable to adjust the cache
58  * size.  To prevent the cache growing unbounded at these times we
59  * implement a "cache throttle" that slows the flow of new data
60  * into the cache until we can make space available.
61  *
62  * 2. The Megiddo and Modha model assumes a fixed cache size.
63  * Pages are evicted when the cache is full and there is a cache
64  * miss.  Our model has a variable sized cache.  It grows with
65  * high use, but also tries to react to memory pressure from the
66  * operating system: decreasing its size when system memory is
67  * tight.
68  *
69  * 3. The Megiddo and Modha model assumes a fixed page size. All
70  * elements of the cache are therefore exactly the same size.  So
71  * when adjusting the cache size following a cache miss, its simply
72  * a matter of choosing a single page to evict.  In our model, we
73  * have variable sized cache blocks (ranging from 512 bytes to
74  * 128K bytes).  We therefore choose a set of blocks to evict to make
75  * space for a cache miss that approximates as closely as possible
76  * the space used by the new block.
77  *
78  * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
79  * by N. Megiddo & D. Modha, FAST 2003
80  */
81 
82 /*
83  * The locking model:
84  *
85  * A new reference to a cache buffer can be obtained in two
86  * ways: 1) via a hash table lookup using the DVA as a key,
87  * or 2) via one of the ARC lists.  The arc_read() interface
88  * uses method 1, while the internal ARC algorithms for
89  * adjusting the cache use method 2.  We therefore provide two
90  * types of locks: 1) the hash table lock array, and 2) the
91  * ARC list locks.
92  *
93  * Buffers do not have their own mutexes, rather they rely on the
94  * hash table mutexes for the bulk of their protection (i.e. most
95  * fields in the arc_buf_hdr_t are protected by these mutexes).
96  *
97  * buf_hash_find() returns the appropriate mutex (held) when it
98  * locates the requested buffer in the hash table.  It returns
99  * NULL for the mutex if the buffer was not in the table.
100  *
101  * buf_hash_remove() expects the appropriate hash mutex to be
102  * already held before it is invoked.
103  *
104  * Each ARC state also has a mutex which is used to protect the
105  * buffer list associated with the state.  When attempting to
106  * obtain a hash table lock while holding an ARC list lock you
107  * must use: mutex_tryenter() to avoid deadlock.  Also note that
108  * the active state mutex must be held before the ghost state mutex.
109  *
110  * It as also possible to register a callback which is run when the
111  * arc_meta_limit is reached and no buffers can be safely evicted.  In
112  * this case the arc user should drop a reference on some arc buffers so
113  * they can be reclaimed and the arc_meta_limit honored.  For example,
114  * when using the ZPL each dentry holds a references on a znode.  These
115  * dentries must be pruned before the arc buffer holding the znode can
116  * be safely evicted.
117  *
118  * Note that the majority of the performance stats are manipulated
119  * with atomic operations.
120  *
121  * The L2ARC uses the l2ad_mtx on each vdev for the following:
122  *
123  *	- L2ARC buflist creation
124  *	- L2ARC buflist eviction
125  *	- L2ARC write completion, which walks L2ARC buflists
126  *	- ARC header destruction, as it removes from L2ARC buflists
127  *	- ARC header release, as it removes from L2ARC buflists
128  */
129 
130 /*
131  * ARC operation:
132  *
133  * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure.
134  * This structure can point either to a block that is still in the cache or to
135  * one that is only accessible in an L2 ARC device, or it can provide
136  * information about a block that was recently evicted. If a block is
137  * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough
138  * information to retrieve it from the L2ARC device. This information is
139  * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block
140  * that is in this state cannot access the data directly.
141  *
142  * Blocks that are actively being referenced or have not been evicted
143  * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within
144  * the arc_buf_hdr_t that will point to the data block in memory. A block can
145  * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC
146  * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and
147  * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd).
148  *
149  * The L1ARC's data pointer may or may not be uncompressed. The ARC has the
150  * ability to store the physical data (b_pabd) associated with the DVA of the
151  * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block,
152  * it will match its on-disk compression characteristics. This behavior can be
153  * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the
154  * compressed ARC functionality is disabled, the b_pabd will point to an
155  * uncompressed version of the on-disk data.
156  *
157  * Data in the L1ARC is not accessed by consumers of the ARC directly. Each
158  * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it.
159  * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC
160  * consumer. The ARC will provide references to this data and will keep it
161  * cached until it is no longer in use. The ARC caches only the L1ARC's physical
162  * data block and will evict any arc_buf_t that is no longer referenced. The
163  * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the
164  * "overhead_size" kstat.
165  *
166  * Depending on the consumer, an arc_buf_t can be requested in uncompressed or
167  * compressed form. The typical case is that consumers will want uncompressed
168  * data, and when that happens a new data buffer is allocated where the data is
169  * decompressed for them to use. Currently the only consumer who wants
170  * compressed arc_buf_t's is "zfs send", when it streams data exactly as it
171  * exists on disk. When this happens, the arc_buf_t's data buffer is shared
172  * with the arc_buf_hdr_t.
173  *
174  * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The
175  * first one is owned by a compressed send consumer (and therefore references
176  * the same compressed data buffer as the arc_buf_hdr_t) and the second could be
177  * used by any other consumer (and has its own uncompressed copy of the data
178  * buffer).
179  *
180  *   arc_buf_hdr_t
181  *   +-----------+
182  *   | fields    |
183  *   | common to |
184  *   | L1- and   |
185  *   | L2ARC     |
186  *   +-----------+
187  *   | l2arc_buf_hdr_t
188  *   |           |
189  *   +-----------+
190  *   | l1arc_buf_hdr_t
191  *   |           |              arc_buf_t
192  *   | b_buf     +------------>+-----------+      arc_buf_t
193  *   | b_pabd    +-+           |b_next     +---->+-----------+
194  *   +-----------+ |           |-----------|     |b_next     +-->NULL
195  *                 |           |b_comp = T |     +-----------+
196  *                 |           |b_data     +-+   |b_comp = F |
197  *                 |           +-----------+ |   |b_data     +-+
198  *                 +->+------+               |   +-----------+ |
199  *        compressed  |      |               |                 |
200  *           data     |      |<--------------+                 | uncompressed
201  *                    +------+          compressed,            |     data
202  *                                        shared               +-->+------+
203  *                                         data                    |      |
204  *                                                                 |      |
205  *                                                                 +------+
206  *
207  * When a consumer reads a block, the ARC must first look to see if the
208  * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new
209  * arc_buf_t and either copies uncompressed data into a new data buffer from an
210  * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a
211  * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the
212  * hdr is compressed and the desired compression characteristics of the
213  * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the
214  * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be
215  * the last buffer in the hdr's b_buf list, however a shared compressed buf can
216  * be anywhere in the hdr's list.
217  *
218  * The diagram below shows an example of an uncompressed ARC hdr that is
219  * sharing its data with an arc_buf_t (note that the shared uncompressed buf is
220  * the last element in the buf list):
221  *
222  *                arc_buf_hdr_t
223  *                +-----------+
224  *                |           |
225  *                |           |
226  *                |           |
227  *                +-----------+
228  * l2arc_buf_hdr_t|           |
229  *                |           |
230  *                +-----------+
231  * l1arc_buf_hdr_t|           |
232  *                |           |                 arc_buf_t    (shared)
233  *                |    b_buf  +------------>+---------+      arc_buf_t
234  *                |           |             |b_next   +---->+---------+
235  *                |  b_pabd   +-+           |---------|     |b_next   +-->NULL
236  *                +-----------+ |           |         |     +---------+
237  *                              |           |b_data   +-+   |         |
238  *                              |           +---------+ |   |b_data   +-+
239  *                              +->+------+             |   +---------+ |
240  *                                 |      |             |               |
241  *                   uncompressed  |      |             |               |
242  *                        data     +------+             |               |
243  *                                    ^                 +->+------+     |
244  *                                    |       uncompressed |      |     |
245  *                                    |           data     |      |     |
246  *                                    |                    +------+     |
247  *                                    +---------------------------------+
248  *
249  * Writing to the ARC requires that the ARC first discard the hdr's b_pabd
250  * since the physical block is about to be rewritten. The new data contents
251  * will be contained in the arc_buf_t. As the I/O pipeline performs the write,
252  * it may compress the data before writing it to disk. The ARC will be called
253  * with the transformed data and will bcopy the transformed on-disk block into
254  * a newly allocated b_pabd. Writes are always done into buffers which have
255  * either been loaned (and hence are new and don't have other readers) or
256  * buffers which have been released (and hence have their own hdr, if there
257  * were originally other readers of the buf's original hdr). This ensures that
258  * the ARC only needs to update a single buf and its hdr after a write occurs.
259  *
260  * When the L2ARC is in use, it will also take advantage of the b_pabd. The
261  * L2ARC will always write the contents of b_pabd to the L2ARC. This means
262  * that when compressed ARC is enabled that the L2ARC blocks are identical
263  * to the on-disk block in the main data pool. This provides a significant
264  * advantage since the ARC can leverage the bp's checksum when reading from the
265  * L2ARC to determine if the contents are valid. However, if the compressed
266  * ARC is disabled, then the L2ARC's block must be transformed to look
267  * like the physical block in the main data pool before comparing the
268  * checksum and determining its validity.
269  *
270  * The L1ARC has a slightly different system for storing encrypted data.
271  * Raw (encrypted + possibly compressed) data has a few subtle differences from
272  * data that is just compressed. The biggest difference is that it is not
273  * possible to decrypt encrypted data (or vice-versa) if the keys aren't loaded.
274  * The other difference is that encryption cannot be treated as a suggestion.
275  * If a caller would prefer compressed data, but they actually wind up with
276  * uncompressed data the worst thing that could happen is there might be a
277  * performance hit. If the caller requests encrypted data, however, we must be
278  * sure they actually get it or else secret information could be leaked. Raw
279  * data is stored in hdr->b_crypt_hdr.b_rabd. An encrypted header, therefore,
280  * may have both an encrypted version and a decrypted version of its data at
281  * once. When a caller needs a raw arc_buf_t, it is allocated and the data is
282  * copied out of this header. To avoid complications with b_pabd, raw buffers
283  * cannot be shared.
284  */
285 
286 #include <sys/spa.h>
287 #include <sys/zio.h>
288 #include <sys/spa_impl.h>
289 #include <sys/zio_compress.h>
290 #include <sys/zio_checksum.h>
291 #include <sys/zfs_context.h>
292 #include <sys/arc.h>
293 #include <sys/zfs_refcount.h>
294 #include <sys/vdev.h>
295 #include <sys/vdev_impl.h>
296 #include <sys/dsl_pool.h>
297 #include <sys/multilist.h>
298 #include <sys/abd.h>
299 #include <sys/zil.h>
300 #include <sys/fm/fs/zfs.h>
301 #include <sys/callb.h>
302 #include <sys/kstat.h>
303 #include <sys/zthr.h>
304 #include <zfs_fletcher.h>
305 #include <sys/arc_impl.h>
306 #include <sys/trace_zfs.h>
307 #include <sys/aggsum.h>
308 #include <sys/wmsum.h>
309 #include <cityhash.h>
310 #include <sys/vdev_trim.h>
311 #include <sys/zfs_racct.h>
312 #include <sys/zstd/zstd.h>
313 
314 #ifndef _KERNEL
315 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
316 boolean_t arc_watch = B_FALSE;
317 #endif
318 
319 /*
320  * This thread's job is to keep enough free memory in the system, by
321  * calling arc_kmem_reap_soon() plus arc_reduce_target_size(), which improves
322  * arc_available_memory().
323  */
324 static zthr_t *arc_reap_zthr;
325 
326 /*
327  * This thread's job is to keep arc_size under arc_c, by calling
328  * arc_evict(), which improves arc_is_overflowing().
329  */
330 static zthr_t *arc_evict_zthr;
331 
332 static kmutex_t arc_evict_lock;
333 static boolean_t arc_evict_needed = B_FALSE;
334 
335 /*
336  * Count of bytes evicted since boot.
337  */
338 static uint64_t arc_evict_count;
339 
340 /*
341  * List of arc_evict_waiter_t's, representing threads waiting for the
342  * arc_evict_count to reach specific values.
343  */
344 static list_t arc_evict_waiters;
345 
346 /*
347  * When arc_is_overflowing(), arc_get_data_impl() waits for this percent of
348  * the requested amount of data to be evicted.  For example, by default for
349  * every 2KB that's evicted, 1KB of it may be "reused" by a new allocation.
350  * Since this is above 100%, it ensures that progress is made towards getting
351  * arc_size under arc_c.  Since this is finite, it ensures that allocations
352  * can still happen, even during the potentially long time that arc_size is
353  * more than arc_c.
354  */
355 int zfs_arc_eviction_pct = 200;
356 
357 /*
358  * The number of headers to evict in arc_evict_state_impl() before
359  * dropping the sublist lock and evicting from another sublist. A lower
360  * value means we're more likely to evict the "correct" header (i.e. the
361  * oldest header in the arc state), but comes with higher overhead
362  * (i.e. more invocations of arc_evict_state_impl()).
363  */
364 int zfs_arc_evict_batch_limit = 10;
365 
366 /* number of seconds before growing cache again */
367 int arc_grow_retry = 5;
368 
369 /*
370  * Minimum time between calls to arc_kmem_reap_soon().
371  */
372 int arc_kmem_cache_reap_retry_ms = 1000;
373 
374 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */
375 int zfs_arc_overflow_shift = 8;
376 
377 /* shift of arc_c for calculating both min and max arc_p */
378 int arc_p_min_shift = 4;
379 
380 /* log2(fraction of arc to reclaim) */
381 int arc_shrink_shift = 7;
382 
383 /* percent of pagecache to reclaim arc to */
384 #ifdef _KERNEL
385 uint_t zfs_arc_pc_percent = 0;
386 #endif
387 
388 /*
389  * log2(fraction of ARC which must be free to allow growing).
390  * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
391  * when reading a new block into the ARC, we will evict an equal-sized block
392  * from the ARC.
393  *
394  * This must be less than arc_shrink_shift, so that when we shrink the ARC,
395  * we will still not allow it to grow.
396  */
397 int			arc_no_grow_shift = 5;
398 
399 
400 /*
401  * minimum lifespan of a prefetch block in clock ticks
402  * (initialized in arc_init())
403  */
404 static int		arc_min_prefetch_ms;
405 static int		arc_min_prescient_prefetch_ms;
406 
407 /*
408  * If this percent of memory is free, don't throttle.
409  */
410 int arc_lotsfree_percent = 10;
411 
412 /*
413  * The arc has filled available memory and has now warmed up.
414  */
415 boolean_t arc_warm;
416 
417 /*
418  * These tunables are for performance analysis.
419  */
420 unsigned long zfs_arc_max = 0;
421 unsigned long zfs_arc_min = 0;
422 unsigned long zfs_arc_meta_limit = 0;
423 unsigned long zfs_arc_meta_min = 0;
424 unsigned long zfs_arc_dnode_limit = 0;
425 unsigned long zfs_arc_dnode_reduce_percent = 10;
426 int zfs_arc_grow_retry = 0;
427 int zfs_arc_shrink_shift = 0;
428 int zfs_arc_p_min_shift = 0;
429 int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
430 
431 /*
432  * ARC dirty data constraints for arc_tempreserve_space() throttle.
433  */
434 unsigned long zfs_arc_dirty_limit_percent = 50;	/* total dirty data limit */
435 unsigned long zfs_arc_anon_limit_percent = 25;	/* anon block dirty limit */
436 unsigned long zfs_arc_pool_dirty_percent = 20;	/* each pool's anon allowance */
437 
438 /*
439  * Enable or disable compressed arc buffers.
440  */
441 int zfs_compressed_arc_enabled = B_TRUE;
442 
443 /*
444  * ARC will evict meta buffers that exceed arc_meta_limit. This
445  * tunable make arc_meta_limit adjustable for different workloads.
446  */
447 unsigned long zfs_arc_meta_limit_percent = 75;
448 
449 /*
450  * Percentage that can be consumed by dnodes of ARC meta buffers.
451  */
452 unsigned long zfs_arc_dnode_limit_percent = 10;
453 
454 /*
455  * These tunables are Linux specific
456  */
457 unsigned long zfs_arc_sys_free = 0;
458 int zfs_arc_min_prefetch_ms = 0;
459 int zfs_arc_min_prescient_prefetch_ms = 0;
460 int zfs_arc_p_dampener_disable = 1;
461 int zfs_arc_meta_prune = 10000;
462 int zfs_arc_meta_strategy = ARC_STRATEGY_META_BALANCED;
463 int zfs_arc_meta_adjust_restarts = 4096;
464 int zfs_arc_lotsfree_percent = 10;
465 
466 /* The 6 states: */
467 arc_state_t ARC_anon;
468 arc_state_t ARC_mru;
469 arc_state_t ARC_mru_ghost;
470 arc_state_t ARC_mfu;
471 arc_state_t ARC_mfu_ghost;
472 arc_state_t ARC_l2c_only;
473 
474 arc_stats_t arc_stats = {
475 	{ "hits",			KSTAT_DATA_UINT64 },
476 	{ "misses",			KSTAT_DATA_UINT64 },
477 	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
478 	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
479 	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
480 	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
481 	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
482 	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
483 	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
484 	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
485 	{ "mru_hits",			KSTAT_DATA_UINT64 },
486 	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
487 	{ "mfu_hits",			KSTAT_DATA_UINT64 },
488 	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
489 	{ "deleted",			KSTAT_DATA_UINT64 },
490 	{ "mutex_miss",			KSTAT_DATA_UINT64 },
491 	{ "access_skip",		KSTAT_DATA_UINT64 },
492 	{ "evict_skip",			KSTAT_DATA_UINT64 },
493 	{ "evict_not_enough",		KSTAT_DATA_UINT64 },
494 	{ "evict_l2_cached",		KSTAT_DATA_UINT64 },
495 	{ "evict_l2_eligible",		KSTAT_DATA_UINT64 },
496 	{ "evict_l2_eligible_mfu",	KSTAT_DATA_UINT64 },
497 	{ "evict_l2_eligible_mru",	KSTAT_DATA_UINT64 },
498 	{ "evict_l2_ineligible",	KSTAT_DATA_UINT64 },
499 	{ "evict_l2_skip",		KSTAT_DATA_UINT64 },
500 	{ "hash_elements",		KSTAT_DATA_UINT64 },
501 	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
502 	{ "hash_collisions",		KSTAT_DATA_UINT64 },
503 	{ "hash_chains",		KSTAT_DATA_UINT64 },
504 	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
505 	{ "p",				KSTAT_DATA_UINT64 },
506 	{ "c",				KSTAT_DATA_UINT64 },
507 	{ "c_min",			KSTAT_DATA_UINT64 },
508 	{ "c_max",			KSTAT_DATA_UINT64 },
509 	{ "size",			KSTAT_DATA_UINT64 },
510 	{ "compressed_size",		KSTAT_DATA_UINT64 },
511 	{ "uncompressed_size",		KSTAT_DATA_UINT64 },
512 	{ "overhead_size",		KSTAT_DATA_UINT64 },
513 	{ "hdr_size",			KSTAT_DATA_UINT64 },
514 	{ "data_size",			KSTAT_DATA_UINT64 },
515 	{ "metadata_size",		KSTAT_DATA_UINT64 },
516 	{ "dbuf_size",			KSTAT_DATA_UINT64 },
517 	{ "dnode_size",			KSTAT_DATA_UINT64 },
518 	{ "bonus_size",			KSTAT_DATA_UINT64 },
519 #if defined(COMPAT_FREEBSD11)
520 	{ "other_size",			KSTAT_DATA_UINT64 },
521 #endif
522 	{ "anon_size",			KSTAT_DATA_UINT64 },
523 	{ "anon_evictable_data",	KSTAT_DATA_UINT64 },
524 	{ "anon_evictable_metadata",	KSTAT_DATA_UINT64 },
525 	{ "mru_size",			KSTAT_DATA_UINT64 },
526 	{ "mru_evictable_data",		KSTAT_DATA_UINT64 },
527 	{ "mru_evictable_metadata",	KSTAT_DATA_UINT64 },
528 	{ "mru_ghost_size",		KSTAT_DATA_UINT64 },
529 	{ "mru_ghost_evictable_data",	KSTAT_DATA_UINT64 },
530 	{ "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
531 	{ "mfu_size",			KSTAT_DATA_UINT64 },
532 	{ "mfu_evictable_data",		KSTAT_DATA_UINT64 },
533 	{ "mfu_evictable_metadata",	KSTAT_DATA_UINT64 },
534 	{ "mfu_ghost_size",		KSTAT_DATA_UINT64 },
535 	{ "mfu_ghost_evictable_data",	KSTAT_DATA_UINT64 },
536 	{ "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
537 	{ "l2_hits",			KSTAT_DATA_UINT64 },
538 	{ "l2_misses",			KSTAT_DATA_UINT64 },
539 	{ "l2_prefetch_asize",		KSTAT_DATA_UINT64 },
540 	{ "l2_mru_asize",		KSTAT_DATA_UINT64 },
541 	{ "l2_mfu_asize",		KSTAT_DATA_UINT64 },
542 	{ "l2_bufc_data_asize",		KSTAT_DATA_UINT64 },
543 	{ "l2_bufc_metadata_asize",	KSTAT_DATA_UINT64 },
544 	{ "l2_feeds",			KSTAT_DATA_UINT64 },
545 	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
546 	{ "l2_read_bytes",		KSTAT_DATA_UINT64 },
547 	{ "l2_write_bytes",		KSTAT_DATA_UINT64 },
548 	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
549 	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
550 	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
551 	{ "l2_writes_lock_retry",	KSTAT_DATA_UINT64 },
552 	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
553 	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
554 	{ "l2_evict_l1cached",		KSTAT_DATA_UINT64 },
555 	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
556 	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
557 	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
558 	{ "l2_io_error",		KSTAT_DATA_UINT64 },
559 	{ "l2_size",			KSTAT_DATA_UINT64 },
560 	{ "l2_asize",			KSTAT_DATA_UINT64 },
561 	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
562 	{ "l2_log_blk_writes",		KSTAT_DATA_UINT64 },
563 	{ "l2_log_blk_avg_asize",	KSTAT_DATA_UINT64 },
564 	{ "l2_log_blk_asize",		KSTAT_DATA_UINT64 },
565 	{ "l2_log_blk_count",		KSTAT_DATA_UINT64 },
566 	{ "l2_data_to_meta_ratio",	KSTAT_DATA_UINT64 },
567 	{ "l2_rebuild_success",		KSTAT_DATA_UINT64 },
568 	{ "l2_rebuild_unsupported",	KSTAT_DATA_UINT64 },
569 	{ "l2_rebuild_io_errors",	KSTAT_DATA_UINT64 },
570 	{ "l2_rebuild_dh_errors",	KSTAT_DATA_UINT64 },
571 	{ "l2_rebuild_cksum_lb_errors",	KSTAT_DATA_UINT64 },
572 	{ "l2_rebuild_lowmem",		KSTAT_DATA_UINT64 },
573 	{ "l2_rebuild_size",		KSTAT_DATA_UINT64 },
574 	{ "l2_rebuild_asize",		KSTAT_DATA_UINT64 },
575 	{ "l2_rebuild_bufs",		KSTAT_DATA_UINT64 },
576 	{ "l2_rebuild_bufs_precached",	KSTAT_DATA_UINT64 },
577 	{ "l2_rebuild_log_blks",	KSTAT_DATA_UINT64 },
578 	{ "memory_throttle_count",	KSTAT_DATA_UINT64 },
579 	{ "memory_direct_count",	KSTAT_DATA_UINT64 },
580 	{ "memory_indirect_count",	KSTAT_DATA_UINT64 },
581 	{ "memory_all_bytes",		KSTAT_DATA_UINT64 },
582 	{ "memory_free_bytes",		KSTAT_DATA_UINT64 },
583 	{ "memory_available_bytes",	KSTAT_DATA_INT64 },
584 	{ "arc_no_grow",		KSTAT_DATA_UINT64 },
585 	{ "arc_tempreserve",		KSTAT_DATA_UINT64 },
586 	{ "arc_loaned_bytes",		KSTAT_DATA_UINT64 },
587 	{ "arc_prune",			KSTAT_DATA_UINT64 },
588 	{ "arc_meta_used",		KSTAT_DATA_UINT64 },
589 	{ "arc_meta_limit",		KSTAT_DATA_UINT64 },
590 	{ "arc_dnode_limit",		KSTAT_DATA_UINT64 },
591 	{ "arc_meta_max",		KSTAT_DATA_UINT64 },
592 	{ "arc_meta_min",		KSTAT_DATA_UINT64 },
593 	{ "async_upgrade_sync",		KSTAT_DATA_UINT64 },
594 	{ "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
595 	{ "demand_hit_prescient_prefetch", KSTAT_DATA_UINT64 },
596 	{ "arc_need_free",		KSTAT_DATA_UINT64 },
597 	{ "arc_sys_free",		KSTAT_DATA_UINT64 },
598 	{ "arc_raw_size",		KSTAT_DATA_UINT64 },
599 	{ "cached_only_in_progress",	KSTAT_DATA_UINT64 },
600 	{ "abd_chunk_waste_size",	KSTAT_DATA_UINT64 },
601 };
602 
603 arc_sums_t arc_sums;
604 
605 #define	ARCSTAT_MAX(stat, val) {					\
606 	uint64_t m;							\
607 	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
608 	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
609 		continue;						\
610 }
611 
612 /*
613  * We define a macro to allow ARC hits/misses to be easily broken down by
614  * two separate conditions, giving a total of four different subtypes for
615  * each of hits and misses (so eight statistics total).
616  */
617 #define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
618 	if (cond1) {							\
619 		if (cond2) {						\
620 			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
621 		} else {						\
622 			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
623 		}							\
624 	} else {							\
625 		if (cond2) {						\
626 			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
627 		} else {						\
628 			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
629 		}							\
630 	}
631 
632 /*
633  * This macro allows us to use kstats as floating averages. Each time we
634  * update this kstat, we first factor it and the update value by
635  * ARCSTAT_AVG_FACTOR to shrink the new value's contribution to the overall
636  * average. This macro assumes that integer loads and stores are atomic, but
637  * is not safe for multiple writers updating the kstat in parallel (only the
638  * last writer's update will remain).
639  */
640 #define	ARCSTAT_F_AVG_FACTOR	3
641 #define	ARCSTAT_F_AVG(stat, value) \
642 	do { \
643 		uint64_t x = ARCSTAT(stat); \
644 		x = x - x / ARCSTAT_F_AVG_FACTOR + \
645 		    (value) / ARCSTAT_F_AVG_FACTOR; \
646 		ARCSTAT(stat) = x; \
647 	} while (0)
648 
649 kstat_t			*arc_ksp;
650 
651 /*
652  * There are several ARC variables that are critical to export as kstats --
653  * but we don't want to have to grovel around in the kstat whenever we wish to
654  * manipulate them.  For these variables, we therefore define them to be in
655  * terms of the statistic variable.  This assures that we are not introducing
656  * the possibility of inconsistency by having shadow copies of the variables,
657  * while still allowing the code to be readable.
658  */
659 #define	arc_tempreserve	ARCSTAT(arcstat_tempreserve)
660 #define	arc_loaned_bytes	ARCSTAT(arcstat_loaned_bytes)
661 #define	arc_meta_limit	ARCSTAT(arcstat_meta_limit) /* max size for metadata */
662 /* max size for dnodes */
663 #define	arc_dnode_size_limit	ARCSTAT(arcstat_dnode_limit)
664 #define	arc_meta_min	ARCSTAT(arcstat_meta_min) /* min size for metadata */
665 #define	arc_need_free	ARCSTAT(arcstat_need_free) /* waiting to be evicted */
666 
667 hrtime_t arc_growtime;
668 list_t arc_prune_list;
669 kmutex_t arc_prune_mtx;
670 taskq_t *arc_prune_taskq;
671 
672 #define	GHOST_STATE(state)	\
673 	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
674 	(state) == arc_l2c_only)
675 
676 #define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
677 #define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
678 #define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_FLAG_IO_ERROR)
679 #define	HDR_PREFETCH(hdr)	((hdr)->b_flags & ARC_FLAG_PREFETCH)
680 #define	HDR_PRESCIENT_PREFETCH(hdr)	\
681 	((hdr)->b_flags & ARC_FLAG_PRESCIENT_PREFETCH)
682 #define	HDR_COMPRESSION_ENABLED(hdr)	\
683 	((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC)
684 
685 #define	HDR_L2CACHE(hdr)	((hdr)->b_flags & ARC_FLAG_L2CACHE)
686 #define	HDR_L2_READING(hdr)	\
687 	(((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) &&	\
688 	((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
689 #define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITING)
690 #define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
691 #define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
692 #define	HDR_PROTECTED(hdr)	((hdr)->b_flags & ARC_FLAG_PROTECTED)
693 #define	HDR_NOAUTH(hdr)		((hdr)->b_flags & ARC_FLAG_NOAUTH)
694 #define	HDR_SHARED_DATA(hdr)	((hdr)->b_flags & ARC_FLAG_SHARED_DATA)
695 
696 #define	HDR_ISTYPE_METADATA(hdr)	\
697 	((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
698 #define	HDR_ISTYPE_DATA(hdr)	(!HDR_ISTYPE_METADATA(hdr))
699 
700 #define	HDR_HAS_L1HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
701 #define	HDR_HAS_L2HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
702 #define	HDR_HAS_RABD(hdr)	\
703 	(HDR_HAS_L1HDR(hdr) && HDR_PROTECTED(hdr) &&	\
704 	(hdr)->b_crypt_hdr.b_rabd != NULL)
705 #define	HDR_ENCRYPTED(hdr)	\
706 	(HDR_PROTECTED(hdr) && DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
707 #define	HDR_AUTHENTICATED(hdr)	\
708 	(HDR_PROTECTED(hdr) && !DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
709 
710 /* For storing compression mode in b_flags */
711 #define	HDR_COMPRESS_OFFSET	(highbit64(ARC_FLAG_COMPRESS_0) - 1)
712 
713 #define	HDR_GET_COMPRESS(hdr)	((enum zio_compress)BF32_GET((hdr)->b_flags, \
714 	HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS))
715 #define	HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \
716 	HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp));
717 
718 #define	ARC_BUF_LAST(buf)	((buf)->b_next == NULL)
719 #define	ARC_BUF_SHARED(buf)	((buf)->b_flags & ARC_BUF_FLAG_SHARED)
720 #define	ARC_BUF_COMPRESSED(buf)	((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED)
721 #define	ARC_BUF_ENCRYPTED(buf)	((buf)->b_flags & ARC_BUF_FLAG_ENCRYPTED)
722 
723 /*
724  * Other sizes
725  */
726 
727 #define	HDR_FULL_CRYPT_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
728 #define	HDR_FULL_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_crypt_hdr))
729 #define	HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
730 
731 /*
732  * Hash table routines
733  */
734 
735 #define	BUF_LOCKS 2048
736 typedef struct buf_hash_table {
737 	uint64_t ht_mask;
738 	arc_buf_hdr_t **ht_table;
739 	kmutex_t ht_locks[BUF_LOCKS] ____cacheline_aligned;
740 } buf_hash_table_t;
741 
742 static buf_hash_table_t buf_hash_table;
743 
744 #define	BUF_HASH_INDEX(spa, dva, birth) \
745 	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
746 #define	BUF_HASH_LOCK(idx)	(&buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
747 #define	HDR_LOCK(hdr) \
748 	(BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
749 
750 uint64_t zfs_crc64_table[256];
751 
752 /*
753  * Level 2 ARC
754  */
755 
756 #define	L2ARC_WRITE_SIZE	(8 * 1024 * 1024)	/* initial write max */
757 #define	L2ARC_HEADROOM		2			/* num of writes */
758 
759 /*
760  * If we discover during ARC scan any buffers to be compressed, we boost
761  * our headroom for the next scanning cycle by this percentage multiple.
762  */
763 #define	L2ARC_HEADROOM_BOOST	200
764 #define	L2ARC_FEED_SECS		1		/* caching interval secs */
765 #define	L2ARC_FEED_MIN_MS	200		/* min caching interval ms */
766 
767 /*
768  * We can feed L2ARC from two states of ARC buffers, mru and mfu,
769  * and each of the state has two types: data and metadata.
770  */
771 #define	L2ARC_FEED_TYPES	4
772 
773 /* L2ARC Performance Tunables */
774 unsigned long l2arc_write_max = L2ARC_WRITE_SIZE;	/* def max write size */
775 unsigned long l2arc_write_boost = L2ARC_WRITE_SIZE;	/* extra warmup write */
776 unsigned long l2arc_headroom = L2ARC_HEADROOM;		/* # of dev writes */
777 unsigned long l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
778 unsigned long l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
779 unsigned long l2arc_feed_min_ms = L2ARC_FEED_MIN_MS;	/* min interval msecs */
780 int l2arc_noprefetch = B_TRUE;			/* don't cache prefetch bufs */
781 int l2arc_feed_again = B_TRUE;			/* turbo warmup */
782 int l2arc_norw = B_FALSE;			/* no reads during writes */
783 int l2arc_meta_percent = 33;			/* limit on headers size */
784 
785 /*
786  * L2ARC Internals
787  */
788 static list_t L2ARC_dev_list;			/* device list */
789 static list_t *l2arc_dev_list;			/* device list pointer */
790 static kmutex_t l2arc_dev_mtx;			/* device list mutex */
791 static l2arc_dev_t *l2arc_dev_last;		/* last device used */
792 static list_t L2ARC_free_on_write;		/* free after write buf list */
793 static list_t *l2arc_free_on_write;		/* free after write list ptr */
794 static kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
795 static uint64_t l2arc_ndev;			/* number of devices */
796 
797 typedef struct l2arc_read_callback {
798 	arc_buf_hdr_t		*l2rcb_hdr;		/* read header */
799 	blkptr_t		l2rcb_bp;		/* original blkptr */
800 	zbookmark_phys_t	l2rcb_zb;		/* original bookmark */
801 	int			l2rcb_flags;		/* original flags */
802 	abd_t			*l2rcb_abd;		/* temporary buffer */
803 } l2arc_read_callback_t;
804 
805 typedef struct l2arc_data_free {
806 	/* protected by l2arc_free_on_write_mtx */
807 	abd_t		*l2df_abd;
808 	size_t		l2df_size;
809 	arc_buf_contents_t l2df_type;
810 	list_node_t	l2df_list_node;
811 } l2arc_data_free_t;
812 
813 typedef enum arc_fill_flags {
814 	ARC_FILL_LOCKED		= 1 << 0, /* hdr lock is held */
815 	ARC_FILL_COMPRESSED	= 1 << 1, /* fill with compressed data */
816 	ARC_FILL_ENCRYPTED	= 1 << 2, /* fill with encrypted data */
817 	ARC_FILL_NOAUTH		= 1 << 3, /* don't attempt to authenticate */
818 	ARC_FILL_IN_PLACE	= 1 << 4  /* fill in place (special case) */
819 } arc_fill_flags_t;
820 
821 typedef enum arc_ovf_level {
822 	ARC_OVF_NONE,			/* ARC within target size. */
823 	ARC_OVF_SOME,			/* ARC is slightly overflowed. */
824 	ARC_OVF_SEVERE			/* ARC is severely overflowed. */
825 } arc_ovf_level_t;
826 
827 static kmutex_t l2arc_feed_thr_lock;
828 static kcondvar_t l2arc_feed_thr_cv;
829 static uint8_t l2arc_thread_exit;
830 
831 static kmutex_t l2arc_rebuild_thr_lock;
832 static kcondvar_t l2arc_rebuild_thr_cv;
833 
834 enum arc_hdr_alloc_flags {
835 	ARC_HDR_ALLOC_RDATA = 0x1,
836 	ARC_HDR_DO_ADAPT = 0x2,
837 	ARC_HDR_USE_RESERVE = 0x4,
838 };
839 
840 
841 static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, void *, int);
842 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *);
843 static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, void *, int);
844 static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, void *);
845 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *);
846 static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag);
847 static void arc_hdr_free_abd(arc_buf_hdr_t *, boolean_t);
848 static void arc_hdr_alloc_abd(arc_buf_hdr_t *, int);
849 static void arc_access(arc_buf_hdr_t *, kmutex_t *);
850 static void arc_buf_watch(arc_buf_t *);
851 
852 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
853 static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
854 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
855 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
856 
857 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
858 static void l2arc_read_done(zio_t *);
859 static void l2arc_do_free_on_write(void);
860 static void l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr,
861     boolean_t state_only);
862 
863 #define	l2arc_hdr_arcstats_increment(hdr) \
864 	l2arc_hdr_arcstats_update((hdr), B_TRUE, B_FALSE)
865 #define	l2arc_hdr_arcstats_decrement(hdr) \
866 	l2arc_hdr_arcstats_update((hdr), B_FALSE, B_FALSE)
867 #define	l2arc_hdr_arcstats_increment_state(hdr) \
868 	l2arc_hdr_arcstats_update((hdr), B_TRUE, B_TRUE)
869 #define	l2arc_hdr_arcstats_decrement_state(hdr) \
870 	l2arc_hdr_arcstats_update((hdr), B_FALSE, B_TRUE)
871 
872 /*
873  * l2arc_mfuonly : A ZFS module parameter that controls whether only MFU
874  * 		metadata and data are cached from ARC into L2ARC.
875  */
876 int l2arc_mfuonly = 0;
877 
878 /*
879  * L2ARC TRIM
880  * l2arc_trim_ahead : A ZFS module parameter that controls how much ahead of
881  * 		the current write size (l2arc_write_max) we should TRIM if we
882  * 		have filled the device. It is defined as a percentage of the
883  * 		write size. If set to 100 we trim twice the space required to
884  * 		accommodate upcoming writes. A minimum of 64MB will be trimmed.
885  * 		It also enables TRIM of the whole L2ARC device upon creation or
886  * 		addition to an existing pool or if the header of the device is
887  * 		invalid upon importing a pool or onlining a cache device. The
888  * 		default is 0, which disables TRIM on L2ARC altogether as it can
889  * 		put significant stress on the underlying storage devices. This
890  * 		will vary depending of how well the specific device handles
891  * 		these commands.
892  */
893 unsigned long l2arc_trim_ahead = 0;
894 
895 /*
896  * Performance tuning of L2ARC persistence:
897  *
898  * l2arc_rebuild_enabled : A ZFS module parameter that controls whether adding
899  * 		an L2ARC device (either at pool import or later) will attempt
900  * 		to rebuild L2ARC buffer contents.
901  * l2arc_rebuild_blocks_min_l2size : A ZFS module parameter that controls
902  * 		whether log blocks are written to the L2ARC device. If the L2ARC
903  * 		device is less than 1GB, the amount of data l2arc_evict()
904  * 		evicts is significant compared to the amount of restored L2ARC
905  * 		data. In this case do not write log blocks in L2ARC in order
906  * 		not to waste space.
907  */
908 int l2arc_rebuild_enabled = B_TRUE;
909 unsigned long l2arc_rebuild_blocks_min_l2size = 1024 * 1024 * 1024;
910 
911 /* L2ARC persistence rebuild control routines. */
912 void l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen);
913 static void l2arc_dev_rebuild_thread(void *arg);
914 static int l2arc_rebuild(l2arc_dev_t *dev);
915 
916 /* L2ARC persistence read I/O routines. */
917 static int l2arc_dev_hdr_read(l2arc_dev_t *dev);
918 static int l2arc_log_blk_read(l2arc_dev_t *dev,
919     const l2arc_log_blkptr_t *this_lp, const l2arc_log_blkptr_t *next_lp,
920     l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb,
921     zio_t *this_io, zio_t **next_io);
922 static zio_t *l2arc_log_blk_fetch(vdev_t *vd,
923     const l2arc_log_blkptr_t *lp, l2arc_log_blk_phys_t *lb);
924 static void l2arc_log_blk_fetch_abort(zio_t *zio);
925 
926 /* L2ARC persistence block restoration routines. */
927 static void l2arc_log_blk_restore(l2arc_dev_t *dev,
928     const l2arc_log_blk_phys_t *lb, uint64_t lb_asize);
929 static void l2arc_hdr_restore(const l2arc_log_ent_phys_t *le,
930     l2arc_dev_t *dev);
931 
932 /* L2ARC persistence write I/O routines. */
933 static void l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio,
934     l2arc_write_callback_t *cb);
935 
936 /* L2ARC persistence auxiliary routines. */
937 boolean_t l2arc_log_blkptr_valid(l2arc_dev_t *dev,
938     const l2arc_log_blkptr_t *lbp);
939 static boolean_t l2arc_log_blk_insert(l2arc_dev_t *dev,
940     const arc_buf_hdr_t *ab);
941 boolean_t l2arc_range_check_overlap(uint64_t bottom,
942     uint64_t top, uint64_t check);
943 static void l2arc_blk_fetch_done(zio_t *zio);
944 static inline uint64_t
945     l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev);
946 
947 /*
948  * We use Cityhash for this. It's fast, and has good hash properties without
949  * requiring any large static buffers.
950  */
951 static uint64_t
952 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
953 {
954 	return (cityhash4(spa, dva->dva_word[0], dva->dva_word[1], birth));
955 }
956 
957 #define	HDR_EMPTY(hdr)						\
958 	((hdr)->b_dva.dva_word[0] == 0 &&			\
959 	(hdr)->b_dva.dva_word[1] == 0)
960 
961 #define	HDR_EMPTY_OR_LOCKED(hdr)				\
962 	(HDR_EMPTY(hdr) || MUTEX_HELD(HDR_LOCK(hdr)))
963 
964 #define	HDR_EQUAL(spa, dva, birth, hdr)				\
965 	((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
966 	((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
967 	((hdr)->b_birth == birth) && ((hdr)->b_spa == spa)
968 
969 static void
970 buf_discard_identity(arc_buf_hdr_t *hdr)
971 {
972 	hdr->b_dva.dva_word[0] = 0;
973 	hdr->b_dva.dva_word[1] = 0;
974 	hdr->b_birth = 0;
975 }
976 
977 static arc_buf_hdr_t *
978 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
979 {
980 	const dva_t *dva = BP_IDENTITY(bp);
981 	uint64_t birth = BP_PHYSICAL_BIRTH(bp);
982 	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
983 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
984 	arc_buf_hdr_t *hdr;
985 
986 	mutex_enter(hash_lock);
987 	for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
988 	    hdr = hdr->b_hash_next) {
989 		if (HDR_EQUAL(spa, dva, birth, hdr)) {
990 			*lockp = hash_lock;
991 			return (hdr);
992 		}
993 	}
994 	mutex_exit(hash_lock);
995 	*lockp = NULL;
996 	return (NULL);
997 }
998 
999 /*
1000  * Insert an entry into the hash table.  If there is already an element
1001  * equal to elem in the hash table, then the already existing element
1002  * will be returned and the new element will not be inserted.
1003  * Otherwise returns NULL.
1004  * If lockp == NULL, the caller is assumed to already hold the hash lock.
1005  */
1006 static arc_buf_hdr_t *
1007 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
1008 {
1009 	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1010 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1011 	arc_buf_hdr_t *fhdr;
1012 	uint32_t i;
1013 
1014 	ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
1015 	ASSERT(hdr->b_birth != 0);
1016 	ASSERT(!HDR_IN_HASH_TABLE(hdr));
1017 
1018 	if (lockp != NULL) {
1019 		*lockp = hash_lock;
1020 		mutex_enter(hash_lock);
1021 	} else {
1022 		ASSERT(MUTEX_HELD(hash_lock));
1023 	}
1024 
1025 	for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
1026 	    fhdr = fhdr->b_hash_next, i++) {
1027 		if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
1028 			return (fhdr);
1029 	}
1030 
1031 	hdr->b_hash_next = buf_hash_table.ht_table[idx];
1032 	buf_hash_table.ht_table[idx] = hdr;
1033 	arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1034 
1035 	/* collect some hash table performance data */
1036 	if (i > 0) {
1037 		ARCSTAT_BUMP(arcstat_hash_collisions);
1038 		if (i == 1)
1039 			ARCSTAT_BUMP(arcstat_hash_chains);
1040 
1041 		ARCSTAT_MAX(arcstat_hash_chain_max, i);
1042 	}
1043 	uint64_t he = atomic_inc_64_nv(
1044 	    &arc_stats.arcstat_hash_elements.value.ui64);
1045 	ARCSTAT_MAX(arcstat_hash_elements_max, he);
1046 
1047 	return (NULL);
1048 }
1049 
1050 static void
1051 buf_hash_remove(arc_buf_hdr_t *hdr)
1052 {
1053 	arc_buf_hdr_t *fhdr, **hdrp;
1054 	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1055 
1056 	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
1057 	ASSERT(HDR_IN_HASH_TABLE(hdr));
1058 
1059 	hdrp = &buf_hash_table.ht_table[idx];
1060 	while ((fhdr = *hdrp) != hdr) {
1061 		ASSERT3P(fhdr, !=, NULL);
1062 		hdrp = &fhdr->b_hash_next;
1063 	}
1064 	*hdrp = hdr->b_hash_next;
1065 	hdr->b_hash_next = NULL;
1066 	arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1067 
1068 	/* collect some hash table performance data */
1069 	atomic_dec_64(&arc_stats.arcstat_hash_elements.value.ui64);
1070 
1071 	if (buf_hash_table.ht_table[idx] &&
1072 	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1073 		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1074 }
1075 
1076 /*
1077  * Global data structures and functions for the buf kmem cache.
1078  */
1079 
1080 static kmem_cache_t *hdr_full_cache;
1081 static kmem_cache_t *hdr_full_crypt_cache;
1082 static kmem_cache_t *hdr_l2only_cache;
1083 static kmem_cache_t *buf_cache;
1084 
1085 static void
1086 buf_fini(void)
1087 {
1088 	int i;
1089 
1090 #if defined(_KERNEL)
1091 	/*
1092 	 * Large allocations which do not require contiguous pages
1093 	 * should be using vmem_free() in the linux kernel\
1094 	 */
1095 	vmem_free(buf_hash_table.ht_table,
1096 	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
1097 #else
1098 	kmem_free(buf_hash_table.ht_table,
1099 	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
1100 #endif
1101 	for (i = 0; i < BUF_LOCKS; i++)
1102 		mutex_destroy(BUF_HASH_LOCK(i));
1103 	kmem_cache_destroy(hdr_full_cache);
1104 	kmem_cache_destroy(hdr_full_crypt_cache);
1105 	kmem_cache_destroy(hdr_l2only_cache);
1106 	kmem_cache_destroy(buf_cache);
1107 }
1108 
1109 /*
1110  * Constructor callback - called when the cache is empty
1111  * and a new buf is requested.
1112  */
1113 /* ARGSUSED */
1114 static int
1115 hdr_full_cons(void *vbuf, void *unused, int kmflag)
1116 {
1117 	arc_buf_hdr_t *hdr = vbuf;
1118 
1119 	bzero(hdr, HDR_FULL_SIZE);
1120 	hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
1121 	cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
1122 	zfs_refcount_create(&hdr->b_l1hdr.b_refcnt);
1123 	mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1124 	list_link_init(&hdr->b_l1hdr.b_arc_node);
1125 	list_link_init(&hdr->b_l2hdr.b_l2node);
1126 	multilist_link_init(&hdr->b_l1hdr.b_arc_node);
1127 	arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1128 
1129 	return (0);
1130 }
1131 
1132 /* ARGSUSED */
1133 static int
1134 hdr_full_crypt_cons(void *vbuf, void *unused, int kmflag)
1135 {
1136 	arc_buf_hdr_t *hdr = vbuf;
1137 
1138 	hdr_full_cons(vbuf, unused, kmflag);
1139 	bzero(&hdr->b_crypt_hdr, sizeof (hdr->b_crypt_hdr));
1140 	arc_space_consume(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS);
1141 
1142 	return (0);
1143 }
1144 
1145 /* ARGSUSED */
1146 static int
1147 hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
1148 {
1149 	arc_buf_hdr_t *hdr = vbuf;
1150 
1151 	bzero(hdr, HDR_L2ONLY_SIZE);
1152 	arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1153 
1154 	return (0);
1155 }
1156 
1157 /* ARGSUSED */
1158 static int
1159 buf_cons(void *vbuf, void *unused, int kmflag)
1160 {
1161 	arc_buf_t *buf = vbuf;
1162 
1163 	bzero(buf, sizeof (arc_buf_t));
1164 	mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
1165 	arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1166 
1167 	return (0);
1168 }
1169 
1170 /*
1171  * Destructor callback - called when a cached buf is
1172  * no longer required.
1173  */
1174 /* ARGSUSED */
1175 static void
1176 hdr_full_dest(void *vbuf, void *unused)
1177 {
1178 	arc_buf_hdr_t *hdr = vbuf;
1179 
1180 	ASSERT(HDR_EMPTY(hdr));
1181 	cv_destroy(&hdr->b_l1hdr.b_cv);
1182 	zfs_refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1183 	mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1184 	ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1185 	arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1186 }
1187 
1188 /* ARGSUSED */
1189 static void
1190 hdr_full_crypt_dest(void *vbuf, void *unused)
1191 {
1192 	arc_buf_hdr_t *hdr = vbuf;
1193 
1194 	hdr_full_dest(vbuf, unused);
1195 	arc_space_return(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS);
1196 }
1197 
1198 /* ARGSUSED */
1199 static void
1200 hdr_l2only_dest(void *vbuf, void *unused)
1201 {
1202 	arc_buf_hdr_t *hdr __maybe_unused = vbuf;
1203 
1204 	ASSERT(HDR_EMPTY(hdr));
1205 	arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1206 }
1207 
1208 /* ARGSUSED */
1209 static void
1210 buf_dest(void *vbuf, void *unused)
1211 {
1212 	arc_buf_t *buf = vbuf;
1213 
1214 	mutex_destroy(&buf->b_evict_lock);
1215 	arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1216 }
1217 
1218 static void
1219 buf_init(void)
1220 {
1221 	uint64_t *ct = NULL;
1222 	uint64_t hsize = 1ULL << 12;
1223 	int i, j;
1224 
1225 	/*
1226 	 * The hash table is big enough to fill all of physical memory
1227 	 * with an average block size of zfs_arc_average_blocksize (default 8K).
1228 	 * By default, the table will take up
1229 	 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1230 	 */
1231 	while (hsize * zfs_arc_average_blocksize < arc_all_memory())
1232 		hsize <<= 1;
1233 retry:
1234 	buf_hash_table.ht_mask = hsize - 1;
1235 #if defined(_KERNEL)
1236 	/*
1237 	 * Large allocations which do not require contiguous pages
1238 	 * should be using vmem_alloc() in the linux kernel
1239 	 */
1240 	buf_hash_table.ht_table =
1241 	    vmem_zalloc(hsize * sizeof (void*), KM_SLEEP);
1242 #else
1243 	buf_hash_table.ht_table =
1244 	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1245 #endif
1246 	if (buf_hash_table.ht_table == NULL) {
1247 		ASSERT(hsize > (1ULL << 8));
1248 		hsize >>= 1;
1249 		goto retry;
1250 	}
1251 
1252 	hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1253 	    0, hdr_full_cons, hdr_full_dest, NULL, NULL, NULL, 0);
1254 	hdr_full_crypt_cache = kmem_cache_create("arc_buf_hdr_t_full_crypt",
1255 	    HDR_FULL_CRYPT_SIZE, 0, hdr_full_crypt_cons, hdr_full_crypt_dest,
1256 	    NULL, NULL, NULL, 0);
1257 	hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1258 	    HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, NULL,
1259 	    NULL, NULL, 0);
1260 	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1261 	    0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1262 
1263 	for (i = 0; i < 256; i++)
1264 		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1265 			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1266 
1267 	for (i = 0; i < BUF_LOCKS; i++)
1268 		mutex_init(BUF_HASH_LOCK(i), NULL, MUTEX_DEFAULT, NULL);
1269 }
1270 
1271 #define	ARC_MINTIME	(hz>>4) /* 62 ms */
1272 
1273 /*
1274  * This is the size that the buf occupies in memory. If the buf is compressed,
1275  * it will correspond to the compressed size. You should use this method of
1276  * getting the buf size unless you explicitly need the logical size.
1277  */
1278 uint64_t
1279 arc_buf_size(arc_buf_t *buf)
1280 {
1281 	return (ARC_BUF_COMPRESSED(buf) ?
1282 	    HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr));
1283 }
1284 
1285 uint64_t
1286 arc_buf_lsize(arc_buf_t *buf)
1287 {
1288 	return (HDR_GET_LSIZE(buf->b_hdr));
1289 }
1290 
1291 /*
1292  * This function will return B_TRUE if the buffer is encrypted in memory.
1293  * This buffer can be decrypted by calling arc_untransform().
1294  */
1295 boolean_t
1296 arc_is_encrypted(arc_buf_t *buf)
1297 {
1298 	return (ARC_BUF_ENCRYPTED(buf) != 0);
1299 }
1300 
1301 /*
1302  * Returns B_TRUE if the buffer represents data that has not had its MAC
1303  * verified yet.
1304  */
1305 boolean_t
1306 arc_is_unauthenticated(arc_buf_t *buf)
1307 {
1308 	return (HDR_NOAUTH(buf->b_hdr) != 0);
1309 }
1310 
1311 void
1312 arc_get_raw_params(arc_buf_t *buf, boolean_t *byteorder, uint8_t *salt,
1313     uint8_t *iv, uint8_t *mac)
1314 {
1315 	arc_buf_hdr_t *hdr = buf->b_hdr;
1316 
1317 	ASSERT(HDR_PROTECTED(hdr));
1318 
1319 	bcopy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN);
1320 	bcopy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN);
1321 	bcopy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN);
1322 	*byteorder = (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ?
1323 	    ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER;
1324 }
1325 
1326 /*
1327  * Indicates how this buffer is compressed in memory. If it is not compressed
1328  * the value will be ZIO_COMPRESS_OFF. It can be made normally readable with
1329  * arc_untransform() as long as it is also unencrypted.
1330  */
1331 enum zio_compress
1332 arc_get_compression(arc_buf_t *buf)
1333 {
1334 	return (ARC_BUF_COMPRESSED(buf) ?
1335 	    HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF);
1336 }
1337 
1338 /*
1339  * Return the compression algorithm used to store this data in the ARC. If ARC
1340  * compression is enabled or this is an encrypted block, this will be the same
1341  * as what's used to store it on-disk. Otherwise, this will be ZIO_COMPRESS_OFF.
1342  */
1343 static inline enum zio_compress
1344 arc_hdr_get_compress(arc_buf_hdr_t *hdr)
1345 {
1346 	return (HDR_COMPRESSION_ENABLED(hdr) ?
1347 	    HDR_GET_COMPRESS(hdr) : ZIO_COMPRESS_OFF);
1348 }
1349 
1350 uint8_t
1351 arc_get_complevel(arc_buf_t *buf)
1352 {
1353 	return (buf->b_hdr->b_complevel);
1354 }
1355 
1356 static inline boolean_t
1357 arc_buf_is_shared(arc_buf_t *buf)
1358 {
1359 	boolean_t shared = (buf->b_data != NULL &&
1360 	    buf->b_hdr->b_l1hdr.b_pabd != NULL &&
1361 	    abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) &&
1362 	    buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd));
1363 	IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr));
1364 	IMPLY(shared, ARC_BUF_SHARED(buf));
1365 	IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf));
1366 
1367 	/*
1368 	 * It would be nice to assert arc_can_share() too, but the "hdr isn't
1369 	 * already being shared" requirement prevents us from doing that.
1370 	 */
1371 
1372 	return (shared);
1373 }
1374 
1375 /*
1376  * Free the checksum associated with this header. If there is no checksum, this
1377  * is a no-op.
1378  */
1379 static inline void
1380 arc_cksum_free(arc_buf_hdr_t *hdr)
1381 {
1382 	ASSERT(HDR_HAS_L1HDR(hdr));
1383 
1384 	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1385 	if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1386 		kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t));
1387 		hdr->b_l1hdr.b_freeze_cksum = NULL;
1388 	}
1389 	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1390 }
1391 
1392 /*
1393  * Return true iff at least one of the bufs on hdr is not compressed.
1394  * Encrypted buffers count as compressed.
1395  */
1396 static boolean_t
1397 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr)
1398 {
1399 	ASSERT(hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY_OR_LOCKED(hdr));
1400 
1401 	for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) {
1402 		if (!ARC_BUF_COMPRESSED(b)) {
1403 			return (B_TRUE);
1404 		}
1405 	}
1406 	return (B_FALSE);
1407 }
1408 
1409 
1410 /*
1411  * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data
1412  * matches the checksum that is stored in the hdr. If there is no checksum,
1413  * or if the buf is compressed, this is a no-op.
1414  */
1415 static void
1416 arc_cksum_verify(arc_buf_t *buf)
1417 {
1418 	arc_buf_hdr_t *hdr = buf->b_hdr;
1419 	zio_cksum_t zc;
1420 
1421 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1422 		return;
1423 
1424 	if (ARC_BUF_COMPRESSED(buf))
1425 		return;
1426 
1427 	ASSERT(HDR_HAS_L1HDR(hdr));
1428 
1429 	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1430 
1431 	if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) {
1432 		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1433 		return;
1434 	}
1435 
1436 	fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc);
1437 	if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc))
1438 		panic("buffer modified while frozen!");
1439 	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1440 }
1441 
1442 /*
1443  * This function makes the assumption that data stored in the L2ARC
1444  * will be transformed exactly as it is in the main pool. Because of
1445  * this we can verify the checksum against the reading process's bp.
1446  */
1447 static boolean_t
1448 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio)
1449 {
1450 	ASSERT(!BP_IS_EMBEDDED(zio->io_bp));
1451 	VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr));
1452 
1453 	/*
1454 	 * Block pointers always store the checksum for the logical data.
1455 	 * If the block pointer has the gang bit set, then the checksum
1456 	 * it represents is for the reconstituted data and not for an
1457 	 * individual gang member. The zio pipeline, however, must be able to
1458 	 * determine the checksum of each of the gang constituents so it
1459 	 * treats the checksum comparison differently than what we need
1460 	 * for l2arc blocks. This prevents us from using the
1461 	 * zio_checksum_error() interface directly. Instead we must call the
1462 	 * zio_checksum_error_impl() so that we can ensure the checksum is
1463 	 * generated using the correct checksum algorithm and accounts for the
1464 	 * logical I/O size and not just a gang fragment.
1465 	 */
1466 	return (zio_checksum_error_impl(zio->io_spa, zio->io_bp,
1467 	    BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size,
1468 	    zio->io_offset, NULL) == 0);
1469 }
1470 
1471 /*
1472  * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a
1473  * checksum and attaches it to the buf's hdr so that we can ensure that the buf
1474  * isn't modified later on. If buf is compressed or there is already a checksum
1475  * on the hdr, this is a no-op (we only checksum uncompressed bufs).
1476  */
1477 static void
1478 arc_cksum_compute(arc_buf_t *buf)
1479 {
1480 	arc_buf_hdr_t *hdr = buf->b_hdr;
1481 
1482 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1483 		return;
1484 
1485 	ASSERT(HDR_HAS_L1HDR(hdr));
1486 
1487 	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1488 	if (hdr->b_l1hdr.b_freeze_cksum != NULL || ARC_BUF_COMPRESSED(buf)) {
1489 		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1490 		return;
1491 	}
1492 
1493 	ASSERT(!ARC_BUF_ENCRYPTED(buf));
1494 	ASSERT(!ARC_BUF_COMPRESSED(buf));
1495 	hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
1496 	    KM_SLEEP);
1497 	fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL,
1498 	    hdr->b_l1hdr.b_freeze_cksum);
1499 	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1500 	arc_buf_watch(buf);
1501 }
1502 
1503 #ifndef _KERNEL
1504 void
1505 arc_buf_sigsegv(int sig, siginfo_t *si, void *unused)
1506 {
1507 	panic("Got SIGSEGV at address: 0x%lx\n", (long)si->si_addr);
1508 }
1509 #endif
1510 
1511 /* ARGSUSED */
1512 static void
1513 arc_buf_unwatch(arc_buf_t *buf)
1514 {
1515 #ifndef _KERNEL
1516 	if (arc_watch) {
1517 		ASSERT0(mprotect(buf->b_data, arc_buf_size(buf),
1518 		    PROT_READ | PROT_WRITE));
1519 	}
1520 #endif
1521 }
1522 
1523 /* ARGSUSED */
1524 static void
1525 arc_buf_watch(arc_buf_t *buf)
1526 {
1527 #ifndef _KERNEL
1528 	if (arc_watch)
1529 		ASSERT0(mprotect(buf->b_data, arc_buf_size(buf),
1530 		    PROT_READ));
1531 #endif
1532 }
1533 
1534 static arc_buf_contents_t
1535 arc_buf_type(arc_buf_hdr_t *hdr)
1536 {
1537 	arc_buf_contents_t type;
1538 	if (HDR_ISTYPE_METADATA(hdr)) {
1539 		type = ARC_BUFC_METADATA;
1540 	} else {
1541 		type = ARC_BUFC_DATA;
1542 	}
1543 	VERIFY3U(hdr->b_type, ==, type);
1544 	return (type);
1545 }
1546 
1547 boolean_t
1548 arc_is_metadata(arc_buf_t *buf)
1549 {
1550 	return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0);
1551 }
1552 
1553 static uint32_t
1554 arc_bufc_to_flags(arc_buf_contents_t type)
1555 {
1556 	switch (type) {
1557 	case ARC_BUFC_DATA:
1558 		/* metadata field is 0 if buffer contains normal data */
1559 		return (0);
1560 	case ARC_BUFC_METADATA:
1561 		return (ARC_FLAG_BUFC_METADATA);
1562 	default:
1563 		break;
1564 	}
1565 	panic("undefined ARC buffer type!");
1566 	return ((uint32_t)-1);
1567 }
1568 
1569 void
1570 arc_buf_thaw(arc_buf_t *buf)
1571 {
1572 	arc_buf_hdr_t *hdr = buf->b_hdr;
1573 
1574 	ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
1575 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1576 
1577 	arc_cksum_verify(buf);
1578 
1579 	/*
1580 	 * Compressed buffers do not manipulate the b_freeze_cksum.
1581 	 */
1582 	if (ARC_BUF_COMPRESSED(buf))
1583 		return;
1584 
1585 	ASSERT(HDR_HAS_L1HDR(hdr));
1586 	arc_cksum_free(hdr);
1587 	arc_buf_unwatch(buf);
1588 }
1589 
1590 void
1591 arc_buf_freeze(arc_buf_t *buf)
1592 {
1593 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1594 		return;
1595 
1596 	if (ARC_BUF_COMPRESSED(buf))
1597 		return;
1598 
1599 	ASSERT(HDR_HAS_L1HDR(buf->b_hdr));
1600 	arc_cksum_compute(buf);
1601 }
1602 
1603 /*
1604  * The arc_buf_hdr_t's b_flags should never be modified directly. Instead,
1605  * the following functions should be used to ensure that the flags are
1606  * updated in a thread-safe way. When manipulating the flags either
1607  * the hash_lock must be held or the hdr must be undiscoverable. This
1608  * ensures that we're not racing with any other threads when updating
1609  * the flags.
1610  */
1611 static inline void
1612 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1613 {
1614 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1615 	hdr->b_flags |= flags;
1616 }
1617 
1618 static inline void
1619 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1620 {
1621 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1622 	hdr->b_flags &= ~flags;
1623 }
1624 
1625 /*
1626  * Setting the compression bits in the arc_buf_hdr_t's b_flags is
1627  * done in a special way since we have to clear and set bits
1628  * at the same time. Consumers that wish to set the compression bits
1629  * must use this function to ensure that the flags are updated in
1630  * thread-safe manner.
1631  */
1632 static void
1633 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp)
1634 {
1635 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1636 
1637 	/*
1638 	 * Holes and embedded blocks will always have a psize = 0 so
1639 	 * we ignore the compression of the blkptr and set the
1640 	 * want to uncompress them. Mark them as uncompressed.
1641 	 */
1642 	if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) {
1643 		arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1644 		ASSERT(!HDR_COMPRESSION_ENABLED(hdr));
1645 	} else {
1646 		arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1647 		ASSERT(HDR_COMPRESSION_ENABLED(hdr));
1648 	}
1649 
1650 	HDR_SET_COMPRESS(hdr, cmp);
1651 	ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp);
1652 }
1653 
1654 /*
1655  * Looks for another buf on the same hdr which has the data decompressed, copies
1656  * from it, and returns true. If no such buf exists, returns false.
1657  */
1658 static boolean_t
1659 arc_buf_try_copy_decompressed_data(arc_buf_t *buf)
1660 {
1661 	arc_buf_hdr_t *hdr = buf->b_hdr;
1662 	boolean_t copied = B_FALSE;
1663 
1664 	ASSERT(HDR_HAS_L1HDR(hdr));
1665 	ASSERT3P(buf->b_data, !=, NULL);
1666 	ASSERT(!ARC_BUF_COMPRESSED(buf));
1667 
1668 	for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL;
1669 	    from = from->b_next) {
1670 		/* can't use our own data buffer */
1671 		if (from == buf) {
1672 			continue;
1673 		}
1674 
1675 		if (!ARC_BUF_COMPRESSED(from)) {
1676 			bcopy(from->b_data, buf->b_data, arc_buf_size(buf));
1677 			copied = B_TRUE;
1678 			break;
1679 		}
1680 	}
1681 
1682 	/*
1683 	 * There were no decompressed bufs, so there should not be a
1684 	 * checksum on the hdr either.
1685 	 */
1686 	if (zfs_flags & ZFS_DEBUG_MODIFY)
1687 		EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL);
1688 
1689 	return (copied);
1690 }
1691 
1692 /*
1693  * Allocates an ARC buf header that's in an evicted & L2-cached state.
1694  * This is used during l2arc reconstruction to make empty ARC buffers
1695  * which circumvent the regular disk->arc->l2arc path and instead come
1696  * into being in the reverse order, i.e. l2arc->arc.
1697  */
1698 static arc_buf_hdr_t *
1699 arc_buf_alloc_l2only(size_t size, arc_buf_contents_t type, l2arc_dev_t *dev,
1700     dva_t dva, uint64_t daddr, int32_t psize, uint64_t birth,
1701     enum zio_compress compress, uint8_t complevel, boolean_t protected,
1702     boolean_t prefetch, arc_state_type_t arcs_state)
1703 {
1704 	arc_buf_hdr_t	*hdr;
1705 
1706 	ASSERT(size != 0);
1707 	hdr = kmem_cache_alloc(hdr_l2only_cache, KM_SLEEP);
1708 	hdr->b_birth = birth;
1709 	hdr->b_type = type;
1710 	hdr->b_flags = 0;
1711 	arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L2HDR);
1712 	HDR_SET_LSIZE(hdr, size);
1713 	HDR_SET_PSIZE(hdr, psize);
1714 	arc_hdr_set_compress(hdr, compress);
1715 	hdr->b_complevel = complevel;
1716 	if (protected)
1717 		arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
1718 	if (prefetch)
1719 		arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
1720 	hdr->b_spa = spa_load_guid(dev->l2ad_vdev->vdev_spa);
1721 
1722 	hdr->b_dva = dva;
1723 
1724 	hdr->b_l2hdr.b_dev = dev;
1725 	hdr->b_l2hdr.b_daddr = daddr;
1726 	hdr->b_l2hdr.b_arcs_state = arcs_state;
1727 
1728 	return (hdr);
1729 }
1730 
1731 /*
1732  * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t.
1733  */
1734 static uint64_t
1735 arc_hdr_size(arc_buf_hdr_t *hdr)
1736 {
1737 	uint64_t size;
1738 
1739 	if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF &&
1740 	    HDR_GET_PSIZE(hdr) > 0) {
1741 		size = HDR_GET_PSIZE(hdr);
1742 	} else {
1743 		ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0);
1744 		size = HDR_GET_LSIZE(hdr);
1745 	}
1746 	return (size);
1747 }
1748 
1749 static int
1750 arc_hdr_authenticate(arc_buf_hdr_t *hdr, spa_t *spa, uint64_t dsobj)
1751 {
1752 	int ret;
1753 	uint64_t csize;
1754 	uint64_t lsize = HDR_GET_LSIZE(hdr);
1755 	uint64_t psize = HDR_GET_PSIZE(hdr);
1756 	void *tmpbuf = NULL;
1757 	abd_t *abd = hdr->b_l1hdr.b_pabd;
1758 
1759 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1760 	ASSERT(HDR_AUTHENTICATED(hdr));
1761 	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
1762 
1763 	/*
1764 	 * The MAC is calculated on the compressed data that is stored on disk.
1765 	 * However, if compressed arc is disabled we will only have the
1766 	 * decompressed data available to us now. Compress it into a temporary
1767 	 * abd so we can verify the MAC. The performance overhead of this will
1768 	 * be relatively low, since most objects in an encrypted objset will
1769 	 * be encrypted (instead of authenticated) anyway.
1770 	 */
1771 	if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
1772 	    !HDR_COMPRESSION_ENABLED(hdr)) {
1773 		tmpbuf = zio_buf_alloc(lsize);
1774 		abd = abd_get_from_buf(tmpbuf, lsize);
1775 		abd_take_ownership_of_buf(abd, B_TRUE);
1776 		csize = zio_compress_data(HDR_GET_COMPRESS(hdr),
1777 		    hdr->b_l1hdr.b_pabd, tmpbuf, lsize, hdr->b_complevel);
1778 		ASSERT3U(csize, <=, psize);
1779 		abd_zero_off(abd, csize, psize - csize);
1780 	}
1781 
1782 	/*
1783 	 * Authentication is best effort. We authenticate whenever the key is
1784 	 * available. If we succeed we clear ARC_FLAG_NOAUTH.
1785 	 */
1786 	if (hdr->b_crypt_hdr.b_ot == DMU_OT_OBJSET) {
1787 		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1788 		ASSERT3U(lsize, ==, psize);
1789 		ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, dsobj, abd,
1790 		    psize, hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
1791 	} else {
1792 		ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, abd, psize,
1793 		    hdr->b_crypt_hdr.b_mac);
1794 	}
1795 
1796 	if (ret == 0)
1797 		arc_hdr_clear_flags(hdr, ARC_FLAG_NOAUTH);
1798 	else if (ret != ENOENT)
1799 		goto error;
1800 
1801 	if (tmpbuf != NULL)
1802 		abd_free(abd);
1803 
1804 	return (0);
1805 
1806 error:
1807 	if (tmpbuf != NULL)
1808 		abd_free(abd);
1809 
1810 	return (ret);
1811 }
1812 
1813 /*
1814  * This function will take a header that only has raw encrypted data in
1815  * b_crypt_hdr.b_rabd and decrypt it into a new buffer which is stored in
1816  * b_l1hdr.b_pabd. If designated in the header flags, this function will
1817  * also decompress the data.
1818  */
1819 static int
1820 arc_hdr_decrypt(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb)
1821 {
1822 	int ret;
1823 	abd_t *cabd = NULL;
1824 	void *tmp = NULL;
1825 	boolean_t no_crypt = B_FALSE;
1826 	boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
1827 
1828 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1829 	ASSERT(HDR_ENCRYPTED(hdr));
1830 
1831 	arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT);
1832 
1833 	ret = spa_do_crypt_abd(B_FALSE, spa, zb, hdr->b_crypt_hdr.b_ot,
1834 	    B_FALSE, bswap, hdr->b_crypt_hdr.b_salt, hdr->b_crypt_hdr.b_iv,
1835 	    hdr->b_crypt_hdr.b_mac, HDR_GET_PSIZE(hdr), hdr->b_l1hdr.b_pabd,
1836 	    hdr->b_crypt_hdr.b_rabd, &no_crypt);
1837 	if (ret != 0)
1838 		goto error;
1839 
1840 	if (no_crypt) {
1841 		abd_copy(hdr->b_l1hdr.b_pabd, hdr->b_crypt_hdr.b_rabd,
1842 		    HDR_GET_PSIZE(hdr));
1843 	}
1844 
1845 	/*
1846 	 * If this header has disabled arc compression but the b_pabd is
1847 	 * compressed after decrypting it, we need to decompress the newly
1848 	 * decrypted data.
1849 	 */
1850 	if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
1851 	    !HDR_COMPRESSION_ENABLED(hdr)) {
1852 		/*
1853 		 * We want to make sure that we are correctly honoring the
1854 		 * zfs_abd_scatter_enabled setting, so we allocate an abd here
1855 		 * and then loan a buffer from it, rather than allocating a
1856 		 * linear buffer and wrapping it in an abd later.
1857 		 */
1858 		cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr,
1859 		    ARC_HDR_DO_ADAPT);
1860 		tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr));
1861 
1862 		ret = zio_decompress_data(HDR_GET_COMPRESS(hdr),
1863 		    hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr),
1864 		    HDR_GET_LSIZE(hdr), &hdr->b_complevel);
1865 		if (ret != 0) {
1866 			abd_return_buf(cabd, tmp, arc_hdr_size(hdr));
1867 			goto error;
1868 		}
1869 
1870 		abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr));
1871 		arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
1872 		    arc_hdr_size(hdr), hdr);
1873 		hdr->b_l1hdr.b_pabd = cabd;
1874 	}
1875 
1876 	return (0);
1877 
1878 error:
1879 	arc_hdr_free_abd(hdr, B_FALSE);
1880 	if (cabd != NULL)
1881 		arc_free_data_buf(hdr, cabd, arc_hdr_size(hdr), hdr);
1882 
1883 	return (ret);
1884 }
1885 
1886 /*
1887  * This function is called during arc_buf_fill() to prepare the header's
1888  * abd plaintext pointer for use. This involves authenticated protected
1889  * data and decrypting encrypted data into the plaintext abd.
1890  */
1891 static int
1892 arc_fill_hdr_crypt(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, spa_t *spa,
1893     const zbookmark_phys_t *zb, boolean_t noauth)
1894 {
1895 	int ret;
1896 
1897 	ASSERT(HDR_PROTECTED(hdr));
1898 
1899 	if (hash_lock != NULL)
1900 		mutex_enter(hash_lock);
1901 
1902 	if (HDR_NOAUTH(hdr) && !noauth) {
1903 		/*
1904 		 * The caller requested authenticated data but our data has
1905 		 * not been authenticated yet. Verify the MAC now if we can.
1906 		 */
1907 		ret = arc_hdr_authenticate(hdr, spa, zb->zb_objset);
1908 		if (ret != 0)
1909 			goto error;
1910 	} else if (HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd == NULL) {
1911 		/*
1912 		 * If we only have the encrypted version of the data, but the
1913 		 * unencrypted version was requested we take this opportunity
1914 		 * to store the decrypted version in the header for future use.
1915 		 */
1916 		ret = arc_hdr_decrypt(hdr, spa, zb);
1917 		if (ret != 0)
1918 			goto error;
1919 	}
1920 
1921 	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
1922 
1923 	if (hash_lock != NULL)
1924 		mutex_exit(hash_lock);
1925 
1926 	return (0);
1927 
1928 error:
1929 	if (hash_lock != NULL)
1930 		mutex_exit(hash_lock);
1931 
1932 	return (ret);
1933 }
1934 
1935 /*
1936  * This function is used by the dbuf code to decrypt bonus buffers in place.
1937  * The dbuf code itself doesn't have any locking for decrypting a shared dnode
1938  * block, so we use the hash lock here to protect against concurrent calls to
1939  * arc_buf_fill().
1940  */
1941 static void
1942 arc_buf_untransform_in_place(arc_buf_t *buf, kmutex_t *hash_lock)
1943 {
1944 	arc_buf_hdr_t *hdr = buf->b_hdr;
1945 
1946 	ASSERT(HDR_ENCRYPTED(hdr));
1947 	ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE);
1948 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1949 	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
1950 
1951 	zio_crypt_copy_dnode_bonus(hdr->b_l1hdr.b_pabd, buf->b_data,
1952 	    arc_buf_size(buf));
1953 	buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
1954 	buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
1955 	hdr->b_crypt_hdr.b_ebufcnt -= 1;
1956 }
1957 
1958 /*
1959  * Given a buf that has a data buffer attached to it, this function will
1960  * efficiently fill the buf with data of the specified compression setting from
1961  * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr
1962  * are already sharing a data buf, no copy is performed.
1963  *
1964  * If the buf is marked as compressed but uncompressed data was requested, this
1965  * will allocate a new data buffer for the buf, remove that flag, and fill the
1966  * buf with uncompressed data. You can't request a compressed buf on a hdr with
1967  * uncompressed data, and (since we haven't added support for it yet) if you
1968  * want compressed data your buf must already be marked as compressed and have
1969  * the correct-sized data buffer.
1970  */
1971 static int
1972 arc_buf_fill(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb,
1973     arc_fill_flags_t flags)
1974 {
1975 	int error = 0;
1976 	arc_buf_hdr_t *hdr = buf->b_hdr;
1977 	boolean_t hdr_compressed =
1978 	    (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
1979 	boolean_t compressed = (flags & ARC_FILL_COMPRESSED) != 0;
1980 	boolean_t encrypted = (flags & ARC_FILL_ENCRYPTED) != 0;
1981 	dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap;
1982 	kmutex_t *hash_lock = (flags & ARC_FILL_LOCKED) ? NULL : HDR_LOCK(hdr);
1983 
1984 	ASSERT3P(buf->b_data, !=, NULL);
1985 	IMPLY(compressed, hdr_compressed || ARC_BUF_ENCRYPTED(buf));
1986 	IMPLY(compressed, ARC_BUF_COMPRESSED(buf));
1987 	IMPLY(encrypted, HDR_ENCRYPTED(hdr));
1988 	IMPLY(encrypted, ARC_BUF_ENCRYPTED(buf));
1989 	IMPLY(encrypted, ARC_BUF_COMPRESSED(buf));
1990 	IMPLY(encrypted, !ARC_BUF_SHARED(buf));
1991 
1992 	/*
1993 	 * If the caller wanted encrypted data we just need to copy it from
1994 	 * b_rabd and potentially byteswap it. We won't be able to do any
1995 	 * further transforms on it.
1996 	 */
1997 	if (encrypted) {
1998 		ASSERT(HDR_HAS_RABD(hdr));
1999 		abd_copy_to_buf(buf->b_data, hdr->b_crypt_hdr.b_rabd,
2000 		    HDR_GET_PSIZE(hdr));
2001 		goto byteswap;
2002 	}
2003 
2004 	/*
2005 	 * Adjust encrypted and authenticated headers to accommodate
2006 	 * the request if needed. Dnode blocks (ARC_FILL_IN_PLACE) are
2007 	 * allowed to fail decryption due to keys not being loaded
2008 	 * without being marked as an IO error.
2009 	 */
2010 	if (HDR_PROTECTED(hdr)) {
2011 		error = arc_fill_hdr_crypt(hdr, hash_lock, spa,
2012 		    zb, !!(flags & ARC_FILL_NOAUTH));
2013 		if (error == EACCES && (flags & ARC_FILL_IN_PLACE) != 0) {
2014 			return (error);
2015 		} else if (error != 0) {
2016 			if (hash_lock != NULL)
2017 				mutex_enter(hash_lock);
2018 			arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
2019 			if (hash_lock != NULL)
2020 				mutex_exit(hash_lock);
2021 			return (error);
2022 		}
2023 	}
2024 
2025 	/*
2026 	 * There is a special case here for dnode blocks which are
2027 	 * decrypting their bonus buffers. These blocks may request to
2028 	 * be decrypted in-place. This is necessary because there may
2029 	 * be many dnodes pointing into this buffer and there is
2030 	 * currently no method to synchronize replacing the backing
2031 	 * b_data buffer and updating all of the pointers. Here we use
2032 	 * the hash lock to ensure there are no races. If the need
2033 	 * arises for other types to be decrypted in-place, they must
2034 	 * add handling here as well.
2035 	 */
2036 	if ((flags & ARC_FILL_IN_PLACE) != 0) {
2037 		ASSERT(!hdr_compressed);
2038 		ASSERT(!compressed);
2039 		ASSERT(!encrypted);
2040 
2041 		if (HDR_ENCRYPTED(hdr) && ARC_BUF_ENCRYPTED(buf)) {
2042 			ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE);
2043 
2044 			if (hash_lock != NULL)
2045 				mutex_enter(hash_lock);
2046 			arc_buf_untransform_in_place(buf, hash_lock);
2047 			if (hash_lock != NULL)
2048 				mutex_exit(hash_lock);
2049 
2050 			/* Compute the hdr's checksum if necessary */
2051 			arc_cksum_compute(buf);
2052 		}
2053 
2054 		return (0);
2055 	}
2056 
2057 	if (hdr_compressed == compressed) {
2058 		if (!arc_buf_is_shared(buf)) {
2059 			abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd,
2060 			    arc_buf_size(buf));
2061 		}
2062 	} else {
2063 		ASSERT(hdr_compressed);
2064 		ASSERT(!compressed);
2065 		ASSERT3U(HDR_GET_LSIZE(hdr), !=, HDR_GET_PSIZE(hdr));
2066 
2067 		/*
2068 		 * If the buf is sharing its data with the hdr, unlink it and
2069 		 * allocate a new data buffer for the buf.
2070 		 */
2071 		if (arc_buf_is_shared(buf)) {
2072 			ASSERT(ARC_BUF_COMPRESSED(buf));
2073 
2074 			/* We need to give the buf its own b_data */
2075 			buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
2076 			buf->b_data =
2077 			    arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2078 			arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2079 
2080 			/* Previously overhead was 0; just add new overhead */
2081 			ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr));
2082 		} else if (ARC_BUF_COMPRESSED(buf)) {
2083 			/* We need to reallocate the buf's b_data */
2084 			arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr),
2085 			    buf);
2086 			buf->b_data =
2087 			    arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2088 
2089 			/* We increased the size of b_data; update overhead */
2090 			ARCSTAT_INCR(arcstat_overhead_size,
2091 			    HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr));
2092 		}
2093 
2094 		/*
2095 		 * Regardless of the buf's previous compression settings, it
2096 		 * should not be compressed at the end of this function.
2097 		 */
2098 		buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
2099 
2100 		/*
2101 		 * Try copying the data from another buf which already has a
2102 		 * decompressed version. If that's not possible, it's time to
2103 		 * bite the bullet and decompress the data from the hdr.
2104 		 */
2105 		if (arc_buf_try_copy_decompressed_data(buf)) {
2106 			/* Skip byteswapping and checksumming (already done) */
2107 			return (0);
2108 		} else {
2109 			error = zio_decompress_data(HDR_GET_COMPRESS(hdr),
2110 			    hdr->b_l1hdr.b_pabd, buf->b_data,
2111 			    HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr),
2112 			    &hdr->b_complevel);
2113 
2114 			/*
2115 			 * Absent hardware errors or software bugs, this should
2116 			 * be impossible, but log it anyway so we can debug it.
2117 			 */
2118 			if (error != 0) {
2119 				zfs_dbgmsg(
2120 				    "hdr %px, compress %d, psize %d, lsize %d",
2121 				    hdr, arc_hdr_get_compress(hdr),
2122 				    HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
2123 				if (hash_lock != NULL)
2124 					mutex_enter(hash_lock);
2125 				arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
2126 				if (hash_lock != NULL)
2127 					mutex_exit(hash_lock);
2128 				return (SET_ERROR(EIO));
2129 			}
2130 		}
2131 	}
2132 
2133 byteswap:
2134 	/* Byteswap the buf's data if necessary */
2135 	if (bswap != DMU_BSWAP_NUMFUNCS) {
2136 		ASSERT(!HDR_SHARED_DATA(hdr));
2137 		ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS);
2138 		dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr));
2139 	}
2140 
2141 	/* Compute the hdr's checksum if necessary */
2142 	arc_cksum_compute(buf);
2143 
2144 	return (0);
2145 }
2146 
2147 /*
2148  * If this function is being called to decrypt an encrypted buffer or verify an
2149  * authenticated one, the key must be loaded and a mapping must be made
2150  * available in the keystore via spa_keystore_create_mapping() or one of its
2151  * callers.
2152  */
2153 int
2154 arc_untransform(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb,
2155     boolean_t in_place)
2156 {
2157 	int ret;
2158 	arc_fill_flags_t flags = 0;
2159 
2160 	if (in_place)
2161 		flags |= ARC_FILL_IN_PLACE;
2162 
2163 	ret = arc_buf_fill(buf, spa, zb, flags);
2164 	if (ret == ECKSUM) {
2165 		/*
2166 		 * Convert authentication and decryption errors to EIO
2167 		 * (and generate an ereport) before leaving the ARC.
2168 		 */
2169 		ret = SET_ERROR(EIO);
2170 		spa_log_error(spa, zb);
2171 		(void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
2172 		    spa, NULL, zb, NULL, 0);
2173 	}
2174 
2175 	return (ret);
2176 }
2177 
2178 /*
2179  * Increment the amount of evictable space in the arc_state_t's refcount.
2180  * We account for the space used by the hdr and the arc buf individually
2181  * so that we can add and remove them from the refcount individually.
2182  */
2183 static void
2184 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state)
2185 {
2186 	arc_buf_contents_t type = arc_buf_type(hdr);
2187 
2188 	ASSERT(HDR_HAS_L1HDR(hdr));
2189 
2190 	if (GHOST_STATE(state)) {
2191 		ASSERT0(hdr->b_l1hdr.b_bufcnt);
2192 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2193 		ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2194 		ASSERT(!HDR_HAS_RABD(hdr));
2195 		(void) zfs_refcount_add_many(&state->arcs_esize[type],
2196 		    HDR_GET_LSIZE(hdr), hdr);
2197 		return;
2198 	}
2199 
2200 	if (hdr->b_l1hdr.b_pabd != NULL) {
2201 		(void) zfs_refcount_add_many(&state->arcs_esize[type],
2202 		    arc_hdr_size(hdr), hdr);
2203 	}
2204 	if (HDR_HAS_RABD(hdr)) {
2205 		(void) zfs_refcount_add_many(&state->arcs_esize[type],
2206 		    HDR_GET_PSIZE(hdr), hdr);
2207 	}
2208 
2209 	for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2210 	    buf = buf->b_next) {
2211 		if (arc_buf_is_shared(buf))
2212 			continue;
2213 		(void) zfs_refcount_add_many(&state->arcs_esize[type],
2214 		    arc_buf_size(buf), buf);
2215 	}
2216 }
2217 
2218 /*
2219  * Decrement the amount of evictable space in the arc_state_t's refcount.
2220  * We account for the space used by the hdr and the arc buf individually
2221  * so that we can add and remove them from the refcount individually.
2222  */
2223 static void
2224 arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state)
2225 {
2226 	arc_buf_contents_t type = arc_buf_type(hdr);
2227 
2228 	ASSERT(HDR_HAS_L1HDR(hdr));
2229 
2230 	if (GHOST_STATE(state)) {
2231 		ASSERT0(hdr->b_l1hdr.b_bufcnt);
2232 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2233 		ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2234 		ASSERT(!HDR_HAS_RABD(hdr));
2235 		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
2236 		    HDR_GET_LSIZE(hdr), hdr);
2237 		return;
2238 	}
2239 
2240 	if (hdr->b_l1hdr.b_pabd != NULL) {
2241 		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
2242 		    arc_hdr_size(hdr), hdr);
2243 	}
2244 	if (HDR_HAS_RABD(hdr)) {
2245 		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
2246 		    HDR_GET_PSIZE(hdr), hdr);
2247 	}
2248 
2249 	for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2250 	    buf = buf->b_next) {
2251 		if (arc_buf_is_shared(buf))
2252 			continue;
2253 		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
2254 		    arc_buf_size(buf), buf);
2255 	}
2256 }
2257 
2258 /*
2259  * Add a reference to this hdr indicating that someone is actively
2260  * referencing that memory. When the refcount transitions from 0 to 1,
2261  * we remove it from the respective arc_state_t list to indicate that
2262  * it is not evictable.
2263  */
2264 static void
2265 add_reference(arc_buf_hdr_t *hdr, void *tag)
2266 {
2267 	arc_state_t *state;
2268 
2269 	ASSERT(HDR_HAS_L1HDR(hdr));
2270 	if (!HDR_EMPTY(hdr) && !MUTEX_HELD(HDR_LOCK(hdr))) {
2271 		ASSERT(hdr->b_l1hdr.b_state == arc_anon);
2272 		ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2273 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2274 	}
2275 
2276 	state = hdr->b_l1hdr.b_state;
2277 
2278 	if ((zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
2279 	    (state != arc_anon)) {
2280 		/* We don't use the L2-only state list. */
2281 		if (state != arc_l2c_only) {
2282 			multilist_remove(&state->arcs_list[arc_buf_type(hdr)],
2283 			    hdr);
2284 			arc_evictable_space_decrement(hdr, state);
2285 		}
2286 		/* remove the prefetch flag if we get a reference */
2287 		if (HDR_HAS_L2HDR(hdr))
2288 			l2arc_hdr_arcstats_decrement_state(hdr);
2289 		arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
2290 		if (HDR_HAS_L2HDR(hdr))
2291 			l2arc_hdr_arcstats_increment_state(hdr);
2292 	}
2293 }
2294 
2295 /*
2296  * Remove a reference from this hdr. When the reference transitions from
2297  * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's
2298  * list making it eligible for eviction.
2299  */
2300 static int
2301 remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
2302 {
2303 	int cnt;
2304 	arc_state_t *state = hdr->b_l1hdr.b_state;
2305 
2306 	ASSERT(HDR_HAS_L1HDR(hdr));
2307 	ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
2308 	ASSERT(!GHOST_STATE(state));
2309 
2310 	/*
2311 	 * arc_l2c_only counts as a ghost state so we don't need to explicitly
2312 	 * check to prevent usage of the arc_l2c_only list.
2313 	 */
2314 	if (((cnt = zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
2315 	    (state != arc_anon)) {
2316 		multilist_insert(&state->arcs_list[arc_buf_type(hdr)], hdr);
2317 		ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
2318 		arc_evictable_space_increment(hdr, state);
2319 	}
2320 	return (cnt);
2321 }
2322 
2323 /*
2324  * Returns detailed information about a specific arc buffer.  When the
2325  * state_index argument is set the function will calculate the arc header
2326  * list position for its arc state.  Since this requires a linear traversal
2327  * callers are strongly encourage not to do this.  However, it can be helpful
2328  * for targeted analysis so the functionality is provided.
2329  */
2330 void
2331 arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index)
2332 {
2333 	arc_buf_hdr_t *hdr = ab->b_hdr;
2334 	l1arc_buf_hdr_t *l1hdr = NULL;
2335 	l2arc_buf_hdr_t *l2hdr = NULL;
2336 	arc_state_t *state = NULL;
2337 
2338 	memset(abi, 0, sizeof (arc_buf_info_t));
2339 
2340 	if (hdr == NULL)
2341 		return;
2342 
2343 	abi->abi_flags = hdr->b_flags;
2344 
2345 	if (HDR_HAS_L1HDR(hdr)) {
2346 		l1hdr = &hdr->b_l1hdr;
2347 		state = l1hdr->b_state;
2348 	}
2349 	if (HDR_HAS_L2HDR(hdr))
2350 		l2hdr = &hdr->b_l2hdr;
2351 
2352 	if (l1hdr) {
2353 		abi->abi_bufcnt = l1hdr->b_bufcnt;
2354 		abi->abi_access = l1hdr->b_arc_access;
2355 		abi->abi_mru_hits = l1hdr->b_mru_hits;
2356 		abi->abi_mru_ghost_hits = l1hdr->b_mru_ghost_hits;
2357 		abi->abi_mfu_hits = l1hdr->b_mfu_hits;
2358 		abi->abi_mfu_ghost_hits = l1hdr->b_mfu_ghost_hits;
2359 		abi->abi_holds = zfs_refcount_count(&l1hdr->b_refcnt);
2360 	}
2361 
2362 	if (l2hdr) {
2363 		abi->abi_l2arc_dattr = l2hdr->b_daddr;
2364 		abi->abi_l2arc_hits = l2hdr->b_hits;
2365 	}
2366 
2367 	abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON;
2368 	abi->abi_state_contents = arc_buf_type(hdr);
2369 	abi->abi_size = arc_hdr_size(hdr);
2370 }
2371 
2372 /*
2373  * Move the supplied buffer to the indicated state. The hash lock
2374  * for the buffer must be held by the caller.
2375  */
2376 static void
2377 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
2378     kmutex_t *hash_lock)
2379 {
2380 	arc_state_t *old_state;
2381 	int64_t refcnt;
2382 	uint32_t bufcnt;
2383 	boolean_t update_old, update_new;
2384 	arc_buf_contents_t buftype = arc_buf_type(hdr);
2385 
2386 	/*
2387 	 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
2388 	 * in arc_read() when bringing a buffer out of the L2ARC.  However, the
2389 	 * L1 hdr doesn't always exist when we change state to arc_anon before
2390 	 * destroying a header, in which case reallocating to add the L1 hdr is
2391 	 * pointless.
2392 	 */
2393 	if (HDR_HAS_L1HDR(hdr)) {
2394 		old_state = hdr->b_l1hdr.b_state;
2395 		refcnt = zfs_refcount_count(&hdr->b_l1hdr.b_refcnt);
2396 		bufcnt = hdr->b_l1hdr.b_bufcnt;
2397 		update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pabd != NULL ||
2398 		    HDR_HAS_RABD(hdr));
2399 	} else {
2400 		old_state = arc_l2c_only;
2401 		refcnt = 0;
2402 		bufcnt = 0;
2403 		update_old = B_FALSE;
2404 	}
2405 	update_new = update_old;
2406 
2407 	ASSERT(MUTEX_HELD(hash_lock));
2408 	ASSERT3P(new_state, !=, old_state);
2409 	ASSERT(!GHOST_STATE(new_state) || bufcnt == 0);
2410 	ASSERT(old_state != arc_anon || bufcnt <= 1);
2411 
2412 	/*
2413 	 * If this buffer is evictable, transfer it from the
2414 	 * old state list to the new state list.
2415 	 */
2416 	if (refcnt == 0) {
2417 		if (old_state != arc_anon && old_state != arc_l2c_only) {
2418 			ASSERT(HDR_HAS_L1HDR(hdr));
2419 			multilist_remove(&old_state->arcs_list[buftype], hdr);
2420 
2421 			if (GHOST_STATE(old_state)) {
2422 				ASSERT0(bufcnt);
2423 				ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2424 				update_old = B_TRUE;
2425 			}
2426 			arc_evictable_space_decrement(hdr, old_state);
2427 		}
2428 		if (new_state != arc_anon && new_state != arc_l2c_only) {
2429 			/*
2430 			 * An L1 header always exists here, since if we're
2431 			 * moving to some L1-cached state (i.e. not l2c_only or
2432 			 * anonymous), we realloc the header to add an L1hdr
2433 			 * beforehand.
2434 			 */
2435 			ASSERT(HDR_HAS_L1HDR(hdr));
2436 			multilist_insert(&new_state->arcs_list[buftype], hdr);
2437 
2438 			if (GHOST_STATE(new_state)) {
2439 				ASSERT0(bufcnt);
2440 				ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2441 				update_new = B_TRUE;
2442 			}
2443 			arc_evictable_space_increment(hdr, new_state);
2444 		}
2445 	}
2446 
2447 	ASSERT(!HDR_EMPTY(hdr));
2448 	if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
2449 		buf_hash_remove(hdr);
2450 
2451 	/* adjust state sizes (ignore arc_l2c_only) */
2452 
2453 	if (update_new && new_state != arc_l2c_only) {
2454 		ASSERT(HDR_HAS_L1HDR(hdr));
2455 		if (GHOST_STATE(new_state)) {
2456 			ASSERT0(bufcnt);
2457 
2458 			/*
2459 			 * When moving a header to a ghost state, we first
2460 			 * remove all arc buffers. Thus, we'll have a
2461 			 * bufcnt of zero, and no arc buffer to use for
2462 			 * the reference. As a result, we use the arc
2463 			 * header pointer for the reference.
2464 			 */
2465 			(void) zfs_refcount_add_many(&new_state->arcs_size,
2466 			    HDR_GET_LSIZE(hdr), hdr);
2467 			ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2468 			ASSERT(!HDR_HAS_RABD(hdr));
2469 		} else {
2470 			uint32_t buffers = 0;
2471 
2472 			/*
2473 			 * Each individual buffer holds a unique reference,
2474 			 * thus we must remove each of these references one
2475 			 * at a time.
2476 			 */
2477 			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2478 			    buf = buf->b_next) {
2479 				ASSERT3U(bufcnt, !=, 0);
2480 				buffers++;
2481 
2482 				/*
2483 				 * When the arc_buf_t is sharing the data
2484 				 * block with the hdr, the owner of the
2485 				 * reference belongs to the hdr. Only
2486 				 * add to the refcount if the arc_buf_t is
2487 				 * not shared.
2488 				 */
2489 				if (arc_buf_is_shared(buf))
2490 					continue;
2491 
2492 				(void) zfs_refcount_add_many(
2493 				    &new_state->arcs_size,
2494 				    arc_buf_size(buf), buf);
2495 			}
2496 			ASSERT3U(bufcnt, ==, buffers);
2497 
2498 			if (hdr->b_l1hdr.b_pabd != NULL) {
2499 				(void) zfs_refcount_add_many(
2500 				    &new_state->arcs_size,
2501 				    arc_hdr_size(hdr), hdr);
2502 			}
2503 
2504 			if (HDR_HAS_RABD(hdr)) {
2505 				(void) zfs_refcount_add_many(
2506 				    &new_state->arcs_size,
2507 				    HDR_GET_PSIZE(hdr), hdr);
2508 			}
2509 		}
2510 	}
2511 
2512 	if (update_old && old_state != arc_l2c_only) {
2513 		ASSERT(HDR_HAS_L1HDR(hdr));
2514 		if (GHOST_STATE(old_state)) {
2515 			ASSERT0(bufcnt);
2516 			ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2517 			ASSERT(!HDR_HAS_RABD(hdr));
2518 
2519 			/*
2520 			 * When moving a header off of a ghost state,
2521 			 * the header will not contain any arc buffers.
2522 			 * We use the arc header pointer for the reference
2523 			 * which is exactly what we did when we put the
2524 			 * header on the ghost state.
2525 			 */
2526 
2527 			(void) zfs_refcount_remove_many(&old_state->arcs_size,
2528 			    HDR_GET_LSIZE(hdr), hdr);
2529 		} else {
2530 			uint32_t buffers = 0;
2531 
2532 			/*
2533 			 * Each individual buffer holds a unique reference,
2534 			 * thus we must remove each of these references one
2535 			 * at a time.
2536 			 */
2537 			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2538 			    buf = buf->b_next) {
2539 				ASSERT3U(bufcnt, !=, 0);
2540 				buffers++;
2541 
2542 				/*
2543 				 * When the arc_buf_t is sharing the data
2544 				 * block with the hdr, the owner of the
2545 				 * reference belongs to the hdr. Only
2546 				 * add to the refcount if the arc_buf_t is
2547 				 * not shared.
2548 				 */
2549 				if (arc_buf_is_shared(buf))
2550 					continue;
2551 
2552 				(void) zfs_refcount_remove_many(
2553 				    &old_state->arcs_size, arc_buf_size(buf),
2554 				    buf);
2555 			}
2556 			ASSERT3U(bufcnt, ==, buffers);
2557 			ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
2558 			    HDR_HAS_RABD(hdr));
2559 
2560 			if (hdr->b_l1hdr.b_pabd != NULL) {
2561 				(void) zfs_refcount_remove_many(
2562 				    &old_state->arcs_size, arc_hdr_size(hdr),
2563 				    hdr);
2564 			}
2565 
2566 			if (HDR_HAS_RABD(hdr)) {
2567 				(void) zfs_refcount_remove_many(
2568 				    &old_state->arcs_size, HDR_GET_PSIZE(hdr),
2569 				    hdr);
2570 			}
2571 		}
2572 	}
2573 
2574 	if (HDR_HAS_L1HDR(hdr)) {
2575 		hdr->b_l1hdr.b_state = new_state;
2576 
2577 		if (HDR_HAS_L2HDR(hdr) && new_state != arc_l2c_only) {
2578 			l2arc_hdr_arcstats_decrement_state(hdr);
2579 			hdr->b_l2hdr.b_arcs_state = new_state->arcs_state;
2580 			l2arc_hdr_arcstats_increment_state(hdr);
2581 		}
2582 	}
2583 }
2584 
2585 void
2586 arc_space_consume(uint64_t space, arc_space_type_t type)
2587 {
2588 	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2589 
2590 	switch (type) {
2591 	default:
2592 		break;
2593 	case ARC_SPACE_DATA:
2594 		ARCSTAT_INCR(arcstat_data_size, space);
2595 		break;
2596 	case ARC_SPACE_META:
2597 		ARCSTAT_INCR(arcstat_metadata_size, space);
2598 		break;
2599 	case ARC_SPACE_BONUS:
2600 		ARCSTAT_INCR(arcstat_bonus_size, space);
2601 		break;
2602 	case ARC_SPACE_DNODE:
2603 		aggsum_add(&arc_sums.arcstat_dnode_size, space);
2604 		break;
2605 	case ARC_SPACE_DBUF:
2606 		ARCSTAT_INCR(arcstat_dbuf_size, space);
2607 		break;
2608 	case ARC_SPACE_HDRS:
2609 		ARCSTAT_INCR(arcstat_hdr_size, space);
2610 		break;
2611 	case ARC_SPACE_L2HDRS:
2612 		aggsum_add(&arc_sums.arcstat_l2_hdr_size, space);
2613 		break;
2614 	case ARC_SPACE_ABD_CHUNK_WASTE:
2615 		/*
2616 		 * Note: this includes space wasted by all scatter ABD's, not
2617 		 * just those allocated by the ARC.  But the vast majority of
2618 		 * scatter ABD's come from the ARC, because other users are
2619 		 * very short-lived.
2620 		 */
2621 		ARCSTAT_INCR(arcstat_abd_chunk_waste_size, space);
2622 		break;
2623 	}
2624 
2625 	if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE)
2626 		aggsum_add(&arc_sums.arcstat_meta_used, space);
2627 
2628 	aggsum_add(&arc_sums.arcstat_size, space);
2629 }
2630 
2631 void
2632 arc_space_return(uint64_t space, arc_space_type_t type)
2633 {
2634 	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2635 
2636 	switch (type) {
2637 	default:
2638 		break;
2639 	case ARC_SPACE_DATA:
2640 		ARCSTAT_INCR(arcstat_data_size, -space);
2641 		break;
2642 	case ARC_SPACE_META:
2643 		ARCSTAT_INCR(arcstat_metadata_size, -space);
2644 		break;
2645 	case ARC_SPACE_BONUS:
2646 		ARCSTAT_INCR(arcstat_bonus_size, -space);
2647 		break;
2648 	case ARC_SPACE_DNODE:
2649 		aggsum_add(&arc_sums.arcstat_dnode_size, -space);
2650 		break;
2651 	case ARC_SPACE_DBUF:
2652 		ARCSTAT_INCR(arcstat_dbuf_size, -space);
2653 		break;
2654 	case ARC_SPACE_HDRS:
2655 		ARCSTAT_INCR(arcstat_hdr_size, -space);
2656 		break;
2657 	case ARC_SPACE_L2HDRS:
2658 		aggsum_add(&arc_sums.arcstat_l2_hdr_size, -space);
2659 		break;
2660 	case ARC_SPACE_ABD_CHUNK_WASTE:
2661 		ARCSTAT_INCR(arcstat_abd_chunk_waste_size, -space);
2662 		break;
2663 	}
2664 
2665 	if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE) {
2666 		ASSERT(aggsum_compare(&arc_sums.arcstat_meta_used,
2667 		    space) >= 0);
2668 		ARCSTAT_MAX(arcstat_meta_max,
2669 		    aggsum_upper_bound(&arc_sums.arcstat_meta_used));
2670 		aggsum_add(&arc_sums.arcstat_meta_used, -space);
2671 	}
2672 
2673 	ASSERT(aggsum_compare(&arc_sums.arcstat_size, space) >= 0);
2674 	aggsum_add(&arc_sums.arcstat_size, -space);
2675 }
2676 
2677 /*
2678  * Given a hdr and a buf, returns whether that buf can share its b_data buffer
2679  * with the hdr's b_pabd.
2680  */
2681 static boolean_t
2682 arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2683 {
2684 	/*
2685 	 * The criteria for sharing a hdr's data are:
2686 	 * 1. the buffer is not encrypted
2687 	 * 2. the hdr's compression matches the buf's compression
2688 	 * 3. the hdr doesn't need to be byteswapped
2689 	 * 4. the hdr isn't already being shared
2690 	 * 5. the buf is either compressed or it is the last buf in the hdr list
2691 	 *
2692 	 * Criterion #5 maintains the invariant that shared uncompressed
2693 	 * bufs must be the final buf in the hdr's b_buf list. Reading this, you
2694 	 * might ask, "if a compressed buf is allocated first, won't that be the
2695 	 * last thing in the list?", but in that case it's impossible to create
2696 	 * a shared uncompressed buf anyway (because the hdr must be compressed
2697 	 * to have the compressed buf). You might also think that #3 is
2698 	 * sufficient to make this guarantee, however it's possible
2699 	 * (specifically in the rare L2ARC write race mentioned in
2700 	 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that
2701 	 * is shareable, but wasn't at the time of its allocation. Rather than
2702 	 * allow a new shared uncompressed buf to be created and then shuffle
2703 	 * the list around to make it the last element, this simply disallows
2704 	 * sharing if the new buf isn't the first to be added.
2705 	 */
2706 	ASSERT3P(buf->b_hdr, ==, hdr);
2707 	boolean_t hdr_compressed =
2708 	    arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF;
2709 	boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0;
2710 	return (!ARC_BUF_ENCRYPTED(buf) &&
2711 	    buf_compressed == hdr_compressed &&
2712 	    hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS &&
2713 	    !HDR_SHARED_DATA(hdr) &&
2714 	    (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf)));
2715 }
2716 
2717 /*
2718  * Allocate a buf for this hdr. If you care about the data that's in the hdr,
2719  * or if you want a compressed buffer, pass those flags in. Returns 0 if the
2720  * copy was made successfully, or an error code otherwise.
2721  */
2722 static int
2723 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb,
2724     void *tag, boolean_t encrypted, boolean_t compressed, boolean_t noauth,
2725     boolean_t fill, arc_buf_t **ret)
2726 {
2727 	arc_buf_t *buf;
2728 	arc_fill_flags_t flags = ARC_FILL_LOCKED;
2729 
2730 	ASSERT(HDR_HAS_L1HDR(hdr));
2731 	ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2732 	VERIFY(hdr->b_type == ARC_BUFC_DATA ||
2733 	    hdr->b_type == ARC_BUFC_METADATA);
2734 	ASSERT3P(ret, !=, NULL);
2735 	ASSERT3P(*ret, ==, NULL);
2736 	IMPLY(encrypted, compressed);
2737 
2738 	buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2739 	buf->b_hdr = hdr;
2740 	buf->b_data = NULL;
2741 	buf->b_next = hdr->b_l1hdr.b_buf;
2742 	buf->b_flags = 0;
2743 
2744 	add_reference(hdr, tag);
2745 
2746 	/*
2747 	 * We're about to change the hdr's b_flags. We must either
2748 	 * hold the hash_lock or be undiscoverable.
2749 	 */
2750 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
2751 
2752 	/*
2753 	 * Only honor requests for compressed bufs if the hdr is actually
2754 	 * compressed. This must be overridden if the buffer is encrypted since
2755 	 * encrypted buffers cannot be decompressed.
2756 	 */
2757 	if (encrypted) {
2758 		buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2759 		buf->b_flags |= ARC_BUF_FLAG_ENCRYPTED;
2760 		flags |= ARC_FILL_COMPRESSED | ARC_FILL_ENCRYPTED;
2761 	} else if (compressed &&
2762 	    arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) {
2763 		buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2764 		flags |= ARC_FILL_COMPRESSED;
2765 	}
2766 
2767 	if (noauth) {
2768 		ASSERT0(encrypted);
2769 		flags |= ARC_FILL_NOAUTH;
2770 	}
2771 
2772 	/*
2773 	 * If the hdr's data can be shared then we share the data buffer and
2774 	 * set the appropriate bit in the hdr's b_flags to indicate the hdr is
2775 	 * sharing it's b_pabd with the arc_buf_t. Otherwise, we allocate a new
2776 	 * buffer to store the buf's data.
2777 	 *
2778 	 * There are two additional restrictions here because we're sharing
2779 	 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be
2780 	 * actively involved in an L2ARC write, because if this buf is used by
2781 	 * an arc_write() then the hdr's data buffer will be released when the
2782 	 * write completes, even though the L2ARC write might still be using it.
2783 	 * Second, the hdr's ABD must be linear so that the buf's user doesn't
2784 	 * need to be ABD-aware.  It must be allocated via
2785 	 * zio_[data_]buf_alloc(), not as a page, because we need to be able
2786 	 * to abd_release_ownership_of_buf(), which isn't allowed on "linear
2787 	 * page" buffers because the ABD code needs to handle freeing them
2788 	 * specially.
2789 	 */
2790 	boolean_t can_share = arc_can_share(hdr, buf) &&
2791 	    !HDR_L2_WRITING(hdr) &&
2792 	    hdr->b_l1hdr.b_pabd != NULL &&
2793 	    abd_is_linear(hdr->b_l1hdr.b_pabd) &&
2794 	    !abd_is_linear_page(hdr->b_l1hdr.b_pabd);
2795 
2796 	/* Set up b_data and sharing */
2797 	if (can_share) {
2798 		buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd);
2799 		buf->b_flags |= ARC_BUF_FLAG_SHARED;
2800 		arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2801 	} else {
2802 		buf->b_data =
2803 		    arc_get_data_buf(hdr, arc_buf_size(buf), buf);
2804 		ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
2805 	}
2806 	VERIFY3P(buf->b_data, !=, NULL);
2807 
2808 	hdr->b_l1hdr.b_buf = buf;
2809 	hdr->b_l1hdr.b_bufcnt += 1;
2810 	if (encrypted)
2811 		hdr->b_crypt_hdr.b_ebufcnt += 1;
2812 
2813 	/*
2814 	 * If the user wants the data from the hdr, we need to either copy or
2815 	 * decompress the data.
2816 	 */
2817 	if (fill) {
2818 		ASSERT3P(zb, !=, NULL);
2819 		return (arc_buf_fill(buf, spa, zb, flags));
2820 	}
2821 
2822 	return (0);
2823 }
2824 
2825 static char *arc_onloan_tag = "onloan";
2826 
2827 static inline void
2828 arc_loaned_bytes_update(int64_t delta)
2829 {
2830 	atomic_add_64(&arc_loaned_bytes, delta);
2831 
2832 	/* assert that it did not wrap around */
2833 	ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
2834 }
2835 
2836 /*
2837  * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2838  * flight data by arc_tempreserve_space() until they are "returned". Loaned
2839  * buffers must be returned to the arc before they can be used by the DMU or
2840  * freed.
2841  */
2842 arc_buf_t *
2843 arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size)
2844 {
2845 	arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag,
2846 	    is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size);
2847 
2848 	arc_loaned_bytes_update(arc_buf_size(buf));
2849 
2850 	return (buf);
2851 }
2852 
2853 arc_buf_t *
2854 arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize,
2855     enum zio_compress compression_type, uint8_t complevel)
2856 {
2857 	arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag,
2858 	    psize, lsize, compression_type, complevel);
2859 
2860 	arc_loaned_bytes_update(arc_buf_size(buf));
2861 
2862 	return (buf);
2863 }
2864 
2865 arc_buf_t *
2866 arc_loan_raw_buf(spa_t *spa, uint64_t dsobj, boolean_t byteorder,
2867     const uint8_t *salt, const uint8_t *iv, const uint8_t *mac,
2868     dmu_object_type_t ot, uint64_t psize, uint64_t lsize,
2869     enum zio_compress compression_type, uint8_t complevel)
2870 {
2871 	arc_buf_t *buf = arc_alloc_raw_buf(spa, arc_onloan_tag, dsobj,
2872 	    byteorder, salt, iv, mac, ot, psize, lsize, compression_type,
2873 	    complevel);
2874 
2875 	atomic_add_64(&arc_loaned_bytes, psize);
2876 	return (buf);
2877 }
2878 
2879 
2880 /*
2881  * Return a loaned arc buffer to the arc.
2882  */
2883 void
2884 arc_return_buf(arc_buf_t *buf, void *tag)
2885 {
2886 	arc_buf_hdr_t *hdr = buf->b_hdr;
2887 
2888 	ASSERT3P(buf->b_data, !=, NULL);
2889 	ASSERT(HDR_HAS_L1HDR(hdr));
2890 	(void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2891 	(void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2892 
2893 	arc_loaned_bytes_update(-arc_buf_size(buf));
2894 }
2895 
2896 /* Detach an arc_buf from a dbuf (tag) */
2897 void
2898 arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
2899 {
2900 	arc_buf_hdr_t *hdr = buf->b_hdr;
2901 
2902 	ASSERT3P(buf->b_data, !=, NULL);
2903 	ASSERT(HDR_HAS_L1HDR(hdr));
2904 	(void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2905 	(void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
2906 
2907 	arc_loaned_bytes_update(arc_buf_size(buf));
2908 }
2909 
2910 static void
2911 l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type)
2912 {
2913 	l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP);
2914 
2915 	df->l2df_abd = abd;
2916 	df->l2df_size = size;
2917 	df->l2df_type = type;
2918 	mutex_enter(&l2arc_free_on_write_mtx);
2919 	list_insert_head(l2arc_free_on_write, df);
2920 	mutex_exit(&l2arc_free_on_write_mtx);
2921 }
2922 
2923 static void
2924 arc_hdr_free_on_write(arc_buf_hdr_t *hdr, boolean_t free_rdata)
2925 {
2926 	arc_state_t *state = hdr->b_l1hdr.b_state;
2927 	arc_buf_contents_t type = arc_buf_type(hdr);
2928 	uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr);
2929 
2930 	/* protected by hash lock, if in the hash table */
2931 	if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
2932 		ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2933 		ASSERT(state != arc_anon && state != arc_l2c_only);
2934 
2935 		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
2936 		    size, hdr);
2937 	}
2938 	(void) zfs_refcount_remove_many(&state->arcs_size, size, hdr);
2939 	if (type == ARC_BUFC_METADATA) {
2940 		arc_space_return(size, ARC_SPACE_META);
2941 	} else {
2942 		ASSERT(type == ARC_BUFC_DATA);
2943 		arc_space_return(size, ARC_SPACE_DATA);
2944 	}
2945 
2946 	if (free_rdata) {
2947 		l2arc_free_abd_on_write(hdr->b_crypt_hdr.b_rabd, size, type);
2948 	} else {
2949 		l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type);
2950 	}
2951 }
2952 
2953 /*
2954  * Share the arc_buf_t's data with the hdr. Whenever we are sharing the
2955  * data buffer, we transfer the refcount ownership to the hdr and update
2956  * the appropriate kstats.
2957  */
2958 static void
2959 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2960 {
2961 	ASSERT(arc_can_share(hdr, buf));
2962 	ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2963 	ASSERT(!ARC_BUF_ENCRYPTED(buf));
2964 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
2965 
2966 	/*
2967 	 * Start sharing the data buffer. We transfer the
2968 	 * refcount ownership to the hdr since it always owns
2969 	 * the refcount whenever an arc_buf_t is shared.
2970 	 */
2971 	zfs_refcount_transfer_ownership_many(&hdr->b_l1hdr.b_state->arcs_size,
2972 	    arc_hdr_size(hdr), buf, hdr);
2973 	hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf));
2974 	abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd,
2975 	    HDR_ISTYPE_METADATA(hdr));
2976 	arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2977 	buf->b_flags |= ARC_BUF_FLAG_SHARED;
2978 
2979 	/*
2980 	 * Since we've transferred ownership to the hdr we need
2981 	 * to increment its compressed and uncompressed kstats and
2982 	 * decrement the overhead size.
2983 	 */
2984 	ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
2985 	ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
2986 	ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf));
2987 }
2988 
2989 static void
2990 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2991 {
2992 	ASSERT(arc_buf_is_shared(buf));
2993 	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2994 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
2995 
2996 	/*
2997 	 * We are no longer sharing this buffer so we need
2998 	 * to transfer its ownership to the rightful owner.
2999 	 */
3000 	zfs_refcount_transfer_ownership_many(&hdr->b_l1hdr.b_state->arcs_size,
3001 	    arc_hdr_size(hdr), hdr, buf);
3002 	arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
3003 	abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd);
3004 	abd_free(hdr->b_l1hdr.b_pabd);
3005 	hdr->b_l1hdr.b_pabd = NULL;
3006 	buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
3007 
3008 	/*
3009 	 * Since the buffer is no longer shared between
3010 	 * the arc buf and the hdr, count it as overhead.
3011 	 */
3012 	ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
3013 	ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
3014 	ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
3015 }
3016 
3017 /*
3018  * Remove an arc_buf_t from the hdr's buf list and return the last
3019  * arc_buf_t on the list. If no buffers remain on the list then return
3020  * NULL.
3021  */
3022 static arc_buf_t *
3023 arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf)
3024 {
3025 	ASSERT(HDR_HAS_L1HDR(hdr));
3026 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
3027 
3028 	arc_buf_t **bufp = &hdr->b_l1hdr.b_buf;
3029 	arc_buf_t *lastbuf = NULL;
3030 
3031 	/*
3032 	 * Remove the buf from the hdr list and locate the last
3033 	 * remaining buffer on the list.
3034 	 */
3035 	while (*bufp != NULL) {
3036 		if (*bufp == buf)
3037 			*bufp = buf->b_next;
3038 
3039 		/*
3040 		 * If we've removed a buffer in the middle of
3041 		 * the list then update the lastbuf and update
3042 		 * bufp.
3043 		 */
3044 		if (*bufp != NULL) {
3045 			lastbuf = *bufp;
3046 			bufp = &(*bufp)->b_next;
3047 		}
3048 	}
3049 	buf->b_next = NULL;
3050 	ASSERT3P(lastbuf, !=, buf);
3051 	IMPLY(hdr->b_l1hdr.b_bufcnt > 0, lastbuf != NULL);
3052 	IMPLY(hdr->b_l1hdr.b_bufcnt > 0, hdr->b_l1hdr.b_buf != NULL);
3053 	IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf));
3054 
3055 	return (lastbuf);
3056 }
3057 
3058 /*
3059  * Free up buf->b_data and pull the arc_buf_t off of the arc_buf_hdr_t's
3060  * list and free it.
3061  */
3062 static void
3063 arc_buf_destroy_impl(arc_buf_t *buf)
3064 {
3065 	arc_buf_hdr_t *hdr = buf->b_hdr;
3066 
3067 	/*
3068 	 * Free up the data associated with the buf but only if we're not
3069 	 * sharing this with the hdr. If we are sharing it with the hdr, the
3070 	 * hdr is responsible for doing the free.
3071 	 */
3072 	if (buf->b_data != NULL) {
3073 		/*
3074 		 * We're about to change the hdr's b_flags. We must either
3075 		 * hold the hash_lock or be undiscoverable.
3076 		 */
3077 		ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
3078 
3079 		arc_cksum_verify(buf);
3080 		arc_buf_unwatch(buf);
3081 
3082 		if (arc_buf_is_shared(buf)) {
3083 			arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
3084 		} else {
3085 			uint64_t size = arc_buf_size(buf);
3086 			arc_free_data_buf(hdr, buf->b_data, size, buf);
3087 			ARCSTAT_INCR(arcstat_overhead_size, -size);
3088 		}
3089 		buf->b_data = NULL;
3090 
3091 		ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
3092 		hdr->b_l1hdr.b_bufcnt -= 1;
3093 
3094 		if (ARC_BUF_ENCRYPTED(buf)) {
3095 			hdr->b_crypt_hdr.b_ebufcnt -= 1;
3096 
3097 			/*
3098 			 * If we have no more encrypted buffers and we've
3099 			 * already gotten a copy of the decrypted data we can
3100 			 * free b_rabd to save some space.
3101 			 */
3102 			if (hdr->b_crypt_hdr.b_ebufcnt == 0 &&
3103 			    HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd != NULL &&
3104 			    !HDR_IO_IN_PROGRESS(hdr)) {
3105 				arc_hdr_free_abd(hdr, B_TRUE);
3106 			}
3107 		}
3108 	}
3109 
3110 	arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
3111 
3112 	if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) {
3113 		/*
3114 		 * If the current arc_buf_t is sharing its data buffer with the
3115 		 * hdr, then reassign the hdr's b_pabd to share it with the new
3116 		 * buffer at the end of the list. The shared buffer is always
3117 		 * the last one on the hdr's buffer list.
3118 		 *
3119 		 * There is an equivalent case for compressed bufs, but since
3120 		 * they aren't guaranteed to be the last buf in the list and
3121 		 * that is an exceedingly rare case, we just allow that space be
3122 		 * wasted temporarily. We must also be careful not to share
3123 		 * encrypted buffers, since they cannot be shared.
3124 		 */
3125 		if (lastbuf != NULL && !ARC_BUF_ENCRYPTED(lastbuf)) {
3126 			/* Only one buf can be shared at once */
3127 			VERIFY(!arc_buf_is_shared(lastbuf));
3128 			/* hdr is uncompressed so can't have compressed buf */
3129 			VERIFY(!ARC_BUF_COMPRESSED(lastbuf));
3130 
3131 			ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3132 			arc_hdr_free_abd(hdr, B_FALSE);
3133 
3134 			/*
3135 			 * We must setup a new shared block between the
3136 			 * last buffer and the hdr. The data would have
3137 			 * been allocated by the arc buf so we need to transfer
3138 			 * ownership to the hdr since it's now being shared.
3139 			 */
3140 			arc_share_buf(hdr, lastbuf);
3141 		}
3142 	} else if (HDR_SHARED_DATA(hdr)) {
3143 		/*
3144 		 * Uncompressed shared buffers are always at the end
3145 		 * of the list. Compressed buffers don't have the
3146 		 * same requirements. This makes it hard to
3147 		 * simply assert that the lastbuf is shared so
3148 		 * we rely on the hdr's compression flags to determine
3149 		 * if we have a compressed, shared buffer.
3150 		 */
3151 		ASSERT3P(lastbuf, !=, NULL);
3152 		ASSERT(arc_buf_is_shared(lastbuf) ||
3153 		    arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
3154 	}
3155 
3156 	/*
3157 	 * Free the checksum if we're removing the last uncompressed buf from
3158 	 * this hdr.
3159 	 */
3160 	if (!arc_hdr_has_uncompressed_buf(hdr)) {
3161 		arc_cksum_free(hdr);
3162 	}
3163 
3164 	/* clean up the buf */
3165 	buf->b_hdr = NULL;
3166 	kmem_cache_free(buf_cache, buf);
3167 }
3168 
3169 static void
3170 arc_hdr_alloc_abd(arc_buf_hdr_t *hdr, int alloc_flags)
3171 {
3172 	uint64_t size;
3173 	boolean_t alloc_rdata = ((alloc_flags & ARC_HDR_ALLOC_RDATA) != 0);
3174 
3175 	ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
3176 	ASSERT(HDR_HAS_L1HDR(hdr));
3177 	ASSERT(!HDR_SHARED_DATA(hdr) || alloc_rdata);
3178 	IMPLY(alloc_rdata, HDR_PROTECTED(hdr));
3179 
3180 	if (alloc_rdata) {
3181 		size = HDR_GET_PSIZE(hdr);
3182 		ASSERT3P(hdr->b_crypt_hdr.b_rabd, ==, NULL);
3183 		hdr->b_crypt_hdr.b_rabd = arc_get_data_abd(hdr, size, hdr,
3184 		    alloc_flags);
3185 		ASSERT3P(hdr->b_crypt_hdr.b_rabd, !=, NULL);
3186 		ARCSTAT_INCR(arcstat_raw_size, size);
3187 	} else {
3188 		size = arc_hdr_size(hdr);
3189 		ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3190 		hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, size, hdr,
3191 		    alloc_flags);
3192 		ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3193 	}
3194 
3195 	ARCSTAT_INCR(arcstat_compressed_size, size);
3196 	ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
3197 }
3198 
3199 static void
3200 arc_hdr_free_abd(arc_buf_hdr_t *hdr, boolean_t free_rdata)
3201 {
3202 	uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr);
3203 
3204 	ASSERT(HDR_HAS_L1HDR(hdr));
3205 	ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
3206 	IMPLY(free_rdata, HDR_HAS_RABD(hdr));
3207 
3208 	/*
3209 	 * If the hdr is currently being written to the l2arc then
3210 	 * we defer freeing the data by adding it to the l2arc_free_on_write
3211 	 * list. The l2arc will free the data once it's finished
3212 	 * writing it to the l2arc device.
3213 	 */
3214 	if (HDR_L2_WRITING(hdr)) {
3215 		arc_hdr_free_on_write(hdr, free_rdata);
3216 		ARCSTAT_BUMP(arcstat_l2_free_on_write);
3217 	} else if (free_rdata) {
3218 		arc_free_data_abd(hdr, hdr->b_crypt_hdr.b_rabd, size, hdr);
3219 	} else {
3220 		arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, size, hdr);
3221 	}
3222 
3223 	if (free_rdata) {
3224 		hdr->b_crypt_hdr.b_rabd = NULL;
3225 		ARCSTAT_INCR(arcstat_raw_size, -size);
3226 	} else {
3227 		hdr->b_l1hdr.b_pabd = NULL;
3228 	}
3229 
3230 	if (hdr->b_l1hdr.b_pabd == NULL && !HDR_HAS_RABD(hdr))
3231 		hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
3232 
3233 	ARCSTAT_INCR(arcstat_compressed_size, -size);
3234 	ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
3235 }
3236 
3237 /*
3238  * Allocate empty anonymous ARC header.  The header will get its identity
3239  * assigned and buffers attached later as part of read or write operations.
3240  *
3241  * In case of read arc_read() assigns header its identify (b_dva + b_birth),
3242  * inserts it into ARC hash to become globally visible and allocates physical
3243  * (b_pabd) or raw (b_rabd) ABD buffer to read into from disk.  On disk read
3244  * completion arc_read_done() allocates ARC buffer(s) as needed, potentially
3245  * sharing one of them with the physical ABD buffer.
3246  *
3247  * In case of write arc_alloc_buf() allocates ARC buffer to be filled with
3248  * data.  Then after compression and/or encryption arc_write_ready() allocates
3249  * and fills (or potentially shares) physical (b_pabd) or raw (b_rabd) ABD
3250  * buffer.  On disk write completion arc_write_done() assigns the header its
3251  * new identity (b_dva + b_birth) and inserts into ARC hash.
3252  *
3253  * In case of partial overwrite the old data is read first as described. Then
3254  * arc_release() either allocates new anonymous ARC header and moves the ARC
3255  * buffer to it, or reuses the old ARC header by discarding its identity and
3256  * removing it from ARC hash.  After buffer modification normal write process
3257  * follows as described.
3258  */
3259 static arc_buf_hdr_t *
3260 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize,
3261     boolean_t protected, enum zio_compress compression_type, uint8_t complevel,
3262     arc_buf_contents_t type)
3263 {
3264 	arc_buf_hdr_t *hdr;
3265 
3266 	VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA);
3267 	if (protected) {
3268 		hdr = kmem_cache_alloc(hdr_full_crypt_cache, KM_PUSHPAGE);
3269 	} else {
3270 		hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
3271 	}
3272 
3273 	ASSERT(HDR_EMPTY(hdr));
3274 	ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3275 	HDR_SET_PSIZE(hdr, psize);
3276 	HDR_SET_LSIZE(hdr, lsize);
3277 	hdr->b_spa = spa;
3278 	hdr->b_type = type;
3279 	hdr->b_flags = 0;
3280 	arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR);
3281 	arc_hdr_set_compress(hdr, compression_type);
3282 	hdr->b_complevel = complevel;
3283 	if (protected)
3284 		arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
3285 
3286 	hdr->b_l1hdr.b_state = arc_anon;
3287 	hdr->b_l1hdr.b_arc_access = 0;
3288 	hdr->b_l1hdr.b_mru_hits = 0;
3289 	hdr->b_l1hdr.b_mru_ghost_hits = 0;
3290 	hdr->b_l1hdr.b_mfu_hits = 0;
3291 	hdr->b_l1hdr.b_mfu_ghost_hits = 0;
3292 	hdr->b_l1hdr.b_bufcnt = 0;
3293 	hdr->b_l1hdr.b_buf = NULL;
3294 
3295 	ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3296 
3297 	return (hdr);
3298 }
3299 
3300 /*
3301  * Transition between the two allocation states for the arc_buf_hdr struct.
3302  * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
3303  * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
3304  * version is used when a cache buffer is only in the L2ARC in order to reduce
3305  * memory usage.
3306  */
3307 static arc_buf_hdr_t *
3308 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
3309 {
3310 	ASSERT(HDR_HAS_L2HDR(hdr));
3311 
3312 	arc_buf_hdr_t *nhdr;
3313 	l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3314 
3315 	ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
3316 	    (old == hdr_l2only_cache && new == hdr_full_cache));
3317 
3318 	/*
3319 	 * if the caller wanted a new full header and the header is to be
3320 	 * encrypted we will actually allocate the header from the full crypt
3321 	 * cache instead. The same applies to freeing from the old cache.
3322 	 */
3323 	if (HDR_PROTECTED(hdr) && new == hdr_full_cache)
3324 		new = hdr_full_crypt_cache;
3325 	if (HDR_PROTECTED(hdr) && old == hdr_full_cache)
3326 		old = hdr_full_crypt_cache;
3327 
3328 	nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
3329 
3330 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
3331 	buf_hash_remove(hdr);
3332 
3333 	bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
3334 
3335 	if (new == hdr_full_cache || new == hdr_full_crypt_cache) {
3336 		arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3337 		/*
3338 		 * arc_access and arc_change_state need to be aware that a
3339 		 * header has just come out of L2ARC, so we set its state to
3340 		 * l2c_only even though it's about to change.
3341 		 */
3342 		nhdr->b_l1hdr.b_state = arc_l2c_only;
3343 
3344 		/* Verify previous threads set to NULL before freeing */
3345 		ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL);
3346 		ASSERT(!HDR_HAS_RABD(hdr));
3347 	} else {
3348 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3349 		ASSERT0(hdr->b_l1hdr.b_bufcnt);
3350 		ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3351 
3352 		/*
3353 		 * If we've reached here, We must have been called from
3354 		 * arc_evict_hdr(), as such we should have already been
3355 		 * removed from any ghost list we were previously on
3356 		 * (which protects us from racing with arc_evict_state),
3357 		 * thus no locking is needed during this check.
3358 		 */
3359 		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3360 
3361 		/*
3362 		 * A buffer must not be moved into the arc_l2c_only
3363 		 * state if it's not finished being written out to the
3364 		 * l2arc device. Otherwise, the b_l1hdr.b_pabd field
3365 		 * might try to be accessed, even though it was removed.
3366 		 */
3367 		VERIFY(!HDR_L2_WRITING(hdr));
3368 		VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3369 		ASSERT(!HDR_HAS_RABD(hdr));
3370 
3371 		arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3372 	}
3373 	/*
3374 	 * The header has been reallocated so we need to re-insert it into any
3375 	 * lists it was on.
3376 	 */
3377 	(void) buf_hash_insert(nhdr, NULL);
3378 
3379 	ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
3380 
3381 	mutex_enter(&dev->l2ad_mtx);
3382 
3383 	/*
3384 	 * We must place the realloc'ed header back into the list at
3385 	 * the same spot. Otherwise, if it's placed earlier in the list,
3386 	 * l2arc_write_buffers() could find it during the function's
3387 	 * write phase, and try to write it out to the l2arc.
3388 	 */
3389 	list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
3390 	list_remove(&dev->l2ad_buflist, hdr);
3391 
3392 	mutex_exit(&dev->l2ad_mtx);
3393 
3394 	/*
3395 	 * Since we're using the pointer address as the tag when
3396 	 * incrementing and decrementing the l2ad_alloc refcount, we
3397 	 * must remove the old pointer (that we're about to destroy) and
3398 	 * add the new pointer to the refcount. Otherwise we'd remove
3399 	 * the wrong pointer address when calling arc_hdr_destroy() later.
3400 	 */
3401 
3402 	(void) zfs_refcount_remove_many(&dev->l2ad_alloc,
3403 	    arc_hdr_size(hdr), hdr);
3404 	(void) zfs_refcount_add_many(&dev->l2ad_alloc,
3405 	    arc_hdr_size(nhdr), nhdr);
3406 
3407 	buf_discard_identity(hdr);
3408 	kmem_cache_free(old, hdr);
3409 
3410 	return (nhdr);
3411 }
3412 
3413 /*
3414  * This function allows an L1 header to be reallocated as a crypt
3415  * header and vice versa. If we are going to a crypt header, the
3416  * new fields will be zeroed out.
3417  */
3418 static arc_buf_hdr_t *
3419 arc_hdr_realloc_crypt(arc_buf_hdr_t *hdr, boolean_t need_crypt)
3420 {
3421 	arc_buf_hdr_t *nhdr;
3422 	arc_buf_t *buf;
3423 	kmem_cache_t *ncache, *ocache;
3424 
3425 	/*
3426 	 * This function requires that hdr is in the arc_anon state.
3427 	 * Therefore it won't have any L2ARC data for us to worry
3428 	 * about copying.
3429 	 */
3430 	ASSERT(HDR_HAS_L1HDR(hdr));
3431 	ASSERT(!HDR_HAS_L2HDR(hdr));
3432 	ASSERT3U(!!HDR_PROTECTED(hdr), !=, need_crypt);
3433 	ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3434 	ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3435 	ASSERT(!list_link_active(&hdr->b_l2hdr.b_l2node));
3436 	ASSERT3P(hdr->b_hash_next, ==, NULL);
3437 
3438 	if (need_crypt) {
3439 		ncache = hdr_full_crypt_cache;
3440 		ocache = hdr_full_cache;
3441 	} else {
3442 		ncache = hdr_full_cache;
3443 		ocache = hdr_full_crypt_cache;
3444 	}
3445 
3446 	nhdr = kmem_cache_alloc(ncache, KM_PUSHPAGE);
3447 
3448 	/*
3449 	 * Copy all members that aren't locks or condvars to the new header.
3450 	 * No lists are pointing to us (as we asserted above), so we don't
3451 	 * need to worry about the list nodes.
3452 	 */
3453 	nhdr->b_dva = hdr->b_dva;
3454 	nhdr->b_birth = hdr->b_birth;
3455 	nhdr->b_type = hdr->b_type;
3456 	nhdr->b_flags = hdr->b_flags;
3457 	nhdr->b_psize = hdr->b_psize;
3458 	nhdr->b_lsize = hdr->b_lsize;
3459 	nhdr->b_spa = hdr->b_spa;
3460 	nhdr->b_l1hdr.b_freeze_cksum = hdr->b_l1hdr.b_freeze_cksum;
3461 	nhdr->b_l1hdr.b_bufcnt = hdr->b_l1hdr.b_bufcnt;
3462 	nhdr->b_l1hdr.b_byteswap = hdr->b_l1hdr.b_byteswap;
3463 	nhdr->b_l1hdr.b_state = hdr->b_l1hdr.b_state;
3464 	nhdr->b_l1hdr.b_arc_access = hdr->b_l1hdr.b_arc_access;
3465 	nhdr->b_l1hdr.b_mru_hits = hdr->b_l1hdr.b_mru_hits;
3466 	nhdr->b_l1hdr.b_mru_ghost_hits = hdr->b_l1hdr.b_mru_ghost_hits;
3467 	nhdr->b_l1hdr.b_mfu_hits = hdr->b_l1hdr.b_mfu_hits;
3468 	nhdr->b_l1hdr.b_mfu_ghost_hits = hdr->b_l1hdr.b_mfu_ghost_hits;
3469 	nhdr->b_l1hdr.b_acb = hdr->b_l1hdr.b_acb;
3470 	nhdr->b_l1hdr.b_pabd = hdr->b_l1hdr.b_pabd;
3471 
3472 	/*
3473 	 * This zfs_refcount_add() exists only to ensure that the individual
3474 	 * arc buffers always point to a header that is referenced, avoiding
3475 	 * a small race condition that could trigger ASSERTs.
3476 	 */
3477 	(void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, FTAG);
3478 	nhdr->b_l1hdr.b_buf = hdr->b_l1hdr.b_buf;
3479 	for (buf = nhdr->b_l1hdr.b_buf; buf != NULL; buf = buf->b_next) {
3480 		mutex_enter(&buf->b_evict_lock);
3481 		buf->b_hdr = nhdr;
3482 		mutex_exit(&buf->b_evict_lock);
3483 	}
3484 
3485 	zfs_refcount_transfer(&nhdr->b_l1hdr.b_refcnt, &hdr->b_l1hdr.b_refcnt);
3486 	(void) zfs_refcount_remove(&nhdr->b_l1hdr.b_refcnt, FTAG);
3487 	ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt));
3488 
3489 	if (need_crypt) {
3490 		arc_hdr_set_flags(nhdr, ARC_FLAG_PROTECTED);
3491 	} else {
3492 		arc_hdr_clear_flags(nhdr, ARC_FLAG_PROTECTED);
3493 	}
3494 
3495 	/* unset all members of the original hdr */
3496 	bzero(&hdr->b_dva, sizeof (dva_t));
3497 	hdr->b_birth = 0;
3498 	hdr->b_type = ARC_BUFC_INVALID;
3499 	hdr->b_flags = 0;
3500 	hdr->b_psize = 0;
3501 	hdr->b_lsize = 0;
3502 	hdr->b_spa = 0;
3503 	hdr->b_l1hdr.b_freeze_cksum = NULL;
3504 	hdr->b_l1hdr.b_buf = NULL;
3505 	hdr->b_l1hdr.b_bufcnt = 0;
3506 	hdr->b_l1hdr.b_byteswap = 0;
3507 	hdr->b_l1hdr.b_state = NULL;
3508 	hdr->b_l1hdr.b_arc_access = 0;
3509 	hdr->b_l1hdr.b_mru_hits = 0;
3510 	hdr->b_l1hdr.b_mru_ghost_hits = 0;
3511 	hdr->b_l1hdr.b_mfu_hits = 0;
3512 	hdr->b_l1hdr.b_mfu_ghost_hits = 0;
3513 	hdr->b_l1hdr.b_acb = NULL;
3514 	hdr->b_l1hdr.b_pabd = NULL;
3515 
3516 	if (ocache == hdr_full_crypt_cache) {
3517 		ASSERT(!HDR_HAS_RABD(hdr));
3518 		hdr->b_crypt_hdr.b_ot = DMU_OT_NONE;
3519 		hdr->b_crypt_hdr.b_ebufcnt = 0;
3520 		hdr->b_crypt_hdr.b_dsobj = 0;
3521 		bzero(hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN);
3522 		bzero(hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN);
3523 		bzero(hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN);
3524 	}
3525 
3526 	buf_discard_identity(hdr);
3527 	kmem_cache_free(ocache, hdr);
3528 
3529 	return (nhdr);
3530 }
3531 
3532 /*
3533  * This function is used by the send / receive code to convert a newly
3534  * allocated arc_buf_t to one that is suitable for a raw encrypted write. It
3535  * is also used to allow the root objset block to be updated without altering
3536  * its embedded MACs. Both block types will always be uncompressed so we do not
3537  * have to worry about compression type or psize.
3538  */
3539 void
3540 arc_convert_to_raw(arc_buf_t *buf, uint64_t dsobj, boolean_t byteorder,
3541     dmu_object_type_t ot, const uint8_t *salt, const uint8_t *iv,
3542     const uint8_t *mac)
3543 {
3544 	arc_buf_hdr_t *hdr = buf->b_hdr;
3545 
3546 	ASSERT(ot == DMU_OT_DNODE || ot == DMU_OT_OBJSET);
3547 	ASSERT(HDR_HAS_L1HDR(hdr));
3548 	ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3549 
3550 	buf->b_flags |= (ARC_BUF_FLAG_COMPRESSED | ARC_BUF_FLAG_ENCRYPTED);
3551 	if (!HDR_PROTECTED(hdr))
3552 		hdr = arc_hdr_realloc_crypt(hdr, B_TRUE);
3553 	hdr->b_crypt_hdr.b_dsobj = dsobj;
3554 	hdr->b_crypt_hdr.b_ot = ot;
3555 	hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ?
3556 	    DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot);
3557 	if (!arc_hdr_has_uncompressed_buf(hdr))
3558 		arc_cksum_free(hdr);
3559 
3560 	if (salt != NULL)
3561 		bcopy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN);
3562 	if (iv != NULL)
3563 		bcopy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN);
3564 	if (mac != NULL)
3565 		bcopy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN);
3566 }
3567 
3568 /*
3569  * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller.
3570  * The buf is returned thawed since we expect the consumer to modify it.
3571  */
3572 arc_buf_t *
3573 arc_alloc_buf(spa_t *spa, void *tag, arc_buf_contents_t type, int32_t size)
3574 {
3575 	arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size,
3576 	    B_FALSE, ZIO_COMPRESS_OFF, 0, type);
3577 
3578 	arc_buf_t *buf = NULL;
3579 	VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, B_FALSE,
3580 	    B_FALSE, B_FALSE, &buf));
3581 	arc_buf_thaw(buf);
3582 
3583 	return (buf);
3584 }
3585 
3586 /*
3587  * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this
3588  * for bufs containing metadata.
3589  */
3590 arc_buf_t *
3591 arc_alloc_compressed_buf(spa_t *spa, void *tag, uint64_t psize, uint64_t lsize,
3592     enum zio_compress compression_type, uint8_t complevel)
3593 {
3594 	ASSERT3U(lsize, >, 0);
3595 	ASSERT3U(lsize, >=, psize);
3596 	ASSERT3U(compression_type, >, ZIO_COMPRESS_OFF);
3597 	ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS);
3598 
3599 	arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
3600 	    B_FALSE, compression_type, complevel, ARC_BUFC_DATA);
3601 
3602 	arc_buf_t *buf = NULL;
3603 	VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE,
3604 	    B_TRUE, B_FALSE, B_FALSE, &buf));
3605 	arc_buf_thaw(buf);
3606 	ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3607 
3608 	/*
3609 	 * To ensure that the hdr has the correct data in it if we call
3610 	 * arc_untransform() on this buf before it's been written to disk,
3611 	 * it's easiest if we just set up sharing between the buf and the hdr.
3612 	 */
3613 	arc_share_buf(hdr, buf);
3614 
3615 	return (buf);
3616 }
3617 
3618 arc_buf_t *
3619 arc_alloc_raw_buf(spa_t *spa, void *tag, uint64_t dsobj, boolean_t byteorder,
3620     const uint8_t *salt, const uint8_t *iv, const uint8_t *mac,
3621     dmu_object_type_t ot, uint64_t psize, uint64_t lsize,
3622     enum zio_compress compression_type, uint8_t complevel)
3623 {
3624 	arc_buf_hdr_t *hdr;
3625 	arc_buf_t *buf;
3626 	arc_buf_contents_t type = DMU_OT_IS_METADATA(ot) ?
3627 	    ARC_BUFC_METADATA : ARC_BUFC_DATA;
3628 
3629 	ASSERT3U(lsize, >, 0);
3630 	ASSERT3U(lsize, >=, psize);
3631 	ASSERT3U(compression_type, >=, ZIO_COMPRESS_OFF);
3632 	ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS);
3633 
3634 	hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, B_TRUE,
3635 	    compression_type, complevel, type);
3636 
3637 	hdr->b_crypt_hdr.b_dsobj = dsobj;
3638 	hdr->b_crypt_hdr.b_ot = ot;
3639 	hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ?
3640 	    DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot);
3641 	bcopy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN);
3642 	bcopy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN);
3643 	bcopy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN);
3644 
3645 	/*
3646 	 * This buffer will be considered encrypted even if the ot is not an
3647 	 * encrypted type. It will become authenticated instead in
3648 	 * arc_write_ready().
3649 	 */
3650 	buf = NULL;
3651 	VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_TRUE, B_TRUE,
3652 	    B_FALSE, B_FALSE, &buf));
3653 	arc_buf_thaw(buf);
3654 	ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3655 
3656 	return (buf);
3657 }
3658 
3659 static void
3660 l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr,
3661     boolean_t state_only)
3662 {
3663 	l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
3664 	l2arc_dev_t *dev = l2hdr->b_dev;
3665 	uint64_t lsize = HDR_GET_LSIZE(hdr);
3666 	uint64_t psize = HDR_GET_PSIZE(hdr);
3667 	uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize);
3668 	arc_buf_contents_t type = hdr->b_type;
3669 	int64_t lsize_s;
3670 	int64_t psize_s;
3671 	int64_t asize_s;
3672 
3673 	if (incr) {
3674 		lsize_s = lsize;
3675 		psize_s = psize;
3676 		asize_s = asize;
3677 	} else {
3678 		lsize_s = -lsize;
3679 		psize_s = -psize;
3680 		asize_s = -asize;
3681 	}
3682 
3683 	/* If the buffer is a prefetch, count it as such. */
3684 	if (HDR_PREFETCH(hdr)) {
3685 		ARCSTAT_INCR(arcstat_l2_prefetch_asize, asize_s);
3686 	} else {
3687 		/*
3688 		 * We use the value stored in the L2 header upon initial
3689 		 * caching in L2ARC. This value will be updated in case
3690 		 * an MRU/MRU_ghost buffer transitions to MFU but the L2ARC
3691 		 * metadata (log entry) cannot currently be updated. Having
3692 		 * the ARC state in the L2 header solves the problem of a
3693 		 * possibly absent L1 header (apparent in buffers restored
3694 		 * from persistent L2ARC).
3695 		 */
3696 		switch (hdr->b_l2hdr.b_arcs_state) {
3697 			case ARC_STATE_MRU_GHOST:
3698 			case ARC_STATE_MRU:
3699 				ARCSTAT_INCR(arcstat_l2_mru_asize, asize_s);
3700 				break;
3701 			case ARC_STATE_MFU_GHOST:
3702 			case ARC_STATE_MFU:
3703 				ARCSTAT_INCR(arcstat_l2_mfu_asize, asize_s);
3704 				break;
3705 			default:
3706 				break;
3707 		}
3708 	}
3709 
3710 	if (state_only)
3711 		return;
3712 
3713 	ARCSTAT_INCR(arcstat_l2_psize, psize_s);
3714 	ARCSTAT_INCR(arcstat_l2_lsize, lsize_s);
3715 
3716 	switch (type) {
3717 		case ARC_BUFC_DATA:
3718 			ARCSTAT_INCR(arcstat_l2_bufc_data_asize, asize_s);
3719 			break;
3720 		case ARC_BUFC_METADATA:
3721 			ARCSTAT_INCR(arcstat_l2_bufc_metadata_asize, asize_s);
3722 			break;
3723 		default:
3724 			break;
3725 	}
3726 }
3727 
3728 
3729 static void
3730 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
3731 {
3732 	l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
3733 	l2arc_dev_t *dev = l2hdr->b_dev;
3734 	uint64_t psize = HDR_GET_PSIZE(hdr);
3735 	uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize);
3736 
3737 	ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
3738 	ASSERT(HDR_HAS_L2HDR(hdr));
3739 
3740 	list_remove(&dev->l2ad_buflist, hdr);
3741 
3742 	l2arc_hdr_arcstats_decrement(hdr);
3743 	vdev_space_update(dev->l2ad_vdev, -asize, 0, 0);
3744 
3745 	(void) zfs_refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr),
3746 	    hdr);
3747 	arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
3748 }
3749 
3750 static void
3751 arc_hdr_destroy(arc_buf_hdr_t *hdr)
3752 {
3753 	if (HDR_HAS_L1HDR(hdr)) {
3754 		ASSERT(hdr->b_l1hdr.b_buf == NULL ||
3755 		    hdr->b_l1hdr.b_bufcnt > 0);
3756 		ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3757 		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3758 	}
3759 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3760 	ASSERT(!HDR_IN_HASH_TABLE(hdr));
3761 
3762 	if (HDR_HAS_L2HDR(hdr)) {
3763 		l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3764 		boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
3765 
3766 		if (!buflist_held)
3767 			mutex_enter(&dev->l2ad_mtx);
3768 
3769 		/*
3770 		 * Even though we checked this conditional above, we
3771 		 * need to check this again now that we have the
3772 		 * l2ad_mtx. This is because we could be racing with
3773 		 * another thread calling l2arc_evict() which might have
3774 		 * destroyed this header's L2 portion as we were waiting
3775 		 * to acquire the l2ad_mtx. If that happens, we don't
3776 		 * want to re-destroy the header's L2 portion.
3777 		 */
3778 		if (HDR_HAS_L2HDR(hdr))
3779 			arc_hdr_l2hdr_destroy(hdr);
3780 
3781 		if (!buflist_held)
3782 			mutex_exit(&dev->l2ad_mtx);
3783 	}
3784 
3785 	/*
3786 	 * The header's identify can only be safely discarded once it is no
3787 	 * longer discoverable.  This requires removing it from the hash table
3788 	 * and the l2arc header list.  After this point the hash lock can not
3789 	 * be used to protect the header.
3790 	 */
3791 	if (!HDR_EMPTY(hdr))
3792 		buf_discard_identity(hdr);
3793 
3794 	if (HDR_HAS_L1HDR(hdr)) {
3795 		arc_cksum_free(hdr);
3796 
3797 		while (hdr->b_l1hdr.b_buf != NULL)
3798 			arc_buf_destroy_impl(hdr->b_l1hdr.b_buf);
3799 
3800 		if (hdr->b_l1hdr.b_pabd != NULL)
3801 			arc_hdr_free_abd(hdr, B_FALSE);
3802 
3803 		if (HDR_HAS_RABD(hdr))
3804 			arc_hdr_free_abd(hdr, B_TRUE);
3805 	}
3806 
3807 	ASSERT3P(hdr->b_hash_next, ==, NULL);
3808 	if (HDR_HAS_L1HDR(hdr)) {
3809 		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3810 		ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
3811 
3812 		if (!HDR_PROTECTED(hdr)) {
3813 			kmem_cache_free(hdr_full_cache, hdr);
3814 		} else {
3815 			kmem_cache_free(hdr_full_crypt_cache, hdr);
3816 		}
3817 	} else {
3818 		kmem_cache_free(hdr_l2only_cache, hdr);
3819 	}
3820 }
3821 
3822 void
3823 arc_buf_destroy(arc_buf_t *buf, void* tag)
3824 {
3825 	arc_buf_hdr_t *hdr = buf->b_hdr;
3826 
3827 	if (hdr->b_l1hdr.b_state == arc_anon) {
3828 		ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
3829 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3830 		VERIFY0(remove_reference(hdr, NULL, tag));
3831 		arc_hdr_destroy(hdr);
3832 		return;
3833 	}
3834 
3835 	kmutex_t *hash_lock = HDR_LOCK(hdr);
3836 	mutex_enter(hash_lock);
3837 
3838 	ASSERT3P(hdr, ==, buf->b_hdr);
3839 	ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
3840 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3841 	ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon);
3842 	ASSERT3P(buf->b_data, !=, NULL);
3843 
3844 	(void) remove_reference(hdr, hash_lock, tag);
3845 	arc_buf_destroy_impl(buf);
3846 	mutex_exit(hash_lock);
3847 }
3848 
3849 /*
3850  * Evict the arc_buf_hdr that is provided as a parameter. The resultant
3851  * state of the header is dependent on its state prior to entering this
3852  * function. The following transitions are possible:
3853  *
3854  *    - arc_mru -> arc_mru_ghost
3855  *    - arc_mfu -> arc_mfu_ghost
3856  *    - arc_mru_ghost -> arc_l2c_only
3857  *    - arc_mru_ghost -> deleted
3858  *    - arc_mfu_ghost -> arc_l2c_only
3859  *    - arc_mfu_ghost -> deleted
3860  *
3861  * Return total size of evicted data buffers for eviction progress tracking.
3862  * When evicting from ghost states return logical buffer size to make eviction
3863  * progress at the same (or at least comparable) rate as from non-ghost states.
3864  *
3865  * Return *real_evicted for actual ARC size reduction to wake up threads
3866  * waiting for it.  For non-ghost states it includes size of evicted data
3867  * buffers (the headers are not freed there).  For ghost states it includes
3868  * only the evicted headers size.
3869  */
3870 static int64_t
3871 arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, uint64_t *real_evicted)
3872 {
3873 	arc_state_t *evicted_state, *state;
3874 	int64_t bytes_evicted = 0;
3875 	int min_lifetime = HDR_PRESCIENT_PREFETCH(hdr) ?
3876 	    arc_min_prescient_prefetch_ms : arc_min_prefetch_ms;
3877 
3878 	ASSERT(MUTEX_HELD(hash_lock));
3879 	ASSERT(HDR_HAS_L1HDR(hdr));
3880 
3881 	*real_evicted = 0;
3882 	state = hdr->b_l1hdr.b_state;
3883 	if (GHOST_STATE(state)) {
3884 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3885 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3886 
3887 		/*
3888 		 * l2arc_write_buffers() relies on a header's L1 portion
3889 		 * (i.e. its b_pabd field) during it's write phase.
3890 		 * Thus, we cannot push a header onto the arc_l2c_only
3891 		 * state (removing its L1 piece) until the header is
3892 		 * done being written to the l2arc.
3893 		 */
3894 		if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
3895 			ARCSTAT_BUMP(arcstat_evict_l2_skip);
3896 			return (bytes_evicted);
3897 		}
3898 
3899 		ARCSTAT_BUMP(arcstat_deleted);
3900 		bytes_evicted += HDR_GET_LSIZE(hdr);
3901 
3902 		DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
3903 
3904 		if (HDR_HAS_L2HDR(hdr)) {
3905 			ASSERT(hdr->b_l1hdr.b_pabd == NULL);
3906 			ASSERT(!HDR_HAS_RABD(hdr));
3907 			/*
3908 			 * This buffer is cached on the 2nd Level ARC;
3909 			 * don't destroy the header.
3910 			 */
3911 			arc_change_state(arc_l2c_only, hdr, hash_lock);
3912 			/*
3913 			 * dropping from L1+L2 cached to L2-only,
3914 			 * realloc to remove the L1 header.
3915 			 */
3916 			hdr = arc_hdr_realloc(hdr, hdr_full_cache,
3917 			    hdr_l2only_cache);
3918 			*real_evicted += HDR_FULL_SIZE - HDR_L2ONLY_SIZE;
3919 		} else {
3920 			arc_change_state(arc_anon, hdr, hash_lock);
3921 			arc_hdr_destroy(hdr);
3922 			*real_evicted += HDR_FULL_SIZE;
3923 		}
3924 		return (bytes_evicted);
3925 	}
3926 
3927 	ASSERT(state == arc_mru || state == arc_mfu);
3928 	evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
3929 
3930 	/* prefetch buffers have a minimum lifespan */
3931 	if (HDR_IO_IN_PROGRESS(hdr) ||
3932 	    ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
3933 	    ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
3934 	    MSEC_TO_TICK(min_lifetime))) {
3935 		ARCSTAT_BUMP(arcstat_evict_skip);
3936 		return (bytes_evicted);
3937 	}
3938 
3939 	ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt));
3940 	while (hdr->b_l1hdr.b_buf) {
3941 		arc_buf_t *buf = hdr->b_l1hdr.b_buf;
3942 		if (!mutex_tryenter(&buf->b_evict_lock)) {
3943 			ARCSTAT_BUMP(arcstat_mutex_miss);
3944 			break;
3945 		}
3946 		if (buf->b_data != NULL) {
3947 			bytes_evicted += HDR_GET_LSIZE(hdr);
3948 			*real_evicted += HDR_GET_LSIZE(hdr);
3949 		}
3950 		mutex_exit(&buf->b_evict_lock);
3951 		arc_buf_destroy_impl(buf);
3952 	}
3953 
3954 	if (HDR_HAS_L2HDR(hdr)) {
3955 		ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr));
3956 	} else {
3957 		if (l2arc_write_eligible(hdr->b_spa, hdr)) {
3958 			ARCSTAT_INCR(arcstat_evict_l2_eligible,
3959 			    HDR_GET_LSIZE(hdr));
3960 
3961 			switch (state->arcs_state) {
3962 				case ARC_STATE_MRU:
3963 					ARCSTAT_INCR(
3964 					    arcstat_evict_l2_eligible_mru,
3965 					    HDR_GET_LSIZE(hdr));
3966 					break;
3967 				case ARC_STATE_MFU:
3968 					ARCSTAT_INCR(
3969 					    arcstat_evict_l2_eligible_mfu,
3970 					    HDR_GET_LSIZE(hdr));
3971 					break;
3972 				default:
3973 					break;
3974 			}
3975 		} else {
3976 			ARCSTAT_INCR(arcstat_evict_l2_ineligible,
3977 			    HDR_GET_LSIZE(hdr));
3978 		}
3979 	}
3980 
3981 	if (hdr->b_l1hdr.b_bufcnt == 0) {
3982 		arc_cksum_free(hdr);
3983 
3984 		bytes_evicted += arc_hdr_size(hdr);
3985 		*real_evicted += arc_hdr_size(hdr);
3986 
3987 		/*
3988 		 * If this hdr is being evicted and has a compressed
3989 		 * buffer then we discard it here before we change states.
3990 		 * This ensures that the accounting is updated correctly
3991 		 * in arc_free_data_impl().
3992 		 */
3993 		if (hdr->b_l1hdr.b_pabd != NULL)
3994 			arc_hdr_free_abd(hdr, B_FALSE);
3995 
3996 		if (HDR_HAS_RABD(hdr))
3997 			arc_hdr_free_abd(hdr, B_TRUE);
3998 
3999 		arc_change_state(evicted_state, hdr, hash_lock);
4000 		ASSERT(HDR_IN_HASH_TABLE(hdr));
4001 		arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
4002 		DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
4003 	}
4004 
4005 	return (bytes_evicted);
4006 }
4007 
4008 static void
4009 arc_set_need_free(void)
4010 {
4011 	ASSERT(MUTEX_HELD(&arc_evict_lock));
4012 	int64_t remaining = arc_free_memory() - arc_sys_free / 2;
4013 	arc_evict_waiter_t *aw = list_tail(&arc_evict_waiters);
4014 	if (aw == NULL) {
4015 		arc_need_free = MAX(-remaining, 0);
4016 	} else {
4017 		arc_need_free =
4018 		    MAX(-remaining, (int64_t)(aw->aew_count - arc_evict_count));
4019 	}
4020 }
4021 
4022 static uint64_t
4023 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
4024     uint64_t spa, uint64_t bytes)
4025 {
4026 	multilist_sublist_t *mls;
4027 	uint64_t bytes_evicted = 0, real_evicted = 0;
4028 	arc_buf_hdr_t *hdr;
4029 	kmutex_t *hash_lock;
4030 	int evict_count = zfs_arc_evict_batch_limit;
4031 
4032 	ASSERT3P(marker, !=, NULL);
4033 
4034 	mls = multilist_sublist_lock(ml, idx);
4035 
4036 	for (hdr = multilist_sublist_prev(mls, marker); likely(hdr != NULL);
4037 	    hdr = multilist_sublist_prev(mls, marker)) {
4038 		if ((evict_count <= 0) || (bytes_evicted >= bytes))
4039 			break;
4040 
4041 		/*
4042 		 * To keep our iteration location, move the marker
4043 		 * forward. Since we're not holding hdr's hash lock, we
4044 		 * must be very careful and not remove 'hdr' from the
4045 		 * sublist. Otherwise, other consumers might mistake the
4046 		 * 'hdr' as not being on a sublist when they call the
4047 		 * multilist_link_active() function (they all rely on
4048 		 * the hash lock protecting concurrent insertions and
4049 		 * removals). multilist_sublist_move_forward() was
4050 		 * specifically implemented to ensure this is the case
4051 		 * (only 'marker' will be removed and re-inserted).
4052 		 */
4053 		multilist_sublist_move_forward(mls, marker);
4054 
4055 		/*
4056 		 * The only case where the b_spa field should ever be
4057 		 * zero, is the marker headers inserted by
4058 		 * arc_evict_state(). It's possible for multiple threads
4059 		 * to be calling arc_evict_state() concurrently (e.g.
4060 		 * dsl_pool_close() and zio_inject_fault()), so we must
4061 		 * skip any markers we see from these other threads.
4062 		 */
4063 		if (hdr->b_spa == 0)
4064 			continue;
4065 
4066 		/* we're only interested in evicting buffers of a certain spa */
4067 		if (spa != 0 && hdr->b_spa != spa) {
4068 			ARCSTAT_BUMP(arcstat_evict_skip);
4069 			continue;
4070 		}
4071 
4072 		hash_lock = HDR_LOCK(hdr);
4073 
4074 		/*
4075 		 * We aren't calling this function from any code path
4076 		 * that would already be holding a hash lock, so we're
4077 		 * asserting on this assumption to be defensive in case
4078 		 * this ever changes. Without this check, it would be
4079 		 * possible to incorrectly increment arcstat_mutex_miss
4080 		 * below (e.g. if the code changed such that we called
4081 		 * this function with a hash lock held).
4082 		 */
4083 		ASSERT(!MUTEX_HELD(hash_lock));
4084 
4085 		if (mutex_tryenter(hash_lock)) {
4086 			uint64_t revicted;
4087 			uint64_t evicted = arc_evict_hdr(hdr, hash_lock,
4088 			    &revicted);
4089 			mutex_exit(hash_lock);
4090 
4091 			bytes_evicted += evicted;
4092 			real_evicted += revicted;
4093 
4094 			/*
4095 			 * If evicted is zero, arc_evict_hdr() must have
4096 			 * decided to skip this header, don't increment
4097 			 * evict_count in this case.
4098 			 */
4099 			if (evicted != 0)
4100 				evict_count--;
4101 
4102 		} else {
4103 			ARCSTAT_BUMP(arcstat_mutex_miss);
4104 		}
4105 	}
4106 
4107 	multilist_sublist_unlock(mls);
4108 
4109 	/*
4110 	 * Increment the count of evicted bytes, and wake up any threads that
4111 	 * are waiting for the count to reach this value.  Since the list is
4112 	 * ordered by ascending aew_count, we pop off the beginning of the
4113 	 * list until we reach the end, or a waiter that's past the current
4114 	 * "count".  Doing this outside the loop reduces the number of times
4115 	 * we need to acquire the global arc_evict_lock.
4116 	 *
4117 	 * Only wake when there's sufficient free memory in the system
4118 	 * (specifically, arc_sys_free/2, which by default is a bit more than
4119 	 * 1/64th of RAM).  See the comments in arc_wait_for_eviction().
4120 	 */
4121 	mutex_enter(&arc_evict_lock);
4122 	arc_evict_count += real_evicted;
4123 
4124 	if (arc_free_memory() > arc_sys_free / 2) {
4125 		arc_evict_waiter_t *aw;
4126 		while ((aw = list_head(&arc_evict_waiters)) != NULL &&
4127 		    aw->aew_count <= arc_evict_count) {
4128 			list_remove(&arc_evict_waiters, aw);
4129 			cv_broadcast(&aw->aew_cv);
4130 		}
4131 	}
4132 	arc_set_need_free();
4133 	mutex_exit(&arc_evict_lock);
4134 
4135 	/*
4136 	 * If the ARC size is reduced from arc_c_max to arc_c_min (especially
4137 	 * if the average cached block is small), eviction can be on-CPU for
4138 	 * many seconds.  To ensure that other threads that may be bound to
4139 	 * this CPU are able to make progress, make a voluntary preemption
4140 	 * call here.
4141 	 */
4142 	cond_resched();
4143 
4144 	return (bytes_evicted);
4145 }
4146 
4147 /*
4148  * Evict buffers from the given arc state, until we've removed the
4149  * specified number of bytes. Move the removed buffers to the
4150  * appropriate evict state.
4151  *
4152  * This function makes a "best effort". It skips over any buffers
4153  * it can't get a hash_lock on, and so, may not catch all candidates.
4154  * It may also return without evicting as much space as requested.
4155  *
4156  * If bytes is specified using the special value ARC_EVICT_ALL, this
4157  * will evict all available (i.e. unlocked and evictable) buffers from
4158  * the given arc state; which is used by arc_flush().
4159  */
4160 static uint64_t
4161 arc_evict_state(arc_state_t *state, uint64_t spa, uint64_t bytes,
4162     arc_buf_contents_t type)
4163 {
4164 	uint64_t total_evicted = 0;
4165 	multilist_t *ml = &state->arcs_list[type];
4166 	int num_sublists;
4167 	arc_buf_hdr_t **markers;
4168 
4169 	num_sublists = multilist_get_num_sublists(ml);
4170 
4171 	/*
4172 	 * If we've tried to evict from each sublist, made some
4173 	 * progress, but still have not hit the target number of bytes
4174 	 * to evict, we want to keep trying. The markers allow us to
4175 	 * pick up where we left off for each individual sublist, rather
4176 	 * than starting from the tail each time.
4177 	 */
4178 	markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP);
4179 	for (int i = 0; i < num_sublists; i++) {
4180 		multilist_sublist_t *mls;
4181 
4182 		markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
4183 
4184 		/*
4185 		 * A b_spa of 0 is used to indicate that this header is
4186 		 * a marker. This fact is used in arc_evict_type() and
4187 		 * arc_evict_state_impl().
4188 		 */
4189 		markers[i]->b_spa = 0;
4190 
4191 		mls = multilist_sublist_lock(ml, i);
4192 		multilist_sublist_insert_tail(mls, markers[i]);
4193 		multilist_sublist_unlock(mls);
4194 	}
4195 
4196 	/*
4197 	 * While we haven't hit our target number of bytes to evict, or
4198 	 * we're evicting all available buffers.
4199 	 */
4200 	while (total_evicted < bytes) {
4201 		int sublist_idx = multilist_get_random_index(ml);
4202 		uint64_t scan_evicted = 0;
4203 
4204 		/*
4205 		 * Try to reduce pinned dnodes with a floor of arc_dnode_limit.
4206 		 * Request that 10% of the LRUs be scanned by the superblock
4207 		 * shrinker.
4208 		 */
4209 		if (type == ARC_BUFC_DATA && aggsum_compare(
4210 		    &arc_sums.arcstat_dnode_size, arc_dnode_size_limit) > 0) {
4211 			arc_prune_async((aggsum_upper_bound(
4212 			    &arc_sums.arcstat_dnode_size) -
4213 			    arc_dnode_size_limit) / sizeof (dnode_t) /
4214 			    zfs_arc_dnode_reduce_percent);
4215 		}
4216 
4217 		/*
4218 		 * Start eviction using a randomly selected sublist,
4219 		 * this is to try and evenly balance eviction across all
4220 		 * sublists. Always starting at the same sublist
4221 		 * (e.g. index 0) would cause evictions to favor certain
4222 		 * sublists over others.
4223 		 */
4224 		for (int i = 0; i < num_sublists; i++) {
4225 			uint64_t bytes_remaining;
4226 			uint64_t bytes_evicted;
4227 
4228 			if (total_evicted < bytes)
4229 				bytes_remaining = bytes - total_evicted;
4230 			else
4231 				break;
4232 
4233 			bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
4234 			    markers[sublist_idx], spa, bytes_remaining);
4235 
4236 			scan_evicted += bytes_evicted;
4237 			total_evicted += bytes_evicted;
4238 
4239 			/* we've reached the end, wrap to the beginning */
4240 			if (++sublist_idx >= num_sublists)
4241 				sublist_idx = 0;
4242 		}
4243 
4244 		/*
4245 		 * If we didn't evict anything during this scan, we have
4246 		 * no reason to believe we'll evict more during another
4247 		 * scan, so break the loop.
4248 		 */
4249 		if (scan_evicted == 0) {
4250 			/* This isn't possible, let's make that obvious */
4251 			ASSERT3S(bytes, !=, 0);
4252 
4253 			/*
4254 			 * When bytes is ARC_EVICT_ALL, the only way to
4255 			 * break the loop is when scan_evicted is zero.
4256 			 * In that case, we actually have evicted enough,
4257 			 * so we don't want to increment the kstat.
4258 			 */
4259 			if (bytes != ARC_EVICT_ALL) {
4260 				ASSERT3S(total_evicted, <, bytes);
4261 				ARCSTAT_BUMP(arcstat_evict_not_enough);
4262 			}
4263 
4264 			break;
4265 		}
4266 	}
4267 
4268 	for (int i = 0; i < num_sublists; i++) {
4269 		multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
4270 		multilist_sublist_remove(mls, markers[i]);
4271 		multilist_sublist_unlock(mls);
4272 
4273 		kmem_cache_free(hdr_full_cache, markers[i]);
4274 	}
4275 	kmem_free(markers, sizeof (*markers) * num_sublists);
4276 
4277 	return (total_evicted);
4278 }
4279 
4280 /*
4281  * Flush all "evictable" data of the given type from the arc state
4282  * specified. This will not evict any "active" buffers (i.e. referenced).
4283  *
4284  * When 'retry' is set to B_FALSE, the function will make a single pass
4285  * over the state and evict any buffers that it can. Since it doesn't
4286  * continually retry the eviction, it might end up leaving some buffers
4287  * in the ARC due to lock misses.
4288  *
4289  * When 'retry' is set to B_TRUE, the function will continually retry the
4290  * eviction until *all* evictable buffers have been removed from the
4291  * state. As a result, if concurrent insertions into the state are
4292  * allowed (e.g. if the ARC isn't shutting down), this function might
4293  * wind up in an infinite loop, continually trying to evict buffers.
4294  */
4295 static uint64_t
4296 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
4297     boolean_t retry)
4298 {
4299 	uint64_t evicted = 0;
4300 
4301 	while (zfs_refcount_count(&state->arcs_esize[type]) != 0) {
4302 		evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
4303 
4304 		if (!retry)
4305 			break;
4306 	}
4307 
4308 	return (evicted);
4309 }
4310 
4311 /*
4312  * Evict the specified number of bytes from the state specified,
4313  * restricting eviction to the spa and type given. This function
4314  * prevents us from trying to evict more from a state's list than
4315  * is "evictable", and to skip evicting altogether when passed a
4316  * negative value for "bytes". In contrast, arc_evict_state() will
4317  * evict everything it can, when passed a negative value for "bytes".
4318  */
4319 static uint64_t
4320 arc_evict_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
4321     arc_buf_contents_t type)
4322 {
4323 	uint64_t delta;
4324 
4325 	if (bytes > 0 && zfs_refcount_count(&state->arcs_esize[type]) > 0) {
4326 		delta = MIN(zfs_refcount_count(&state->arcs_esize[type]),
4327 		    bytes);
4328 		return (arc_evict_state(state, spa, delta, type));
4329 	}
4330 
4331 	return (0);
4332 }
4333 
4334 /*
4335  * The goal of this function is to evict enough meta data buffers from the
4336  * ARC in order to enforce the arc_meta_limit.  Achieving this is slightly
4337  * more complicated than it appears because it is common for data buffers
4338  * to have holds on meta data buffers.  In addition, dnode meta data buffers
4339  * will be held by the dnodes in the block preventing them from being freed.
4340  * This means we can't simply traverse the ARC and expect to always find
4341  * enough unheld meta data buffer to release.
4342  *
4343  * Therefore, this function has been updated to make alternating passes
4344  * over the ARC releasing data buffers and then newly unheld meta data
4345  * buffers.  This ensures forward progress is maintained and meta_used
4346  * will decrease.  Normally this is sufficient, but if required the ARC
4347  * will call the registered prune callbacks causing dentry and inodes to
4348  * be dropped from the VFS cache.  This will make dnode meta data buffers
4349  * available for reclaim.
4350  */
4351 static uint64_t
4352 arc_evict_meta_balanced(uint64_t meta_used)
4353 {
4354 	int64_t delta, prune = 0, adjustmnt;
4355 	uint64_t total_evicted = 0;
4356 	arc_buf_contents_t type = ARC_BUFC_DATA;
4357 	int restarts = MAX(zfs_arc_meta_adjust_restarts, 0);
4358 
4359 restart:
4360 	/*
4361 	 * This slightly differs than the way we evict from the mru in
4362 	 * arc_evict because we don't have a "target" value (i.e. no
4363 	 * "meta" arc_p). As a result, I think we can completely
4364 	 * cannibalize the metadata in the MRU before we evict the
4365 	 * metadata from the MFU. I think we probably need to implement a
4366 	 * "metadata arc_p" value to do this properly.
4367 	 */
4368 	adjustmnt = meta_used - arc_meta_limit;
4369 
4370 	if (adjustmnt > 0 &&
4371 	    zfs_refcount_count(&arc_mru->arcs_esize[type]) > 0) {
4372 		delta = MIN(zfs_refcount_count(&arc_mru->arcs_esize[type]),
4373 		    adjustmnt);
4374 		total_evicted += arc_evict_impl(arc_mru, 0, delta, type);
4375 		adjustmnt -= delta;
4376 	}
4377 
4378 	/*
4379 	 * We can't afford to recalculate adjustmnt here. If we do,
4380 	 * new metadata buffers can sneak into the MRU or ANON lists,
4381 	 * thus penalize the MFU metadata. Although the fudge factor is
4382 	 * small, it has been empirically shown to be significant for
4383 	 * certain workloads (e.g. creating many empty directories). As
4384 	 * such, we use the original calculation for adjustmnt, and
4385 	 * simply decrement the amount of data evicted from the MRU.
4386 	 */
4387 
4388 	if (adjustmnt > 0 &&
4389 	    zfs_refcount_count(&arc_mfu->arcs_esize[type]) > 0) {
4390 		delta = MIN(zfs_refcount_count(&arc_mfu->arcs_esize[type]),
4391 		    adjustmnt);
4392 		total_evicted += arc_evict_impl(arc_mfu, 0, delta, type);
4393 	}
4394 
4395 	adjustmnt = meta_used - arc_meta_limit;
4396 
4397 	if (adjustmnt > 0 &&
4398 	    zfs_refcount_count(&arc_mru_ghost->arcs_esize[type]) > 0) {
4399 		delta = MIN(adjustmnt,
4400 		    zfs_refcount_count(&arc_mru_ghost->arcs_esize[type]));
4401 		total_evicted += arc_evict_impl(arc_mru_ghost, 0, delta, type);
4402 		adjustmnt -= delta;
4403 	}
4404 
4405 	if (adjustmnt > 0 &&
4406 	    zfs_refcount_count(&arc_mfu_ghost->arcs_esize[type]) > 0) {
4407 		delta = MIN(adjustmnt,
4408 		    zfs_refcount_count(&arc_mfu_ghost->arcs_esize[type]));
4409 		total_evicted += arc_evict_impl(arc_mfu_ghost, 0, delta, type);
4410 	}
4411 
4412 	/*
4413 	 * If after attempting to make the requested adjustment to the ARC
4414 	 * the meta limit is still being exceeded then request that the
4415 	 * higher layers drop some cached objects which have holds on ARC
4416 	 * meta buffers.  Requests to the upper layers will be made with
4417 	 * increasingly large scan sizes until the ARC is below the limit.
4418 	 */
4419 	if (meta_used > arc_meta_limit) {
4420 		if (type == ARC_BUFC_DATA) {
4421 			type = ARC_BUFC_METADATA;
4422 		} else {
4423 			type = ARC_BUFC_DATA;
4424 
4425 			if (zfs_arc_meta_prune) {
4426 				prune += zfs_arc_meta_prune;
4427 				arc_prune_async(prune);
4428 			}
4429 		}
4430 
4431 		if (restarts > 0) {
4432 			restarts--;
4433 			goto restart;
4434 		}
4435 	}
4436 	return (total_evicted);
4437 }
4438 
4439 /*
4440  * Evict metadata buffers from the cache, such that arcstat_meta_used is
4441  * capped by the arc_meta_limit tunable.
4442  */
4443 static uint64_t
4444 arc_evict_meta_only(uint64_t meta_used)
4445 {
4446 	uint64_t total_evicted = 0;
4447 	int64_t target;
4448 
4449 	/*
4450 	 * If we're over the meta limit, we want to evict enough
4451 	 * metadata to get back under the meta limit. We don't want to
4452 	 * evict so much that we drop the MRU below arc_p, though. If
4453 	 * we're over the meta limit more than we're over arc_p, we
4454 	 * evict some from the MRU here, and some from the MFU below.
4455 	 */
4456 	target = MIN((int64_t)(meta_used - arc_meta_limit),
4457 	    (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) +
4458 	    zfs_refcount_count(&arc_mru->arcs_size) - arc_p));
4459 
4460 	total_evicted += arc_evict_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
4461 
4462 	/*
4463 	 * Similar to the above, we want to evict enough bytes to get us
4464 	 * below the meta limit, but not so much as to drop us below the
4465 	 * space allotted to the MFU (which is defined as arc_c - arc_p).
4466 	 */
4467 	target = MIN((int64_t)(meta_used - arc_meta_limit),
4468 	    (int64_t)(zfs_refcount_count(&arc_mfu->arcs_size) -
4469 	    (arc_c - arc_p)));
4470 
4471 	total_evicted += arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
4472 
4473 	return (total_evicted);
4474 }
4475 
4476 static uint64_t
4477 arc_evict_meta(uint64_t meta_used)
4478 {
4479 	if (zfs_arc_meta_strategy == ARC_STRATEGY_META_ONLY)
4480 		return (arc_evict_meta_only(meta_used));
4481 	else
4482 		return (arc_evict_meta_balanced(meta_used));
4483 }
4484 
4485 /*
4486  * Return the type of the oldest buffer in the given arc state
4487  *
4488  * This function will select a random sublist of type ARC_BUFC_DATA and
4489  * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
4490  * is compared, and the type which contains the "older" buffer will be
4491  * returned.
4492  */
4493 static arc_buf_contents_t
4494 arc_evict_type(arc_state_t *state)
4495 {
4496 	multilist_t *data_ml = &state->arcs_list[ARC_BUFC_DATA];
4497 	multilist_t *meta_ml = &state->arcs_list[ARC_BUFC_METADATA];
4498 	int data_idx = multilist_get_random_index(data_ml);
4499 	int meta_idx = multilist_get_random_index(meta_ml);
4500 	multilist_sublist_t *data_mls;
4501 	multilist_sublist_t *meta_mls;
4502 	arc_buf_contents_t type;
4503 	arc_buf_hdr_t *data_hdr;
4504 	arc_buf_hdr_t *meta_hdr;
4505 
4506 	/*
4507 	 * We keep the sublist lock until we're finished, to prevent
4508 	 * the headers from being destroyed via arc_evict_state().
4509 	 */
4510 	data_mls = multilist_sublist_lock(data_ml, data_idx);
4511 	meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
4512 
4513 	/*
4514 	 * These two loops are to ensure we skip any markers that
4515 	 * might be at the tail of the lists due to arc_evict_state().
4516 	 */
4517 
4518 	for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
4519 	    data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
4520 		if (data_hdr->b_spa != 0)
4521 			break;
4522 	}
4523 
4524 	for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
4525 	    meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
4526 		if (meta_hdr->b_spa != 0)
4527 			break;
4528 	}
4529 
4530 	if (data_hdr == NULL && meta_hdr == NULL) {
4531 		type = ARC_BUFC_DATA;
4532 	} else if (data_hdr == NULL) {
4533 		ASSERT3P(meta_hdr, !=, NULL);
4534 		type = ARC_BUFC_METADATA;
4535 	} else if (meta_hdr == NULL) {
4536 		ASSERT3P(data_hdr, !=, NULL);
4537 		type = ARC_BUFC_DATA;
4538 	} else {
4539 		ASSERT3P(data_hdr, !=, NULL);
4540 		ASSERT3P(meta_hdr, !=, NULL);
4541 
4542 		/* The headers can't be on the sublist without an L1 header */
4543 		ASSERT(HDR_HAS_L1HDR(data_hdr));
4544 		ASSERT(HDR_HAS_L1HDR(meta_hdr));
4545 
4546 		if (data_hdr->b_l1hdr.b_arc_access <
4547 		    meta_hdr->b_l1hdr.b_arc_access) {
4548 			type = ARC_BUFC_DATA;
4549 		} else {
4550 			type = ARC_BUFC_METADATA;
4551 		}
4552 	}
4553 
4554 	multilist_sublist_unlock(meta_mls);
4555 	multilist_sublist_unlock(data_mls);
4556 
4557 	return (type);
4558 }
4559 
4560 /*
4561  * Evict buffers from the cache, such that arcstat_size is capped by arc_c.
4562  */
4563 static uint64_t
4564 arc_evict(void)
4565 {
4566 	uint64_t total_evicted = 0;
4567 	uint64_t bytes;
4568 	int64_t target;
4569 	uint64_t asize = aggsum_value(&arc_sums.arcstat_size);
4570 	uint64_t ameta = aggsum_value(&arc_sums.arcstat_meta_used);
4571 
4572 	/*
4573 	 * If we're over arc_meta_limit, we want to correct that before
4574 	 * potentially evicting data buffers below.
4575 	 */
4576 	total_evicted += arc_evict_meta(ameta);
4577 
4578 	/*
4579 	 * Adjust MRU size
4580 	 *
4581 	 * If we're over the target cache size, we want to evict enough
4582 	 * from the list to get back to our target size. We don't want
4583 	 * to evict too much from the MRU, such that it drops below
4584 	 * arc_p. So, if we're over our target cache size more than
4585 	 * the MRU is over arc_p, we'll evict enough to get back to
4586 	 * arc_p here, and then evict more from the MFU below.
4587 	 */
4588 	target = MIN((int64_t)(asize - arc_c),
4589 	    (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) +
4590 	    zfs_refcount_count(&arc_mru->arcs_size) + ameta - arc_p));
4591 
4592 	/*
4593 	 * If we're below arc_meta_min, always prefer to evict data.
4594 	 * Otherwise, try to satisfy the requested number of bytes to
4595 	 * evict from the type which contains older buffers; in an
4596 	 * effort to keep newer buffers in the cache regardless of their
4597 	 * type. If we cannot satisfy the number of bytes from this
4598 	 * type, spill over into the next type.
4599 	 */
4600 	if (arc_evict_type(arc_mru) == ARC_BUFC_METADATA &&
4601 	    ameta > arc_meta_min) {
4602 		bytes = arc_evict_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
4603 		total_evicted += bytes;
4604 
4605 		/*
4606 		 * If we couldn't evict our target number of bytes from
4607 		 * metadata, we try to get the rest from data.
4608 		 */
4609 		target -= bytes;
4610 
4611 		total_evicted +=
4612 		    arc_evict_impl(arc_mru, 0, target, ARC_BUFC_DATA);
4613 	} else {
4614 		bytes = arc_evict_impl(arc_mru, 0, target, ARC_BUFC_DATA);
4615 		total_evicted += bytes;
4616 
4617 		/*
4618 		 * If we couldn't evict our target number of bytes from
4619 		 * data, we try to get the rest from metadata.
4620 		 */
4621 		target -= bytes;
4622 
4623 		total_evicted +=
4624 		    arc_evict_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
4625 	}
4626 
4627 	/*
4628 	 * Re-sum ARC stats after the first round of evictions.
4629 	 */
4630 	asize = aggsum_value(&arc_sums.arcstat_size);
4631 	ameta = aggsum_value(&arc_sums.arcstat_meta_used);
4632 
4633 
4634 	/*
4635 	 * Adjust MFU size
4636 	 *
4637 	 * Now that we've tried to evict enough from the MRU to get its
4638 	 * size back to arc_p, if we're still above the target cache
4639 	 * size, we evict the rest from the MFU.
4640 	 */
4641 	target = asize - arc_c;
4642 
4643 	if (arc_evict_type(arc_mfu) == ARC_BUFC_METADATA &&
4644 	    ameta > arc_meta_min) {
4645 		bytes = arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
4646 		total_evicted += bytes;
4647 
4648 		/*
4649 		 * If we couldn't evict our target number of bytes from
4650 		 * metadata, we try to get the rest from data.
4651 		 */
4652 		target -= bytes;
4653 
4654 		total_evicted +=
4655 		    arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
4656 	} else {
4657 		bytes = arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
4658 		total_evicted += bytes;
4659 
4660 		/*
4661 		 * If we couldn't evict our target number of bytes from
4662 		 * data, we try to get the rest from data.
4663 		 */
4664 		target -= bytes;
4665 
4666 		total_evicted +=
4667 		    arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
4668 	}
4669 
4670 	/*
4671 	 * Adjust ghost lists
4672 	 *
4673 	 * In addition to the above, the ARC also defines target values
4674 	 * for the ghost lists. The sum of the mru list and mru ghost
4675 	 * list should never exceed the target size of the cache, and
4676 	 * the sum of the mru list, mfu list, mru ghost list, and mfu
4677 	 * ghost list should never exceed twice the target size of the
4678 	 * cache. The following logic enforces these limits on the ghost
4679 	 * caches, and evicts from them as needed.
4680 	 */
4681 	target = zfs_refcount_count(&arc_mru->arcs_size) +
4682 	    zfs_refcount_count(&arc_mru_ghost->arcs_size) - arc_c;
4683 
4684 	bytes = arc_evict_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
4685 	total_evicted += bytes;
4686 
4687 	target -= bytes;
4688 
4689 	total_evicted +=
4690 	    arc_evict_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
4691 
4692 	/*
4693 	 * We assume the sum of the mru list and mfu list is less than
4694 	 * or equal to arc_c (we enforced this above), which means we
4695 	 * can use the simpler of the two equations below:
4696 	 *
4697 	 *	mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
4698 	 *		    mru ghost + mfu ghost <= arc_c
4699 	 */
4700 	target = zfs_refcount_count(&arc_mru_ghost->arcs_size) +
4701 	    zfs_refcount_count(&arc_mfu_ghost->arcs_size) - arc_c;
4702 
4703 	bytes = arc_evict_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
4704 	total_evicted += bytes;
4705 
4706 	target -= bytes;
4707 
4708 	total_evicted +=
4709 	    arc_evict_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
4710 
4711 	return (total_evicted);
4712 }
4713 
4714 void
4715 arc_flush(spa_t *spa, boolean_t retry)
4716 {
4717 	uint64_t guid = 0;
4718 
4719 	/*
4720 	 * If retry is B_TRUE, a spa must not be specified since we have
4721 	 * no good way to determine if all of a spa's buffers have been
4722 	 * evicted from an arc state.
4723 	 */
4724 	ASSERT(!retry || spa == 0);
4725 
4726 	if (spa != NULL)
4727 		guid = spa_load_guid(spa);
4728 
4729 	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
4730 	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
4731 
4732 	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
4733 	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
4734 
4735 	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
4736 	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
4737 
4738 	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
4739 	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
4740 }
4741 
4742 void
4743 arc_reduce_target_size(int64_t to_free)
4744 {
4745 	uint64_t asize = aggsum_value(&arc_sums.arcstat_size);
4746 
4747 	/*
4748 	 * All callers want the ARC to actually evict (at least) this much
4749 	 * memory.  Therefore we reduce from the lower of the current size and
4750 	 * the target size.  This way, even if arc_c is much higher than
4751 	 * arc_size (as can be the case after many calls to arc_freed(), we will
4752 	 * immediately have arc_c < arc_size and therefore the arc_evict_zthr
4753 	 * will evict.
4754 	 */
4755 	uint64_t c = MIN(arc_c, asize);
4756 
4757 	if (c > to_free && c - to_free > arc_c_min) {
4758 		arc_c = c - to_free;
4759 		atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
4760 		if (arc_p > arc_c)
4761 			arc_p = (arc_c >> 1);
4762 		ASSERT(arc_c >= arc_c_min);
4763 		ASSERT((int64_t)arc_p >= 0);
4764 	} else {
4765 		arc_c = arc_c_min;
4766 	}
4767 
4768 	if (asize > arc_c) {
4769 		/* See comment in arc_evict_cb_check() on why lock+flag */
4770 		mutex_enter(&arc_evict_lock);
4771 		arc_evict_needed = B_TRUE;
4772 		mutex_exit(&arc_evict_lock);
4773 		zthr_wakeup(arc_evict_zthr);
4774 	}
4775 }
4776 
4777 /*
4778  * Determine if the system is under memory pressure and is asking
4779  * to reclaim memory. A return value of B_TRUE indicates that the system
4780  * is under memory pressure and that the arc should adjust accordingly.
4781  */
4782 boolean_t
4783 arc_reclaim_needed(void)
4784 {
4785 	return (arc_available_memory() < 0);
4786 }
4787 
4788 void
4789 arc_kmem_reap_soon(void)
4790 {
4791 	size_t			i;
4792 	kmem_cache_t		*prev_cache = NULL;
4793 	kmem_cache_t		*prev_data_cache = NULL;
4794 	extern kmem_cache_t	*zio_buf_cache[];
4795 	extern kmem_cache_t	*zio_data_buf_cache[];
4796 
4797 #ifdef _KERNEL
4798 	if ((aggsum_compare(&arc_sums.arcstat_meta_used,
4799 	    arc_meta_limit) >= 0) && zfs_arc_meta_prune) {
4800 		/*
4801 		 * We are exceeding our meta-data cache limit.
4802 		 * Prune some entries to release holds on meta-data.
4803 		 */
4804 		arc_prune_async(zfs_arc_meta_prune);
4805 	}
4806 #if defined(_ILP32)
4807 	/*
4808 	 * Reclaim unused memory from all kmem caches.
4809 	 */
4810 	kmem_reap();
4811 #endif
4812 #endif
4813 
4814 	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
4815 #if defined(_ILP32)
4816 		/* reach upper limit of cache size on 32-bit */
4817 		if (zio_buf_cache[i] == NULL)
4818 			break;
4819 #endif
4820 		if (zio_buf_cache[i] != prev_cache) {
4821 			prev_cache = zio_buf_cache[i];
4822 			kmem_cache_reap_now(zio_buf_cache[i]);
4823 		}
4824 		if (zio_data_buf_cache[i] != prev_data_cache) {
4825 			prev_data_cache = zio_data_buf_cache[i];
4826 			kmem_cache_reap_now(zio_data_buf_cache[i]);
4827 		}
4828 	}
4829 	kmem_cache_reap_now(buf_cache);
4830 	kmem_cache_reap_now(hdr_full_cache);
4831 	kmem_cache_reap_now(hdr_l2only_cache);
4832 	kmem_cache_reap_now(zfs_btree_leaf_cache);
4833 	abd_cache_reap_now();
4834 }
4835 
4836 /* ARGSUSED */
4837 static boolean_t
4838 arc_evict_cb_check(void *arg, zthr_t *zthr)
4839 {
4840 #ifdef ZFS_DEBUG
4841 	/*
4842 	 * This is necessary in order to keep the kstat information
4843 	 * up to date for tools that display kstat data such as the
4844 	 * mdb ::arc dcmd and the Linux crash utility.  These tools
4845 	 * typically do not call kstat's update function, but simply
4846 	 * dump out stats from the most recent update.  Without
4847 	 * this call, these commands may show stale stats for the
4848 	 * anon, mru, mru_ghost, mfu, and mfu_ghost lists.  Even
4849 	 * with this call, the data might be out of date if the
4850 	 * evict thread hasn't been woken recently; but that should
4851 	 * suffice.  The arc_state_t structures can be queried
4852 	 * directly if more accurate information is needed.
4853 	 */
4854 	if (arc_ksp != NULL)
4855 		arc_ksp->ks_update(arc_ksp, KSTAT_READ);
4856 #endif
4857 
4858 	/*
4859 	 * We have to rely on arc_wait_for_eviction() to tell us when to
4860 	 * evict, rather than checking if we are overflowing here, so that we
4861 	 * are sure to not leave arc_wait_for_eviction() waiting on aew_cv.
4862 	 * If we have become "not overflowing" since arc_wait_for_eviction()
4863 	 * checked, we need to wake it up.  We could broadcast the CV here,
4864 	 * but arc_wait_for_eviction() may have not yet gone to sleep.  We
4865 	 * would need to use a mutex to ensure that this function doesn't
4866 	 * broadcast until arc_wait_for_eviction() has gone to sleep (e.g.
4867 	 * the arc_evict_lock).  However, the lock ordering of such a lock
4868 	 * would necessarily be incorrect with respect to the zthr_lock,
4869 	 * which is held before this function is called, and is held by
4870 	 * arc_wait_for_eviction() when it calls zthr_wakeup().
4871 	 */
4872 	return (arc_evict_needed);
4873 }
4874 
4875 /*
4876  * Keep arc_size under arc_c by running arc_evict which evicts data
4877  * from the ARC.
4878  */
4879 /* ARGSUSED */
4880 static void
4881 arc_evict_cb(void *arg, zthr_t *zthr)
4882 {
4883 	uint64_t evicted = 0;
4884 	fstrans_cookie_t cookie = spl_fstrans_mark();
4885 
4886 	/* Evict from cache */
4887 	evicted = arc_evict();
4888 
4889 	/*
4890 	 * If evicted is zero, we couldn't evict anything
4891 	 * via arc_evict(). This could be due to hash lock
4892 	 * collisions, but more likely due to the majority of
4893 	 * arc buffers being unevictable. Therefore, even if
4894 	 * arc_size is above arc_c, another pass is unlikely to
4895 	 * be helpful and could potentially cause us to enter an
4896 	 * infinite loop.  Additionally, zthr_iscancelled() is
4897 	 * checked here so that if the arc is shutting down, the
4898 	 * broadcast will wake any remaining arc evict waiters.
4899 	 */
4900 	mutex_enter(&arc_evict_lock);
4901 	arc_evict_needed = !zthr_iscancelled(arc_evict_zthr) &&
4902 	    evicted > 0 && aggsum_compare(&arc_sums.arcstat_size, arc_c) > 0;
4903 	if (!arc_evict_needed) {
4904 		/*
4905 		 * We're either no longer overflowing, or we
4906 		 * can't evict anything more, so we should wake
4907 		 * arc_get_data_impl() sooner.
4908 		 */
4909 		arc_evict_waiter_t *aw;
4910 		while ((aw = list_remove_head(&arc_evict_waiters)) != NULL) {
4911 			cv_broadcast(&aw->aew_cv);
4912 		}
4913 		arc_set_need_free();
4914 	}
4915 	mutex_exit(&arc_evict_lock);
4916 	spl_fstrans_unmark(cookie);
4917 }
4918 
4919 /* ARGSUSED */
4920 static boolean_t
4921 arc_reap_cb_check(void *arg, zthr_t *zthr)
4922 {
4923 	int64_t free_memory = arc_available_memory();
4924 	static int reap_cb_check_counter = 0;
4925 
4926 	/*
4927 	 * If a kmem reap is already active, don't schedule more.  We must
4928 	 * check for this because kmem_cache_reap_soon() won't actually
4929 	 * block on the cache being reaped (this is to prevent callers from
4930 	 * becoming implicitly blocked by a system-wide kmem reap -- which,
4931 	 * on a system with many, many full magazines, can take minutes).
4932 	 */
4933 	if (!kmem_cache_reap_active() && free_memory < 0) {
4934 
4935 		arc_no_grow = B_TRUE;
4936 		arc_warm = B_TRUE;
4937 		/*
4938 		 * Wait at least zfs_grow_retry (default 5) seconds
4939 		 * before considering growing.
4940 		 */
4941 		arc_growtime = gethrtime() + SEC2NSEC(arc_grow_retry);
4942 		return (B_TRUE);
4943 	} else if (free_memory < arc_c >> arc_no_grow_shift) {
4944 		arc_no_grow = B_TRUE;
4945 	} else if (gethrtime() >= arc_growtime) {
4946 		arc_no_grow = B_FALSE;
4947 	}
4948 
4949 	/*
4950 	 * Called unconditionally every 60 seconds to reclaim unused
4951 	 * zstd compression and decompression context. This is done
4952 	 * here to avoid the need for an independent thread.
4953 	 */
4954 	if (!((reap_cb_check_counter++) % 60))
4955 		zfs_zstd_cache_reap_now();
4956 
4957 	return (B_FALSE);
4958 }
4959 
4960 /*
4961  * Keep enough free memory in the system by reaping the ARC's kmem
4962  * caches.  To cause more slabs to be reapable, we may reduce the
4963  * target size of the cache (arc_c), causing the arc_evict_cb()
4964  * to free more buffers.
4965  */
4966 /* ARGSUSED */
4967 static void
4968 arc_reap_cb(void *arg, zthr_t *zthr)
4969 {
4970 	int64_t free_memory;
4971 	fstrans_cookie_t cookie = spl_fstrans_mark();
4972 
4973 	/*
4974 	 * Kick off asynchronous kmem_reap()'s of all our caches.
4975 	 */
4976 	arc_kmem_reap_soon();
4977 
4978 	/*
4979 	 * Wait at least arc_kmem_cache_reap_retry_ms between
4980 	 * arc_kmem_reap_soon() calls. Without this check it is possible to
4981 	 * end up in a situation where we spend lots of time reaping
4982 	 * caches, while we're near arc_c_min.  Waiting here also gives the
4983 	 * subsequent free memory check a chance of finding that the
4984 	 * asynchronous reap has already freed enough memory, and we don't
4985 	 * need to call arc_reduce_target_size().
4986 	 */
4987 	delay((hz * arc_kmem_cache_reap_retry_ms + 999) / 1000);
4988 
4989 	/*
4990 	 * Reduce the target size as needed to maintain the amount of free
4991 	 * memory in the system at a fraction of the arc_size (1/128th by
4992 	 * default).  If oversubscribed (free_memory < 0) then reduce the
4993 	 * target arc_size by the deficit amount plus the fractional
4994 	 * amount.  If free memory is positive but less than the fractional
4995 	 * amount, reduce by what is needed to hit the fractional amount.
4996 	 */
4997 	free_memory = arc_available_memory();
4998 
4999 	int64_t to_free =
5000 	    (arc_c >> arc_shrink_shift) - free_memory;
5001 	if (to_free > 0) {
5002 		arc_reduce_target_size(to_free);
5003 	}
5004 	spl_fstrans_unmark(cookie);
5005 }
5006 
5007 #ifdef _KERNEL
5008 /*
5009  * Determine the amount of memory eligible for eviction contained in the
5010  * ARC. All clean data reported by the ghost lists can always be safely
5011  * evicted. Due to arc_c_min, the same does not hold for all clean data
5012  * contained by the regular mru and mfu lists.
5013  *
5014  * In the case of the regular mru and mfu lists, we need to report as
5015  * much clean data as possible, such that evicting that same reported
5016  * data will not bring arc_size below arc_c_min. Thus, in certain
5017  * circumstances, the total amount of clean data in the mru and mfu
5018  * lists might not actually be evictable.
5019  *
5020  * The following two distinct cases are accounted for:
5021  *
5022  * 1. The sum of the amount of dirty data contained by both the mru and
5023  *    mfu lists, plus the ARC's other accounting (e.g. the anon list),
5024  *    is greater than or equal to arc_c_min.
5025  *    (i.e. amount of dirty data >= arc_c_min)
5026  *
5027  *    This is the easy case; all clean data contained by the mru and mfu
5028  *    lists is evictable. Evicting all clean data can only drop arc_size
5029  *    to the amount of dirty data, which is greater than arc_c_min.
5030  *
5031  * 2. The sum of the amount of dirty data contained by both the mru and
5032  *    mfu lists, plus the ARC's other accounting (e.g. the anon list),
5033  *    is less than arc_c_min.
5034  *    (i.e. arc_c_min > amount of dirty data)
5035  *
5036  *    2.1. arc_size is greater than or equal arc_c_min.
5037  *         (i.e. arc_size >= arc_c_min > amount of dirty data)
5038  *
5039  *         In this case, not all clean data from the regular mru and mfu
5040  *         lists is actually evictable; we must leave enough clean data
5041  *         to keep arc_size above arc_c_min. Thus, the maximum amount of
5042  *         evictable data from the two lists combined, is exactly the
5043  *         difference between arc_size and arc_c_min.
5044  *
5045  *    2.2. arc_size is less than arc_c_min
5046  *         (i.e. arc_c_min > arc_size > amount of dirty data)
5047  *
5048  *         In this case, none of the data contained in the mru and mfu
5049  *         lists is evictable, even if it's clean. Since arc_size is
5050  *         already below arc_c_min, evicting any more would only
5051  *         increase this negative difference.
5052  */
5053 
5054 #endif /* _KERNEL */
5055 
5056 /*
5057  * Adapt arc info given the number of bytes we are trying to add and
5058  * the state that we are coming from.  This function is only called
5059  * when we are adding new content to the cache.
5060  */
5061 static void
5062 arc_adapt(int bytes, arc_state_t *state)
5063 {
5064 	int mult;
5065 	uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
5066 	int64_t mrug_size = zfs_refcount_count(&arc_mru_ghost->arcs_size);
5067 	int64_t mfug_size = zfs_refcount_count(&arc_mfu_ghost->arcs_size);
5068 
5069 	ASSERT(bytes > 0);
5070 	/*
5071 	 * Adapt the target size of the MRU list:
5072 	 *	- if we just hit in the MRU ghost list, then increase
5073 	 *	  the target size of the MRU list.
5074 	 *	- if we just hit in the MFU ghost list, then increase
5075 	 *	  the target size of the MFU list by decreasing the
5076 	 *	  target size of the MRU list.
5077 	 */
5078 	if (state == arc_mru_ghost) {
5079 		mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size);
5080 		if (!zfs_arc_p_dampener_disable)
5081 			mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
5082 
5083 		arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
5084 	} else if (state == arc_mfu_ghost) {
5085 		uint64_t delta;
5086 
5087 		mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size);
5088 		if (!zfs_arc_p_dampener_disable)
5089 			mult = MIN(mult, 10);
5090 
5091 		delta = MIN(bytes * mult, arc_p);
5092 		arc_p = MAX(arc_p_min, arc_p - delta);
5093 	}
5094 	ASSERT((int64_t)arc_p >= 0);
5095 
5096 	/*
5097 	 * Wake reap thread if we do not have any available memory
5098 	 */
5099 	if (arc_reclaim_needed()) {
5100 		zthr_wakeup(arc_reap_zthr);
5101 		return;
5102 	}
5103 
5104 	if (arc_no_grow)
5105 		return;
5106 
5107 	if (arc_c >= arc_c_max)
5108 		return;
5109 
5110 	/*
5111 	 * If we're within (2 * maxblocksize) bytes of the target
5112 	 * cache size, increment the target cache size
5113 	 */
5114 	ASSERT3U(arc_c, >=, 2ULL << SPA_MAXBLOCKSHIFT);
5115 	if (aggsum_upper_bound(&arc_sums.arcstat_size) >=
5116 	    arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
5117 		atomic_add_64(&arc_c, (int64_t)bytes);
5118 		if (arc_c > arc_c_max)
5119 			arc_c = arc_c_max;
5120 		else if (state == arc_anon)
5121 			atomic_add_64(&arc_p, (int64_t)bytes);
5122 		if (arc_p > arc_c)
5123 			arc_p = arc_c;
5124 	}
5125 	ASSERT((int64_t)arc_p >= 0);
5126 }
5127 
5128 /*
5129  * Check if arc_size has grown past our upper threshold, determined by
5130  * zfs_arc_overflow_shift.
5131  */
5132 static arc_ovf_level_t
5133 arc_is_overflowing(boolean_t use_reserve)
5134 {
5135 	/* Always allow at least one block of overflow */
5136 	int64_t overflow = MAX(SPA_MAXBLOCKSIZE,
5137 	    arc_c >> zfs_arc_overflow_shift);
5138 
5139 	/*
5140 	 * We just compare the lower bound here for performance reasons. Our
5141 	 * primary goals are to make sure that the arc never grows without
5142 	 * bound, and that it can reach its maximum size. This check
5143 	 * accomplishes both goals. The maximum amount we could run over by is
5144 	 * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block
5145 	 * in the ARC. In practice, that's in the tens of MB, which is low
5146 	 * enough to be safe.
5147 	 */
5148 	int64_t over = aggsum_lower_bound(&arc_sums.arcstat_size) -
5149 	    arc_c - overflow / 2;
5150 	if (!use_reserve)
5151 		overflow /= 2;
5152 	return (over < 0 ? ARC_OVF_NONE :
5153 	    over < overflow ? ARC_OVF_SOME : ARC_OVF_SEVERE);
5154 }
5155 
5156 static abd_t *
5157 arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, void *tag,
5158     int alloc_flags)
5159 {
5160 	arc_buf_contents_t type = arc_buf_type(hdr);
5161 
5162 	arc_get_data_impl(hdr, size, tag, alloc_flags);
5163 	if (type == ARC_BUFC_METADATA) {
5164 		return (abd_alloc(size, B_TRUE));
5165 	} else {
5166 		ASSERT(type == ARC_BUFC_DATA);
5167 		return (abd_alloc(size, B_FALSE));
5168 	}
5169 }
5170 
5171 static void *
5172 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
5173 {
5174 	arc_buf_contents_t type = arc_buf_type(hdr);
5175 
5176 	arc_get_data_impl(hdr, size, tag, ARC_HDR_DO_ADAPT);
5177 	if (type == ARC_BUFC_METADATA) {
5178 		return (zio_buf_alloc(size));
5179 	} else {
5180 		ASSERT(type == ARC_BUFC_DATA);
5181 		return (zio_data_buf_alloc(size));
5182 	}
5183 }
5184 
5185 /*
5186  * Wait for the specified amount of data (in bytes) to be evicted from the
5187  * ARC, and for there to be sufficient free memory in the system.  Waiting for
5188  * eviction ensures that the memory used by the ARC decreases.  Waiting for
5189  * free memory ensures that the system won't run out of free pages, regardless
5190  * of ARC behavior and settings.  See arc_lowmem_init().
5191  */
5192 void
5193 arc_wait_for_eviction(uint64_t amount, boolean_t use_reserve)
5194 {
5195 	switch (arc_is_overflowing(use_reserve)) {
5196 	case ARC_OVF_NONE:
5197 		return;
5198 	case ARC_OVF_SOME:
5199 		/*
5200 		 * This is a bit racy without taking arc_evict_lock, but the
5201 		 * worst that can happen is we either call zthr_wakeup() extra
5202 		 * time due to race with other thread here, or the set flag
5203 		 * get cleared by arc_evict_cb(), which is unlikely due to
5204 		 * big hysteresis, but also not important since at this level
5205 		 * of overflow the eviction is purely advisory.  Same time
5206 		 * taking the global lock here every time without waiting for
5207 		 * the actual eviction creates a significant lock contention.
5208 		 */
5209 		if (!arc_evict_needed) {
5210 			arc_evict_needed = B_TRUE;
5211 			zthr_wakeup(arc_evict_zthr);
5212 		}
5213 		return;
5214 	case ARC_OVF_SEVERE:
5215 	default:
5216 	{
5217 		arc_evict_waiter_t aw;
5218 		list_link_init(&aw.aew_node);
5219 		cv_init(&aw.aew_cv, NULL, CV_DEFAULT, NULL);
5220 
5221 		uint64_t last_count = 0;
5222 		mutex_enter(&arc_evict_lock);
5223 		if (!list_is_empty(&arc_evict_waiters)) {
5224 			arc_evict_waiter_t *last =
5225 			    list_tail(&arc_evict_waiters);
5226 			last_count = last->aew_count;
5227 		} else if (!arc_evict_needed) {
5228 			arc_evict_needed = B_TRUE;
5229 			zthr_wakeup(arc_evict_zthr);
5230 		}
5231 		/*
5232 		 * Note, the last waiter's count may be less than
5233 		 * arc_evict_count if we are low on memory in which
5234 		 * case arc_evict_state_impl() may have deferred
5235 		 * wakeups (but still incremented arc_evict_count).
5236 		 */
5237 		aw.aew_count = MAX(last_count, arc_evict_count) + amount;
5238 
5239 		list_insert_tail(&arc_evict_waiters, &aw);
5240 
5241 		arc_set_need_free();
5242 
5243 		DTRACE_PROBE3(arc__wait__for__eviction,
5244 		    uint64_t, amount,
5245 		    uint64_t, arc_evict_count,
5246 		    uint64_t, aw.aew_count);
5247 
5248 		/*
5249 		 * We will be woken up either when arc_evict_count reaches
5250 		 * aew_count, or when the ARC is no longer overflowing and
5251 		 * eviction completes.
5252 		 * In case of "false" wakeup, we will still be on the list.
5253 		 */
5254 		do {
5255 			cv_wait(&aw.aew_cv, &arc_evict_lock);
5256 		} while (list_link_active(&aw.aew_node));
5257 		mutex_exit(&arc_evict_lock);
5258 
5259 		cv_destroy(&aw.aew_cv);
5260 	}
5261 	}
5262 }
5263 
5264 /*
5265  * Allocate a block and return it to the caller. If we are hitting the
5266  * hard limit for the cache size, we must sleep, waiting for the eviction
5267  * thread to catch up. If we're past the target size but below the hard
5268  * limit, we'll only signal the reclaim thread and continue on.
5269  */
5270 static void
5271 arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag,
5272     int alloc_flags)
5273 {
5274 	arc_state_t *state = hdr->b_l1hdr.b_state;
5275 	arc_buf_contents_t type = arc_buf_type(hdr);
5276 
5277 	if (alloc_flags & ARC_HDR_DO_ADAPT)
5278 		arc_adapt(size, state);
5279 
5280 	/*
5281 	 * If arc_size is currently overflowing, we must be adding data
5282 	 * faster than we are evicting.  To ensure we don't compound the
5283 	 * problem by adding more data and forcing arc_size to grow even
5284 	 * further past it's target size, we wait for the eviction thread to
5285 	 * make some progress.  We also wait for there to be sufficient free
5286 	 * memory in the system, as measured by arc_free_memory().
5287 	 *
5288 	 * Specifically, we wait for zfs_arc_eviction_pct percent of the
5289 	 * requested size to be evicted.  This should be more than 100%, to
5290 	 * ensure that that progress is also made towards getting arc_size
5291 	 * under arc_c.  See the comment above zfs_arc_eviction_pct.
5292 	 */
5293 	arc_wait_for_eviction(size * zfs_arc_eviction_pct / 100,
5294 	    alloc_flags & ARC_HDR_USE_RESERVE);
5295 
5296 	VERIFY3U(hdr->b_type, ==, type);
5297 	if (type == ARC_BUFC_METADATA) {
5298 		arc_space_consume(size, ARC_SPACE_META);
5299 	} else {
5300 		arc_space_consume(size, ARC_SPACE_DATA);
5301 	}
5302 
5303 	/*
5304 	 * Update the state size.  Note that ghost states have a
5305 	 * "ghost size" and so don't need to be updated.
5306 	 */
5307 	if (!GHOST_STATE(state)) {
5308 
5309 		(void) zfs_refcount_add_many(&state->arcs_size, size, tag);
5310 
5311 		/*
5312 		 * If this is reached via arc_read, the link is
5313 		 * protected by the hash lock. If reached via
5314 		 * arc_buf_alloc, the header should not be accessed by
5315 		 * any other thread. And, if reached via arc_read_done,
5316 		 * the hash lock will protect it if it's found in the
5317 		 * hash table; otherwise no other thread should be
5318 		 * trying to [add|remove]_reference it.
5319 		 */
5320 		if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
5321 			ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5322 			(void) zfs_refcount_add_many(&state->arcs_esize[type],
5323 			    size, tag);
5324 		}
5325 
5326 		/*
5327 		 * If we are growing the cache, and we are adding anonymous
5328 		 * data, and we have outgrown arc_p, update arc_p
5329 		 */
5330 		if (aggsum_upper_bound(&arc_sums.arcstat_size) < arc_c &&
5331 		    hdr->b_l1hdr.b_state == arc_anon &&
5332 		    (zfs_refcount_count(&arc_anon->arcs_size) +
5333 		    zfs_refcount_count(&arc_mru->arcs_size) > arc_p))
5334 			arc_p = MIN(arc_c, arc_p + size);
5335 	}
5336 }
5337 
5338 static void
5339 arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size, void *tag)
5340 {
5341 	arc_free_data_impl(hdr, size, tag);
5342 	abd_free(abd);
5343 }
5344 
5345 static void
5346 arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, void *tag)
5347 {
5348 	arc_buf_contents_t type = arc_buf_type(hdr);
5349 
5350 	arc_free_data_impl(hdr, size, tag);
5351 	if (type == ARC_BUFC_METADATA) {
5352 		zio_buf_free(buf, size);
5353 	} else {
5354 		ASSERT(type == ARC_BUFC_DATA);
5355 		zio_data_buf_free(buf, size);
5356 	}
5357 }
5358 
5359 /*
5360  * Free the arc data buffer.
5361  */
5362 static void
5363 arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
5364 {
5365 	arc_state_t *state = hdr->b_l1hdr.b_state;
5366 	arc_buf_contents_t type = arc_buf_type(hdr);
5367 
5368 	/* protected by hash lock, if in the hash table */
5369 	if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
5370 		ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5371 		ASSERT(state != arc_anon && state != arc_l2c_only);
5372 
5373 		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
5374 		    size, tag);
5375 	}
5376 	(void) zfs_refcount_remove_many(&state->arcs_size, size, tag);
5377 
5378 	VERIFY3U(hdr->b_type, ==, type);
5379 	if (type == ARC_BUFC_METADATA) {
5380 		arc_space_return(size, ARC_SPACE_META);
5381 	} else {
5382 		ASSERT(type == ARC_BUFC_DATA);
5383 		arc_space_return(size, ARC_SPACE_DATA);
5384 	}
5385 }
5386 
5387 /*
5388  * This routine is called whenever a buffer is accessed.
5389  * NOTE: the hash lock is dropped in this function.
5390  */
5391 static void
5392 arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
5393 {
5394 	clock_t now;
5395 
5396 	ASSERT(MUTEX_HELD(hash_lock));
5397 	ASSERT(HDR_HAS_L1HDR(hdr));
5398 
5399 	if (hdr->b_l1hdr.b_state == arc_anon) {
5400 		/*
5401 		 * This buffer is not in the cache, and does not
5402 		 * appear in our "ghost" list.  Add the new buffer
5403 		 * to the MRU state.
5404 		 */
5405 
5406 		ASSERT0(hdr->b_l1hdr.b_arc_access);
5407 		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5408 		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5409 		arc_change_state(arc_mru, hdr, hash_lock);
5410 
5411 	} else if (hdr->b_l1hdr.b_state == arc_mru) {
5412 		now = ddi_get_lbolt();
5413 
5414 		/*
5415 		 * If this buffer is here because of a prefetch, then either:
5416 		 * - clear the flag if this is a "referencing" read
5417 		 *   (any subsequent access will bump this into the MFU state).
5418 		 * or
5419 		 * - move the buffer to the head of the list if this is
5420 		 *   another prefetch (to make it less likely to be evicted).
5421 		 */
5422 		if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) {
5423 			if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
5424 				/* link protected by hash lock */
5425 				ASSERT(multilist_link_active(
5426 				    &hdr->b_l1hdr.b_arc_node));
5427 			} else {
5428 				if (HDR_HAS_L2HDR(hdr))
5429 					l2arc_hdr_arcstats_decrement_state(hdr);
5430 				arc_hdr_clear_flags(hdr,
5431 				    ARC_FLAG_PREFETCH |
5432 				    ARC_FLAG_PRESCIENT_PREFETCH);
5433 				hdr->b_l1hdr.b_mru_hits++;
5434 				ARCSTAT_BUMP(arcstat_mru_hits);
5435 				if (HDR_HAS_L2HDR(hdr))
5436 					l2arc_hdr_arcstats_increment_state(hdr);
5437 			}
5438 			hdr->b_l1hdr.b_arc_access = now;
5439 			return;
5440 		}
5441 
5442 		/*
5443 		 * This buffer has been "accessed" only once so far,
5444 		 * but it is still in the cache. Move it to the MFU
5445 		 * state.
5446 		 */
5447 		if (ddi_time_after(now, hdr->b_l1hdr.b_arc_access +
5448 		    ARC_MINTIME)) {
5449 			/*
5450 			 * More than 125ms have passed since we
5451 			 * instantiated this buffer.  Move it to the
5452 			 * most frequently used state.
5453 			 */
5454 			hdr->b_l1hdr.b_arc_access = now;
5455 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5456 			arc_change_state(arc_mfu, hdr, hash_lock);
5457 		}
5458 		hdr->b_l1hdr.b_mru_hits++;
5459 		ARCSTAT_BUMP(arcstat_mru_hits);
5460 	} else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
5461 		arc_state_t	*new_state;
5462 		/*
5463 		 * This buffer has been "accessed" recently, but
5464 		 * was evicted from the cache.  Move it to the
5465 		 * MFU state.
5466 		 */
5467 		if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) {
5468 			new_state = arc_mru;
5469 			if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) > 0) {
5470 				if (HDR_HAS_L2HDR(hdr))
5471 					l2arc_hdr_arcstats_decrement_state(hdr);
5472 				arc_hdr_clear_flags(hdr,
5473 				    ARC_FLAG_PREFETCH |
5474 				    ARC_FLAG_PRESCIENT_PREFETCH);
5475 				if (HDR_HAS_L2HDR(hdr))
5476 					l2arc_hdr_arcstats_increment_state(hdr);
5477 			}
5478 			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5479 		} else {
5480 			new_state = arc_mfu;
5481 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5482 		}
5483 
5484 		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5485 		arc_change_state(new_state, hdr, hash_lock);
5486 
5487 		hdr->b_l1hdr.b_mru_ghost_hits++;
5488 		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
5489 	} else if (hdr->b_l1hdr.b_state == arc_mfu) {
5490 		/*
5491 		 * This buffer has been accessed more than once and is
5492 		 * still in the cache.  Keep it in the MFU state.
5493 		 *
5494 		 * NOTE: an add_reference() that occurred when we did
5495 		 * the arc_read() will have kicked this off the list.
5496 		 * If it was a prefetch, we will explicitly move it to
5497 		 * the head of the list now.
5498 		 */
5499 
5500 		hdr->b_l1hdr.b_mfu_hits++;
5501 		ARCSTAT_BUMP(arcstat_mfu_hits);
5502 		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5503 	} else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
5504 		arc_state_t	*new_state = arc_mfu;
5505 		/*
5506 		 * This buffer has been accessed more than once but has
5507 		 * been evicted from the cache.  Move it back to the
5508 		 * MFU state.
5509 		 */
5510 
5511 		if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) {
5512 			/*
5513 			 * This is a prefetch access...
5514 			 * move this block back to the MRU state.
5515 			 */
5516 			new_state = arc_mru;
5517 		}
5518 
5519 		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5520 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5521 		arc_change_state(new_state, hdr, hash_lock);
5522 
5523 		hdr->b_l1hdr.b_mfu_ghost_hits++;
5524 		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
5525 	} else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
5526 		/*
5527 		 * This buffer is on the 2nd Level ARC.
5528 		 */
5529 
5530 		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5531 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5532 		arc_change_state(arc_mfu, hdr, hash_lock);
5533 	} else {
5534 		cmn_err(CE_PANIC, "invalid arc state 0x%p",
5535 		    hdr->b_l1hdr.b_state);
5536 	}
5537 }
5538 
5539 /*
5540  * This routine is called by dbuf_hold() to update the arc_access() state
5541  * which otherwise would be skipped for entries in the dbuf cache.
5542  */
5543 void
5544 arc_buf_access(arc_buf_t *buf)
5545 {
5546 	mutex_enter(&buf->b_evict_lock);
5547 	arc_buf_hdr_t *hdr = buf->b_hdr;
5548 
5549 	/*
5550 	 * Avoid taking the hash_lock when possible as an optimization.
5551 	 * The header must be checked again under the hash_lock in order
5552 	 * to handle the case where it is concurrently being released.
5553 	 */
5554 	if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) {
5555 		mutex_exit(&buf->b_evict_lock);
5556 		return;
5557 	}
5558 
5559 	kmutex_t *hash_lock = HDR_LOCK(hdr);
5560 	mutex_enter(hash_lock);
5561 
5562 	if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) {
5563 		mutex_exit(hash_lock);
5564 		mutex_exit(&buf->b_evict_lock);
5565 		ARCSTAT_BUMP(arcstat_access_skip);
5566 		return;
5567 	}
5568 
5569 	mutex_exit(&buf->b_evict_lock);
5570 
5571 	ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
5572 	    hdr->b_l1hdr.b_state == arc_mfu);
5573 
5574 	DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
5575 	arc_access(hdr, hash_lock);
5576 	mutex_exit(hash_lock);
5577 
5578 	ARCSTAT_BUMP(arcstat_hits);
5579 	ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr) && !HDR_PRESCIENT_PREFETCH(hdr),
5580 	    demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data, metadata, hits);
5581 }
5582 
5583 /* a generic arc_read_done_func_t which you can use */
5584 /* ARGSUSED */
5585 void
5586 arc_bcopy_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
5587     arc_buf_t *buf, void *arg)
5588 {
5589 	if (buf == NULL)
5590 		return;
5591 
5592 	bcopy(buf->b_data, arg, arc_buf_size(buf));
5593 	arc_buf_destroy(buf, arg);
5594 }
5595 
5596 /* a generic arc_read_done_func_t */
5597 /* ARGSUSED */
5598 void
5599 arc_getbuf_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
5600     arc_buf_t *buf, void *arg)
5601 {
5602 	arc_buf_t **bufp = arg;
5603 
5604 	if (buf == NULL) {
5605 		ASSERT(zio == NULL || zio->io_error != 0);
5606 		*bufp = NULL;
5607 	} else {
5608 		ASSERT(zio == NULL || zio->io_error == 0);
5609 		*bufp = buf;
5610 		ASSERT(buf->b_data != NULL);
5611 	}
5612 }
5613 
5614 static void
5615 arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp)
5616 {
5617 	if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
5618 		ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0);
5619 		ASSERT3U(arc_hdr_get_compress(hdr), ==, ZIO_COMPRESS_OFF);
5620 	} else {
5621 		if (HDR_COMPRESSION_ENABLED(hdr)) {
5622 			ASSERT3U(arc_hdr_get_compress(hdr), ==,
5623 			    BP_GET_COMPRESS(bp));
5624 		}
5625 		ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
5626 		ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp));
5627 		ASSERT3U(!!HDR_PROTECTED(hdr), ==, BP_IS_PROTECTED(bp));
5628 	}
5629 }
5630 
5631 static void
5632 arc_read_done(zio_t *zio)
5633 {
5634 	blkptr_t 	*bp = zio->io_bp;
5635 	arc_buf_hdr_t	*hdr = zio->io_private;
5636 	kmutex_t	*hash_lock = NULL;
5637 	arc_callback_t	*callback_list;
5638 	arc_callback_t	*acb;
5639 	boolean_t	freeable = B_FALSE;
5640 
5641 	/*
5642 	 * The hdr was inserted into hash-table and removed from lists
5643 	 * prior to starting I/O.  We should find this header, since
5644 	 * it's in the hash table, and it should be legit since it's
5645 	 * not possible to evict it during the I/O.  The only possible
5646 	 * reason for it not to be found is if we were freed during the
5647 	 * read.
5648 	 */
5649 	if (HDR_IN_HASH_TABLE(hdr)) {
5650 		arc_buf_hdr_t *found;
5651 
5652 		ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
5653 		ASSERT3U(hdr->b_dva.dva_word[0], ==,
5654 		    BP_IDENTITY(zio->io_bp)->dva_word[0]);
5655 		ASSERT3U(hdr->b_dva.dva_word[1], ==,
5656 		    BP_IDENTITY(zio->io_bp)->dva_word[1]);
5657 
5658 		found = buf_hash_find(hdr->b_spa, zio->io_bp, &hash_lock);
5659 
5660 		ASSERT((found == hdr &&
5661 		    DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
5662 		    (found == hdr && HDR_L2_READING(hdr)));
5663 		ASSERT3P(hash_lock, !=, NULL);
5664 	}
5665 
5666 	if (BP_IS_PROTECTED(bp)) {
5667 		hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp);
5668 		hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset;
5669 		zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt,
5670 		    hdr->b_crypt_hdr.b_iv);
5671 
5672 		if (BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG) {
5673 			void *tmpbuf;
5674 
5675 			tmpbuf = abd_borrow_buf_copy(zio->io_abd,
5676 			    sizeof (zil_chain_t));
5677 			zio_crypt_decode_mac_zil(tmpbuf,
5678 			    hdr->b_crypt_hdr.b_mac);
5679 			abd_return_buf(zio->io_abd, tmpbuf,
5680 			    sizeof (zil_chain_t));
5681 		} else {
5682 			zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac);
5683 		}
5684 	}
5685 
5686 	if (zio->io_error == 0) {
5687 		/* byteswap if necessary */
5688 		if (BP_SHOULD_BYTESWAP(zio->io_bp)) {
5689 			if (BP_GET_LEVEL(zio->io_bp) > 0) {
5690 				hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
5691 			} else {
5692 				hdr->b_l1hdr.b_byteswap =
5693 				    DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
5694 			}
5695 		} else {
5696 			hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
5697 		}
5698 		if (!HDR_L2_READING(hdr)) {
5699 			hdr->b_complevel = zio->io_prop.zp_complevel;
5700 		}
5701 	}
5702 
5703 	arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED);
5704 	if (l2arc_noprefetch && HDR_PREFETCH(hdr))
5705 		arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE);
5706 
5707 	callback_list = hdr->b_l1hdr.b_acb;
5708 	ASSERT3P(callback_list, !=, NULL);
5709 
5710 	if (hash_lock && zio->io_error == 0 &&
5711 	    hdr->b_l1hdr.b_state == arc_anon) {
5712 		/*
5713 		 * Only call arc_access on anonymous buffers.  This is because
5714 		 * if we've issued an I/O for an evicted buffer, we've already
5715 		 * called arc_access (to prevent any simultaneous readers from
5716 		 * getting confused).
5717 		 */
5718 		arc_access(hdr, hash_lock);
5719 	}
5720 
5721 	/*
5722 	 * If a read request has a callback (i.e. acb_done is not NULL), then we
5723 	 * make a buf containing the data according to the parameters which were
5724 	 * passed in. The implementation of arc_buf_alloc_impl() ensures that we
5725 	 * aren't needlessly decompressing the data multiple times.
5726 	 */
5727 	int callback_cnt = 0;
5728 	for (acb = callback_list; acb != NULL; acb = acb->acb_next) {
5729 		if (!acb->acb_done || acb->acb_nobuf)
5730 			continue;
5731 
5732 		callback_cnt++;
5733 
5734 		if (zio->io_error != 0)
5735 			continue;
5736 
5737 		int error = arc_buf_alloc_impl(hdr, zio->io_spa,
5738 		    &acb->acb_zb, acb->acb_private, acb->acb_encrypted,
5739 		    acb->acb_compressed, acb->acb_noauth, B_TRUE,
5740 		    &acb->acb_buf);
5741 
5742 		/*
5743 		 * Assert non-speculative zios didn't fail because an
5744 		 * encryption key wasn't loaded
5745 		 */
5746 		ASSERT((zio->io_flags & ZIO_FLAG_SPECULATIVE) ||
5747 		    error != EACCES);
5748 
5749 		/*
5750 		 * If we failed to decrypt, report an error now (as the zio
5751 		 * layer would have done if it had done the transforms).
5752 		 */
5753 		if (error == ECKSUM) {
5754 			ASSERT(BP_IS_PROTECTED(bp));
5755 			error = SET_ERROR(EIO);
5756 			if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
5757 				spa_log_error(zio->io_spa, &acb->acb_zb);
5758 				(void) zfs_ereport_post(
5759 				    FM_EREPORT_ZFS_AUTHENTICATION,
5760 				    zio->io_spa, NULL, &acb->acb_zb, zio, 0);
5761 			}
5762 		}
5763 
5764 		if (error != 0) {
5765 			/*
5766 			 * Decompression or decryption failed.  Set
5767 			 * io_error so that when we call acb_done
5768 			 * (below), we will indicate that the read
5769 			 * failed. Note that in the unusual case
5770 			 * where one callback is compressed and another
5771 			 * uncompressed, we will mark all of them
5772 			 * as failed, even though the uncompressed
5773 			 * one can't actually fail.  In this case,
5774 			 * the hdr will not be anonymous, because
5775 			 * if there are multiple callbacks, it's
5776 			 * because multiple threads found the same
5777 			 * arc buf in the hash table.
5778 			 */
5779 			zio->io_error = error;
5780 		}
5781 	}
5782 
5783 	/*
5784 	 * If there are multiple callbacks, we must have the hash lock,
5785 	 * because the only way for multiple threads to find this hdr is
5786 	 * in the hash table.  This ensures that if there are multiple
5787 	 * callbacks, the hdr is not anonymous.  If it were anonymous,
5788 	 * we couldn't use arc_buf_destroy() in the error case below.
5789 	 */
5790 	ASSERT(callback_cnt < 2 || hash_lock != NULL);
5791 
5792 	hdr->b_l1hdr.b_acb = NULL;
5793 	arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5794 	if (callback_cnt == 0)
5795 		ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
5796 
5797 	ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
5798 	    callback_list != NULL);
5799 
5800 	if (zio->io_error == 0) {
5801 		arc_hdr_verify(hdr, zio->io_bp);
5802 	} else {
5803 		arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
5804 		if (hdr->b_l1hdr.b_state != arc_anon)
5805 			arc_change_state(arc_anon, hdr, hash_lock);
5806 		if (HDR_IN_HASH_TABLE(hdr))
5807 			buf_hash_remove(hdr);
5808 		freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
5809 	}
5810 
5811 	/*
5812 	 * Broadcast before we drop the hash_lock to avoid the possibility
5813 	 * that the hdr (and hence the cv) might be freed before we get to
5814 	 * the cv_broadcast().
5815 	 */
5816 	cv_broadcast(&hdr->b_l1hdr.b_cv);
5817 
5818 	if (hash_lock != NULL) {
5819 		mutex_exit(hash_lock);
5820 	} else {
5821 		/*
5822 		 * This block was freed while we waited for the read to
5823 		 * complete.  It has been removed from the hash table and
5824 		 * moved to the anonymous state (so that it won't show up
5825 		 * in the cache).
5826 		 */
5827 		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
5828 		freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
5829 	}
5830 
5831 	/* execute each callback and free its structure */
5832 	while ((acb = callback_list) != NULL) {
5833 		if (acb->acb_done != NULL) {
5834 			if (zio->io_error != 0 && acb->acb_buf != NULL) {
5835 				/*
5836 				 * If arc_buf_alloc_impl() fails during
5837 				 * decompression, the buf will still be
5838 				 * allocated, and needs to be freed here.
5839 				 */
5840 				arc_buf_destroy(acb->acb_buf,
5841 				    acb->acb_private);
5842 				acb->acb_buf = NULL;
5843 			}
5844 			acb->acb_done(zio, &zio->io_bookmark, zio->io_bp,
5845 			    acb->acb_buf, acb->acb_private);
5846 		}
5847 
5848 		if (acb->acb_zio_dummy != NULL) {
5849 			acb->acb_zio_dummy->io_error = zio->io_error;
5850 			zio_nowait(acb->acb_zio_dummy);
5851 		}
5852 
5853 		callback_list = acb->acb_next;
5854 		kmem_free(acb, sizeof (arc_callback_t));
5855 	}
5856 
5857 	if (freeable)
5858 		arc_hdr_destroy(hdr);
5859 }
5860 
5861 /*
5862  * "Read" the block at the specified DVA (in bp) via the
5863  * cache.  If the block is found in the cache, invoke the provided
5864  * callback immediately and return.  Note that the `zio' parameter
5865  * in the callback will be NULL in this case, since no IO was
5866  * required.  If the block is not in the cache pass the read request
5867  * on to the spa with a substitute callback function, so that the
5868  * requested block will be added to the cache.
5869  *
5870  * If a read request arrives for a block that has a read in-progress,
5871  * either wait for the in-progress read to complete (and return the
5872  * results); or, if this is a read with a "done" func, add a record
5873  * to the read to invoke the "done" func when the read completes,
5874  * and return; or just return.
5875  *
5876  * arc_read_done() will invoke all the requested "done" functions
5877  * for readers of this block.
5878  */
5879 int
5880 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
5881     arc_read_done_func_t *done, void *private, zio_priority_t priority,
5882     int zio_flags, arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
5883 {
5884 	arc_buf_hdr_t *hdr = NULL;
5885 	kmutex_t *hash_lock = NULL;
5886 	zio_t *rzio;
5887 	uint64_t guid = spa_load_guid(spa);
5888 	boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW_COMPRESS) != 0;
5889 	boolean_t encrypted_read = BP_IS_ENCRYPTED(bp) &&
5890 	    (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0;
5891 	boolean_t noauth_read = BP_IS_AUTHENTICATED(bp) &&
5892 	    (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0;
5893 	boolean_t embedded_bp = !!BP_IS_EMBEDDED(bp);
5894 	boolean_t no_buf = *arc_flags & ARC_FLAG_NO_BUF;
5895 	int rc = 0;
5896 
5897 	ASSERT(!embedded_bp ||
5898 	    BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
5899 	ASSERT(!BP_IS_HOLE(bp));
5900 	ASSERT(!BP_IS_REDACTED(bp));
5901 
5902 	/*
5903 	 * Normally SPL_FSTRANS will already be set since kernel threads which
5904 	 * expect to call the DMU interfaces will set it when created.  System
5905 	 * calls are similarly handled by setting/cleaning the bit in the
5906 	 * registered callback (module/os/.../zfs/zpl_*).
5907 	 *
5908 	 * External consumers such as Lustre which call the exported DMU
5909 	 * interfaces may not have set SPL_FSTRANS.  To avoid a deadlock
5910 	 * on the hash_lock always set and clear the bit.
5911 	 */
5912 	fstrans_cookie_t cookie = spl_fstrans_mark();
5913 top:
5914 	if (!embedded_bp) {
5915 		/*
5916 		 * Embedded BP's have no DVA and require no I/O to "read".
5917 		 * Create an anonymous arc buf to back it.
5918 		 */
5919 		if (!zfs_blkptr_verify(spa, bp, zio_flags &
5920 		    ZIO_FLAG_CONFIG_WRITER, BLK_VERIFY_LOG)) {
5921 			rc = SET_ERROR(ECKSUM);
5922 			goto out;
5923 		}
5924 
5925 		hdr = buf_hash_find(guid, bp, &hash_lock);
5926 	}
5927 
5928 	/*
5929 	 * Determine if we have an L1 cache hit or a cache miss. For simplicity
5930 	 * we maintain encrypted data separately from compressed / uncompressed
5931 	 * data. If the user is requesting raw encrypted data and we don't have
5932 	 * that in the header we will read from disk to guarantee that we can
5933 	 * get it even if the encryption keys aren't loaded.
5934 	 */
5935 	if (hdr != NULL && HDR_HAS_L1HDR(hdr) && (HDR_HAS_RABD(hdr) ||
5936 	    (hdr->b_l1hdr.b_pabd != NULL && !encrypted_read))) {
5937 		arc_buf_t *buf = NULL;
5938 		*arc_flags |= ARC_FLAG_CACHED;
5939 
5940 		if (HDR_IO_IN_PROGRESS(hdr)) {
5941 			zio_t *head_zio = hdr->b_l1hdr.b_acb->acb_zio_head;
5942 
5943 			if (*arc_flags & ARC_FLAG_CACHED_ONLY) {
5944 				mutex_exit(hash_lock);
5945 				ARCSTAT_BUMP(arcstat_cached_only_in_progress);
5946 				rc = SET_ERROR(ENOENT);
5947 				goto out;
5948 			}
5949 
5950 			ASSERT3P(head_zio, !=, NULL);
5951 			if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
5952 			    priority == ZIO_PRIORITY_SYNC_READ) {
5953 				/*
5954 				 * This is a sync read that needs to wait for
5955 				 * an in-flight async read. Request that the
5956 				 * zio have its priority upgraded.
5957 				 */
5958 				zio_change_priority(head_zio, priority);
5959 				DTRACE_PROBE1(arc__async__upgrade__sync,
5960 				    arc_buf_hdr_t *, hdr);
5961 				ARCSTAT_BUMP(arcstat_async_upgrade_sync);
5962 			}
5963 			if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
5964 				arc_hdr_clear_flags(hdr,
5965 				    ARC_FLAG_PREDICTIVE_PREFETCH);
5966 			}
5967 
5968 			if (*arc_flags & ARC_FLAG_WAIT) {
5969 				cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
5970 				mutex_exit(hash_lock);
5971 				goto top;
5972 			}
5973 			ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
5974 
5975 			if (done) {
5976 				arc_callback_t *acb = NULL;
5977 
5978 				acb = kmem_zalloc(sizeof (arc_callback_t),
5979 				    KM_SLEEP);
5980 				acb->acb_done = done;
5981 				acb->acb_private = private;
5982 				acb->acb_compressed = compressed_read;
5983 				acb->acb_encrypted = encrypted_read;
5984 				acb->acb_noauth = noauth_read;
5985 				acb->acb_nobuf = no_buf;
5986 				acb->acb_zb = *zb;
5987 				if (pio != NULL)
5988 					acb->acb_zio_dummy = zio_null(pio,
5989 					    spa, NULL, NULL, NULL, zio_flags);
5990 
5991 				ASSERT3P(acb->acb_done, !=, NULL);
5992 				acb->acb_zio_head = head_zio;
5993 				acb->acb_next = hdr->b_l1hdr.b_acb;
5994 				hdr->b_l1hdr.b_acb = acb;
5995 			}
5996 			mutex_exit(hash_lock);
5997 			goto out;
5998 		}
5999 
6000 		ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
6001 		    hdr->b_l1hdr.b_state == arc_mfu);
6002 
6003 		if (done && !no_buf) {
6004 			if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
6005 				/*
6006 				 * This is a demand read which does not have to
6007 				 * wait for i/o because we did a predictive
6008 				 * prefetch i/o for it, which has completed.
6009 				 */
6010 				DTRACE_PROBE1(
6011 				    arc__demand__hit__predictive__prefetch,
6012 				    arc_buf_hdr_t *, hdr);
6013 				ARCSTAT_BUMP(
6014 				    arcstat_demand_hit_predictive_prefetch);
6015 				arc_hdr_clear_flags(hdr,
6016 				    ARC_FLAG_PREDICTIVE_PREFETCH);
6017 			}
6018 
6019 			if (hdr->b_flags & ARC_FLAG_PRESCIENT_PREFETCH) {
6020 				ARCSTAT_BUMP(
6021 				    arcstat_demand_hit_prescient_prefetch);
6022 				arc_hdr_clear_flags(hdr,
6023 				    ARC_FLAG_PRESCIENT_PREFETCH);
6024 			}
6025 
6026 			ASSERT(!embedded_bp || !BP_IS_HOLE(bp));
6027 
6028 			/* Get a buf with the desired data in it. */
6029 			rc = arc_buf_alloc_impl(hdr, spa, zb, private,
6030 			    encrypted_read, compressed_read, noauth_read,
6031 			    B_TRUE, &buf);
6032 			if (rc == ECKSUM) {
6033 				/*
6034 				 * Convert authentication and decryption errors
6035 				 * to EIO (and generate an ereport if needed)
6036 				 * before leaving the ARC.
6037 				 */
6038 				rc = SET_ERROR(EIO);
6039 				if ((zio_flags & ZIO_FLAG_SPECULATIVE) == 0) {
6040 					spa_log_error(spa, zb);
6041 					(void) zfs_ereport_post(
6042 					    FM_EREPORT_ZFS_AUTHENTICATION,
6043 					    spa, NULL, zb, NULL, 0);
6044 				}
6045 			}
6046 			if (rc != 0) {
6047 				(void) remove_reference(hdr, hash_lock,
6048 				    private);
6049 				arc_buf_destroy_impl(buf);
6050 				buf = NULL;
6051 			}
6052 
6053 			/* assert any errors weren't due to unloaded keys */
6054 			ASSERT((zio_flags & ZIO_FLAG_SPECULATIVE) ||
6055 			    rc != EACCES);
6056 		} else if (*arc_flags & ARC_FLAG_PREFETCH &&
6057 		    zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
6058 			if (HDR_HAS_L2HDR(hdr))
6059 				l2arc_hdr_arcstats_decrement_state(hdr);
6060 			arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
6061 			if (HDR_HAS_L2HDR(hdr))
6062 				l2arc_hdr_arcstats_increment_state(hdr);
6063 		}
6064 		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
6065 		arc_access(hdr, hash_lock);
6066 		if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH)
6067 			arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH);
6068 		if (*arc_flags & ARC_FLAG_L2CACHE)
6069 			arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
6070 		mutex_exit(hash_lock);
6071 		ARCSTAT_BUMP(arcstat_hits);
6072 		ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
6073 		    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
6074 		    data, metadata, hits);
6075 
6076 		if (done)
6077 			done(NULL, zb, bp, buf, private);
6078 	} else {
6079 		uint64_t lsize = BP_GET_LSIZE(bp);
6080 		uint64_t psize = BP_GET_PSIZE(bp);
6081 		arc_callback_t *acb;
6082 		vdev_t *vd = NULL;
6083 		uint64_t addr = 0;
6084 		boolean_t devw = B_FALSE;
6085 		uint64_t size;
6086 		abd_t *hdr_abd;
6087 		int alloc_flags = encrypted_read ? ARC_HDR_ALLOC_RDATA : 0;
6088 
6089 		if (*arc_flags & ARC_FLAG_CACHED_ONLY) {
6090 			rc = SET_ERROR(ENOENT);
6091 			if (hash_lock != NULL)
6092 				mutex_exit(hash_lock);
6093 			goto out;
6094 		}
6095 
6096 		if (hdr == NULL) {
6097 			/*
6098 			 * This block is not in the cache or it has
6099 			 * embedded data.
6100 			 */
6101 			arc_buf_hdr_t *exists = NULL;
6102 			arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
6103 			hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
6104 			    BP_IS_PROTECTED(bp), BP_GET_COMPRESS(bp), 0, type);
6105 
6106 			if (!embedded_bp) {
6107 				hdr->b_dva = *BP_IDENTITY(bp);
6108 				hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
6109 				exists = buf_hash_insert(hdr, &hash_lock);
6110 			}
6111 			if (exists != NULL) {
6112 				/* somebody beat us to the hash insert */
6113 				mutex_exit(hash_lock);
6114 				buf_discard_identity(hdr);
6115 				arc_hdr_destroy(hdr);
6116 				goto top; /* restart the IO request */
6117 			}
6118 			alloc_flags |= ARC_HDR_DO_ADAPT;
6119 		} else {
6120 			/*
6121 			 * This block is in the ghost cache or encrypted data
6122 			 * was requested and we didn't have it. If it was
6123 			 * L2-only (and thus didn't have an L1 hdr),
6124 			 * we realloc the header to add an L1 hdr.
6125 			 */
6126 			if (!HDR_HAS_L1HDR(hdr)) {
6127 				hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
6128 				    hdr_full_cache);
6129 			}
6130 
6131 			if (GHOST_STATE(hdr->b_l1hdr.b_state)) {
6132 				ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
6133 				ASSERT(!HDR_HAS_RABD(hdr));
6134 				ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6135 				ASSERT0(zfs_refcount_count(
6136 				    &hdr->b_l1hdr.b_refcnt));
6137 				ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
6138 				ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
6139 			} else if (HDR_IO_IN_PROGRESS(hdr)) {
6140 				/*
6141 				 * If this header already had an IO in progress
6142 				 * and we are performing another IO to fetch
6143 				 * encrypted data we must wait until the first
6144 				 * IO completes so as not to confuse
6145 				 * arc_read_done(). This should be very rare
6146 				 * and so the performance impact shouldn't
6147 				 * matter.
6148 				 */
6149 				cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
6150 				mutex_exit(hash_lock);
6151 				goto top;
6152 			}
6153 
6154 			/*
6155 			 * This is a delicate dance that we play here.
6156 			 * This hdr might be in the ghost list so we access
6157 			 * it to move it out of the ghost list before we
6158 			 * initiate the read. If it's a prefetch then
6159 			 * it won't have a callback so we'll remove the
6160 			 * reference that arc_buf_alloc_impl() created. We
6161 			 * do this after we've called arc_access() to
6162 			 * avoid hitting an assert in remove_reference().
6163 			 */
6164 			arc_adapt(arc_hdr_size(hdr), hdr->b_l1hdr.b_state);
6165 			arc_access(hdr, hash_lock);
6166 		}
6167 
6168 		arc_hdr_alloc_abd(hdr, alloc_flags);
6169 		if (encrypted_read) {
6170 			ASSERT(HDR_HAS_RABD(hdr));
6171 			size = HDR_GET_PSIZE(hdr);
6172 			hdr_abd = hdr->b_crypt_hdr.b_rabd;
6173 			zio_flags |= ZIO_FLAG_RAW;
6174 		} else {
6175 			ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
6176 			size = arc_hdr_size(hdr);
6177 			hdr_abd = hdr->b_l1hdr.b_pabd;
6178 
6179 			if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) {
6180 				zio_flags |= ZIO_FLAG_RAW_COMPRESS;
6181 			}
6182 
6183 			/*
6184 			 * For authenticated bp's, we do not ask the ZIO layer
6185 			 * to authenticate them since this will cause the entire
6186 			 * IO to fail if the key isn't loaded. Instead, we
6187 			 * defer authentication until arc_buf_fill(), which will
6188 			 * verify the data when the key is available.
6189 			 */
6190 			if (BP_IS_AUTHENTICATED(bp))
6191 				zio_flags |= ZIO_FLAG_RAW_ENCRYPT;
6192 		}
6193 
6194 		if (*arc_flags & ARC_FLAG_PREFETCH &&
6195 		    zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
6196 			if (HDR_HAS_L2HDR(hdr))
6197 				l2arc_hdr_arcstats_decrement_state(hdr);
6198 			arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
6199 			if (HDR_HAS_L2HDR(hdr))
6200 				l2arc_hdr_arcstats_increment_state(hdr);
6201 		}
6202 		if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH)
6203 			arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH);
6204 		if (*arc_flags & ARC_FLAG_L2CACHE)
6205 			arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
6206 		if (BP_IS_AUTHENTICATED(bp))
6207 			arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH);
6208 		if (BP_GET_LEVEL(bp) > 0)
6209 			arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT);
6210 		if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH)
6211 			arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH);
6212 		ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
6213 
6214 		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
6215 		acb->acb_done = done;
6216 		acb->acb_private = private;
6217 		acb->acb_compressed = compressed_read;
6218 		acb->acb_encrypted = encrypted_read;
6219 		acb->acb_noauth = noauth_read;
6220 		acb->acb_zb = *zb;
6221 
6222 		ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
6223 		hdr->b_l1hdr.b_acb = acb;
6224 		arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6225 
6226 		if (HDR_HAS_L2HDR(hdr) &&
6227 		    (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
6228 			devw = hdr->b_l2hdr.b_dev->l2ad_writing;
6229 			addr = hdr->b_l2hdr.b_daddr;
6230 			/*
6231 			 * Lock out L2ARC device removal.
6232 			 */
6233 			if (vdev_is_dead(vd) ||
6234 			    !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
6235 				vd = NULL;
6236 		}
6237 
6238 		/*
6239 		 * We count both async reads and scrub IOs as asynchronous so
6240 		 * that both can be upgraded in the event of a cache hit while
6241 		 * the read IO is still in-flight.
6242 		 */
6243 		if (priority == ZIO_PRIORITY_ASYNC_READ ||
6244 		    priority == ZIO_PRIORITY_SCRUB)
6245 			arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
6246 		else
6247 			arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
6248 
6249 		/*
6250 		 * At this point, we have a level 1 cache miss or a blkptr
6251 		 * with embedded data.  Try again in L2ARC if possible.
6252 		 */
6253 		ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize);
6254 
6255 		/*
6256 		 * Skip ARC stat bump for block pointers with embedded
6257 		 * data. The data are read from the blkptr itself via
6258 		 * decode_embedded_bp_compressed().
6259 		 */
6260 		if (!embedded_bp) {
6261 			DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr,
6262 			    blkptr_t *, bp, uint64_t, lsize,
6263 			    zbookmark_phys_t *, zb);
6264 			ARCSTAT_BUMP(arcstat_misses);
6265 			ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
6266 			    demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data,
6267 			    metadata, misses);
6268 			zfs_racct_read(size, 1);
6269 		}
6270 
6271 		/* Check if the spa even has l2 configured */
6272 		const boolean_t spa_has_l2 = l2arc_ndev != 0 &&
6273 		    spa->spa_l2cache.sav_count > 0;
6274 
6275 		if (vd != NULL && spa_has_l2 && !(l2arc_norw && devw)) {
6276 			/*
6277 			 * Read from the L2ARC if the following are true:
6278 			 * 1. The L2ARC vdev was previously cached.
6279 			 * 2. This buffer still has L2ARC metadata.
6280 			 * 3. This buffer isn't currently writing to the L2ARC.
6281 			 * 4. The L2ARC entry wasn't evicted, which may
6282 			 *    also have invalidated the vdev.
6283 			 * 5. This isn't prefetch or l2arc_noprefetch is 0.
6284 			 */
6285 			if (HDR_HAS_L2HDR(hdr) &&
6286 			    !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
6287 			    !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
6288 				l2arc_read_callback_t *cb;
6289 				abd_t *abd;
6290 				uint64_t asize;
6291 
6292 				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
6293 				ARCSTAT_BUMP(arcstat_l2_hits);
6294 				hdr->b_l2hdr.b_hits++;
6295 
6296 				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
6297 				    KM_SLEEP);
6298 				cb->l2rcb_hdr = hdr;
6299 				cb->l2rcb_bp = *bp;
6300 				cb->l2rcb_zb = *zb;
6301 				cb->l2rcb_flags = zio_flags;
6302 
6303 				/*
6304 				 * When Compressed ARC is disabled, but the
6305 				 * L2ARC block is compressed, arc_hdr_size()
6306 				 * will have returned LSIZE rather than PSIZE.
6307 				 */
6308 				if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
6309 				    !HDR_COMPRESSION_ENABLED(hdr) &&
6310 				    HDR_GET_PSIZE(hdr) != 0) {
6311 					size = HDR_GET_PSIZE(hdr);
6312 				}
6313 
6314 				asize = vdev_psize_to_asize(vd, size);
6315 				if (asize != size) {
6316 					abd = abd_alloc_for_io(asize,
6317 					    HDR_ISTYPE_METADATA(hdr));
6318 					cb->l2rcb_abd = abd;
6319 				} else {
6320 					abd = hdr_abd;
6321 				}
6322 
6323 				ASSERT(addr >= VDEV_LABEL_START_SIZE &&
6324 				    addr + asize <= vd->vdev_psize -
6325 				    VDEV_LABEL_END_SIZE);
6326 
6327 				/*
6328 				 * l2arc read.  The SCL_L2ARC lock will be
6329 				 * released by l2arc_read_done().
6330 				 * Issue a null zio if the underlying buffer
6331 				 * was squashed to zero size by compression.
6332 				 */
6333 				ASSERT3U(arc_hdr_get_compress(hdr), !=,
6334 				    ZIO_COMPRESS_EMPTY);
6335 				rzio = zio_read_phys(pio, vd, addr,
6336 				    asize, abd,
6337 				    ZIO_CHECKSUM_OFF,
6338 				    l2arc_read_done, cb, priority,
6339 				    zio_flags | ZIO_FLAG_DONT_CACHE |
6340 				    ZIO_FLAG_CANFAIL |
6341 				    ZIO_FLAG_DONT_PROPAGATE |
6342 				    ZIO_FLAG_DONT_RETRY, B_FALSE);
6343 				acb->acb_zio_head = rzio;
6344 
6345 				if (hash_lock != NULL)
6346 					mutex_exit(hash_lock);
6347 
6348 				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
6349 				    zio_t *, rzio);
6350 				ARCSTAT_INCR(arcstat_l2_read_bytes,
6351 				    HDR_GET_PSIZE(hdr));
6352 
6353 				if (*arc_flags & ARC_FLAG_NOWAIT) {
6354 					zio_nowait(rzio);
6355 					goto out;
6356 				}
6357 
6358 				ASSERT(*arc_flags & ARC_FLAG_WAIT);
6359 				if (zio_wait(rzio) == 0)
6360 					goto out;
6361 
6362 				/* l2arc read error; goto zio_read() */
6363 				if (hash_lock != NULL)
6364 					mutex_enter(hash_lock);
6365 			} else {
6366 				DTRACE_PROBE1(l2arc__miss,
6367 				    arc_buf_hdr_t *, hdr);
6368 				ARCSTAT_BUMP(arcstat_l2_misses);
6369 				if (HDR_L2_WRITING(hdr))
6370 					ARCSTAT_BUMP(arcstat_l2_rw_clash);
6371 				spa_config_exit(spa, SCL_L2ARC, vd);
6372 			}
6373 		} else {
6374 			if (vd != NULL)
6375 				spa_config_exit(spa, SCL_L2ARC, vd);
6376 
6377 			/*
6378 			 * Only a spa with l2 should contribute to l2
6379 			 * miss stats.  (Including the case of having a
6380 			 * faulted cache device - that's also a miss.)
6381 			 */
6382 			if (spa_has_l2) {
6383 				/*
6384 				 * Skip ARC stat bump for block pointers with
6385 				 * embedded data. The data are read from the
6386 				 * blkptr itself via
6387 				 * decode_embedded_bp_compressed().
6388 				 */
6389 				if (!embedded_bp) {
6390 					DTRACE_PROBE1(l2arc__miss,
6391 					    arc_buf_hdr_t *, hdr);
6392 					ARCSTAT_BUMP(arcstat_l2_misses);
6393 				}
6394 			}
6395 		}
6396 
6397 		rzio = zio_read(pio, spa, bp, hdr_abd, size,
6398 		    arc_read_done, hdr, priority, zio_flags, zb);
6399 		acb->acb_zio_head = rzio;
6400 
6401 		if (hash_lock != NULL)
6402 			mutex_exit(hash_lock);
6403 
6404 		if (*arc_flags & ARC_FLAG_WAIT) {
6405 			rc = zio_wait(rzio);
6406 			goto out;
6407 		}
6408 
6409 		ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
6410 		zio_nowait(rzio);
6411 	}
6412 
6413 out:
6414 	/* embedded bps don't actually go to disk */
6415 	if (!embedded_bp)
6416 		spa_read_history_add(spa, zb, *arc_flags);
6417 	spl_fstrans_unmark(cookie);
6418 	return (rc);
6419 }
6420 
6421 arc_prune_t *
6422 arc_add_prune_callback(arc_prune_func_t *func, void *private)
6423 {
6424 	arc_prune_t *p;
6425 
6426 	p = kmem_alloc(sizeof (*p), KM_SLEEP);
6427 	p->p_pfunc = func;
6428 	p->p_private = private;
6429 	list_link_init(&p->p_node);
6430 	zfs_refcount_create(&p->p_refcnt);
6431 
6432 	mutex_enter(&arc_prune_mtx);
6433 	zfs_refcount_add(&p->p_refcnt, &arc_prune_list);
6434 	list_insert_head(&arc_prune_list, p);
6435 	mutex_exit(&arc_prune_mtx);
6436 
6437 	return (p);
6438 }
6439 
6440 void
6441 arc_remove_prune_callback(arc_prune_t *p)
6442 {
6443 	boolean_t wait = B_FALSE;
6444 	mutex_enter(&arc_prune_mtx);
6445 	list_remove(&arc_prune_list, p);
6446 	if (zfs_refcount_remove(&p->p_refcnt, &arc_prune_list) > 0)
6447 		wait = B_TRUE;
6448 	mutex_exit(&arc_prune_mtx);
6449 
6450 	/* wait for arc_prune_task to finish */
6451 	if (wait)
6452 		taskq_wait_outstanding(arc_prune_taskq, 0);
6453 	ASSERT0(zfs_refcount_count(&p->p_refcnt));
6454 	zfs_refcount_destroy(&p->p_refcnt);
6455 	kmem_free(p, sizeof (*p));
6456 }
6457 
6458 /*
6459  * Notify the arc that a block was freed, and thus will never be used again.
6460  */
6461 void
6462 arc_freed(spa_t *spa, const blkptr_t *bp)
6463 {
6464 	arc_buf_hdr_t *hdr;
6465 	kmutex_t *hash_lock;
6466 	uint64_t guid = spa_load_guid(spa);
6467 
6468 	ASSERT(!BP_IS_EMBEDDED(bp));
6469 
6470 	hdr = buf_hash_find(guid, bp, &hash_lock);
6471 	if (hdr == NULL)
6472 		return;
6473 
6474 	/*
6475 	 * We might be trying to free a block that is still doing I/O
6476 	 * (i.e. prefetch) or has a reference (i.e. a dedup-ed,
6477 	 * dmu_sync-ed block). If this block is being prefetched, then it
6478 	 * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr
6479 	 * until the I/O completes. A block may also have a reference if it is
6480 	 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would
6481 	 * have written the new block to its final resting place on disk but
6482 	 * without the dedup flag set. This would have left the hdr in the MRU
6483 	 * state and discoverable. When the txg finally syncs it detects that
6484 	 * the block was overridden in open context and issues an override I/O.
6485 	 * Since this is a dedup block, the override I/O will determine if the
6486 	 * block is already in the DDT. If so, then it will replace the io_bp
6487 	 * with the bp from the DDT and allow the I/O to finish. When the I/O
6488 	 * reaches the done callback, dbuf_write_override_done, it will
6489 	 * check to see if the io_bp and io_bp_override are identical.
6490 	 * If they are not, then it indicates that the bp was replaced with
6491 	 * the bp in the DDT and the override bp is freed. This allows
6492 	 * us to arrive here with a reference on a block that is being
6493 	 * freed. So if we have an I/O in progress, or a reference to
6494 	 * this hdr, then we don't destroy the hdr.
6495 	 */
6496 	if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) &&
6497 	    zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) {
6498 		arc_change_state(arc_anon, hdr, hash_lock);
6499 		arc_hdr_destroy(hdr);
6500 		mutex_exit(hash_lock);
6501 	} else {
6502 		mutex_exit(hash_lock);
6503 	}
6504 
6505 }
6506 
6507 /*
6508  * Release this buffer from the cache, making it an anonymous buffer.  This
6509  * must be done after a read and prior to modifying the buffer contents.
6510  * If the buffer has more than one reference, we must make
6511  * a new hdr for the buffer.
6512  */
6513 void
6514 arc_release(arc_buf_t *buf, void *tag)
6515 {
6516 	arc_buf_hdr_t *hdr = buf->b_hdr;
6517 
6518 	/*
6519 	 * It would be nice to assert that if its DMU metadata (level >
6520 	 * 0 || it's the dnode file), then it must be syncing context.
6521 	 * But we don't know that information at this level.
6522 	 */
6523 
6524 	mutex_enter(&buf->b_evict_lock);
6525 
6526 	ASSERT(HDR_HAS_L1HDR(hdr));
6527 
6528 	/*
6529 	 * We don't grab the hash lock prior to this check, because if
6530 	 * the buffer's header is in the arc_anon state, it won't be
6531 	 * linked into the hash table.
6532 	 */
6533 	if (hdr->b_l1hdr.b_state == arc_anon) {
6534 		mutex_exit(&buf->b_evict_lock);
6535 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6536 		ASSERT(!HDR_IN_HASH_TABLE(hdr));
6537 		ASSERT(!HDR_HAS_L2HDR(hdr));
6538 		ASSERT(HDR_EMPTY(hdr));
6539 
6540 		ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
6541 		ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
6542 		ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
6543 
6544 		hdr->b_l1hdr.b_arc_access = 0;
6545 
6546 		/*
6547 		 * If the buf is being overridden then it may already
6548 		 * have a hdr that is not empty.
6549 		 */
6550 		buf_discard_identity(hdr);
6551 		arc_buf_thaw(buf);
6552 
6553 		return;
6554 	}
6555 
6556 	kmutex_t *hash_lock = HDR_LOCK(hdr);
6557 	mutex_enter(hash_lock);
6558 
6559 	/*
6560 	 * This assignment is only valid as long as the hash_lock is
6561 	 * held, we must be careful not to reference state or the
6562 	 * b_state field after dropping the lock.
6563 	 */
6564 	arc_state_t *state = hdr->b_l1hdr.b_state;
6565 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
6566 	ASSERT3P(state, !=, arc_anon);
6567 
6568 	/* this buffer is not on any list */
6569 	ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0);
6570 
6571 	if (HDR_HAS_L2HDR(hdr)) {
6572 		mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
6573 
6574 		/*
6575 		 * We have to recheck this conditional again now that
6576 		 * we're holding the l2ad_mtx to prevent a race with
6577 		 * another thread which might be concurrently calling
6578 		 * l2arc_evict(). In that case, l2arc_evict() might have
6579 		 * destroyed the header's L2 portion as we were waiting
6580 		 * to acquire the l2ad_mtx.
6581 		 */
6582 		if (HDR_HAS_L2HDR(hdr))
6583 			arc_hdr_l2hdr_destroy(hdr);
6584 
6585 		mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
6586 	}
6587 
6588 	/*
6589 	 * Do we have more than one buf?
6590 	 */
6591 	if (hdr->b_l1hdr.b_bufcnt > 1) {
6592 		arc_buf_hdr_t *nhdr;
6593 		uint64_t spa = hdr->b_spa;
6594 		uint64_t psize = HDR_GET_PSIZE(hdr);
6595 		uint64_t lsize = HDR_GET_LSIZE(hdr);
6596 		boolean_t protected = HDR_PROTECTED(hdr);
6597 		enum zio_compress compress = arc_hdr_get_compress(hdr);
6598 		arc_buf_contents_t type = arc_buf_type(hdr);
6599 		VERIFY3U(hdr->b_type, ==, type);
6600 
6601 		ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
6602 		(void) remove_reference(hdr, hash_lock, tag);
6603 
6604 		if (arc_buf_is_shared(buf) && !ARC_BUF_COMPRESSED(buf)) {
6605 			ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
6606 			ASSERT(ARC_BUF_LAST(buf));
6607 		}
6608 
6609 		/*
6610 		 * Pull the data off of this hdr and attach it to
6611 		 * a new anonymous hdr. Also find the last buffer
6612 		 * in the hdr's buffer list.
6613 		 */
6614 		arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
6615 		ASSERT3P(lastbuf, !=, NULL);
6616 
6617 		/*
6618 		 * If the current arc_buf_t and the hdr are sharing their data
6619 		 * buffer, then we must stop sharing that block.
6620 		 */
6621 		if (arc_buf_is_shared(buf)) {
6622 			ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
6623 			VERIFY(!arc_buf_is_shared(lastbuf));
6624 
6625 			/*
6626 			 * First, sever the block sharing relationship between
6627 			 * buf and the arc_buf_hdr_t.
6628 			 */
6629 			arc_unshare_buf(hdr, buf);
6630 
6631 			/*
6632 			 * Now we need to recreate the hdr's b_pabd. Since we
6633 			 * have lastbuf handy, we try to share with it, but if
6634 			 * we can't then we allocate a new b_pabd and copy the
6635 			 * data from buf into it.
6636 			 */
6637 			if (arc_can_share(hdr, lastbuf)) {
6638 				arc_share_buf(hdr, lastbuf);
6639 			} else {
6640 				arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT);
6641 				abd_copy_from_buf(hdr->b_l1hdr.b_pabd,
6642 				    buf->b_data, psize);
6643 			}
6644 			VERIFY3P(lastbuf->b_data, !=, NULL);
6645 		} else if (HDR_SHARED_DATA(hdr)) {
6646 			/*
6647 			 * Uncompressed shared buffers are always at the end
6648 			 * of the list. Compressed buffers don't have the
6649 			 * same requirements. This makes it hard to
6650 			 * simply assert that the lastbuf is shared so
6651 			 * we rely on the hdr's compression flags to determine
6652 			 * if we have a compressed, shared buffer.
6653 			 */
6654 			ASSERT(arc_buf_is_shared(lastbuf) ||
6655 			    arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
6656 			ASSERT(!ARC_BUF_SHARED(buf));
6657 		}
6658 
6659 		ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
6660 		ASSERT3P(state, !=, arc_l2c_only);
6661 
6662 		(void) zfs_refcount_remove_many(&state->arcs_size,
6663 		    arc_buf_size(buf), buf);
6664 
6665 		if (zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
6666 			ASSERT3P(state, !=, arc_l2c_only);
6667 			(void) zfs_refcount_remove_many(
6668 			    &state->arcs_esize[type],
6669 			    arc_buf_size(buf), buf);
6670 		}
6671 
6672 		hdr->b_l1hdr.b_bufcnt -= 1;
6673 		if (ARC_BUF_ENCRYPTED(buf))
6674 			hdr->b_crypt_hdr.b_ebufcnt -= 1;
6675 
6676 		arc_cksum_verify(buf);
6677 		arc_buf_unwatch(buf);
6678 
6679 		/* if this is the last uncompressed buf free the checksum */
6680 		if (!arc_hdr_has_uncompressed_buf(hdr))
6681 			arc_cksum_free(hdr);
6682 
6683 		mutex_exit(hash_lock);
6684 
6685 		/*
6686 		 * Allocate a new hdr. The new hdr will contain a b_pabd
6687 		 * buffer which will be freed in arc_write().
6688 		 */
6689 		nhdr = arc_hdr_alloc(spa, psize, lsize, protected,
6690 		    compress, hdr->b_complevel, type);
6691 		ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL);
6692 		ASSERT0(nhdr->b_l1hdr.b_bufcnt);
6693 		ASSERT0(zfs_refcount_count(&nhdr->b_l1hdr.b_refcnt));
6694 		VERIFY3U(nhdr->b_type, ==, type);
6695 		ASSERT(!HDR_SHARED_DATA(nhdr));
6696 
6697 		nhdr->b_l1hdr.b_buf = buf;
6698 		nhdr->b_l1hdr.b_bufcnt = 1;
6699 		if (ARC_BUF_ENCRYPTED(buf))
6700 			nhdr->b_crypt_hdr.b_ebufcnt = 1;
6701 		(void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
6702 		buf->b_hdr = nhdr;
6703 
6704 		mutex_exit(&buf->b_evict_lock);
6705 		(void) zfs_refcount_add_many(&arc_anon->arcs_size,
6706 		    arc_buf_size(buf), buf);
6707 	} else {
6708 		mutex_exit(&buf->b_evict_lock);
6709 		ASSERT(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
6710 		/* protected by hash lock, or hdr is on arc_anon */
6711 		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
6712 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6713 		hdr->b_l1hdr.b_mru_hits = 0;
6714 		hdr->b_l1hdr.b_mru_ghost_hits = 0;
6715 		hdr->b_l1hdr.b_mfu_hits = 0;
6716 		hdr->b_l1hdr.b_mfu_ghost_hits = 0;
6717 		arc_change_state(arc_anon, hdr, hash_lock);
6718 		hdr->b_l1hdr.b_arc_access = 0;
6719 
6720 		mutex_exit(hash_lock);
6721 		buf_discard_identity(hdr);
6722 		arc_buf_thaw(buf);
6723 	}
6724 }
6725 
6726 int
6727 arc_released(arc_buf_t *buf)
6728 {
6729 	int released;
6730 
6731 	mutex_enter(&buf->b_evict_lock);
6732 	released = (buf->b_data != NULL &&
6733 	    buf->b_hdr->b_l1hdr.b_state == arc_anon);
6734 	mutex_exit(&buf->b_evict_lock);
6735 	return (released);
6736 }
6737 
6738 #ifdef ZFS_DEBUG
6739 int
6740 arc_referenced(arc_buf_t *buf)
6741 {
6742 	int referenced;
6743 
6744 	mutex_enter(&buf->b_evict_lock);
6745 	referenced = (zfs_refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
6746 	mutex_exit(&buf->b_evict_lock);
6747 	return (referenced);
6748 }
6749 #endif
6750 
6751 static void
6752 arc_write_ready(zio_t *zio)
6753 {
6754 	arc_write_callback_t *callback = zio->io_private;
6755 	arc_buf_t *buf = callback->awcb_buf;
6756 	arc_buf_hdr_t *hdr = buf->b_hdr;
6757 	blkptr_t *bp = zio->io_bp;
6758 	uint64_t psize = BP_IS_HOLE(bp) ? 0 : BP_GET_PSIZE(bp);
6759 	fstrans_cookie_t cookie = spl_fstrans_mark();
6760 
6761 	ASSERT(HDR_HAS_L1HDR(hdr));
6762 	ASSERT(!zfs_refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
6763 	ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
6764 
6765 	/*
6766 	 * If we're reexecuting this zio because the pool suspended, then
6767 	 * cleanup any state that was previously set the first time the
6768 	 * callback was invoked.
6769 	 */
6770 	if (zio->io_flags & ZIO_FLAG_REEXECUTED) {
6771 		arc_cksum_free(hdr);
6772 		arc_buf_unwatch(buf);
6773 		if (hdr->b_l1hdr.b_pabd != NULL) {
6774 			if (arc_buf_is_shared(buf)) {
6775 				arc_unshare_buf(hdr, buf);
6776 			} else {
6777 				arc_hdr_free_abd(hdr, B_FALSE);
6778 			}
6779 		}
6780 
6781 		if (HDR_HAS_RABD(hdr))
6782 			arc_hdr_free_abd(hdr, B_TRUE);
6783 	}
6784 	ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
6785 	ASSERT(!HDR_HAS_RABD(hdr));
6786 	ASSERT(!HDR_SHARED_DATA(hdr));
6787 	ASSERT(!arc_buf_is_shared(buf));
6788 
6789 	callback->awcb_ready(zio, buf, callback->awcb_private);
6790 
6791 	if (HDR_IO_IN_PROGRESS(hdr))
6792 		ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED);
6793 
6794 	arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6795 
6796 	if (BP_IS_PROTECTED(bp) != !!HDR_PROTECTED(hdr))
6797 		hdr = arc_hdr_realloc_crypt(hdr, BP_IS_PROTECTED(bp));
6798 
6799 	if (BP_IS_PROTECTED(bp)) {
6800 		/* ZIL blocks are written through zio_rewrite */
6801 		ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG);
6802 		ASSERT(HDR_PROTECTED(hdr));
6803 
6804 		if (BP_SHOULD_BYTESWAP(bp)) {
6805 			if (BP_GET_LEVEL(bp) > 0) {
6806 				hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
6807 			} else {
6808 				hdr->b_l1hdr.b_byteswap =
6809 				    DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
6810 			}
6811 		} else {
6812 			hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
6813 		}
6814 
6815 		hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp);
6816 		hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset;
6817 		zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt,
6818 		    hdr->b_crypt_hdr.b_iv);
6819 		zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac);
6820 	}
6821 
6822 	/*
6823 	 * If this block was written for raw encryption but the zio layer
6824 	 * ended up only authenticating it, adjust the buffer flags now.
6825 	 */
6826 	if (BP_IS_AUTHENTICATED(bp) && ARC_BUF_ENCRYPTED(buf)) {
6827 		arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH);
6828 		buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
6829 		if (BP_GET_COMPRESS(bp) == ZIO_COMPRESS_OFF)
6830 			buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
6831 	} else if (BP_IS_HOLE(bp) && ARC_BUF_ENCRYPTED(buf)) {
6832 		buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
6833 		buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
6834 	}
6835 
6836 	/* this must be done after the buffer flags are adjusted */
6837 	arc_cksum_compute(buf);
6838 
6839 	enum zio_compress compress;
6840 	if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
6841 		compress = ZIO_COMPRESS_OFF;
6842 	} else {
6843 		ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
6844 		compress = BP_GET_COMPRESS(bp);
6845 	}
6846 	HDR_SET_PSIZE(hdr, psize);
6847 	arc_hdr_set_compress(hdr, compress);
6848 	hdr->b_complevel = zio->io_prop.zp_complevel;
6849 
6850 	if (zio->io_error != 0 || psize == 0)
6851 		goto out;
6852 
6853 	/*
6854 	 * Fill the hdr with data. If the buffer is encrypted we have no choice
6855 	 * but to copy the data into b_radb. If the hdr is compressed, the data
6856 	 * we want is available from the zio, otherwise we can take it from
6857 	 * the buf.
6858 	 *
6859 	 * We might be able to share the buf's data with the hdr here. However,
6860 	 * doing so would cause the ARC to be full of linear ABDs if we write a
6861 	 * lot of shareable data. As a compromise, we check whether scattered
6862 	 * ABDs are allowed, and assume that if they are then the user wants
6863 	 * the ARC to be primarily filled with them regardless of the data being
6864 	 * written. Therefore, if they're allowed then we allocate one and copy
6865 	 * the data into it; otherwise, we share the data directly if we can.
6866 	 */
6867 	if (ARC_BUF_ENCRYPTED(buf)) {
6868 		ASSERT3U(psize, >, 0);
6869 		ASSERT(ARC_BUF_COMPRESSED(buf));
6870 		arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT | ARC_HDR_ALLOC_RDATA |
6871 		    ARC_HDR_USE_RESERVE);
6872 		abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize);
6873 	} else if (!abd_size_alloc_linear(arc_buf_size(buf)) ||
6874 	    !arc_can_share(hdr, buf)) {
6875 		/*
6876 		 * Ideally, we would always copy the io_abd into b_pabd, but the
6877 		 * user may have disabled compressed ARC, thus we must check the
6878 		 * hdr's compression setting rather than the io_bp's.
6879 		 */
6880 		if (BP_IS_ENCRYPTED(bp)) {
6881 			ASSERT3U(psize, >, 0);
6882 			arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT |
6883 			    ARC_HDR_ALLOC_RDATA | ARC_HDR_USE_RESERVE);
6884 			abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize);
6885 		} else if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF &&
6886 		    !ARC_BUF_COMPRESSED(buf)) {
6887 			ASSERT3U(psize, >, 0);
6888 			arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT |
6889 			    ARC_HDR_USE_RESERVE);
6890 			abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize);
6891 		} else {
6892 			ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr));
6893 			arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT |
6894 			    ARC_HDR_USE_RESERVE);
6895 			abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data,
6896 			    arc_buf_size(buf));
6897 		}
6898 	} else {
6899 		ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd));
6900 		ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf));
6901 		ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
6902 
6903 		arc_share_buf(hdr, buf);
6904 	}
6905 
6906 out:
6907 	arc_hdr_verify(hdr, bp);
6908 	spl_fstrans_unmark(cookie);
6909 }
6910 
6911 static void
6912 arc_write_children_ready(zio_t *zio)
6913 {
6914 	arc_write_callback_t *callback = zio->io_private;
6915 	arc_buf_t *buf = callback->awcb_buf;
6916 
6917 	callback->awcb_children_ready(zio, buf, callback->awcb_private);
6918 }
6919 
6920 /*
6921  * The SPA calls this callback for each physical write that happens on behalf
6922  * of a logical write.  See the comment in dbuf_write_physdone() for details.
6923  */
6924 static void
6925 arc_write_physdone(zio_t *zio)
6926 {
6927 	arc_write_callback_t *cb = zio->io_private;
6928 	if (cb->awcb_physdone != NULL)
6929 		cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
6930 }
6931 
6932 static void
6933 arc_write_done(zio_t *zio)
6934 {
6935 	arc_write_callback_t *callback = zio->io_private;
6936 	arc_buf_t *buf = callback->awcb_buf;
6937 	arc_buf_hdr_t *hdr = buf->b_hdr;
6938 
6939 	ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
6940 
6941 	if (zio->io_error == 0) {
6942 		arc_hdr_verify(hdr, zio->io_bp);
6943 
6944 		if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
6945 			buf_discard_identity(hdr);
6946 		} else {
6947 			hdr->b_dva = *BP_IDENTITY(zio->io_bp);
6948 			hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
6949 		}
6950 	} else {
6951 		ASSERT(HDR_EMPTY(hdr));
6952 	}
6953 
6954 	/*
6955 	 * If the block to be written was all-zero or compressed enough to be
6956 	 * embedded in the BP, no write was performed so there will be no
6957 	 * dva/birth/checksum.  The buffer must therefore remain anonymous
6958 	 * (and uncached).
6959 	 */
6960 	if (!HDR_EMPTY(hdr)) {
6961 		arc_buf_hdr_t *exists;
6962 		kmutex_t *hash_lock;
6963 
6964 		ASSERT3U(zio->io_error, ==, 0);
6965 
6966 		arc_cksum_verify(buf);
6967 
6968 		exists = buf_hash_insert(hdr, &hash_lock);
6969 		if (exists != NULL) {
6970 			/*
6971 			 * This can only happen if we overwrite for
6972 			 * sync-to-convergence, because we remove
6973 			 * buffers from the hash table when we arc_free().
6974 			 */
6975 			if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
6976 				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
6977 					panic("bad overwrite, hdr=%p exists=%p",
6978 					    (void *)hdr, (void *)exists);
6979 				ASSERT(zfs_refcount_is_zero(
6980 				    &exists->b_l1hdr.b_refcnt));
6981 				arc_change_state(arc_anon, exists, hash_lock);
6982 				arc_hdr_destroy(exists);
6983 				mutex_exit(hash_lock);
6984 				exists = buf_hash_insert(hdr, &hash_lock);
6985 				ASSERT3P(exists, ==, NULL);
6986 			} else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
6987 				/* nopwrite */
6988 				ASSERT(zio->io_prop.zp_nopwrite);
6989 				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
6990 					panic("bad nopwrite, hdr=%p exists=%p",
6991 					    (void *)hdr, (void *)exists);
6992 			} else {
6993 				/* Dedup */
6994 				ASSERT(hdr->b_l1hdr.b_bufcnt == 1);
6995 				ASSERT(hdr->b_l1hdr.b_state == arc_anon);
6996 				ASSERT(BP_GET_DEDUP(zio->io_bp));
6997 				ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
6998 			}
6999 		}
7000 		arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
7001 		/* if it's not anon, we are doing a scrub */
7002 		if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
7003 			arc_access(hdr, hash_lock);
7004 		mutex_exit(hash_lock);
7005 	} else {
7006 		arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
7007 	}
7008 
7009 	ASSERT(!zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
7010 	callback->awcb_done(zio, buf, callback->awcb_private);
7011 
7012 	abd_free(zio->io_abd);
7013 	kmem_free(callback, sizeof (arc_write_callback_t));
7014 }
7015 
7016 zio_t *
7017 arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
7018     blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc,
7019     const zio_prop_t *zp, arc_write_done_func_t *ready,
7020     arc_write_done_func_t *children_ready, arc_write_done_func_t *physdone,
7021     arc_write_done_func_t *done, void *private, zio_priority_t priority,
7022     int zio_flags, const zbookmark_phys_t *zb)
7023 {
7024 	arc_buf_hdr_t *hdr = buf->b_hdr;
7025 	arc_write_callback_t *callback;
7026 	zio_t *zio;
7027 	zio_prop_t localprop = *zp;
7028 
7029 	ASSERT3P(ready, !=, NULL);
7030 	ASSERT3P(done, !=, NULL);
7031 	ASSERT(!HDR_IO_ERROR(hdr));
7032 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
7033 	ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
7034 	ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
7035 	if (l2arc)
7036 		arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
7037 
7038 	if (ARC_BUF_ENCRYPTED(buf)) {
7039 		ASSERT(ARC_BUF_COMPRESSED(buf));
7040 		localprop.zp_encrypt = B_TRUE;
7041 		localprop.zp_compress = HDR_GET_COMPRESS(hdr);
7042 		localprop.zp_complevel = hdr->b_complevel;
7043 		localprop.zp_byteorder =
7044 		    (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ?
7045 		    ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER;
7046 		bcopy(hdr->b_crypt_hdr.b_salt, localprop.zp_salt,
7047 		    ZIO_DATA_SALT_LEN);
7048 		bcopy(hdr->b_crypt_hdr.b_iv, localprop.zp_iv,
7049 		    ZIO_DATA_IV_LEN);
7050 		bcopy(hdr->b_crypt_hdr.b_mac, localprop.zp_mac,
7051 		    ZIO_DATA_MAC_LEN);
7052 		if (DMU_OT_IS_ENCRYPTED(localprop.zp_type)) {
7053 			localprop.zp_nopwrite = B_FALSE;
7054 			localprop.zp_copies =
7055 			    MIN(localprop.zp_copies, SPA_DVAS_PER_BP - 1);
7056 		}
7057 		zio_flags |= ZIO_FLAG_RAW;
7058 	} else if (ARC_BUF_COMPRESSED(buf)) {
7059 		ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf));
7060 		localprop.zp_compress = HDR_GET_COMPRESS(hdr);
7061 		localprop.zp_complevel = hdr->b_complevel;
7062 		zio_flags |= ZIO_FLAG_RAW_COMPRESS;
7063 	}
7064 	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
7065 	callback->awcb_ready = ready;
7066 	callback->awcb_children_ready = children_ready;
7067 	callback->awcb_physdone = physdone;
7068 	callback->awcb_done = done;
7069 	callback->awcb_private = private;
7070 	callback->awcb_buf = buf;
7071 
7072 	/*
7073 	 * The hdr's b_pabd is now stale, free it now. A new data block
7074 	 * will be allocated when the zio pipeline calls arc_write_ready().
7075 	 */
7076 	if (hdr->b_l1hdr.b_pabd != NULL) {
7077 		/*
7078 		 * If the buf is currently sharing the data block with
7079 		 * the hdr then we need to break that relationship here.
7080 		 * The hdr will remain with a NULL data pointer and the
7081 		 * buf will take sole ownership of the block.
7082 		 */
7083 		if (arc_buf_is_shared(buf)) {
7084 			arc_unshare_buf(hdr, buf);
7085 		} else {
7086 			arc_hdr_free_abd(hdr, B_FALSE);
7087 		}
7088 		VERIFY3P(buf->b_data, !=, NULL);
7089 	}
7090 
7091 	if (HDR_HAS_RABD(hdr))
7092 		arc_hdr_free_abd(hdr, B_TRUE);
7093 
7094 	if (!(zio_flags & ZIO_FLAG_RAW))
7095 		arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF);
7096 
7097 	ASSERT(!arc_buf_is_shared(buf));
7098 	ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
7099 
7100 	zio = zio_write(pio, spa, txg, bp,
7101 	    abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)),
7102 	    HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready,
7103 	    (children_ready != NULL) ? arc_write_children_ready : NULL,
7104 	    arc_write_physdone, arc_write_done, callback,
7105 	    priority, zio_flags, zb);
7106 
7107 	return (zio);
7108 }
7109 
7110 void
7111 arc_tempreserve_clear(uint64_t reserve)
7112 {
7113 	atomic_add_64(&arc_tempreserve, -reserve);
7114 	ASSERT((int64_t)arc_tempreserve >= 0);
7115 }
7116 
7117 int
7118 arc_tempreserve_space(spa_t *spa, uint64_t reserve, uint64_t txg)
7119 {
7120 	int error;
7121 	uint64_t anon_size;
7122 
7123 	if (!arc_no_grow &&
7124 	    reserve > arc_c/4 &&
7125 	    reserve * 4 > (2ULL << SPA_MAXBLOCKSHIFT))
7126 		arc_c = MIN(arc_c_max, reserve * 4);
7127 
7128 	/*
7129 	 * Throttle when the calculated memory footprint for the TXG
7130 	 * exceeds the target ARC size.
7131 	 */
7132 	if (reserve > arc_c) {
7133 		DMU_TX_STAT_BUMP(dmu_tx_memory_reserve);
7134 		return (SET_ERROR(ERESTART));
7135 	}
7136 
7137 	/*
7138 	 * Don't count loaned bufs as in flight dirty data to prevent long
7139 	 * network delays from blocking transactions that are ready to be
7140 	 * assigned to a txg.
7141 	 */
7142 
7143 	/* assert that it has not wrapped around */
7144 	ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
7145 
7146 	anon_size = MAX((int64_t)(zfs_refcount_count(&arc_anon->arcs_size) -
7147 	    arc_loaned_bytes), 0);
7148 
7149 	/*
7150 	 * Writes will, almost always, require additional memory allocations
7151 	 * in order to compress/encrypt/etc the data.  We therefore need to
7152 	 * make sure that there is sufficient available memory for this.
7153 	 */
7154 	error = arc_memory_throttle(spa, reserve, txg);
7155 	if (error != 0)
7156 		return (error);
7157 
7158 	/*
7159 	 * Throttle writes when the amount of dirty data in the cache
7160 	 * gets too large.  We try to keep the cache less than half full
7161 	 * of dirty blocks so that our sync times don't grow too large.
7162 	 *
7163 	 * In the case of one pool being built on another pool, we want
7164 	 * to make sure we don't end up throttling the lower (backing)
7165 	 * pool when the upper pool is the majority contributor to dirty
7166 	 * data. To insure we make forward progress during throttling, we
7167 	 * also check the current pool's net dirty data and only throttle
7168 	 * if it exceeds zfs_arc_pool_dirty_percent of the anonymous dirty
7169 	 * data in the cache.
7170 	 *
7171 	 * Note: if two requests come in concurrently, we might let them
7172 	 * both succeed, when one of them should fail.  Not a huge deal.
7173 	 */
7174 	uint64_t total_dirty = reserve + arc_tempreserve + anon_size;
7175 	uint64_t spa_dirty_anon = spa_dirty_data(spa);
7176 	uint64_t rarc_c = arc_warm ? arc_c : arc_c_max;
7177 	if (total_dirty > rarc_c * zfs_arc_dirty_limit_percent / 100 &&
7178 	    anon_size > rarc_c * zfs_arc_anon_limit_percent / 100 &&
7179 	    spa_dirty_anon > anon_size * zfs_arc_pool_dirty_percent / 100) {
7180 #ifdef ZFS_DEBUG
7181 		uint64_t meta_esize = zfs_refcount_count(
7182 		    &arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7183 		uint64_t data_esize =
7184 		    zfs_refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7185 		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
7186 		    "anon_data=%lluK tempreserve=%lluK rarc_c=%lluK\n",
7187 		    (u_longlong_t)arc_tempreserve >> 10,
7188 		    (u_longlong_t)meta_esize >> 10,
7189 		    (u_longlong_t)data_esize >> 10,
7190 		    (u_longlong_t)reserve >> 10,
7191 		    (u_longlong_t)rarc_c >> 10);
7192 #endif
7193 		DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle);
7194 		return (SET_ERROR(ERESTART));
7195 	}
7196 	atomic_add_64(&arc_tempreserve, reserve);
7197 	return (0);
7198 }
7199 
7200 static void
7201 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
7202     kstat_named_t *evict_data, kstat_named_t *evict_metadata)
7203 {
7204 	size->value.ui64 = zfs_refcount_count(&state->arcs_size);
7205 	evict_data->value.ui64 =
7206 	    zfs_refcount_count(&state->arcs_esize[ARC_BUFC_DATA]);
7207 	evict_metadata->value.ui64 =
7208 	    zfs_refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]);
7209 }
7210 
7211 static int
7212 arc_kstat_update(kstat_t *ksp, int rw)
7213 {
7214 	arc_stats_t *as = ksp->ks_data;
7215 
7216 	if (rw == KSTAT_WRITE)
7217 		return (SET_ERROR(EACCES));
7218 
7219 	as->arcstat_hits.value.ui64 =
7220 	    wmsum_value(&arc_sums.arcstat_hits);
7221 	as->arcstat_misses.value.ui64 =
7222 	    wmsum_value(&arc_sums.arcstat_misses);
7223 	as->arcstat_demand_data_hits.value.ui64 =
7224 	    wmsum_value(&arc_sums.arcstat_demand_data_hits);
7225 	as->arcstat_demand_data_misses.value.ui64 =
7226 	    wmsum_value(&arc_sums.arcstat_demand_data_misses);
7227 	as->arcstat_demand_metadata_hits.value.ui64 =
7228 	    wmsum_value(&arc_sums.arcstat_demand_metadata_hits);
7229 	as->arcstat_demand_metadata_misses.value.ui64 =
7230 	    wmsum_value(&arc_sums.arcstat_demand_metadata_misses);
7231 	as->arcstat_prefetch_data_hits.value.ui64 =
7232 	    wmsum_value(&arc_sums.arcstat_prefetch_data_hits);
7233 	as->arcstat_prefetch_data_misses.value.ui64 =
7234 	    wmsum_value(&arc_sums.arcstat_prefetch_data_misses);
7235 	as->arcstat_prefetch_metadata_hits.value.ui64 =
7236 	    wmsum_value(&arc_sums.arcstat_prefetch_metadata_hits);
7237 	as->arcstat_prefetch_metadata_misses.value.ui64 =
7238 	    wmsum_value(&arc_sums.arcstat_prefetch_metadata_misses);
7239 	as->arcstat_mru_hits.value.ui64 =
7240 	    wmsum_value(&arc_sums.arcstat_mru_hits);
7241 	as->arcstat_mru_ghost_hits.value.ui64 =
7242 	    wmsum_value(&arc_sums.arcstat_mru_ghost_hits);
7243 	as->arcstat_mfu_hits.value.ui64 =
7244 	    wmsum_value(&arc_sums.arcstat_mfu_hits);
7245 	as->arcstat_mfu_ghost_hits.value.ui64 =
7246 	    wmsum_value(&arc_sums.arcstat_mfu_ghost_hits);
7247 	as->arcstat_deleted.value.ui64 =
7248 	    wmsum_value(&arc_sums.arcstat_deleted);
7249 	as->arcstat_mutex_miss.value.ui64 =
7250 	    wmsum_value(&arc_sums.arcstat_mutex_miss);
7251 	as->arcstat_access_skip.value.ui64 =
7252 	    wmsum_value(&arc_sums.arcstat_access_skip);
7253 	as->arcstat_evict_skip.value.ui64 =
7254 	    wmsum_value(&arc_sums.arcstat_evict_skip);
7255 	as->arcstat_evict_not_enough.value.ui64 =
7256 	    wmsum_value(&arc_sums.arcstat_evict_not_enough);
7257 	as->arcstat_evict_l2_cached.value.ui64 =
7258 	    wmsum_value(&arc_sums.arcstat_evict_l2_cached);
7259 	as->arcstat_evict_l2_eligible.value.ui64 =
7260 	    wmsum_value(&arc_sums.arcstat_evict_l2_eligible);
7261 	as->arcstat_evict_l2_eligible_mfu.value.ui64 =
7262 	    wmsum_value(&arc_sums.arcstat_evict_l2_eligible_mfu);
7263 	as->arcstat_evict_l2_eligible_mru.value.ui64 =
7264 	    wmsum_value(&arc_sums.arcstat_evict_l2_eligible_mru);
7265 	as->arcstat_evict_l2_ineligible.value.ui64 =
7266 	    wmsum_value(&arc_sums.arcstat_evict_l2_ineligible);
7267 	as->arcstat_evict_l2_skip.value.ui64 =
7268 	    wmsum_value(&arc_sums.arcstat_evict_l2_skip);
7269 	as->arcstat_hash_collisions.value.ui64 =
7270 	    wmsum_value(&arc_sums.arcstat_hash_collisions);
7271 	as->arcstat_hash_chains.value.ui64 =
7272 	    wmsum_value(&arc_sums.arcstat_hash_chains);
7273 	as->arcstat_size.value.ui64 =
7274 	    aggsum_value(&arc_sums.arcstat_size);
7275 	as->arcstat_compressed_size.value.ui64 =
7276 	    wmsum_value(&arc_sums.arcstat_compressed_size);
7277 	as->arcstat_uncompressed_size.value.ui64 =
7278 	    wmsum_value(&arc_sums.arcstat_uncompressed_size);
7279 	as->arcstat_overhead_size.value.ui64 =
7280 	    wmsum_value(&arc_sums.arcstat_overhead_size);
7281 	as->arcstat_hdr_size.value.ui64 =
7282 	    wmsum_value(&arc_sums.arcstat_hdr_size);
7283 	as->arcstat_data_size.value.ui64 =
7284 	    wmsum_value(&arc_sums.arcstat_data_size);
7285 	as->arcstat_metadata_size.value.ui64 =
7286 	    wmsum_value(&arc_sums.arcstat_metadata_size);
7287 	as->arcstat_dbuf_size.value.ui64 =
7288 	    wmsum_value(&arc_sums.arcstat_dbuf_size);
7289 #if defined(COMPAT_FREEBSD11)
7290 	as->arcstat_other_size.value.ui64 =
7291 	    wmsum_value(&arc_sums.arcstat_bonus_size) +
7292 	    aggsum_value(&arc_sums.arcstat_dnode_size) +
7293 	    wmsum_value(&arc_sums.arcstat_dbuf_size);
7294 #endif
7295 
7296 	arc_kstat_update_state(arc_anon,
7297 	    &as->arcstat_anon_size,
7298 	    &as->arcstat_anon_evictable_data,
7299 	    &as->arcstat_anon_evictable_metadata);
7300 	arc_kstat_update_state(arc_mru,
7301 	    &as->arcstat_mru_size,
7302 	    &as->arcstat_mru_evictable_data,
7303 	    &as->arcstat_mru_evictable_metadata);
7304 	arc_kstat_update_state(arc_mru_ghost,
7305 	    &as->arcstat_mru_ghost_size,
7306 	    &as->arcstat_mru_ghost_evictable_data,
7307 	    &as->arcstat_mru_ghost_evictable_metadata);
7308 	arc_kstat_update_state(arc_mfu,
7309 	    &as->arcstat_mfu_size,
7310 	    &as->arcstat_mfu_evictable_data,
7311 	    &as->arcstat_mfu_evictable_metadata);
7312 	arc_kstat_update_state(arc_mfu_ghost,
7313 	    &as->arcstat_mfu_ghost_size,
7314 	    &as->arcstat_mfu_ghost_evictable_data,
7315 	    &as->arcstat_mfu_ghost_evictable_metadata);
7316 
7317 	as->arcstat_dnode_size.value.ui64 =
7318 	    aggsum_value(&arc_sums.arcstat_dnode_size);
7319 	as->arcstat_bonus_size.value.ui64 =
7320 	    wmsum_value(&arc_sums.arcstat_bonus_size);
7321 	as->arcstat_l2_hits.value.ui64 =
7322 	    wmsum_value(&arc_sums.arcstat_l2_hits);
7323 	as->arcstat_l2_misses.value.ui64 =
7324 	    wmsum_value(&arc_sums.arcstat_l2_misses);
7325 	as->arcstat_l2_prefetch_asize.value.ui64 =
7326 	    wmsum_value(&arc_sums.arcstat_l2_prefetch_asize);
7327 	as->arcstat_l2_mru_asize.value.ui64 =
7328 	    wmsum_value(&arc_sums.arcstat_l2_mru_asize);
7329 	as->arcstat_l2_mfu_asize.value.ui64 =
7330 	    wmsum_value(&arc_sums.arcstat_l2_mfu_asize);
7331 	as->arcstat_l2_bufc_data_asize.value.ui64 =
7332 	    wmsum_value(&arc_sums.arcstat_l2_bufc_data_asize);
7333 	as->arcstat_l2_bufc_metadata_asize.value.ui64 =
7334 	    wmsum_value(&arc_sums.arcstat_l2_bufc_metadata_asize);
7335 	as->arcstat_l2_feeds.value.ui64 =
7336 	    wmsum_value(&arc_sums.arcstat_l2_feeds);
7337 	as->arcstat_l2_rw_clash.value.ui64 =
7338 	    wmsum_value(&arc_sums.arcstat_l2_rw_clash);
7339 	as->arcstat_l2_read_bytes.value.ui64 =
7340 	    wmsum_value(&arc_sums.arcstat_l2_read_bytes);
7341 	as->arcstat_l2_write_bytes.value.ui64 =
7342 	    wmsum_value(&arc_sums.arcstat_l2_write_bytes);
7343 	as->arcstat_l2_writes_sent.value.ui64 =
7344 	    wmsum_value(&arc_sums.arcstat_l2_writes_sent);
7345 	as->arcstat_l2_writes_done.value.ui64 =
7346 	    wmsum_value(&arc_sums.arcstat_l2_writes_done);
7347 	as->arcstat_l2_writes_error.value.ui64 =
7348 	    wmsum_value(&arc_sums.arcstat_l2_writes_error);
7349 	as->arcstat_l2_writes_lock_retry.value.ui64 =
7350 	    wmsum_value(&arc_sums.arcstat_l2_writes_lock_retry);
7351 	as->arcstat_l2_evict_lock_retry.value.ui64 =
7352 	    wmsum_value(&arc_sums.arcstat_l2_evict_lock_retry);
7353 	as->arcstat_l2_evict_reading.value.ui64 =
7354 	    wmsum_value(&arc_sums.arcstat_l2_evict_reading);
7355 	as->arcstat_l2_evict_l1cached.value.ui64 =
7356 	    wmsum_value(&arc_sums.arcstat_l2_evict_l1cached);
7357 	as->arcstat_l2_free_on_write.value.ui64 =
7358 	    wmsum_value(&arc_sums.arcstat_l2_free_on_write);
7359 	as->arcstat_l2_abort_lowmem.value.ui64 =
7360 	    wmsum_value(&arc_sums.arcstat_l2_abort_lowmem);
7361 	as->arcstat_l2_cksum_bad.value.ui64 =
7362 	    wmsum_value(&arc_sums.arcstat_l2_cksum_bad);
7363 	as->arcstat_l2_io_error.value.ui64 =
7364 	    wmsum_value(&arc_sums.arcstat_l2_io_error);
7365 	as->arcstat_l2_lsize.value.ui64 =
7366 	    wmsum_value(&arc_sums.arcstat_l2_lsize);
7367 	as->arcstat_l2_psize.value.ui64 =
7368 	    wmsum_value(&arc_sums.arcstat_l2_psize);
7369 	as->arcstat_l2_hdr_size.value.ui64 =
7370 	    aggsum_value(&arc_sums.arcstat_l2_hdr_size);
7371 	as->arcstat_l2_log_blk_writes.value.ui64 =
7372 	    wmsum_value(&arc_sums.arcstat_l2_log_blk_writes);
7373 	as->arcstat_l2_log_blk_asize.value.ui64 =
7374 	    wmsum_value(&arc_sums.arcstat_l2_log_blk_asize);
7375 	as->arcstat_l2_log_blk_count.value.ui64 =
7376 	    wmsum_value(&arc_sums.arcstat_l2_log_blk_count);
7377 	as->arcstat_l2_rebuild_success.value.ui64 =
7378 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_success);
7379 	as->arcstat_l2_rebuild_abort_unsupported.value.ui64 =
7380 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_unsupported);
7381 	as->arcstat_l2_rebuild_abort_io_errors.value.ui64 =
7382 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_io_errors);
7383 	as->arcstat_l2_rebuild_abort_dh_errors.value.ui64 =
7384 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_dh_errors);
7385 	as->arcstat_l2_rebuild_abort_cksum_lb_errors.value.ui64 =
7386 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors);
7387 	as->arcstat_l2_rebuild_abort_lowmem.value.ui64 =
7388 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_lowmem);
7389 	as->arcstat_l2_rebuild_size.value.ui64 =
7390 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_size);
7391 	as->arcstat_l2_rebuild_asize.value.ui64 =
7392 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_asize);
7393 	as->arcstat_l2_rebuild_bufs.value.ui64 =
7394 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_bufs);
7395 	as->arcstat_l2_rebuild_bufs_precached.value.ui64 =
7396 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_bufs_precached);
7397 	as->arcstat_l2_rebuild_log_blks.value.ui64 =
7398 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_log_blks);
7399 	as->arcstat_memory_throttle_count.value.ui64 =
7400 	    wmsum_value(&arc_sums.arcstat_memory_throttle_count);
7401 	as->arcstat_memory_direct_count.value.ui64 =
7402 	    wmsum_value(&arc_sums.arcstat_memory_direct_count);
7403 	as->arcstat_memory_indirect_count.value.ui64 =
7404 	    wmsum_value(&arc_sums.arcstat_memory_indirect_count);
7405 
7406 	as->arcstat_memory_all_bytes.value.ui64 =
7407 	    arc_all_memory();
7408 	as->arcstat_memory_free_bytes.value.ui64 =
7409 	    arc_free_memory();
7410 	as->arcstat_memory_available_bytes.value.i64 =
7411 	    arc_available_memory();
7412 
7413 	as->arcstat_prune.value.ui64 =
7414 	    wmsum_value(&arc_sums.arcstat_prune);
7415 	as->arcstat_meta_used.value.ui64 =
7416 	    aggsum_value(&arc_sums.arcstat_meta_used);
7417 	as->arcstat_async_upgrade_sync.value.ui64 =
7418 	    wmsum_value(&arc_sums.arcstat_async_upgrade_sync);
7419 	as->arcstat_demand_hit_predictive_prefetch.value.ui64 =
7420 	    wmsum_value(&arc_sums.arcstat_demand_hit_predictive_prefetch);
7421 	as->arcstat_demand_hit_prescient_prefetch.value.ui64 =
7422 	    wmsum_value(&arc_sums.arcstat_demand_hit_prescient_prefetch);
7423 	as->arcstat_raw_size.value.ui64 =
7424 	    wmsum_value(&arc_sums.arcstat_raw_size);
7425 	as->arcstat_cached_only_in_progress.value.ui64 =
7426 	    wmsum_value(&arc_sums.arcstat_cached_only_in_progress);
7427 	as->arcstat_abd_chunk_waste_size.value.ui64 =
7428 	    wmsum_value(&arc_sums.arcstat_abd_chunk_waste_size);
7429 
7430 	return (0);
7431 }
7432 
7433 /*
7434  * This function *must* return indices evenly distributed between all
7435  * sublists of the multilist. This is needed due to how the ARC eviction
7436  * code is laid out; arc_evict_state() assumes ARC buffers are evenly
7437  * distributed between all sublists and uses this assumption when
7438  * deciding which sublist to evict from and how much to evict from it.
7439  */
7440 static unsigned int
7441 arc_state_multilist_index_func(multilist_t *ml, void *obj)
7442 {
7443 	arc_buf_hdr_t *hdr = obj;
7444 
7445 	/*
7446 	 * We rely on b_dva to generate evenly distributed index
7447 	 * numbers using buf_hash below. So, as an added precaution,
7448 	 * let's make sure we never add empty buffers to the arc lists.
7449 	 */
7450 	ASSERT(!HDR_EMPTY(hdr));
7451 
7452 	/*
7453 	 * The assumption here, is the hash value for a given
7454 	 * arc_buf_hdr_t will remain constant throughout its lifetime
7455 	 * (i.e. its b_spa, b_dva, and b_birth fields don't change).
7456 	 * Thus, we don't need to store the header's sublist index
7457 	 * on insertion, as this index can be recalculated on removal.
7458 	 *
7459 	 * Also, the low order bits of the hash value are thought to be
7460 	 * distributed evenly. Otherwise, in the case that the multilist
7461 	 * has a power of two number of sublists, each sublists' usage
7462 	 * would not be evenly distributed. In this context full 64bit
7463 	 * division would be a waste of time, so limit it to 32 bits.
7464 	 */
7465 	return ((unsigned int)buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
7466 	    multilist_get_num_sublists(ml));
7467 }
7468 
7469 static unsigned int
7470 arc_state_l2c_multilist_index_func(multilist_t *ml, void *obj)
7471 {
7472 	panic("Header %p insert into arc_l2c_only %p", obj, ml);
7473 }
7474 
7475 #define	WARN_IF_TUNING_IGNORED(tuning, value, do_warn) do {	\
7476 	if ((do_warn) && (tuning) && ((tuning) != (value))) {	\
7477 		cmn_err(CE_WARN,				\
7478 		    "ignoring tunable %s (using %llu instead)",	\
7479 		    (#tuning), (u_longlong_t)(value));	\
7480 	}							\
7481 } while (0)
7482 
7483 /*
7484  * Called during module initialization and periodically thereafter to
7485  * apply reasonable changes to the exposed performance tunings.  Can also be
7486  * called explicitly by param_set_arc_*() functions when ARC tunables are
7487  * updated manually.  Non-zero zfs_* values which differ from the currently set
7488  * values will be applied.
7489  */
7490 void
7491 arc_tuning_update(boolean_t verbose)
7492 {
7493 	uint64_t allmem = arc_all_memory();
7494 	unsigned long limit;
7495 
7496 	/* Valid range: 32M - <arc_c_max> */
7497 	if ((zfs_arc_min) && (zfs_arc_min != arc_c_min) &&
7498 	    (zfs_arc_min >= 2ULL << SPA_MAXBLOCKSHIFT) &&
7499 	    (zfs_arc_min <= arc_c_max)) {
7500 		arc_c_min = zfs_arc_min;
7501 		arc_c = MAX(arc_c, arc_c_min);
7502 	}
7503 	WARN_IF_TUNING_IGNORED(zfs_arc_min, arc_c_min, verbose);
7504 
7505 	/* Valid range: 64M - <all physical memory> */
7506 	if ((zfs_arc_max) && (zfs_arc_max != arc_c_max) &&
7507 	    (zfs_arc_max >= MIN_ARC_MAX) && (zfs_arc_max < allmem) &&
7508 	    (zfs_arc_max > arc_c_min)) {
7509 		arc_c_max = zfs_arc_max;
7510 		arc_c = MIN(arc_c, arc_c_max);
7511 		arc_p = (arc_c >> 1);
7512 		if (arc_meta_limit > arc_c_max)
7513 			arc_meta_limit = arc_c_max;
7514 		if (arc_dnode_size_limit > arc_meta_limit)
7515 			arc_dnode_size_limit = arc_meta_limit;
7516 	}
7517 	WARN_IF_TUNING_IGNORED(zfs_arc_max, arc_c_max, verbose);
7518 
7519 	/* Valid range: 16M - <arc_c_max> */
7520 	if ((zfs_arc_meta_min) && (zfs_arc_meta_min != arc_meta_min) &&
7521 	    (zfs_arc_meta_min >= 1ULL << SPA_MAXBLOCKSHIFT) &&
7522 	    (zfs_arc_meta_min <= arc_c_max)) {
7523 		arc_meta_min = zfs_arc_meta_min;
7524 		if (arc_meta_limit < arc_meta_min)
7525 			arc_meta_limit = arc_meta_min;
7526 		if (arc_dnode_size_limit < arc_meta_min)
7527 			arc_dnode_size_limit = arc_meta_min;
7528 	}
7529 	WARN_IF_TUNING_IGNORED(zfs_arc_meta_min, arc_meta_min, verbose);
7530 
7531 	/* Valid range: <arc_meta_min> - <arc_c_max> */
7532 	limit = zfs_arc_meta_limit ? zfs_arc_meta_limit :
7533 	    MIN(zfs_arc_meta_limit_percent, 100) * arc_c_max / 100;
7534 	if ((limit != arc_meta_limit) &&
7535 	    (limit >= arc_meta_min) &&
7536 	    (limit <= arc_c_max))
7537 		arc_meta_limit = limit;
7538 	WARN_IF_TUNING_IGNORED(zfs_arc_meta_limit, arc_meta_limit, verbose);
7539 
7540 	/* Valid range: <arc_meta_min> - <arc_meta_limit> */
7541 	limit = zfs_arc_dnode_limit ? zfs_arc_dnode_limit :
7542 	    MIN(zfs_arc_dnode_limit_percent, 100) * arc_meta_limit / 100;
7543 	if ((limit != arc_dnode_size_limit) &&
7544 	    (limit >= arc_meta_min) &&
7545 	    (limit <= arc_meta_limit))
7546 		arc_dnode_size_limit = limit;
7547 	WARN_IF_TUNING_IGNORED(zfs_arc_dnode_limit, arc_dnode_size_limit,
7548 	    verbose);
7549 
7550 	/* Valid range: 1 - N */
7551 	if (zfs_arc_grow_retry)
7552 		arc_grow_retry = zfs_arc_grow_retry;
7553 
7554 	/* Valid range: 1 - N */
7555 	if (zfs_arc_shrink_shift) {
7556 		arc_shrink_shift = zfs_arc_shrink_shift;
7557 		arc_no_grow_shift = MIN(arc_no_grow_shift, arc_shrink_shift -1);
7558 	}
7559 
7560 	/* Valid range: 1 - N */
7561 	if (zfs_arc_p_min_shift)
7562 		arc_p_min_shift = zfs_arc_p_min_shift;
7563 
7564 	/* Valid range: 1 - N ms */
7565 	if (zfs_arc_min_prefetch_ms)
7566 		arc_min_prefetch_ms = zfs_arc_min_prefetch_ms;
7567 
7568 	/* Valid range: 1 - N ms */
7569 	if (zfs_arc_min_prescient_prefetch_ms) {
7570 		arc_min_prescient_prefetch_ms =
7571 		    zfs_arc_min_prescient_prefetch_ms;
7572 	}
7573 
7574 	/* Valid range: 0 - 100 */
7575 	if ((zfs_arc_lotsfree_percent >= 0) &&
7576 	    (zfs_arc_lotsfree_percent <= 100))
7577 		arc_lotsfree_percent = zfs_arc_lotsfree_percent;
7578 	WARN_IF_TUNING_IGNORED(zfs_arc_lotsfree_percent, arc_lotsfree_percent,
7579 	    verbose);
7580 
7581 	/* Valid range: 0 - <all physical memory> */
7582 	if ((zfs_arc_sys_free) && (zfs_arc_sys_free != arc_sys_free))
7583 		arc_sys_free = MIN(MAX(zfs_arc_sys_free, 0), allmem);
7584 	WARN_IF_TUNING_IGNORED(zfs_arc_sys_free, arc_sys_free, verbose);
7585 }
7586 
7587 static void
7588 arc_state_init(void)
7589 {
7590 	multilist_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
7591 	    sizeof (arc_buf_hdr_t),
7592 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7593 	    arc_state_multilist_index_func);
7594 	multilist_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
7595 	    sizeof (arc_buf_hdr_t),
7596 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7597 	    arc_state_multilist_index_func);
7598 	multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
7599 	    sizeof (arc_buf_hdr_t),
7600 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7601 	    arc_state_multilist_index_func);
7602 	multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
7603 	    sizeof (arc_buf_hdr_t),
7604 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7605 	    arc_state_multilist_index_func);
7606 	multilist_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
7607 	    sizeof (arc_buf_hdr_t),
7608 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7609 	    arc_state_multilist_index_func);
7610 	multilist_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
7611 	    sizeof (arc_buf_hdr_t),
7612 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7613 	    arc_state_multilist_index_func);
7614 	multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
7615 	    sizeof (arc_buf_hdr_t),
7616 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7617 	    arc_state_multilist_index_func);
7618 	multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
7619 	    sizeof (arc_buf_hdr_t),
7620 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7621 	    arc_state_multilist_index_func);
7622 	/*
7623 	 * L2 headers should never be on the L2 state list since they don't
7624 	 * have L1 headers allocated.  Special index function asserts that.
7625 	 */
7626 	multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
7627 	    sizeof (arc_buf_hdr_t),
7628 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7629 	    arc_state_l2c_multilist_index_func);
7630 	multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
7631 	    sizeof (arc_buf_hdr_t),
7632 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7633 	    arc_state_l2c_multilist_index_func);
7634 
7635 	zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7636 	zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7637 	zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
7638 	zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
7639 	zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
7640 	zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
7641 	zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
7642 	zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
7643 	zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
7644 	zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
7645 	zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
7646 	zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
7647 
7648 	zfs_refcount_create(&arc_anon->arcs_size);
7649 	zfs_refcount_create(&arc_mru->arcs_size);
7650 	zfs_refcount_create(&arc_mru_ghost->arcs_size);
7651 	zfs_refcount_create(&arc_mfu->arcs_size);
7652 	zfs_refcount_create(&arc_mfu_ghost->arcs_size);
7653 	zfs_refcount_create(&arc_l2c_only->arcs_size);
7654 
7655 	wmsum_init(&arc_sums.arcstat_hits, 0);
7656 	wmsum_init(&arc_sums.arcstat_misses, 0);
7657 	wmsum_init(&arc_sums.arcstat_demand_data_hits, 0);
7658 	wmsum_init(&arc_sums.arcstat_demand_data_misses, 0);
7659 	wmsum_init(&arc_sums.arcstat_demand_metadata_hits, 0);
7660 	wmsum_init(&arc_sums.arcstat_demand_metadata_misses, 0);
7661 	wmsum_init(&arc_sums.arcstat_prefetch_data_hits, 0);
7662 	wmsum_init(&arc_sums.arcstat_prefetch_data_misses, 0);
7663 	wmsum_init(&arc_sums.arcstat_prefetch_metadata_hits, 0);
7664 	wmsum_init(&arc_sums.arcstat_prefetch_metadata_misses, 0);
7665 	wmsum_init(&arc_sums.arcstat_mru_hits, 0);
7666 	wmsum_init(&arc_sums.arcstat_mru_ghost_hits, 0);
7667 	wmsum_init(&arc_sums.arcstat_mfu_hits, 0);
7668 	wmsum_init(&arc_sums.arcstat_mfu_ghost_hits, 0);
7669 	wmsum_init(&arc_sums.arcstat_deleted, 0);
7670 	wmsum_init(&arc_sums.arcstat_mutex_miss, 0);
7671 	wmsum_init(&arc_sums.arcstat_access_skip, 0);
7672 	wmsum_init(&arc_sums.arcstat_evict_skip, 0);
7673 	wmsum_init(&arc_sums.arcstat_evict_not_enough, 0);
7674 	wmsum_init(&arc_sums.arcstat_evict_l2_cached, 0);
7675 	wmsum_init(&arc_sums.arcstat_evict_l2_eligible, 0);
7676 	wmsum_init(&arc_sums.arcstat_evict_l2_eligible_mfu, 0);
7677 	wmsum_init(&arc_sums.arcstat_evict_l2_eligible_mru, 0);
7678 	wmsum_init(&arc_sums.arcstat_evict_l2_ineligible, 0);
7679 	wmsum_init(&arc_sums.arcstat_evict_l2_skip, 0);
7680 	wmsum_init(&arc_sums.arcstat_hash_collisions, 0);
7681 	wmsum_init(&arc_sums.arcstat_hash_chains, 0);
7682 	aggsum_init(&arc_sums.arcstat_size, 0);
7683 	wmsum_init(&arc_sums.arcstat_compressed_size, 0);
7684 	wmsum_init(&arc_sums.arcstat_uncompressed_size, 0);
7685 	wmsum_init(&arc_sums.arcstat_overhead_size, 0);
7686 	wmsum_init(&arc_sums.arcstat_hdr_size, 0);
7687 	wmsum_init(&arc_sums.arcstat_data_size, 0);
7688 	wmsum_init(&arc_sums.arcstat_metadata_size, 0);
7689 	wmsum_init(&arc_sums.arcstat_dbuf_size, 0);
7690 	aggsum_init(&arc_sums.arcstat_dnode_size, 0);
7691 	wmsum_init(&arc_sums.arcstat_bonus_size, 0);
7692 	wmsum_init(&arc_sums.arcstat_l2_hits, 0);
7693 	wmsum_init(&arc_sums.arcstat_l2_misses, 0);
7694 	wmsum_init(&arc_sums.arcstat_l2_prefetch_asize, 0);
7695 	wmsum_init(&arc_sums.arcstat_l2_mru_asize, 0);
7696 	wmsum_init(&arc_sums.arcstat_l2_mfu_asize, 0);
7697 	wmsum_init(&arc_sums.arcstat_l2_bufc_data_asize, 0);
7698 	wmsum_init(&arc_sums.arcstat_l2_bufc_metadata_asize, 0);
7699 	wmsum_init(&arc_sums.arcstat_l2_feeds, 0);
7700 	wmsum_init(&arc_sums.arcstat_l2_rw_clash, 0);
7701 	wmsum_init(&arc_sums.arcstat_l2_read_bytes, 0);
7702 	wmsum_init(&arc_sums.arcstat_l2_write_bytes, 0);
7703 	wmsum_init(&arc_sums.arcstat_l2_writes_sent, 0);
7704 	wmsum_init(&arc_sums.arcstat_l2_writes_done, 0);
7705 	wmsum_init(&arc_sums.arcstat_l2_writes_error, 0);
7706 	wmsum_init(&arc_sums.arcstat_l2_writes_lock_retry, 0);
7707 	wmsum_init(&arc_sums.arcstat_l2_evict_lock_retry, 0);
7708 	wmsum_init(&arc_sums.arcstat_l2_evict_reading, 0);
7709 	wmsum_init(&arc_sums.arcstat_l2_evict_l1cached, 0);
7710 	wmsum_init(&arc_sums.arcstat_l2_free_on_write, 0);
7711 	wmsum_init(&arc_sums.arcstat_l2_abort_lowmem, 0);
7712 	wmsum_init(&arc_sums.arcstat_l2_cksum_bad, 0);
7713 	wmsum_init(&arc_sums.arcstat_l2_io_error, 0);
7714 	wmsum_init(&arc_sums.arcstat_l2_lsize, 0);
7715 	wmsum_init(&arc_sums.arcstat_l2_psize, 0);
7716 	aggsum_init(&arc_sums.arcstat_l2_hdr_size, 0);
7717 	wmsum_init(&arc_sums.arcstat_l2_log_blk_writes, 0);
7718 	wmsum_init(&arc_sums.arcstat_l2_log_blk_asize, 0);
7719 	wmsum_init(&arc_sums.arcstat_l2_log_blk_count, 0);
7720 	wmsum_init(&arc_sums.arcstat_l2_rebuild_success, 0);
7721 	wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_unsupported, 0);
7722 	wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_io_errors, 0);
7723 	wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_dh_errors, 0);
7724 	wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors, 0);
7725 	wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_lowmem, 0);
7726 	wmsum_init(&arc_sums.arcstat_l2_rebuild_size, 0);
7727 	wmsum_init(&arc_sums.arcstat_l2_rebuild_asize, 0);
7728 	wmsum_init(&arc_sums.arcstat_l2_rebuild_bufs, 0);
7729 	wmsum_init(&arc_sums.arcstat_l2_rebuild_bufs_precached, 0);
7730 	wmsum_init(&arc_sums.arcstat_l2_rebuild_log_blks, 0);
7731 	wmsum_init(&arc_sums.arcstat_memory_throttle_count, 0);
7732 	wmsum_init(&arc_sums.arcstat_memory_direct_count, 0);
7733 	wmsum_init(&arc_sums.arcstat_memory_indirect_count, 0);
7734 	wmsum_init(&arc_sums.arcstat_prune, 0);
7735 	aggsum_init(&arc_sums.arcstat_meta_used, 0);
7736 	wmsum_init(&arc_sums.arcstat_async_upgrade_sync, 0);
7737 	wmsum_init(&arc_sums.arcstat_demand_hit_predictive_prefetch, 0);
7738 	wmsum_init(&arc_sums.arcstat_demand_hit_prescient_prefetch, 0);
7739 	wmsum_init(&arc_sums.arcstat_raw_size, 0);
7740 	wmsum_init(&arc_sums.arcstat_cached_only_in_progress, 0);
7741 	wmsum_init(&arc_sums.arcstat_abd_chunk_waste_size, 0);
7742 
7743 	arc_anon->arcs_state = ARC_STATE_ANON;
7744 	arc_mru->arcs_state = ARC_STATE_MRU;
7745 	arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST;
7746 	arc_mfu->arcs_state = ARC_STATE_MFU;
7747 	arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST;
7748 	arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY;
7749 }
7750 
7751 static void
7752 arc_state_fini(void)
7753 {
7754 	zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7755 	zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7756 	zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
7757 	zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
7758 	zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
7759 	zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
7760 	zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
7761 	zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
7762 	zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
7763 	zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
7764 	zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
7765 	zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
7766 
7767 	zfs_refcount_destroy(&arc_anon->arcs_size);
7768 	zfs_refcount_destroy(&arc_mru->arcs_size);
7769 	zfs_refcount_destroy(&arc_mru_ghost->arcs_size);
7770 	zfs_refcount_destroy(&arc_mfu->arcs_size);
7771 	zfs_refcount_destroy(&arc_mfu_ghost->arcs_size);
7772 	zfs_refcount_destroy(&arc_l2c_only->arcs_size);
7773 
7774 	multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
7775 	multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
7776 	multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
7777 	multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
7778 	multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
7779 	multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
7780 	multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
7781 	multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
7782 	multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]);
7783 	multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]);
7784 
7785 	wmsum_fini(&arc_sums.arcstat_hits);
7786 	wmsum_fini(&arc_sums.arcstat_misses);
7787 	wmsum_fini(&arc_sums.arcstat_demand_data_hits);
7788 	wmsum_fini(&arc_sums.arcstat_demand_data_misses);
7789 	wmsum_fini(&arc_sums.arcstat_demand_metadata_hits);
7790 	wmsum_fini(&arc_sums.arcstat_demand_metadata_misses);
7791 	wmsum_fini(&arc_sums.arcstat_prefetch_data_hits);
7792 	wmsum_fini(&arc_sums.arcstat_prefetch_data_misses);
7793 	wmsum_fini(&arc_sums.arcstat_prefetch_metadata_hits);
7794 	wmsum_fini(&arc_sums.arcstat_prefetch_metadata_misses);
7795 	wmsum_fini(&arc_sums.arcstat_mru_hits);
7796 	wmsum_fini(&arc_sums.arcstat_mru_ghost_hits);
7797 	wmsum_fini(&arc_sums.arcstat_mfu_hits);
7798 	wmsum_fini(&arc_sums.arcstat_mfu_ghost_hits);
7799 	wmsum_fini(&arc_sums.arcstat_deleted);
7800 	wmsum_fini(&arc_sums.arcstat_mutex_miss);
7801 	wmsum_fini(&arc_sums.arcstat_access_skip);
7802 	wmsum_fini(&arc_sums.arcstat_evict_skip);
7803 	wmsum_fini(&arc_sums.arcstat_evict_not_enough);
7804 	wmsum_fini(&arc_sums.arcstat_evict_l2_cached);
7805 	wmsum_fini(&arc_sums.arcstat_evict_l2_eligible);
7806 	wmsum_fini(&arc_sums.arcstat_evict_l2_eligible_mfu);
7807 	wmsum_fini(&arc_sums.arcstat_evict_l2_eligible_mru);
7808 	wmsum_fini(&arc_sums.arcstat_evict_l2_ineligible);
7809 	wmsum_fini(&arc_sums.arcstat_evict_l2_skip);
7810 	wmsum_fini(&arc_sums.arcstat_hash_collisions);
7811 	wmsum_fini(&arc_sums.arcstat_hash_chains);
7812 	aggsum_fini(&arc_sums.arcstat_size);
7813 	wmsum_fini(&arc_sums.arcstat_compressed_size);
7814 	wmsum_fini(&arc_sums.arcstat_uncompressed_size);
7815 	wmsum_fini(&arc_sums.arcstat_overhead_size);
7816 	wmsum_fini(&arc_sums.arcstat_hdr_size);
7817 	wmsum_fini(&arc_sums.arcstat_data_size);
7818 	wmsum_fini(&arc_sums.arcstat_metadata_size);
7819 	wmsum_fini(&arc_sums.arcstat_dbuf_size);
7820 	aggsum_fini(&arc_sums.arcstat_dnode_size);
7821 	wmsum_fini(&arc_sums.arcstat_bonus_size);
7822 	wmsum_fini(&arc_sums.arcstat_l2_hits);
7823 	wmsum_fini(&arc_sums.arcstat_l2_misses);
7824 	wmsum_fini(&arc_sums.arcstat_l2_prefetch_asize);
7825 	wmsum_fini(&arc_sums.arcstat_l2_mru_asize);
7826 	wmsum_fini(&arc_sums.arcstat_l2_mfu_asize);
7827 	wmsum_fini(&arc_sums.arcstat_l2_bufc_data_asize);
7828 	wmsum_fini(&arc_sums.arcstat_l2_bufc_metadata_asize);
7829 	wmsum_fini(&arc_sums.arcstat_l2_feeds);
7830 	wmsum_fini(&arc_sums.arcstat_l2_rw_clash);
7831 	wmsum_fini(&arc_sums.arcstat_l2_read_bytes);
7832 	wmsum_fini(&arc_sums.arcstat_l2_write_bytes);
7833 	wmsum_fini(&arc_sums.arcstat_l2_writes_sent);
7834 	wmsum_fini(&arc_sums.arcstat_l2_writes_done);
7835 	wmsum_fini(&arc_sums.arcstat_l2_writes_error);
7836 	wmsum_fini(&arc_sums.arcstat_l2_writes_lock_retry);
7837 	wmsum_fini(&arc_sums.arcstat_l2_evict_lock_retry);
7838 	wmsum_fini(&arc_sums.arcstat_l2_evict_reading);
7839 	wmsum_fini(&arc_sums.arcstat_l2_evict_l1cached);
7840 	wmsum_fini(&arc_sums.arcstat_l2_free_on_write);
7841 	wmsum_fini(&arc_sums.arcstat_l2_abort_lowmem);
7842 	wmsum_fini(&arc_sums.arcstat_l2_cksum_bad);
7843 	wmsum_fini(&arc_sums.arcstat_l2_io_error);
7844 	wmsum_fini(&arc_sums.arcstat_l2_lsize);
7845 	wmsum_fini(&arc_sums.arcstat_l2_psize);
7846 	aggsum_fini(&arc_sums.arcstat_l2_hdr_size);
7847 	wmsum_fini(&arc_sums.arcstat_l2_log_blk_writes);
7848 	wmsum_fini(&arc_sums.arcstat_l2_log_blk_asize);
7849 	wmsum_fini(&arc_sums.arcstat_l2_log_blk_count);
7850 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_success);
7851 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_unsupported);
7852 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_io_errors);
7853 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_dh_errors);
7854 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors);
7855 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_lowmem);
7856 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_size);
7857 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_asize);
7858 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_bufs);
7859 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_bufs_precached);
7860 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_log_blks);
7861 	wmsum_fini(&arc_sums.arcstat_memory_throttle_count);
7862 	wmsum_fini(&arc_sums.arcstat_memory_direct_count);
7863 	wmsum_fini(&arc_sums.arcstat_memory_indirect_count);
7864 	wmsum_fini(&arc_sums.arcstat_prune);
7865 	aggsum_fini(&arc_sums.arcstat_meta_used);
7866 	wmsum_fini(&arc_sums.arcstat_async_upgrade_sync);
7867 	wmsum_fini(&arc_sums.arcstat_demand_hit_predictive_prefetch);
7868 	wmsum_fini(&arc_sums.arcstat_demand_hit_prescient_prefetch);
7869 	wmsum_fini(&arc_sums.arcstat_raw_size);
7870 	wmsum_fini(&arc_sums.arcstat_cached_only_in_progress);
7871 	wmsum_fini(&arc_sums.arcstat_abd_chunk_waste_size);
7872 }
7873 
7874 uint64_t
7875 arc_target_bytes(void)
7876 {
7877 	return (arc_c);
7878 }
7879 
7880 void
7881 arc_set_limits(uint64_t allmem)
7882 {
7883 	/* Set min cache to 1/32 of all memory, or 32MB, whichever is more. */
7884 	arc_c_min = MAX(allmem / 32, 2ULL << SPA_MAXBLOCKSHIFT);
7885 
7886 	/* How to set default max varies by platform. */
7887 	arc_c_max = arc_default_max(arc_c_min, allmem);
7888 }
7889 void
7890 arc_init(void)
7891 {
7892 	uint64_t percent, allmem = arc_all_memory();
7893 	mutex_init(&arc_evict_lock, NULL, MUTEX_DEFAULT, NULL);
7894 	list_create(&arc_evict_waiters, sizeof (arc_evict_waiter_t),
7895 	    offsetof(arc_evict_waiter_t, aew_node));
7896 
7897 	arc_min_prefetch_ms = 1000;
7898 	arc_min_prescient_prefetch_ms = 6000;
7899 
7900 #if defined(_KERNEL)
7901 	arc_lowmem_init();
7902 #endif
7903 
7904 	arc_set_limits(allmem);
7905 
7906 #ifdef _KERNEL
7907 	/*
7908 	 * If zfs_arc_max is non-zero at init, meaning it was set in the kernel
7909 	 * environment before the module was loaded, don't block setting the
7910 	 * maximum because it is less than arc_c_min, instead, reset arc_c_min
7911 	 * to a lower value.
7912 	 * zfs_arc_min will be handled by arc_tuning_update().
7913 	 */
7914 	if (zfs_arc_max != 0 && zfs_arc_max >= MIN_ARC_MAX &&
7915 	    zfs_arc_max < allmem) {
7916 		arc_c_max = zfs_arc_max;
7917 		if (arc_c_min >= arc_c_max) {
7918 			arc_c_min = MAX(zfs_arc_max / 2,
7919 			    2ULL << SPA_MAXBLOCKSHIFT);
7920 		}
7921 	}
7922 #else
7923 	/*
7924 	 * In userland, there's only the memory pressure that we artificially
7925 	 * create (see arc_available_memory()).  Don't let arc_c get too
7926 	 * small, because it can cause transactions to be larger than
7927 	 * arc_c, causing arc_tempreserve_space() to fail.
7928 	 */
7929 	arc_c_min = MAX(arc_c_max / 2, 2ULL << SPA_MAXBLOCKSHIFT);
7930 #endif
7931 
7932 	arc_c = arc_c_min;
7933 	arc_p = (arc_c >> 1);
7934 
7935 	/* Set min to 1/2 of arc_c_min */
7936 	arc_meta_min = 1ULL << SPA_MAXBLOCKSHIFT;
7937 	/*
7938 	 * Set arc_meta_limit to a percent of arc_c_max with a floor of
7939 	 * arc_meta_min, and a ceiling of arc_c_max.
7940 	 */
7941 	percent = MIN(zfs_arc_meta_limit_percent, 100);
7942 	arc_meta_limit = MAX(arc_meta_min, (percent * arc_c_max) / 100);
7943 	percent = MIN(zfs_arc_dnode_limit_percent, 100);
7944 	arc_dnode_size_limit = (percent * arc_meta_limit) / 100;
7945 
7946 	/* Apply user specified tunings */
7947 	arc_tuning_update(B_TRUE);
7948 
7949 	/* if kmem_flags are set, lets try to use less memory */
7950 	if (kmem_debugging())
7951 		arc_c = arc_c / 2;
7952 	if (arc_c < arc_c_min)
7953 		arc_c = arc_c_min;
7954 
7955 	arc_register_hotplug();
7956 
7957 	arc_state_init();
7958 
7959 	buf_init();
7960 
7961 	list_create(&arc_prune_list, sizeof (arc_prune_t),
7962 	    offsetof(arc_prune_t, p_node));
7963 	mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL);
7964 
7965 	arc_prune_taskq = taskq_create("arc_prune", 100, defclsyspri,
7966 	    boot_ncpus, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC |
7967 	    TASKQ_THREADS_CPU_PCT);
7968 
7969 	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
7970 	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
7971 
7972 	if (arc_ksp != NULL) {
7973 		arc_ksp->ks_data = &arc_stats;
7974 		arc_ksp->ks_update = arc_kstat_update;
7975 		kstat_install(arc_ksp);
7976 	}
7977 
7978 	arc_evict_zthr = zthr_create("arc_evict",
7979 	    arc_evict_cb_check, arc_evict_cb, NULL, defclsyspri);
7980 	arc_reap_zthr = zthr_create_timer("arc_reap",
7981 	    arc_reap_cb_check, arc_reap_cb, NULL, SEC2NSEC(1), minclsyspri);
7982 
7983 	arc_warm = B_FALSE;
7984 
7985 	/*
7986 	 * Calculate maximum amount of dirty data per pool.
7987 	 *
7988 	 * If it has been set by a module parameter, take that.
7989 	 * Otherwise, use a percentage of physical memory defined by
7990 	 * zfs_dirty_data_max_percent (default 10%) with a cap at
7991 	 * zfs_dirty_data_max_max (default 4G or 25% of physical memory).
7992 	 */
7993 #ifdef __LP64__
7994 	if (zfs_dirty_data_max_max == 0)
7995 		zfs_dirty_data_max_max = MIN(4ULL * 1024 * 1024 * 1024,
7996 		    allmem * zfs_dirty_data_max_max_percent / 100);
7997 #else
7998 	if (zfs_dirty_data_max_max == 0)
7999 		zfs_dirty_data_max_max = MIN(1ULL * 1024 * 1024 * 1024,
8000 		    allmem * zfs_dirty_data_max_max_percent / 100);
8001 #endif
8002 
8003 	if (zfs_dirty_data_max == 0) {
8004 		zfs_dirty_data_max = allmem *
8005 		    zfs_dirty_data_max_percent / 100;
8006 		zfs_dirty_data_max = MIN(zfs_dirty_data_max,
8007 		    zfs_dirty_data_max_max);
8008 	}
8009 
8010 	if (zfs_wrlog_data_max == 0) {
8011 
8012 		/*
8013 		 * dp_wrlog_total is reduced for each txg at the end of
8014 		 * spa_sync(). However, dp_dirty_total is reduced every time
8015 		 * a block is written out. Thus under normal operation,
8016 		 * dp_wrlog_total could grow 2 times as big as
8017 		 * zfs_dirty_data_max.
8018 		 */
8019 		zfs_wrlog_data_max = zfs_dirty_data_max * 2;
8020 	}
8021 }
8022 
8023 void
8024 arc_fini(void)
8025 {
8026 	arc_prune_t *p;
8027 
8028 #ifdef _KERNEL
8029 	arc_lowmem_fini();
8030 #endif /* _KERNEL */
8031 
8032 	/* Use B_TRUE to ensure *all* buffers are evicted */
8033 	arc_flush(NULL, B_TRUE);
8034 
8035 	if (arc_ksp != NULL) {
8036 		kstat_delete(arc_ksp);
8037 		arc_ksp = NULL;
8038 	}
8039 
8040 	taskq_wait(arc_prune_taskq);
8041 	taskq_destroy(arc_prune_taskq);
8042 
8043 	mutex_enter(&arc_prune_mtx);
8044 	while ((p = list_head(&arc_prune_list)) != NULL) {
8045 		list_remove(&arc_prune_list, p);
8046 		zfs_refcount_remove(&p->p_refcnt, &arc_prune_list);
8047 		zfs_refcount_destroy(&p->p_refcnt);
8048 		kmem_free(p, sizeof (*p));
8049 	}
8050 	mutex_exit(&arc_prune_mtx);
8051 
8052 	list_destroy(&arc_prune_list);
8053 	mutex_destroy(&arc_prune_mtx);
8054 
8055 	(void) zthr_cancel(arc_evict_zthr);
8056 	(void) zthr_cancel(arc_reap_zthr);
8057 
8058 	mutex_destroy(&arc_evict_lock);
8059 	list_destroy(&arc_evict_waiters);
8060 
8061 	/*
8062 	 * Free any buffers that were tagged for destruction.  This needs
8063 	 * to occur before arc_state_fini() runs and destroys the aggsum
8064 	 * values which are updated when freeing scatter ABDs.
8065 	 */
8066 	l2arc_do_free_on_write();
8067 
8068 	/*
8069 	 * buf_fini() must proceed arc_state_fini() because buf_fin() may
8070 	 * trigger the release of kmem magazines, which can callback to
8071 	 * arc_space_return() which accesses aggsums freed in act_state_fini().
8072 	 */
8073 	buf_fini();
8074 	arc_state_fini();
8075 
8076 	arc_unregister_hotplug();
8077 
8078 	/*
8079 	 * We destroy the zthrs after all the ARC state has been
8080 	 * torn down to avoid the case of them receiving any
8081 	 * wakeup() signals after they are destroyed.
8082 	 */
8083 	zthr_destroy(arc_evict_zthr);
8084 	zthr_destroy(arc_reap_zthr);
8085 
8086 	ASSERT0(arc_loaned_bytes);
8087 }
8088 
8089 /*
8090  * Level 2 ARC
8091  *
8092  * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
8093  * It uses dedicated storage devices to hold cached data, which are populated
8094  * using large infrequent writes.  The main role of this cache is to boost
8095  * the performance of random read workloads.  The intended L2ARC devices
8096  * include short-stroked disks, solid state disks, and other media with
8097  * substantially faster read latency than disk.
8098  *
8099  *                 +-----------------------+
8100  *                 |         ARC           |
8101  *                 +-----------------------+
8102  *                    |         ^     ^
8103  *                    |         |     |
8104  *      l2arc_feed_thread()    arc_read()
8105  *                    |         |     |
8106  *                    |  l2arc read   |
8107  *                    V         |     |
8108  *               +---------------+    |
8109  *               |     L2ARC     |    |
8110  *               +---------------+    |
8111  *                   |    ^           |
8112  *          l2arc_write() |           |
8113  *                   |    |           |
8114  *                   V    |           |
8115  *                 +-------+      +-------+
8116  *                 | vdev  |      | vdev  |
8117  *                 | cache |      | cache |
8118  *                 +-------+      +-------+
8119  *                 +=========+     .-----.
8120  *                 :  L2ARC  :    |-_____-|
8121  *                 : devices :    | Disks |
8122  *                 +=========+    `-_____-'
8123  *
8124  * Read requests are satisfied from the following sources, in order:
8125  *
8126  *	1) ARC
8127  *	2) vdev cache of L2ARC devices
8128  *	3) L2ARC devices
8129  *	4) vdev cache of disks
8130  *	5) disks
8131  *
8132  * Some L2ARC device types exhibit extremely slow write performance.
8133  * To accommodate for this there are some significant differences between
8134  * the L2ARC and traditional cache design:
8135  *
8136  * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
8137  * the ARC behave as usual, freeing buffers and placing headers on ghost
8138  * lists.  The ARC does not send buffers to the L2ARC during eviction as
8139  * this would add inflated write latencies for all ARC memory pressure.
8140  *
8141  * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
8142  * It does this by periodically scanning buffers from the eviction-end of
8143  * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
8144  * not already there. It scans until a headroom of buffers is satisfied,
8145  * which itself is a buffer for ARC eviction. If a compressible buffer is
8146  * found during scanning and selected for writing to an L2ARC device, we
8147  * temporarily boost scanning headroom during the next scan cycle to make
8148  * sure we adapt to compression effects (which might significantly reduce
8149  * the data volume we write to L2ARC). The thread that does this is
8150  * l2arc_feed_thread(), illustrated below; example sizes are included to
8151  * provide a better sense of ratio than this diagram:
8152  *
8153  *	       head -->                        tail
8154  *	        +---------------------+----------+
8155  *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
8156  *	        +---------------------+----------+   |   o L2ARC eligible
8157  *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
8158  *	        +---------------------+----------+   |
8159  *	             15.9 Gbytes      ^ 32 Mbytes    |
8160  *	                           headroom          |
8161  *	                                      l2arc_feed_thread()
8162  *	                                             |
8163  *	                 l2arc write hand <--[oooo]--'
8164  *	                         |           8 Mbyte
8165  *	                         |          write max
8166  *	                         V
8167  *		  +==============================+
8168  *	L2ARC dev |####|#|###|###|    |####| ... |
8169  *	          +==============================+
8170  *	                     32 Gbytes
8171  *
8172  * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
8173  * evicted, then the L2ARC has cached a buffer much sooner than it probably
8174  * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
8175  * safe to say that this is an uncommon case, since buffers at the end of
8176  * the ARC lists have moved there due to inactivity.
8177  *
8178  * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
8179  * then the L2ARC simply misses copying some buffers.  This serves as a
8180  * pressure valve to prevent heavy read workloads from both stalling the ARC
8181  * with waits and clogging the L2ARC with writes.  This also helps prevent
8182  * the potential for the L2ARC to churn if it attempts to cache content too
8183  * quickly, such as during backups of the entire pool.
8184  *
8185  * 5. After system boot and before the ARC has filled main memory, there are
8186  * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
8187  * lists can remain mostly static.  Instead of searching from tail of these
8188  * lists as pictured, the l2arc_feed_thread() will search from the list heads
8189  * for eligible buffers, greatly increasing its chance of finding them.
8190  *
8191  * The L2ARC device write speed is also boosted during this time so that
8192  * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
8193  * there are no L2ARC reads, and no fear of degrading read performance
8194  * through increased writes.
8195  *
8196  * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
8197  * the vdev queue can aggregate them into larger and fewer writes.  Each
8198  * device is written to in a rotor fashion, sweeping writes through
8199  * available space then repeating.
8200  *
8201  * 7. The L2ARC does not store dirty content.  It never needs to flush
8202  * write buffers back to disk based storage.
8203  *
8204  * 8. If an ARC buffer is written (and dirtied) which also exists in the
8205  * L2ARC, the now stale L2ARC buffer is immediately dropped.
8206  *
8207  * The performance of the L2ARC can be tweaked by a number of tunables, which
8208  * may be necessary for different workloads:
8209  *
8210  *	l2arc_write_max		max write bytes per interval
8211  *	l2arc_write_boost	extra write bytes during device warmup
8212  *	l2arc_noprefetch	skip caching prefetched buffers
8213  *	l2arc_headroom		number of max device writes to precache
8214  *	l2arc_headroom_boost	when we find compressed buffers during ARC
8215  *				scanning, we multiply headroom by this
8216  *				percentage factor for the next scan cycle,
8217  *				since more compressed buffers are likely to
8218  *				be present
8219  *	l2arc_feed_secs		seconds between L2ARC writing
8220  *
8221  * Tunables may be removed or added as future performance improvements are
8222  * integrated, and also may become zpool properties.
8223  *
8224  * There are three key functions that control how the L2ARC warms up:
8225  *
8226  *	l2arc_write_eligible()	check if a buffer is eligible to cache
8227  *	l2arc_write_size()	calculate how much to write
8228  *	l2arc_write_interval()	calculate sleep delay between writes
8229  *
8230  * These three functions determine what to write, how much, and how quickly
8231  * to send writes.
8232  *
8233  * L2ARC persistence:
8234  *
8235  * When writing buffers to L2ARC, we periodically add some metadata to
8236  * make sure we can pick them up after reboot, thus dramatically reducing
8237  * the impact that any downtime has on the performance of storage systems
8238  * with large caches.
8239  *
8240  * The implementation works fairly simply by integrating the following two
8241  * modifications:
8242  *
8243  * *) When writing to the L2ARC, we occasionally write a "l2arc log block",
8244  *    which is an additional piece of metadata which describes what's been
8245  *    written. This allows us to rebuild the arc_buf_hdr_t structures of the
8246  *    main ARC buffers. There are 2 linked-lists of log blocks headed by
8247  *    dh_start_lbps[2]. We alternate which chain we append to, so they are
8248  *    time-wise and offset-wise interleaved, but that is an optimization rather
8249  *    than for correctness. The log block also includes a pointer to the
8250  *    previous block in its chain.
8251  *
8252  * *) We reserve SPA_MINBLOCKSIZE of space at the start of each L2ARC device
8253  *    for our header bookkeeping purposes. This contains a device header,
8254  *    which contains our top-level reference structures. We update it each
8255  *    time we write a new log block, so that we're able to locate it in the
8256  *    L2ARC device. If this write results in an inconsistent device header
8257  *    (e.g. due to power failure), we detect this by verifying the header's
8258  *    checksum and simply fail to reconstruct the L2ARC after reboot.
8259  *
8260  * Implementation diagram:
8261  *
8262  * +=== L2ARC device (not to scale) ======================================+
8263  * |       ___two newest log block pointers__.__________                  |
8264  * |      /                                   \dh_start_lbps[1]           |
8265  * |	 /				       \         \dh_start_lbps[0]|
8266  * |.___/__.                                    V         V               |
8267  * ||L2 dev|....|lb |bufs |lb |bufs |lb |bufs |lb |bufs |lb |---(empty)---|
8268  * ||   hdr|      ^         /^       /^        /         /                |
8269  * |+------+  ...--\-------/  \-----/--\------/         /                 |
8270  * |                \--------------/    \--------------/                  |
8271  * +======================================================================+
8272  *
8273  * As can be seen on the diagram, rather than using a simple linked list,
8274  * we use a pair of linked lists with alternating elements. This is a
8275  * performance enhancement due to the fact that we only find out the
8276  * address of the next log block access once the current block has been
8277  * completely read in. Obviously, this hurts performance, because we'd be
8278  * keeping the device's I/O queue at only a 1 operation deep, thus
8279  * incurring a large amount of I/O round-trip latency. Having two lists
8280  * allows us to fetch two log blocks ahead of where we are currently
8281  * rebuilding L2ARC buffers.
8282  *
8283  * On-device data structures:
8284  *
8285  * L2ARC device header:	l2arc_dev_hdr_phys_t
8286  * L2ARC log block:	l2arc_log_blk_phys_t
8287  *
8288  * L2ARC reconstruction:
8289  *
8290  * When writing data, we simply write in the standard rotary fashion,
8291  * evicting buffers as we go and simply writing new data over them (writing
8292  * a new log block every now and then). This obviously means that once we
8293  * loop around the end of the device, we will start cutting into an already
8294  * committed log block (and its referenced data buffers), like so:
8295  *
8296  *    current write head__       __old tail
8297  *                        \     /
8298  *                        V    V
8299  * <--|bufs |lb |bufs |lb |    |bufs |lb |bufs |lb |-->
8300  *                         ^    ^^^^^^^^^___________________________________
8301  *                         |                                                \
8302  *                   <<nextwrite>> may overwrite this blk and/or its bufs --'
8303  *
8304  * When importing the pool, we detect this situation and use it to stop
8305  * our scanning process (see l2arc_rebuild).
8306  *
8307  * There is one significant caveat to consider when rebuilding ARC contents
8308  * from an L2ARC device: what about invalidated buffers? Given the above
8309  * construction, we cannot update blocks which we've already written to amend
8310  * them to remove buffers which were invalidated. Thus, during reconstruction,
8311  * we might be populating the cache with buffers for data that's not on the
8312  * main pool anymore, or may have been overwritten!
8313  *
8314  * As it turns out, this isn't a problem. Every arc_read request includes
8315  * both the DVA and, crucially, the birth TXG of the BP the caller is
8316  * looking for. So even if the cache were populated by completely rotten
8317  * blocks for data that had been long deleted and/or overwritten, we'll
8318  * never actually return bad data from the cache, since the DVA with the
8319  * birth TXG uniquely identify a block in space and time - once created,
8320  * a block is immutable on disk. The worst thing we have done is wasted
8321  * some time and memory at l2arc rebuild to reconstruct outdated ARC
8322  * entries that will get dropped from the l2arc as it is being updated
8323  * with new blocks.
8324  *
8325  * L2ARC buffers that have been evicted by l2arc_evict() ahead of the write
8326  * hand are not restored. This is done by saving the offset (in bytes)
8327  * l2arc_evict() has evicted to in the L2ARC device header and taking it
8328  * into account when restoring buffers.
8329  */
8330 
8331 static boolean_t
8332 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
8333 {
8334 	/*
8335 	 * A buffer is *not* eligible for the L2ARC if it:
8336 	 * 1. belongs to a different spa.
8337 	 * 2. is already cached on the L2ARC.
8338 	 * 3. has an I/O in progress (it may be an incomplete read).
8339 	 * 4. is flagged not eligible (zfs property).
8340 	 */
8341 	if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) ||
8342 	    HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr))
8343 		return (B_FALSE);
8344 
8345 	return (B_TRUE);
8346 }
8347 
8348 static uint64_t
8349 l2arc_write_size(l2arc_dev_t *dev)
8350 {
8351 	uint64_t size, dev_size, tsize;
8352 
8353 	/*
8354 	 * Make sure our globals have meaningful values in case the user
8355 	 * altered them.
8356 	 */
8357 	size = l2arc_write_max;
8358 	if (size == 0) {
8359 		cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
8360 		    "be greater than zero, resetting it to the default (%d)",
8361 		    L2ARC_WRITE_SIZE);
8362 		size = l2arc_write_max = L2ARC_WRITE_SIZE;
8363 	}
8364 
8365 	if (arc_warm == B_FALSE)
8366 		size += l2arc_write_boost;
8367 
8368 	/*
8369 	 * Make sure the write size does not exceed the size of the cache
8370 	 * device. This is important in l2arc_evict(), otherwise infinite
8371 	 * iteration can occur.
8372 	 */
8373 	dev_size = dev->l2ad_end - dev->l2ad_start;
8374 	tsize = size + l2arc_log_blk_overhead(size, dev);
8375 	if (dev->l2ad_vdev->vdev_has_trim && l2arc_trim_ahead > 0)
8376 		tsize += MAX(64 * 1024 * 1024,
8377 		    (tsize * l2arc_trim_ahead) / 100);
8378 
8379 	if (tsize >= dev_size) {
8380 		cmn_err(CE_NOTE, "l2arc_write_max or l2arc_write_boost "
8381 		    "plus the overhead of log blocks (persistent L2ARC, "
8382 		    "%llu bytes) exceeds the size of the cache device "
8383 		    "(guid %llu), resetting them to the default (%d)",
8384 		    (u_longlong_t)l2arc_log_blk_overhead(size, dev),
8385 		    (u_longlong_t)dev->l2ad_vdev->vdev_guid, L2ARC_WRITE_SIZE);
8386 		size = l2arc_write_max = l2arc_write_boost = L2ARC_WRITE_SIZE;
8387 
8388 		if (arc_warm == B_FALSE)
8389 			size += l2arc_write_boost;
8390 	}
8391 
8392 	return (size);
8393 
8394 }
8395 
8396 static clock_t
8397 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
8398 {
8399 	clock_t interval, next, now;
8400 
8401 	/*
8402 	 * If the ARC lists are busy, increase our write rate; if the
8403 	 * lists are stale, idle back.  This is achieved by checking
8404 	 * how much we previously wrote - if it was more than half of
8405 	 * what we wanted, schedule the next write much sooner.
8406 	 */
8407 	if (l2arc_feed_again && wrote > (wanted / 2))
8408 		interval = (hz * l2arc_feed_min_ms) / 1000;
8409 	else
8410 		interval = hz * l2arc_feed_secs;
8411 
8412 	now = ddi_get_lbolt();
8413 	next = MAX(now, MIN(now + interval, began + interval));
8414 
8415 	return (next);
8416 }
8417 
8418 /*
8419  * Cycle through L2ARC devices.  This is how L2ARC load balances.
8420  * If a device is returned, this also returns holding the spa config lock.
8421  */
8422 static l2arc_dev_t *
8423 l2arc_dev_get_next(void)
8424 {
8425 	l2arc_dev_t *first, *next = NULL;
8426 
8427 	/*
8428 	 * Lock out the removal of spas (spa_namespace_lock), then removal
8429 	 * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
8430 	 * both locks will be dropped and a spa config lock held instead.
8431 	 */
8432 	mutex_enter(&spa_namespace_lock);
8433 	mutex_enter(&l2arc_dev_mtx);
8434 
8435 	/* if there are no vdevs, there is nothing to do */
8436 	if (l2arc_ndev == 0)
8437 		goto out;
8438 
8439 	first = NULL;
8440 	next = l2arc_dev_last;
8441 	do {
8442 		/* loop around the list looking for a non-faulted vdev */
8443 		if (next == NULL) {
8444 			next = list_head(l2arc_dev_list);
8445 		} else {
8446 			next = list_next(l2arc_dev_list, next);
8447 			if (next == NULL)
8448 				next = list_head(l2arc_dev_list);
8449 		}
8450 
8451 		/* if we have come back to the start, bail out */
8452 		if (first == NULL)
8453 			first = next;
8454 		else if (next == first)
8455 			break;
8456 
8457 	} while (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild ||
8458 	    next->l2ad_trim_all);
8459 
8460 	/* if we were unable to find any usable vdevs, return NULL */
8461 	if (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild ||
8462 	    next->l2ad_trim_all)
8463 		next = NULL;
8464 
8465 	l2arc_dev_last = next;
8466 
8467 out:
8468 	mutex_exit(&l2arc_dev_mtx);
8469 
8470 	/*
8471 	 * Grab the config lock to prevent the 'next' device from being
8472 	 * removed while we are writing to it.
8473 	 */
8474 	if (next != NULL)
8475 		spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
8476 	mutex_exit(&spa_namespace_lock);
8477 
8478 	return (next);
8479 }
8480 
8481 /*
8482  * Free buffers that were tagged for destruction.
8483  */
8484 static void
8485 l2arc_do_free_on_write(void)
8486 {
8487 	list_t *buflist;
8488 	l2arc_data_free_t *df, *df_prev;
8489 
8490 	mutex_enter(&l2arc_free_on_write_mtx);
8491 	buflist = l2arc_free_on_write;
8492 
8493 	for (df = list_tail(buflist); df; df = df_prev) {
8494 		df_prev = list_prev(buflist, df);
8495 		ASSERT3P(df->l2df_abd, !=, NULL);
8496 		abd_free(df->l2df_abd);
8497 		list_remove(buflist, df);
8498 		kmem_free(df, sizeof (l2arc_data_free_t));
8499 	}
8500 
8501 	mutex_exit(&l2arc_free_on_write_mtx);
8502 }
8503 
8504 /*
8505  * A write to a cache device has completed.  Update all headers to allow
8506  * reads from these buffers to begin.
8507  */
8508 static void
8509 l2arc_write_done(zio_t *zio)
8510 {
8511 	l2arc_write_callback_t	*cb;
8512 	l2arc_lb_abd_buf_t	*abd_buf;
8513 	l2arc_lb_ptr_buf_t	*lb_ptr_buf;
8514 	l2arc_dev_t		*dev;
8515 	l2arc_dev_hdr_phys_t	*l2dhdr;
8516 	list_t			*buflist;
8517 	arc_buf_hdr_t		*head, *hdr, *hdr_prev;
8518 	kmutex_t		*hash_lock;
8519 	int64_t			bytes_dropped = 0;
8520 
8521 	cb = zio->io_private;
8522 	ASSERT3P(cb, !=, NULL);
8523 	dev = cb->l2wcb_dev;
8524 	l2dhdr = dev->l2ad_dev_hdr;
8525 	ASSERT3P(dev, !=, NULL);
8526 	head = cb->l2wcb_head;
8527 	ASSERT3P(head, !=, NULL);
8528 	buflist = &dev->l2ad_buflist;
8529 	ASSERT3P(buflist, !=, NULL);
8530 	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
8531 	    l2arc_write_callback_t *, cb);
8532 
8533 	/*
8534 	 * All writes completed, or an error was hit.
8535 	 */
8536 top:
8537 	mutex_enter(&dev->l2ad_mtx);
8538 	for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
8539 		hdr_prev = list_prev(buflist, hdr);
8540 
8541 		hash_lock = HDR_LOCK(hdr);
8542 
8543 		/*
8544 		 * We cannot use mutex_enter or else we can deadlock
8545 		 * with l2arc_write_buffers (due to swapping the order
8546 		 * the hash lock and l2ad_mtx are taken).
8547 		 */
8548 		if (!mutex_tryenter(hash_lock)) {
8549 			/*
8550 			 * Missed the hash lock. We must retry so we
8551 			 * don't leave the ARC_FLAG_L2_WRITING bit set.
8552 			 */
8553 			ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
8554 
8555 			/*
8556 			 * We don't want to rescan the headers we've
8557 			 * already marked as having been written out, so
8558 			 * we reinsert the head node so we can pick up
8559 			 * where we left off.
8560 			 */
8561 			list_remove(buflist, head);
8562 			list_insert_after(buflist, hdr, head);
8563 
8564 			mutex_exit(&dev->l2ad_mtx);
8565 
8566 			/*
8567 			 * We wait for the hash lock to become available
8568 			 * to try and prevent busy waiting, and increase
8569 			 * the chance we'll be able to acquire the lock
8570 			 * the next time around.
8571 			 */
8572 			mutex_enter(hash_lock);
8573 			mutex_exit(hash_lock);
8574 			goto top;
8575 		}
8576 
8577 		/*
8578 		 * We could not have been moved into the arc_l2c_only
8579 		 * state while in-flight due to our ARC_FLAG_L2_WRITING
8580 		 * bit being set. Let's just ensure that's being enforced.
8581 		 */
8582 		ASSERT(HDR_HAS_L1HDR(hdr));
8583 
8584 		/*
8585 		 * Skipped - drop L2ARC entry and mark the header as no
8586 		 * longer L2 eligibile.
8587 		 */
8588 		if (zio->io_error != 0) {
8589 			/*
8590 			 * Error - drop L2ARC entry.
8591 			 */
8592 			list_remove(buflist, hdr);
8593 			arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
8594 
8595 			uint64_t psize = HDR_GET_PSIZE(hdr);
8596 			l2arc_hdr_arcstats_decrement(hdr);
8597 
8598 			bytes_dropped +=
8599 			    vdev_psize_to_asize(dev->l2ad_vdev, psize);
8600 			(void) zfs_refcount_remove_many(&dev->l2ad_alloc,
8601 			    arc_hdr_size(hdr), hdr);
8602 		}
8603 
8604 		/*
8605 		 * Allow ARC to begin reads and ghost list evictions to
8606 		 * this L2ARC entry.
8607 		 */
8608 		arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING);
8609 
8610 		mutex_exit(hash_lock);
8611 	}
8612 
8613 	/*
8614 	 * Free the allocated abd buffers for writing the log blocks.
8615 	 * If the zio failed reclaim the allocated space and remove the
8616 	 * pointers to these log blocks from the log block pointer list
8617 	 * of the L2ARC device.
8618 	 */
8619 	while ((abd_buf = list_remove_tail(&cb->l2wcb_abd_list)) != NULL) {
8620 		abd_free(abd_buf->abd);
8621 		zio_buf_free(abd_buf, sizeof (*abd_buf));
8622 		if (zio->io_error != 0) {
8623 			lb_ptr_buf = list_remove_head(&dev->l2ad_lbptr_list);
8624 			/*
8625 			 * L2BLK_GET_PSIZE returns aligned size for log
8626 			 * blocks.
8627 			 */
8628 			uint64_t asize =
8629 			    L2BLK_GET_PSIZE((lb_ptr_buf->lb_ptr)->lbp_prop);
8630 			bytes_dropped += asize;
8631 			ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize);
8632 			ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count);
8633 			zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize,
8634 			    lb_ptr_buf);
8635 			zfs_refcount_remove(&dev->l2ad_lb_count, lb_ptr_buf);
8636 			kmem_free(lb_ptr_buf->lb_ptr,
8637 			    sizeof (l2arc_log_blkptr_t));
8638 			kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t));
8639 		}
8640 	}
8641 	list_destroy(&cb->l2wcb_abd_list);
8642 
8643 	if (zio->io_error != 0) {
8644 		ARCSTAT_BUMP(arcstat_l2_writes_error);
8645 
8646 		/*
8647 		 * Restore the lbps array in the header to its previous state.
8648 		 * If the list of log block pointers is empty, zero out the
8649 		 * log block pointers in the device header.
8650 		 */
8651 		lb_ptr_buf = list_head(&dev->l2ad_lbptr_list);
8652 		for (int i = 0; i < 2; i++) {
8653 			if (lb_ptr_buf == NULL) {
8654 				/*
8655 				 * If the list is empty zero out the device
8656 				 * header. Otherwise zero out the second log
8657 				 * block pointer in the header.
8658 				 */
8659 				if (i == 0) {
8660 					bzero(l2dhdr, dev->l2ad_dev_hdr_asize);
8661 				} else {
8662 					bzero(&l2dhdr->dh_start_lbps[i],
8663 					    sizeof (l2arc_log_blkptr_t));
8664 				}
8665 				break;
8666 			}
8667 			bcopy(lb_ptr_buf->lb_ptr, &l2dhdr->dh_start_lbps[i],
8668 			    sizeof (l2arc_log_blkptr_t));
8669 			lb_ptr_buf = list_next(&dev->l2ad_lbptr_list,
8670 			    lb_ptr_buf);
8671 		}
8672 	}
8673 
8674 	ARCSTAT_BUMP(arcstat_l2_writes_done);
8675 	list_remove(buflist, head);
8676 	ASSERT(!HDR_HAS_L1HDR(head));
8677 	kmem_cache_free(hdr_l2only_cache, head);
8678 	mutex_exit(&dev->l2ad_mtx);
8679 
8680 	ASSERT(dev->l2ad_vdev != NULL);
8681 	vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
8682 
8683 	l2arc_do_free_on_write();
8684 
8685 	kmem_free(cb, sizeof (l2arc_write_callback_t));
8686 }
8687 
8688 static int
8689 l2arc_untransform(zio_t *zio, l2arc_read_callback_t *cb)
8690 {
8691 	int ret;
8692 	spa_t *spa = zio->io_spa;
8693 	arc_buf_hdr_t *hdr = cb->l2rcb_hdr;
8694 	blkptr_t *bp = zio->io_bp;
8695 	uint8_t salt[ZIO_DATA_SALT_LEN];
8696 	uint8_t iv[ZIO_DATA_IV_LEN];
8697 	uint8_t mac[ZIO_DATA_MAC_LEN];
8698 	boolean_t no_crypt = B_FALSE;
8699 
8700 	/*
8701 	 * ZIL data is never be written to the L2ARC, so we don't need
8702 	 * special handling for its unique MAC storage.
8703 	 */
8704 	ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG);
8705 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
8706 	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
8707 
8708 	/*
8709 	 * If the data was encrypted, decrypt it now. Note that
8710 	 * we must check the bp here and not the hdr, since the
8711 	 * hdr does not have its encryption parameters updated
8712 	 * until arc_read_done().
8713 	 */
8714 	if (BP_IS_ENCRYPTED(bp)) {
8715 		abd_t *eabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr,
8716 		    ARC_HDR_DO_ADAPT | ARC_HDR_USE_RESERVE);
8717 
8718 		zio_crypt_decode_params_bp(bp, salt, iv);
8719 		zio_crypt_decode_mac_bp(bp, mac);
8720 
8721 		ret = spa_do_crypt_abd(B_FALSE, spa, &cb->l2rcb_zb,
8722 		    BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
8723 		    salt, iv, mac, HDR_GET_PSIZE(hdr), eabd,
8724 		    hdr->b_l1hdr.b_pabd, &no_crypt);
8725 		if (ret != 0) {
8726 			arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr);
8727 			goto error;
8728 		}
8729 
8730 		/*
8731 		 * If we actually performed decryption, replace b_pabd
8732 		 * with the decrypted data. Otherwise we can just throw
8733 		 * our decryption buffer away.
8734 		 */
8735 		if (!no_crypt) {
8736 			arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
8737 			    arc_hdr_size(hdr), hdr);
8738 			hdr->b_l1hdr.b_pabd = eabd;
8739 			zio->io_abd = eabd;
8740 		} else {
8741 			arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr);
8742 		}
8743 	}
8744 
8745 	/*
8746 	 * If the L2ARC block was compressed, but ARC compression
8747 	 * is disabled we decompress the data into a new buffer and
8748 	 * replace the existing data.
8749 	 */
8750 	if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
8751 	    !HDR_COMPRESSION_ENABLED(hdr)) {
8752 		abd_t *cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr,
8753 		    ARC_HDR_DO_ADAPT | ARC_HDR_USE_RESERVE);
8754 		void *tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr));
8755 
8756 		ret = zio_decompress_data(HDR_GET_COMPRESS(hdr),
8757 		    hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr),
8758 		    HDR_GET_LSIZE(hdr), &hdr->b_complevel);
8759 		if (ret != 0) {
8760 			abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr));
8761 			arc_free_data_abd(hdr, cabd, arc_hdr_size(hdr), hdr);
8762 			goto error;
8763 		}
8764 
8765 		abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr));
8766 		arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
8767 		    arc_hdr_size(hdr), hdr);
8768 		hdr->b_l1hdr.b_pabd = cabd;
8769 		zio->io_abd = cabd;
8770 		zio->io_size = HDR_GET_LSIZE(hdr);
8771 	}
8772 
8773 	return (0);
8774 
8775 error:
8776 	return (ret);
8777 }
8778 
8779 
8780 /*
8781  * A read to a cache device completed.  Validate buffer contents before
8782  * handing over to the regular ARC routines.
8783  */
8784 static void
8785 l2arc_read_done(zio_t *zio)
8786 {
8787 	int tfm_error = 0;
8788 	l2arc_read_callback_t *cb = zio->io_private;
8789 	arc_buf_hdr_t *hdr;
8790 	kmutex_t *hash_lock;
8791 	boolean_t valid_cksum;
8792 	boolean_t using_rdata = (BP_IS_ENCRYPTED(&cb->l2rcb_bp) &&
8793 	    (cb->l2rcb_flags & ZIO_FLAG_RAW_ENCRYPT));
8794 
8795 	ASSERT3P(zio->io_vd, !=, NULL);
8796 	ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
8797 
8798 	spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
8799 
8800 	ASSERT3P(cb, !=, NULL);
8801 	hdr = cb->l2rcb_hdr;
8802 	ASSERT3P(hdr, !=, NULL);
8803 
8804 	hash_lock = HDR_LOCK(hdr);
8805 	mutex_enter(hash_lock);
8806 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
8807 
8808 	/*
8809 	 * If the data was read into a temporary buffer,
8810 	 * move it and free the buffer.
8811 	 */
8812 	if (cb->l2rcb_abd != NULL) {
8813 		ASSERT3U(arc_hdr_size(hdr), <, zio->io_size);
8814 		if (zio->io_error == 0) {
8815 			if (using_rdata) {
8816 				abd_copy(hdr->b_crypt_hdr.b_rabd,
8817 				    cb->l2rcb_abd, arc_hdr_size(hdr));
8818 			} else {
8819 				abd_copy(hdr->b_l1hdr.b_pabd,
8820 				    cb->l2rcb_abd, arc_hdr_size(hdr));
8821 			}
8822 		}
8823 
8824 		/*
8825 		 * The following must be done regardless of whether
8826 		 * there was an error:
8827 		 * - free the temporary buffer
8828 		 * - point zio to the real ARC buffer
8829 		 * - set zio size accordingly
8830 		 * These are required because zio is either re-used for
8831 		 * an I/O of the block in the case of the error
8832 		 * or the zio is passed to arc_read_done() and it
8833 		 * needs real data.
8834 		 */
8835 		abd_free(cb->l2rcb_abd);
8836 		zio->io_size = zio->io_orig_size = arc_hdr_size(hdr);
8837 
8838 		if (using_rdata) {
8839 			ASSERT(HDR_HAS_RABD(hdr));
8840 			zio->io_abd = zio->io_orig_abd =
8841 			    hdr->b_crypt_hdr.b_rabd;
8842 		} else {
8843 			ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
8844 			zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd;
8845 		}
8846 	}
8847 
8848 	ASSERT3P(zio->io_abd, !=, NULL);
8849 
8850 	/*
8851 	 * Check this survived the L2ARC journey.
8852 	 */
8853 	ASSERT(zio->io_abd == hdr->b_l1hdr.b_pabd ||
8854 	    (HDR_HAS_RABD(hdr) && zio->io_abd == hdr->b_crypt_hdr.b_rabd));
8855 	zio->io_bp_copy = cb->l2rcb_bp;	/* XXX fix in L2ARC 2.0	*/
8856 	zio->io_bp = &zio->io_bp_copy;	/* XXX fix in L2ARC 2.0	*/
8857 	zio->io_prop.zp_complevel = hdr->b_complevel;
8858 
8859 	valid_cksum = arc_cksum_is_equal(hdr, zio);
8860 
8861 	/*
8862 	 * b_rabd will always match the data as it exists on disk if it is
8863 	 * being used. Therefore if we are reading into b_rabd we do not
8864 	 * attempt to untransform the data.
8865 	 */
8866 	if (valid_cksum && !using_rdata)
8867 		tfm_error = l2arc_untransform(zio, cb);
8868 
8869 	if (valid_cksum && tfm_error == 0 && zio->io_error == 0 &&
8870 	    !HDR_L2_EVICTED(hdr)) {
8871 		mutex_exit(hash_lock);
8872 		zio->io_private = hdr;
8873 		arc_read_done(zio);
8874 	} else {
8875 		/*
8876 		 * Buffer didn't survive caching.  Increment stats and
8877 		 * reissue to the original storage device.
8878 		 */
8879 		if (zio->io_error != 0) {
8880 			ARCSTAT_BUMP(arcstat_l2_io_error);
8881 		} else {
8882 			zio->io_error = SET_ERROR(EIO);
8883 		}
8884 		if (!valid_cksum || tfm_error != 0)
8885 			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
8886 
8887 		/*
8888 		 * If there's no waiter, issue an async i/o to the primary
8889 		 * storage now.  If there *is* a waiter, the caller must
8890 		 * issue the i/o in a context where it's OK to block.
8891 		 */
8892 		if (zio->io_waiter == NULL) {
8893 			zio_t *pio = zio_unique_parent(zio);
8894 			void *abd = (using_rdata) ?
8895 			    hdr->b_crypt_hdr.b_rabd : hdr->b_l1hdr.b_pabd;
8896 
8897 			ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
8898 
8899 			zio = zio_read(pio, zio->io_spa, zio->io_bp,
8900 			    abd, zio->io_size, arc_read_done,
8901 			    hdr, zio->io_priority, cb->l2rcb_flags,
8902 			    &cb->l2rcb_zb);
8903 
8904 			/*
8905 			 * Original ZIO will be freed, so we need to update
8906 			 * ARC header with the new ZIO pointer to be used
8907 			 * by zio_change_priority() in arc_read().
8908 			 */
8909 			for (struct arc_callback *acb = hdr->b_l1hdr.b_acb;
8910 			    acb != NULL; acb = acb->acb_next)
8911 				acb->acb_zio_head = zio;
8912 
8913 			mutex_exit(hash_lock);
8914 			zio_nowait(zio);
8915 		} else {
8916 			mutex_exit(hash_lock);
8917 		}
8918 	}
8919 
8920 	kmem_free(cb, sizeof (l2arc_read_callback_t));
8921 }
8922 
8923 /*
8924  * This is the list priority from which the L2ARC will search for pages to
8925  * cache.  This is used within loops (0..3) to cycle through lists in the
8926  * desired order.  This order can have a significant effect on cache
8927  * performance.
8928  *
8929  * Currently the metadata lists are hit first, MFU then MRU, followed by
8930  * the data lists.  This function returns a locked list, and also returns
8931  * the lock pointer.
8932  */
8933 static multilist_sublist_t *
8934 l2arc_sublist_lock(int list_num)
8935 {
8936 	multilist_t *ml = NULL;
8937 	unsigned int idx;
8938 
8939 	ASSERT(list_num >= 0 && list_num < L2ARC_FEED_TYPES);
8940 
8941 	switch (list_num) {
8942 	case 0:
8943 		ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
8944 		break;
8945 	case 1:
8946 		ml = &arc_mru->arcs_list[ARC_BUFC_METADATA];
8947 		break;
8948 	case 2:
8949 		ml = &arc_mfu->arcs_list[ARC_BUFC_DATA];
8950 		break;
8951 	case 3:
8952 		ml = &arc_mru->arcs_list[ARC_BUFC_DATA];
8953 		break;
8954 	default:
8955 		return (NULL);
8956 	}
8957 
8958 	/*
8959 	 * Return a randomly-selected sublist. This is acceptable
8960 	 * because the caller feeds only a little bit of data for each
8961 	 * call (8MB). Subsequent calls will result in different
8962 	 * sublists being selected.
8963 	 */
8964 	idx = multilist_get_random_index(ml);
8965 	return (multilist_sublist_lock(ml, idx));
8966 }
8967 
8968 /*
8969  * Calculates the maximum overhead of L2ARC metadata log blocks for a given
8970  * L2ARC write size. l2arc_evict and l2arc_write_size need to include this
8971  * overhead in processing to make sure there is enough headroom available
8972  * when writing buffers.
8973  */
8974 static inline uint64_t
8975 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev)
8976 {
8977 	if (dev->l2ad_log_entries == 0) {
8978 		return (0);
8979 	} else {
8980 		uint64_t log_entries = write_sz >> SPA_MINBLOCKSHIFT;
8981 
8982 		uint64_t log_blocks = (log_entries +
8983 		    dev->l2ad_log_entries - 1) /
8984 		    dev->l2ad_log_entries;
8985 
8986 		return (vdev_psize_to_asize(dev->l2ad_vdev,
8987 		    sizeof (l2arc_log_blk_phys_t)) * log_blocks);
8988 	}
8989 }
8990 
8991 /*
8992  * Evict buffers from the device write hand to the distance specified in
8993  * bytes. This distance may span populated buffers, it may span nothing.
8994  * This is clearing a region on the L2ARC device ready for writing.
8995  * If the 'all' boolean is set, every buffer is evicted.
8996  */
8997 static void
8998 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
8999 {
9000 	list_t *buflist;
9001 	arc_buf_hdr_t *hdr, *hdr_prev;
9002 	kmutex_t *hash_lock;
9003 	uint64_t taddr;
9004 	l2arc_lb_ptr_buf_t *lb_ptr_buf, *lb_ptr_buf_prev;
9005 	vdev_t *vd = dev->l2ad_vdev;
9006 	boolean_t rerun;
9007 
9008 	buflist = &dev->l2ad_buflist;
9009 
9010 	/*
9011 	 * We need to add in the worst case scenario of log block overhead.
9012 	 */
9013 	distance += l2arc_log_blk_overhead(distance, dev);
9014 	if (vd->vdev_has_trim && l2arc_trim_ahead > 0) {
9015 		/*
9016 		 * Trim ahead of the write size 64MB or (l2arc_trim_ahead/100)
9017 		 * times the write size, whichever is greater.
9018 		 */
9019 		distance += MAX(64 * 1024 * 1024,
9020 		    (distance * l2arc_trim_ahead) / 100);
9021 	}
9022 
9023 top:
9024 	rerun = B_FALSE;
9025 	if (dev->l2ad_hand >= (dev->l2ad_end - distance)) {
9026 		/*
9027 		 * When there is no space to accommodate upcoming writes,
9028 		 * evict to the end. Then bump the write and evict hands
9029 		 * to the start and iterate. This iteration does not
9030 		 * happen indefinitely as we make sure in
9031 		 * l2arc_write_size() that when the write hand is reset,
9032 		 * the write size does not exceed the end of the device.
9033 		 */
9034 		rerun = B_TRUE;
9035 		taddr = dev->l2ad_end;
9036 	} else {
9037 		taddr = dev->l2ad_hand + distance;
9038 	}
9039 	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
9040 	    uint64_t, taddr, boolean_t, all);
9041 
9042 	if (!all) {
9043 		/*
9044 		 * This check has to be placed after deciding whether to
9045 		 * iterate (rerun).
9046 		 */
9047 		if (dev->l2ad_first) {
9048 			/*
9049 			 * This is the first sweep through the device. There is
9050 			 * nothing to evict. We have already trimmmed the
9051 			 * whole device.
9052 			 */
9053 			goto out;
9054 		} else {
9055 			/*
9056 			 * Trim the space to be evicted.
9057 			 */
9058 			if (vd->vdev_has_trim && dev->l2ad_evict < taddr &&
9059 			    l2arc_trim_ahead > 0) {
9060 				/*
9061 				 * We have to drop the spa_config lock because
9062 				 * vdev_trim_range() will acquire it.
9063 				 * l2ad_evict already accounts for the label
9064 				 * size. To prevent vdev_trim_ranges() from
9065 				 * adding it again, we subtract it from
9066 				 * l2ad_evict.
9067 				 */
9068 				spa_config_exit(dev->l2ad_spa, SCL_L2ARC, dev);
9069 				vdev_trim_simple(vd,
9070 				    dev->l2ad_evict - VDEV_LABEL_START_SIZE,
9071 				    taddr - dev->l2ad_evict);
9072 				spa_config_enter(dev->l2ad_spa, SCL_L2ARC, dev,
9073 				    RW_READER);
9074 			}
9075 
9076 			/*
9077 			 * When rebuilding L2ARC we retrieve the evict hand
9078 			 * from the header of the device. Of note, l2arc_evict()
9079 			 * does not actually delete buffers from the cache
9080 			 * device, but trimming may do so depending on the
9081 			 * hardware implementation. Thus keeping track of the
9082 			 * evict hand is useful.
9083 			 */
9084 			dev->l2ad_evict = MAX(dev->l2ad_evict, taddr);
9085 		}
9086 	}
9087 
9088 retry:
9089 	mutex_enter(&dev->l2ad_mtx);
9090 	/*
9091 	 * We have to account for evicted log blocks. Run vdev_space_update()
9092 	 * on log blocks whose offset (in bytes) is before the evicted offset
9093 	 * (in bytes) by searching in the list of pointers to log blocks
9094 	 * present in the L2ARC device.
9095 	 */
9096 	for (lb_ptr_buf = list_tail(&dev->l2ad_lbptr_list); lb_ptr_buf;
9097 	    lb_ptr_buf = lb_ptr_buf_prev) {
9098 
9099 		lb_ptr_buf_prev = list_prev(&dev->l2ad_lbptr_list, lb_ptr_buf);
9100 
9101 		/* L2BLK_GET_PSIZE returns aligned size for log blocks */
9102 		uint64_t asize = L2BLK_GET_PSIZE(
9103 		    (lb_ptr_buf->lb_ptr)->lbp_prop);
9104 
9105 		/*
9106 		 * We don't worry about log blocks left behind (ie
9107 		 * lbp_payload_start < l2ad_hand) because l2arc_write_buffers()
9108 		 * will never write more than l2arc_evict() evicts.
9109 		 */
9110 		if (!all && l2arc_log_blkptr_valid(dev, lb_ptr_buf->lb_ptr)) {
9111 			break;
9112 		} else {
9113 			vdev_space_update(vd, -asize, 0, 0);
9114 			ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize);
9115 			ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count);
9116 			zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize,
9117 			    lb_ptr_buf);
9118 			zfs_refcount_remove(&dev->l2ad_lb_count, lb_ptr_buf);
9119 			list_remove(&dev->l2ad_lbptr_list, lb_ptr_buf);
9120 			kmem_free(lb_ptr_buf->lb_ptr,
9121 			    sizeof (l2arc_log_blkptr_t));
9122 			kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t));
9123 		}
9124 	}
9125 
9126 	for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
9127 		hdr_prev = list_prev(buflist, hdr);
9128 
9129 		ASSERT(!HDR_EMPTY(hdr));
9130 		hash_lock = HDR_LOCK(hdr);
9131 
9132 		/*
9133 		 * We cannot use mutex_enter or else we can deadlock
9134 		 * with l2arc_write_buffers (due to swapping the order
9135 		 * the hash lock and l2ad_mtx are taken).
9136 		 */
9137 		if (!mutex_tryenter(hash_lock)) {
9138 			/*
9139 			 * Missed the hash lock.  Retry.
9140 			 */
9141 			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
9142 			mutex_exit(&dev->l2ad_mtx);
9143 			mutex_enter(hash_lock);
9144 			mutex_exit(hash_lock);
9145 			goto retry;
9146 		}
9147 
9148 		/*
9149 		 * A header can't be on this list if it doesn't have L2 header.
9150 		 */
9151 		ASSERT(HDR_HAS_L2HDR(hdr));
9152 
9153 		/* Ensure this header has finished being written. */
9154 		ASSERT(!HDR_L2_WRITING(hdr));
9155 		ASSERT(!HDR_L2_WRITE_HEAD(hdr));
9156 
9157 		if (!all && (hdr->b_l2hdr.b_daddr >= dev->l2ad_evict ||
9158 		    hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
9159 			/*
9160 			 * We've evicted to the target address,
9161 			 * or the end of the device.
9162 			 */
9163 			mutex_exit(hash_lock);
9164 			break;
9165 		}
9166 
9167 		if (!HDR_HAS_L1HDR(hdr)) {
9168 			ASSERT(!HDR_L2_READING(hdr));
9169 			/*
9170 			 * This doesn't exist in the ARC.  Destroy.
9171 			 * arc_hdr_destroy() will call list_remove()
9172 			 * and decrement arcstat_l2_lsize.
9173 			 */
9174 			arc_change_state(arc_anon, hdr, hash_lock);
9175 			arc_hdr_destroy(hdr);
9176 		} else {
9177 			ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
9178 			ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
9179 			/*
9180 			 * Invalidate issued or about to be issued
9181 			 * reads, since we may be about to write
9182 			 * over this location.
9183 			 */
9184 			if (HDR_L2_READING(hdr)) {
9185 				ARCSTAT_BUMP(arcstat_l2_evict_reading);
9186 				arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED);
9187 			}
9188 
9189 			arc_hdr_l2hdr_destroy(hdr);
9190 		}
9191 		mutex_exit(hash_lock);
9192 	}
9193 	mutex_exit(&dev->l2ad_mtx);
9194 
9195 out:
9196 	/*
9197 	 * We need to check if we evict all buffers, otherwise we may iterate
9198 	 * unnecessarily.
9199 	 */
9200 	if (!all && rerun) {
9201 		/*
9202 		 * Bump device hand to the device start if it is approaching the
9203 		 * end. l2arc_evict() has already evicted ahead for this case.
9204 		 */
9205 		dev->l2ad_hand = dev->l2ad_start;
9206 		dev->l2ad_evict = dev->l2ad_start;
9207 		dev->l2ad_first = B_FALSE;
9208 		goto top;
9209 	}
9210 
9211 	if (!all) {
9212 		/*
9213 		 * In case of cache device removal (all) the following
9214 		 * assertions may be violated without functional consequences
9215 		 * as the device is about to be removed.
9216 		 */
9217 		ASSERT3U(dev->l2ad_hand + distance, <, dev->l2ad_end);
9218 		if (!dev->l2ad_first)
9219 			ASSERT3U(dev->l2ad_hand, <, dev->l2ad_evict);
9220 	}
9221 }
9222 
9223 /*
9224  * Handle any abd transforms that might be required for writing to the L2ARC.
9225  * If successful, this function will always return an abd with the data
9226  * transformed as it is on disk in a new abd of asize bytes.
9227  */
9228 static int
9229 l2arc_apply_transforms(spa_t *spa, arc_buf_hdr_t *hdr, uint64_t asize,
9230     abd_t **abd_out)
9231 {
9232 	int ret;
9233 	void *tmp = NULL;
9234 	abd_t *cabd = NULL, *eabd = NULL, *to_write = hdr->b_l1hdr.b_pabd;
9235 	enum zio_compress compress = HDR_GET_COMPRESS(hdr);
9236 	uint64_t psize = HDR_GET_PSIZE(hdr);
9237 	uint64_t size = arc_hdr_size(hdr);
9238 	boolean_t ismd = HDR_ISTYPE_METADATA(hdr);
9239 	boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
9240 	dsl_crypto_key_t *dck = NULL;
9241 	uint8_t mac[ZIO_DATA_MAC_LEN] = { 0 };
9242 	boolean_t no_crypt = B_FALSE;
9243 
9244 	ASSERT((HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
9245 	    !HDR_COMPRESSION_ENABLED(hdr)) ||
9246 	    HDR_ENCRYPTED(hdr) || HDR_SHARED_DATA(hdr) || psize != asize);
9247 	ASSERT3U(psize, <=, asize);
9248 
9249 	/*
9250 	 * If this data simply needs its own buffer, we simply allocate it
9251 	 * and copy the data. This may be done to eliminate a dependency on a
9252 	 * shared buffer or to reallocate the buffer to match asize.
9253 	 */
9254 	if (HDR_HAS_RABD(hdr) && asize != psize) {
9255 		ASSERT3U(asize, >=, psize);
9256 		to_write = abd_alloc_for_io(asize, ismd);
9257 		abd_copy(to_write, hdr->b_crypt_hdr.b_rabd, psize);
9258 		if (psize != asize)
9259 			abd_zero_off(to_write, psize, asize - psize);
9260 		goto out;
9261 	}
9262 
9263 	if ((compress == ZIO_COMPRESS_OFF || HDR_COMPRESSION_ENABLED(hdr)) &&
9264 	    !HDR_ENCRYPTED(hdr)) {
9265 		ASSERT3U(size, ==, psize);
9266 		to_write = abd_alloc_for_io(asize, ismd);
9267 		abd_copy(to_write, hdr->b_l1hdr.b_pabd, size);
9268 		if (size != asize)
9269 			abd_zero_off(to_write, size, asize - size);
9270 		goto out;
9271 	}
9272 
9273 	if (compress != ZIO_COMPRESS_OFF && !HDR_COMPRESSION_ENABLED(hdr)) {
9274 		cabd = abd_alloc_for_io(asize, ismd);
9275 		tmp = abd_borrow_buf(cabd, asize);
9276 
9277 		psize = zio_compress_data(compress, to_write, tmp, size,
9278 		    hdr->b_complevel);
9279 
9280 		if (psize >= size) {
9281 			abd_return_buf(cabd, tmp, asize);
9282 			HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF);
9283 			to_write = cabd;
9284 			abd_copy(to_write, hdr->b_l1hdr.b_pabd, size);
9285 			if (size != asize)
9286 				abd_zero_off(to_write, size, asize - size);
9287 			goto encrypt;
9288 		}
9289 		ASSERT3U(psize, <=, HDR_GET_PSIZE(hdr));
9290 		if (psize < asize)
9291 			bzero((char *)tmp + psize, asize - psize);
9292 		psize = HDR_GET_PSIZE(hdr);
9293 		abd_return_buf_copy(cabd, tmp, asize);
9294 		to_write = cabd;
9295 	}
9296 
9297 encrypt:
9298 	if (HDR_ENCRYPTED(hdr)) {
9299 		eabd = abd_alloc_for_io(asize, ismd);
9300 
9301 		/*
9302 		 * If the dataset was disowned before the buffer
9303 		 * made it to this point, the key to re-encrypt
9304 		 * it won't be available. In this case we simply
9305 		 * won't write the buffer to the L2ARC.
9306 		 */
9307 		ret = spa_keystore_lookup_key(spa, hdr->b_crypt_hdr.b_dsobj,
9308 		    FTAG, &dck);
9309 		if (ret != 0)
9310 			goto error;
9311 
9312 		ret = zio_do_crypt_abd(B_TRUE, &dck->dck_key,
9313 		    hdr->b_crypt_hdr.b_ot, bswap, hdr->b_crypt_hdr.b_salt,
9314 		    hdr->b_crypt_hdr.b_iv, mac, psize, to_write, eabd,
9315 		    &no_crypt);
9316 		if (ret != 0)
9317 			goto error;
9318 
9319 		if (no_crypt)
9320 			abd_copy(eabd, to_write, psize);
9321 
9322 		if (psize != asize)
9323 			abd_zero_off(eabd, psize, asize - psize);
9324 
9325 		/* assert that the MAC we got here matches the one we saved */
9326 		ASSERT0(bcmp(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN));
9327 		spa_keystore_dsl_key_rele(spa, dck, FTAG);
9328 
9329 		if (to_write == cabd)
9330 			abd_free(cabd);
9331 
9332 		to_write = eabd;
9333 	}
9334 
9335 out:
9336 	ASSERT3P(to_write, !=, hdr->b_l1hdr.b_pabd);
9337 	*abd_out = to_write;
9338 	return (0);
9339 
9340 error:
9341 	if (dck != NULL)
9342 		spa_keystore_dsl_key_rele(spa, dck, FTAG);
9343 	if (cabd != NULL)
9344 		abd_free(cabd);
9345 	if (eabd != NULL)
9346 		abd_free(eabd);
9347 
9348 	*abd_out = NULL;
9349 	return (ret);
9350 }
9351 
9352 static void
9353 l2arc_blk_fetch_done(zio_t *zio)
9354 {
9355 	l2arc_read_callback_t *cb;
9356 
9357 	cb = zio->io_private;
9358 	if (cb->l2rcb_abd != NULL)
9359 		abd_free(cb->l2rcb_abd);
9360 	kmem_free(cb, sizeof (l2arc_read_callback_t));
9361 }
9362 
9363 /*
9364  * Find and write ARC buffers to the L2ARC device.
9365  *
9366  * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
9367  * for reading until they have completed writing.
9368  * The headroom_boost is an in-out parameter used to maintain headroom boost
9369  * state between calls to this function.
9370  *
9371  * Returns the number of bytes actually written (which may be smaller than
9372  * the delta by which the device hand has changed due to alignment and the
9373  * writing of log blocks).
9374  */
9375 static uint64_t
9376 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
9377 {
9378 	arc_buf_hdr_t 		*hdr, *hdr_prev, *head;
9379 	uint64_t 		write_asize, write_psize, write_lsize, headroom;
9380 	boolean_t		full;
9381 	l2arc_write_callback_t	*cb = NULL;
9382 	zio_t 			*pio, *wzio;
9383 	uint64_t 		guid = spa_load_guid(spa);
9384 	l2arc_dev_hdr_phys_t	*l2dhdr = dev->l2ad_dev_hdr;
9385 
9386 	ASSERT3P(dev->l2ad_vdev, !=, NULL);
9387 
9388 	pio = NULL;
9389 	write_lsize = write_asize = write_psize = 0;
9390 	full = B_FALSE;
9391 	head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
9392 	arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR);
9393 
9394 	/*
9395 	 * Copy buffers for L2ARC writing.
9396 	 */
9397 	for (int pass = 0; pass < L2ARC_FEED_TYPES; pass++) {
9398 		/*
9399 		 * If pass == 1 or 3, we cache MRU metadata and data
9400 		 * respectively.
9401 		 */
9402 		if (l2arc_mfuonly) {
9403 			if (pass == 1 || pass == 3)
9404 				continue;
9405 		}
9406 
9407 		multilist_sublist_t *mls = l2arc_sublist_lock(pass);
9408 		uint64_t passed_sz = 0;
9409 
9410 		VERIFY3P(mls, !=, NULL);
9411 
9412 		/*
9413 		 * L2ARC fast warmup.
9414 		 *
9415 		 * Until the ARC is warm and starts to evict, read from the
9416 		 * head of the ARC lists rather than the tail.
9417 		 */
9418 		if (arc_warm == B_FALSE)
9419 			hdr = multilist_sublist_head(mls);
9420 		else
9421 			hdr = multilist_sublist_tail(mls);
9422 
9423 		headroom = target_sz * l2arc_headroom;
9424 		if (zfs_compressed_arc_enabled)
9425 			headroom = (headroom * l2arc_headroom_boost) / 100;
9426 
9427 		for (; hdr; hdr = hdr_prev) {
9428 			kmutex_t *hash_lock;
9429 			abd_t *to_write = NULL;
9430 
9431 			if (arc_warm == B_FALSE)
9432 				hdr_prev = multilist_sublist_next(mls, hdr);
9433 			else
9434 				hdr_prev = multilist_sublist_prev(mls, hdr);
9435 
9436 			hash_lock = HDR_LOCK(hdr);
9437 			if (!mutex_tryenter(hash_lock)) {
9438 				/*
9439 				 * Skip this buffer rather than waiting.
9440 				 */
9441 				continue;
9442 			}
9443 
9444 			passed_sz += HDR_GET_LSIZE(hdr);
9445 			if (l2arc_headroom != 0 && passed_sz > headroom) {
9446 				/*
9447 				 * Searched too far.
9448 				 */
9449 				mutex_exit(hash_lock);
9450 				break;
9451 			}
9452 
9453 			if (!l2arc_write_eligible(guid, hdr)) {
9454 				mutex_exit(hash_lock);
9455 				continue;
9456 			}
9457 
9458 			/*
9459 			 * We rely on the L1 portion of the header below, so
9460 			 * it's invalid for this header to have been evicted out
9461 			 * of the ghost cache, prior to being written out. The
9462 			 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
9463 			 */
9464 			ASSERT(HDR_HAS_L1HDR(hdr));
9465 
9466 			ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
9467 			ASSERT3U(arc_hdr_size(hdr), >, 0);
9468 			ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
9469 			    HDR_HAS_RABD(hdr));
9470 			uint64_t psize = HDR_GET_PSIZE(hdr);
9471 			uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev,
9472 			    psize);
9473 
9474 			if ((write_asize + asize) > target_sz) {
9475 				full = B_TRUE;
9476 				mutex_exit(hash_lock);
9477 				break;
9478 			}
9479 
9480 			/*
9481 			 * We rely on the L1 portion of the header below, so
9482 			 * it's invalid for this header to have been evicted out
9483 			 * of the ghost cache, prior to being written out. The
9484 			 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
9485 			 */
9486 			arc_hdr_set_flags(hdr, ARC_FLAG_L2_WRITING);
9487 			ASSERT(HDR_HAS_L1HDR(hdr));
9488 
9489 			ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
9490 			ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
9491 			    HDR_HAS_RABD(hdr));
9492 			ASSERT3U(arc_hdr_size(hdr), >, 0);
9493 
9494 			/*
9495 			 * If this header has b_rabd, we can use this since it
9496 			 * must always match the data exactly as it exists on
9497 			 * disk. Otherwise, the L2ARC can normally use the
9498 			 * hdr's data, but if we're sharing data between the
9499 			 * hdr and one of its bufs, L2ARC needs its own copy of
9500 			 * the data so that the ZIO below can't race with the
9501 			 * buf consumer. To ensure that this copy will be
9502 			 * available for the lifetime of the ZIO and be cleaned
9503 			 * up afterwards, we add it to the l2arc_free_on_write
9504 			 * queue. If we need to apply any transforms to the
9505 			 * data (compression, encryption) we will also need the
9506 			 * extra buffer.
9507 			 */
9508 			if (HDR_HAS_RABD(hdr) && psize == asize) {
9509 				to_write = hdr->b_crypt_hdr.b_rabd;
9510 			} else if ((HDR_COMPRESSION_ENABLED(hdr) ||
9511 			    HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) &&
9512 			    !HDR_ENCRYPTED(hdr) && !HDR_SHARED_DATA(hdr) &&
9513 			    psize == asize) {
9514 				to_write = hdr->b_l1hdr.b_pabd;
9515 			} else {
9516 				int ret;
9517 				arc_buf_contents_t type = arc_buf_type(hdr);
9518 
9519 				ret = l2arc_apply_transforms(spa, hdr, asize,
9520 				    &to_write);
9521 				if (ret != 0) {
9522 					arc_hdr_clear_flags(hdr,
9523 					    ARC_FLAG_L2_WRITING);
9524 					mutex_exit(hash_lock);
9525 					continue;
9526 				}
9527 
9528 				l2arc_free_abd_on_write(to_write, asize, type);
9529 			}
9530 
9531 			if (pio == NULL) {
9532 				/*
9533 				 * Insert a dummy header on the buflist so
9534 				 * l2arc_write_done() can find where the
9535 				 * write buffers begin without searching.
9536 				 */
9537 				mutex_enter(&dev->l2ad_mtx);
9538 				list_insert_head(&dev->l2ad_buflist, head);
9539 				mutex_exit(&dev->l2ad_mtx);
9540 
9541 				cb = kmem_alloc(
9542 				    sizeof (l2arc_write_callback_t), KM_SLEEP);
9543 				cb->l2wcb_dev = dev;
9544 				cb->l2wcb_head = head;
9545 				/*
9546 				 * Create a list to save allocated abd buffers
9547 				 * for l2arc_log_blk_commit().
9548 				 */
9549 				list_create(&cb->l2wcb_abd_list,
9550 				    sizeof (l2arc_lb_abd_buf_t),
9551 				    offsetof(l2arc_lb_abd_buf_t, node));
9552 				pio = zio_root(spa, l2arc_write_done, cb,
9553 				    ZIO_FLAG_CANFAIL);
9554 			}
9555 
9556 			hdr->b_l2hdr.b_dev = dev;
9557 			hdr->b_l2hdr.b_hits = 0;
9558 
9559 			hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
9560 			hdr->b_l2hdr.b_arcs_state =
9561 			    hdr->b_l1hdr.b_state->arcs_state;
9562 			arc_hdr_set_flags(hdr, ARC_FLAG_HAS_L2HDR);
9563 
9564 			mutex_enter(&dev->l2ad_mtx);
9565 			list_insert_head(&dev->l2ad_buflist, hdr);
9566 			mutex_exit(&dev->l2ad_mtx);
9567 
9568 			(void) zfs_refcount_add_many(&dev->l2ad_alloc,
9569 			    arc_hdr_size(hdr), hdr);
9570 
9571 			wzio = zio_write_phys(pio, dev->l2ad_vdev,
9572 			    hdr->b_l2hdr.b_daddr, asize, to_write,
9573 			    ZIO_CHECKSUM_OFF, NULL, hdr,
9574 			    ZIO_PRIORITY_ASYNC_WRITE,
9575 			    ZIO_FLAG_CANFAIL, B_FALSE);
9576 
9577 			write_lsize += HDR_GET_LSIZE(hdr);
9578 			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
9579 			    zio_t *, wzio);
9580 
9581 			write_psize += psize;
9582 			write_asize += asize;
9583 			dev->l2ad_hand += asize;
9584 			l2arc_hdr_arcstats_increment(hdr);
9585 			vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
9586 
9587 			mutex_exit(hash_lock);
9588 
9589 			/*
9590 			 * Append buf info to current log and commit if full.
9591 			 * arcstat_l2_{size,asize} kstats are updated
9592 			 * internally.
9593 			 */
9594 			if (l2arc_log_blk_insert(dev, hdr))
9595 				l2arc_log_blk_commit(dev, pio, cb);
9596 
9597 			zio_nowait(wzio);
9598 		}
9599 
9600 		multilist_sublist_unlock(mls);
9601 
9602 		if (full == B_TRUE)
9603 			break;
9604 	}
9605 
9606 	/* No buffers selected for writing? */
9607 	if (pio == NULL) {
9608 		ASSERT0(write_lsize);
9609 		ASSERT(!HDR_HAS_L1HDR(head));
9610 		kmem_cache_free(hdr_l2only_cache, head);
9611 
9612 		/*
9613 		 * Although we did not write any buffers l2ad_evict may
9614 		 * have advanced.
9615 		 */
9616 		if (dev->l2ad_evict != l2dhdr->dh_evict)
9617 			l2arc_dev_hdr_update(dev);
9618 
9619 		return (0);
9620 	}
9621 
9622 	if (!dev->l2ad_first)
9623 		ASSERT3U(dev->l2ad_hand, <=, dev->l2ad_evict);
9624 
9625 	ASSERT3U(write_asize, <=, target_sz);
9626 	ARCSTAT_BUMP(arcstat_l2_writes_sent);
9627 	ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize);
9628 
9629 	dev->l2ad_writing = B_TRUE;
9630 	(void) zio_wait(pio);
9631 	dev->l2ad_writing = B_FALSE;
9632 
9633 	/*
9634 	 * Update the device header after the zio completes as
9635 	 * l2arc_write_done() may have updated the memory holding the log block
9636 	 * pointers in the device header.
9637 	 */
9638 	l2arc_dev_hdr_update(dev);
9639 
9640 	return (write_asize);
9641 }
9642 
9643 static boolean_t
9644 l2arc_hdr_limit_reached(void)
9645 {
9646 	int64_t s = aggsum_upper_bound(&arc_sums.arcstat_l2_hdr_size);
9647 
9648 	return (arc_reclaim_needed() || (s > arc_meta_limit * 3 / 4) ||
9649 	    (s > (arc_warm ? arc_c : arc_c_max) * l2arc_meta_percent / 100));
9650 }
9651 
9652 /*
9653  * This thread feeds the L2ARC at regular intervals.  This is the beating
9654  * heart of the L2ARC.
9655  */
9656 /* ARGSUSED */
9657 static void
9658 l2arc_feed_thread(void *unused)
9659 {
9660 	callb_cpr_t cpr;
9661 	l2arc_dev_t *dev;
9662 	spa_t *spa;
9663 	uint64_t size, wrote;
9664 	clock_t begin, next = ddi_get_lbolt();
9665 	fstrans_cookie_t cookie;
9666 
9667 	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
9668 
9669 	mutex_enter(&l2arc_feed_thr_lock);
9670 
9671 	cookie = spl_fstrans_mark();
9672 	while (l2arc_thread_exit == 0) {
9673 		CALLB_CPR_SAFE_BEGIN(&cpr);
9674 		(void) cv_timedwait_idle(&l2arc_feed_thr_cv,
9675 		    &l2arc_feed_thr_lock, next);
9676 		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
9677 		next = ddi_get_lbolt() + hz;
9678 
9679 		/*
9680 		 * Quick check for L2ARC devices.
9681 		 */
9682 		mutex_enter(&l2arc_dev_mtx);
9683 		if (l2arc_ndev == 0) {
9684 			mutex_exit(&l2arc_dev_mtx);
9685 			continue;
9686 		}
9687 		mutex_exit(&l2arc_dev_mtx);
9688 		begin = ddi_get_lbolt();
9689 
9690 		/*
9691 		 * This selects the next l2arc device to write to, and in
9692 		 * doing so the next spa to feed from: dev->l2ad_spa.   This
9693 		 * will return NULL if there are now no l2arc devices or if
9694 		 * they are all faulted.
9695 		 *
9696 		 * If a device is returned, its spa's config lock is also
9697 		 * held to prevent device removal.  l2arc_dev_get_next()
9698 		 * will grab and release l2arc_dev_mtx.
9699 		 */
9700 		if ((dev = l2arc_dev_get_next()) == NULL)
9701 			continue;
9702 
9703 		spa = dev->l2ad_spa;
9704 		ASSERT3P(spa, !=, NULL);
9705 
9706 		/*
9707 		 * If the pool is read-only then force the feed thread to
9708 		 * sleep a little longer.
9709 		 */
9710 		if (!spa_writeable(spa)) {
9711 			next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
9712 			spa_config_exit(spa, SCL_L2ARC, dev);
9713 			continue;
9714 		}
9715 
9716 		/*
9717 		 * Avoid contributing to memory pressure.
9718 		 */
9719 		if (l2arc_hdr_limit_reached()) {
9720 			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
9721 			spa_config_exit(spa, SCL_L2ARC, dev);
9722 			continue;
9723 		}
9724 
9725 		ARCSTAT_BUMP(arcstat_l2_feeds);
9726 
9727 		size = l2arc_write_size(dev);
9728 
9729 		/*
9730 		 * Evict L2ARC buffers that will be overwritten.
9731 		 */
9732 		l2arc_evict(dev, size, B_FALSE);
9733 
9734 		/*
9735 		 * Write ARC buffers.
9736 		 */
9737 		wrote = l2arc_write_buffers(spa, dev, size);
9738 
9739 		/*
9740 		 * Calculate interval between writes.
9741 		 */
9742 		next = l2arc_write_interval(begin, size, wrote);
9743 		spa_config_exit(spa, SCL_L2ARC, dev);
9744 	}
9745 	spl_fstrans_unmark(cookie);
9746 
9747 	l2arc_thread_exit = 0;
9748 	cv_broadcast(&l2arc_feed_thr_cv);
9749 	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
9750 	thread_exit();
9751 }
9752 
9753 boolean_t
9754 l2arc_vdev_present(vdev_t *vd)
9755 {
9756 	return (l2arc_vdev_get(vd) != NULL);
9757 }
9758 
9759 /*
9760  * Returns the l2arc_dev_t associated with a particular vdev_t or NULL if
9761  * the vdev_t isn't an L2ARC device.
9762  */
9763 l2arc_dev_t *
9764 l2arc_vdev_get(vdev_t *vd)
9765 {
9766 	l2arc_dev_t	*dev;
9767 
9768 	mutex_enter(&l2arc_dev_mtx);
9769 	for (dev = list_head(l2arc_dev_list); dev != NULL;
9770 	    dev = list_next(l2arc_dev_list, dev)) {
9771 		if (dev->l2ad_vdev == vd)
9772 			break;
9773 	}
9774 	mutex_exit(&l2arc_dev_mtx);
9775 
9776 	return (dev);
9777 }
9778 
9779 static void
9780 l2arc_rebuild_dev(l2arc_dev_t *dev, boolean_t reopen)
9781 {
9782 	l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
9783 	uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize;
9784 	spa_t *spa = dev->l2ad_spa;
9785 
9786 	/*
9787 	 * The L2ARC has to hold at least the payload of one log block for
9788 	 * them to be restored (persistent L2ARC). The payload of a log block
9789 	 * depends on the amount of its log entries. We always write log blocks
9790 	 * with 1022 entries. How many of them are committed or restored depends
9791 	 * on the size of the L2ARC device. Thus the maximum payload of
9792 	 * one log block is 1022 * SPA_MAXBLOCKSIZE = 16GB. If the L2ARC device
9793 	 * is less than that, we reduce the amount of committed and restored
9794 	 * log entries per block so as to enable persistence.
9795 	 */
9796 	if (dev->l2ad_end < l2arc_rebuild_blocks_min_l2size) {
9797 		dev->l2ad_log_entries = 0;
9798 	} else {
9799 		dev->l2ad_log_entries = MIN((dev->l2ad_end -
9800 		    dev->l2ad_start) >> SPA_MAXBLOCKSHIFT,
9801 		    L2ARC_LOG_BLK_MAX_ENTRIES);
9802 	}
9803 
9804 	/*
9805 	 * Read the device header, if an error is returned do not rebuild L2ARC.
9806 	 */
9807 	if (l2arc_dev_hdr_read(dev) == 0 && dev->l2ad_log_entries > 0) {
9808 		/*
9809 		 * If we are onlining a cache device (vdev_reopen) that was
9810 		 * still present (l2arc_vdev_present()) and rebuild is enabled,
9811 		 * we should evict all ARC buffers and pointers to log blocks
9812 		 * and reclaim their space before restoring its contents to
9813 		 * L2ARC.
9814 		 */
9815 		if (reopen) {
9816 			if (!l2arc_rebuild_enabled) {
9817 				return;
9818 			} else {
9819 				l2arc_evict(dev, 0, B_TRUE);
9820 				/* start a new log block */
9821 				dev->l2ad_log_ent_idx = 0;
9822 				dev->l2ad_log_blk_payload_asize = 0;
9823 				dev->l2ad_log_blk_payload_start = 0;
9824 			}
9825 		}
9826 		/*
9827 		 * Just mark the device as pending for a rebuild. We won't
9828 		 * be starting a rebuild in line here as it would block pool
9829 		 * import. Instead spa_load_impl will hand that off to an
9830 		 * async task which will call l2arc_spa_rebuild_start.
9831 		 */
9832 		dev->l2ad_rebuild = B_TRUE;
9833 	} else if (spa_writeable(spa)) {
9834 		/*
9835 		 * In this case TRIM the whole device if l2arc_trim_ahead > 0,
9836 		 * otherwise create a new header. We zero out the memory holding
9837 		 * the header to reset dh_start_lbps. If we TRIM the whole
9838 		 * device the new header will be written by
9839 		 * vdev_trim_l2arc_thread() at the end of the TRIM to update the
9840 		 * trim_state in the header too. When reading the header, if
9841 		 * trim_state is not VDEV_TRIM_COMPLETE and l2arc_trim_ahead > 0
9842 		 * we opt to TRIM the whole device again.
9843 		 */
9844 		if (l2arc_trim_ahead > 0) {
9845 			dev->l2ad_trim_all = B_TRUE;
9846 		} else {
9847 			bzero(l2dhdr, l2dhdr_asize);
9848 			l2arc_dev_hdr_update(dev);
9849 		}
9850 	}
9851 }
9852 
9853 /*
9854  * Add a vdev for use by the L2ARC.  By this point the spa has already
9855  * validated the vdev and opened it.
9856  */
9857 void
9858 l2arc_add_vdev(spa_t *spa, vdev_t *vd)
9859 {
9860 	l2arc_dev_t		*adddev;
9861 	uint64_t		l2dhdr_asize;
9862 
9863 	ASSERT(!l2arc_vdev_present(vd));
9864 
9865 	/*
9866 	 * Create a new l2arc device entry.
9867 	 */
9868 	adddev = vmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
9869 	adddev->l2ad_spa = spa;
9870 	adddev->l2ad_vdev = vd;
9871 	/* leave extra size for an l2arc device header */
9872 	l2dhdr_asize = adddev->l2ad_dev_hdr_asize =
9873 	    MAX(sizeof (*adddev->l2ad_dev_hdr), 1 << vd->vdev_ashift);
9874 	adddev->l2ad_start = VDEV_LABEL_START_SIZE + l2dhdr_asize;
9875 	adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
9876 	ASSERT3U(adddev->l2ad_start, <, adddev->l2ad_end);
9877 	adddev->l2ad_hand = adddev->l2ad_start;
9878 	adddev->l2ad_evict = adddev->l2ad_start;
9879 	adddev->l2ad_first = B_TRUE;
9880 	adddev->l2ad_writing = B_FALSE;
9881 	adddev->l2ad_trim_all = B_FALSE;
9882 	list_link_init(&adddev->l2ad_node);
9883 	adddev->l2ad_dev_hdr = kmem_zalloc(l2dhdr_asize, KM_SLEEP);
9884 
9885 	mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
9886 	/*
9887 	 * This is a list of all ARC buffers that are still valid on the
9888 	 * device.
9889 	 */
9890 	list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
9891 	    offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
9892 
9893 	/*
9894 	 * This is a list of pointers to log blocks that are still present
9895 	 * on the device.
9896 	 */
9897 	list_create(&adddev->l2ad_lbptr_list, sizeof (l2arc_lb_ptr_buf_t),
9898 	    offsetof(l2arc_lb_ptr_buf_t, node));
9899 
9900 	vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
9901 	zfs_refcount_create(&adddev->l2ad_alloc);
9902 	zfs_refcount_create(&adddev->l2ad_lb_asize);
9903 	zfs_refcount_create(&adddev->l2ad_lb_count);
9904 
9905 	/*
9906 	 * Decide if dev is eligible for L2ARC rebuild or whole device
9907 	 * trimming. This has to happen before the device is added in the
9908 	 * cache device list and l2arc_dev_mtx is released. Otherwise
9909 	 * l2arc_feed_thread() might already start writing on the
9910 	 * device.
9911 	 */
9912 	l2arc_rebuild_dev(adddev, B_FALSE);
9913 
9914 	/*
9915 	 * Add device to global list
9916 	 */
9917 	mutex_enter(&l2arc_dev_mtx);
9918 	list_insert_head(l2arc_dev_list, adddev);
9919 	atomic_inc_64(&l2arc_ndev);
9920 	mutex_exit(&l2arc_dev_mtx);
9921 }
9922 
9923 /*
9924  * Decide if a vdev is eligible for L2ARC rebuild, called from vdev_reopen()
9925  * in case of onlining a cache device.
9926  */
9927 void
9928 l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen)
9929 {
9930 	l2arc_dev_t		*dev = NULL;
9931 
9932 	dev = l2arc_vdev_get(vd);
9933 	ASSERT3P(dev, !=, NULL);
9934 
9935 	/*
9936 	 * In contrast to l2arc_add_vdev() we do not have to worry about
9937 	 * l2arc_feed_thread() invalidating previous content when onlining a
9938 	 * cache device. The device parameters (l2ad*) are not cleared when
9939 	 * offlining the device and writing new buffers will not invalidate
9940 	 * all previous content. In worst case only buffers that have not had
9941 	 * their log block written to the device will be lost.
9942 	 * When onlining the cache device (ie offline->online without exporting
9943 	 * the pool in between) this happens:
9944 	 * vdev_reopen() -> vdev_open() -> l2arc_rebuild_vdev()
9945 	 * 			|			|
9946 	 * 		vdev_is_dead() = B_FALSE	l2ad_rebuild = B_TRUE
9947 	 * During the time where vdev_is_dead = B_FALSE and until l2ad_rebuild
9948 	 * is set to B_TRUE we might write additional buffers to the device.
9949 	 */
9950 	l2arc_rebuild_dev(dev, reopen);
9951 }
9952 
9953 /*
9954  * Remove a vdev from the L2ARC.
9955  */
9956 void
9957 l2arc_remove_vdev(vdev_t *vd)
9958 {
9959 	l2arc_dev_t *remdev = NULL;
9960 
9961 	/*
9962 	 * Find the device by vdev
9963 	 */
9964 	remdev = l2arc_vdev_get(vd);
9965 	ASSERT3P(remdev, !=, NULL);
9966 
9967 	/*
9968 	 * Cancel any ongoing or scheduled rebuild.
9969 	 */
9970 	mutex_enter(&l2arc_rebuild_thr_lock);
9971 	if (remdev->l2ad_rebuild_began == B_TRUE) {
9972 		remdev->l2ad_rebuild_cancel = B_TRUE;
9973 		while (remdev->l2ad_rebuild == B_TRUE)
9974 			cv_wait(&l2arc_rebuild_thr_cv, &l2arc_rebuild_thr_lock);
9975 	}
9976 	mutex_exit(&l2arc_rebuild_thr_lock);
9977 
9978 	/*
9979 	 * Remove device from global list
9980 	 */
9981 	mutex_enter(&l2arc_dev_mtx);
9982 	list_remove(l2arc_dev_list, remdev);
9983 	l2arc_dev_last = NULL;		/* may have been invalidated */
9984 	atomic_dec_64(&l2arc_ndev);
9985 	mutex_exit(&l2arc_dev_mtx);
9986 
9987 	/*
9988 	 * Clear all buflists and ARC references.  L2ARC device flush.
9989 	 */
9990 	l2arc_evict(remdev, 0, B_TRUE);
9991 	list_destroy(&remdev->l2ad_buflist);
9992 	ASSERT(list_is_empty(&remdev->l2ad_lbptr_list));
9993 	list_destroy(&remdev->l2ad_lbptr_list);
9994 	mutex_destroy(&remdev->l2ad_mtx);
9995 	zfs_refcount_destroy(&remdev->l2ad_alloc);
9996 	zfs_refcount_destroy(&remdev->l2ad_lb_asize);
9997 	zfs_refcount_destroy(&remdev->l2ad_lb_count);
9998 	kmem_free(remdev->l2ad_dev_hdr, remdev->l2ad_dev_hdr_asize);
9999 	vmem_free(remdev, sizeof (l2arc_dev_t));
10000 }
10001 
10002 void
10003 l2arc_init(void)
10004 {
10005 	l2arc_thread_exit = 0;
10006 	l2arc_ndev = 0;
10007 
10008 	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
10009 	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
10010 	mutex_init(&l2arc_rebuild_thr_lock, NULL, MUTEX_DEFAULT, NULL);
10011 	cv_init(&l2arc_rebuild_thr_cv, NULL, CV_DEFAULT, NULL);
10012 	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
10013 	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
10014 
10015 	l2arc_dev_list = &L2ARC_dev_list;
10016 	l2arc_free_on_write = &L2ARC_free_on_write;
10017 	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
10018 	    offsetof(l2arc_dev_t, l2ad_node));
10019 	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
10020 	    offsetof(l2arc_data_free_t, l2df_list_node));
10021 }
10022 
10023 void
10024 l2arc_fini(void)
10025 {
10026 	mutex_destroy(&l2arc_feed_thr_lock);
10027 	cv_destroy(&l2arc_feed_thr_cv);
10028 	mutex_destroy(&l2arc_rebuild_thr_lock);
10029 	cv_destroy(&l2arc_rebuild_thr_cv);
10030 	mutex_destroy(&l2arc_dev_mtx);
10031 	mutex_destroy(&l2arc_free_on_write_mtx);
10032 
10033 	list_destroy(l2arc_dev_list);
10034 	list_destroy(l2arc_free_on_write);
10035 }
10036 
10037 void
10038 l2arc_start(void)
10039 {
10040 	if (!(spa_mode_global & SPA_MODE_WRITE))
10041 		return;
10042 
10043 	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
10044 	    TS_RUN, defclsyspri);
10045 }
10046 
10047 void
10048 l2arc_stop(void)
10049 {
10050 	if (!(spa_mode_global & SPA_MODE_WRITE))
10051 		return;
10052 
10053 	mutex_enter(&l2arc_feed_thr_lock);
10054 	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
10055 	l2arc_thread_exit = 1;
10056 	while (l2arc_thread_exit != 0)
10057 		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
10058 	mutex_exit(&l2arc_feed_thr_lock);
10059 }
10060 
10061 /*
10062  * Punches out rebuild threads for the L2ARC devices in a spa. This should
10063  * be called after pool import from the spa async thread, since starting
10064  * these threads directly from spa_import() will make them part of the
10065  * "zpool import" context and delay process exit (and thus pool import).
10066  */
10067 void
10068 l2arc_spa_rebuild_start(spa_t *spa)
10069 {
10070 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
10071 
10072 	/*
10073 	 * Locate the spa's l2arc devices and kick off rebuild threads.
10074 	 */
10075 	for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
10076 		l2arc_dev_t *dev =
10077 		    l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]);
10078 		if (dev == NULL) {
10079 			/* Don't attempt a rebuild if the vdev is UNAVAIL */
10080 			continue;
10081 		}
10082 		mutex_enter(&l2arc_rebuild_thr_lock);
10083 		if (dev->l2ad_rebuild && !dev->l2ad_rebuild_cancel) {
10084 			dev->l2ad_rebuild_began = B_TRUE;
10085 			(void) thread_create(NULL, 0, l2arc_dev_rebuild_thread,
10086 			    dev, 0, &p0, TS_RUN, minclsyspri);
10087 		}
10088 		mutex_exit(&l2arc_rebuild_thr_lock);
10089 	}
10090 }
10091 
10092 /*
10093  * Main entry point for L2ARC rebuilding.
10094  */
10095 static void
10096 l2arc_dev_rebuild_thread(void *arg)
10097 {
10098 	l2arc_dev_t *dev = arg;
10099 
10100 	VERIFY(!dev->l2ad_rebuild_cancel);
10101 	VERIFY(dev->l2ad_rebuild);
10102 	(void) l2arc_rebuild(dev);
10103 	mutex_enter(&l2arc_rebuild_thr_lock);
10104 	dev->l2ad_rebuild_began = B_FALSE;
10105 	dev->l2ad_rebuild = B_FALSE;
10106 	mutex_exit(&l2arc_rebuild_thr_lock);
10107 
10108 	thread_exit();
10109 }
10110 
10111 /*
10112  * This function implements the actual L2ARC metadata rebuild. It:
10113  * starts reading the log block chain and restores each block's contents
10114  * to memory (reconstructing arc_buf_hdr_t's).
10115  *
10116  * Operation stops under any of the following conditions:
10117  *
10118  * 1) We reach the end of the log block chain.
10119  * 2) We encounter *any* error condition (cksum errors, io errors)
10120  */
10121 static int
10122 l2arc_rebuild(l2arc_dev_t *dev)
10123 {
10124 	vdev_t			*vd = dev->l2ad_vdev;
10125 	spa_t			*spa = vd->vdev_spa;
10126 	int			err = 0;
10127 	l2arc_dev_hdr_phys_t	*l2dhdr = dev->l2ad_dev_hdr;
10128 	l2arc_log_blk_phys_t	*this_lb, *next_lb;
10129 	zio_t			*this_io = NULL, *next_io = NULL;
10130 	l2arc_log_blkptr_t	lbps[2];
10131 	l2arc_lb_ptr_buf_t	*lb_ptr_buf;
10132 	boolean_t		lock_held;
10133 
10134 	this_lb = vmem_zalloc(sizeof (*this_lb), KM_SLEEP);
10135 	next_lb = vmem_zalloc(sizeof (*next_lb), KM_SLEEP);
10136 
10137 	/*
10138 	 * We prevent device removal while issuing reads to the device,
10139 	 * then during the rebuilding phases we drop this lock again so
10140 	 * that a spa_unload or device remove can be initiated - this is
10141 	 * safe, because the spa will signal us to stop before removing
10142 	 * our device and wait for us to stop.
10143 	 */
10144 	spa_config_enter(spa, SCL_L2ARC, vd, RW_READER);
10145 	lock_held = B_TRUE;
10146 
10147 	/*
10148 	 * Retrieve the persistent L2ARC device state.
10149 	 * L2BLK_GET_PSIZE returns aligned size for log blocks.
10150 	 */
10151 	dev->l2ad_evict = MAX(l2dhdr->dh_evict, dev->l2ad_start);
10152 	dev->l2ad_hand = MAX(l2dhdr->dh_start_lbps[0].lbp_daddr +
10153 	    L2BLK_GET_PSIZE((&l2dhdr->dh_start_lbps[0])->lbp_prop),
10154 	    dev->l2ad_start);
10155 	dev->l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST);
10156 
10157 	vd->vdev_trim_action_time = l2dhdr->dh_trim_action_time;
10158 	vd->vdev_trim_state = l2dhdr->dh_trim_state;
10159 
10160 	/*
10161 	 * In case the zfs module parameter l2arc_rebuild_enabled is false
10162 	 * we do not start the rebuild process.
10163 	 */
10164 	if (!l2arc_rebuild_enabled)
10165 		goto out;
10166 
10167 	/* Prepare the rebuild process */
10168 	bcopy(l2dhdr->dh_start_lbps, lbps, sizeof (lbps));
10169 
10170 	/* Start the rebuild process */
10171 	for (;;) {
10172 		if (!l2arc_log_blkptr_valid(dev, &lbps[0]))
10173 			break;
10174 
10175 		if ((err = l2arc_log_blk_read(dev, &lbps[0], &lbps[1],
10176 		    this_lb, next_lb, this_io, &next_io)) != 0)
10177 			goto out;
10178 
10179 		/*
10180 		 * Our memory pressure valve. If the system is running low
10181 		 * on memory, rather than swamping memory with new ARC buf
10182 		 * hdrs, we opt not to rebuild the L2ARC. At this point,
10183 		 * however, we have already set up our L2ARC dev to chain in
10184 		 * new metadata log blocks, so the user may choose to offline/
10185 		 * online the L2ARC dev at a later time (or re-import the pool)
10186 		 * to reconstruct it (when there's less memory pressure).
10187 		 */
10188 		if (l2arc_hdr_limit_reached()) {
10189 			ARCSTAT_BUMP(arcstat_l2_rebuild_abort_lowmem);
10190 			cmn_err(CE_NOTE, "System running low on memory, "
10191 			    "aborting L2ARC rebuild.");
10192 			err = SET_ERROR(ENOMEM);
10193 			goto out;
10194 		}
10195 
10196 		spa_config_exit(spa, SCL_L2ARC, vd);
10197 		lock_held = B_FALSE;
10198 
10199 		/*
10200 		 * Now that we know that the next_lb checks out alright, we
10201 		 * can start reconstruction from this log block.
10202 		 * L2BLK_GET_PSIZE returns aligned size for log blocks.
10203 		 */
10204 		uint64_t asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop);
10205 		l2arc_log_blk_restore(dev, this_lb, asize);
10206 
10207 		/*
10208 		 * log block restored, include its pointer in the list of
10209 		 * pointers to log blocks present in the L2ARC device.
10210 		 */
10211 		lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP);
10212 		lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t),
10213 		    KM_SLEEP);
10214 		bcopy(&lbps[0], lb_ptr_buf->lb_ptr,
10215 		    sizeof (l2arc_log_blkptr_t));
10216 		mutex_enter(&dev->l2ad_mtx);
10217 		list_insert_tail(&dev->l2ad_lbptr_list, lb_ptr_buf);
10218 		ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize);
10219 		ARCSTAT_BUMP(arcstat_l2_log_blk_count);
10220 		zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf);
10221 		zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf);
10222 		mutex_exit(&dev->l2ad_mtx);
10223 		vdev_space_update(vd, asize, 0, 0);
10224 
10225 		/*
10226 		 * Protection against loops of log blocks:
10227 		 *
10228 		 *				       l2ad_hand  l2ad_evict
10229 		 *                                         V	      V
10230 		 * l2ad_start |=======================================| l2ad_end
10231 		 *             -----|||----|||---|||----|||
10232 		 *                  (3)    (2)   (1)    (0)
10233 		 *             ---|||---|||----|||---|||
10234 		 *		  (7)   (6)    (5)   (4)
10235 		 *
10236 		 * In this situation the pointer of log block (4) passes
10237 		 * l2arc_log_blkptr_valid() but the log block should not be
10238 		 * restored as it is overwritten by the payload of log block
10239 		 * (0). Only log blocks (0)-(3) should be restored. We check
10240 		 * whether l2ad_evict lies in between the payload starting
10241 		 * offset of the next log block (lbps[1].lbp_payload_start)
10242 		 * and the payload starting offset of the present log block
10243 		 * (lbps[0].lbp_payload_start). If true and this isn't the
10244 		 * first pass, we are looping from the beginning and we should
10245 		 * stop.
10246 		 */
10247 		if (l2arc_range_check_overlap(lbps[1].lbp_payload_start,
10248 		    lbps[0].lbp_payload_start, dev->l2ad_evict) &&
10249 		    !dev->l2ad_first)
10250 			goto out;
10251 
10252 		cond_resched();
10253 		for (;;) {
10254 			mutex_enter(&l2arc_rebuild_thr_lock);
10255 			if (dev->l2ad_rebuild_cancel) {
10256 				dev->l2ad_rebuild = B_FALSE;
10257 				cv_signal(&l2arc_rebuild_thr_cv);
10258 				mutex_exit(&l2arc_rebuild_thr_lock);
10259 				err = SET_ERROR(ECANCELED);
10260 				goto out;
10261 			}
10262 			mutex_exit(&l2arc_rebuild_thr_lock);
10263 			if (spa_config_tryenter(spa, SCL_L2ARC, vd,
10264 			    RW_READER)) {
10265 				lock_held = B_TRUE;
10266 				break;
10267 			}
10268 			/*
10269 			 * L2ARC config lock held by somebody in writer,
10270 			 * possibly due to them trying to remove us. They'll
10271 			 * likely to want us to shut down, so after a little
10272 			 * delay, we check l2ad_rebuild_cancel and retry
10273 			 * the lock again.
10274 			 */
10275 			delay(1);
10276 		}
10277 
10278 		/*
10279 		 * Continue with the next log block.
10280 		 */
10281 		lbps[0] = lbps[1];
10282 		lbps[1] = this_lb->lb_prev_lbp;
10283 		PTR_SWAP(this_lb, next_lb);
10284 		this_io = next_io;
10285 		next_io = NULL;
10286 	}
10287 
10288 	if (this_io != NULL)
10289 		l2arc_log_blk_fetch_abort(this_io);
10290 out:
10291 	if (next_io != NULL)
10292 		l2arc_log_blk_fetch_abort(next_io);
10293 	vmem_free(this_lb, sizeof (*this_lb));
10294 	vmem_free(next_lb, sizeof (*next_lb));
10295 
10296 	if (!l2arc_rebuild_enabled) {
10297 		spa_history_log_internal(spa, "L2ARC rebuild", NULL,
10298 		    "disabled");
10299 	} else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) > 0) {
10300 		ARCSTAT_BUMP(arcstat_l2_rebuild_success);
10301 		spa_history_log_internal(spa, "L2ARC rebuild", NULL,
10302 		    "successful, restored %llu blocks",
10303 		    (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count));
10304 	} else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) == 0) {
10305 		/*
10306 		 * No error but also nothing restored, meaning the lbps array
10307 		 * in the device header points to invalid/non-present log
10308 		 * blocks. Reset the header.
10309 		 */
10310 		spa_history_log_internal(spa, "L2ARC rebuild", NULL,
10311 		    "no valid log blocks");
10312 		bzero(l2dhdr, dev->l2ad_dev_hdr_asize);
10313 		l2arc_dev_hdr_update(dev);
10314 	} else if (err == ECANCELED) {
10315 		/*
10316 		 * In case the rebuild was canceled do not log to spa history
10317 		 * log as the pool may be in the process of being removed.
10318 		 */
10319 		zfs_dbgmsg("L2ARC rebuild aborted, restored %llu blocks",
10320 		    (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count));
10321 	} else if (err != 0) {
10322 		spa_history_log_internal(spa, "L2ARC rebuild", NULL,
10323 		    "aborted, restored %llu blocks",
10324 		    (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count));
10325 	}
10326 
10327 	if (lock_held)
10328 		spa_config_exit(spa, SCL_L2ARC, vd);
10329 
10330 	return (err);
10331 }
10332 
10333 /*
10334  * Attempts to read the device header on the provided L2ARC device and writes
10335  * it to `hdr'. On success, this function returns 0, otherwise the appropriate
10336  * error code is returned.
10337  */
10338 static int
10339 l2arc_dev_hdr_read(l2arc_dev_t *dev)
10340 {
10341 	int			err;
10342 	uint64_t		guid;
10343 	l2arc_dev_hdr_phys_t	*l2dhdr = dev->l2ad_dev_hdr;
10344 	const uint64_t		l2dhdr_asize = dev->l2ad_dev_hdr_asize;
10345 	abd_t 			*abd;
10346 
10347 	guid = spa_guid(dev->l2ad_vdev->vdev_spa);
10348 
10349 	abd = abd_get_from_buf(l2dhdr, l2dhdr_asize);
10350 
10351 	err = zio_wait(zio_read_phys(NULL, dev->l2ad_vdev,
10352 	    VDEV_LABEL_START_SIZE, l2dhdr_asize, abd,
10353 	    ZIO_CHECKSUM_LABEL, NULL, NULL, ZIO_PRIORITY_SYNC_READ,
10354 	    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL |
10355 	    ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY |
10356 	    ZIO_FLAG_SPECULATIVE, B_FALSE));
10357 
10358 	abd_free(abd);
10359 
10360 	if (err != 0) {
10361 		ARCSTAT_BUMP(arcstat_l2_rebuild_abort_dh_errors);
10362 		zfs_dbgmsg("L2ARC IO error (%d) while reading device header, "
10363 		    "vdev guid: %llu", err,
10364 		    (u_longlong_t)dev->l2ad_vdev->vdev_guid);
10365 		return (err);
10366 	}
10367 
10368 	if (l2dhdr->dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC))
10369 		byteswap_uint64_array(l2dhdr, sizeof (*l2dhdr));
10370 
10371 	if (l2dhdr->dh_magic != L2ARC_DEV_HDR_MAGIC ||
10372 	    l2dhdr->dh_spa_guid != guid ||
10373 	    l2dhdr->dh_vdev_guid != dev->l2ad_vdev->vdev_guid ||
10374 	    l2dhdr->dh_version != L2ARC_PERSISTENT_VERSION ||
10375 	    l2dhdr->dh_log_entries != dev->l2ad_log_entries ||
10376 	    l2dhdr->dh_end != dev->l2ad_end ||
10377 	    !l2arc_range_check_overlap(dev->l2ad_start, dev->l2ad_end,
10378 	    l2dhdr->dh_evict) ||
10379 	    (l2dhdr->dh_trim_state != VDEV_TRIM_COMPLETE &&
10380 	    l2arc_trim_ahead > 0)) {
10381 		/*
10382 		 * Attempt to rebuild a device containing no actual dev hdr
10383 		 * or containing a header from some other pool or from another
10384 		 * version of persistent L2ARC.
10385 		 */
10386 		ARCSTAT_BUMP(arcstat_l2_rebuild_abort_unsupported);
10387 		return (SET_ERROR(ENOTSUP));
10388 	}
10389 
10390 	return (0);
10391 }
10392 
10393 /*
10394  * Reads L2ARC log blocks from storage and validates their contents.
10395  *
10396  * This function implements a simple fetcher to make sure that while
10397  * we're processing one buffer the L2ARC is already fetching the next
10398  * one in the chain.
10399  *
10400  * The arguments this_lp and next_lp point to the current and next log block
10401  * address in the block chain. Similarly, this_lb and next_lb hold the
10402  * l2arc_log_blk_phys_t's of the current and next L2ARC blk.
10403  *
10404  * The `this_io' and `next_io' arguments are used for block fetching.
10405  * When issuing the first blk IO during rebuild, you should pass NULL for
10406  * `this_io'. This function will then issue a sync IO to read the block and
10407  * also issue an async IO to fetch the next block in the block chain. The
10408  * fetched IO is returned in `next_io'. On subsequent calls to this
10409  * function, pass the value returned in `next_io' from the previous call
10410  * as `this_io' and a fresh `next_io' pointer to hold the next fetch IO.
10411  * Prior to the call, you should initialize your `next_io' pointer to be
10412  * NULL. If no fetch IO was issued, the pointer is left set at NULL.
10413  *
10414  * On success, this function returns 0, otherwise it returns an appropriate
10415  * error code. On error the fetching IO is aborted and cleared before
10416  * returning from this function. Therefore, if we return `success', the
10417  * caller can assume that we have taken care of cleanup of fetch IOs.
10418  */
10419 static int
10420 l2arc_log_blk_read(l2arc_dev_t *dev,
10421     const l2arc_log_blkptr_t *this_lbp, const l2arc_log_blkptr_t *next_lbp,
10422     l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb,
10423     zio_t *this_io, zio_t **next_io)
10424 {
10425 	int		err = 0;
10426 	zio_cksum_t	cksum;
10427 	abd_t		*abd = NULL;
10428 	uint64_t	asize;
10429 
10430 	ASSERT(this_lbp != NULL && next_lbp != NULL);
10431 	ASSERT(this_lb != NULL && next_lb != NULL);
10432 	ASSERT(next_io != NULL && *next_io == NULL);
10433 	ASSERT(l2arc_log_blkptr_valid(dev, this_lbp));
10434 
10435 	/*
10436 	 * Check to see if we have issued the IO for this log block in a
10437 	 * previous run. If not, this is the first call, so issue it now.
10438 	 */
10439 	if (this_io == NULL) {
10440 		this_io = l2arc_log_blk_fetch(dev->l2ad_vdev, this_lbp,
10441 		    this_lb);
10442 	}
10443 
10444 	/*
10445 	 * Peek to see if we can start issuing the next IO immediately.
10446 	 */
10447 	if (l2arc_log_blkptr_valid(dev, next_lbp)) {
10448 		/*
10449 		 * Start issuing IO for the next log block early - this
10450 		 * should help keep the L2ARC device busy while we
10451 		 * decompress and restore this log block.
10452 		 */
10453 		*next_io = l2arc_log_blk_fetch(dev->l2ad_vdev, next_lbp,
10454 		    next_lb);
10455 	}
10456 
10457 	/* Wait for the IO to read this log block to complete */
10458 	if ((err = zio_wait(this_io)) != 0) {
10459 		ARCSTAT_BUMP(arcstat_l2_rebuild_abort_io_errors);
10460 		zfs_dbgmsg("L2ARC IO error (%d) while reading log block, "
10461 		    "offset: %llu, vdev guid: %llu", err,
10462 		    (u_longlong_t)this_lbp->lbp_daddr,
10463 		    (u_longlong_t)dev->l2ad_vdev->vdev_guid);
10464 		goto cleanup;
10465 	}
10466 
10467 	/*
10468 	 * Make sure the buffer checks out.
10469 	 * L2BLK_GET_PSIZE returns aligned size for log blocks.
10470 	 */
10471 	asize = L2BLK_GET_PSIZE((this_lbp)->lbp_prop);
10472 	fletcher_4_native(this_lb, asize, NULL, &cksum);
10473 	if (!ZIO_CHECKSUM_EQUAL(cksum, this_lbp->lbp_cksum)) {
10474 		ARCSTAT_BUMP(arcstat_l2_rebuild_abort_cksum_lb_errors);
10475 		zfs_dbgmsg("L2ARC log block cksum failed, offset: %llu, "
10476 		    "vdev guid: %llu, l2ad_hand: %llu, l2ad_evict: %llu",
10477 		    (u_longlong_t)this_lbp->lbp_daddr,
10478 		    (u_longlong_t)dev->l2ad_vdev->vdev_guid,
10479 		    (u_longlong_t)dev->l2ad_hand,
10480 		    (u_longlong_t)dev->l2ad_evict);
10481 		err = SET_ERROR(ECKSUM);
10482 		goto cleanup;
10483 	}
10484 
10485 	/* Now we can take our time decoding this buffer */
10486 	switch (L2BLK_GET_COMPRESS((this_lbp)->lbp_prop)) {
10487 	case ZIO_COMPRESS_OFF:
10488 		break;
10489 	case ZIO_COMPRESS_LZ4:
10490 		abd = abd_alloc_for_io(asize, B_TRUE);
10491 		abd_copy_from_buf_off(abd, this_lb, 0, asize);
10492 		if ((err = zio_decompress_data(
10493 		    L2BLK_GET_COMPRESS((this_lbp)->lbp_prop),
10494 		    abd, this_lb, asize, sizeof (*this_lb), NULL)) != 0) {
10495 			err = SET_ERROR(EINVAL);
10496 			goto cleanup;
10497 		}
10498 		break;
10499 	default:
10500 		err = SET_ERROR(EINVAL);
10501 		goto cleanup;
10502 	}
10503 	if (this_lb->lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC))
10504 		byteswap_uint64_array(this_lb, sizeof (*this_lb));
10505 	if (this_lb->lb_magic != L2ARC_LOG_BLK_MAGIC) {
10506 		err = SET_ERROR(EINVAL);
10507 		goto cleanup;
10508 	}
10509 cleanup:
10510 	/* Abort an in-flight fetch I/O in case of error */
10511 	if (err != 0 && *next_io != NULL) {
10512 		l2arc_log_blk_fetch_abort(*next_io);
10513 		*next_io = NULL;
10514 	}
10515 	if (abd != NULL)
10516 		abd_free(abd);
10517 	return (err);
10518 }
10519 
10520 /*
10521  * Restores the payload of a log block to ARC. This creates empty ARC hdr
10522  * entries which only contain an l2arc hdr, essentially restoring the
10523  * buffers to their L2ARC evicted state. This function also updates space
10524  * usage on the L2ARC vdev to make sure it tracks restored buffers.
10525  */
10526 static void
10527 l2arc_log_blk_restore(l2arc_dev_t *dev, const l2arc_log_blk_phys_t *lb,
10528     uint64_t lb_asize)
10529 {
10530 	uint64_t	size = 0, asize = 0;
10531 	uint64_t	log_entries = dev->l2ad_log_entries;
10532 
10533 	/*
10534 	 * Usually arc_adapt() is called only for data, not headers, but
10535 	 * since we may allocate significant amount of memory here, let ARC
10536 	 * grow its arc_c.
10537 	 */
10538 	arc_adapt(log_entries * HDR_L2ONLY_SIZE, arc_l2c_only);
10539 
10540 	for (int i = log_entries - 1; i >= 0; i--) {
10541 		/*
10542 		 * Restore goes in the reverse temporal direction to preserve
10543 		 * correct temporal ordering of buffers in the l2ad_buflist.
10544 		 * l2arc_hdr_restore also does a list_insert_tail instead of
10545 		 * list_insert_head on the l2ad_buflist:
10546 		 *
10547 		 *		LIST	l2ad_buflist		LIST
10548 		 *		HEAD  <------ (time) ------	TAIL
10549 		 * direction	+-----+-----+-----+-----+-----+    direction
10550 		 * of l2arc <== | buf | buf | buf | buf | buf | ===> of rebuild
10551 		 * fill		+-----+-----+-----+-----+-----+
10552 		 *		^				^
10553 		 *		|				|
10554 		 *		|				|
10555 		 *	l2arc_feed_thread		l2arc_rebuild
10556 		 *	will place new bufs here	restores bufs here
10557 		 *
10558 		 * During l2arc_rebuild() the device is not used by
10559 		 * l2arc_feed_thread() as dev->l2ad_rebuild is set to true.
10560 		 */
10561 		size += L2BLK_GET_LSIZE((&lb->lb_entries[i])->le_prop);
10562 		asize += vdev_psize_to_asize(dev->l2ad_vdev,
10563 		    L2BLK_GET_PSIZE((&lb->lb_entries[i])->le_prop));
10564 		l2arc_hdr_restore(&lb->lb_entries[i], dev);
10565 	}
10566 
10567 	/*
10568 	 * Record rebuild stats:
10569 	 *	size		Logical size of restored buffers in the L2ARC
10570 	 *	asize		Aligned size of restored buffers in the L2ARC
10571 	 */
10572 	ARCSTAT_INCR(arcstat_l2_rebuild_size, size);
10573 	ARCSTAT_INCR(arcstat_l2_rebuild_asize, asize);
10574 	ARCSTAT_INCR(arcstat_l2_rebuild_bufs, log_entries);
10575 	ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, lb_asize);
10576 	ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, asize / lb_asize);
10577 	ARCSTAT_BUMP(arcstat_l2_rebuild_log_blks);
10578 }
10579 
10580 /*
10581  * Restores a single ARC buf hdr from a log entry. The ARC buffer is put
10582  * into a state indicating that it has been evicted to L2ARC.
10583  */
10584 static void
10585 l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, l2arc_dev_t *dev)
10586 {
10587 	arc_buf_hdr_t		*hdr, *exists;
10588 	kmutex_t		*hash_lock;
10589 	arc_buf_contents_t	type = L2BLK_GET_TYPE((le)->le_prop);
10590 	uint64_t		asize;
10591 
10592 	/*
10593 	 * Do all the allocation before grabbing any locks, this lets us
10594 	 * sleep if memory is full and we don't have to deal with failed
10595 	 * allocations.
10596 	 */
10597 	hdr = arc_buf_alloc_l2only(L2BLK_GET_LSIZE((le)->le_prop), type,
10598 	    dev, le->le_dva, le->le_daddr,
10599 	    L2BLK_GET_PSIZE((le)->le_prop), le->le_birth,
10600 	    L2BLK_GET_COMPRESS((le)->le_prop), le->le_complevel,
10601 	    L2BLK_GET_PROTECTED((le)->le_prop),
10602 	    L2BLK_GET_PREFETCH((le)->le_prop),
10603 	    L2BLK_GET_STATE((le)->le_prop));
10604 	asize = vdev_psize_to_asize(dev->l2ad_vdev,
10605 	    L2BLK_GET_PSIZE((le)->le_prop));
10606 
10607 	/*
10608 	 * vdev_space_update() has to be called before arc_hdr_destroy() to
10609 	 * avoid underflow since the latter also calls vdev_space_update().
10610 	 */
10611 	l2arc_hdr_arcstats_increment(hdr);
10612 	vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
10613 
10614 	mutex_enter(&dev->l2ad_mtx);
10615 	list_insert_tail(&dev->l2ad_buflist, hdr);
10616 	(void) zfs_refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr);
10617 	mutex_exit(&dev->l2ad_mtx);
10618 
10619 	exists = buf_hash_insert(hdr, &hash_lock);
10620 	if (exists) {
10621 		/* Buffer was already cached, no need to restore it. */
10622 		arc_hdr_destroy(hdr);
10623 		/*
10624 		 * If the buffer is already cached, check whether it has
10625 		 * L2ARC metadata. If not, enter them and update the flag.
10626 		 * This is important is case of onlining a cache device, since
10627 		 * we previously evicted all L2ARC metadata from ARC.
10628 		 */
10629 		if (!HDR_HAS_L2HDR(exists)) {
10630 			arc_hdr_set_flags(exists, ARC_FLAG_HAS_L2HDR);
10631 			exists->b_l2hdr.b_dev = dev;
10632 			exists->b_l2hdr.b_daddr = le->le_daddr;
10633 			exists->b_l2hdr.b_arcs_state =
10634 			    L2BLK_GET_STATE((le)->le_prop);
10635 			mutex_enter(&dev->l2ad_mtx);
10636 			list_insert_tail(&dev->l2ad_buflist, exists);
10637 			(void) zfs_refcount_add_many(&dev->l2ad_alloc,
10638 			    arc_hdr_size(exists), exists);
10639 			mutex_exit(&dev->l2ad_mtx);
10640 			l2arc_hdr_arcstats_increment(exists);
10641 			vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
10642 		}
10643 		ARCSTAT_BUMP(arcstat_l2_rebuild_bufs_precached);
10644 	}
10645 
10646 	mutex_exit(hash_lock);
10647 }
10648 
10649 /*
10650  * Starts an asynchronous read IO to read a log block. This is used in log
10651  * block reconstruction to start reading the next block before we are done
10652  * decoding and reconstructing the current block, to keep the l2arc device
10653  * nice and hot with read IO to process.
10654  * The returned zio will contain a newly allocated memory buffers for the IO
10655  * data which should then be freed by the caller once the zio is no longer
10656  * needed (i.e. due to it having completed). If you wish to abort this
10657  * zio, you should do so using l2arc_log_blk_fetch_abort, which takes
10658  * care of disposing of the allocated buffers correctly.
10659  */
10660 static zio_t *
10661 l2arc_log_blk_fetch(vdev_t *vd, const l2arc_log_blkptr_t *lbp,
10662     l2arc_log_blk_phys_t *lb)
10663 {
10664 	uint32_t		asize;
10665 	zio_t			*pio;
10666 	l2arc_read_callback_t	*cb;
10667 
10668 	/* L2BLK_GET_PSIZE returns aligned size for log blocks */
10669 	asize = L2BLK_GET_PSIZE((lbp)->lbp_prop);
10670 	ASSERT(asize <= sizeof (l2arc_log_blk_phys_t));
10671 
10672 	cb = kmem_zalloc(sizeof (l2arc_read_callback_t), KM_SLEEP);
10673 	cb->l2rcb_abd = abd_get_from_buf(lb, asize);
10674 	pio = zio_root(vd->vdev_spa, l2arc_blk_fetch_done, cb,
10675 	    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE |
10676 	    ZIO_FLAG_DONT_RETRY);
10677 	(void) zio_nowait(zio_read_phys(pio, vd, lbp->lbp_daddr, asize,
10678 	    cb->l2rcb_abd, ZIO_CHECKSUM_OFF, NULL, NULL,
10679 	    ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL |
10680 	    ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY, B_FALSE));
10681 
10682 	return (pio);
10683 }
10684 
10685 /*
10686  * Aborts a zio returned from l2arc_log_blk_fetch and frees the data
10687  * buffers allocated for it.
10688  */
10689 static void
10690 l2arc_log_blk_fetch_abort(zio_t *zio)
10691 {
10692 	(void) zio_wait(zio);
10693 }
10694 
10695 /*
10696  * Creates a zio to update the device header on an l2arc device.
10697  */
10698 void
10699 l2arc_dev_hdr_update(l2arc_dev_t *dev)
10700 {
10701 	l2arc_dev_hdr_phys_t	*l2dhdr = dev->l2ad_dev_hdr;
10702 	const uint64_t		l2dhdr_asize = dev->l2ad_dev_hdr_asize;
10703 	abd_t			*abd;
10704 	int			err;
10705 
10706 	VERIFY(spa_config_held(dev->l2ad_spa, SCL_STATE_ALL, RW_READER));
10707 
10708 	l2dhdr->dh_magic = L2ARC_DEV_HDR_MAGIC;
10709 	l2dhdr->dh_version = L2ARC_PERSISTENT_VERSION;
10710 	l2dhdr->dh_spa_guid = spa_guid(dev->l2ad_vdev->vdev_spa);
10711 	l2dhdr->dh_vdev_guid = dev->l2ad_vdev->vdev_guid;
10712 	l2dhdr->dh_log_entries = dev->l2ad_log_entries;
10713 	l2dhdr->dh_evict = dev->l2ad_evict;
10714 	l2dhdr->dh_start = dev->l2ad_start;
10715 	l2dhdr->dh_end = dev->l2ad_end;
10716 	l2dhdr->dh_lb_asize = zfs_refcount_count(&dev->l2ad_lb_asize);
10717 	l2dhdr->dh_lb_count = zfs_refcount_count(&dev->l2ad_lb_count);
10718 	l2dhdr->dh_flags = 0;
10719 	l2dhdr->dh_trim_action_time = dev->l2ad_vdev->vdev_trim_action_time;
10720 	l2dhdr->dh_trim_state = dev->l2ad_vdev->vdev_trim_state;
10721 	if (dev->l2ad_first)
10722 		l2dhdr->dh_flags |= L2ARC_DEV_HDR_EVICT_FIRST;
10723 
10724 	abd = abd_get_from_buf(l2dhdr, l2dhdr_asize);
10725 
10726 	err = zio_wait(zio_write_phys(NULL, dev->l2ad_vdev,
10727 	    VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, ZIO_CHECKSUM_LABEL, NULL,
10728 	    NULL, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE));
10729 
10730 	abd_free(abd);
10731 
10732 	if (err != 0) {
10733 		zfs_dbgmsg("L2ARC IO error (%d) while writing device header, "
10734 		    "vdev guid: %llu", err,
10735 		    (u_longlong_t)dev->l2ad_vdev->vdev_guid);
10736 	}
10737 }
10738 
10739 /*
10740  * Commits a log block to the L2ARC device. This routine is invoked from
10741  * l2arc_write_buffers when the log block fills up.
10742  * This function allocates some memory to temporarily hold the serialized
10743  * buffer to be written. This is then released in l2arc_write_done.
10744  */
10745 static void
10746 l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, l2arc_write_callback_t *cb)
10747 {
10748 	l2arc_log_blk_phys_t	*lb = &dev->l2ad_log_blk;
10749 	l2arc_dev_hdr_phys_t	*l2dhdr = dev->l2ad_dev_hdr;
10750 	uint64_t		psize, asize;
10751 	zio_t			*wzio;
10752 	l2arc_lb_abd_buf_t	*abd_buf;
10753 	uint8_t			*tmpbuf;
10754 	l2arc_lb_ptr_buf_t	*lb_ptr_buf;
10755 
10756 	VERIFY3S(dev->l2ad_log_ent_idx, ==, dev->l2ad_log_entries);
10757 
10758 	tmpbuf = zio_buf_alloc(sizeof (*lb));
10759 	abd_buf = zio_buf_alloc(sizeof (*abd_buf));
10760 	abd_buf->abd = abd_get_from_buf(lb, sizeof (*lb));
10761 	lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP);
10762 	lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), KM_SLEEP);
10763 
10764 	/* link the buffer into the block chain */
10765 	lb->lb_prev_lbp = l2dhdr->dh_start_lbps[1];
10766 	lb->lb_magic = L2ARC_LOG_BLK_MAGIC;
10767 
10768 	/*
10769 	 * l2arc_log_blk_commit() may be called multiple times during a single
10770 	 * l2arc_write_buffers() call. Save the allocated abd buffers in a list
10771 	 * so we can free them in l2arc_write_done() later on.
10772 	 */
10773 	list_insert_tail(&cb->l2wcb_abd_list, abd_buf);
10774 
10775 	/* try to compress the buffer */
10776 	psize = zio_compress_data(ZIO_COMPRESS_LZ4,
10777 	    abd_buf->abd, tmpbuf, sizeof (*lb), 0);
10778 
10779 	/* a log block is never entirely zero */
10780 	ASSERT(psize != 0);
10781 	asize = vdev_psize_to_asize(dev->l2ad_vdev, psize);
10782 	ASSERT(asize <= sizeof (*lb));
10783 
10784 	/*
10785 	 * Update the start log block pointer in the device header to point
10786 	 * to the log block we're about to write.
10787 	 */
10788 	l2dhdr->dh_start_lbps[1] = l2dhdr->dh_start_lbps[0];
10789 	l2dhdr->dh_start_lbps[0].lbp_daddr = dev->l2ad_hand;
10790 	l2dhdr->dh_start_lbps[0].lbp_payload_asize =
10791 	    dev->l2ad_log_blk_payload_asize;
10792 	l2dhdr->dh_start_lbps[0].lbp_payload_start =
10793 	    dev->l2ad_log_blk_payload_start;
10794 	L2BLK_SET_LSIZE(
10795 	    (&l2dhdr->dh_start_lbps[0])->lbp_prop, sizeof (*lb));
10796 	L2BLK_SET_PSIZE(
10797 	    (&l2dhdr->dh_start_lbps[0])->lbp_prop, asize);
10798 	L2BLK_SET_CHECKSUM(
10799 	    (&l2dhdr->dh_start_lbps[0])->lbp_prop,
10800 	    ZIO_CHECKSUM_FLETCHER_4);
10801 	if (asize < sizeof (*lb)) {
10802 		/* compression succeeded */
10803 		bzero(tmpbuf + psize, asize - psize);
10804 		L2BLK_SET_COMPRESS(
10805 		    (&l2dhdr->dh_start_lbps[0])->lbp_prop,
10806 		    ZIO_COMPRESS_LZ4);
10807 	} else {
10808 		/* compression failed */
10809 		bcopy(lb, tmpbuf, sizeof (*lb));
10810 		L2BLK_SET_COMPRESS(
10811 		    (&l2dhdr->dh_start_lbps[0])->lbp_prop,
10812 		    ZIO_COMPRESS_OFF);
10813 	}
10814 
10815 	/* checksum what we're about to write */
10816 	fletcher_4_native(tmpbuf, asize, NULL,
10817 	    &l2dhdr->dh_start_lbps[0].lbp_cksum);
10818 
10819 	abd_free(abd_buf->abd);
10820 
10821 	/* perform the write itself */
10822 	abd_buf->abd = abd_get_from_buf(tmpbuf, sizeof (*lb));
10823 	abd_take_ownership_of_buf(abd_buf->abd, B_TRUE);
10824 	wzio = zio_write_phys(pio, dev->l2ad_vdev, dev->l2ad_hand,
10825 	    asize, abd_buf->abd, ZIO_CHECKSUM_OFF, NULL, NULL,
10826 	    ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE);
10827 	DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, zio_t *, wzio);
10828 	(void) zio_nowait(wzio);
10829 
10830 	dev->l2ad_hand += asize;
10831 	/*
10832 	 * Include the committed log block's pointer  in the list of pointers
10833 	 * to log blocks present in the L2ARC device.
10834 	 */
10835 	bcopy(&l2dhdr->dh_start_lbps[0], lb_ptr_buf->lb_ptr,
10836 	    sizeof (l2arc_log_blkptr_t));
10837 	mutex_enter(&dev->l2ad_mtx);
10838 	list_insert_head(&dev->l2ad_lbptr_list, lb_ptr_buf);
10839 	ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize);
10840 	ARCSTAT_BUMP(arcstat_l2_log_blk_count);
10841 	zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf);
10842 	zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf);
10843 	mutex_exit(&dev->l2ad_mtx);
10844 	vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
10845 
10846 	/* bump the kstats */
10847 	ARCSTAT_INCR(arcstat_l2_write_bytes, asize);
10848 	ARCSTAT_BUMP(arcstat_l2_log_blk_writes);
10849 	ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, asize);
10850 	ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio,
10851 	    dev->l2ad_log_blk_payload_asize / asize);
10852 
10853 	/* start a new log block */
10854 	dev->l2ad_log_ent_idx = 0;
10855 	dev->l2ad_log_blk_payload_asize = 0;
10856 	dev->l2ad_log_blk_payload_start = 0;
10857 }
10858 
10859 /*
10860  * Validates an L2ARC log block address to make sure that it can be read
10861  * from the provided L2ARC device.
10862  */
10863 boolean_t
10864 l2arc_log_blkptr_valid(l2arc_dev_t *dev, const l2arc_log_blkptr_t *lbp)
10865 {
10866 	/* L2BLK_GET_PSIZE returns aligned size for log blocks */
10867 	uint64_t asize = L2BLK_GET_PSIZE((lbp)->lbp_prop);
10868 	uint64_t end = lbp->lbp_daddr + asize - 1;
10869 	uint64_t start = lbp->lbp_payload_start;
10870 	boolean_t evicted = B_FALSE;
10871 
10872 	/*
10873 	 * A log block is valid if all of the following conditions are true:
10874 	 * - it fits entirely (including its payload) between l2ad_start and
10875 	 *   l2ad_end
10876 	 * - it has a valid size
10877 	 * - neither the log block itself nor part of its payload was evicted
10878 	 *   by l2arc_evict():
10879 	 *
10880 	 *		l2ad_hand          l2ad_evict
10881 	 *		|			 |	lbp_daddr
10882 	 *		|     start		 |	|  end
10883 	 *		|     |			 |	|  |
10884 	 *		V     V		         V	V  V
10885 	 *   l2ad_start ============================================ l2ad_end
10886 	 *                    --------------------------||||
10887 	 *				^		 ^
10888 	 *				|		log block
10889 	 *				payload
10890 	 */
10891 
10892 	evicted =
10893 	    l2arc_range_check_overlap(start, end, dev->l2ad_hand) ||
10894 	    l2arc_range_check_overlap(start, end, dev->l2ad_evict) ||
10895 	    l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, start) ||
10896 	    l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, end);
10897 
10898 	return (start >= dev->l2ad_start && end <= dev->l2ad_end &&
10899 	    asize > 0 && asize <= sizeof (l2arc_log_blk_phys_t) &&
10900 	    (!evicted || dev->l2ad_first));
10901 }
10902 
10903 /*
10904  * Inserts ARC buffer header `hdr' into the current L2ARC log block on
10905  * the device. The buffer being inserted must be present in L2ARC.
10906  * Returns B_TRUE if the L2ARC log block is full and needs to be committed
10907  * to L2ARC, or B_FALSE if it still has room for more ARC buffers.
10908  */
10909 static boolean_t
10910 l2arc_log_blk_insert(l2arc_dev_t *dev, const arc_buf_hdr_t *hdr)
10911 {
10912 	l2arc_log_blk_phys_t	*lb = &dev->l2ad_log_blk;
10913 	l2arc_log_ent_phys_t	*le;
10914 
10915 	if (dev->l2ad_log_entries == 0)
10916 		return (B_FALSE);
10917 
10918 	int index = dev->l2ad_log_ent_idx++;
10919 
10920 	ASSERT3S(index, <, dev->l2ad_log_entries);
10921 	ASSERT(HDR_HAS_L2HDR(hdr));
10922 
10923 	le = &lb->lb_entries[index];
10924 	bzero(le, sizeof (*le));
10925 	le->le_dva = hdr->b_dva;
10926 	le->le_birth = hdr->b_birth;
10927 	le->le_daddr = hdr->b_l2hdr.b_daddr;
10928 	if (index == 0)
10929 		dev->l2ad_log_blk_payload_start = le->le_daddr;
10930 	L2BLK_SET_LSIZE((le)->le_prop, HDR_GET_LSIZE(hdr));
10931 	L2BLK_SET_PSIZE((le)->le_prop, HDR_GET_PSIZE(hdr));
10932 	L2BLK_SET_COMPRESS((le)->le_prop, HDR_GET_COMPRESS(hdr));
10933 	le->le_complevel = hdr->b_complevel;
10934 	L2BLK_SET_TYPE((le)->le_prop, hdr->b_type);
10935 	L2BLK_SET_PROTECTED((le)->le_prop, !!(HDR_PROTECTED(hdr)));
10936 	L2BLK_SET_PREFETCH((le)->le_prop, !!(HDR_PREFETCH(hdr)));
10937 	L2BLK_SET_STATE((le)->le_prop, hdr->b_l1hdr.b_state->arcs_state);
10938 
10939 	dev->l2ad_log_blk_payload_asize += vdev_psize_to_asize(dev->l2ad_vdev,
10940 	    HDR_GET_PSIZE(hdr));
10941 
10942 	return (dev->l2ad_log_ent_idx == dev->l2ad_log_entries);
10943 }
10944 
10945 /*
10946  * Checks whether a given L2ARC device address sits in a time-sequential
10947  * range. The trick here is that the L2ARC is a rotary buffer, so we can't
10948  * just do a range comparison, we need to handle the situation in which the
10949  * range wraps around the end of the L2ARC device. Arguments:
10950  *	bottom -- Lower end of the range to check (written to earlier).
10951  *	top    -- Upper end of the range to check (written to later).
10952  *	check  -- The address for which we want to determine if it sits in
10953  *		  between the top and bottom.
10954  *
10955  * The 3-way conditional below represents the following cases:
10956  *
10957  *	bottom < top : Sequentially ordered case:
10958  *	  <check>--------+-------------------+
10959  *	                 |  (overlap here?)  |
10960  *	 L2ARC dev       V                   V
10961  *	 |---------------<bottom>============<top>--------------|
10962  *
10963  *	bottom > top: Looped-around case:
10964  *	                      <check>--------+------------------+
10965  *	                                     |  (overlap here?) |
10966  *	 L2ARC dev                           V                  V
10967  *	 |===============<top>---------------<bottom>===========|
10968  *	 ^               ^
10969  *	 |  (or here?)   |
10970  *	 +---------------+---------<check>
10971  *
10972  *	top == bottom : Just a single address comparison.
10973  */
10974 boolean_t
10975 l2arc_range_check_overlap(uint64_t bottom, uint64_t top, uint64_t check)
10976 {
10977 	if (bottom < top)
10978 		return (bottom <= check && check <= top);
10979 	else if (bottom > top)
10980 		return (check <= top || bottom <= check);
10981 	else
10982 		return (check == top);
10983 }
10984 
10985 EXPORT_SYMBOL(arc_buf_size);
10986 EXPORT_SYMBOL(arc_write);
10987 EXPORT_SYMBOL(arc_read);
10988 EXPORT_SYMBOL(arc_buf_info);
10989 EXPORT_SYMBOL(arc_getbuf_func);
10990 EXPORT_SYMBOL(arc_add_prune_callback);
10991 EXPORT_SYMBOL(arc_remove_prune_callback);
10992 
10993 /* BEGIN CSTYLED */
10994 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min, param_set_arc_min,
10995 	param_get_long, ZMOD_RW, "Min arc size");
10996 
10997 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, max, param_set_arc_max,
10998 	param_get_long, ZMOD_RW, "Max arc size");
10999 
11000 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, meta_limit, param_set_arc_long,
11001 	param_get_long, ZMOD_RW, "Metadata limit for arc size");
11002 
11003 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, meta_limit_percent,
11004 	param_set_arc_long, param_get_long, ZMOD_RW,
11005 	"Percent of arc size for arc meta limit");
11006 
11007 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, meta_min, param_set_arc_long,
11008 	param_get_long, ZMOD_RW, "Min arc metadata");
11009 
11010 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_prune, INT, ZMOD_RW,
11011 	"Meta objects to scan for prune");
11012 
11013 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_adjust_restarts, INT, ZMOD_RW,
11014 	"Limit number of restarts in arc_evict_meta");
11015 
11016 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_strategy, INT, ZMOD_RW,
11017 	"Meta reclaim strategy");
11018 
11019 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, grow_retry, param_set_arc_int,
11020 	param_get_int, ZMOD_RW, "Seconds before growing arc size");
11021 
11022 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, p_dampener_disable, INT, ZMOD_RW,
11023 	"Disable arc_p adapt dampener");
11024 
11025 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, shrink_shift, param_set_arc_int,
11026 	param_get_int, ZMOD_RW, "log2(fraction of arc to reclaim)");
11027 
11028 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, pc_percent, UINT, ZMOD_RW,
11029 	"Percent of pagecache to reclaim arc to");
11030 
11031 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, p_min_shift, param_set_arc_int,
11032 	param_get_int, ZMOD_RW, "arc_c shift to calc min/max arc_p");
11033 
11034 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, average_blocksize, INT, ZMOD_RD,
11035 	"Target average block size");
11036 
11037 ZFS_MODULE_PARAM(zfs, zfs_, compressed_arc_enabled, INT, ZMOD_RW,
11038 	"Disable compressed arc buffers");
11039 
11040 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prefetch_ms, param_set_arc_int,
11041 	param_get_int, ZMOD_RW, "Min life of prefetch block in ms");
11042 
11043 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prescient_prefetch_ms,
11044 	param_set_arc_int, param_get_int, ZMOD_RW,
11045 	"Min life of prescient prefetched block in ms");
11046 
11047 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_max, ULONG, ZMOD_RW,
11048 	"Max write bytes per interval");
11049 
11050 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_boost, ULONG, ZMOD_RW,
11051 	"Extra write bytes during device warmup");
11052 
11053 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom, ULONG, ZMOD_RW,
11054 	"Number of max device writes to precache");
11055 
11056 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom_boost, ULONG, ZMOD_RW,
11057 	"Compressed l2arc_headroom multiplier");
11058 
11059 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, trim_ahead, ULONG, ZMOD_RW,
11060 	"TRIM ahead L2ARC write size multiplier");
11061 
11062 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_secs, ULONG, ZMOD_RW,
11063 	"Seconds between L2ARC writing");
11064 
11065 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_min_ms, ULONG, ZMOD_RW,
11066 	"Min feed interval in milliseconds");
11067 
11068 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, noprefetch, INT, ZMOD_RW,
11069 	"Skip caching prefetched buffers");
11070 
11071 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_again, INT, ZMOD_RW,
11072 	"Turbo L2ARC warmup");
11073 
11074 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, norw, INT, ZMOD_RW,
11075 	"No reads during writes");
11076 
11077 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, meta_percent, INT, ZMOD_RW,
11078 	"Percent of ARC size allowed for L2ARC-only headers");
11079 
11080 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_enabled, INT, ZMOD_RW,
11081 	"Rebuild the L2ARC when importing a pool");
11082 
11083 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_blocks_min_l2size, ULONG, ZMOD_RW,
11084 	"Min size in bytes to write rebuild log blocks in L2ARC");
11085 
11086 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, mfuonly, INT, ZMOD_RW,
11087 	"Cache only MFU data from ARC into L2ARC");
11088 
11089 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, lotsfree_percent, param_set_arc_int,
11090 	param_get_int, ZMOD_RW, "System free memory I/O throttle in bytes");
11091 
11092 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, sys_free, param_set_arc_long,
11093 	param_get_long, ZMOD_RW, "System free memory target size in bytes");
11094 
11095 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit, param_set_arc_long,
11096 	param_get_long, ZMOD_RW, "Minimum bytes of dnodes in arc");
11097 
11098 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit_percent,
11099 	param_set_arc_long, param_get_long, ZMOD_RW,
11100 	"Percent of ARC meta buffers for dnodes");
11101 
11102 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, dnode_reduce_percent, ULONG, ZMOD_RW,
11103 	"Percentage of excess dnodes to try to unpin");
11104 
11105 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, eviction_pct, INT, ZMOD_RW,
11106 	"When full, ARC allocation waits for eviction of this % of alloc size");
11107 
11108 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, evict_batch_limit, INT, ZMOD_RW,
11109 	"The number of headers to evict per sublist before moving to the next");
11110 /* END CSTYLED */
11111