1 /*
2  * CDDL HEADER START
3  *
4  * This file and its contents are supplied under the terms of the
5  * Common Development and Distribution License ("CDDL"), version 1.0.
6  * You may only use this file in accordance with the terms of version
7  * 1.0 of the CDDL.
8  *
9  * A full copy of the text of the CDDL should have accompanied this
10  * source.  A copy of the CDDL is also available via the Internet at
11  * http://www.illumos.org/license/CDDL.
12  *
13  * CDDL HEADER END
14  */
15 
16 /*
17  * Copyright (c) 2014, 2017 by Delphix. All rights reserved.
18  * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
19  * Copyright (c) 2014, 2020 by Delphix. All rights reserved.
20  */
21 
22 #include <sys/zfs_context.h>
23 #include <sys/spa.h>
24 #include <sys/spa_impl.h>
25 #include <sys/vdev_impl.h>
26 #include <sys/fs/zfs.h>
27 #include <sys/zio.h>
28 #include <sys/zio_checksum.h>
29 #include <sys/metaslab.h>
30 #include <sys/dmu.h>
31 #include <sys/vdev_indirect_mapping.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/dsl_synctask.h>
34 #include <sys/zap.h>
35 #include <sys/abd.h>
36 #include <sys/zthr.h>
37 
38 /*
39  * An indirect vdev corresponds to a vdev that has been removed.  Since
40  * we cannot rewrite block pointers of snapshots, etc., we keep a
41  * mapping from old location on the removed device to the new location
42  * on another device in the pool and use this mapping whenever we need
43  * to access the DVA.  Unfortunately, this mapping did not respect
44  * logical block boundaries when it was first created, and so a DVA on
45  * this indirect vdev may be "split" into multiple sections that each
46  * map to a different location.  As a consequence, not all DVAs can be
47  * translated to an equivalent new DVA.  Instead we must provide a
48  * "vdev_remap" operation that executes a callback on each contiguous
49  * segment of the new location.  This function is used in multiple ways:
50  *
51  *  - I/Os to this vdev use the callback to determine where the
52  *    data is now located, and issue child I/Os for each segment's new
53  *    location.
54  *
55  *  - frees and claims to this vdev use the callback to free or claim
56  *    each mapped segment.  (Note that we don't actually need to claim
57  *    log blocks on indirect vdevs, because we don't allocate to
58  *    removing vdevs.  However, zdb uses zio_claim() for its leak
59  *    detection.)
60  */
61 
62 /*
63  * "Big theory statement" for how we mark blocks obsolete.
64  *
65  * When a block on an indirect vdev is freed or remapped, a section of
66  * that vdev's mapping may no longer be referenced (aka "obsolete").  We
67  * keep track of how much of each mapping entry is obsolete.  When
68  * an entry becomes completely obsolete, we can remove it, thus reducing
69  * the memory used by the mapping.  The complete picture of obsolescence
70  * is given by the following data structures, described below:
71  *  - the entry-specific obsolete count
72  *  - the vdev-specific obsolete spacemap
73  *  - the pool-specific obsolete bpobj
74  *
75  * == On disk data structures used ==
76  *
77  * We track the obsolete space for the pool using several objects.  Each
78  * of these objects is created on demand and freed when no longer
79  * needed, and is assumed to be empty if it does not exist.
80  * SPA_FEATURE_OBSOLETE_COUNTS includes the count of these objects.
81  *
82  *  - Each vic_mapping_object (associated with an indirect vdev) can
83  *    have a vimp_counts_object.  This is an array of uint32_t's
84  *    with the same number of entries as the vic_mapping_object.  When
85  *    the mapping is condensed, entries from the vic_obsolete_sm_object
86  *    (see below) are folded into the counts.  Therefore, each
87  *    obsolete_counts entry tells us the number of bytes in the
88  *    corresponding mapping entry that were not referenced when the
89  *    mapping was last condensed.
90  *
91  *  - Each indirect or removing vdev can have a vic_obsolete_sm_object.
92  *    This is a space map containing an alloc entry for every DVA that
93  *    has been obsoleted since the last time this indirect vdev was
94  *    condensed.  We use this object in order to improve performance
95  *    when marking a DVA as obsolete.  Instead of modifying an arbitrary
96  *    offset of the vimp_counts_object, we only need to append an entry
97  *    to the end of this object.  When a DVA becomes obsolete, it is
98  *    added to the obsolete space map.  This happens when the DVA is
99  *    freed, remapped and not referenced by a snapshot, or the last
100  *    snapshot referencing it is destroyed.
101  *
102  *  - Each dataset can have a ds_remap_deadlist object.  This is a
103  *    deadlist object containing all blocks that were remapped in this
104  *    dataset but referenced in a previous snapshot.  Blocks can *only*
105  *    appear on this list if they were remapped (dsl_dataset_block_remapped);
106  *    blocks that were killed in a head dataset are put on the normal
107  *    ds_deadlist and marked obsolete when they are freed.
108  *
109  *  - The pool can have a dp_obsolete_bpobj.  This is a list of blocks
110  *    in the pool that need to be marked obsolete.  When a snapshot is
111  *    destroyed, we move some of the ds_remap_deadlist to the obsolete
112  *    bpobj (see dsl_destroy_snapshot_handle_remaps()).  We then
113  *    asynchronously process the obsolete bpobj, moving its entries to
114  *    the specific vdevs' obsolete space maps.
115  *
116  * == Summary of how we mark blocks as obsolete ==
117  *
118  * - When freeing a block: if any DVA is on an indirect vdev, append to
119  *   vic_obsolete_sm_object.
120  * - When remapping a block, add dva to ds_remap_deadlist (if prev snap
121  *   references; otherwise append to vic_obsolete_sm_object).
122  * - When freeing a snapshot: move parts of ds_remap_deadlist to
123  *   dp_obsolete_bpobj (same algorithm as ds_deadlist).
124  * - When syncing the spa: process dp_obsolete_bpobj, moving ranges to
125  *   individual vdev's vic_obsolete_sm_object.
126  */
127 
128 /*
129  * "Big theory statement" for how we condense indirect vdevs.
130  *
131  * Condensing an indirect vdev's mapping is the process of determining
132  * the precise counts of obsolete space for each mapping entry (by
133  * integrating the obsolete spacemap into the obsolete counts) and
134  * writing out a new mapping that contains only referenced entries.
135  *
136  * We condense a vdev when we expect the mapping to shrink (see
137  * vdev_indirect_should_condense()), but only perform one condense at a
138  * time to limit the memory usage.  In addition, we use a separate
139  * open-context thread (spa_condense_indirect_thread) to incrementally
140  * create the new mapping object in a way that minimizes the impact on
141  * the rest of the system.
142  *
143  * == Generating a new mapping ==
144  *
145  * To generate a new mapping, we follow these steps:
146  *
147  * 1. Save the old obsolete space map and create a new mapping object
148  *    (see spa_condense_indirect_start_sync()).  This initializes the
149  *    spa_condensing_indirect_phys with the "previous obsolete space map",
150  *    which is now read only.  Newly obsolete DVAs will be added to a
151  *    new (initially empty) obsolete space map, and will not be
152  *    considered as part of this condense operation.
153  *
154  * 2. Construct in memory the precise counts of obsolete space for each
155  *    mapping entry, by incorporating the obsolete space map into the
156  *    counts.  (See vdev_indirect_mapping_load_obsolete_{counts,spacemap}().)
157  *
158  * 3. Iterate through each mapping entry, writing to the new mapping any
159  *    entries that are not completely obsolete (i.e. which don't have
160  *    obsolete count == mapping length).  (See
161  *    spa_condense_indirect_generate_new_mapping().)
162  *
163  * 4. Destroy the old mapping object and switch over to the new one
164  *    (spa_condense_indirect_complete_sync).
165  *
166  * == Restarting from failure ==
167  *
168  * To restart the condense when we import/open the pool, we must start
169  * at the 2nd step above: reconstruct the precise counts in memory,
170  * based on the space map + counts.  Then in the 3rd step, we start
171  * iterating where we left off: at vimp_max_offset of the new mapping
172  * object.
173  */
174 
175 static int zfs_condense_indirect_vdevs_enable = B_TRUE;
176 
177 /*
178  * Condense if at least this percent of the bytes in the mapping is
179  * obsolete.  With the default of 25%, the amount of space mapped
180  * will be reduced to 1% of its original size after at most 16
181  * condenses.  Higher values will condense less often (causing less
182  * i/o); lower values will reduce the mapping size more quickly.
183  */
184 static uint_t zfs_condense_indirect_obsolete_pct = 25;
185 
186 /*
187  * Condense if the obsolete space map takes up more than this amount of
188  * space on disk (logically).  This limits the amount of disk space
189  * consumed by the obsolete space map; the default of 1GB is small enough
190  * that we typically don't mind "wasting" it.
191  */
192 static unsigned long zfs_condense_max_obsolete_bytes = 1024 * 1024 * 1024;
193 
194 /*
195  * Don't bother condensing if the mapping uses less than this amount of
196  * memory.  The default of 128KB is considered a "trivial" amount of
197  * memory and not worth reducing.
198  */
199 static unsigned long zfs_condense_min_mapping_bytes = 128 * 1024;
200 
201 /*
202  * This is used by the test suite so that it can ensure that certain
203  * actions happen while in the middle of a condense (which might otherwise
204  * complete too quickly).  If used to reduce the performance impact of
205  * condensing in production, a maximum value of 1 should be sufficient.
206  */
207 static uint_t zfs_condense_indirect_commit_entry_delay_ms = 0;
208 
209 /*
210  * If an indirect split block contains more than this many possible unique
211  * combinations when being reconstructed, consider it too computationally
212  * expensive to check them all. Instead, try at most 100 randomly-selected
213  * combinations each time the block is accessed.  This allows all segment
214  * copies to participate fairly in the reconstruction when all combinations
215  * cannot be checked and prevents repeated use of one bad copy.
216  */
217 uint_t zfs_reconstruct_indirect_combinations_max = 4096;
218 
219 /*
220  * Enable to simulate damaged segments and validate reconstruction.  This
221  * is intentionally not exposed as a module parameter.
222  */
223 unsigned long zfs_reconstruct_indirect_damage_fraction = 0;
224 
225 /*
226  * The indirect_child_t represents the vdev that we will read from, when we
227  * need to read all copies of the data (e.g. for scrub or reconstruction).
228  * For plain (non-mirror) top-level vdevs (i.e. is_vdev is not a mirror),
229  * ic_vdev is the same as is_vdev.  However, for mirror top-level vdevs,
230  * ic_vdev is a child of the mirror.
231  */
232 typedef struct indirect_child {
233 	abd_t *ic_data;
234 	vdev_t *ic_vdev;
235 
236 	/*
237 	 * ic_duplicate is NULL when the ic_data contents are unique, when it
238 	 * is determined to be a duplicate it references the primary child.
239 	 */
240 	struct indirect_child *ic_duplicate;
241 	list_node_t ic_node; /* node on is_unique_child */
242 	int ic_error; /* set when a child does not contain the data */
243 } indirect_child_t;
244 
245 /*
246  * The indirect_split_t represents one mapped segment of an i/o to the
247  * indirect vdev. For non-split (contiguously-mapped) blocks, there will be
248  * only one indirect_split_t, with is_split_offset==0 and is_size==io_size.
249  * For split blocks, there will be several of these.
250  */
251 typedef struct indirect_split {
252 	list_node_t is_node; /* link on iv_splits */
253 
254 	/*
255 	 * is_split_offset is the offset into the i/o.
256 	 * This is the sum of the previous splits' is_size's.
257 	 */
258 	uint64_t is_split_offset;
259 
260 	vdev_t *is_vdev; /* top-level vdev */
261 	uint64_t is_target_offset; /* offset on is_vdev */
262 	uint64_t is_size;
263 	int is_children; /* number of entries in is_child[] */
264 	int is_unique_children; /* number of entries in is_unique_child */
265 	list_t is_unique_child;
266 
267 	/*
268 	 * is_good_child is the child that we are currently using to
269 	 * attempt reconstruction.
270 	 */
271 	indirect_child_t *is_good_child;
272 
273 	indirect_child_t is_child[1]; /* variable-length */
274 } indirect_split_t;
275 
276 /*
277  * The indirect_vsd_t is associated with each i/o to the indirect vdev.
278  * It is the "Vdev-Specific Data" in the zio_t's io_vsd.
279  */
280 typedef struct indirect_vsd {
281 	boolean_t iv_split_block;
282 	boolean_t iv_reconstruct;
283 	uint64_t iv_unique_combinations;
284 	uint64_t iv_attempts;
285 	uint64_t iv_attempts_max;
286 
287 	list_t iv_splits; /* list of indirect_split_t's */
288 } indirect_vsd_t;
289 
290 static void
291 vdev_indirect_map_free(zio_t *zio)
292 {
293 	indirect_vsd_t *iv = zio->io_vsd;
294 
295 	indirect_split_t *is;
296 	while ((is = list_head(&iv->iv_splits)) != NULL) {
297 		for (int c = 0; c < is->is_children; c++) {
298 			indirect_child_t *ic = &is->is_child[c];
299 			if (ic->ic_data != NULL)
300 				abd_free(ic->ic_data);
301 		}
302 		list_remove(&iv->iv_splits, is);
303 
304 		indirect_child_t *ic;
305 		while ((ic = list_head(&is->is_unique_child)) != NULL)
306 			list_remove(&is->is_unique_child, ic);
307 
308 		list_destroy(&is->is_unique_child);
309 
310 		kmem_free(is,
311 		    offsetof(indirect_split_t, is_child[is->is_children]));
312 	}
313 	kmem_free(iv, sizeof (*iv));
314 }
315 
316 static const zio_vsd_ops_t vdev_indirect_vsd_ops = {
317 	.vsd_free = vdev_indirect_map_free,
318 };
319 
320 /*
321  * Mark the given offset and size as being obsolete.
322  */
323 void
324 vdev_indirect_mark_obsolete(vdev_t *vd, uint64_t offset, uint64_t size)
325 {
326 	spa_t *spa = vd->vdev_spa;
327 
328 	ASSERT3U(vd->vdev_indirect_config.vic_mapping_object, !=, 0);
329 	ASSERT(vd->vdev_removing || vd->vdev_ops == &vdev_indirect_ops);
330 	ASSERT(size > 0);
331 	VERIFY(vdev_indirect_mapping_entry_for_offset(
332 	    vd->vdev_indirect_mapping, offset) != NULL);
333 
334 	if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
335 		mutex_enter(&vd->vdev_obsolete_lock);
336 		range_tree_add(vd->vdev_obsolete_segments, offset, size);
337 		mutex_exit(&vd->vdev_obsolete_lock);
338 		vdev_dirty(vd, 0, NULL, spa_syncing_txg(spa));
339 	}
340 }
341 
342 /*
343  * Mark the DVA vdev_id:offset:size as being obsolete in the given tx. This
344  * wrapper is provided because the DMU does not know about vdev_t's and
345  * cannot directly call vdev_indirect_mark_obsolete.
346  */
347 void
348 spa_vdev_indirect_mark_obsolete(spa_t *spa, uint64_t vdev_id, uint64_t offset,
349     uint64_t size, dmu_tx_t *tx)
350 {
351 	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
352 	ASSERT(dmu_tx_is_syncing(tx));
353 
354 	/* The DMU can only remap indirect vdevs. */
355 	ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
356 	vdev_indirect_mark_obsolete(vd, offset, size);
357 }
358 
359 static spa_condensing_indirect_t *
360 spa_condensing_indirect_create(spa_t *spa)
361 {
362 	spa_condensing_indirect_phys_t *scip =
363 	    &spa->spa_condensing_indirect_phys;
364 	spa_condensing_indirect_t *sci = kmem_zalloc(sizeof (*sci), KM_SLEEP);
365 	objset_t *mos = spa->spa_meta_objset;
366 
367 	for (int i = 0; i < TXG_SIZE; i++) {
368 		list_create(&sci->sci_new_mapping_entries[i],
369 		    sizeof (vdev_indirect_mapping_entry_t),
370 		    offsetof(vdev_indirect_mapping_entry_t, vime_node));
371 	}
372 
373 	sci->sci_new_mapping =
374 	    vdev_indirect_mapping_open(mos, scip->scip_next_mapping_object);
375 
376 	return (sci);
377 }
378 
379 static void
380 spa_condensing_indirect_destroy(spa_condensing_indirect_t *sci)
381 {
382 	for (int i = 0; i < TXG_SIZE; i++)
383 		list_destroy(&sci->sci_new_mapping_entries[i]);
384 
385 	if (sci->sci_new_mapping != NULL)
386 		vdev_indirect_mapping_close(sci->sci_new_mapping);
387 
388 	kmem_free(sci, sizeof (*sci));
389 }
390 
391 boolean_t
392 vdev_indirect_should_condense(vdev_t *vd)
393 {
394 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
395 	spa_t *spa = vd->vdev_spa;
396 
397 	ASSERT(dsl_pool_sync_context(spa->spa_dsl_pool));
398 
399 	if (!zfs_condense_indirect_vdevs_enable)
400 		return (B_FALSE);
401 
402 	/*
403 	 * We can only condense one indirect vdev at a time.
404 	 */
405 	if (spa->spa_condensing_indirect != NULL)
406 		return (B_FALSE);
407 
408 	if (spa_shutting_down(spa))
409 		return (B_FALSE);
410 
411 	/*
412 	 * The mapping object size must not change while we are
413 	 * condensing, so we can only condense indirect vdevs
414 	 * (not vdevs that are still in the middle of being removed).
415 	 */
416 	if (vd->vdev_ops != &vdev_indirect_ops)
417 		return (B_FALSE);
418 
419 	/*
420 	 * If nothing new has been marked obsolete, there is no
421 	 * point in condensing.
422 	 */
423 	uint64_t obsolete_sm_obj __maybe_unused;
424 	ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_obj));
425 	if (vd->vdev_obsolete_sm == NULL) {
426 		ASSERT0(obsolete_sm_obj);
427 		return (B_FALSE);
428 	}
429 
430 	ASSERT(vd->vdev_obsolete_sm != NULL);
431 
432 	ASSERT3U(obsolete_sm_obj, ==, space_map_object(vd->vdev_obsolete_sm));
433 
434 	uint64_t bytes_mapped = vdev_indirect_mapping_bytes_mapped(vim);
435 	uint64_t bytes_obsolete = space_map_allocated(vd->vdev_obsolete_sm);
436 	uint64_t mapping_size = vdev_indirect_mapping_size(vim);
437 	uint64_t obsolete_sm_size = space_map_length(vd->vdev_obsolete_sm);
438 
439 	ASSERT3U(bytes_obsolete, <=, bytes_mapped);
440 
441 	/*
442 	 * If a high percentage of the bytes that are mapped have become
443 	 * obsolete, condense (unless the mapping is already small enough).
444 	 * This has a good chance of reducing the amount of memory used
445 	 * by the mapping.
446 	 */
447 	if (bytes_obsolete * 100 / bytes_mapped >=
448 	    zfs_condense_indirect_obsolete_pct &&
449 	    mapping_size > zfs_condense_min_mapping_bytes) {
450 		zfs_dbgmsg("should condense vdev %llu because obsolete "
451 		    "spacemap covers %d%% of %lluMB mapping",
452 		    (u_longlong_t)vd->vdev_id,
453 		    (int)(bytes_obsolete * 100 / bytes_mapped),
454 		    (u_longlong_t)bytes_mapped / 1024 / 1024);
455 		return (B_TRUE);
456 	}
457 
458 	/*
459 	 * If the obsolete space map takes up too much space on disk,
460 	 * condense in order to free up this disk space.
461 	 */
462 	if (obsolete_sm_size >= zfs_condense_max_obsolete_bytes) {
463 		zfs_dbgmsg("should condense vdev %llu because obsolete sm "
464 		    "length %lluMB >= max size %lluMB",
465 		    (u_longlong_t)vd->vdev_id,
466 		    (u_longlong_t)obsolete_sm_size / 1024 / 1024,
467 		    (u_longlong_t)zfs_condense_max_obsolete_bytes /
468 		    1024 / 1024);
469 		return (B_TRUE);
470 	}
471 
472 	return (B_FALSE);
473 }
474 
475 /*
476  * This sync task completes (finishes) a condense, deleting the old
477  * mapping and replacing it with the new one.
478  */
479 static void
480 spa_condense_indirect_complete_sync(void *arg, dmu_tx_t *tx)
481 {
482 	spa_condensing_indirect_t *sci = arg;
483 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
484 	spa_condensing_indirect_phys_t *scip =
485 	    &spa->spa_condensing_indirect_phys;
486 	vdev_t *vd = vdev_lookup_top(spa, scip->scip_vdev);
487 	vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
488 	objset_t *mos = spa->spa_meta_objset;
489 	vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping;
490 	uint64_t old_count = vdev_indirect_mapping_num_entries(old_mapping);
491 	uint64_t new_count =
492 	    vdev_indirect_mapping_num_entries(sci->sci_new_mapping);
493 
494 	ASSERT(dmu_tx_is_syncing(tx));
495 	ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
496 	ASSERT3P(sci, ==, spa->spa_condensing_indirect);
497 	for (int i = 0; i < TXG_SIZE; i++) {
498 		ASSERT(list_is_empty(&sci->sci_new_mapping_entries[i]));
499 	}
500 	ASSERT(vic->vic_mapping_object != 0);
501 	ASSERT3U(vd->vdev_id, ==, scip->scip_vdev);
502 	ASSERT(scip->scip_next_mapping_object != 0);
503 	ASSERT(scip->scip_prev_obsolete_sm_object != 0);
504 
505 	/*
506 	 * Reset vdev_indirect_mapping to refer to the new object.
507 	 */
508 	rw_enter(&vd->vdev_indirect_rwlock, RW_WRITER);
509 	vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
510 	vd->vdev_indirect_mapping = sci->sci_new_mapping;
511 	rw_exit(&vd->vdev_indirect_rwlock);
512 
513 	sci->sci_new_mapping = NULL;
514 	vdev_indirect_mapping_free(mos, vic->vic_mapping_object, tx);
515 	vic->vic_mapping_object = scip->scip_next_mapping_object;
516 	scip->scip_next_mapping_object = 0;
517 
518 	space_map_free_obj(mos, scip->scip_prev_obsolete_sm_object, tx);
519 	spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
520 	scip->scip_prev_obsolete_sm_object = 0;
521 
522 	scip->scip_vdev = 0;
523 
524 	VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT,
525 	    DMU_POOL_CONDENSING_INDIRECT, tx));
526 	spa_condensing_indirect_destroy(spa->spa_condensing_indirect);
527 	spa->spa_condensing_indirect = NULL;
528 
529 	zfs_dbgmsg("finished condense of vdev %llu in txg %llu: "
530 	    "new mapping object %llu has %llu entries "
531 	    "(was %llu entries)",
532 	    (u_longlong_t)vd->vdev_id, (u_longlong_t)dmu_tx_get_txg(tx),
533 	    (u_longlong_t)vic->vic_mapping_object,
534 	    (u_longlong_t)new_count, (u_longlong_t)old_count);
535 
536 	vdev_config_dirty(spa->spa_root_vdev);
537 }
538 
539 /*
540  * This sync task appends entries to the new mapping object.
541  */
542 static void
543 spa_condense_indirect_commit_sync(void *arg, dmu_tx_t *tx)
544 {
545 	spa_condensing_indirect_t *sci = arg;
546 	uint64_t txg = dmu_tx_get_txg(tx);
547 	spa_t *spa __maybe_unused = dmu_tx_pool(tx)->dp_spa;
548 
549 	ASSERT(dmu_tx_is_syncing(tx));
550 	ASSERT3P(sci, ==, spa->spa_condensing_indirect);
551 
552 	vdev_indirect_mapping_add_entries(sci->sci_new_mapping,
553 	    &sci->sci_new_mapping_entries[txg & TXG_MASK], tx);
554 	ASSERT(list_is_empty(&sci->sci_new_mapping_entries[txg & TXG_MASK]));
555 }
556 
557 /*
558  * Open-context function to add one entry to the new mapping.  The new
559  * entry will be remembered and written from syncing context.
560  */
561 static void
562 spa_condense_indirect_commit_entry(spa_t *spa,
563     vdev_indirect_mapping_entry_phys_t *vimep, uint32_t count)
564 {
565 	spa_condensing_indirect_t *sci = spa->spa_condensing_indirect;
566 
567 	ASSERT3U(count, <, DVA_GET_ASIZE(&vimep->vimep_dst));
568 
569 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
570 	dmu_tx_hold_space(tx, sizeof (*vimep) + sizeof (count));
571 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
572 	int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
573 
574 	/*
575 	 * If we are the first entry committed this txg, kick off the sync
576 	 * task to write to the MOS on our behalf.
577 	 */
578 	if (list_is_empty(&sci->sci_new_mapping_entries[txgoff])) {
579 		dsl_sync_task_nowait(dmu_tx_pool(tx),
580 		    spa_condense_indirect_commit_sync, sci, tx);
581 	}
582 
583 	vdev_indirect_mapping_entry_t *vime =
584 	    kmem_alloc(sizeof (*vime), KM_SLEEP);
585 	vime->vime_mapping = *vimep;
586 	vime->vime_obsolete_count = count;
587 	list_insert_tail(&sci->sci_new_mapping_entries[txgoff], vime);
588 
589 	dmu_tx_commit(tx);
590 }
591 
592 static void
593 spa_condense_indirect_generate_new_mapping(vdev_t *vd,
594     uint32_t *obsolete_counts, uint64_t start_index, zthr_t *zthr)
595 {
596 	spa_t *spa = vd->vdev_spa;
597 	uint64_t mapi = start_index;
598 	vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping;
599 	uint64_t old_num_entries =
600 	    vdev_indirect_mapping_num_entries(old_mapping);
601 
602 	ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
603 	ASSERT3U(vd->vdev_id, ==, spa->spa_condensing_indirect_phys.scip_vdev);
604 
605 	zfs_dbgmsg("starting condense of vdev %llu from index %llu",
606 	    (u_longlong_t)vd->vdev_id,
607 	    (u_longlong_t)mapi);
608 
609 	while (mapi < old_num_entries) {
610 
611 		if (zthr_iscancelled(zthr)) {
612 			zfs_dbgmsg("pausing condense of vdev %llu "
613 			    "at index %llu", (u_longlong_t)vd->vdev_id,
614 			    (u_longlong_t)mapi);
615 			break;
616 		}
617 
618 		vdev_indirect_mapping_entry_phys_t *entry =
619 		    &old_mapping->vim_entries[mapi];
620 		uint64_t entry_size = DVA_GET_ASIZE(&entry->vimep_dst);
621 		ASSERT3U(obsolete_counts[mapi], <=, entry_size);
622 		if (obsolete_counts[mapi] < entry_size) {
623 			spa_condense_indirect_commit_entry(spa, entry,
624 			    obsolete_counts[mapi]);
625 
626 			/*
627 			 * This delay may be requested for testing, debugging,
628 			 * or performance reasons.
629 			 */
630 			hrtime_t now = gethrtime();
631 			hrtime_t sleep_until = now + MSEC2NSEC(
632 			    zfs_condense_indirect_commit_entry_delay_ms);
633 			zfs_sleep_until(sleep_until);
634 		}
635 
636 		mapi++;
637 	}
638 }
639 
640 static boolean_t
641 spa_condense_indirect_thread_check(void *arg, zthr_t *zthr)
642 {
643 	(void) zthr;
644 	spa_t *spa = arg;
645 
646 	return (spa->spa_condensing_indirect != NULL);
647 }
648 
649 static void
650 spa_condense_indirect_thread(void *arg, zthr_t *zthr)
651 {
652 	spa_t *spa = arg;
653 	vdev_t *vd;
654 
655 	ASSERT3P(spa->spa_condensing_indirect, !=, NULL);
656 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
657 	vd = vdev_lookup_top(spa, spa->spa_condensing_indirect_phys.scip_vdev);
658 	ASSERT3P(vd, !=, NULL);
659 	spa_config_exit(spa, SCL_VDEV, FTAG);
660 
661 	spa_condensing_indirect_t *sci = spa->spa_condensing_indirect;
662 	spa_condensing_indirect_phys_t *scip =
663 	    &spa->spa_condensing_indirect_phys;
664 	uint32_t *counts;
665 	uint64_t start_index;
666 	vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping;
667 	space_map_t *prev_obsolete_sm = NULL;
668 
669 	ASSERT3U(vd->vdev_id, ==, scip->scip_vdev);
670 	ASSERT(scip->scip_next_mapping_object != 0);
671 	ASSERT(scip->scip_prev_obsolete_sm_object != 0);
672 	ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
673 
674 	for (int i = 0; i < TXG_SIZE; i++) {
675 		/*
676 		 * The list must start out empty in order for the
677 		 * _commit_sync() sync task to be properly registered
678 		 * on the first call to _commit_entry(); so it's wise
679 		 * to double check and ensure we actually are starting
680 		 * with empty lists.
681 		 */
682 		ASSERT(list_is_empty(&sci->sci_new_mapping_entries[i]));
683 	}
684 
685 	VERIFY0(space_map_open(&prev_obsolete_sm, spa->spa_meta_objset,
686 	    scip->scip_prev_obsolete_sm_object, 0, vd->vdev_asize, 0));
687 	counts = vdev_indirect_mapping_load_obsolete_counts(old_mapping);
688 	if (prev_obsolete_sm != NULL) {
689 		vdev_indirect_mapping_load_obsolete_spacemap(old_mapping,
690 		    counts, prev_obsolete_sm);
691 	}
692 	space_map_close(prev_obsolete_sm);
693 
694 	/*
695 	 * Generate new mapping.  Determine what index to continue from
696 	 * based on the max offset that we've already written in the
697 	 * new mapping.
698 	 */
699 	uint64_t max_offset =
700 	    vdev_indirect_mapping_max_offset(sci->sci_new_mapping);
701 	if (max_offset == 0) {
702 		/* We haven't written anything to the new mapping yet. */
703 		start_index = 0;
704 	} else {
705 		/*
706 		 * Pick up from where we left off. _entry_for_offset()
707 		 * returns a pointer into the vim_entries array. If
708 		 * max_offset is greater than any of the mappings
709 		 * contained in the table  NULL will be returned and
710 		 * that indicates we've exhausted our iteration of the
711 		 * old_mapping.
712 		 */
713 
714 		vdev_indirect_mapping_entry_phys_t *entry =
715 		    vdev_indirect_mapping_entry_for_offset_or_next(old_mapping,
716 		    max_offset);
717 
718 		if (entry == NULL) {
719 			/*
720 			 * We've already written the whole new mapping.
721 			 * This special value will cause us to skip the
722 			 * generate_new_mapping step and just do the sync
723 			 * task to complete the condense.
724 			 */
725 			start_index = UINT64_MAX;
726 		} else {
727 			start_index = entry - old_mapping->vim_entries;
728 			ASSERT3U(start_index, <,
729 			    vdev_indirect_mapping_num_entries(old_mapping));
730 		}
731 	}
732 
733 	spa_condense_indirect_generate_new_mapping(vd, counts,
734 	    start_index, zthr);
735 
736 	vdev_indirect_mapping_free_obsolete_counts(old_mapping, counts);
737 
738 	/*
739 	 * If the zthr has received a cancellation signal while running
740 	 * in generate_new_mapping() or at any point after that, then bail
741 	 * early. We don't want to complete the condense if the spa is
742 	 * shutting down.
743 	 */
744 	if (zthr_iscancelled(zthr))
745 		return;
746 
747 	VERIFY0(dsl_sync_task(spa_name(spa), NULL,
748 	    spa_condense_indirect_complete_sync, sci, 0,
749 	    ZFS_SPACE_CHECK_EXTRA_RESERVED));
750 }
751 
752 /*
753  * Sync task to begin the condensing process.
754  */
755 void
756 spa_condense_indirect_start_sync(vdev_t *vd, dmu_tx_t *tx)
757 {
758 	spa_t *spa = vd->vdev_spa;
759 	spa_condensing_indirect_phys_t *scip =
760 	    &spa->spa_condensing_indirect_phys;
761 
762 	ASSERT0(scip->scip_next_mapping_object);
763 	ASSERT0(scip->scip_prev_obsolete_sm_object);
764 	ASSERT0(scip->scip_vdev);
765 	ASSERT(dmu_tx_is_syncing(tx));
766 	ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
767 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_OBSOLETE_COUNTS));
768 	ASSERT(vdev_indirect_mapping_num_entries(vd->vdev_indirect_mapping));
769 
770 	uint64_t obsolete_sm_obj;
771 	VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_obj));
772 	ASSERT3U(obsolete_sm_obj, !=, 0);
773 
774 	scip->scip_vdev = vd->vdev_id;
775 	scip->scip_next_mapping_object =
776 	    vdev_indirect_mapping_alloc(spa->spa_meta_objset, tx);
777 
778 	scip->scip_prev_obsolete_sm_object = obsolete_sm_obj;
779 
780 	/*
781 	 * We don't need to allocate a new space map object, since
782 	 * vdev_indirect_sync_obsolete will allocate one when needed.
783 	 */
784 	space_map_close(vd->vdev_obsolete_sm);
785 	vd->vdev_obsolete_sm = NULL;
786 	VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
787 	    VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, tx));
788 
789 	VERIFY0(zap_add(spa->spa_dsl_pool->dp_meta_objset,
790 	    DMU_POOL_DIRECTORY_OBJECT,
791 	    DMU_POOL_CONDENSING_INDIRECT, sizeof (uint64_t),
792 	    sizeof (*scip) / sizeof (uint64_t), scip, tx));
793 
794 	ASSERT3P(spa->spa_condensing_indirect, ==, NULL);
795 	spa->spa_condensing_indirect = spa_condensing_indirect_create(spa);
796 
797 	zfs_dbgmsg("starting condense of vdev %llu in txg %llu: "
798 	    "posm=%llu nm=%llu",
799 	    (u_longlong_t)vd->vdev_id, (u_longlong_t)dmu_tx_get_txg(tx),
800 	    (u_longlong_t)scip->scip_prev_obsolete_sm_object,
801 	    (u_longlong_t)scip->scip_next_mapping_object);
802 
803 	zthr_wakeup(spa->spa_condense_zthr);
804 }
805 
806 /*
807  * Sync to the given vdev's obsolete space map any segments that are no longer
808  * referenced as of the given txg.
809  *
810  * If the obsolete space map doesn't exist yet, create and open it.
811  */
812 void
813 vdev_indirect_sync_obsolete(vdev_t *vd, dmu_tx_t *tx)
814 {
815 	spa_t *spa = vd->vdev_spa;
816 	vdev_indirect_config_t *vic __maybe_unused = &vd->vdev_indirect_config;
817 
818 	ASSERT3U(vic->vic_mapping_object, !=, 0);
819 	ASSERT(range_tree_space(vd->vdev_obsolete_segments) > 0);
820 	ASSERT(vd->vdev_removing || vd->vdev_ops == &vdev_indirect_ops);
821 	ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS));
822 
823 	uint64_t obsolete_sm_object;
824 	VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
825 	if (obsolete_sm_object == 0) {
826 		obsolete_sm_object = space_map_alloc(spa->spa_meta_objset,
827 		    zfs_vdev_standard_sm_blksz, tx);
828 
829 		ASSERT(vd->vdev_top_zap != 0);
830 		VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
831 		    VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM,
832 		    sizeof (obsolete_sm_object), 1, &obsolete_sm_object, tx));
833 		ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
834 		ASSERT3U(obsolete_sm_object, !=, 0);
835 
836 		spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
837 		VERIFY0(space_map_open(&vd->vdev_obsolete_sm,
838 		    spa->spa_meta_objset, obsolete_sm_object,
839 		    0, vd->vdev_asize, 0));
840 	}
841 
842 	ASSERT(vd->vdev_obsolete_sm != NULL);
843 	ASSERT3U(obsolete_sm_object, ==,
844 	    space_map_object(vd->vdev_obsolete_sm));
845 
846 	space_map_write(vd->vdev_obsolete_sm,
847 	    vd->vdev_obsolete_segments, SM_ALLOC, SM_NO_VDEVID, tx);
848 	range_tree_vacate(vd->vdev_obsolete_segments, NULL, NULL);
849 }
850 
851 int
852 spa_condense_init(spa_t *spa)
853 {
854 	int error = zap_lookup(spa->spa_meta_objset,
855 	    DMU_POOL_DIRECTORY_OBJECT,
856 	    DMU_POOL_CONDENSING_INDIRECT, sizeof (uint64_t),
857 	    sizeof (spa->spa_condensing_indirect_phys) / sizeof (uint64_t),
858 	    &spa->spa_condensing_indirect_phys);
859 	if (error == 0) {
860 		if (spa_writeable(spa)) {
861 			spa->spa_condensing_indirect =
862 			    spa_condensing_indirect_create(spa);
863 		}
864 		return (0);
865 	} else if (error == ENOENT) {
866 		return (0);
867 	} else {
868 		return (error);
869 	}
870 }
871 
872 void
873 spa_condense_fini(spa_t *spa)
874 {
875 	if (spa->spa_condensing_indirect != NULL) {
876 		spa_condensing_indirect_destroy(spa->spa_condensing_indirect);
877 		spa->spa_condensing_indirect = NULL;
878 	}
879 }
880 
881 void
882 spa_start_indirect_condensing_thread(spa_t *spa)
883 {
884 	ASSERT3P(spa->spa_condense_zthr, ==, NULL);
885 	spa->spa_condense_zthr = zthr_create("z_indirect_condense",
886 	    spa_condense_indirect_thread_check,
887 	    spa_condense_indirect_thread, spa, minclsyspri);
888 }
889 
890 /*
891  * Gets the obsolete spacemap object from the vdev's ZAP.  On success sm_obj
892  * will contain either the obsolete spacemap object or zero if none exists.
893  * All other errors are returned to the caller.
894  */
895 int
896 vdev_obsolete_sm_object(vdev_t *vd, uint64_t *sm_obj)
897 {
898 	ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
899 
900 	if (vd->vdev_top_zap == 0) {
901 		*sm_obj = 0;
902 		return (0);
903 	}
904 
905 	int error = zap_lookup(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
906 	    VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, sizeof (uint64_t), 1, sm_obj);
907 	if (error == ENOENT) {
908 		*sm_obj = 0;
909 		error = 0;
910 	}
911 
912 	return (error);
913 }
914 
915 /*
916  * Gets the obsolete count are precise spacemap object from the vdev's ZAP.
917  * On success are_precise will be set to reflect if the counts are precise.
918  * All other errors are returned to the caller.
919  */
920 int
921 vdev_obsolete_counts_are_precise(vdev_t *vd, boolean_t *are_precise)
922 {
923 	ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
924 
925 	if (vd->vdev_top_zap == 0) {
926 		*are_precise = B_FALSE;
927 		return (0);
928 	}
929 
930 	uint64_t val = 0;
931 	int error = zap_lookup(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
932 	    VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, sizeof (val), 1, &val);
933 	if (error == 0) {
934 		*are_precise = (val != 0);
935 	} else if (error == ENOENT) {
936 		*are_precise = B_FALSE;
937 		error = 0;
938 	}
939 
940 	return (error);
941 }
942 
943 static void
944 vdev_indirect_close(vdev_t *vd)
945 {
946 	(void) vd;
947 }
948 
949 static int
950 vdev_indirect_open(vdev_t *vd, uint64_t *psize, uint64_t *max_psize,
951     uint64_t *logical_ashift, uint64_t *physical_ashift)
952 {
953 	*psize = *max_psize = vd->vdev_asize +
954 	    VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
955 	*logical_ashift = vd->vdev_ashift;
956 	*physical_ashift = vd->vdev_physical_ashift;
957 	return (0);
958 }
959 
960 typedef struct remap_segment {
961 	vdev_t *rs_vd;
962 	uint64_t rs_offset;
963 	uint64_t rs_asize;
964 	uint64_t rs_split_offset;
965 	list_node_t rs_node;
966 } remap_segment_t;
967 
968 static remap_segment_t *
969 rs_alloc(vdev_t *vd, uint64_t offset, uint64_t asize, uint64_t split_offset)
970 {
971 	remap_segment_t *rs = kmem_alloc(sizeof (remap_segment_t), KM_SLEEP);
972 	rs->rs_vd = vd;
973 	rs->rs_offset = offset;
974 	rs->rs_asize = asize;
975 	rs->rs_split_offset = split_offset;
976 	return (rs);
977 }
978 
979 /*
980  * Given an indirect vdev and an extent on that vdev, it duplicates the
981  * physical entries of the indirect mapping that correspond to the extent
982  * to a new array and returns a pointer to it. In addition, copied_entries
983  * is populated with the number of mapping entries that were duplicated.
984  *
985  * Note that the function assumes that the caller holds vdev_indirect_rwlock.
986  * This ensures that the mapping won't change due to condensing as we
987  * copy over its contents.
988  *
989  * Finally, since we are doing an allocation, it is up to the caller to
990  * free the array allocated in this function.
991  */
992 static vdev_indirect_mapping_entry_phys_t *
993 vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *vd, uint64_t offset,
994     uint64_t asize, uint64_t *copied_entries)
995 {
996 	vdev_indirect_mapping_entry_phys_t *duplicate_mappings = NULL;
997 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
998 	uint64_t entries = 0;
999 
1000 	ASSERT(RW_READ_HELD(&vd->vdev_indirect_rwlock));
1001 
1002 	vdev_indirect_mapping_entry_phys_t *first_mapping =
1003 	    vdev_indirect_mapping_entry_for_offset(vim, offset);
1004 	ASSERT3P(first_mapping, !=, NULL);
1005 
1006 	vdev_indirect_mapping_entry_phys_t *m = first_mapping;
1007 	while (asize > 0) {
1008 		uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
1009 
1010 		ASSERT3U(offset, >=, DVA_MAPPING_GET_SRC_OFFSET(m));
1011 		ASSERT3U(offset, <, DVA_MAPPING_GET_SRC_OFFSET(m) + size);
1012 
1013 		uint64_t inner_offset = offset - DVA_MAPPING_GET_SRC_OFFSET(m);
1014 		uint64_t inner_size = MIN(asize, size - inner_offset);
1015 
1016 		offset += inner_size;
1017 		asize -= inner_size;
1018 		entries++;
1019 		m++;
1020 	}
1021 
1022 	size_t copy_length = entries * sizeof (*first_mapping);
1023 	duplicate_mappings = kmem_alloc(copy_length, KM_SLEEP);
1024 	memcpy(duplicate_mappings, first_mapping, copy_length);
1025 	*copied_entries = entries;
1026 
1027 	return (duplicate_mappings);
1028 }
1029 
1030 /*
1031  * Goes through the relevant indirect mappings until it hits a concrete vdev
1032  * and issues the callback. On the way to the concrete vdev, if any other
1033  * indirect vdevs are encountered, then the callback will also be called on
1034  * each of those indirect vdevs. For example, if the segment is mapped to
1035  * segment A on indirect vdev 1, and then segment A on indirect vdev 1 is
1036  * mapped to segment B on concrete vdev 2, then the callback will be called on
1037  * both vdev 1 and vdev 2.
1038  *
1039  * While the callback passed to vdev_indirect_remap() is called on every vdev
1040  * the function encounters, certain callbacks only care about concrete vdevs.
1041  * These types of callbacks should return immediately and explicitly when they
1042  * are called on an indirect vdev.
1043  *
1044  * Because there is a possibility that a DVA section in the indirect device
1045  * has been split into multiple sections in our mapping, we keep track
1046  * of the relevant contiguous segments of the new location (remap_segment_t)
1047  * in a stack. This way we can call the callback for each of the new sections
1048  * created by a single section of the indirect device. Note though, that in
1049  * this scenario the callbacks in each split block won't occur in-order in
1050  * terms of offset, so callers should not make any assumptions about that.
1051  *
1052  * For callbacks that don't handle split blocks and immediately return when
1053  * they encounter them (as is the case for remap_blkptr_cb), the caller can
1054  * assume that its callback will be applied from the first indirect vdev
1055  * encountered to the last one and then the concrete vdev, in that order.
1056  */
1057 static void
1058 vdev_indirect_remap(vdev_t *vd, uint64_t offset, uint64_t asize,
1059     void (*func)(uint64_t, vdev_t *, uint64_t, uint64_t, void *), void *arg)
1060 {
1061 	list_t stack;
1062 	spa_t *spa = vd->vdev_spa;
1063 
1064 	list_create(&stack, sizeof (remap_segment_t),
1065 	    offsetof(remap_segment_t, rs_node));
1066 
1067 	for (remap_segment_t *rs = rs_alloc(vd, offset, asize, 0);
1068 	    rs != NULL; rs = list_remove_head(&stack)) {
1069 		vdev_t *v = rs->rs_vd;
1070 		uint64_t num_entries = 0;
1071 
1072 		ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1073 		ASSERT(rs->rs_asize > 0);
1074 
1075 		/*
1076 		 * Note: As this function can be called from open context
1077 		 * (e.g. zio_read()), we need the following rwlock to
1078 		 * prevent the mapping from being changed by condensing.
1079 		 *
1080 		 * So we grab the lock and we make a copy of the entries
1081 		 * that are relevant to the extent that we are working on.
1082 		 * Once that is done, we drop the lock and iterate over
1083 		 * our copy of the mapping. Once we are done with the with
1084 		 * the remap segment and we free it, we also free our copy
1085 		 * of the indirect mapping entries that are relevant to it.
1086 		 *
1087 		 * This way we don't need to wait until the function is
1088 		 * finished with a segment, to condense it. In addition, we
1089 		 * don't need a recursive rwlock for the case that a call to
1090 		 * vdev_indirect_remap() needs to call itself (through the
1091 		 * codepath of its callback) for the same vdev in the middle
1092 		 * of its execution.
1093 		 */
1094 		rw_enter(&v->vdev_indirect_rwlock, RW_READER);
1095 		ASSERT3P(v->vdev_indirect_mapping, !=, NULL);
1096 
1097 		vdev_indirect_mapping_entry_phys_t *mapping =
1098 		    vdev_indirect_mapping_duplicate_adjacent_entries(v,
1099 		    rs->rs_offset, rs->rs_asize, &num_entries);
1100 		ASSERT3P(mapping, !=, NULL);
1101 		ASSERT3U(num_entries, >, 0);
1102 		rw_exit(&v->vdev_indirect_rwlock);
1103 
1104 		for (uint64_t i = 0; i < num_entries; i++) {
1105 			/*
1106 			 * Note: the vdev_indirect_mapping can not change
1107 			 * while we are running.  It only changes while the
1108 			 * removal is in progress, and then only from syncing
1109 			 * context. While a removal is in progress, this
1110 			 * function is only called for frees, which also only
1111 			 * happen from syncing context.
1112 			 */
1113 			vdev_indirect_mapping_entry_phys_t *m = &mapping[i];
1114 
1115 			ASSERT3P(m, !=, NULL);
1116 			ASSERT3U(rs->rs_asize, >, 0);
1117 
1118 			uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
1119 			uint64_t dst_offset = DVA_GET_OFFSET(&m->vimep_dst);
1120 			uint64_t dst_vdev = DVA_GET_VDEV(&m->vimep_dst);
1121 
1122 			ASSERT3U(rs->rs_offset, >=,
1123 			    DVA_MAPPING_GET_SRC_OFFSET(m));
1124 			ASSERT3U(rs->rs_offset, <,
1125 			    DVA_MAPPING_GET_SRC_OFFSET(m) + size);
1126 			ASSERT3U(dst_vdev, !=, v->vdev_id);
1127 
1128 			uint64_t inner_offset = rs->rs_offset -
1129 			    DVA_MAPPING_GET_SRC_OFFSET(m);
1130 			uint64_t inner_size =
1131 			    MIN(rs->rs_asize, size - inner_offset);
1132 
1133 			vdev_t *dst_v = vdev_lookup_top(spa, dst_vdev);
1134 			ASSERT3P(dst_v, !=, NULL);
1135 
1136 			if (dst_v->vdev_ops == &vdev_indirect_ops) {
1137 				list_insert_head(&stack,
1138 				    rs_alloc(dst_v, dst_offset + inner_offset,
1139 				    inner_size, rs->rs_split_offset));
1140 
1141 			}
1142 
1143 			if ((zfs_flags & ZFS_DEBUG_INDIRECT_REMAP) &&
1144 			    IS_P2ALIGNED(inner_size, 2 * SPA_MINBLOCKSIZE)) {
1145 				/*
1146 				 * Note: This clause exists only solely for
1147 				 * testing purposes. We use it to ensure that
1148 				 * split blocks work and that the callbacks
1149 				 * using them yield the same result if issued
1150 				 * in reverse order.
1151 				 */
1152 				uint64_t inner_half = inner_size / 2;
1153 
1154 				func(rs->rs_split_offset + inner_half, dst_v,
1155 				    dst_offset + inner_offset + inner_half,
1156 				    inner_half, arg);
1157 
1158 				func(rs->rs_split_offset, dst_v,
1159 				    dst_offset + inner_offset,
1160 				    inner_half, arg);
1161 			} else {
1162 				func(rs->rs_split_offset, dst_v,
1163 				    dst_offset + inner_offset,
1164 				    inner_size, arg);
1165 			}
1166 
1167 			rs->rs_offset += inner_size;
1168 			rs->rs_asize -= inner_size;
1169 			rs->rs_split_offset += inner_size;
1170 		}
1171 		VERIFY0(rs->rs_asize);
1172 
1173 		kmem_free(mapping, num_entries * sizeof (*mapping));
1174 		kmem_free(rs, sizeof (remap_segment_t));
1175 	}
1176 	list_destroy(&stack);
1177 }
1178 
1179 static void
1180 vdev_indirect_child_io_done(zio_t *zio)
1181 {
1182 	zio_t *pio = zio->io_private;
1183 
1184 	mutex_enter(&pio->io_lock);
1185 	pio->io_error = zio_worst_error(pio->io_error, zio->io_error);
1186 	mutex_exit(&pio->io_lock);
1187 
1188 	abd_free(zio->io_abd);
1189 }
1190 
1191 /*
1192  * This is a callback for vdev_indirect_remap() which allocates an
1193  * indirect_split_t for each split segment and adds it to iv_splits.
1194  */
1195 static void
1196 vdev_indirect_gather_splits(uint64_t split_offset, vdev_t *vd, uint64_t offset,
1197     uint64_t size, void *arg)
1198 {
1199 	zio_t *zio = arg;
1200 	indirect_vsd_t *iv = zio->io_vsd;
1201 
1202 	ASSERT3P(vd, !=, NULL);
1203 
1204 	if (vd->vdev_ops == &vdev_indirect_ops)
1205 		return;
1206 
1207 	int n = 1;
1208 	if (vd->vdev_ops == &vdev_mirror_ops)
1209 		n = vd->vdev_children;
1210 
1211 	indirect_split_t *is =
1212 	    kmem_zalloc(offsetof(indirect_split_t, is_child[n]), KM_SLEEP);
1213 
1214 	is->is_children = n;
1215 	is->is_size = size;
1216 	is->is_split_offset = split_offset;
1217 	is->is_target_offset = offset;
1218 	is->is_vdev = vd;
1219 	list_create(&is->is_unique_child, sizeof (indirect_child_t),
1220 	    offsetof(indirect_child_t, ic_node));
1221 
1222 	/*
1223 	 * Note that we only consider multiple copies of the data for
1224 	 * *mirror* vdevs.  We don't for "replacing" or "spare" vdevs, even
1225 	 * though they use the same ops as mirror, because there's only one
1226 	 * "good" copy under the replacing/spare.
1227 	 */
1228 	if (vd->vdev_ops == &vdev_mirror_ops) {
1229 		for (int i = 0; i < n; i++) {
1230 			is->is_child[i].ic_vdev = vd->vdev_child[i];
1231 			list_link_init(&is->is_child[i].ic_node);
1232 		}
1233 	} else {
1234 		is->is_child[0].ic_vdev = vd;
1235 	}
1236 
1237 	list_insert_tail(&iv->iv_splits, is);
1238 }
1239 
1240 static void
1241 vdev_indirect_read_split_done(zio_t *zio)
1242 {
1243 	indirect_child_t *ic = zio->io_private;
1244 
1245 	if (zio->io_error != 0) {
1246 		/*
1247 		 * Clear ic_data to indicate that we do not have data for this
1248 		 * child.
1249 		 */
1250 		abd_free(ic->ic_data);
1251 		ic->ic_data = NULL;
1252 	}
1253 }
1254 
1255 /*
1256  * Issue reads for all copies (mirror children) of all splits.
1257  */
1258 static void
1259 vdev_indirect_read_all(zio_t *zio)
1260 {
1261 	indirect_vsd_t *iv = zio->io_vsd;
1262 
1263 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
1264 
1265 	for (indirect_split_t *is = list_head(&iv->iv_splits);
1266 	    is != NULL; is = list_next(&iv->iv_splits, is)) {
1267 		for (int i = 0; i < is->is_children; i++) {
1268 			indirect_child_t *ic = &is->is_child[i];
1269 
1270 			if (!vdev_readable(ic->ic_vdev))
1271 				continue;
1272 
1273 			/*
1274 			 * If a child is missing the data, set ic_error. Used
1275 			 * in vdev_indirect_repair(). We perform the read
1276 			 * nevertheless which provides the opportunity to
1277 			 * reconstruct the split block if at all possible.
1278 			 */
1279 			if (vdev_dtl_contains(ic->ic_vdev, DTL_MISSING,
1280 			    zio->io_txg, 1))
1281 				ic->ic_error = SET_ERROR(ESTALE);
1282 
1283 			ic->ic_data = abd_alloc_sametype(zio->io_abd,
1284 			    is->is_size);
1285 			ic->ic_duplicate = NULL;
1286 
1287 			zio_nowait(zio_vdev_child_io(zio, NULL,
1288 			    ic->ic_vdev, is->is_target_offset, ic->ic_data,
1289 			    is->is_size, zio->io_type, zio->io_priority, 0,
1290 			    vdev_indirect_read_split_done, ic));
1291 		}
1292 	}
1293 	iv->iv_reconstruct = B_TRUE;
1294 }
1295 
1296 static void
1297 vdev_indirect_io_start(zio_t *zio)
1298 {
1299 	spa_t *spa __maybe_unused = zio->io_spa;
1300 	indirect_vsd_t *iv = kmem_zalloc(sizeof (*iv), KM_SLEEP);
1301 	list_create(&iv->iv_splits,
1302 	    sizeof (indirect_split_t), offsetof(indirect_split_t, is_node));
1303 
1304 	zio->io_vsd = iv;
1305 	zio->io_vsd_ops = &vdev_indirect_vsd_ops;
1306 
1307 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1308 	if (zio->io_type != ZIO_TYPE_READ) {
1309 		ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
1310 		/*
1311 		 * Note: this code can handle other kinds of writes,
1312 		 * but we don't expect them.
1313 		 */
1314 		ASSERT((zio->io_flags & (ZIO_FLAG_SELF_HEAL |
1315 		    ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE)) != 0);
1316 	}
1317 
1318 	vdev_indirect_remap(zio->io_vd, zio->io_offset, zio->io_size,
1319 	    vdev_indirect_gather_splits, zio);
1320 
1321 	indirect_split_t *first = list_head(&iv->iv_splits);
1322 	if (first->is_size == zio->io_size) {
1323 		/*
1324 		 * This is not a split block; we are pointing to the entire
1325 		 * data, which will checksum the same as the original data.
1326 		 * Pass the BP down so that the child i/o can verify the
1327 		 * checksum, and try a different location if available
1328 		 * (e.g. on a mirror).
1329 		 *
1330 		 * While this special case could be handled the same as the
1331 		 * general (split block) case, doing it this way ensures
1332 		 * that the vast majority of blocks on indirect vdevs
1333 		 * (which are not split) are handled identically to blocks
1334 		 * on non-indirect vdevs.  This allows us to be less strict
1335 		 * about performance in the general (but rare) case.
1336 		 */
1337 		ASSERT0(first->is_split_offset);
1338 		ASSERT3P(list_next(&iv->iv_splits, first), ==, NULL);
1339 		zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
1340 		    first->is_vdev, first->is_target_offset,
1341 		    abd_get_offset(zio->io_abd, 0),
1342 		    zio->io_size, zio->io_type, zio->io_priority, 0,
1343 		    vdev_indirect_child_io_done, zio));
1344 	} else {
1345 		iv->iv_split_block = B_TRUE;
1346 		if (zio->io_type == ZIO_TYPE_READ &&
1347 		    zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER)) {
1348 			/*
1349 			 * Read all copies.  Note that for simplicity,
1350 			 * we don't bother consulting the DTL in the
1351 			 * resilver case.
1352 			 */
1353 			vdev_indirect_read_all(zio);
1354 		} else {
1355 			/*
1356 			 * If this is a read zio, we read one copy of each
1357 			 * split segment, from the top-level vdev.  Since
1358 			 * we don't know the checksum of each split
1359 			 * individually, the child zio can't ensure that
1360 			 * we get the right data. E.g. if it's a mirror,
1361 			 * it will just read from a random (healthy) leaf
1362 			 * vdev. We have to verify the checksum in
1363 			 * vdev_indirect_io_done().
1364 			 *
1365 			 * For write zios, the vdev code will ensure we write
1366 			 * to all children.
1367 			 */
1368 			for (indirect_split_t *is = list_head(&iv->iv_splits);
1369 			    is != NULL; is = list_next(&iv->iv_splits, is)) {
1370 				zio_nowait(zio_vdev_child_io(zio, NULL,
1371 				    is->is_vdev, is->is_target_offset,
1372 				    abd_get_offset(zio->io_abd,
1373 				    is->is_split_offset), is->is_size,
1374 				    zio->io_type, zio->io_priority, 0,
1375 				    vdev_indirect_child_io_done, zio));
1376 			}
1377 
1378 		}
1379 	}
1380 
1381 	zio_execute(zio);
1382 }
1383 
1384 /*
1385  * Report a checksum error for a child.
1386  */
1387 static void
1388 vdev_indirect_checksum_error(zio_t *zio,
1389     indirect_split_t *is, indirect_child_t *ic)
1390 {
1391 	vdev_t *vd = ic->ic_vdev;
1392 
1393 	if (zio->io_flags & ZIO_FLAG_SPECULATIVE)
1394 		return;
1395 
1396 	mutex_enter(&vd->vdev_stat_lock);
1397 	vd->vdev_stat.vs_checksum_errors++;
1398 	mutex_exit(&vd->vdev_stat_lock);
1399 
1400 	zio_bad_cksum_t zbc = {{{ 0 }}};
1401 	abd_t *bad_abd = ic->ic_data;
1402 	abd_t *good_abd = is->is_good_child->ic_data;
1403 	(void) zfs_ereport_post_checksum(zio->io_spa, vd, NULL, zio,
1404 	    is->is_target_offset, is->is_size, good_abd, bad_abd, &zbc);
1405 }
1406 
1407 /*
1408  * Issue repair i/os for any incorrect copies.  We do this by comparing
1409  * each split segment's correct data (is_good_child's ic_data) with each
1410  * other copy of the data.  If they differ, then we overwrite the bad data
1411  * with the good copy.  The DTL is checked in vdev_indirect_read_all() and
1412  * if a vdev is missing a copy of the data we set ic_error and the read is
1413  * performed. This provides the opportunity to reconstruct the split block
1414  * if at all possible. ic_error is checked here and if set it suppresses
1415  * incrementing the checksum counter. Aside from this DTLs are not checked,
1416  * which simplifies this code and also issues the optimal number of writes
1417  * (based on which copies actually read bad data, as opposed to which we
1418  * think might be wrong).  For the same reason, we always use
1419  * ZIO_FLAG_SELF_HEAL, to bypass the DTL check in zio_vdev_io_start().
1420  */
1421 static void
1422 vdev_indirect_repair(zio_t *zio)
1423 {
1424 	indirect_vsd_t *iv = zio->io_vsd;
1425 
1426 	if (!spa_writeable(zio->io_spa))
1427 		return;
1428 
1429 	for (indirect_split_t *is = list_head(&iv->iv_splits);
1430 	    is != NULL; is = list_next(&iv->iv_splits, is)) {
1431 		for (int c = 0; c < is->is_children; c++) {
1432 			indirect_child_t *ic = &is->is_child[c];
1433 			if (ic == is->is_good_child)
1434 				continue;
1435 			if (ic->ic_data == NULL)
1436 				continue;
1437 			if (ic->ic_duplicate == is->is_good_child)
1438 				continue;
1439 
1440 			zio_nowait(zio_vdev_child_io(zio, NULL,
1441 			    ic->ic_vdev, is->is_target_offset,
1442 			    is->is_good_child->ic_data, is->is_size,
1443 			    ZIO_TYPE_WRITE, ZIO_PRIORITY_ASYNC_WRITE,
1444 			    ZIO_FLAG_IO_REPAIR | ZIO_FLAG_SELF_HEAL,
1445 			    NULL, NULL));
1446 
1447 			/*
1448 			 * If ic_error is set the current child does not have
1449 			 * a copy of the data, so suppress incrementing the
1450 			 * checksum counter.
1451 			 */
1452 			if (ic->ic_error == ESTALE)
1453 				continue;
1454 
1455 			vdev_indirect_checksum_error(zio, is, ic);
1456 		}
1457 	}
1458 }
1459 
1460 /*
1461  * Report checksum errors on all children that we read from.
1462  */
1463 static void
1464 vdev_indirect_all_checksum_errors(zio_t *zio)
1465 {
1466 	indirect_vsd_t *iv = zio->io_vsd;
1467 
1468 	if (zio->io_flags & ZIO_FLAG_SPECULATIVE)
1469 		return;
1470 
1471 	for (indirect_split_t *is = list_head(&iv->iv_splits);
1472 	    is != NULL; is = list_next(&iv->iv_splits, is)) {
1473 		for (int c = 0; c < is->is_children; c++) {
1474 			indirect_child_t *ic = &is->is_child[c];
1475 
1476 			if (ic->ic_data == NULL)
1477 				continue;
1478 
1479 			vdev_t *vd = ic->ic_vdev;
1480 
1481 			(void) zfs_ereport_post_checksum(zio->io_spa, vd,
1482 			    NULL, zio, is->is_target_offset, is->is_size,
1483 			    NULL, NULL, NULL);
1484 			mutex_enter(&vd->vdev_stat_lock);
1485 			vd->vdev_stat.vs_checksum_errors++;
1486 			mutex_exit(&vd->vdev_stat_lock);
1487 		}
1488 	}
1489 }
1490 
1491 /*
1492  * Copy data from all the splits to a main zio then validate the checksum.
1493  * If then checksum is successfully validated return success.
1494  */
1495 static int
1496 vdev_indirect_splits_checksum_validate(indirect_vsd_t *iv, zio_t *zio)
1497 {
1498 	zio_bad_cksum_t zbc;
1499 
1500 	for (indirect_split_t *is = list_head(&iv->iv_splits);
1501 	    is != NULL; is = list_next(&iv->iv_splits, is)) {
1502 
1503 		ASSERT3P(is->is_good_child->ic_data, !=, NULL);
1504 		ASSERT3P(is->is_good_child->ic_duplicate, ==, NULL);
1505 
1506 		abd_copy_off(zio->io_abd, is->is_good_child->ic_data,
1507 		    is->is_split_offset, 0, is->is_size);
1508 	}
1509 
1510 	return (zio_checksum_error(zio, &zbc));
1511 }
1512 
1513 /*
1514  * There are relatively few possible combinations making it feasible to
1515  * deterministically check them all.  We do this by setting the good_child
1516  * to the next unique split version.  If we reach the end of the list then
1517  * "carry over" to the next unique split version (like counting in base
1518  * is_unique_children, but each digit can have a different base).
1519  */
1520 static int
1521 vdev_indirect_splits_enumerate_all(indirect_vsd_t *iv, zio_t *zio)
1522 {
1523 	boolean_t more = B_TRUE;
1524 
1525 	iv->iv_attempts = 0;
1526 
1527 	for (indirect_split_t *is = list_head(&iv->iv_splits);
1528 	    is != NULL; is = list_next(&iv->iv_splits, is))
1529 		is->is_good_child = list_head(&is->is_unique_child);
1530 
1531 	while (more == B_TRUE) {
1532 		iv->iv_attempts++;
1533 		more = B_FALSE;
1534 
1535 		if (vdev_indirect_splits_checksum_validate(iv, zio) == 0)
1536 			return (0);
1537 
1538 		for (indirect_split_t *is = list_head(&iv->iv_splits);
1539 		    is != NULL; is = list_next(&iv->iv_splits, is)) {
1540 			is->is_good_child = list_next(&is->is_unique_child,
1541 			    is->is_good_child);
1542 			if (is->is_good_child != NULL) {
1543 				more = B_TRUE;
1544 				break;
1545 			}
1546 
1547 			is->is_good_child = list_head(&is->is_unique_child);
1548 		}
1549 	}
1550 
1551 	ASSERT3S(iv->iv_attempts, <=, iv->iv_unique_combinations);
1552 
1553 	return (SET_ERROR(ECKSUM));
1554 }
1555 
1556 /*
1557  * There are too many combinations to try all of them in a reasonable amount
1558  * of time.  So try a fixed number of random combinations from the unique
1559  * split versions, after which we'll consider the block unrecoverable.
1560  */
1561 static int
1562 vdev_indirect_splits_enumerate_randomly(indirect_vsd_t *iv, zio_t *zio)
1563 {
1564 	iv->iv_attempts = 0;
1565 
1566 	while (iv->iv_attempts < iv->iv_attempts_max) {
1567 		iv->iv_attempts++;
1568 
1569 		for (indirect_split_t *is = list_head(&iv->iv_splits);
1570 		    is != NULL; is = list_next(&iv->iv_splits, is)) {
1571 			indirect_child_t *ic = list_head(&is->is_unique_child);
1572 			int children = is->is_unique_children;
1573 
1574 			for (int i = random_in_range(children); i > 0; i--)
1575 				ic = list_next(&is->is_unique_child, ic);
1576 
1577 			ASSERT3P(ic, !=, NULL);
1578 			is->is_good_child = ic;
1579 		}
1580 
1581 		if (vdev_indirect_splits_checksum_validate(iv, zio) == 0)
1582 			return (0);
1583 	}
1584 
1585 	return (SET_ERROR(ECKSUM));
1586 }
1587 
1588 /*
1589  * This is a validation function for reconstruction.  It randomly selects
1590  * a good combination, if one can be found, and then it intentionally
1591  * damages all other segment copes by zeroing them.  This forces the
1592  * reconstruction algorithm to locate the one remaining known good copy.
1593  */
1594 static int
1595 vdev_indirect_splits_damage(indirect_vsd_t *iv, zio_t *zio)
1596 {
1597 	int error;
1598 
1599 	/* Presume all the copies are unique for initial selection. */
1600 	for (indirect_split_t *is = list_head(&iv->iv_splits);
1601 	    is != NULL; is = list_next(&iv->iv_splits, is)) {
1602 		is->is_unique_children = 0;
1603 
1604 		for (int i = 0; i < is->is_children; i++) {
1605 			indirect_child_t *ic = &is->is_child[i];
1606 			if (ic->ic_data != NULL) {
1607 				is->is_unique_children++;
1608 				list_insert_tail(&is->is_unique_child, ic);
1609 			}
1610 		}
1611 
1612 		if (list_is_empty(&is->is_unique_child)) {
1613 			error = SET_ERROR(EIO);
1614 			goto out;
1615 		}
1616 	}
1617 
1618 	/*
1619 	 * Set each is_good_child to a randomly-selected child which
1620 	 * is known to contain validated data.
1621 	 */
1622 	error = vdev_indirect_splits_enumerate_randomly(iv, zio);
1623 	if (error)
1624 		goto out;
1625 
1626 	/*
1627 	 * Damage all but the known good copy by zeroing it.  This will
1628 	 * result in two or less unique copies per indirect_child_t.
1629 	 * Both may need to be checked in order to reconstruct the block.
1630 	 * Set iv->iv_attempts_max such that all unique combinations will
1631 	 * enumerated, but limit the damage to at most 12 indirect splits.
1632 	 */
1633 	iv->iv_attempts_max = 1;
1634 
1635 	for (indirect_split_t *is = list_head(&iv->iv_splits);
1636 	    is != NULL; is = list_next(&iv->iv_splits, is)) {
1637 		for (int c = 0; c < is->is_children; c++) {
1638 			indirect_child_t *ic = &is->is_child[c];
1639 
1640 			if (ic == is->is_good_child)
1641 				continue;
1642 			if (ic->ic_data == NULL)
1643 				continue;
1644 
1645 			abd_zero(ic->ic_data, abd_get_size(ic->ic_data));
1646 		}
1647 
1648 		iv->iv_attempts_max *= 2;
1649 		if (iv->iv_attempts_max >= (1ULL << 12)) {
1650 			iv->iv_attempts_max = UINT64_MAX;
1651 			break;
1652 		}
1653 	}
1654 
1655 out:
1656 	/* Empty the unique children lists so they can be reconstructed. */
1657 	for (indirect_split_t *is = list_head(&iv->iv_splits);
1658 	    is != NULL; is = list_next(&iv->iv_splits, is)) {
1659 		indirect_child_t *ic;
1660 		while ((ic = list_head(&is->is_unique_child)) != NULL)
1661 			list_remove(&is->is_unique_child, ic);
1662 
1663 		is->is_unique_children = 0;
1664 	}
1665 
1666 	return (error);
1667 }
1668 
1669 /*
1670  * This function is called when we have read all copies of the data and need
1671  * to try to find a combination of copies that gives us the right checksum.
1672  *
1673  * If we pointed to any mirror vdevs, this effectively does the job of the
1674  * mirror.  The mirror vdev code can't do its own job because we don't know
1675  * the checksum of each split segment individually.
1676  *
1677  * We have to try every unique combination of copies of split segments, until
1678  * we find one that checksums correctly.  Duplicate segment copies are first
1679  * identified and latter skipped during reconstruction.  This optimization
1680  * reduces the search space and ensures that of the remaining combinations
1681  * at most one is correct.
1682  *
1683  * When the total number of combinations is small they can all be checked.
1684  * For example, if we have 3 segments in the split, and each points to a
1685  * 2-way mirror with unique copies, we will have the following pieces of data:
1686  *
1687  *       |     mirror child
1688  * split |     [0]        [1]
1689  * ======|=====================
1690  *   A   |  data_A_0   data_A_1
1691  *   B   |  data_B_0   data_B_1
1692  *   C   |  data_C_0   data_C_1
1693  *
1694  * We will try the following (mirror children)^(number of splits) (2^3=8)
1695  * combinations, which is similar to bitwise-little-endian counting in
1696  * binary.  In general each "digit" corresponds to a split segment, and the
1697  * base of each digit is is_children, which can be different for each
1698  * digit.
1699  *
1700  * "low bit"        "high bit"
1701  *        v                 v
1702  * data_A_0 data_B_0 data_C_0
1703  * data_A_1 data_B_0 data_C_0
1704  * data_A_0 data_B_1 data_C_0
1705  * data_A_1 data_B_1 data_C_0
1706  * data_A_0 data_B_0 data_C_1
1707  * data_A_1 data_B_0 data_C_1
1708  * data_A_0 data_B_1 data_C_1
1709  * data_A_1 data_B_1 data_C_1
1710  *
1711  * Note that the split segments may be on the same or different top-level
1712  * vdevs. In either case, we may need to try lots of combinations (see
1713  * zfs_reconstruct_indirect_combinations_max).  This ensures that if a mirror
1714  * has small silent errors on all of its children, we can still reconstruct
1715  * the correct data, as long as those errors are at sufficiently-separated
1716  * offsets (specifically, separated by the largest block size - default of
1717  * 128KB, but up to 16MB).
1718  */
1719 static void
1720 vdev_indirect_reconstruct_io_done(zio_t *zio)
1721 {
1722 	indirect_vsd_t *iv = zio->io_vsd;
1723 	boolean_t known_good = B_FALSE;
1724 	int error;
1725 
1726 	iv->iv_unique_combinations = 1;
1727 	iv->iv_attempts_max = UINT64_MAX;
1728 
1729 	if (zfs_reconstruct_indirect_combinations_max > 0)
1730 		iv->iv_attempts_max = zfs_reconstruct_indirect_combinations_max;
1731 
1732 	/*
1733 	 * If nonzero, every 1/x blocks will be damaged, in order to validate
1734 	 * reconstruction when there are split segments with damaged copies.
1735 	 * Known_good will be TRUE when reconstruction is known to be possible.
1736 	 */
1737 	if (zfs_reconstruct_indirect_damage_fraction != 0 &&
1738 	    random_in_range(zfs_reconstruct_indirect_damage_fraction) == 0)
1739 		known_good = (vdev_indirect_splits_damage(iv, zio) == 0);
1740 
1741 	/*
1742 	 * Determine the unique children for a split segment and add them
1743 	 * to the is_unique_child list.  By restricting reconstruction
1744 	 * to these children, only unique combinations will be considered.
1745 	 * This can vastly reduce the search space when there are a large
1746 	 * number of indirect splits.
1747 	 */
1748 	for (indirect_split_t *is = list_head(&iv->iv_splits);
1749 	    is != NULL; is = list_next(&iv->iv_splits, is)) {
1750 		is->is_unique_children = 0;
1751 
1752 		for (int i = 0; i < is->is_children; i++) {
1753 			indirect_child_t *ic_i = &is->is_child[i];
1754 
1755 			if (ic_i->ic_data == NULL ||
1756 			    ic_i->ic_duplicate != NULL)
1757 				continue;
1758 
1759 			for (int j = i + 1; j < is->is_children; j++) {
1760 				indirect_child_t *ic_j = &is->is_child[j];
1761 
1762 				if (ic_j->ic_data == NULL ||
1763 				    ic_j->ic_duplicate != NULL)
1764 					continue;
1765 
1766 				if (abd_cmp(ic_i->ic_data, ic_j->ic_data) == 0)
1767 					ic_j->ic_duplicate = ic_i;
1768 			}
1769 
1770 			is->is_unique_children++;
1771 			list_insert_tail(&is->is_unique_child, ic_i);
1772 		}
1773 
1774 		/* Reconstruction is impossible, no valid children */
1775 		EQUIV(list_is_empty(&is->is_unique_child),
1776 		    is->is_unique_children == 0);
1777 		if (list_is_empty(&is->is_unique_child)) {
1778 			zio->io_error = EIO;
1779 			vdev_indirect_all_checksum_errors(zio);
1780 			zio_checksum_verified(zio);
1781 			return;
1782 		}
1783 
1784 		iv->iv_unique_combinations *= is->is_unique_children;
1785 	}
1786 
1787 	if (iv->iv_unique_combinations <= iv->iv_attempts_max)
1788 		error = vdev_indirect_splits_enumerate_all(iv, zio);
1789 	else
1790 		error = vdev_indirect_splits_enumerate_randomly(iv, zio);
1791 
1792 	if (error != 0) {
1793 		/* All attempted combinations failed. */
1794 		ASSERT3B(known_good, ==, B_FALSE);
1795 		zio->io_error = error;
1796 		vdev_indirect_all_checksum_errors(zio);
1797 	} else {
1798 		/*
1799 		 * The checksum has been successfully validated.  Issue
1800 		 * repair I/Os to any copies of splits which don't match
1801 		 * the validated version.
1802 		 */
1803 		ASSERT0(vdev_indirect_splits_checksum_validate(iv, zio));
1804 		vdev_indirect_repair(zio);
1805 		zio_checksum_verified(zio);
1806 	}
1807 }
1808 
1809 static void
1810 vdev_indirect_io_done(zio_t *zio)
1811 {
1812 	indirect_vsd_t *iv = zio->io_vsd;
1813 
1814 	if (iv->iv_reconstruct) {
1815 		/*
1816 		 * We have read all copies of the data (e.g. from mirrors),
1817 		 * either because this was a scrub/resilver, or because the
1818 		 * one-copy read didn't checksum correctly.
1819 		 */
1820 		vdev_indirect_reconstruct_io_done(zio);
1821 		return;
1822 	}
1823 
1824 	if (!iv->iv_split_block) {
1825 		/*
1826 		 * This was not a split block, so we passed the BP down,
1827 		 * and the checksum was handled by the (one) child zio.
1828 		 */
1829 		return;
1830 	}
1831 
1832 	zio_bad_cksum_t zbc;
1833 	int ret = zio_checksum_error(zio, &zbc);
1834 	if (ret == 0) {
1835 		zio_checksum_verified(zio);
1836 		return;
1837 	}
1838 
1839 	/*
1840 	 * The checksum didn't match.  Read all copies of all splits, and
1841 	 * then we will try to reconstruct.  The next time
1842 	 * vdev_indirect_io_done() is called, iv_reconstruct will be set.
1843 	 */
1844 	vdev_indirect_read_all(zio);
1845 
1846 	zio_vdev_io_redone(zio);
1847 }
1848 
1849 vdev_ops_t vdev_indirect_ops = {
1850 	.vdev_op_init = NULL,
1851 	.vdev_op_fini = NULL,
1852 	.vdev_op_open = vdev_indirect_open,
1853 	.vdev_op_close = vdev_indirect_close,
1854 	.vdev_op_asize = vdev_default_asize,
1855 	.vdev_op_min_asize = vdev_default_min_asize,
1856 	.vdev_op_min_alloc = NULL,
1857 	.vdev_op_io_start = vdev_indirect_io_start,
1858 	.vdev_op_io_done = vdev_indirect_io_done,
1859 	.vdev_op_state_change = NULL,
1860 	.vdev_op_need_resilver = NULL,
1861 	.vdev_op_hold = NULL,
1862 	.vdev_op_rele = NULL,
1863 	.vdev_op_remap = vdev_indirect_remap,
1864 	.vdev_op_xlate = NULL,
1865 	.vdev_op_rebuild_asize = NULL,
1866 	.vdev_op_metaslab_init = NULL,
1867 	.vdev_op_config_generate = NULL,
1868 	.vdev_op_nparity = NULL,
1869 	.vdev_op_ndisks = NULL,
1870 	.vdev_op_type = VDEV_TYPE_INDIRECT,	/* name of this vdev type */
1871 	.vdev_op_leaf = B_FALSE			/* leaf vdev */
1872 };
1873 
1874 EXPORT_SYMBOL(spa_condense_fini);
1875 EXPORT_SYMBOL(spa_start_indirect_condensing_thread);
1876 EXPORT_SYMBOL(spa_condense_indirect_start_sync);
1877 EXPORT_SYMBOL(spa_condense_init);
1878 EXPORT_SYMBOL(spa_vdev_indirect_mark_obsolete);
1879 EXPORT_SYMBOL(vdev_indirect_mark_obsolete);
1880 EXPORT_SYMBOL(vdev_indirect_should_condense);
1881 EXPORT_SYMBOL(vdev_indirect_sync_obsolete);
1882 EXPORT_SYMBOL(vdev_obsolete_counts_are_precise);
1883 EXPORT_SYMBOL(vdev_obsolete_sm_object);
1884 
1885 /* BEGIN CSTYLED */
1886 ZFS_MODULE_PARAM(zfs_condense, zfs_condense_, indirect_vdevs_enable, INT,
1887 	ZMOD_RW, "Whether to attempt condensing indirect vdev mappings");
1888 
1889 ZFS_MODULE_PARAM(zfs_condense, zfs_condense_, indirect_obsolete_pct, UINT,
1890 	ZMOD_RW,
1891 	"Minimum obsolete percent of bytes in the mapping "
1892 	"to attempt condensing");
1893 
1894 ZFS_MODULE_PARAM(zfs_condense, zfs_condense_, min_mapping_bytes, ULONG, ZMOD_RW,
1895 	"Don't bother condensing if the mapping uses less than this amount of "
1896 	"memory");
1897 
1898 ZFS_MODULE_PARAM(zfs_condense, zfs_condense_, max_obsolete_bytes, ULONG,
1899 	ZMOD_RW,
1900 	"Minimum size obsolete spacemap to attempt condensing");
1901 
1902 ZFS_MODULE_PARAM(zfs_condense, zfs_condense_, indirect_commit_entry_delay_ms,
1903 	UINT, ZMOD_RW,
1904 	"Used by tests to ensure certain actions happen in the middle of a "
1905 	"condense. A maximum value of 1 should be sufficient.");
1906 
1907 ZFS_MODULE_PARAM(zfs_reconstruct, zfs_reconstruct_, indirect_combinations_max,
1908 	UINT, ZMOD_RW,
1909 	"Maximum number of combinations when reconstructing split segments");
1910 /* END CSTYLED */
1911