1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
25  * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
26  */
27 
28 #include <sys/zfs_context.h>
29 #include <sys/spa_impl.h>
30 #include <sys/dmu.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/zap.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/metaslab.h>
35 #include <sys/metaslab_impl.h>
36 #include <sys/uberblock_impl.h>
37 #include <sys/txg.h>
38 #include <sys/avl.h>
39 #include <sys/bpobj.h>
40 #include <sys/dsl_pool.h>
41 #include <sys/dsl_synctask.h>
42 #include <sys/dsl_dir.h>
43 #include <sys/arc.h>
44 #include <sys/zfeature.h>
45 #include <sys/vdev_indirect_births.h>
46 #include <sys/vdev_indirect_mapping.h>
47 #include <sys/abd.h>
48 #include <sys/vdev_initialize.h>
49 #include <sys/vdev_trim.h>
50 #include <sys/trace_zfs.h>
51 
52 /*
53  * This file contains the necessary logic to remove vdevs from a
54  * storage pool.  Currently, the only devices that can be removed
55  * are log, cache, and spare devices; and top level vdevs from a pool
56  * w/o raidz or mirrors.  (Note that members of a mirror can be removed
57  * by the detach operation.)
58  *
59  * Log vdevs are removed by evacuating them and then turning the vdev
60  * into a hole vdev while holding spa config locks.
61  *
62  * Top level vdevs are removed and converted into an indirect vdev via
63  * a multi-step process:
64  *
65  *  - Disable allocations from this device (spa_vdev_remove_top).
66  *
67  *  - From a new thread (spa_vdev_remove_thread), copy data from
68  *    the removing vdev to a different vdev.  The copy happens in open
69  *    context (spa_vdev_copy_impl) and issues a sync task
70  *    (vdev_mapping_sync) so the sync thread can update the partial
71  *    indirect mappings in core and on disk.
72  *
73  *  - If a free happens during a removal, it is freed from the
74  *    removing vdev, and if it has already been copied, from the new
75  *    location as well (free_from_removing_vdev).
76  *
77  *  - After the removal is completed, the copy thread converts the vdev
78  *    into an indirect vdev (vdev_remove_complete) before instructing
79  *    the sync thread to destroy the space maps and finish the removal
80  *    (spa_finish_removal).
81  */
82 
83 typedef struct vdev_copy_arg {
84 	metaslab_t	*vca_msp;
85 	uint64_t	vca_outstanding_bytes;
86 	uint64_t	vca_read_error_bytes;
87 	uint64_t	vca_write_error_bytes;
88 	kcondvar_t	vca_cv;
89 	kmutex_t	vca_lock;
90 } vdev_copy_arg_t;
91 
92 /*
93  * The maximum amount of memory we can use for outstanding i/o while
94  * doing a device removal.  This determines how much i/o we can have
95  * in flight concurrently.
96  */
97 int zfs_remove_max_copy_bytes = 64 * 1024 * 1024;
98 
99 /*
100  * The largest contiguous segment that we will attempt to allocate when
101  * removing a device.  This can be no larger than SPA_MAXBLOCKSIZE.  If
102  * there is a performance problem with attempting to allocate large blocks,
103  * consider decreasing this.
104  *
105  * See also the accessor function spa_remove_max_segment().
106  */
107 int zfs_remove_max_segment = SPA_MAXBLOCKSIZE;
108 
109 /*
110  * Ignore hard IO errors during device removal.  When set if a device
111  * encounters hard IO error during the removal process the removal will
112  * not be cancelled.  This can result in a normally recoverable block
113  * becoming permanently damaged and is not recommended.
114  */
115 int zfs_removal_ignore_errors = 0;
116 
117 /*
118  * Allow a remap segment to span free chunks of at most this size. The main
119  * impact of a larger span is that we will read and write larger, more
120  * contiguous chunks, with more "unnecessary" data -- trading off bandwidth
121  * for iops.  The value here was chosen to align with
122  * zfs_vdev_read_gap_limit, which is a similar concept when doing regular
123  * reads (but there's no reason it has to be the same).
124  *
125  * Additionally, a higher span will have the following relatively minor
126  * effects:
127  *  - the mapping will be smaller, since one entry can cover more allocated
128  *    segments
129  *  - more of the fragmentation in the removing device will be preserved
130  *  - we'll do larger allocations, which may fail and fall back on smaller
131  *    allocations
132  */
133 int vdev_removal_max_span = 32 * 1024;
134 
135 /*
136  * This is used by the test suite so that it can ensure that certain
137  * actions happen while in the middle of a removal.
138  */
139 int zfs_removal_suspend_progress = 0;
140 
141 #define	VDEV_REMOVAL_ZAP_OBJS	"lzap"
142 
143 static void spa_vdev_remove_thread(void *arg);
144 static int spa_vdev_remove_cancel_impl(spa_t *spa);
145 
146 static void
147 spa_sync_removing_state(spa_t *spa, dmu_tx_t *tx)
148 {
149 	VERIFY0(zap_update(spa->spa_dsl_pool->dp_meta_objset,
150 	    DMU_POOL_DIRECTORY_OBJECT,
151 	    DMU_POOL_REMOVING, sizeof (uint64_t),
152 	    sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
153 	    &spa->spa_removing_phys, tx));
154 }
155 
156 static nvlist_t *
157 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
158 {
159 	for (int i = 0; i < count; i++) {
160 		uint64_t guid =
161 		    fnvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID);
162 
163 		if (guid == target_guid)
164 			return (nvpp[i]);
165 	}
166 
167 	return (NULL);
168 }
169 
170 static void
171 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
172     nvlist_t *dev_to_remove)
173 {
174 	nvlist_t **newdev = NULL;
175 
176 	if (count > 1)
177 		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
178 
179 	for (int i = 0, j = 0; i < count; i++) {
180 		if (dev[i] == dev_to_remove)
181 			continue;
182 		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
183 	}
184 
185 	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
186 	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
187 
188 	for (int i = 0; i < count - 1; i++)
189 		nvlist_free(newdev[i]);
190 
191 	if (count > 1)
192 		kmem_free(newdev, (count - 1) * sizeof (void *));
193 }
194 
195 static spa_vdev_removal_t *
196 spa_vdev_removal_create(vdev_t *vd)
197 {
198 	spa_vdev_removal_t *svr = kmem_zalloc(sizeof (*svr), KM_SLEEP);
199 	mutex_init(&svr->svr_lock, NULL, MUTEX_DEFAULT, NULL);
200 	cv_init(&svr->svr_cv, NULL, CV_DEFAULT, NULL);
201 	svr->svr_allocd_segs = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
202 	svr->svr_vdev_id = vd->vdev_id;
203 
204 	for (int i = 0; i < TXG_SIZE; i++) {
205 		svr->svr_frees[i] = range_tree_create(NULL, RANGE_SEG64, NULL,
206 		    0, 0);
207 		list_create(&svr->svr_new_segments[i],
208 		    sizeof (vdev_indirect_mapping_entry_t),
209 		    offsetof(vdev_indirect_mapping_entry_t, vime_node));
210 	}
211 
212 	return (svr);
213 }
214 
215 void
216 spa_vdev_removal_destroy(spa_vdev_removal_t *svr)
217 {
218 	for (int i = 0; i < TXG_SIZE; i++) {
219 		ASSERT0(svr->svr_bytes_done[i]);
220 		ASSERT0(svr->svr_max_offset_to_sync[i]);
221 		range_tree_destroy(svr->svr_frees[i]);
222 		list_destroy(&svr->svr_new_segments[i]);
223 	}
224 
225 	range_tree_destroy(svr->svr_allocd_segs);
226 	mutex_destroy(&svr->svr_lock);
227 	cv_destroy(&svr->svr_cv);
228 	kmem_free(svr, sizeof (*svr));
229 }
230 
231 /*
232  * This is called as a synctask in the txg in which we will mark this vdev
233  * as removing (in the config stored in the MOS).
234  *
235  * It begins the evacuation of a toplevel vdev by:
236  * - initializing the spa_removing_phys which tracks this removal
237  * - computing the amount of space to remove for accounting purposes
238  * - dirtying all dbufs in the spa_config_object
239  * - creating the spa_vdev_removal
240  * - starting the spa_vdev_remove_thread
241  */
242 static void
243 vdev_remove_initiate_sync(void *arg, dmu_tx_t *tx)
244 {
245 	int vdev_id = (uintptr_t)arg;
246 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
247 	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
248 	vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
249 	objset_t *mos = spa->spa_dsl_pool->dp_meta_objset;
250 	spa_vdev_removal_t *svr = NULL;
251 	uint64_t txg __maybe_unused = dmu_tx_get_txg(tx);
252 
253 	ASSERT0(vdev_get_nparity(vd));
254 	svr = spa_vdev_removal_create(vd);
255 
256 	ASSERT(vd->vdev_removing);
257 	ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
258 
259 	spa_feature_incr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
260 	if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
261 		/*
262 		 * By activating the OBSOLETE_COUNTS feature, we prevent
263 		 * the pool from being downgraded and ensure that the
264 		 * refcounts are precise.
265 		 */
266 		spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
267 		uint64_t one = 1;
268 		VERIFY0(zap_add(spa->spa_meta_objset, vd->vdev_top_zap,
269 		    VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, sizeof (one), 1,
270 		    &one, tx));
271 		boolean_t are_precise __maybe_unused;
272 		ASSERT0(vdev_obsolete_counts_are_precise(vd, &are_precise));
273 		ASSERT3B(are_precise, ==, B_TRUE);
274 	}
275 
276 	vic->vic_mapping_object = vdev_indirect_mapping_alloc(mos, tx);
277 	vd->vdev_indirect_mapping =
278 	    vdev_indirect_mapping_open(mos, vic->vic_mapping_object);
279 	vic->vic_births_object = vdev_indirect_births_alloc(mos, tx);
280 	vd->vdev_indirect_births =
281 	    vdev_indirect_births_open(mos, vic->vic_births_object);
282 	spa->spa_removing_phys.sr_removing_vdev = vd->vdev_id;
283 	spa->spa_removing_phys.sr_start_time = gethrestime_sec();
284 	spa->spa_removing_phys.sr_end_time = 0;
285 	spa->spa_removing_phys.sr_state = DSS_SCANNING;
286 	spa->spa_removing_phys.sr_to_copy = 0;
287 	spa->spa_removing_phys.sr_copied = 0;
288 
289 	/*
290 	 * Note: We can't use vdev_stat's vs_alloc for sr_to_copy, because
291 	 * there may be space in the defer tree, which is free, but still
292 	 * counted in vs_alloc.
293 	 */
294 	for (uint64_t i = 0; i < vd->vdev_ms_count; i++) {
295 		metaslab_t *ms = vd->vdev_ms[i];
296 		if (ms->ms_sm == NULL)
297 			continue;
298 
299 		spa->spa_removing_phys.sr_to_copy +=
300 		    metaslab_allocated_space(ms);
301 
302 		/*
303 		 * Space which we are freeing this txg does not need to
304 		 * be copied.
305 		 */
306 		spa->spa_removing_phys.sr_to_copy -=
307 		    range_tree_space(ms->ms_freeing);
308 
309 		ASSERT0(range_tree_space(ms->ms_freed));
310 		for (int t = 0; t < TXG_SIZE; t++)
311 			ASSERT0(range_tree_space(ms->ms_allocating[t]));
312 	}
313 
314 	/*
315 	 * Sync tasks are called before metaslab_sync(), so there should
316 	 * be no already-synced metaslabs in the TXG_CLEAN list.
317 	 */
318 	ASSERT3P(txg_list_head(&vd->vdev_ms_list, TXG_CLEAN(txg)), ==, NULL);
319 
320 	spa_sync_removing_state(spa, tx);
321 
322 	/*
323 	 * All blocks that we need to read the most recent mapping must be
324 	 * stored on concrete vdevs.  Therefore, we must dirty anything that
325 	 * is read before spa_remove_init().  Specifically, the
326 	 * spa_config_object.  (Note that although we already modified the
327 	 * spa_config_object in spa_sync_removing_state, that may not have
328 	 * modified all blocks of the object.)
329 	 */
330 	dmu_object_info_t doi;
331 	VERIFY0(dmu_object_info(mos, DMU_POOL_DIRECTORY_OBJECT, &doi));
332 	for (uint64_t offset = 0; offset < doi.doi_max_offset; ) {
333 		dmu_buf_t *dbuf;
334 		VERIFY0(dmu_buf_hold(mos, DMU_POOL_DIRECTORY_OBJECT,
335 		    offset, FTAG, &dbuf, 0));
336 		dmu_buf_will_dirty(dbuf, tx);
337 		offset += dbuf->db_size;
338 		dmu_buf_rele(dbuf, FTAG);
339 	}
340 
341 	/*
342 	 * Now that we've allocated the im_object, dirty the vdev to ensure
343 	 * that the object gets written to the config on disk.
344 	 */
345 	vdev_config_dirty(vd);
346 
347 	zfs_dbgmsg("starting removal thread for vdev %llu (%px) in txg %llu "
348 	    "im_obj=%llu", (u_longlong_t)vd->vdev_id, vd,
349 	    (u_longlong_t)dmu_tx_get_txg(tx),
350 	    (u_longlong_t)vic->vic_mapping_object);
351 
352 	spa_history_log_internal(spa, "vdev remove started", tx,
353 	    "%s vdev %llu %s", spa_name(spa), (u_longlong_t)vd->vdev_id,
354 	    (vd->vdev_path != NULL) ? vd->vdev_path : "-");
355 	/*
356 	 * Setting spa_vdev_removal causes subsequent frees to call
357 	 * free_from_removing_vdev().  Note that we don't need any locking
358 	 * because we are the sync thread, and metaslab_free_impl() is only
359 	 * called from syncing context (potentially from a zio taskq thread,
360 	 * but in any case only when there are outstanding free i/os, which
361 	 * there are not).
362 	 */
363 	ASSERT3P(spa->spa_vdev_removal, ==, NULL);
364 	spa->spa_vdev_removal = svr;
365 	svr->svr_thread = thread_create(NULL, 0,
366 	    spa_vdev_remove_thread, spa, 0, &p0, TS_RUN, minclsyspri);
367 }
368 
369 /*
370  * When we are opening a pool, we must read the mapping for each
371  * indirect vdev in order from most recently removed to least
372  * recently removed.  We do this because the blocks for the mapping
373  * of older indirect vdevs may be stored on more recently removed vdevs.
374  * In order to read each indirect mapping object, we must have
375  * initialized all more recently removed vdevs.
376  */
377 int
378 spa_remove_init(spa_t *spa)
379 {
380 	int error;
381 
382 	error = zap_lookup(spa->spa_dsl_pool->dp_meta_objset,
383 	    DMU_POOL_DIRECTORY_OBJECT,
384 	    DMU_POOL_REMOVING, sizeof (uint64_t),
385 	    sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
386 	    &spa->spa_removing_phys);
387 
388 	if (error == ENOENT) {
389 		spa->spa_removing_phys.sr_state = DSS_NONE;
390 		spa->spa_removing_phys.sr_removing_vdev = -1;
391 		spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
392 		spa->spa_indirect_vdevs_loaded = B_TRUE;
393 		return (0);
394 	} else if (error != 0) {
395 		return (error);
396 	}
397 
398 	if (spa->spa_removing_phys.sr_state == DSS_SCANNING) {
399 		/*
400 		 * We are currently removing a vdev.  Create and
401 		 * initialize a spa_vdev_removal_t from the bonus
402 		 * buffer of the removing vdevs vdev_im_object, and
403 		 * initialize its partial mapping.
404 		 */
405 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
406 		vdev_t *vd = vdev_lookup_top(spa,
407 		    spa->spa_removing_phys.sr_removing_vdev);
408 
409 		if (vd == NULL) {
410 			spa_config_exit(spa, SCL_STATE, FTAG);
411 			return (EINVAL);
412 		}
413 
414 		vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
415 
416 		ASSERT(vdev_is_concrete(vd));
417 		spa_vdev_removal_t *svr = spa_vdev_removal_create(vd);
418 		ASSERT3U(svr->svr_vdev_id, ==, vd->vdev_id);
419 		ASSERT(vd->vdev_removing);
420 
421 		vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
422 		    spa->spa_meta_objset, vic->vic_mapping_object);
423 		vd->vdev_indirect_births = vdev_indirect_births_open(
424 		    spa->spa_meta_objset, vic->vic_births_object);
425 		spa_config_exit(spa, SCL_STATE, FTAG);
426 
427 		spa->spa_vdev_removal = svr;
428 	}
429 
430 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
431 	uint64_t indirect_vdev_id =
432 	    spa->spa_removing_phys.sr_prev_indirect_vdev;
433 	while (indirect_vdev_id != UINT64_MAX) {
434 		vdev_t *vd = vdev_lookup_top(spa, indirect_vdev_id);
435 		vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
436 
437 		ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
438 		vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
439 		    spa->spa_meta_objset, vic->vic_mapping_object);
440 		vd->vdev_indirect_births = vdev_indirect_births_open(
441 		    spa->spa_meta_objset, vic->vic_births_object);
442 
443 		indirect_vdev_id = vic->vic_prev_indirect_vdev;
444 	}
445 	spa_config_exit(spa, SCL_STATE, FTAG);
446 
447 	/*
448 	 * Now that we've loaded all the indirect mappings, we can allow
449 	 * reads from other blocks (e.g. via predictive prefetch).
450 	 */
451 	spa->spa_indirect_vdevs_loaded = B_TRUE;
452 	return (0);
453 }
454 
455 void
456 spa_restart_removal(spa_t *spa)
457 {
458 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
459 
460 	if (svr == NULL)
461 		return;
462 
463 	/*
464 	 * In general when this function is called there is no
465 	 * removal thread running. The only scenario where this
466 	 * is not true is during spa_import() where this function
467 	 * is called twice [once from spa_import_impl() and
468 	 * spa_async_resume()]. Thus, in the scenario where we
469 	 * import a pool that has an ongoing removal we don't
470 	 * want to spawn a second thread.
471 	 */
472 	if (svr->svr_thread != NULL)
473 		return;
474 
475 	if (!spa_writeable(spa))
476 		return;
477 
478 	zfs_dbgmsg("restarting removal of %llu",
479 	    (u_longlong_t)svr->svr_vdev_id);
480 	svr->svr_thread = thread_create(NULL, 0, spa_vdev_remove_thread, spa,
481 	    0, &p0, TS_RUN, minclsyspri);
482 }
483 
484 /*
485  * Process freeing from a device which is in the middle of being removed.
486  * We must handle this carefully so that we attempt to copy freed data,
487  * and we correctly free already-copied data.
488  */
489 void
490 free_from_removing_vdev(vdev_t *vd, uint64_t offset, uint64_t size)
491 {
492 	spa_t *spa = vd->vdev_spa;
493 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
494 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
495 	uint64_t txg = spa_syncing_txg(spa);
496 	uint64_t max_offset_yet = 0;
497 
498 	ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
499 	ASSERT3U(vd->vdev_indirect_config.vic_mapping_object, ==,
500 	    vdev_indirect_mapping_object(vim));
501 	ASSERT3U(vd->vdev_id, ==, svr->svr_vdev_id);
502 
503 	mutex_enter(&svr->svr_lock);
504 
505 	/*
506 	 * Remove the segment from the removing vdev's spacemap.  This
507 	 * ensures that we will not attempt to copy this space (if the
508 	 * removal thread has not yet visited it), and also ensures
509 	 * that we know what is actually allocated on the new vdevs
510 	 * (needed if we cancel the removal).
511 	 *
512 	 * Note: we must do the metaslab_free_concrete() with the svr_lock
513 	 * held, so that the remove_thread can not load this metaslab and then
514 	 * visit this offset between the time that we metaslab_free_concrete()
515 	 * and when we check to see if it has been visited.
516 	 *
517 	 * Note: The checkpoint flag is set to false as having/taking
518 	 * a checkpoint and removing a device can't happen at the same
519 	 * time.
520 	 */
521 	ASSERT(!spa_has_checkpoint(spa));
522 	metaslab_free_concrete(vd, offset, size, B_FALSE);
523 
524 	uint64_t synced_size = 0;
525 	uint64_t synced_offset = 0;
526 	uint64_t max_offset_synced = vdev_indirect_mapping_max_offset(vim);
527 	if (offset < max_offset_synced) {
528 		/*
529 		 * The mapping for this offset is already on disk.
530 		 * Free from the new location.
531 		 *
532 		 * Note that we use svr_max_synced_offset because it is
533 		 * updated atomically with respect to the in-core mapping.
534 		 * By contrast, vim_max_offset is not.
535 		 *
536 		 * This block may be split between a synced entry and an
537 		 * in-flight or unvisited entry.  Only process the synced
538 		 * portion of it here.
539 		 */
540 		synced_size = MIN(size, max_offset_synced - offset);
541 		synced_offset = offset;
542 
543 		ASSERT3U(max_offset_yet, <=, max_offset_synced);
544 		max_offset_yet = max_offset_synced;
545 
546 		DTRACE_PROBE3(remove__free__synced,
547 		    spa_t *, spa,
548 		    uint64_t, offset,
549 		    uint64_t, synced_size);
550 
551 		size -= synced_size;
552 		offset += synced_size;
553 	}
554 
555 	/*
556 	 * Look at all in-flight txgs starting from the currently syncing one
557 	 * and see if a section of this free is being copied. By starting from
558 	 * this txg and iterating forward, we might find that this region
559 	 * was copied in two different txgs and handle it appropriately.
560 	 */
561 	for (int i = 0; i < TXG_CONCURRENT_STATES; i++) {
562 		int txgoff = (txg + i) & TXG_MASK;
563 		if (size > 0 && offset < svr->svr_max_offset_to_sync[txgoff]) {
564 			/*
565 			 * The mapping for this offset is in flight, and
566 			 * will be synced in txg+i.
567 			 */
568 			uint64_t inflight_size = MIN(size,
569 			    svr->svr_max_offset_to_sync[txgoff] - offset);
570 
571 			DTRACE_PROBE4(remove__free__inflight,
572 			    spa_t *, spa,
573 			    uint64_t, offset,
574 			    uint64_t, inflight_size,
575 			    uint64_t, txg + i);
576 
577 			/*
578 			 * We copy data in order of increasing offset.
579 			 * Therefore the max_offset_to_sync[] must increase
580 			 * (or be zero, indicating that nothing is being
581 			 * copied in that txg).
582 			 */
583 			if (svr->svr_max_offset_to_sync[txgoff] != 0) {
584 				ASSERT3U(svr->svr_max_offset_to_sync[txgoff],
585 				    >=, max_offset_yet);
586 				max_offset_yet =
587 				    svr->svr_max_offset_to_sync[txgoff];
588 			}
589 
590 			/*
591 			 * We've already committed to copying this segment:
592 			 * we have allocated space elsewhere in the pool for
593 			 * it and have an IO outstanding to copy the data. We
594 			 * cannot free the space before the copy has
595 			 * completed, or else the copy IO might overwrite any
596 			 * new data. To free that space, we record the
597 			 * segment in the appropriate svr_frees tree and free
598 			 * the mapped space later, in the txg where we have
599 			 * completed the copy and synced the mapping (see
600 			 * vdev_mapping_sync).
601 			 */
602 			range_tree_add(svr->svr_frees[txgoff],
603 			    offset, inflight_size);
604 			size -= inflight_size;
605 			offset += inflight_size;
606 
607 			/*
608 			 * This space is already accounted for as being
609 			 * done, because it is being copied in txg+i.
610 			 * However, if i!=0, then it is being copied in
611 			 * a future txg.  If we crash after this txg
612 			 * syncs but before txg+i syncs, then the space
613 			 * will be free.  Therefore we must account
614 			 * for the space being done in *this* txg
615 			 * (when it is freed) rather than the future txg
616 			 * (when it will be copied).
617 			 */
618 			ASSERT3U(svr->svr_bytes_done[txgoff], >=,
619 			    inflight_size);
620 			svr->svr_bytes_done[txgoff] -= inflight_size;
621 			svr->svr_bytes_done[txg & TXG_MASK] += inflight_size;
622 		}
623 	}
624 	ASSERT0(svr->svr_max_offset_to_sync[TXG_CLEAN(txg) & TXG_MASK]);
625 
626 	if (size > 0) {
627 		/*
628 		 * The copy thread has not yet visited this offset.  Ensure
629 		 * that it doesn't.
630 		 */
631 
632 		DTRACE_PROBE3(remove__free__unvisited,
633 		    spa_t *, spa,
634 		    uint64_t, offset,
635 		    uint64_t, size);
636 
637 		if (svr->svr_allocd_segs != NULL)
638 			range_tree_clear(svr->svr_allocd_segs, offset, size);
639 
640 		/*
641 		 * Since we now do not need to copy this data, for
642 		 * accounting purposes we have done our job and can count
643 		 * it as completed.
644 		 */
645 		svr->svr_bytes_done[txg & TXG_MASK] += size;
646 	}
647 	mutex_exit(&svr->svr_lock);
648 
649 	/*
650 	 * Now that we have dropped svr_lock, process the synced portion
651 	 * of this free.
652 	 */
653 	if (synced_size > 0) {
654 		vdev_indirect_mark_obsolete(vd, synced_offset, synced_size);
655 
656 		/*
657 		 * Note: this can only be called from syncing context,
658 		 * and the vdev_indirect_mapping is only changed from the
659 		 * sync thread, so we don't need svr_lock while doing
660 		 * metaslab_free_impl_cb.
661 		 */
662 		boolean_t checkpoint = B_FALSE;
663 		vdev_indirect_ops.vdev_op_remap(vd, synced_offset, synced_size,
664 		    metaslab_free_impl_cb, &checkpoint);
665 	}
666 }
667 
668 /*
669  * Stop an active removal and update the spa_removing phys.
670  */
671 static void
672 spa_finish_removal(spa_t *spa, dsl_scan_state_t state, dmu_tx_t *tx)
673 {
674 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
675 	ASSERT3U(dmu_tx_get_txg(tx), ==, spa_syncing_txg(spa));
676 
677 	/* Ensure the removal thread has completed before we free the svr. */
678 	spa_vdev_remove_suspend(spa);
679 
680 	ASSERT(state == DSS_FINISHED || state == DSS_CANCELED);
681 
682 	if (state == DSS_FINISHED) {
683 		spa_removing_phys_t *srp = &spa->spa_removing_phys;
684 		vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
685 		vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
686 
687 		if (srp->sr_prev_indirect_vdev != -1) {
688 			vdev_t *pvd;
689 			pvd = vdev_lookup_top(spa,
690 			    srp->sr_prev_indirect_vdev);
691 			ASSERT3P(pvd->vdev_ops, ==, &vdev_indirect_ops);
692 		}
693 
694 		vic->vic_prev_indirect_vdev = srp->sr_prev_indirect_vdev;
695 		srp->sr_prev_indirect_vdev = vd->vdev_id;
696 	}
697 	spa->spa_removing_phys.sr_state = state;
698 	spa->spa_removing_phys.sr_end_time = gethrestime_sec();
699 
700 	spa->spa_vdev_removal = NULL;
701 	spa_vdev_removal_destroy(svr);
702 
703 	spa_sync_removing_state(spa, tx);
704 	spa_notify_waiters(spa);
705 
706 	vdev_config_dirty(spa->spa_root_vdev);
707 }
708 
709 static void
710 free_mapped_segment_cb(void *arg, uint64_t offset, uint64_t size)
711 {
712 	vdev_t *vd = arg;
713 	vdev_indirect_mark_obsolete(vd, offset, size);
714 	boolean_t checkpoint = B_FALSE;
715 	vdev_indirect_ops.vdev_op_remap(vd, offset, size,
716 	    metaslab_free_impl_cb, &checkpoint);
717 }
718 
719 /*
720  * On behalf of the removal thread, syncs an incremental bit more of
721  * the indirect mapping to disk and updates the in-memory mapping.
722  * Called as a sync task in every txg that the removal thread makes progress.
723  */
724 static void
725 vdev_mapping_sync(void *arg, dmu_tx_t *tx)
726 {
727 	spa_vdev_removal_t *svr = arg;
728 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
729 	vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
730 	vdev_indirect_config_t *vic __maybe_unused = &vd->vdev_indirect_config;
731 	uint64_t txg = dmu_tx_get_txg(tx);
732 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
733 
734 	ASSERT(vic->vic_mapping_object != 0);
735 	ASSERT3U(txg, ==, spa_syncing_txg(spa));
736 
737 	vdev_indirect_mapping_add_entries(vim,
738 	    &svr->svr_new_segments[txg & TXG_MASK], tx);
739 	vdev_indirect_births_add_entry(vd->vdev_indirect_births,
740 	    vdev_indirect_mapping_max_offset(vim), dmu_tx_get_txg(tx), tx);
741 
742 	/*
743 	 * Free the copied data for anything that was freed while the
744 	 * mapping entries were in flight.
745 	 */
746 	mutex_enter(&svr->svr_lock);
747 	range_tree_vacate(svr->svr_frees[txg & TXG_MASK],
748 	    free_mapped_segment_cb, vd);
749 	ASSERT3U(svr->svr_max_offset_to_sync[txg & TXG_MASK], >=,
750 	    vdev_indirect_mapping_max_offset(vim));
751 	svr->svr_max_offset_to_sync[txg & TXG_MASK] = 0;
752 	mutex_exit(&svr->svr_lock);
753 
754 	spa_sync_removing_state(spa, tx);
755 }
756 
757 typedef struct vdev_copy_segment_arg {
758 	spa_t *vcsa_spa;
759 	dva_t *vcsa_dest_dva;
760 	uint64_t vcsa_txg;
761 	range_tree_t *vcsa_obsolete_segs;
762 } vdev_copy_segment_arg_t;
763 
764 static void
765 unalloc_seg(void *arg, uint64_t start, uint64_t size)
766 {
767 	vdev_copy_segment_arg_t *vcsa = arg;
768 	spa_t *spa = vcsa->vcsa_spa;
769 	blkptr_t bp = { { { {0} } } };
770 
771 	BP_SET_BIRTH(&bp, TXG_INITIAL, TXG_INITIAL);
772 	BP_SET_LSIZE(&bp, size);
773 	BP_SET_PSIZE(&bp, size);
774 	BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF);
775 	BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_OFF);
776 	BP_SET_TYPE(&bp, DMU_OT_NONE);
777 	BP_SET_LEVEL(&bp, 0);
778 	BP_SET_DEDUP(&bp, 0);
779 	BP_SET_BYTEORDER(&bp, ZFS_HOST_BYTEORDER);
780 
781 	DVA_SET_VDEV(&bp.blk_dva[0], DVA_GET_VDEV(vcsa->vcsa_dest_dva));
782 	DVA_SET_OFFSET(&bp.blk_dva[0],
783 	    DVA_GET_OFFSET(vcsa->vcsa_dest_dva) + start);
784 	DVA_SET_ASIZE(&bp.blk_dva[0], size);
785 
786 	zio_free(spa, vcsa->vcsa_txg, &bp);
787 }
788 
789 /*
790  * All reads and writes associated with a call to spa_vdev_copy_segment()
791  * are done.
792  */
793 static void
794 spa_vdev_copy_segment_done(zio_t *zio)
795 {
796 	vdev_copy_segment_arg_t *vcsa = zio->io_private;
797 
798 	range_tree_vacate(vcsa->vcsa_obsolete_segs,
799 	    unalloc_seg, vcsa);
800 	range_tree_destroy(vcsa->vcsa_obsolete_segs);
801 	kmem_free(vcsa, sizeof (*vcsa));
802 
803 	spa_config_exit(zio->io_spa, SCL_STATE, zio->io_spa);
804 }
805 
806 /*
807  * The write of the new location is done.
808  */
809 static void
810 spa_vdev_copy_segment_write_done(zio_t *zio)
811 {
812 	vdev_copy_arg_t *vca = zio->io_private;
813 
814 	abd_free(zio->io_abd);
815 
816 	mutex_enter(&vca->vca_lock);
817 	vca->vca_outstanding_bytes -= zio->io_size;
818 
819 	if (zio->io_error != 0)
820 		vca->vca_write_error_bytes += zio->io_size;
821 
822 	cv_signal(&vca->vca_cv);
823 	mutex_exit(&vca->vca_lock);
824 }
825 
826 /*
827  * The read of the old location is done.  The parent zio is the write to
828  * the new location.  Allow it to start.
829  */
830 static void
831 spa_vdev_copy_segment_read_done(zio_t *zio)
832 {
833 	vdev_copy_arg_t *vca = zio->io_private;
834 
835 	if (zio->io_error != 0) {
836 		mutex_enter(&vca->vca_lock);
837 		vca->vca_read_error_bytes += zio->io_size;
838 		mutex_exit(&vca->vca_lock);
839 	}
840 
841 	zio_nowait(zio_unique_parent(zio));
842 }
843 
844 /*
845  * If the old and new vdevs are mirrors, we will read both sides of the old
846  * mirror, and write each copy to the corresponding side of the new mirror.
847  * If the old and new vdevs have a different number of children, we will do
848  * this as best as possible.  Since we aren't verifying checksums, this
849  * ensures that as long as there's a good copy of the data, we'll have a
850  * good copy after the removal, even if there's silent damage to one side
851  * of the mirror. If we're removing a mirror that has some silent damage,
852  * we'll have exactly the same damage in the new location (assuming that
853  * the new location is also a mirror).
854  *
855  * We accomplish this by creating a tree of zio_t's, with as many writes as
856  * there are "children" of the new vdev (a non-redundant vdev counts as one
857  * child, a 2-way mirror has 2 children, etc). Each write has an associated
858  * read from a child of the old vdev. Typically there will be the same
859  * number of children of the old and new vdevs.  However, if there are more
860  * children of the new vdev, some child(ren) of the old vdev will be issued
861  * multiple reads.  If there are more children of the old vdev, some copies
862  * will be dropped.
863  *
864  * For example, the tree of zio_t's for a 2-way mirror is:
865  *
866  *                            null
867  *                           /    \
868  *    write(new vdev, child 0)      write(new vdev, child 1)
869  *      |                             |
870  *    read(old vdev, child 0)       read(old vdev, child 1)
871  *
872  * Child zio's complete before their parents complete.  However, zio's
873  * created with zio_vdev_child_io() may be issued before their children
874  * complete.  In this case we need to make sure that the children (reads)
875  * complete before the parents (writes) are *issued*.  We do this by not
876  * calling zio_nowait() on each write until its corresponding read has
877  * completed.
878  *
879  * The spa_config_lock must be held while zio's created by
880  * zio_vdev_child_io() are in progress, to ensure that the vdev tree does
881  * not change (e.g. due to a concurrent "zpool attach/detach"). The "null"
882  * zio is needed to release the spa_config_lock after all the reads and
883  * writes complete. (Note that we can't grab the config lock for each read,
884  * because it is not reentrant - we could deadlock with a thread waiting
885  * for a write lock.)
886  */
887 static void
888 spa_vdev_copy_one_child(vdev_copy_arg_t *vca, zio_t *nzio,
889     vdev_t *source_vd, uint64_t source_offset,
890     vdev_t *dest_child_vd, uint64_t dest_offset, int dest_id, uint64_t size)
891 {
892 	ASSERT3U(spa_config_held(nzio->io_spa, SCL_ALL, RW_READER), !=, 0);
893 
894 	/*
895 	 * If the destination child in unwritable then there is no point
896 	 * in issuing the source reads which cannot be written.
897 	 */
898 	if (!vdev_writeable(dest_child_vd))
899 		return;
900 
901 	mutex_enter(&vca->vca_lock);
902 	vca->vca_outstanding_bytes += size;
903 	mutex_exit(&vca->vca_lock);
904 
905 	abd_t *abd = abd_alloc_for_io(size, B_FALSE);
906 
907 	vdev_t *source_child_vd = NULL;
908 	if (source_vd->vdev_ops == &vdev_mirror_ops && dest_id != -1) {
909 		/*
910 		 * Source and dest are both mirrors.  Copy from the same
911 		 * child id as we are copying to (wrapping around if there
912 		 * are more dest children than source children).  If the
913 		 * preferred source child is unreadable select another.
914 		 */
915 		for (int i = 0; i < source_vd->vdev_children; i++) {
916 			source_child_vd = source_vd->vdev_child[
917 			    (dest_id + i) % source_vd->vdev_children];
918 			if (vdev_readable(source_child_vd))
919 				break;
920 		}
921 	} else {
922 		source_child_vd = source_vd;
923 	}
924 
925 	/*
926 	 * There should always be at least one readable source child or
927 	 * the pool would be in a suspended state.  Somehow selecting an
928 	 * unreadable child would result in IO errors, the removal process
929 	 * being cancelled, and the pool reverting to its pre-removal state.
930 	 */
931 	ASSERT3P(source_child_vd, !=, NULL);
932 
933 	zio_t *write_zio = zio_vdev_child_io(nzio, NULL,
934 	    dest_child_vd, dest_offset, abd, size,
935 	    ZIO_TYPE_WRITE, ZIO_PRIORITY_REMOVAL,
936 	    ZIO_FLAG_CANFAIL,
937 	    spa_vdev_copy_segment_write_done, vca);
938 
939 	zio_nowait(zio_vdev_child_io(write_zio, NULL,
940 	    source_child_vd, source_offset, abd, size,
941 	    ZIO_TYPE_READ, ZIO_PRIORITY_REMOVAL,
942 	    ZIO_FLAG_CANFAIL,
943 	    spa_vdev_copy_segment_read_done, vca));
944 }
945 
946 /*
947  * Allocate a new location for this segment, and create the zio_t's to
948  * read from the old location and write to the new location.
949  */
950 static int
951 spa_vdev_copy_segment(vdev_t *vd, range_tree_t *segs,
952     uint64_t maxalloc, uint64_t txg,
953     vdev_copy_arg_t *vca, zio_alloc_list_t *zal)
954 {
955 	metaslab_group_t *mg = vd->vdev_mg;
956 	spa_t *spa = vd->vdev_spa;
957 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
958 	vdev_indirect_mapping_entry_t *entry;
959 	dva_t dst = {{ 0 }};
960 	uint64_t start = range_tree_min(segs);
961 	ASSERT0(P2PHASE(start, 1 << spa->spa_min_ashift));
962 
963 	ASSERT3U(maxalloc, <=, SPA_MAXBLOCKSIZE);
964 	ASSERT0(P2PHASE(maxalloc, 1 << spa->spa_min_ashift));
965 
966 	uint64_t size = range_tree_span(segs);
967 	if (range_tree_span(segs) > maxalloc) {
968 		/*
969 		 * We can't allocate all the segments.  Prefer to end
970 		 * the allocation at the end of a segment, thus avoiding
971 		 * additional split blocks.
972 		 */
973 		range_seg_max_t search;
974 		zfs_btree_index_t where;
975 		rs_set_start(&search, segs, start + maxalloc);
976 		rs_set_end(&search, segs, start + maxalloc);
977 		(void) zfs_btree_find(&segs->rt_root, &search, &where);
978 		range_seg_t *rs = zfs_btree_prev(&segs->rt_root, &where,
979 		    &where);
980 		if (rs != NULL) {
981 			size = rs_get_end(rs, segs) - start;
982 		} else {
983 			/*
984 			 * There are no segments that end before maxalloc.
985 			 * I.e. the first segment is larger than maxalloc,
986 			 * so we must split it.
987 			 */
988 			size = maxalloc;
989 		}
990 	}
991 	ASSERT3U(size, <=, maxalloc);
992 	ASSERT0(P2PHASE(size, 1 << spa->spa_min_ashift));
993 
994 	/*
995 	 * An allocation class might not have any remaining vdevs or space
996 	 */
997 	metaslab_class_t *mc = mg->mg_class;
998 	if (mc->mc_groups == 0)
999 		mc = spa_normal_class(spa);
1000 	int error = metaslab_alloc_dva(spa, mc, size, &dst, 0, NULL, txg, 0,
1001 	    zal, 0);
1002 	if (error == ENOSPC && mc != spa_normal_class(spa)) {
1003 		error = metaslab_alloc_dva(spa, spa_normal_class(spa), size,
1004 		    &dst, 0, NULL, txg, 0, zal, 0);
1005 	}
1006 	if (error != 0)
1007 		return (error);
1008 
1009 	/*
1010 	 * Determine the ranges that are not actually needed.  Offsets are
1011 	 * relative to the start of the range to be copied (i.e. relative to the
1012 	 * local variable "start").
1013 	 */
1014 	range_tree_t *obsolete_segs = range_tree_create(NULL, RANGE_SEG64, NULL,
1015 	    0, 0);
1016 
1017 	zfs_btree_index_t where;
1018 	range_seg_t *rs = zfs_btree_first(&segs->rt_root, &where);
1019 	ASSERT3U(rs_get_start(rs, segs), ==, start);
1020 	uint64_t prev_seg_end = rs_get_end(rs, segs);
1021 	while ((rs = zfs_btree_next(&segs->rt_root, &where, &where)) != NULL) {
1022 		if (rs_get_start(rs, segs) >= start + size) {
1023 			break;
1024 		} else {
1025 			range_tree_add(obsolete_segs,
1026 			    prev_seg_end - start,
1027 			    rs_get_start(rs, segs) - prev_seg_end);
1028 		}
1029 		prev_seg_end = rs_get_end(rs, segs);
1030 	}
1031 	/* We don't end in the middle of an obsolete range */
1032 	ASSERT3U(start + size, <=, prev_seg_end);
1033 
1034 	range_tree_clear(segs, start, size);
1035 
1036 	/*
1037 	 * We can't have any padding of the allocated size, otherwise we will
1038 	 * misunderstand what's allocated, and the size of the mapping. We
1039 	 * prevent padding by ensuring that all devices in the pool have the
1040 	 * same ashift, and the allocation size is a multiple of the ashift.
1041 	 */
1042 	VERIFY3U(DVA_GET_ASIZE(&dst), ==, size);
1043 
1044 	entry = kmem_zalloc(sizeof (vdev_indirect_mapping_entry_t), KM_SLEEP);
1045 	DVA_MAPPING_SET_SRC_OFFSET(&entry->vime_mapping, start);
1046 	entry->vime_mapping.vimep_dst = dst;
1047 	if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
1048 		entry->vime_obsolete_count = range_tree_space(obsolete_segs);
1049 	}
1050 
1051 	vdev_copy_segment_arg_t *vcsa = kmem_zalloc(sizeof (*vcsa), KM_SLEEP);
1052 	vcsa->vcsa_dest_dva = &entry->vime_mapping.vimep_dst;
1053 	vcsa->vcsa_obsolete_segs = obsolete_segs;
1054 	vcsa->vcsa_spa = spa;
1055 	vcsa->vcsa_txg = txg;
1056 
1057 	/*
1058 	 * See comment before spa_vdev_copy_one_child().
1059 	 */
1060 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
1061 	zio_t *nzio = zio_null(spa->spa_txg_zio[txg & TXG_MASK], spa, NULL,
1062 	    spa_vdev_copy_segment_done, vcsa, 0);
1063 	vdev_t *dest_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dst));
1064 	if (dest_vd->vdev_ops == &vdev_mirror_ops) {
1065 		for (int i = 0; i < dest_vd->vdev_children; i++) {
1066 			vdev_t *child = dest_vd->vdev_child[i];
1067 			spa_vdev_copy_one_child(vca, nzio, vd, start,
1068 			    child, DVA_GET_OFFSET(&dst), i, size);
1069 		}
1070 	} else {
1071 		spa_vdev_copy_one_child(vca, nzio, vd, start,
1072 		    dest_vd, DVA_GET_OFFSET(&dst), -1, size);
1073 	}
1074 	zio_nowait(nzio);
1075 
1076 	list_insert_tail(&svr->svr_new_segments[txg & TXG_MASK], entry);
1077 	ASSERT3U(start + size, <=, vd->vdev_ms_count << vd->vdev_ms_shift);
1078 	vdev_dirty(vd, 0, NULL, txg);
1079 
1080 	return (0);
1081 }
1082 
1083 /*
1084  * Complete the removal of a toplevel vdev. This is called as a
1085  * synctask in the same txg that we will sync out the new config (to the
1086  * MOS object) which indicates that this vdev is indirect.
1087  */
1088 static void
1089 vdev_remove_complete_sync(void *arg, dmu_tx_t *tx)
1090 {
1091 	spa_vdev_removal_t *svr = arg;
1092 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1093 	vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1094 
1095 	ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
1096 
1097 	for (int i = 0; i < TXG_SIZE; i++) {
1098 		ASSERT0(svr->svr_bytes_done[i]);
1099 	}
1100 
1101 	ASSERT3U(spa->spa_removing_phys.sr_copied, ==,
1102 	    spa->spa_removing_phys.sr_to_copy);
1103 
1104 	vdev_destroy_spacemaps(vd, tx);
1105 
1106 	/* destroy leaf zaps, if any */
1107 	ASSERT3P(svr->svr_zaplist, !=, NULL);
1108 	for (nvpair_t *pair = nvlist_next_nvpair(svr->svr_zaplist, NULL);
1109 	    pair != NULL;
1110 	    pair = nvlist_next_nvpair(svr->svr_zaplist, pair)) {
1111 		vdev_destroy_unlink_zap(vd, fnvpair_value_uint64(pair), tx);
1112 	}
1113 	fnvlist_free(svr->svr_zaplist);
1114 
1115 	spa_finish_removal(dmu_tx_pool(tx)->dp_spa, DSS_FINISHED, tx);
1116 	/* vd->vdev_path is not available here */
1117 	spa_history_log_internal(spa, "vdev remove completed",  tx,
1118 	    "%s vdev %llu", spa_name(spa), (u_longlong_t)vd->vdev_id);
1119 }
1120 
1121 static void
1122 vdev_remove_enlist_zaps(vdev_t *vd, nvlist_t *zlist)
1123 {
1124 	ASSERT3P(zlist, !=, NULL);
1125 	ASSERT0(vdev_get_nparity(vd));
1126 
1127 	if (vd->vdev_leaf_zap != 0) {
1128 		char zkey[32];
1129 		(void) snprintf(zkey, sizeof (zkey), "%s-%llu",
1130 		    VDEV_REMOVAL_ZAP_OBJS, (u_longlong_t)vd->vdev_leaf_zap);
1131 		fnvlist_add_uint64(zlist, zkey, vd->vdev_leaf_zap);
1132 	}
1133 
1134 	for (uint64_t id = 0; id < vd->vdev_children; id++) {
1135 		vdev_remove_enlist_zaps(vd->vdev_child[id], zlist);
1136 	}
1137 }
1138 
1139 static void
1140 vdev_remove_replace_with_indirect(vdev_t *vd, uint64_t txg)
1141 {
1142 	vdev_t *ivd;
1143 	dmu_tx_t *tx;
1144 	spa_t *spa = vd->vdev_spa;
1145 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1146 
1147 	/*
1148 	 * First, build a list of leaf zaps to be destroyed.
1149 	 * This is passed to the sync context thread,
1150 	 * which does the actual unlinking.
1151 	 */
1152 	svr->svr_zaplist = fnvlist_alloc();
1153 	vdev_remove_enlist_zaps(vd, svr->svr_zaplist);
1154 
1155 	ivd = vdev_add_parent(vd, &vdev_indirect_ops);
1156 	ivd->vdev_removing = 0;
1157 
1158 	vd->vdev_leaf_zap = 0;
1159 
1160 	vdev_remove_child(ivd, vd);
1161 	vdev_compact_children(ivd);
1162 
1163 	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
1164 
1165 	mutex_enter(&svr->svr_lock);
1166 	svr->svr_thread = NULL;
1167 	cv_broadcast(&svr->svr_cv);
1168 	mutex_exit(&svr->svr_lock);
1169 
1170 	/* After this, we can not use svr. */
1171 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1172 	dsl_sync_task_nowait(spa->spa_dsl_pool,
1173 	    vdev_remove_complete_sync, svr, tx);
1174 	dmu_tx_commit(tx);
1175 }
1176 
1177 /*
1178  * Complete the removal of a toplevel vdev. This is called in open
1179  * context by the removal thread after we have copied all vdev's data.
1180  */
1181 static void
1182 vdev_remove_complete(spa_t *spa)
1183 {
1184 	uint64_t txg;
1185 
1186 	/*
1187 	 * Wait for any deferred frees to be synced before we call
1188 	 * vdev_metaslab_fini()
1189 	 */
1190 	txg_wait_synced(spa->spa_dsl_pool, 0);
1191 	txg = spa_vdev_enter(spa);
1192 	vdev_t *vd = vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id);
1193 	ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
1194 	ASSERT3P(vd->vdev_trim_thread, ==, NULL);
1195 	ASSERT3P(vd->vdev_autotrim_thread, ==, NULL);
1196 
1197 	sysevent_t *ev = spa_event_create(spa, vd, NULL,
1198 	    ESC_ZFS_VDEV_REMOVE_DEV);
1199 
1200 	zfs_dbgmsg("finishing device removal for vdev %llu in txg %llu",
1201 	    (u_longlong_t)vd->vdev_id, (u_longlong_t)txg);
1202 
1203 	/*
1204 	 * Discard allocation state.
1205 	 */
1206 	if (vd->vdev_mg != NULL) {
1207 		vdev_metaslab_fini(vd);
1208 		metaslab_group_destroy(vd->vdev_mg);
1209 		vd->vdev_mg = NULL;
1210 		spa_log_sm_set_blocklimit(spa);
1211 	}
1212 	if (vd->vdev_log_mg != NULL) {
1213 		ASSERT0(vd->vdev_ms_count);
1214 		metaslab_group_destroy(vd->vdev_log_mg);
1215 		vd->vdev_log_mg = NULL;
1216 	}
1217 	ASSERT0(vd->vdev_stat.vs_space);
1218 	ASSERT0(vd->vdev_stat.vs_dspace);
1219 
1220 	vdev_remove_replace_with_indirect(vd, txg);
1221 
1222 	/*
1223 	 * We now release the locks, allowing spa_sync to run and finish the
1224 	 * removal via vdev_remove_complete_sync in syncing context.
1225 	 *
1226 	 * Note that we hold on to the vdev_t that has been replaced.  Since
1227 	 * it isn't part of the vdev tree any longer, it can't be concurrently
1228 	 * manipulated, even while we don't have the config lock.
1229 	 */
1230 	(void) spa_vdev_exit(spa, NULL, txg, 0);
1231 
1232 	/*
1233 	 * Top ZAP should have been transferred to the indirect vdev in
1234 	 * vdev_remove_replace_with_indirect.
1235 	 */
1236 	ASSERT0(vd->vdev_top_zap);
1237 
1238 	/*
1239 	 * Leaf ZAP should have been moved in vdev_remove_replace_with_indirect.
1240 	 */
1241 	ASSERT0(vd->vdev_leaf_zap);
1242 
1243 	txg = spa_vdev_enter(spa);
1244 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
1245 	/*
1246 	 * Request to update the config and the config cachefile.
1247 	 */
1248 	vdev_config_dirty(spa->spa_root_vdev);
1249 	(void) spa_vdev_exit(spa, vd, txg, 0);
1250 
1251 	if (ev != NULL)
1252 		spa_event_post(ev);
1253 }
1254 
1255 /*
1256  * Evacuates a segment of size at most max_alloc from the vdev
1257  * via repeated calls to spa_vdev_copy_segment. If an allocation
1258  * fails, the pool is probably too fragmented to handle such a
1259  * large size, so decrease max_alloc so that the caller will not try
1260  * this size again this txg.
1261  */
1262 static void
1263 spa_vdev_copy_impl(vdev_t *vd, spa_vdev_removal_t *svr, vdev_copy_arg_t *vca,
1264     uint64_t *max_alloc, dmu_tx_t *tx)
1265 {
1266 	uint64_t txg = dmu_tx_get_txg(tx);
1267 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1268 
1269 	mutex_enter(&svr->svr_lock);
1270 
1271 	/*
1272 	 * Determine how big of a chunk to copy.  We can allocate up
1273 	 * to max_alloc bytes, and we can span up to vdev_removal_max_span
1274 	 * bytes of unallocated space at a time.  "segs" will track the
1275 	 * allocated segments that we are copying.  We may also be copying
1276 	 * free segments (of up to vdev_removal_max_span bytes).
1277 	 */
1278 	range_tree_t *segs = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
1279 	for (;;) {
1280 		range_tree_t *rt = svr->svr_allocd_segs;
1281 		range_seg_t *rs = range_tree_first(rt);
1282 
1283 		if (rs == NULL)
1284 			break;
1285 
1286 		uint64_t seg_length;
1287 
1288 		if (range_tree_is_empty(segs)) {
1289 			/* need to truncate the first seg based on max_alloc */
1290 			seg_length = MIN(rs_get_end(rs, rt) - rs_get_start(rs,
1291 			    rt), *max_alloc);
1292 		} else {
1293 			if (rs_get_start(rs, rt) - range_tree_max(segs) >
1294 			    vdev_removal_max_span) {
1295 				/*
1296 				 * Including this segment would cause us to
1297 				 * copy a larger unneeded chunk than is allowed.
1298 				 */
1299 				break;
1300 			} else if (rs_get_end(rs, rt) - range_tree_min(segs) >
1301 			    *max_alloc) {
1302 				/*
1303 				 * This additional segment would extend past
1304 				 * max_alloc. Rather than splitting this
1305 				 * segment, leave it for the next mapping.
1306 				 */
1307 				break;
1308 			} else {
1309 				seg_length = rs_get_end(rs, rt) -
1310 				    rs_get_start(rs, rt);
1311 			}
1312 		}
1313 
1314 		range_tree_add(segs, rs_get_start(rs, rt), seg_length);
1315 		range_tree_remove(svr->svr_allocd_segs,
1316 		    rs_get_start(rs, rt), seg_length);
1317 	}
1318 
1319 	if (range_tree_is_empty(segs)) {
1320 		mutex_exit(&svr->svr_lock);
1321 		range_tree_destroy(segs);
1322 		return;
1323 	}
1324 
1325 	if (svr->svr_max_offset_to_sync[txg & TXG_MASK] == 0) {
1326 		dsl_sync_task_nowait(dmu_tx_pool(tx), vdev_mapping_sync,
1327 		    svr, tx);
1328 	}
1329 
1330 	svr->svr_max_offset_to_sync[txg & TXG_MASK] = range_tree_max(segs);
1331 
1332 	/*
1333 	 * Note: this is the amount of *allocated* space
1334 	 * that we are taking care of each txg.
1335 	 */
1336 	svr->svr_bytes_done[txg & TXG_MASK] += range_tree_space(segs);
1337 
1338 	mutex_exit(&svr->svr_lock);
1339 
1340 	zio_alloc_list_t zal;
1341 	metaslab_trace_init(&zal);
1342 	uint64_t thismax = SPA_MAXBLOCKSIZE;
1343 	while (!range_tree_is_empty(segs)) {
1344 		int error = spa_vdev_copy_segment(vd,
1345 		    segs, thismax, txg, vca, &zal);
1346 
1347 		if (error == ENOSPC) {
1348 			/*
1349 			 * Cut our segment in half, and don't try this
1350 			 * segment size again this txg.  Note that the
1351 			 * allocation size must be aligned to the highest
1352 			 * ashift in the pool, so that the allocation will
1353 			 * not be padded out to a multiple of the ashift,
1354 			 * which could cause us to think that this mapping
1355 			 * is larger than we intended.
1356 			 */
1357 			ASSERT3U(spa->spa_max_ashift, >=, SPA_MINBLOCKSHIFT);
1358 			ASSERT3U(spa->spa_max_ashift, ==, spa->spa_min_ashift);
1359 			uint64_t attempted =
1360 			    MIN(range_tree_span(segs), thismax);
1361 			thismax = P2ROUNDUP(attempted / 2,
1362 			    1 << spa->spa_max_ashift);
1363 			/*
1364 			 * The minimum-size allocation can not fail.
1365 			 */
1366 			ASSERT3U(attempted, >, 1 << spa->spa_max_ashift);
1367 			*max_alloc = attempted - (1 << spa->spa_max_ashift);
1368 		} else {
1369 			ASSERT0(error);
1370 
1371 			/*
1372 			 * We've performed an allocation, so reset the
1373 			 * alloc trace list.
1374 			 */
1375 			metaslab_trace_fini(&zal);
1376 			metaslab_trace_init(&zal);
1377 		}
1378 	}
1379 	metaslab_trace_fini(&zal);
1380 	range_tree_destroy(segs);
1381 }
1382 
1383 /*
1384  * The size of each removal mapping is limited by the tunable
1385  * zfs_remove_max_segment, but we must adjust this to be a multiple of the
1386  * pool's ashift, so that we don't try to split individual sectors regardless
1387  * of the tunable value.  (Note that device removal requires that all devices
1388  * have the same ashift, so there's no difference between spa_min_ashift and
1389  * spa_max_ashift.) The raw tunable should not be used elsewhere.
1390  */
1391 uint64_t
1392 spa_remove_max_segment(spa_t *spa)
1393 {
1394 	return (P2ROUNDUP(zfs_remove_max_segment, 1 << spa->spa_max_ashift));
1395 }
1396 
1397 /*
1398  * The removal thread operates in open context.  It iterates over all
1399  * allocated space in the vdev, by loading each metaslab's spacemap.
1400  * For each contiguous segment of allocated space (capping the segment
1401  * size at SPA_MAXBLOCKSIZE), we:
1402  *    - Allocate space for it on another vdev.
1403  *    - Create a new mapping from the old location to the new location
1404  *      (as a record in svr_new_segments).
1405  *    - Initiate a physical read zio to get the data off the removing disk.
1406  *    - In the read zio's done callback, initiate a physical write zio to
1407  *      write it to the new vdev.
1408  * Note that all of this will take effect when a particular TXG syncs.
1409  * The sync thread ensures that all the phys reads and writes for the syncing
1410  * TXG have completed (see spa_txg_zio) and writes the new mappings to disk
1411  * (see vdev_mapping_sync()).
1412  */
1413 static void
1414 spa_vdev_remove_thread(void *arg)
1415 {
1416 	spa_t *spa = arg;
1417 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1418 	vdev_copy_arg_t vca;
1419 	uint64_t max_alloc = spa_remove_max_segment(spa);
1420 	uint64_t last_txg = 0;
1421 
1422 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1423 	vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1424 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1425 	uint64_t start_offset = vdev_indirect_mapping_max_offset(vim);
1426 
1427 	ASSERT3P(vd->vdev_ops, !=, &vdev_indirect_ops);
1428 	ASSERT(vdev_is_concrete(vd));
1429 	ASSERT(vd->vdev_removing);
1430 	ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
1431 	ASSERT(vim != NULL);
1432 
1433 	mutex_init(&vca.vca_lock, NULL, MUTEX_DEFAULT, NULL);
1434 	cv_init(&vca.vca_cv, NULL, CV_DEFAULT, NULL);
1435 	vca.vca_outstanding_bytes = 0;
1436 	vca.vca_read_error_bytes = 0;
1437 	vca.vca_write_error_bytes = 0;
1438 
1439 	mutex_enter(&svr->svr_lock);
1440 
1441 	/*
1442 	 * Start from vim_max_offset so we pick up where we left off
1443 	 * if we are restarting the removal after opening the pool.
1444 	 */
1445 	uint64_t msi;
1446 	for (msi = start_offset >> vd->vdev_ms_shift;
1447 	    msi < vd->vdev_ms_count && !svr->svr_thread_exit; msi++) {
1448 		metaslab_t *msp = vd->vdev_ms[msi];
1449 		ASSERT3U(msi, <=, vd->vdev_ms_count);
1450 
1451 		ASSERT0(range_tree_space(svr->svr_allocd_segs));
1452 
1453 		mutex_enter(&msp->ms_sync_lock);
1454 		mutex_enter(&msp->ms_lock);
1455 
1456 		/*
1457 		 * Assert nothing in flight -- ms_*tree is empty.
1458 		 */
1459 		for (int i = 0; i < TXG_SIZE; i++) {
1460 			ASSERT0(range_tree_space(msp->ms_allocating[i]));
1461 		}
1462 
1463 		/*
1464 		 * If the metaslab has ever been allocated from (ms_sm!=NULL),
1465 		 * read the allocated segments from the space map object
1466 		 * into svr_allocd_segs. Since we do this while holding
1467 		 * svr_lock and ms_sync_lock, concurrent frees (which
1468 		 * would have modified the space map) will wait for us
1469 		 * to finish loading the spacemap, and then take the
1470 		 * appropriate action (see free_from_removing_vdev()).
1471 		 */
1472 		if (msp->ms_sm != NULL) {
1473 			VERIFY0(space_map_load(msp->ms_sm,
1474 			    svr->svr_allocd_segs, SM_ALLOC));
1475 
1476 			range_tree_walk(msp->ms_unflushed_allocs,
1477 			    range_tree_add, svr->svr_allocd_segs);
1478 			range_tree_walk(msp->ms_unflushed_frees,
1479 			    range_tree_remove, svr->svr_allocd_segs);
1480 			range_tree_walk(msp->ms_freeing,
1481 			    range_tree_remove, svr->svr_allocd_segs);
1482 
1483 			/*
1484 			 * When we are resuming from a paused removal (i.e.
1485 			 * when importing a pool with a removal in progress),
1486 			 * discard any state that we have already processed.
1487 			 */
1488 			range_tree_clear(svr->svr_allocd_segs, 0, start_offset);
1489 		}
1490 		mutex_exit(&msp->ms_lock);
1491 		mutex_exit(&msp->ms_sync_lock);
1492 
1493 		vca.vca_msp = msp;
1494 		zfs_dbgmsg("copying %llu segments for metaslab %llu",
1495 		    (u_longlong_t)zfs_btree_numnodes(
1496 		    &svr->svr_allocd_segs->rt_root),
1497 		    (u_longlong_t)msp->ms_id);
1498 
1499 		while (!svr->svr_thread_exit &&
1500 		    !range_tree_is_empty(svr->svr_allocd_segs)) {
1501 
1502 			mutex_exit(&svr->svr_lock);
1503 
1504 			/*
1505 			 * We need to periodically drop the config lock so that
1506 			 * writers can get in.  Additionally, we can't wait
1507 			 * for a txg to sync while holding a config lock
1508 			 * (since a waiting writer could cause a 3-way deadlock
1509 			 * with the sync thread, which also gets a config
1510 			 * lock for reader).  So we can't hold the config lock
1511 			 * while calling dmu_tx_assign().
1512 			 */
1513 			spa_config_exit(spa, SCL_CONFIG, FTAG);
1514 
1515 			/*
1516 			 * This delay will pause the removal around the point
1517 			 * specified by zfs_removal_suspend_progress. We do this
1518 			 * solely from the test suite or during debugging.
1519 			 */
1520 			while (zfs_removal_suspend_progress &&
1521 			    !svr->svr_thread_exit)
1522 				delay(hz);
1523 
1524 			mutex_enter(&vca.vca_lock);
1525 			while (vca.vca_outstanding_bytes >
1526 			    zfs_remove_max_copy_bytes) {
1527 				cv_wait(&vca.vca_cv, &vca.vca_lock);
1528 			}
1529 			mutex_exit(&vca.vca_lock);
1530 
1531 			dmu_tx_t *tx =
1532 			    dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1533 
1534 			VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1535 			uint64_t txg = dmu_tx_get_txg(tx);
1536 
1537 			/*
1538 			 * Reacquire the vdev_config lock.  The vdev_t
1539 			 * that we're removing may have changed, e.g. due
1540 			 * to a vdev_attach or vdev_detach.
1541 			 */
1542 			spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1543 			vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1544 
1545 			if (txg != last_txg)
1546 				max_alloc = spa_remove_max_segment(spa);
1547 			last_txg = txg;
1548 
1549 			spa_vdev_copy_impl(vd, svr, &vca, &max_alloc, tx);
1550 
1551 			dmu_tx_commit(tx);
1552 			mutex_enter(&svr->svr_lock);
1553 		}
1554 
1555 		mutex_enter(&vca.vca_lock);
1556 		if (zfs_removal_ignore_errors == 0 &&
1557 		    (vca.vca_read_error_bytes > 0 ||
1558 		    vca.vca_write_error_bytes > 0)) {
1559 			svr->svr_thread_exit = B_TRUE;
1560 		}
1561 		mutex_exit(&vca.vca_lock);
1562 	}
1563 
1564 	mutex_exit(&svr->svr_lock);
1565 
1566 	spa_config_exit(spa, SCL_CONFIG, FTAG);
1567 
1568 	/*
1569 	 * Wait for all copies to finish before cleaning up the vca.
1570 	 */
1571 	txg_wait_synced(spa->spa_dsl_pool, 0);
1572 	ASSERT0(vca.vca_outstanding_bytes);
1573 
1574 	mutex_destroy(&vca.vca_lock);
1575 	cv_destroy(&vca.vca_cv);
1576 
1577 	if (svr->svr_thread_exit) {
1578 		mutex_enter(&svr->svr_lock);
1579 		range_tree_vacate(svr->svr_allocd_segs, NULL, NULL);
1580 		svr->svr_thread = NULL;
1581 		cv_broadcast(&svr->svr_cv);
1582 		mutex_exit(&svr->svr_lock);
1583 
1584 		/*
1585 		 * During the removal process an unrecoverable read or write
1586 		 * error was encountered.  The removal process must be
1587 		 * cancelled or this damage may become permanent.
1588 		 */
1589 		if (zfs_removal_ignore_errors == 0 &&
1590 		    (vca.vca_read_error_bytes > 0 ||
1591 		    vca.vca_write_error_bytes > 0)) {
1592 			zfs_dbgmsg("canceling removal due to IO errors: "
1593 			    "[read_error_bytes=%llu] [write_error_bytes=%llu]",
1594 			    (u_longlong_t)vca.vca_read_error_bytes,
1595 			    (u_longlong_t)vca.vca_write_error_bytes);
1596 			spa_vdev_remove_cancel_impl(spa);
1597 		}
1598 	} else {
1599 		ASSERT0(range_tree_space(svr->svr_allocd_segs));
1600 		vdev_remove_complete(spa);
1601 	}
1602 
1603 	thread_exit();
1604 }
1605 
1606 void
1607 spa_vdev_remove_suspend(spa_t *spa)
1608 {
1609 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1610 
1611 	if (svr == NULL)
1612 		return;
1613 
1614 	mutex_enter(&svr->svr_lock);
1615 	svr->svr_thread_exit = B_TRUE;
1616 	while (svr->svr_thread != NULL)
1617 		cv_wait(&svr->svr_cv, &svr->svr_lock);
1618 	svr->svr_thread_exit = B_FALSE;
1619 	mutex_exit(&svr->svr_lock);
1620 }
1621 
1622 /* ARGSUSED */
1623 static int
1624 spa_vdev_remove_cancel_check(void *arg, dmu_tx_t *tx)
1625 {
1626 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1627 
1628 	if (spa->spa_vdev_removal == NULL)
1629 		return (ENOTACTIVE);
1630 	return (0);
1631 }
1632 
1633 /*
1634  * Cancel a removal by freeing all entries from the partial mapping
1635  * and marking the vdev as no longer being removing.
1636  */
1637 /* ARGSUSED */
1638 static void
1639 spa_vdev_remove_cancel_sync(void *arg, dmu_tx_t *tx)
1640 {
1641 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1642 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1643 	vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1644 	vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
1645 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1646 	objset_t *mos = spa->spa_meta_objset;
1647 
1648 	ASSERT3P(svr->svr_thread, ==, NULL);
1649 
1650 	spa_feature_decr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
1651 
1652 	boolean_t are_precise;
1653 	VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise));
1654 	if (are_precise) {
1655 		spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
1656 		VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
1657 		    VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, tx));
1658 	}
1659 
1660 	uint64_t obsolete_sm_object;
1661 	VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
1662 	if (obsolete_sm_object != 0) {
1663 		ASSERT(vd->vdev_obsolete_sm != NULL);
1664 		ASSERT3U(obsolete_sm_object, ==,
1665 		    space_map_object(vd->vdev_obsolete_sm));
1666 
1667 		space_map_free(vd->vdev_obsolete_sm, tx);
1668 		VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
1669 		    VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, tx));
1670 		space_map_close(vd->vdev_obsolete_sm);
1671 		vd->vdev_obsolete_sm = NULL;
1672 		spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
1673 	}
1674 	for (int i = 0; i < TXG_SIZE; i++) {
1675 		ASSERT(list_is_empty(&svr->svr_new_segments[i]));
1676 		ASSERT3U(svr->svr_max_offset_to_sync[i], <=,
1677 		    vdev_indirect_mapping_max_offset(vim));
1678 	}
1679 
1680 	for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) {
1681 		metaslab_t *msp = vd->vdev_ms[msi];
1682 
1683 		if (msp->ms_start >= vdev_indirect_mapping_max_offset(vim))
1684 			break;
1685 
1686 		ASSERT0(range_tree_space(svr->svr_allocd_segs));
1687 
1688 		mutex_enter(&msp->ms_lock);
1689 
1690 		/*
1691 		 * Assert nothing in flight -- ms_*tree is empty.
1692 		 */
1693 		for (int i = 0; i < TXG_SIZE; i++)
1694 			ASSERT0(range_tree_space(msp->ms_allocating[i]));
1695 		for (int i = 0; i < TXG_DEFER_SIZE; i++)
1696 			ASSERT0(range_tree_space(msp->ms_defer[i]));
1697 		ASSERT0(range_tree_space(msp->ms_freed));
1698 
1699 		if (msp->ms_sm != NULL) {
1700 			mutex_enter(&svr->svr_lock);
1701 			VERIFY0(space_map_load(msp->ms_sm,
1702 			    svr->svr_allocd_segs, SM_ALLOC));
1703 
1704 			range_tree_walk(msp->ms_unflushed_allocs,
1705 			    range_tree_add, svr->svr_allocd_segs);
1706 			range_tree_walk(msp->ms_unflushed_frees,
1707 			    range_tree_remove, svr->svr_allocd_segs);
1708 			range_tree_walk(msp->ms_freeing,
1709 			    range_tree_remove, svr->svr_allocd_segs);
1710 
1711 			/*
1712 			 * Clear everything past what has been synced,
1713 			 * because we have not allocated mappings for it yet.
1714 			 */
1715 			uint64_t syncd = vdev_indirect_mapping_max_offset(vim);
1716 			uint64_t sm_end = msp->ms_sm->sm_start +
1717 			    msp->ms_sm->sm_size;
1718 			if (sm_end > syncd)
1719 				range_tree_clear(svr->svr_allocd_segs,
1720 				    syncd, sm_end - syncd);
1721 
1722 			mutex_exit(&svr->svr_lock);
1723 		}
1724 		mutex_exit(&msp->ms_lock);
1725 
1726 		mutex_enter(&svr->svr_lock);
1727 		range_tree_vacate(svr->svr_allocd_segs,
1728 		    free_mapped_segment_cb, vd);
1729 		mutex_exit(&svr->svr_lock);
1730 	}
1731 
1732 	/*
1733 	 * Note: this must happen after we invoke free_mapped_segment_cb,
1734 	 * because it adds to the obsolete_segments.
1735 	 */
1736 	range_tree_vacate(vd->vdev_obsolete_segments, NULL, NULL);
1737 
1738 	ASSERT3U(vic->vic_mapping_object, ==,
1739 	    vdev_indirect_mapping_object(vd->vdev_indirect_mapping));
1740 	vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
1741 	vd->vdev_indirect_mapping = NULL;
1742 	vdev_indirect_mapping_free(mos, vic->vic_mapping_object, tx);
1743 	vic->vic_mapping_object = 0;
1744 
1745 	ASSERT3U(vic->vic_births_object, ==,
1746 	    vdev_indirect_births_object(vd->vdev_indirect_births));
1747 	vdev_indirect_births_close(vd->vdev_indirect_births);
1748 	vd->vdev_indirect_births = NULL;
1749 	vdev_indirect_births_free(mos, vic->vic_births_object, tx);
1750 	vic->vic_births_object = 0;
1751 
1752 	/*
1753 	 * We may have processed some frees from the removing vdev in this
1754 	 * txg, thus increasing svr_bytes_done; discard that here to
1755 	 * satisfy the assertions in spa_vdev_removal_destroy().
1756 	 * Note that future txg's can not have any bytes_done, because
1757 	 * future TXG's are only modified from open context, and we have
1758 	 * already shut down the copying thread.
1759 	 */
1760 	svr->svr_bytes_done[dmu_tx_get_txg(tx) & TXG_MASK] = 0;
1761 	spa_finish_removal(spa, DSS_CANCELED, tx);
1762 
1763 	vd->vdev_removing = B_FALSE;
1764 	vdev_config_dirty(vd);
1765 
1766 	zfs_dbgmsg("canceled device removal for vdev %llu in %llu",
1767 	    (u_longlong_t)vd->vdev_id, (u_longlong_t)dmu_tx_get_txg(tx));
1768 	spa_history_log_internal(spa, "vdev remove canceled", tx,
1769 	    "%s vdev %llu %s", spa_name(spa),
1770 	    (u_longlong_t)vd->vdev_id,
1771 	    (vd->vdev_path != NULL) ? vd->vdev_path : "-");
1772 }
1773 
1774 static int
1775 spa_vdev_remove_cancel_impl(spa_t *spa)
1776 {
1777 	uint64_t vdid = spa->spa_vdev_removal->svr_vdev_id;
1778 
1779 	int error = dsl_sync_task(spa->spa_name, spa_vdev_remove_cancel_check,
1780 	    spa_vdev_remove_cancel_sync, NULL, 0,
1781 	    ZFS_SPACE_CHECK_EXTRA_RESERVED);
1782 
1783 	if (error == 0) {
1784 		spa_config_enter(spa, SCL_ALLOC | SCL_VDEV, FTAG, RW_WRITER);
1785 		vdev_t *vd = vdev_lookup_top(spa, vdid);
1786 		metaslab_group_activate(vd->vdev_mg);
1787 		ASSERT(!vd->vdev_islog);
1788 		metaslab_group_activate(vd->vdev_log_mg);
1789 		spa_config_exit(spa, SCL_ALLOC | SCL_VDEV, FTAG);
1790 	}
1791 
1792 	return (error);
1793 }
1794 
1795 int
1796 spa_vdev_remove_cancel(spa_t *spa)
1797 {
1798 	spa_vdev_remove_suspend(spa);
1799 
1800 	if (spa->spa_vdev_removal == NULL)
1801 		return (ENOTACTIVE);
1802 
1803 	return (spa_vdev_remove_cancel_impl(spa));
1804 }
1805 
1806 void
1807 svr_sync(spa_t *spa, dmu_tx_t *tx)
1808 {
1809 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1810 	int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
1811 
1812 	if (svr == NULL)
1813 		return;
1814 
1815 	/*
1816 	 * This check is necessary so that we do not dirty the
1817 	 * DIRECTORY_OBJECT via spa_sync_removing_state() when there
1818 	 * is nothing to do.  Dirtying it every time would prevent us
1819 	 * from syncing-to-convergence.
1820 	 */
1821 	if (svr->svr_bytes_done[txgoff] == 0)
1822 		return;
1823 
1824 	/*
1825 	 * Update progress accounting.
1826 	 */
1827 	spa->spa_removing_phys.sr_copied += svr->svr_bytes_done[txgoff];
1828 	svr->svr_bytes_done[txgoff] = 0;
1829 
1830 	spa_sync_removing_state(spa, tx);
1831 }
1832 
1833 static void
1834 vdev_remove_make_hole_and_free(vdev_t *vd)
1835 {
1836 	uint64_t id = vd->vdev_id;
1837 	spa_t *spa = vd->vdev_spa;
1838 	vdev_t *rvd = spa->spa_root_vdev;
1839 
1840 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1841 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1842 
1843 	vdev_free(vd);
1844 
1845 	vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
1846 	vdev_add_child(rvd, vd);
1847 	vdev_config_dirty(rvd);
1848 
1849 	/*
1850 	 * Reassess the health of our root vdev.
1851 	 */
1852 	vdev_reopen(rvd);
1853 }
1854 
1855 /*
1856  * Remove a log device.  The config lock is held for the specified TXG.
1857  */
1858 static int
1859 spa_vdev_remove_log(vdev_t *vd, uint64_t *txg)
1860 {
1861 	metaslab_group_t *mg = vd->vdev_mg;
1862 	spa_t *spa = vd->vdev_spa;
1863 	int error = 0;
1864 
1865 	ASSERT(vd->vdev_islog);
1866 	ASSERT(vd == vd->vdev_top);
1867 	ASSERT3P(vd->vdev_log_mg, ==, NULL);
1868 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1869 
1870 	/*
1871 	 * Stop allocating from this vdev.
1872 	 */
1873 	metaslab_group_passivate(mg);
1874 
1875 	/*
1876 	 * Wait for the youngest allocations and frees to sync,
1877 	 * and then wait for the deferral of those frees to finish.
1878 	 */
1879 	spa_vdev_config_exit(spa, NULL,
1880 	    *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
1881 
1882 	/*
1883 	 * Cancel any initialize or TRIM which was in progress.
1884 	 */
1885 	vdev_initialize_stop_all(vd, VDEV_INITIALIZE_CANCELED);
1886 	vdev_trim_stop_all(vd, VDEV_TRIM_CANCELED);
1887 	vdev_autotrim_stop_wait(vd);
1888 
1889 	/*
1890 	 * Evacuate the device.  We don't hold the config lock as
1891 	 * writer since we need to do I/O but we do keep the
1892 	 * spa_namespace_lock held.  Once this completes the device
1893 	 * should no longer have any blocks allocated on it.
1894 	 */
1895 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1896 	if (vd->vdev_stat.vs_alloc != 0)
1897 		error = spa_reset_logs(spa);
1898 
1899 	*txg = spa_vdev_config_enter(spa);
1900 
1901 	if (error != 0) {
1902 		metaslab_group_activate(mg);
1903 		ASSERT3P(vd->vdev_log_mg, ==, NULL);
1904 		return (error);
1905 	}
1906 	ASSERT0(vd->vdev_stat.vs_alloc);
1907 
1908 	/*
1909 	 * The evacuation succeeded.  Remove any remaining MOS metadata
1910 	 * associated with this vdev, and wait for these changes to sync.
1911 	 */
1912 	vd->vdev_removing = B_TRUE;
1913 
1914 	vdev_dirty_leaves(vd, VDD_DTL, *txg);
1915 	vdev_config_dirty(vd);
1916 
1917 	/*
1918 	 * When the log space map feature is enabled we look at
1919 	 * the vdev's top_zap to find the on-disk flush data of
1920 	 * the metaslab we just flushed. Thus, while removing a
1921 	 * log vdev we make sure to call vdev_metaslab_fini()
1922 	 * first, which removes all metaslabs of this vdev from
1923 	 * spa_metaslabs_by_flushed before vdev_remove_empty()
1924 	 * destroys the top_zap of this log vdev.
1925 	 *
1926 	 * This avoids the scenario where we flush a metaslab
1927 	 * from the log vdev being removed that doesn't have a
1928 	 * top_zap and end up failing to lookup its on-disk flush
1929 	 * data.
1930 	 *
1931 	 * We don't call metaslab_group_destroy() right away
1932 	 * though (it will be called in vdev_free() later) as
1933 	 * during metaslab_sync() of metaslabs from other vdevs
1934 	 * we may touch the metaslab group of this vdev through
1935 	 * metaslab_class_histogram_verify()
1936 	 */
1937 	vdev_metaslab_fini(vd);
1938 	spa_log_sm_set_blocklimit(spa);
1939 
1940 	spa_vdev_config_exit(spa, NULL, *txg, 0, FTAG);
1941 	*txg = spa_vdev_config_enter(spa);
1942 
1943 	sysevent_t *ev = spa_event_create(spa, vd, NULL,
1944 	    ESC_ZFS_VDEV_REMOVE_DEV);
1945 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1946 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1947 
1948 	/* The top ZAP should have been destroyed by vdev_remove_empty. */
1949 	ASSERT0(vd->vdev_top_zap);
1950 	/* The leaf ZAP should have been destroyed by vdev_dtl_sync. */
1951 	ASSERT0(vd->vdev_leaf_zap);
1952 
1953 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
1954 
1955 	if (list_link_active(&vd->vdev_state_dirty_node))
1956 		vdev_state_clean(vd);
1957 	if (list_link_active(&vd->vdev_config_dirty_node))
1958 		vdev_config_clean(vd);
1959 
1960 	ASSERT0(vd->vdev_stat.vs_alloc);
1961 
1962 	/*
1963 	 * Clean up the vdev namespace.
1964 	 */
1965 	vdev_remove_make_hole_and_free(vd);
1966 
1967 	if (ev != NULL)
1968 		spa_event_post(ev);
1969 
1970 	return (0);
1971 }
1972 
1973 static int
1974 spa_vdev_remove_top_check(vdev_t *vd)
1975 {
1976 	spa_t *spa = vd->vdev_spa;
1977 
1978 	if (vd != vd->vdev_top)
1979 		return (SET_ERROR(ENOTSUP));
1980 
1981 	if (!vdev_is_concrete(vd))
1982 		return (SET_ERROR(ENOTSUP));
1983 
1984 	if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REMOVAL))
1985 		return (SET_ERROR(ENOTSUP));
1986 
1987 
1988 	metaslab_class_t *mc = vd->vdev_mg->mg_class;
1989 	metaslab_class_t *normal = spa_normal_class(spa);
1990 	if (mc != normal) {
1991 		/*
1992 		 * Space allocated from the special (or dedup) class is
1993 		 * included in the DMU's space usage, but it's not included
1994 		 * in spa_dspace (or dsl_pool_adjustedsize()).  Therefore
1995 		 * there is always at least as much free space in the normal
1996 		 * class, as is allocated from the special (and dedup) class.
1997 		 * As a backup check, we will return ENOSPC if this is
1998 		 * violated. See also spa_update_dspace().
1999 		 */
2000 		uint64_t available = metaslab_class_get_space(normal) -
2001 		    metaslab_class_get_alloc(normal);
2002 		ASSERT3U(available, >=, vd->vdev_stat.vs_alloc);
2003 		if (available < vd->vdev_stat.vs_alloc)
2004 			return (SET_ERROR(ENOSPC));
2005 	} else {
2006 		/* available space in the pool's normal class */
2007 		uint64_t available = dsl_dir_space_available(
2008 		    spa->spa_dsl_pool->dp_root_dir, NULL, 0, B_TRUE);
2009 		if (available <
2010 		    vd->vdev_stat.vs_dspace + spa_get_slop_space(spa)) {
2011 			/*
2012 			 * This is a normal device. There has to be enough free
2013 			 * space to remove the device and leave double the
2014 			 * "slop" space (i.e. we must leave at least 3% of the
2015 			 * pool free, in addition to the normal slop space).
2016 			 */
2017 			return (SET_ERROR(ENOSPC));
2018 		}
2019 	}
2020 
2021 	/*
2022 	 * There can not be a removal in progress.
2023 	 */
2024 	if (spa->spa_removing_phys.sr_state == DSS_SCANNING)
2025 		return (SET_ERROR(EBUSY));
2026 
2027 	/*
2028 	 * The device must have all its data.
2029 	 */
2030 	if (!vdev_dtl_empty(vd, DTL_MISSING) ||
2031 	    !vdev_dtl_empty(vd, DTL_OUTAGE))
2032 		return (SET_ERROR(EBUSY));
2033 
2034 	/*
2035 	 * The device must be healthy.
2036 	 */
2037 	if (!vdev_readable(vd))
2038 		return (SET_ERROR(EIO));
2039 
2040 	/*
2041 	 * All vdevs in normal class must have the same ashift.
2042 	 */
2043 	if (spa->spa_max_ashift != spa->spa_min_ashift) {
2044 		return (SET_ERROR(EINVAL));
2045 	}
2046 
2047 	/*
2048 	 * A removed special/dedup vdev must have same ashift as normal class.
2049 	 */
2050 	ASSERT(!vd->vdev_islog);
2051 	if (vd->vdev_alloc_bias != VDEV_BIAS_NONE &&
2052 	    vd->vdev_ashift != spa->spa_max_ashift) {
2053 		return (SET_ERROR(EINVAL));
2054 	}
2055 
2056 	/*
2057 	 * All vdevs in normal class must have the same ashift
2058 	 * and not be raidz or draid.
2059 	 */
2060 	vdev_t *rvd = spa->spa_root_vdev;
2061 	int num_indirect = 0;
2062 	for (uint64_t id = 0; id < rvd->vdev_children; id++) {
2063 		vdev_t *cvd = rvd->vdev_child[id];
2064 
2065 		/*
2066 		 * A removed special/dedup vdev must have the same ashift
2067 		 * across all vdevs in its class.
2068 		 */
2069 		if (vd->vdev_alloc_bias != VDEV_BIAS_NONE &&
2070 		    cvd->vdev_alloc_bias == vd->vdev_alloc_bias &&
2071 		    cvd->vdev_ashift != vd->vdev_ashift) {
2072 			return (SET_ERROR(EINVAL));
2073 		}
2074 		if (cvd->vdev_ashift != 0 &&
2075 		    cvd->vdev_alloc_bias == VDEV_BIAS_NONE)
2076 			ASSERT3U(cvd->vdev_ashift, ==, spa->spa_max_ashift);
2077 		if (cvd->vdev_ops == &vdev_indirect_ops)
2078 			num_indirect++;
2079 		if (!vdev_is_concrete(cvd))
2080 			continue;
2081 		if (vdev_get_nparity(cvd) != 0)
2082 			return (SET_ERROR(EINVAL));
2083 		/*
2084 		 * Need the mirror to be mirror of leaf vdevs only
2085 		 */
2086 		if (cvd->vdev_ops == &vdev_mirror_ops) {
2087 			for (uint64_t cid = 0;
2088 			    cid < cvd->vdev_children; cid++) {
2089 				if (!cvd->vdev_child[cid]->vdev_ops->
2090 				    vdev_op_leaf)
2091 					return (SET_ERROR(EINVAL));
2092 			}
2093 		}
2094 	}
2095 
2096 	return (0);
2097 }
2098 
2099 /*
2100  * Initiate removal of a top-level vdev, reducing the total space in the pool.
2101  * The config lock is held for the specified TXG.  Once initiated,
2102  * evacuation of all allocated space (copying it to other vdevs) happens
2103  * in the background (see spa_vdev_remove_thread()), and can be canceled
2104  * (see spa_vdev_remove_cancel()).  If successful, the vdev will
2105  * be transformed to an indirect vdev (see spa_vdev_remove_complete()).
2106  */
2107 static int
2108 spa_vdev_remove_top(vdev_t *vd, uint64_t *txg)
2109 {
2110 	spa_t *spa = vd->vdev_spa;
2111 	int error;
2112 
2113 	/*
2114 	 * Check for errors up-front, so that we don't waste time
2115 	 * passivating the metaslab group and clearing the ZIL if there
2116 	 * are errors.
2117 	 */
2118 	error = spa_vdev_remove_top_check(vd);
2119 	if (error != 0)
2120 		return (error);
2121 
2122 	/*
2123 	 * Stop allocating from this vdev.  Note that we must check
2124 	 * that this is not the only device in the pool before
2125 	 * passivating, otherwise we will not be able to make
2126 	 * progress because we can't allocate from any vdevs.
2127 	 * The above check for sufficient free space serves this
2128 	 * purpose.
2129 	 */
2130 	metaslab_group_t *mg = vd->vdev_mg;
2131 	metaslab_group_passivate(mg);
2132 	ASSERT(!vd->vdev_islog);
2133 	metaslab_group_passivate(vd->vdev_log_mg);
2134 
2135 	/*
2136 	 * Wait for the youngest allocations and frees to sync,
2137 	 * and then wait for the deferral of those frees to finish.
2138 	 */
2139 	spa_vdev_config_exit(spa, NULL,
2140 	    *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
2141 
2142 	/*
2143 	 * We must ensure that no "stubby" log blocks are allocated
2144 	 * on the device to be removed.  These blocks could be
2145 	 * written at any time, including while we are in the middle
2146 	 * of copying them.
2147 	 */
2148 	error = spa_reset_logs(spa);
2149 
2150 	/*
2151 	 * We stop any initializing and TRIM that is currently in progress
2152 	 * but leave the state as "active". This will allow the process to
2153 	 * resume if the removal is canceled sometime later.
2154 	 */
2155 	vdev_initialize_stop_all(vd, VDEV_INITIALIZE_ACTIVE);
2156 	vdev_trim_stop_all(vd, VDEV_TRIM_ACTIVE);
2157 	vdev_autotrim_stop_wait(vd);
2158 
2159 	*txg = spa_vdev_config_enter(spa);
2160 
2161 	/*
2162 	 * Things might have changed while the config lock was dropped
2163 	 * (e.g. space usage).  Check for errors again.
2164 	 */
2165 	if (error == 0)
2166 		error = spa_vdev_remove_top_check(vd);
2167 
2168 	if (error != 0) {
2169 		metaslab_group_activate(mg);
2170 		ASSERT(!vd->vdev_islog);
2171 		metaslab_group_activate(vd->vdev_log_mg);
2172 		spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
2173 		spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
2174 		spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
2175 		return (error);
2176 	}
2177 
2178 	vd->vdev_removing = B_TRUE;
2179 
2180 	vdev_dirty_leaves(vd, VDD_DTL, *txg);
2181 	vdev_config_dirty(vd);
2182 	dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, *txg);
2183 	dsl_sync_task_nowait(spa->spa_dsl_pool,
2184 	    vdev_remove_initiate_sync, (void *)(uintptr_t)vd->vdev_id, tx);
2185 	dmu_tx_commit(tx);
2186 
2187 	return (0);
2188 }
2189 
2190 /*
2191  * Remove a device from the pool.
2192  *
2193  * Removing a device from the vdev namespace requires several steps
2194  * and can take a significant amount of time.  As a result we use
2195  * the spa_vdev_config_[enter/exit] functions which allow us to
2196  * grab and release the spa_config_lock while still holding the namespace
2197  * lock.  During each step the configuration is synced out.
2198  */
2199 int
2200 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
2201 {
2202 	vdev_t *vd;
2203 	nvlist_t **spares, **l2cache, *nv;
2204 	uint64_t txg = 0;
2205 	uint_t nspares, nl2cache;
2206 	int error = 0, error_log;
2207 	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
2208 	sysevent_t *ev = NULL;
2209 	char *vd_type = NULL, *vd_path = NULL;
2210 
2211 	ASSERT(spa_writeable(spa));
2212 
2213 	if (!locked)
2214 		txg = spa_vdev_enter(spa);
2215 
2216 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2217 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
2218 		error = (spa_has_checkpoint(spa)) ?
2219 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
2220 
2221 		if (!locked)
2222 			return (spa_vdev_exit(spa, NULL, txg, error));
2223 
2224 		return (error);
2225 	}
2226 
2227 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
2228 
2229 	if (spa->spa_spares.sav_vdevs != NULL &&
2230 	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2231 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
2232 	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
2233 		/*
2234 		 * Only remove the hot spare if it's not currently in use
2235 		 * in this pool.
2236 		 */
2237 		if (vd == NULL || unspare) {
2238 			char *type;
2239 			boolean_t draid_spare = B_FALSE;
2240 
2241 			if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type)
2242 			    == 0 && strcmp(type, VDEV_TYPE_DRAID_SPARE) == 0)
2243 				draid_spare = B_TRUE;
2244 
2245 			if (vd == NULL && draid_spare) {
2246 				error = SET_ERROR(ENOTSUP);
2247 			} else {
2248 				if (vd == NULL)
2249 					vd = spa_lookup_by_guid(spa,
2250 					    guid, B_TRUE);
2251 				ev = spa_event_create(spa, vd, NULL,
2252 				    ESC_ZFS_VDEV_REMOVE_AUX);
2253 
2254 				vd_type = VDEV_TYPE_SPARE;
2255 				vd_path = spa_strdup(fnvlist_lookup_string(
2256 				    nv, ZPOOL_CONFIG_PATH));
2257 				spa_vdev_remove_aux(spa->spa_spares.sav_config,
2258 				    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
2259 				spa_load_spares(spa);
2260 				spa->spa_spares.sav_sync = B_TRUE;
2261 			}
2262 		} else {
2263 			error = SET_ERROR(EBUSY);
2264 		}
2265 	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
2266 	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
2267 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
2268 	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
2269 		vd_type = VDEV_TYPE_L2CACHE;
2270 		vd_path = spa_strdup(fnvlist_lookup_string(
2271 		    nv, ZPOOL_CONFIG_PATH));
2272 		/*
2273 		 * Cache devices can always be removed.
2274 		 */
2275 		vd = spa_lookup_by_guid(spa, guid, B_TRUE);
2276 
2277 		/*
2278 		 * Stop trimming the cache device. We need to release the
2279 		 * config lock to allow the syncing of TRIM transactions
2280 		 * without releasing the spa_namespace_lock. The same
2281 		 * strategy is employed in spa_vdev_remove_top().
2282 		 */
2283 		spa_vdev_config_exit(spa, NULL,
2284 		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
2285 		mutex_enter(&vd->vdev_trim_lock);
2286 		vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL);
2287 		mutex_exit(&vd->vdev_trim_lock);
2288 		txg = spa_vdev_config_enter(spa);
2289 
2290 		ev = spa_event_create(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE_AUX);
2291 		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
2292 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
2293 		spa_load_l2cache(spa);
2294 		spa->spa_l2cache.sav_sync = B_TRUE;
2295 	} else if (vd != NULL && vd->vdev_islog) {
2296 		ASSERT(!locked);
2297 		vd_type = VDEV_TYPE_LOG;
2298 		vd_path = spa_strdup((vd->vdev_path != NULL) ?
2299 		    vd->vdev_path : "-");
2300 		error = spa_vdev_remove_log(vd, &txg);
2301 	} else if (vd != NULL) {
2302 		ASSERT(!locked);
2303 		error = spa_vdev_remove_top(vd, &txg);
2304 	} else {
2305 		/*
2306 		 * There is no vdev of any kind with the specified guid.
2307 		 */
2308 		error = SET_ERROR(ENOENT);
2309 	}
2310 
2311 	error_log = error;
2312 
2313 	if (!locked)
2314 		error = spa_vdev_exit(spa, NULL, txg, error);
2315 
2316 	/*
2317 	 * Logging must be done outside the spa config lock. Otherwise,
2318 	 * this code path could end up holding the spa config lock while
2319 	 * waiting for a txg_sync so it can write to the internal log.
2320 	 * Doing that would prevent the txg sync from actually happening,
2321 	 * causing a deadlock.
2322 	 */
2323 	if (error_log == 0 && vd_type != NULL && vd_path != NULL) {
2324 		spa_history_log_internal(spa, "vdev remove", NULL,
2325 		    "%s vdev (%s) %s", spa_name(spa), vd_type, vd_path);
2326 	}
2327 	if (vd_path != NULL)
2328 		spa_strfree(vd_path);
2329 
2330 	if (ev != NULL)
2331 		spa_event_post(ev);
2332 
2333 	return (error);
2334 }
2335 
2336 int
2337 spa_removal_get_stats(spa_t *spa, pool_removal_stat_t *prs)
2338 {
2339 	prs->prs_state = spa->spa_removing_phys.sr_state;
2340 
2341 	if (prs->prs_state == DSS_NONE)
2342 		return (SET_ERROR(ENOENT));
2343 
2344 	prs->prs_removing_vdev = spa->spa_removing_phys.sr_removing_vdev;
2345 	prs->prs_start_time = spa->spa_removing_phys.sr_start_time;
2346 	prs->prs_end_time = spa->spa_removing_phys.sr_end_time;
2347 	prs->prs_to_copy = spa->spa_removing_phys.sr_to_copy;
2348 	prs->prs_copied = spa->spa_removing_phys.sr_copied;
2349 
2350 	prs->prs_mapping_memory = 0;
2351 	uint64_t indirect_vdev_id =
2352 	    spa->spa_removing_phys.sr_prev_indirect_vdev;
2353 	while (indirect_vdev_id != -1) {
2354 		vdev_t *vd = spa->spa_root_vdev->vdev_child[indirect_vdev_id];
2355 		vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
2356 		vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
2357 
2358 		ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2359 		prs->prs_mapping_memory += vdev_indirect_mapping_size(vim);
2360 		indirect_vdev_id = vic->vic_prev_indirect_vdev;
2361 	}
2362 
2363 	return (0);
2364 }
2365 
2366 /* BEGIN CSTYLED */
2367 ZFS_MODULE_PARAM(zfs_vdev, zfs_, removal_ignore_errors, INT, ZMOD_RW,
2368 	"Ignore hard IO errors when removing device");
2369 
2370 ZFS_MODULE_PARAM(zfs_vdev, zfs_, remove_max_segment, INT, ZMOD_RW,
2371 	"Largest contiguous segment to allocate when removing device");
2372 
2373 ZFS_MODULE_PARAM(zfs_vdev, vdev_, removal_max_span, INT, ZMOD_RW,
2374 	"Largest span of free chunks a remap segment can span");
2375 
2376 ZFS_MODULE_PARAM(zfs_vdev, zfs_, removal_suspend_progress, INT, ZMOD_RW,
2377 	"Pause device removal after this many bytes are copied "
2378 	"(debug use only - causes removal to hang)");
2379 /* END CSTYLED */
2380 
2381 EXPORT_SYMBOL(free_from_removing_vdev);
2382 EXPORT_SYMBOL(spa_removal_get_stats);
2383 EXPORT_SYMBOL(spa_remove_init);
2384 EXPORT_SYMBOL(spa_restart_removal);
2385 EXPORT_SYMBOL(spa_vdev_removal_destroy);
2386 EXPORT_SYMBOL(spa_vdev_remove);
2387 EXPORT_SYMBOL(spa_vdev_remove_cancel);
2388 EXPORT_SYMBOL(spa_vdev_remove_suspend);
2389 EXPORT_SYMBOL(svr_sync);
2390