xref: /freebsd/sys/contrib/openzfs/module/zfs/zil.c (revision 535af610)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24  * Copyright (c) 2014 Integros [integros.com]
25  * Copyright (c) 2018 Datto Inc.
26  */
27 
28 /* Portions Copyright 2010 Robert Milkowski */
29 
30 #include <sys/zfs_context.h>
31 #include <sys/spa.h>
32 #include <sys/spa_impl.h>
33 #include <sys/dmu.h>
34 #include <sys/zap.h>
35 #include <sys/arc.h>
36 #include <sys/stat.h>
37 #include <sys/zil.h>
38 #include <sys/zil_impl.h>
39 #include <sys/dsl_dataset.h>
40 #include <sys/vdev_impl.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/dsl_pool.h>
43 #include <sys/metaslab.h>
44 #include <sys/trace_zfs.h>
45 #include <sys/abd.h>
46 #include <sys/brt.h>
47 #include <sys/wmsum.h>
48 
49 /*
50  * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system
51  * calls that change the file system. Each itx has enough information to
52  * be able to replay them after a system crash, power loss, or
53  * equivalent failure mode. These are stored in memory until either:
54  *
55  *   1. they are committed to the pool by the DMU transaction group
56  *      (txg), at which point they can be discarded; or
57  *   2. they are committed to the on-disk ZIL for the dataset being
58  *      modified (e.g. due to an fsync, O_DSYNC, or other synchronous
59  *      requirement).
60  *
61  * In the event of a crash or power loss, the itxs contained by each
62  * dataset's on-disk ZIL will be replayed when that dataset is first
63  * instantiated (e.g. if the dataset is a normal filesystem, when it is
64  * first mounted).
65  *
66  * As hinted at above, there is one ZIL per dataset (both the in-memory
67  * representation, and the on-disk representation). The on-disk format
68  * consists of 3 parts:
69  *
70  * 	- a single, per-dataset, ZIL header; which points to a chain of
71  * 	- zero or more ZIL blocks; each of which contains
72  * 	- zero or more ZIL records
73  *
74  * A ZIL record holds the information necessary to replay a single
75  * system call transaction. A ZIL block can hold many ZIL records, and
76  * the blocks are chained together, similarly to a singly linked list.
77  *
78  * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL
79  * block in the chain, and the ZIL header points to the first block in
80  * the chain.
81  *
82  * Note, there is not a fixed place in the pool to hold these ZIL
83  * blocks; they are dynamically allocated and freed as needed from the
84  * blocks available on the pool, though they can be preferentially
85  * allocated from a dedicated "log" vdev.
86  */
87 
88 /*
89  * This controls the amount of time that a ZIL block (lwb) will remain
90  * "open" when it isn't "full", and it has a thread waiting for it to be
91  * committed to stable storage. Please refer to the zil_commit_waiter()
92  * function (and the comments within it) for more details.
93  */
94 static uint_t zfs_commit_timeout_pct = 5;
95 
96 /*
97  * Minimal time we care to delay commit waiting for more ZIL records.
98  * At least FreeBSD kernel can't sleep for less than 2us at its best.
99  * So requests to sleep for less then 5us is a waste of CPU time with
100  * a risk of significant log latency increase due to oversleep.
101  */
102 static uint64_t zil_min_commit_timeout = 5000;
103 
104 /*
105  * See zil.h for more information about these fields.
106  */
107 static zil_kstat_values_t zil_stats = {
108 	{ "zil_commit_count",			KSTAT_DATA_UINT64 },
109 	{ "zil_commit_writer_count",		KSTAT_DATA_UINT64 },
110 	{ "zil_itx_count",			KSTAT_DATA_UINT64 },
111 	{ "zil_itx_indirect_count",		KSTAT_DATA_UINT64 },
112 	{ "zil_itx_indirect_bytes",		KSTAT_DATA_UINT64 },
113 	{ "zil_itx_copied_count",		KSTAT_DATA_UINT64 },
114 	{ "zil_itx_copied_bytes",		KSTAT_DATA_UINT64 },
115 	{ "zil_itx_needcopy_count",		KSTAT_DATA_UINT64 },
116 	{ "zil_itx_needcopy_bytes",		KSTAT_DATA_UINT64 },
117 	{ "zil_itx_metaslab_normal_count",	KSTAT_DATA_UINT64 },
118 	{ "zil_itx_metaslab_normal_bytes",	KSTAT_DATA_UINT64 },
119 	{ "zil_itx_metaslab_normal_write",	KSTAT_DATA_UINT64 },
120 	{ "zil_itx_metaslab_normal_alloc",	KSTAT_DATA_UINT64 },
121 	{ "zil_itx_metaslab_slog_count",	KSTAT_DATA_UINT64 },
122 	{ "zil_itx_metaslab_slog_bytes",	KSTAT_DATA_UINT64 },
123 	{ "zil_itx_metaslab_slog_write",	KSTAT_DATA_UINT64 },
124 	{ "zil_itx_metaslab_slog_alloc",	KSTAT_DATA_UINT64 },
125 };
126 
127 static zil_sums_t zil_sums_global;
128 static kstat_t *zil_kstats_global;
129 
130 /*
131  * Disable intent logging replay.  This global ZIL switch affects all pools.
132  */
133 int zil_replay_disable = 0;
134 
135 /*
136  * Disable the DKIOCFLUSHWRITECACHE commands that are normally sent to
137  * the disk(s) by the ZIL after an LWB write has completed. Setting this
138  * will cause ZIL corruption on power loss if a volatile out-of-order
139  * write cache is enabled.
140  */
141 static int zil_nocacheflush = 0;
142 
143 /*
144  * Limit SLOG write size per commit executed with synchronous priority.
145  * Any writes above that will be executed with lower (asynchronous) priority
146  * to limit potential SLOG device abuse by single active ZIL writer.
147  */
148 static uint64_t zil_slog_bulk = 768 * 1024;
149 
150 static kmem_cache_t *zil_lwb_cache;
151 static kmem_cache_t *zil_zcw_cache;
152 
153 static void zil_lwb_commit(zilog_t *zilog, lwb_t *lwb, itx_t *itx);
154 static void zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb);
155 static itx_t *zil_itx_clone(itx_t *oitx);
156 
157 static int
158 zil_bp_compare(const void *x1, const void *x2)
159 {
160 	const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
161 	const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
162 
163 	int cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2));
164 	if (likely(cmp))
165 		return (cmp);
166 
167 	return (TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2)));
168 }
169 
170 static void
171 zil_bp_tree_init(zilog_t *zilog)
172 {
173 	avl_create(&zilog->zl_bp_tree, zil_bp_compare,
174 	    sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
175 }
176 
177 static void
178 zil_bp_tree_fini(zilog_t *zilog)
179 {
180 	avl_tree_t *t = &zilog->zl_bp_tree;
181 	zil_bp_node_t *zn;
182 	void *cookie = NULL;
183 
184 	while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
185 		kmem_free(zn, sizeof (zil_bp_node_t));
186 
187 	avl_destroy(t);
188 }
189 
190 int
191 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
192 {
193 	avl_tree_t *t = &zilog->zl_bp_tree;
194 	const dva_t *dva;
195 	zil_bp_node_t *zn;
196 	avl_index_t where;
197 
198 	if (BP_IS_EMBEDDED(bp))
199 		return (0);
200 
201 	dva = BP_IDENTITY(bp);
202 
203 	if (avl_find(t, dva, &where) != NULL)
204 		return (SET_ERROR(EEXIST));
205 
206 	zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
207 	zn->zn_dva = *dva;
208 	avl_insert(t, zn, where);
209 
210 	return (0);
211 }
212 
213 static zil_header_t *
214 zil_header_in_syncing_context(zilog_t *zilog)
215 {
216 	return ((zil_header_t *)zilog->zl_header);
217 }
218 
219 static void
220 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
221 {
222 	zio_cksum_t *zc = &bp->blk_cksum;
223 
224 	(void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_0],
225 	    sizeof (zc->zc_word[ZIL_ZC_GUID_0]));
226 	(void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_1],
227 	    sizeof (zc->zc_word[ZIL_ZC_GUID_1]));
228 	zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
229 	zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
230 }
231 
232 static int
233 zil_kstats_global_update(kstat_t *ksp, int rw)
234 {
235 	zil_kstat_values_t *zs = ksp->ks_data;
236 	ASSERT3P(&zil_stats, ==, zs);
237 
238 	if (rw == KSTAT_WRITE) {
239 		return (SET_ERROR(EACCES));
240 	}
241 
242 	zil_kstat_values_update(zs, &zil_sums_global);
243 
244 	return (0);
245 }
246 
247 /*
248  * Read a log block and make sure it's valid.
249  */
250 static int
251 zil_read_log_block(zilog_t *zilog, boolean_t decrypt, const blkptr_t *bp,
252     blkptr_t *nbp, char **begin, char **end, arc_buf_t **abuf)
253 {
254 	zio_flag_t zio_flags = ZIO_FLAG_CANFAIL;
255 	arc_flags_t aflags = ARC_FLAG_WAIT;
256 	zbookmark_phys_t zb;
257 	int error;
258 
259 	if (zilog->zl_header->zh_claim_txg == 0)
260 		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
261 
262 	if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
263 		zio_flags |= ZIO_FLAG_SPECULATIVE;
264 
265 	if (!decrypt)
266 		zio_flags |= ZIO_FLAG_RAW;
267 
268 	SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
269 	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
270 
271 	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func,
272 	    abuf, ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
273 
274 	if (error == 0) {
275 		zio_cksum_t cksum = bp->blk_cksum;
276 
277 		/*
278 		 * Validate the checksummed log block.
279 		 *
280 		 * Sequence numbers should be... sequential.  The checksum
281 		 * verifier for the next block should be bp's checksum plus 1.
282 		 *
283 		 * Also check the log chain linkage and size used.
284 		 */
285 		cksum.zc_word[ZIL_ZC_SEQ]++;
286 
287 		uint64_t size = BP_GET_LSIZE(bp);
288 		if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
289 			zil_chain_t *zilc = (*abuf)->b_data;
290 			char *lr = (char *)(zilc + 1);
291 
292 			if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
293 			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
294 			    zilc->zc_nused < sizeof (*zilc) ||
295 			    zilc->zc_nused > size) {
296 				error = SET_ERROR(ECKSUM);
297 			} else {
298 				*begin = lr;
299 				*end = lr + zilc->zc_nused - sizeof (*zilc);
300 				*nbp = zilc->zc_next_blk;
301 			}
302 		} else {
303 			char *lr = (*abuf)->b_data;
304 			zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
305 
306 			if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
307 			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
308 			    (zilc->zc_nused > (size - sizeof (*zilc)))) {
309 				error = SET_ERROR(ECKSUM);
310 			} else {
311 				*begin = lr;
312 				*end = lr + zilc->zc_nused;
313 				*nbp = zilc->zc_next_blk;
314 			}
315 		}
316 	}
317 
318 	return (error);
319 }
320 
321 /*
322  * Read a TX_WRITE log data block.
323  */
324 static int
325 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
326 {
327 	zio_flag_t zio_flags = ZIO_FLAG_CANFAIL;
328 	const blkptr_t *bp = &lr->lr_blkptr;
329 	arc_flags_t aflags = ARC_FLAG_WAIT;
330 	arc_buf_t *abuf = NULL;
331 	zbookmark_phys_t zb;
332 	int error;
333 
334 	if (BP_IS_HOLE(bp)) {
335 		if (wbuf != NULL)
336 			memset(wbuf, 0, MAX(BP_GET_LSIZE(bp), lr->lr_length));
337 		return (0);
338 	}
339 
340 	if (zilog->zl_header->zh_claim_txg == 0)
341 		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
342 
343 	/*
344 	 * If we are not using the resulting data, we are just checking that
345 	 * it hasn't been corrupted so we don't need to waste CPU time
346 	 * decompressing and decrypting it.
347 	 */
348 	if (wbuf == NULL)
349 		zio_flags |= ZIO_FLAG_RAW;
350 
351 	ASSERT3U(BP_GET_LSIZE(bp), !=, 0);
352 	SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
353 	    ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
354 
355 	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
356 	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
357 
358 	if (error == 0) {
359 		if (wbuf != NULL)
360 			memcpy(wbuf, abuf->b_data, arc_buf_size(abuf));
361 		arc_buf_destroy(abuf, &abuf);
362 	}
363 
364 	return (error);
365 }
366 
367 void
368 zil_sums_init(zil_sums_t *zs)
369 {
370 	wmsum_init(&zs->zil_commit_count, 0);
371 	wmsum_init(&zs->zil_commit_writer_count, 0);
372 	wmsum_init(&zs->zil_itx_count, 0);
373 	wmsum_init(&zs->zil_itx_indirect_count, 0);
374 	wmsum_init(&zs->zil_itx_indirect_bytes, 0);
375 	wmsum_init(&zs->zil_itx_copied_count, 0);
376 	wmsum_init(&zs->zil_itx_copied_bytes, 0);
377 	wmsum_init(&zs->zil_itx_needcopy_count, 0);
378 	wmsum_init(&zs->zil_itx_needcopy_bytes, 0);
379 	wmsum_init(&zs->zil_itx_metaslab_normal_count, 0);
380 	wmsum_init(&zs->zil_itx_metaslab_normal_bytes, 0);
381 	wmsum_init(&zs->zil_itx_metaslab_normal_write, 0);
382 	wmsum_init(&zs->zil_itx_metaslab_normal_alloc, 0);
383 	wmsum_init(&zs->zil_itx_metaslab_slog_count, 0);
384 	wmsum_init(&zs->zil_itx_metaslab_slog_bytes, 0);
385 	wmsum_init(&zs->zil_itx_metaslab_slog_write, 0);
386 	wmsum_init(&zs->zil_itx_metaslab_slog_alloc, 0);
387 }
388 
389 void
390 zil_sums_fini(zil_sums_t *zs)
391 {
392 	wmsum_fini(&zs->zil_commit_count);
393 	wmsum_fini(&zs->zil_commit_writer_count);
394 	wmsum_fini(&zs->zil_itx_count);
395 	wmsum_fini(&zs->zil_itx_indirect_count);
396 	wmsum_fini(&zs->zil_itx_indirect_bytes);
397 	wmsum_fini(&zs->zil_itx_copied_count);
398 	wmsum_fini(&zs->zil_itx_copied_bytes);
399 	wmsum_fini(&zs->zil_itx_needcopy_count);
400 	wmsum_fini(&zs->zil_itx_needcopy_bytes);
401 	wmsum_fini(&zs->zil_itx_metaslab_normal_count);
402 	wmsum_fini(&zs->zil_itx_metaslab_normal_bytes);
403 	wmsum_fini(&zs->zil_itx_metaslab_normal_write);
404 	wmsum_fini(&zs->zil_itx_metaslab_normal_alloc);
405 	wmsum_fini(&zs->zil_itx_metaslab_slog_count);
406 	wmsum_fini(&zs->zil_itx_metaslab_slog_bytes);
407 	wmsum_fini(&zs->zil_itx_metaslab_slog_write);
408 	wmsum_fini(&zs->zil_itx_metaslab_slog_alloc);
409 }
410 
411 void
412 zil_kstat_values_update(zil_kstat_values_t *zs, zil_sums_t *zil_sums)
413 {
414 	zs->zil_commit_count.value.ui64 =
415 	    wmsum_value(&zil_sums->zil_commit_count);
416 	zs->zil_commit_writer_count.value.ui64 =
417 	    wmsum_value(&zil_sums->zil_commit_writer_count);
418 	zs->zil_itx_count.value.ui64 =
419 	    wmsum_value(&zil_sums->zil_itx_count);
420 	zs->zil_itx_indirect_count.value.ui64 =
421 	    wmsum_value(&zil_sums->zil_itx_indirect_count);
422 	zs->zil_itx_indirect_bytes.value.ui64 =
423 	    wmsum_value(&zil_sums->zil_itx_indirect_bytes);
424 	zs->zil_itx_copied_count.value.ui64 =
425 	    wmsum_value(&zil_sums->zil_itx_copied_count);
426 	zs->zil_itx_copied_bytes.value.ui64 =
427 	    wmsum_value(&zil_sums->zil_itx_copied_bytes);
428 	zs->zil_itx_needcopy_count.value.ui64 =
429 	    wmsum_value(&zil_sums->zil_itx_needcopy_count);
430 	zs->zil_itx_needcopy_bytes.value.ui64 =
431 	    wmsum_value(&zil_sums->zil_itx_needcopy_bytes);
432 	zs->zil_itx_metaslab_normal_count.value.ui64 =
433 	    wmsum_value(&zil_sums->zil_itx_metaslab_normal_count);
434 	zs->zil_itx_metaslab_normal_bytes.value.ui64 =
435 	    wmsum_value(&zil_sums->zil_itx_metaslab_normal_bytes);
436 	zs->zil_itx_metaslab_normal_write.value.ui64 =
437 	    wmsum_value(&zil_sums->zil_itx_metaslab_normal_write);
438 	zs->zil_itx_metaslab_normal_alloc.value.ui64 =
439 	    wmsum_value(&zil_sums->zil_itx_metaslab_normal_alloc);
440 	zs->zil_itx_metaslab_slog_count.value.ui64 =
441 	    wmsum_value(&zil_sums->zil_itx_metaslab_slog_count);
442 	zs->zil_itx_metaslab_slog_bytes.value.ui64 =
443 	    wmsum_value(&zil_sums->zil_itx_metaslab_slog_bytes);
444 	zs->zil_itx_metaslab_slog_write.value.ui64 =
445 	    wmsum_value(&zil_sums->zil_itx_metaslab_slog_write);
446 	zs->zil_itx_metaslab_slog_alloc.value.ui64 =
447 	    wmsum_value(&zil_sums->zil_itx_metaslab_slog_alloc);
448 }
449 
450 /*
451  * Parse the intent log, and call parse_func for each valid record within.
452  */
453 int
454 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
455     zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg,
456     boolean_t decrypt)
457 {
458 	const zil_header_t *zh = zilog->zl_header;
459 	boolean_t claimed = !!zh->zh_claim_txg;
460 	uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
461 	uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
462 	uint64_t max_blk_seq = 0;
463 	uint64_t max_lr_seq = 0;
464 	uint64_t blk_count = 0;
465 	uint64_t lr_count = 0;
466 	blkptr_t blk, next_blk = {{{{0}}}};
467 	int error = 0;
468 
469 	/*
470 	 * Old logs didn't record the maximum zh_claim_lr_seq.
471 	 */
472 	if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
473 		claim_lr_seq = UINT64_MAX;
474 
475 	/*
476 	 * Starting at the block pointed to by zh_log we read the log chain.
477 	 * For each block in the chain we strongly check that block to
478 	 * ensure its validity.  We stop when an invalid block is found.
479 	 * For each block pointer in the chain we call parse_blk_func().
480 	 * For each record in each valid block we call parse_lr_func().
481 	 * If the log has been claimed, stop if we encounter a sequence
482 	 * number greater than the highest claimed sequence number.
483 	 */
484 	zil_bp_tree_init(zilog);
485 
486 	for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
487 		uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
488 		int reclen;
489 		char *lrp, *end;
490 		arc_buf_t *abuf = NULL;
491 
492 		if (blk_seq > claim_blk_seq)
493 			break;
494 
495 		error = parse_blk_func(zilog, &blk, arg, txg);
496 		if (error != 0)
497 			break;
498 		ASSERT3U(max_blk_seq, <, blk_seq);
499 		max_blk_seq = blk_seq;
500 		blk_count++;
501 
502 		if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
503 			break;
504 
505 		error = zil_read_log_block(zilog, decrypt, &blk, &next_blk,
506 		    &lrp, &end, &abuf);
507 		if (error != 0) {
508 			if (abuf)
509 				arc_buf_destroy(abuf, &abuf);
510 			if (claimed) {
511 				char name[ZFS_MAX_DATASET_NAME_LEN];
512 
513 				dmu_objset_name(zilog->zl_os, name);
514 
515 				cmn_err(CE_WARN, "ZFS read log block error %d, "
516 				    "dataset %s, seq 0x%llx\n", error, name,
517 				    (u_longlong_t)blk_seq);
518 			}
519 			break;
520 		}
521 
522 		for (; lrp < end; lrp += reclen) {
523 			lr_t *lr = (lr_t *)lrp;
524 			reclen = lr->lrc_reclen;
525 			ASSERT3U(reclen, >=, sizeof (lr_t));
526 			if (lr->lrc_seq > claim_lr_seq) {
527 				arc_buf_destroy(abuf, &abuf);
528 				goto done;
529 			}
530 
531 			error = parse_lr_func(zilog, lr, arg, txg);
532 			if (error != 0) {
533 				arc_buf_destroy(abuf, &abuf);
534 				goto done;
535 			}
536 			ASSERT3U(max_lr_seq, <, lr->lrc_seq);
537 			max_lr_seq = lr->lrc_seq;
538 			lr_count++;
539 		}
540 		arc_buf_destroy(abuf, &abuf);
541 	}
542 done:
543 	zilog->zl_parse_error = error;
544 	zilog->zl_parse_blk_seq = max_blk_seq;
545 	zilog->zl_parse_lr_seq = max_lr_seq;
546 	zilog->zl_parse_blk_count = blk_count;
547 	zilog->zl_parse_lr_count = lr_count;
548 
549 	zil_bp_tree_fini(zilog);
550 
551 	return (error);
552 }
553 
554 static int
555 zil_clear_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
556     uint64_t first_txg)
557 {
558 	(void) tx;
559 	ASSERT(!BP_IS_HOLE(bp));
560 
561 	/*
562 	 * As we call this function from the context of a rewind to a
563 	 * checkpoint, each ZIL block whose txg is later than the txg
564 	 * that we rewind to is invalid. Thus, we return -1 so
565 	 * zil_parse() doesn't attempt to read it.
566 	 */
567 	if (bp->blk_birth >= first_txg)
568 		return (-1);
569 
570 	if (zil_bp_tree_add(zilog, bp) != 0)
571 		return (0);
572 
573 	zio_free(zilog->zl_spa, first_txg, bp);
574 	return (0);
575 }
576 
577 static int
578 zil_noop_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
579     uint64_t first_txg)
580 {
581 	(void) zilog, (void) lrc, (void) tx, (void) first_txg;
582 	return (0);
583 }
584 
585 static int
586 zil_claim_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
587     uint64_t first_txg)
588 {
589 	/*
590 	 * Claim log block if not already committed and not already claimed.
591 	 * If tx == NULL, just verify that the block is claimable.
592 	 */
593 	if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
594 	    zil_bp_tree_add(zilog, bp) != 0)
595 		return (0);
596 
597 	return (zio_wait(zio_claim(NULL, zilog->zl_spa,
598 	    tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
599 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
600 }
601 
602 static int
603 zil_claim_write(zilog_t *zilog, const lr_t *lrc, void *tx, uint64_t first_txg)
604 {
605 	lr_write_t *lr = (lr_write_t *)lrc;
606 	int error;
607 
608 	ASSERT(lrc->lrc_txtype == TX_WRITE);
609 
610 	/*
611 	 * If the block is not readable, don't claim it.  This can happen
612 	 * in normal operation when a log block is written to disk before
613 	 * some of the dmu_sync() blocks it points to.  In this case, the
614 	 * transaction cannot have been committed to anyone (we would have
615 	 * waited for all writes to be stable first), so it is semantically
616 	 * correct to declare this the end of the log.
617 	 */
618 	if (lr->lr_blkptr.blk_birth >= first_txg) {
619 		error = zil_read_log_data(zilog, lr, NULL);
620 		if (error != 0)
621 			return (error);
622 	}
623 
624 	return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
625 }
626 
627 static int
628 zil_claim_clone_range(zilog_t *zilog, const lr_t *lrc, void *tx)
629 {
630 	const lr_clone_range_t *lr = (const lr_clone_range_t *)lrc;
631 	const blkptr_t *bp;
632 	spa_t *spa;
633 	uint_t ii;
634 
635 	ASSERT(lrc->lrc_txtype == TX_CLONE_RANGE);
636 
637 	if (tx == NULL) {
638 		return (0);
639 	}
640 
641 	/*
642 	 * XXX: Do we need to byteswap lr?
643 	 */
644 
645 	spa = zilog->zl_spa;
646 
647 	for (ii = 0; ii < lr->lr_nbps; ii++) {
648 		bp = &lr->lr_bps[ii];
649 
650 		/*
651 		 * When data in embedded into BP there is no need to create
652 		 * BRT entry as there is no data block. Just copy the BP as
653 		 * it contains the data.
654 		 */
655 		if (!BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp)) {
656 			brt_pending_add(spa, bp, tx);
657 		}
658 	}
659 
660 	return (0);
661 }
662 
663 static int
664 zil_claim_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
665     uint64_t first_txg)
666 {
667 
668 	switch (lrc->lrc_txtype) {
669 	case TX_WRITE:
670 		return (zil_claim_write(zilog, lrc, tx, first_txg));
671 	case TX_CLONE_RANGE:
672 		return (zil_claim_clone_range(zilog, lrc, tx));
673 	default:
674 		return (0);
675 	}
676 }
677 
678 static int
679 zil_free_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
680     uint64_t claim_txg)
681 {
682 	(void) claim_txg;
683 
684 	zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
685 
686 	return (0);
687 }
688 
689 static int
690 zil_free_write(zilog_t *zilog, const lr_t *lrc, void *tx, uint64_t claim_txg)
691 {
692 	lr_write_t *lr = (lr_write_t *)lrc;
693 	blkptr_t *bp = &lr->lr_blkptr;
694 
695 	ASSERT(lrc->lrc_txtype == TX_WRITE);
696 
697 	/*
698 	 * If we previously claimed it, we need to free it.
699 	 */
700 	if (bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
701 	    !BP_IS_HOLE(bp)) {
702 		zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
703 	}
704 
705 	return (0);
706 }
707 
708 static int
709 zil_free_clone_range(zilog_t *zilog, const lr_t *lrc, void *tx)
710 {
711 	const lr_clone_range_t *lr = (const lr_clone_range_t *)lrc;
712 	const blkptr_t *bp;
713 	spa_t *spa;
714 	uint_t ii;
715 
716 	ASSERT(lrc->lrc_txtype == TX_CLONE_RANGE);
717 
718 	if (tx == NULL) {
719 		return (0);
720 	}
721 
722 	spa = zilog->zl_spa;
723 
724 	for (ii = 0; ii < lr->lr_nbps; ii++) {
725 		bp = &lr->lr_bps[ii];
726 
727 		if (!BP_IS_HOLE(bp)) {
728 			zio_free(spa, dmu_tx_get_txg(tx), bp);
729 		}
730 	}
731 
732 	return (0);
733 }
734 
735 static int
736 zil_free_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
737     uint64_t claim_txg)
738 {
739 
740 	if (claim_txg == 0) {
741 		return (0);
742 	}
743 
744 	switch (lrc->lrc_txtype) {
745 	case TX_WRITE:
746 		return (zil_free_write(zilog, lrc, tx, claim_txg));
747 	case TX_CLONE_RANGE:
748 		return (zil_free_clone_range(zilog, lrc, tx));
749 	default:
750 		return (0);
751 	}
752 }
753 
754 static int
755 zil_lwb_vdev_compare(const void *x1, const void *x2)
756 {
757 	const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
758 	const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
759 
760 	return (TREE_CMP(v1, v2));
761 }
762 
763 static lwb_t *
764 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg,
765     boolean_t fastwrite)
766 {
767 	lwb_t *lwb;
768 
769 	lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
770 	lwb->lwb_zilog = zilog;
771 	lwb->lwb_blk = *bp;
772 	lwb->lwb_fastwrite = fastwrite;
773 	lwb->lwb_slog = slog;
774 	lwb->lwb_indirect = B_FALSE;
775 	if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
776 		lwb->lwb_nused = lwb->lwb_nfilled = sizeof (zil_chain_t);
777 		lwb->lwb_sz = BP_GET_LSIZE(bp);
778 	} else {
779 		lwb->lwb_nused = lwb->lwb_nfilled = 0;
780 		lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
781 	}
782 	lwb->lwb_state = LWB_STATE_CLOSED;
783 	lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
784 	lwb->lwb_write_zio = NULL;
785 	lwb->lwb_root_zio = NULL;
786 	lwb->lwb_issued_timestamp = 0;
787 	lwb->lwb_issued_txg = 0;
788 	lwb->lwb_max_txg = txg;
789 
790 	mutex_enter(&zilog->zl_lock);
791 	list_insert_tail(&zilog->zl_lwb_list, lwb);
792 	mutex_exit(&zilog->zl_lock);
793 
794 	return (lwb);
795 }
796 
797 static void
798 zil_free_lwb(zilog_t *zilog, lwb_t *lwb)
799 {
800 	ASSERT(MUTEX_HELD(&zilog->zl_lock));
801 	ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
802 	VERIFY(list_is_empty(&lwb->lwb_waiters));
803 	VERIFY(list_is_empty(&lwb->lwb_itxs));
804 	ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
805 	ASSERT3P(lwb->lwb_write_zio, ==, NULL);
806 	ASSERT3P(lwb->lwb_root_zio, ==, NULL);
807 	ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa));
808 	ASSERT(lwb->lwb_state == LWB_STATE_CLOSED ||
809 	    lwb->lwb_state == LWB_STATE_FLUSH_DONE);
810 
811 	/*
812 	 * Clear the zilog's field to indicate this lwb is no longer
813 	 * valid, and prevent use-after-free errors.
814 	 */
815 	if (zilog->zl_last_lwb_opened == lwb)
816 		zilog->zl_last_lwb_opened = NULL;
817 
818 	kmem_cache_free(zil_lwb_cache, lwb);
819 }
820 
821 /*
822  * Called when we create in-memory log transactions so that we know
823  * to cleanup the itxs at the end of spa_sync().
824  */
825 static void
826 zilog_dirty(zilog_t *zilog, uint64_t txg)
827 {
828 	dsl_pool_t *dp = zilog->zl_dmu_pool;
829 	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
830 
831 	ASSERT(spa_writeable(zilog->zl_spa));
832 
833 	if (ds->ds_is_snapshot)
834 		panic("dirtying snapshot!");
835 
836 	if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
837 		/* up the hold count until we can be written out */
838 		dmu_buf_add_ref(ds->ds_dbuf, zilog);
839 
840 		zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg);
841 	}
842 }
843 
844 /*
845  * Determine if the zil is dirty in the specified txg. Callers wanting to
846  * ensure that the dirty state does not change must hold the itxg_lock for
847  * the specified txg. Holding the lock will ensure that the zil cannot be
848  * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
849  * state.
850  */
851 static boolean_t __maybe_unused
852 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
853 {
854 	dsl_pool_t *dp = zilog->zl_dmu_pool;
855 
856 	if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
857 		return (B_TRUE);
858 	return (B_FALSE);
859 }
860 
861 /*
862  * Determine if the zil is dirty. The zil is considered dirty if it has
863  * any pending itx records that have not been cleaned by zil_clean().
864  */
865 static boolean_t
866 zilog_is_dirty(zilog_t *zilog)
867 {
868 	dsl_pool_t *dp = zilog->zl_dmu_pool;
869 
870 	for (int t = 0; t < TXG_SIZE; t++) {
871 		if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
872 			return (B_TRUE);
873 	}
874 	return (B_FALSE);
875 }
876 
877 /*
878  * Its called in zil_commit context (zil_process_commit_list()/zil_create()).
879  * It activates SPA_FEATURE_ZILSAXATTR feature, if its enabled.
880  * Check dsl_dataset_feature_is_active to avoid txg_wait_synced() on every
881  * zil_commit.
882  */
883 static void
884 zil_commit_activate_saxattr_feature(zilog_t *zilog)
885 {
886 	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
887 	uint64_t txg = 0;
888 	dmu_tx_t *tx = NULL;
889 
890 	if (spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) &&
891 	    dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL &&
892 	    !dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR)) {
893 		tx = dmu_tx_create(zilog->zl_os);
894 		VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
895 		dsl_dataset_dirty(ds, tx);
896 		txg = dmu_tx_get_txg(tx);
897 
898 		mutex_enter(&ds->ds_lock);
899 		ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] =
900 		    (void *)B_TRUE;
901 		mutex_exit(&ds->ds_lock);
902 		dmu_tx_commit(tx);
903 		txg_wait_synced(zilog->zl_dmu_pool, txg);
904 	}
905 }
906 
907 /*
908  * Create an on-disk intent log.
909  */
910 static lwb_t *
911 zil_create(zilog_t *zilog)
912 {
913 	const zil_header_t *zh = zilog->zl_header;
914 	lwb_t *lwb = NULL;
915 	uint64_t txg = 0;
916 	dmu_tx_t *tx = NULL;
917 	blkptr_t blk;
918 	int error = 0;
919 	boolean_t fastwrite = FALSE;
920 	boolean_t slog = FALSE;
921 	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
922 
923 
924 	/*
925 	 * Wait for any previous destroy to complete.
926 	 */
927 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
928 
929 	ASSERT(zh->zh_claim_txg == 0);
930 	ASSERT(zh->zh_replay_seq == 0);
931 
932 	blk = zh->zh_log;
933 
934 	/*
935 	 * Allocate an initial log block if:
936 	 *    - there isn't one already
937 	 *    - the existing block is the wrong endianness
938 	 */
939 	if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
940 		tx = dmu_tx_create(zilog->zl_os);
941 		VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
942 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
943 		txg = dmu_tx_get_txg(tx);
944 
945 		if (!BP_IS_HOLE(&blk)) {
946 			zio_free(zilog->zl_spa, txg, &blk);
947 			BP_ZERO(&blk);
948 		}
949 
950 		error = zio_alloc_zil(zilog->zl_spa, zilog->zl_os, txg, &blk,
951 		    ZIL_MIN_BLKSZ, &slog);
952 		fastwrite = TRUE;
953 
954 		if (error == 0)
955 			zil_init_log_chain(zilog, &blk);
956 	}
957 
958 	/*
959 	 * Allocate a log write block (lwb) for the first log block.
960 	 */
961 	if (error == 0)
962 		lwb = zil_alloc_lwb(zilog, &blk, slog, txg, fastwrite);
963 
964 	/*
965 	 * If we just allocated the first log block, commit our transaction
966 	 * and wait for zil_sync() to stuff the block pointer into zh_log.
967 	 * (zh is part of the MOS, so we cannot modify it in open context.)
968 	 */
969 	if (tx != NULL) {
970 		/*
971 		 * If "zilsaxattr" feature is enabled on zpool, then activate
972 		 * it now when we're creating the ZIL chain. We can't wait with
973 		 * this until we write the first xattr log record because we
974 		 * need to wait for the feature activation to sync out.
975 		 */
976 		if (spa_feature_is_enabled(zilog->zl_spa,
977 		    SPA_FEATURE_ZILSAXATTR) && dmu_objset_type(zilog->zl_os) !=
978 		    DMU_OST_ZVOL) {
979 			mutex_enter(&ds->ds_lock);
980 			ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] =
981 			    (void *)B_TRUE;
982 			mutex_exit(&ds->ds_lock);
983 		}
984 
985 		dmu_tx_commit(tx);
986 		txg_wait_synced(zilog->zl_dmu_pool, txg);
987 	} else {
988 		/*
989 		 * This branch covers the case where we enable the feature on a
990 		 * zpool that has existing ZIL headers.
991 		 */
992 		zil_commit_activate_saxattr_feature(zilog);
993 	}
994 	IMPLY(spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) &&
995 	    dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL,
996 	    dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR));
997 
998 	ASSERT(error != 0 || memcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
999 	IMPLY(error == 0, lwb != NULL);
1000 
1001 	return (lwb);
1002 }
1003 
1004 /*
1005  * In one tx, free all log blocks and clear the log header. If keep_first
1006  * is set, then we're replaying a log with no content. We want to keep the
1007  * first block, however, so that the first synchronous transaction doesn't
1008  * require a txg_wait_synced() in zil_create(). We don't need to
1009  * txg_wait_synced() here either when keep_first is set, because both
1010  * zil_create() and zil_destroy() will wait for any in-progress destroys
1011  * to complete.
1012  * Return B_TRUE if there were any entries to replay.
1013  */
1014 boolean_t
1015 zil_destroy(zilog_t *zilog, boolean_t keep_first)
1016 {
1017 	const zil_header_t *zh = zilog->zl_header;
1018 	lwb_t *lwb;
1019 	dmu_tx_t *tx;
1020 	uint64_t txg;
1021 
1022 	/*
1023 	 * Wait for any previous destroy to complete.
1024 	 */
1025 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
1026 
1027 	zilog->zl_old_header = *zh;		/* debugging aid */
1028 
1029 	if (BP_IS_HOLE(&zh->zh_log))
1030 		return (B_FALSE);
1031 
1032 	tx = dmu_tx_create(zilog->zl_os);
1033 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1034 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1035 	txg = dmu_tx_get_txg(tx);
1036 
1037 	mutex_enter(&zilog->zl_lock);
1038 
1039 	ASSERT3U(zilog->zl_destroy_txg, <, txg);
1040 	zilog->zl_destroy_txg = txg;
1041 	zilog->zl_keep_first = keep_first;
1042 
1043 	if (!list_is_empty(&zilog->zl_lwb_list)) {
1044 		ASSERT(zh->zh_claim_txg == 0);
1045 		VERIFY(!keep_first);
1046 		while ((lwb = list_remove_head(&zilog->zl_lwb_list)) != NULL) {
1047 			if (lwb->lwb_fastwrite)
1048 				metaslab_fastwrite_unmark(zilog->zl_spa,
1049 				    &lwb->lwb_blk);
1050 			if (lwb->lwb_buf != NULL)
1051 				zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1052 			zio_free(zilog->zl_spa, txg, &lwb->lwb_blk);
1053 			zil_free_lwb(zilog, lwb);
1054 		}
1055 	} else if (!keep_first) {
1056 		zil_destroy_sync(zilog, tx);
1057 	}
1058 	mutex_exit(&zilog->zl_lock);
1059 
1060 	dmu_tx_commit(tx);
1061 
1062 	return (B_TRUE);
1063 }
1064 
1065 void
1066 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
1067 {
1068 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
1069 	(void) zil_parse(zilog, zil_free_log_block,
1070 	    zil_free_log_record, tx, zilog->zl_header->zh_claim_txg, B_FALSE);
1071 }
1072 
1073 int
1074 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
1075 {
1076 	dmu_tx_t *tx = txarg;
1077 	zilog_t *zilog;
1078 	uint64_t first_txg;
1079 	zil_header_t *zh;
1080 	objset_t *os;
1081 	int error;
1082 
1083 	error = dmu_objset_own_obj(dp, ds->ds_object,
1084 	    DMU_OST_ANY, B_FALSE, B_FALSE, FTAG, &os);
1085 	if (error != 0) {
1086 		/*
1087 		 * EBUSY indicates that the objset is inconsistent, in which
1088 		 * case it can not have a ZIL.
1089 		 */
1090 		if (error != EBUSY) {
1091 			cmn_err(CE_WARN, "can't open objset for %llu, error %u",
1092 			    (unsigned long long)ds->ds_object, error);
1093 		}
1094 
1095 		return (0);
1096 	}
1097 
1098 	zilog = dmu_objset_zil(os);
1099 	zh = zil_header_in_syncing_context(zilog);
1100 	ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa));
1101 	first_txg = spa_min_claim_txg(zilog->zl_spa);
1102 
1103 	/*
1104 	 * If the spa_log_state is not set to be cleared, check whether
1105 	 * the current uberblock is a checkpoint one and if the current
1106 	 * header has been claimed before moving on.
1107 	 *
1108 	 * If the current uberblock is a checkpointed uberblock then
1109 	 * one of the following scenarios took place:
1110 	 *
1111 	 * 1] We are currently rewinding to the checkpoint of the pool.
1112 	 * 2] We crashed in the middle of a checkpoint rewind but we
1113 	 *    did manage to write the checkpointed uberblock to the
1114 	 *    vdev labels, so when we tried to import the pool again
1115 	 *    the checkpointed uberblock was selected from the import
1116 	 *    procedure.
1117 	 *
1118 	 * In both cases we want to zero out all the ZIL blocks, except
1119 	 * the ones that have been claimed at the time of the checkpoint
1120 	 * (their zh_claim_txg != 0). The reason is that these blocks
1121 	 * may be corrupted since we may have reused their locations on
1122 	 * disk after we took the checkpoint.
1123 	 *
1124 	 * We could try to set spa_log_state to SPA_LOG_CLEAR earlier
1125 	 * when we first figure out whether the current uberblock is
1126 	 * checkpointed or not. Unfortunately, that would discard all
1127 	 * the logs, including the ones that are claimed, and we would
1128 	 * leak space.
1129 	 */
1130 	if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR ||
1131 	    (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
1132 	    zh->zh_claim_txg == 0)) {
1133 		if (!BP_IS_HOLE(&zh->zh_log)) {
1134 			(void) zil_parse(zilog, zil_clear_log_block,
1135 			    zil_noop_log_record, tx, first_txg, B_FALSE);
1136 		}
1137 		BP_ZERO(&zh->zh_log);
1138 		if (os->os_encrypted)
1139 			os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
1140 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
1141 		dmu_objset_disown(os, B_FALSE, FTAG);
1142 		return (0);
1143 	}
1144 
1145 	/*
1146 	 * If we are not rewinding and opening the pool normally, then
1147 	 * the min_claim_txg should be equal to the first txg of the pool.
1148 	 */
1149 	ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa));
1150 
1151 	/*
1152 	 * Claim all log blocks if we haven't already done so, and remember
1153 	 * the highest claimed sequence number.  This ensures that if we can
1154 	 * read only part of the log now (e.g. due to a missing device),
1155 	 * but we can read the entire log later, we will not try to replay
1156 	 * or destroy beyond the last block we successfully claimed.
1157 	 */
1158 	ASSERT3U(zh->zh_claim_txg, <=, first_txg);
1159 	if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
1160 		(void) zil_parse(zilog, zil_claim_log_block,
1161 		    zil_claim_log_record, tx, first_txg, B_FALSE);
1162 		zh->zh_claim_txg = first_txg;
1163 		zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
1164 		zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
1165 		if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
1166 			zh->zh_flags |= ZIL_REPLAY_NEEDED;
1167 		zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
1168 		if (os->os_encrypted)
1169 			os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
1170 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
1171 	}
1172 
1173 	ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
1174 	dmu_objset_disown(os, B_FALSE, FTAG);
1175 	return (0);
1176 }
1177 
1178 /*
1179  * Check the log by walking the log chain.
1180  * Checksum errors are ok as they indicate the end of the chain.
1181  * Any other error (no device or read failure) returns an error.
1182  */
1183 int
1184 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
1185 {
1186 	(void) dp;
1187 	zilog_t *zilog;
1188 	objset_t *os;
1189 	blkptr_t *bp;
1190 	int error;
1191 
1192 	ASSERT(tx == NULL);
1193 
1194 	error = dmu_objset_from_ds(ds, &os);
1195 	if (error != 0) {
1196 		cmn_err(CE_WARN, "can't open objset %llu, error %d",
1197 		    (unsigned long long)ds->ds_object, error);
1198 		return (0);
1199 	}
1200 
1201 	zilog = dmu_objset_zil(os);
1202 	bp = (blkptr_t *)&zilog->zl_header->zh_log;
1203 
1204 	if (!BP_IS_HOLE(bp)) {
1205 		vdev_t *vd;
1206 		boolean_t valid = B_TRUE;
1207 
1208 		/*
1209 		 * Check the first block and determine if it's on a log device
1210 		 * which may have been removed or faulted prior to loading this
1211 		 * pool.  If so, there's no point in checking the rest of the
1212 		 * log as its content should have already been synced to the
1213 		 * pool.
1214 		 */
1215 		spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
1216 		vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
1217 		if (vd->vdev_islog && vdev_is_dead(vd))
1218 			valid = vdev_log_state_valid(vd);
1219 		spa_config_exit(os->os_spa, SCL_STATE, FTAG);
1220 
1221 		if (!valid)
1222 			return (0);
1223 
1224 		/*
1225 		 * Check whether the current uberblock is checkpointed (e.g.
1226 		 * we are rewinding) and whether the current header has been
1227 		 * claimed or not. If it hasn't then skip verifying it. We
1228 		 * do this because its ZIL blocks may be part of the pool's
1229 		 * state before the rewind, which is no longer valid.
1230 		 */
1231 		zil_header_t *zh = zil_header_in_syncing_context(zilog);
1232 		if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
1233 		    zh->zh_claim_txg == 0)
1234 			return (0);
1235 	}
1236 
1237 	/*
1238 	 * Because tx == NULL, zil_claim_log_block() will not actually claim
1239 	 * any blocks, but just determine whether it is possible to do so.
1240 	 * In addition to checking the log chain, zil_claim_log_block()
1241 	 * will invoke zio_claim() with a done func of spa_claim_notify(),
1242 	 * which will update spa_max_claim_txg.  See spa_load() for details.
1243 	 */
1244 	error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
1245 	    zilog->zl_header->zh_claim_txg ? -1ULL :
1246 	    spa_min_claim_txg(os->os_spa), B_FALSE);
1247 
1248 	return ((error == ECKSUM || error == ENOENT) ? 0 : error);
1249 }
1250 
1251 /*
1252  * When an itx is "skipped", this function is used to properly mark the
1253  * waiter as "done, and signal any thread(s) waiting on it. An itx can
1254  * be skipped (and not committed to an lwb) for a variety of reasons,
1255  * one of them being that the itx was committed via spa_sync(), prior to
1256  * it being committed to an lwb; this can happen if a thread calling
1257  * zil_commit() is racing with spa_sync().
1258  */
1259 static void
1260 zil_commit_waiter_skip(zil_commit_waiter_t *zcw)
1261 {
1262 	mutex_enter(&zcw->zcw_lock);
1263 	ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1264 	zcw->zcw_done = B_TRUE;
1265 	cv_broadcast(&zcw->zcw_cv);
1266 	mutex_exit(&zcw->zcw_lock);
1267 }
1268 
1269 /*
1270  * This function is used when the given waiter is to be linked into an
1271  * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb.
1272  * At this point, the waiter will no longer be referenced by the itx,
1273  * and instead, will be referenced by the lwb.
1274  */
1275 static void
1276 zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb)
1277 {
1278 	/*
1279 	 * The lwb_waiters field of the lwb is protected by the zilog's
1280 	 * zl_lock, thus it must be held when calling this function.
1281 	 */
1282 	ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_lock));
1283 
1284 	mutex_enter(&zcw->zcw_lock);
1285 	ASSERT(!list_link_active(&zcw->zcw_node));
1286 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
1287 	ASSERT3P(lwb, !=, NULL);
1288 	ASSERT(lwb->lwb_state == LWB_STATE_OPENED ||
1289 	    lwb->lwb_state == LWB_STATE_ISSUED ||
1290 	    lwb->lwb_state == LWB_STATE_WRITE_DONE);
1291 
1292 	list_insert_tail(&lwb->lwb_waiters, zcw);
1293 	zcw->zcw_lwb = lwb;
1294 	mutex_exit(&zcw->zcw_lock);
1295 }
1296 
1297 /*
1298  * This function is used when zio_alloc_zil() fails to allocate a ZIL
1299  * block, and the given waiter must be linked to the "nolwb waiters"
1300  * list inside of zil_process_commit_list().
1301  */
1302 static void
1303 zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb)
1304 {
1305 	mutex_enter(&zcw->zcw_lock);
1306 	ASSERT(!list_link_active(&zcw->zcw_node));
1307 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
1308 	list_insert_tail(nolwb, zcw);
1309 	mutex_exit(&zcw->zcw_lock);
1310 }
1311 
1312 void
1313 zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp)
1314 {
1315 	avl_tree_t *t = &lwb->lwb_vdev_tree;
1316 	avl_index_t where;
1317 	zil_vdev_node_t *zv, zvsearch;
1318 	int ndvas = BP_GET_NDVAS(bp);
1319 	int i;
1320 
1321 	if (zil_nocacheflush)
1322 		return;
1323 
1324 	mutex_enter(&lwb->lwb_vdev_lock);
1325 	for (i = 0; i < ndvas; i++) {
1326 		zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
1327 		if (avl_find(t, &zvsearch, &where) == NULL) {
1328 			zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
1329 			zv->zv_vdev = zvsearch.zv_vdev;
1330 			avl_insert(t, zv, where);
1331 		}
1332 	}
1333 	mutex_exit(&lwb->lwb_vdev_lock);
1334 }
1335 
1336 static void
1337 zil_lwb_flush_defer(lwb_t *lwb, lwb_t *nlwb)
1338 {
1339 	avl_tree_t *src = &lwb->lwb_vdev_tree;
1340 	avl_tree_t *dst = &nlwb->lwb_vdev_tree;
1341 	void *cookie = NULL;
1342 	zil_vdev_node_t *zv;
1343 
1344 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1345 	ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
1346 	ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
1347 
1348 	/*
1349 	 * While 'lwb' is at a point in its lifetime where lwb_vdev_tree does
1350 	 * not need the protection of lwb_vdev_lock (it will only be modified
1351 	 * while holding zilog->zl_lock) as its writes and those of its
1352 	 * children have all completed.  The younger 'nlwb' may be waiting on
1353 	 * future writes to additional vdevs.
1354 	 */
1355 	mutex_enter(&nlwb->lwb_vdev_lock);
1356 	/*
1357 	 * Tear down the 'lwb' vdev tree, ensuring that entries which do not
1358 	 * exist in 'nlwb' are moved to it, freeing any would-be duplicates.
1359 	 */
1360 	while ((zv = avl_destroy_nodes(src, &cookie)) != NULL) {
1361 		avl_index_t where;
1362 
1363 		if (avl_find(dst, zv, &where) == NULL) {
1364 			avl_insert(dst, zv, where);
1365 		} else {
1366 			kmem_free(zv, sizeof (*zv));
1367 		}
1368 	}
1369 	mutex_exit(&nlwb->lwb_vdev_lock);
1370 }
1371 
1372 void
1373 zil_lwb_add_txg(lwb_t *lwb, uint64_t txg)
1374 {
1375 	lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1376 }
1377 
1378 /*
1379  * This function is a called after all vdevs associated with a given lwb
1380  * write have completed their DKIOCFLUSHWRITECACHE command; or as soon
1381  * as the lwb write completes, if "zil_nocacheflush" is set. Further,
1382  * all "previous" lwb's will have completed before this function is
1383  * called; i.e. this function is called for all previous lwbs before
1384  * it's called for "this" lwb (enforced via zio the dependencies
1385  * configured in zil_lwb_set_zio_dependency()).
1386  *
1387  * The intention is for this function to be called as soon as the
1388  * contents of an lwb are considered "stable" on disk, and will survive
1389  * any sudden loss of power. At this point, any threads waiting for the
1390  * lwb to reach this state are signalled, and the "waiter" structures
1391  * are marked "done".
1392  */
1393 static void
1394 zil_lwb_flush_vdevs_done(zio_t *zio)
1395 {
1396 	lwb_t *lwb = zio->io_private;
1397 	zilog_t *zilog = lwb->lwb_zilog;
1398 	zil_commit_waiter_t *zcw;
1399 	itx_t *itx;
1400 	uint64_t txg;
1401 	list_t itxs, waiters;
1402 
1403 	spa_config_exit(zilog->zl_spa, SCL_STATE, lwb);
1404 
1405 	list_create(&itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
1406 	list_create(&waiters, sizeof (zil_commit_waiter_t),
1407 	    offsetof(zil_commit_waiter_t, zcw_node));
1408 
1409 	hrtime_t t = gethrtime() - lwb->lwb_issued_timestamp;
1410 
1411 	mutex_enter(&zilog->zl_lock);
1412 
1413 	zilog->zl_last_lwb_latency = (zilog->zl_last_lwb_latency * 7 + t) / 8;
1414 
1415 	lwb->lwb_root_zio = NULL;
1416 
1417 	if (zilog->zl_last_lwb_opened == lwb) {
1418 		/*
1419 		 * Remember the highest committed log sequence number
1420 		 * for ztest. We only update this value when all the log
1421 		 * writes succeeded, because ztest wants to ASSERT that
1422 		 * it got the whole log chain.
1423 		 */
1424 		zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1425 	}
1426 
1427 	list_move_tail(&itxs, &lwb->lwb_itxs);
1428 	list_move_tail(&waiters, &lwb->lwb_waiters);
1429 	txg = lwb->lwb_issued_txg;
1430 
1431 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1432 	lwb->lwb_state = LWB_STATE_FLUSH_DONE;
1433 
1434 	mutex_exit(&zilog->zl_lock);
1435 
1436 	while ((itx = list_remove_head(&itxs)) != NULL)
1437 		zil_itx_destroy(itx);
1438 	list_destroy(&itxs);
1439 
1440 	while ((zcw = list_remove_head(&waiters)) != NULL) {
1441 		mutex_enter(&zcw->zcw_lock);
1442 
1443 		zcw->zcw_lwb = NULL;
1444 		/*
1445 		 * We expect any ZIO errors from child ZIOs to have been
1446 		 * propagated "up" to this specific LWB's root ZIO, in
1447 		 * order for this error handling to work correctly. This
1448 		 * includes ZIO errors from either this LWB's write or
1449 		 * flush, as well as any errors from other dependent LWBs
1450 		 * (e.g. a root LWB ZIO that might be a child of this LWB).
1451 		 *
1452 		 * With that said, it's important to note that LWB flush
1453 		 * errors are not propagated up to the LWB root ZIO.
1454 		 * This is incorrect behavior, and results in VDEV flush
1455 		 * errors not being handled correctly here. See the
1456 		 * comment above the call to "zio_flush" for details.
1457 		 */
1458 
1459 		zcw->zcw_zio_error = zio->io_error;
1460 
1461 		ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1462 		zcw->zcw_done = B_TRUE;
1463 		cv_broadcast(&zcw->zcw_cv);
1464 
1465 		mutex_exit(&zcw->zcw_lock);
1466 	}
1467 	list_destroy(&waiters);
1468 
1469 	mutex_enter(&zilog->zl_lwb_io_lock);
1470 	ASSERT3U(zilog->zl_lwb_inflight[txg & TXG_MASK], >, 0);
1471 	zilog->zl_lwb_inflight[txg & TXG_MASK]--;
1472 	if (zilog->zl_lwb_inflight[txg & TXG_MASK] == 0)
1473 		cv_broadcast(&zilog->zl_lwb_io_cv);
1474 	mutex_exit(&zilog->zl_lwb_io_lock);
1475 }
1476 
1477 /*
1478  * Wait for the completion of all issued write/flush of that txg provided.
1479  * It guarantees zil_lwb_flush_vdevs_done() is called and returned.
1480  */
1481 static void
1482 zil_lwb_flush_wait_all(zilog_t *zilog, uint64_t txg)
1483 {
1484 	ASSERT3U(txg, ==, spa_syncing_txg(zilog->zl_spa));
1485 
1486 	mutex_enter(&zilog->zl_lwb_io_lock);
1487 	while (zilog->zl_lwb_inflight[txg & TXG_MASK] > 0)
1488 		cv_wait(&zilog->zl_lwb_io_cv, &zilog->zl_lwb_io_lock);
1489 	mutex_exit(&zilog->zl_lwb_io_lock);
1490 
1491 #ifdef ZFS_DEBUG
1492 	mutex_enter(&zilog->zl_lock);
1493 	mutex_enter(&zilog->zl_lwb_io_lock);
1494 	lwb_t *lwb = list_head(&zilog->zl_lwb_list);
1495 	while (lwb != NULL && lwb->lwb_max_txg <= txg) {
1496 		if (lwb->lwb_issued_txg <= txg) {
1497 			ASSERT(lwb->lwb_state != LWB_STATE_ISSUED);
1498 			ASSERT(lwb->lwb_state != LWB_STATE_WRITE_DONE);
1499 			IMPLY(lwb->lwb_issued_txg > 0,
1500 			    lwb->lwb_state == LWB_STATE_FLUSH_DONE);
1501 		}
1502 		IMPLY(lwb->lwb_state == LWB_STATE_WRITE_DONE ||
1503 		    lwb->lwb_state == LWB_STATE_FLUSH_DONE,
1504 		    lwb->lwb_buf == NULL);
1505 		lwb = list_next(&zilog->zl_lwb_list, lwb);
1506 	}
1507 	mutex_exit(&zilog->zl_lwb_io_lock);
1508 	mutex_exit(&zilog->zl_lock);
1509 #endif
1510 }
1511 
1512 /*
1513  * This is called when an lwb's write zio completes. The callback's
1514  * purpose is to issue the DKIOCFLUSHWRITECACHE commands for the vdevs
1515  * in the lwb's lwb_vdev_tree. The tree will contain the vdevs involved
1516  * in writing out this specific lwb's data, and in the case that cache
1517  * flushes have been deferred, vdevs involved in writing the data for
1518  * previous lwbs. The writes corresponding to all the vdevs in the
1519  * lwb_vdev_tree will have completed by the time this is called, due to
1520  * the zio dependencies configured in zil_lwb_set_zio_dependency(),
1521  * which takes deferred flushes into account. The lwb will be "done"
1522  * once zil_lwb_flush_vdevs_done() is called, which occurs in the zio
1523  * completion callback for the lwb's root zio.
1524  */
1525 static void
1526 zil_lwb_write_done(zio_t *zio)
1527 {
1528 	lwb_t *lwb = zio->io_private;
1529 	spa_t *spa = zio->io_spa;
1530 	zilog_t *zilog = lwb->lwb_zilog;
1531 	avl_tree_t *t = &lwb->lwb_vdev_tree;
1532 	void *cookie = NULL;
1533 	zil_vdev_node_t *zv;
1534 	lwb_t *nlwb;
1535 
1536 	ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0);
1537 
1538 	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1539 	ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
1540 	ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
1541 	ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
1542 	ASSERT(!BP_IS_GANG(zio->io_bp));
1543 	ASSERT(!BP_IS_HOLE(zio->io_bp));
1544 	ASSERT(BP_GET_FILL(zio->io_bp) == 0);
1545 
1546 	abd_free(zio->io_abd);
1547 	zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1548 	lwb->lwb_buf = NULL;
1549 
1550 	mutex_enter(&zilog->zl_lock);
1551 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED);
1552 	lwb->lwb_state = LWB_STATE_WRITE_DONE;
1553 	lwb->lwb_write_zio = NULL;
1554 	lwb->lwb_fastwrite = FALSE;
1555 	nlwb = list_next(&zilog->zl_lwb_list, lwb);
1556 	mutex_exit(&zilog->zl_lock);
1557 
1558 	if (avl_numnodes(t) == 0)
1559 		return;
1560 
1561 	/*
1562 	 * If there was an IO error, we're not going to call zio_flush()
1563 	 * on these vdevs, so we simply empty the tree and free the
1564 	 * nodes. We avoid calling zio_flush() since there isn't any
1565 	 * good reason for doing so, after the lwb block failed to be
1566 	 * written out.
1567 	 *
1568 	 * Additionally, we don't perform any further error handling at
1569 	 * this point (e.g. setting "zcw_zio_error" appropriately), as
1570 	 * we expect that to occur in "zil_lwb_flush_vdevs_done" (thus,
1571 	 * we expect any error seen here, to have been propagated to
1572 	 * that function).
1573 	 */
1574 	if (zio->io_error != 0) {
1575 		while ((zv = avl_destroy_nodes(t, &cookie)) != NULL)
1576 			kmem_free(zv, sizeof (*zv));
1577 		return;
1578 	}
1579 
1580 	/*
1581 	 * If this lwb does not have any threads waiting for it to
1582 	 * complete, we want to defer issuing the DKIOCFLUSHWRITECACHE
1583 	 * command to the vdevs written to by "this" lwb, and instead
1584 	 * rely on the "next" lwb to handle the DKIOCFLUSHWRITECACHE
1585 	 * command for those vdevs. Thus, we merge the vdev tree of
1586 	 * "this" lwb with the vdev tree of the "next" lwb in the list,
1587 	 * and assume the "next" lwb will handle flushing the vdevs (or
1588 	 * deferring the flush(s) again).
1589 	 *
1590 	 * This is a useful performance optimization, especially for
1591 	 * workloads with lots of async write activity and few sync
1592 	 * write and/or fsync activity, as it has the potential to
1593 	 * coalesce multiple flush commands to a vdev into one.
1594 	 */
1595 	if (list_is_empty(&lwb->lwb_waiters) && nlwb != NULL) {
1596 		zil_lwb_flush_defer(lwb, nlwb);
1597 		ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
1598 		return;
1599 	}
1600 
1601 	while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
1602 		vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
1603 		if (vd != NULL && !vd->vdev_nowritecache) {
1604 			/*
1605 			 * The "ZIO_FLAG_DONT_PROPAGATE" is currently
1606 			 * always used within "zio_flush". This means,
1607 			 * any errors when flushing the vdev(s), will
1608 			 * (unfortunately) not be handled correctly,
1609 			 * since these "zio_flush" errors will not be
1610 			 * propagated up to "zil_lwb_flush_vdevs_done".
1611 			 */
1612 			zio_flush(lwb->lwb_root_zio, vd);
1613 		}
1614 		kmem_free(zv, sizeof (*zv));
1615 	}
1616 }
1617 
1618 static void
1619 zil_lwb_set_zio_dependency(zilog_t *zilog, lwb_t *lwb)
1620 {
1621 	lwb_t *last_lwb_opened = zilog->zl_last_lwb_opened;
1622 
1623 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1624 	ASSERT(MUTEX_HELD(&zilog->zl_lock));
1625 
1626 	/*
1627 	 * The zilog's "zl_last_lwb_opened" field is used to build the
1628 	 * lwb/zio dependency chain, which is used to preserve the
1629 	 * ordering of lwb completions that is required by the semantics
1630 	 * of the ZIL. Each new lwb zio becomes a parent of the
1631 	 * "previous" lwb zio, such that the new lwb's zio cannot
1632 	 * complete until the "previous" lwb's zio completes.
1633 	 *
1634 	 * This is required by the semantics of zil_commit(); the commit
1635 	 * waiters attached to the lwbs will be woken in the lwb zio's
1636 	 * completion callback, so this zio dependency graph ensures the
1637 	 * waiters are woken in the correct order (the same order the
1638 	 * lwbs were created).
1639 	 */
1640 	if (last_lwb_opened != NULL &&
1641 	    last_lwb_opened->lwb_state != LWB_STATE_FLUSH_DONE) {
1642 		ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1643 		    last_lwb_opened->lwb_state == LWB_STATE_ISSUED ||
1644 		    last_lwb_opened->lwb_state == LWB_STATE_WRITE_DONE);
1645 
1646 		ASSERT3P(last_lwb_opened->lwb_root_zio, !=, NULL);
1647 		zio_add_child(lwb->lwb_root_zio,
1648 		    last_lwb_opened->lwb_root_zio);
1649 
1650 		/*
1651 		 * If the previous lwb's write hasn't already completed,
1652 		 * we also want to order the completion of the lwb write
1653 		 * zios (above, we only order the completion of the lwb
1654 		 * root zios). This is required because of how we can
1655 		 * defer the DKIOCFLUSHWRITECACHE commands for each lwb.
1656 		 *
1657 		 * When the DKIOCFLUSHWRITECACHE commands are deferred,
1658 		 * the previous lwb will rely on this lwb to flush the
1659 		 * vdevs written to by that previous lwb. Thus, we need
1660 		 * to ensure this lwb doesn't issue the flush until
1661 		 * after the previous lwb's write completes. We ensure
1662 		 * this ordering by setting the zio parent/child
1663 		 * relationship here.
1664 		 *
1665 		 * Without this relationship on the lwb's write zio,
1666 		 * it's possible for this lwb's write to complete prior
1667 		 * to the previous lwb's write completing; and thus, the
1668 		 * vdevs for the previous lwb would be flushed prior to
1669 		 * that lwb's data being written to those vdevs (the
1670 		 * vdevs are flushed in the lwb write zio's completion
1671 		 * handler, zil_lwb_write_done()).
1672 		 */
1673 		if (last_lwb_opened->lwb_state != LWB_STATE_WRITE_DONE) {
1674 			ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1675 			    last_lwb_opened->lwb_state == LWB_STATE_ISSUED);
1676 
1677 			ASSERT3P(last_lwb_opened->lwb_write_zio, !=, NULL);
1678 			zio_add_child(lwb->lwb_write_zio,
1679 			    last_lwb_opened->lwb_write_zio);
1680 		}
1681 	}
1682 }
1683 
1684 
1685 /*
1686  * This function's purpose is to "open" an lwb such that it is ready to
1687  * accept new itxs being committed to it. To do this, the lwb's zio
1688  * structures are created, and linked to the lwb. This function is
1689  * idempotent; if the passed in lwb has already been opened, this
1690  * function is essentially a no-op.
1691  */
1692 static void
1693 zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb)
1694 {
1695 	zbookmark_phys_t zb;
1696 	zio_priority_t prio;
1697 
1698 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1699 	ASSERT3P(lwb, !=, NULL);
1700 	EQUIV(lwb->lwb_root_zio == NULL, lwb->lwb_state == LWB_STATE_CLOSED);
1701 	EQUIV(lwb->lwb_root_zio != NULL, lwb->lwb_state == LWB_STATE_OPENED);
1702 
1703 	if (lwb->lwb_root_zio != NULL)
1704 		return;
1705 
1706 	lwb->lwb_root_zio = zio_root(zilog->zl_spa,
1707 	    zil_lwb_flush_vdevs_done, lwb, ZIO_FLAG_CANFAIL);
1708 
1709 	abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf,
1710 	    BP_GET_LSIZE(&lwb->lwb_blk));
1711 
1712 	if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk)
1713 		prio = ZIO_PRIORITY_SYNC_WRITE;
1714 	else
1715 		prio = ZIO_PRIORITY_ASYNC_WRITE;
1716 
1717 	SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1718 	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
1719 	    lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
1720 
1721 	/* Lock so zil_sync() doesn't fastwrite_unmark after zio is created */
1722 	mutex_enter(&zilog->zl_lock);
1723 	if (!lwb->lwb_fastwrite) {
1724 		metaslab_fastwrite_mark(zilog->zl_spa, &lwb->lwb_blk);
1725 		lwb->lwb_fastwrite = 1;
1726 	}
1727 
1728 	lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio, zilog->zl_spa, 0,
1729 	    &lwb->lwb_blk, lwb_abd, BP_GET_LSIZE(&lwb->lwb_blk),
1730 	    zil_lwb_write_done, lwb, prio,
1731 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_FASTWRITE, &zb);
1732 
1733 	lwb->lwb_state = LWB_STATE_OPENED;
1734 
1735 	zil_lwb_set_zio_dependency(zilog, lwb);
1736 	zilog->zl_last_lwb_opened = lwb;
1737 	mutex_exit(&zilog->zl_lock);
1738 }
1739 
1740 /*
1741  * Define a limited set of intent log block sizes.
1742  *
1743  * These must be a multiple of 4KB. Note only the amount used (again
1744  * aligned to 4KB) actually gets written. However, we can't always just
1745  * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
1746  */
1747 static const struct {
1748 	uint64_t	limit;
1749 	uint64_t	blksz;
1750 } zil_block_buckets[] = {
1751 	{ 4096,		4096 },			/* non TX_WRITE */
1752 	{ 8192 + 4096,	8192 + 4096 },		/* database */
1753 	{ 32768 + 4096,	32768 + 4096 },		/* NFS writes */
1754 	{ 65536 + 4096,	65536 + 4096 },		/* 64KB writes */
1755 	{ 131072,	131072 },		/* < 128KB writes */
1756 	{ 131072 +4096,	65536 + 4096 },		/* 128KB writes */
1757 	{ UINT64_MAX,	SPA_OLD_MAXBLOCKSIZE},	/* > 128KB writes */
1758 };
1759 
1760 /*
1761  * Maximum block size used by the ZIL.  This is picked up when the ZIL is
1762  * initialized.  Otherwise this should not be used directly; see
1763  * zl_max_block_size instead.
1764  */
1765 static uint_t zil_maxblocksize = SPA_OLD_MAXBLOCKSIZE;
1766 
1767 /*
1768  * Close the log block for being issued and allocate the next one.
1769  * Has to be called under zl_issuer_lock to chain more lwbs.
1770  */
1771 static lwb_t *
1772 zil_lwb_write_close(zilog_t *zilog, lwb_t *lwb, list_t *ilwbs)
1773 {
1774 	lwb_t *nlwb = NULL;
1775 	zil_chain_t *zilc;
1776 	spa_t *spa = zilog->zl_spa;
1777 	blkptr_t *bp;
1778 	dmu_tx_t *tx;
1779 	uint64_t txg;
1780 	uint64_t zil_blksz;
1781 	int i, error;
1782 	boolean_t slog;
1783 
1784 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1785 	ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1786 	ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1787 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1788 
1789 	/*
1790 	 * If this lwb includes indirect writes, we have to commit before
1791 	 * creating the transaction, otherwise we may end up in dead lock.
1792 	 */
1793 	if (lwb->lwb_indirect) {
1794 		for (itx_t *itx = list_head(&lwb->lwb_itxs); itx;
1795 		    itx = list_next(&lwb->lwb_itxs, itx))
1796 			zil_lwb_commit(zilog, lwb, itx);
1797 		lwb->lwb_nused = lwb->lwb_nfilled;
1798 	}
1799 
1800 	/*
1801 	 * Allocate the next block and save its address in this block
1802 	 * before writing it in order to establish the log chain.
1803 	 */
1804 
1805 	tx = dmu_tx_create(zilog->zl_os);
1806 
1807 	/*
1808 	 * Since we are not going to create any new dirty data, and we
1809 	 * can even help with clearing the existing dirty data, we
1810 	 * should not be subject to the dirty data based delays. We
1811 	 * use TXG_NOTHROTTLE to bypass the delay mechanism.
1812 	 */
1813 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE));
1814 
1815 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1816 	txg = dmu_tx_get_txg(tx);
1817 
1818 	mutex_enter(&zilog->zl_lwb_io_lock);
1819 	lwb->lwb_issued_txg = txg;
1820 	zilog->zl_lwb_inflight[txg & TXG_MASK]++;
1821 	zilog->zl_lwb_max_issued_txg = MAX(txg, zilog->zl_lwb_max_issued_txg);
1822 	mutex_exit(&zilog->zl_lwb_io_lock);
1823 
1824 	/*
1825 	 * Log blocks are pre-allocated. Here we select the size of the next
1826 	 * block, based on size used in the last block.
1827 	 * - first find the smallest bucket that will fit the block from a
1828 	 *   limited set of block sizes. This is because it's faster to write
1829 	 *   blocks allocated from the same metaslab as they are adjacent or
1830 	 *   close.
1831 	 * - next find the maximum from the new suggested size and an array of
1832 	 *   previous sizes. This lessens a picket fence effect of wrongly
1833 	 *   guessing the size if we have a stream of say 2k, 64k, 2k, 64k
1834 	 *   requests.
1835 	 *
1836 	 * Note we only write what is used, but we can't just allocate
1837 	 * the maximum block size because we can exhaust the available
1838 	 * pool log space.
1839 	 */
1840 	zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
1841 	for (i = 0; zil_blksz > zil_block_buckets[i].limit; i++)
1842 		continue;
1843 	zil_blksz = MIN(zil_block_buckets[i].blksz, zilog->zl_max_block_size);
1844 	zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
1845 	for (i = 0; i < ZIL_PREV_BLKS; i++)
1846 		zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
1847 	DTRACE_PROBE3(zil__block__size, zilog_t *, zilog,
1848 	    uint64_t, zil_blksz,
1849 	    uint64_t, zilog->zl_prev_blks[zilog->zl_prev_rotor]);
1850 	zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
1851 
1852 	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2)
1853 		zilc = (zil_chain_t *)lwb->lwb_buf;
1854 	else
1855 		zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
1856 	bp = &zilc->zc_next_blk;
1857 	BP_ZERO(bp);
1858 	error = zio_alloc_zil(spa, zilog->zl_os, txg, bp, zil_blksz, &slog);
1859 	if (error == 0) {
1860 		ASSERT3U(bp->blk_birth, ==, txg);
1861 		bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1862 		bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1863 
1864 		/*
1865 		 * Allocate a new log write block (lwb).
1866 		 */
1867 		nlwb = zil_alloc_lwb(zilog, bp, slog, txg, TRUE);
1868 	}
1869 
1870 	lwb->lwb_state = LWB_STATE_ISSUED;
1871 
1872 	dmu_tx_commit(tx);
1873 
1874 	/*
1875 	 * We need to acquire the config lock for the lwb to issue it later.
1876 	 * However, if we already have a queue of closed parent lwbs already
1877 	 * holding the config lock (but not yet issued), we can't block here
1878 	 * waiting on the lock or we will deadlock.  In that case we must
1879 	 * first issue to parent IOs before waiting on the lock.
1880 	 */
1881 	if (ilwbs && !list_is_empty(ilwbs)) {
1882 		if (!spa_config_tryenter(spa, SCL_STATE, lwb, RW_READER)) {
1883 			lwb_t *tlwb;
1884 			while ((tlwb = list_remove_head(ilwbs)) != NULL)
1885 				zil_lwb_write_issue(zilog, tlwb);
1886 			spa_config_enter(spa, SCL_STATE, lwb, RW_READER);
1887 		}
1888 	} else {
1889 		spa_config_enter(spa, SCL_STATE, lwb, RW_READER);
1890 	}
1891 
1892 	if (ilwbs)
1893 		list_insert_tail(ilwbs, lwb);
1894 
1895 	/*
1896 	 * If there was an allocation failure then nlwb will be null which
1897 	 * forces a txg_wait_synced().
1898 	 */
1899 	return (nlwb);
1900 }
1901 
1902 /*
1903  * Finalize previously closed block and issue the write zio.
1904  * Does not require locking.
1905  */
1906 static void
1907 zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb)
1908 {
1909 	zil_chain_t *zilc;
1910 	int wsz;
1911 
1912 	/* Actually fill the lwb with the data if not yet. */
1913 	if (!lwb->lwb_indirect) {
1914 		for (itx_t *itx = list_head(&lwb->lwb_itxs); itx;
1915 		    itx = list_next(&lwb->lwb_itxs, itx))
1916 			zil_lwb_commit(zilog, lwb, itx);
1917 		lwb->lwb_nused = lwb->lwb_nfilled;
1918 	}
1919 
1920 	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1921 		/* For Slim ZIL only write what is used. */
1922 		wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, int);
1923 		ASSERT3S(wsz, <=, lwb->lwb_sz);
1924 		zio_shrink(lwb->lwb_write_zio, wsz);
1925 		wsz = lwb->lwb_write_zio->io_size;
1926 
1927 		zilc = (zil_chain_t *)lwb->lwb_buf;
1928 	} else {
1929 		wsz = lwb->lwb_sz;
1930 		zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
1931 	}
1932 	zilc->zc_pad = 0;
1933 	zilc->zc_nused = lwb->lwb_nused;
1934 	zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1935 
1936 	/*
1937 	 * clear unused data for security
1938 	 */
1939 	memset(lwb->lwb_buf + lwb->lwb_nused, 0, wsz - lwb->lwb_nused);
1940 
1941 	if (lwb->lwb_slog) {
1942 		ZIL_STAT_BUMP(zilog, zil_itx_metaslab_slog_count);
1943 		ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_bytes,
1944 		    lwb->lwb_nused);
1945 		ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_write,
1946 		    wsz);
1947 		ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_alloc,
1948 		    BP_GET_LSIZE(&lwb->lwb_blk));
1949 	} else {
1950 		ZIL_STAT_BUMP(zilog, zil_itx_metaslab_normal_count);
1951 		ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_bytes,
1952 		    lwb->lwb_nused);
1953 		ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_write,
1954 		    wsz);
1955 		ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_alloc,
1956 		    BP_GET_LSIZE(&lwb->lwb_blk));
1957 	}
1958 	ASSERT(spa_config_held(zilog->zl_spa, SCL_STATE, RW_READER));
1959 	zil_lwb_add_block(lwb, &lwb->lwb_blk);
1960 	lwb->lwb_issued_timestamp = gethrtime();
1961 	zio_nowait(lwb->lwb_root_zio);
1962 	zio_nowait(lwb->lwb_write_zio);
1963 }
1964 
1965 /*
1966  * Maximum amount of data that can be put into single log block.
1967  */
1968 uint64_t
1969 zil_max_log_data(zilog_t *zilog, size_t hdrsize)
1970 {
1971 	return (zilog->zl_max_block_size - sizeof (zil_chain_t) - hdrsize);
1972 }
1973 
1974 /*
1975  * Maximum amount of log space we agree to waste to reduce number of
1976  * WR_NEED_COPY chunks to reduce zl_get_data() overhead (~12%).
1977  */
1978 static inline uint64_t
1979 zil_max_waste_space(zilog_t *zilog)
1980 {
1981 	return (zil_max_log_data(zilog, sizeof (lr_write_t)) / 8);
1982 }
1983 
1984 /*
1985  * Maximum amount of write data for WR_COPIED.  For correctness, consumers
1986  * must fall back to WR_NEED_COPY if we can't fit the entire record into one
1987  * maximum sized log block, because each WR_COPIED record must fit in a
1988  * single log block.  For space efficiency, we want to fit two records into a
1989  * max-sized log block.
1990  */
1991 uint64_t
1992 zil_max_copied_data(zilog_t *zilog)
1993 {
1994 	return ((zilog->zl_max_block_size - sizeof (zil_chain_t)) / 2 -
1995 	    sizeof (lr_write_t));
1996 }
1997 
1998 /*
1999  * Estimate space needed in the lwb for the itx.  Allocate more lwbs or
2000  * split the itx as needed, but don't touch the actual transaction data.
2001  * Has to be called under zl_issuer_lock to call zil_lwb_write_close()
2002  * to chain more lwbs.
2003  */
2004 static lwb_t *
2005 zil_lwb_assign(zilog_t *zilog, lwb_t *lwb, itx_t *itx, list_t *ilwbs)
2006 {
2007 	itx_t *citx;
2008 	lr_t *lr, *clr;
2009 	lr_write_t *lrw;
2010 	uint64_t dlen, dnow, lwb_sp, reclen, max_log_data;
2011 
2012 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2013 	ASSERT3P(lwb, !=, NULL);
2014 	ASSERT3P(lwb->lwb_buf, !=, NULL);
2015 
2016 	zil_lwb_write_open(zilog, lwb);
2017 
2018 	lr = &itx->itx_lr;
2019 	lrw = (lr_write_t *)lr;
2020 
2021 	/*
2022 	 * A commit itx doesn't represent any on-disk state; instead
2023 	 * it's simply used as a place holder on the commit list, and
2024 	 * provides a mechanism for attaching a "commit waiter" onto the
2025 	 * correct lwb (such that the waiter can be signalled upon
2026 	 * completion of that lwb). Thus, we don't process this itx's
2027 	 * log record if it's a commit itx (these itx's don't have log
2028 	 * records), and instead link the itx's waiter onto the lwb's
2029 	 * list of waiters.
2030 	 *
2031 	 * For more details, see the comment above zil_commit().
2032 	 */
2033 	if (lr->lrc_txtype == TX_COMMIT) {
2034 		mutex_enter(&zilog->zl_lock);
2035 		zil_commit_waiter_link_lwb(itx->itx_private, lwb);
2036 		itx->itx_private = NULL;
2037 		mutex_exit(&zilog->zl_lock);
2038 		list_insert_tail(&lwb->lwb_itxs, itx);
2039 		return (lwb);
2040 	}
2041 
2042 	if (lr->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
2043 		dlen = P2ROUNDUP_TYPED(
2044 		    lrw->lr_length, sizeof (uint64_t), uint64_t);
2045 	} else {
2046 		dlen = 0;
2047 	}
2048 	reclen = lr->lrc_reclen;
2049 	zilog->zl_cur_used += (reclen + dlen);
2050 
2051 cont:
2052 	/*
2053 	 * If this record won't fit in the current log block, start a new one.
2054 	 * For WR_NEED_COPY optimize layout for minimal number of chunks.
2055 	 */
2056 	lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
2057 	max_log_data = zil_max_log_data(zilog, sizeof (lr_write_t));
2058 	if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
2059 	    lwb_sp < zil_max_waste_space(zilog) &&
2060 	    (dlen % max_log_data == 0 ||
2061 	    lwb_sp < reclen + dlen % max_log_data))) {
2062 		lwb = zil_lwb_write_close(zilog, lwb, ilwbs);
2063 		if (lwb == NULL)
2064 			return (NULL);
2065 		zil_lwb_write_open(zilog, lwb);
2066 		lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
2067 
2068 		/*
2069 		 * There must be enough space in the new, empty log block to
2070 		 * hold reclen.  For WR_COPIED, we need to fit the whole
2071 		 * record in one block, and reclen is the header size + the
2072 		 * data size. For WR_NEED_COPY, we can create multiple
2073 		 * records, splitting the data into multiple blocks, so we
2074 		 * only need to fit one word of data per block; in this case
2075 		 * reclen is just the header size (no data).
2076 		 */
2077 		ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp);
2078 	}
2079 
2080 	dnow = MIN(dlen, lwb_sp - reclen);
2081 	if (dlen > dnow) {
2082 		ASSERT3U(lr->lrc_txtype, ==, TX_WRITE);
2083 		ASSERT3U(itx->itx_wr_state, ==, WR_NEED_COPY);
2084 		citx = zil_itx_clone(itx);
2085 		clr = &citx->itx_lr;
2086 		lr_write_t *clrw = (lr_write_t *)clr;
2087 		clrw->lr_length = dnow;
2088 		lrw->lr_offset += dnow;
2089 		lrw->lr_length -= dnow;
2090 	} else {
2091 		citx = itx;
2092 		clr = lr;
2093 	}
2094 
2095 	/*
2096 	 * We're actually making an entry, so update lrc_seq to be the
2097 	 * log record sequence number.  Note that this is generally not
2098 	 * equal to the itx sequence number because not all transactions
2099 	 * are synchronous, and sometimes spa_sync() gets there first.
2100 	 */
2101 	clr->lrc_seq = ++zilog->zl_lr_seq;
2102 
2103 	lwb->lwb_nused += reclen + dnow;
2104 	ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
2105 	ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
2106 
2107 	zil_lwb_add_txg(lwb, lr->lrc_txg);
2108 	list_insert_tail(&lwb->lwb_itxs, citx);
2109 
2110 	dlen -= dnow;
2111 	if (dlen > 0) {
2112 		zilog->zl_cur_used += reclen;
2113 		goto cont;
2114 	}
2115 
2116 	/*
2117 	 * We have to really issue all queued LWBs before we may have to
2118 	 * wait for a txg sync.  Otherwise we may end up in a dead lock.
2119 	 */
2120 	if (lr->lrc_txtype == TX_WRITE) {
2121 		boolean_t frozen = lr->lrc_txg > spa_freeze_txg(zilog->zl_spa);
2122 		if (frozen || itx->itx_wr_state == WR_INDIRECT) {
2123 			lwb_t *tlwb;
2124 			while ((tlwb = list_remove_head(ilwbs)) != NULL)
2125 				zil_lwb_write_issue(zilog, tlwb);
2126 		}
2127 		if (itx->itx_wr_state == WR_INDIRECT)
2128 			lwb->lwb_indirect = B_TRUE;
2129 		if (frozen)
2130 			txg_wait_synced(zilog->zl_dmu_pool, lr->lrc_txg);
2131 	}
2132 
2133 	return (lwb);
2134 }
2135 
2136 /*
2137  * Fill the actual transaction data into the lwb, following zil_lwb_assign().
2138  * Does not require locking.
2139  */
2140 static void
2141 zil_lwb_commit(zilog_t *zilog, lwb_t *lwb, itx_t *itx)
2142 {
2143 	lr_t *lr, *lrb;
2144 	lr_write_t *lrw, *lrwb;
2145 	char *lr_buf;
2146 	uint64_t dlen, reclen;
2147 
2148 	lr = &itx->itx_lr;
2149 	lrw = (lr_write_t *)lr;
2150 
2151 	if (lr->lrc_txtype == TX_COMMIT)
2152 		return;
2153 
2154 	if (lr->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
2155 		dlen = P2ROUNDUP_TYPED(
2156 		    lrw->lr_length, sizeof (uint64_t), uint64_t);
2157 	} else {
2158 		dlen = 0;
2159 	}
2160 	reclen = lr->lrc_reclen;
2161 	ASSERT3U(reclen + dlen, <=, lwb->lwb_nused - lwb->lwb_nfilled);
2162 
2163 	lr_buf = lwb->lwb_buf + lwb->lwb_nfilled;
2164 	memcpy(lr_buf, lr, reclen);
2165 	lrb = (lr_t *)lr_buf;		/* Like lr, but inside lwb. */
2166 	lrwb = (lr_write_t *)lrb;	/* Like lrw, but inside lwb. */
2167 
2168 	ZIL_STAT_BUMP(zilog, zil_itx_count);
2169 
2170 	/*
2171 	 * If it's a write, fetch the data or get its blkptr as appropriate.
2172 	 */
2173 	if (lr->lrc_txtype == TX_WRITE) {
2174 		if (itx->itx_wr_state == WR_COPIED) {
2175 			ZIL_STAT_BUMP(zilog, zil_itx_copied_count);
2176 			ZIL_STAT_INCR(zilog, zil_itx_copied_bytes,
2177 			    lrw->lr_length);
2178 		} else {
2179 			char *dbuf;
2180 			int error;
2181 
2182 			if (itx->itx_wr_state == WR_NEED_COPY) {
2183 				dbuf = lr_buf + reclen;
2184 				lrb->lrc_reclen += dlen;
2185 				ZIL_STAT_BUMP(zilog, zil_itx_needcopy_count);
2186 				ZIL_STAT_INCR(zilog, zil_itx_needcopy_bytes,
2187 				    dlen);
2188 			} else {
2189 				ASSERT3S(itx->itx_wr_state, ==, WR_INDIRECT);
2190 				dbuf = NULL;
2191 				ZIL_STAT_BUMP(zilog, zil_itx_indirect_count);
2192 				ZIL_STAT_INCR(zilog, zil_itx_indirect_bytes,
2193 				    lrw->lr_length);
2194 			}
2195 
2196 			/*
2197 			 * We pass in the "lwb_write_zio" rather than
2198 			 * "lwb_root_zio" so that the "lwb_write_zio"
2199 			 * becomes the parent of any zio's created by
2200 			 * the "zl_get_data" callback. The vdevs are
2201 			 * flushed after the "lwb_write_zio" completes,
2202 			 * so we want to make sure that completion
2203 			 * callback waits for these additional zio's,
2204 			 * such that the vdevs used by those zio's will
2205 			 * be included in the lwb's vdev tree, and those
2206 			 * vdevs will be properly flushed. If we passed
2207 			 * in "lwb_root_zio" here, then these additional
2208 			 * vdevs may not be flushed; e.g. if these zio's
2209 			 * completed after "lwb_write_zio" completed.
2210 			 */
2211 			error = zilog->zl_get_data(itx->itx_private,
2212 			    itx->itx_gen, lrwb, dbuf, lwb,
2213 			    lwb->lwb_write_zio);
2214 			if (dbuf != NULL && error == 0) {
2215 				/* Zero any padding bytes in the last block. */
2216 				memset((char *)dbuf + lrwb->lr_length, 0,
2217 				    dlen - lrwb->lr_length);
2218 			}
2219 
2220 			/*
2221 			 * Typically, the only return values we should see from
2222 			 * ->zl_get_data() are 0, EIO, ENOENT, EEXIST or
2223 			 *  EALREADY. However, it is also possible to see other
2224 			 *  error values such as ENOSPC or EINVAL from
2225 			 *  dmu_read() -> dnode_hold() -> dnode_hold_impl() or
2226 			 *  ENXIO as well as a multitude of others from the
2227 			 *  block layer through dmu_buf_hold() -> dbuf_read()
2228 			 *  -> zio_wait(), as well as through dmu_read() ->
2229 			 *  dnode_hold() -> dnode_hold_impl() -> dbuf_read() ->
2230 			 *  zio_wait(). When these errors happen, we can assume
2231 			 *  that neither an immediate write nor an indirect
2232 			 *  write occurred, so we need to fall back to
2233 			 *  txg_wait_synced(). This is unusual, so we print to
2234 			 *  dmesg whenever one of these errors occurs.
2235 			 */
2236 			switch (error) {
2237 			case 0:
2238 				break;
2239 			default:
2240 				cmn_err(CE_WARN, "zil_lwb_commit() received "
2241 				    "unexpected error %d from ->zl_get_data()"
2242 				    ". Falling back to txg_wait_synced().",
2243 				    error);
2244 				zfs_fallthrough;
2245 			case EIO:
2246 				if (lwb->lwb_indirect) {
2247 					txg_wait_synced(zilog->zl_dmu_pool,
2248 					    lr->lrc_txg);
2249 				} else {
2250 					lwb->lwb_write_zio->io_error = error;
2251 				}
2252 				zfs_fallthrough;
2253 			case ENOENT:
2254 				zfs_fallthrough;
2255 			case EEXIST:
2256 				zfs_fallthrough;
2257 			case EALREADY:
2258 				return;
2259 			}
2260 		}
2261 	}
2262 
2263 	lwb->lwb_nfilled += reclen + dlen;
2264 	ASSERT3S(lwb->lwb_nfilled, <=, lwb->lwb_nused);
2265 	ASSERT0(P2PHASE(lwb->lwb_nfilled, sizeof (uint64_t)));
2266 }
2267 
2268 itx_t *
2269 zil_itx_create(uint64_t txtype, size_t olrsize)
2270 {
2271 	size_t itxsize, lrsize;
2272 	itx_t *itx;
2273 
2274 	lrsize = P2ROUNDUP_TYPED(olrsize, sizeof (uint64_t), size_t);
2275 	itxsize = offsetof(itx_t, itx_lr) + lrsize;
2276 
2277 	itx = zio_data_buf_alloc(itxsize);
2278 	itx->itx_lr.lrc_txtype = txtype;
2279 	itx->itx_lr.lrc_reclen = lrsize;
2280 	itx->itx_lr.lrc_seq = 0;	/* defensive */
2281 	memset((char *)&itx->itx_lr + olrsize, 0, lrsize - olrsize);
2282 	itx->itx_sync = B_TRUE;		/* default is synchronous */
2283 	itx->itx_callback = NULL;
2284 	itx->itx_callback_data = NULL;
2285 	itx->itx_size = itxsize;
2286 
2287 	return (itx);
2288 }
2289 
2290 static itx_t *
2291 zil_itx_clone(itx_t *oitx)
2292 {
2293 	itx_t *itx = zio_data_buf_alloc(oitx->itx_size);
2294 	memcpy(itx, oitx, oitx->itx_size);
2295 	itx->itx_callback = NULL;
2296 	itx->itx_callback_data = NULL;
2297 	return (itx);
2298 }
2299 
2300 void
2301 zil_itx_destroy(itx_t *itx)
2302 {
2303 	IMPLY(itx->itx_lr.lrc_txtype == TX_COMMIT, itx->itx_callback == NULL);
2304 	IMPLY(itx->itx_callback != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
2305 
2306 	if (itx->itx_callback != NULL)
2307 		itx->itx_callback(itx->itx_callback_data);
2308 
2309 	zio_data_buf_free(itx, itx->itx_size);
2310 }
2311 
2312 /*
2313  * Free up the sync and async itxs. The itxs_t has already been detached
2314  * so no locks are needed.
2315  */
2316 static void
2317 zil_itxg_clean(void *arg)
2318 {
2319 	itx_t *itx;
2320 	list_t *list;
2321 	avl_tree_t *t;
2322 	void *cookie;
2323 	itxs_t *itxs = arg;
2324 	itx_async_node_t *ian;
2325 
2326 	list = &itxs->i_sync_list;
2327 	while ((itx = list_remove_head(list)) != NULL) {
2328 		/*
2329 		 * In the general case, commit itxs will not be found
2330 		 * here, as they'll be committed to an lwb via
2331 		 * zil_lwb_assign(), and free'd in that function. Having
2332 		 * said that, it is still possible for commit itxs to be
2333 		 * found here, due to the following race:
2334 		 *
2335 		 *	- a thread calls zil_commit() which assigns the
2336 		 *	  commit itx to a per-txg i_sync_list
2337 		 *	- zil_itxg_clean() is called (e.g. via spa_sync())
2338 		 *	  while the waiter is still on the i_sync_list
2339 		 *
2340 		 * There's nothing to prevent syncing the txg while the
2341 		 * waiter is on the i_sync_list. This normally doesn't
2342 		 * happen because spa_sync() is slower than zil_commit(),
2343 		 * but if zil_commit() calls txg_wait_synced() (e.g.
2344 		 * because zil_create() or zil_commit_writer_stall() is
2345 		 * called) we will hit this case.
2346 		 */
2347 		if (itx->itx_lr.lrc_txtype == TX_COMMIT)
2348 			zil_commit_waiter_skip(itx->itx_private);
2349 
2350 		zil_itx_destroy(itx);
2351 	}
2352 
2353 	cookie = NULL;
2354 	t = &itxs->i_async_tree;
2355 	while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
2356 		list = &ian->ia_list;
2357 		while ((itx = list_remove_head(list)) != NULL) {
2358 			/* commit itxs should never be on the async lists. */
2359 			ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
2360 			zil_itx_destroy(itx);
2361 		}
2362 		list_destroy(list);
2363 		kmem_free(ian, sizeof (itx_async_node_t));
2364 	}
2365 	avl_destroy(t);
2366 
2367 	kmem_free(itxs, sizeof (itxs_t));
2368 }
2369 
2370 static int
2371 zil_aitx_compare(const void *x1, const void *x2)
2372 {
2373 	const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
2374 	const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
2375 
2376 	return (TREE_CMP(o1, o2));
2377 }
2378 
2379 /*
2380  * Remove all async itx with the given oid.
2381  */
2382 void
2383 zil_remove_async(zilog_t *zilog, uint64_t oid)
2384 {
2385 	uint64_t otxg, txg;
2386 	itx_async_node_t *ian;
2387 	avl_tree_t *t;
2388 	avl_index_t where;
2389 	list_t clean_list;
2390 	itx_t *itx;
2391 
2392 	ASSERT(oid != 0);
2393 	list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
2394 
2395 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2396 		otxg = ZILTEST_TXG;
2397 	else
2398 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2399 
2400 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2401 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2402 
2403 		mutex_enter(&itxg->itxg_lock);
2404 		if (itxg->itxg_txg != txg) {
2405 			mutex_exit(&itxg->itxg_lock);
2406 			continue;
2407 		}
2408 
2409 		/*
2410 		 * Locate the object node and append its list.
2411 		 */
2412 		t = &itxg->itxg_itxs->i_async_tree;
2413 		ian = avl_find(t, &oid, &where);
2414 		if (ian != NULL)
2415 			list_move_tail(&clean_list, &ian->ia_list);
2416 		mutex_exit(&itxg->itxg_lock);
2417 	}
2418 	while ((itx = list_remove_head(&clean_list)) != NULL) {
2419 		/* commit itxs should never be on the async lists. */
2420 		ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
2421 		zil_itx_destroy(itx);
2422 	}
2423 	list_destroy(&clean_list);
2424 }
2425 
2426 void
2427 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
2428 {
2429 	uint64_t txg;
2430 	itxg_t *itxg;
2431 	itxs_t *itxs, *clean = NULL;
2432 
2433 	/*
2434 	 * Ensure the data of a renamed file is committed before the rename.
2435 	 */
2436 	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
2437 		zil_async_to_sync(zilog, itx->itx_oid);
2438 
2439 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
2440 		txg = ZILTEST_TXG;
2441 	else
2442 		txg = dmu_tx_get_txg(tx);
2443 
2444 	itxg = &zilog->zl_itxg[txg & TXG_MASK];
2445 	mutex_enter(&itxg->itxg_lock);
2446 	itxs = itxg->itxg_itxs;
2447 	if (itxg->itxg_txg != txg) {
2448 		if (itxs != NULL) {
2449 			/*
2450 			 * The zil_clean callback hasn't got around to cleaning
2451 			 * this itxg. Save the itxs for release below.
2452 			 * This should be rare.
2453 			 */
2454 			zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
2455 			    "txg %llu", (u_longlong_t)itxg->itxg_txg);
2456 			clean = itxg->itxg_itxs;
2457 		}
2458 		itxg->itxg_txg = txg;
2459 		itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t),
2460 		    KM_SLEEP);
2461 
2462 		list_create(&itxs->i_sync_list, sizeof (itx_t),
2463 		    offsetof(itx_t, itx_node));
2464 		avl_create(&itxs->i_async_tree, zil_aitx_compare,
2465 		    sizeof (itx_async_node_t),
2466 		    offsetof(itx_async_node_t, ia_node));
2467 	}
2468 	if (itx->itx_sync) {
2469 		list_insert_tail(&itxs->i_sync_list, itx);
2470 	} else {
2471 		avl_tree_t *t = &itxs->i_async_tree;
2472 		uint64_t foid =
2473 		    LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid);
2474 		itx_async_node_t *ian;
2475 		avl_index_t where;
2476 
2477 		ian = avl_find(t, &foid, &where);
2478 		if (ian == NULL) {
2479 			ian = kmem_alloc(sizeof (itx_async_node_t),
2480 			    KM_SLEEP);
2481 			list_create(&ian->ia_list, sizeof (itx_t),
2482 			    offsetof(itx_t, itx_node));
2483 			ian->ia_foid = foid;
2484 			avl_insert(t, ian, where);
2485 		}
2486 		list_insert_tail(&ian->ia_list, itx);
2487 	}
2488 
2489 	itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
2490 
2491 	/*
2492 	 * We don't want to dirty the ZIL using ZILTEST_TXG, because
2493 	 * zil_clean() will never be called using ZILTEST_TXG. Thus, we
2494 	 * need to be careful to always dirty the ZIL using the "real"
2495 	 * TXG (not itxg_txg) even when the SPA is frozen.
2496 	 */
2497 	zilog_dirty(zilog, dmu_tx_get_txg(tx));
2498 	mutex_exit(&itxg->itxg_lock);
2499 
2500 	/* Release the old itxs now we've dropped the lock */
2501 	if (clean != NULL)
2502 		zil_itxg_clean(clean);
2503 }
2504 
2505 /*
2506  * If there are any in-memory intent log transactions which have now been
2507  * synced then start up a taskq to free them. We should only do this after we
2508  * have written out the uberblocks (i.e. txg has been committed) so that
2509  * don't inadvertently clean out in-memory log records that would be required
2510  * by zil_commit().
2511  */
2512 void
2513 zil_clean(zilog_t *zilog, uint64_t synced_txg)
2514 {
2515 	itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
2516 	itxs_t *clean_me;
2517 
2518 	ASSERT3U(synced_txg, <, ZILTEST_TXG);
2519 
2520 	mutex_enter(&itxg->itxg_lock);
2521 	if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
2522 		mutex_exit(&itxg->itxg_lock);
2523 		return;
2524 	}
2525 	ASSERT3U(itxg->itxg_txg, <=, synced_txg);
2526 	ASSERT3U(itxg->itxg_txg, !=, 0);
2527 	clean_me = itxg->itxg_itxs;
2528 	itxg->itxg_itxs = NULL;
2529 	itxg->itxg_txg = 0;
2530 	mutex_exit(&itxg->itxg_lock);
2531 	/*
2532 	 * Preferably start a task queue to free up the old itxs but
2533 	 * if taskq_dispatch can't allocate resources to do that then
2534 	 * free it in-line. This should be rare. Note, using TQ_SLEEP
2535 	 * created a bad performance problem.
2536 	 */
2537 	ASSERT3P(zilog->zl_dmu_pool, !=, NULL);
2538 	ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL);
2539 	taskqid_t id = taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq,
2540 	    zil_itxg_clean, clean_me, TQ_NOSLEEP);
2541 	if (id == TASKQID_INVALID)
2542 		zil_itxg_clean(clean_me);
2543 }
2544 
2545 /*
2546  * This function will traverse the queue of itxs that need to be
2547  * committed, and move them onto the ZIL's zl_itx_commit_list.
2548  */
2549 static uint64_t
2550 zil_get_commit_list(zilog_t *zilog)
2551 {
2552 	uint64_t otxg, txg, wtxg = 0;
2553 	list_t *commit_list = &zilog->zl_itx_commit_list;
2554 
2555 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2556 
2557 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2558 		otxg = ZILTEST_TXG;
2559 	else
2560 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2561 
2562 	/*
2563 	 * This is inherently racy, since there is nothing to prevent
2564 	 * the last synced txg from changing. That's okay since we'll
2565 	 * only commit things in the future.
2566 	 */
2567 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2568 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2569 
2570 		mutex_enter(&itxg->itxg_lock);
2571 		if (itxg->itxg_txg != txg) {
2572 			mutex_exit(&itxg->itxg_lock);
2573 			continue;
2574 		}
2575 
2576 		/*
2577 		 * If we're adding itx records to the zl_itx_commit_list,
2578 		 * then the zil better be dirty in this "txg". We can assert
2579 		 * that here since we're holding the itxg_lock which will
2580 		 * prevent spa_sync from cleaning it. Once we add the itxs
2581 		 * to the zl_itx_commit_list we must commit it to disk even
2582 		 * if it's unnecessary (i.e. the txg was synced).
2583 		 */
2584 		ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
2585 		    spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
2586 		list_t *sync_list = &itxg->itxg_itxs->i_sync_list;
2587 		if (unlikely(zilog->zl_suspend > 0)) {
2588 			/*
2589 			 * ZIL was just suspended, but we lost the race.
2590 			 * Allow all earlier itxs to be committed, but ask
2591 			 * caller to do txg_wait_synced(txg) for any new.
2592 			 */
2593 			if (!list_is_empty(sync_list))
2594 				wtxg = MAX(wtxg, txg);
2595 		} else {
2596 			list_move_tail(commit_list, sync_list);
2597 		}
2598 
2599 		mutex_exit(&itxg->itxg_lock);
2600 	}
2601 	return (wtxg);
2602 }
2603 
2604 /*
2605  * Move the async itxs for a specified object to commit into sync lists.
2606  */
2607 void
2608 zil_async_to_sync(zilog_t *zilog, uint64_t foid)
2609 {
2610 	uint64_t otxg, txg;
2611 	itx_async_node_t *ian;
2612 	avl_tree_t *t;
2613 	avl_index_t where;
2614 
2615 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2616 		otxg = ZILTEST_TXG;
2617 	else
2618 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2619 
2620 	/*
2621 	 * This is inherently racy, since there is nothing to prevent
2622 	 * the last synced txg from changing.
2623 	 */
2624 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2625 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2626 
2627 		mutex_enter(&itxg->itxg_lock);
2628 		if (itxg->itxg_txg != txg) {
2629 			mutex_exit(&itxg->itxg_lock);
2630 			continue;
2631 		}
2632 
2633 		/*
2634 		 * If a foid is specified then find that node and append its
2635 		 * list. Otherwise walk the tree appending all the lists
2636 		 * to the sync list. We add to the end rather than the
2637 		 * beginning to ensure the create has happened.
2638 		 */
2639 		t = &itxg->itxg_itxs->i_async_tree;
2640 		if (foid != 0) {
2641 			ian = avl_find(t, &foid, &where);
2642 			if (ian != NULL) {
2643 				list_move_tail(&itxg->itxg_itxs->i_sync_list,
2644 				    &ian->ia_list);
2645 			}
2646 		} else {
2647 			void *cookie = NULL;
2648 
2649 			while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
2650 				list_move_tail(&itxg->itxg_itxs->i_sync_list,
2651 				    &ian->ia_list);
2652 				list_destroy(&ian->ia_list);
2653 				kmem_free(ian, sizeof (itx_async_node_t));
2654 			}
2655 		}
2656 		mutex_exit(&itxg->itxg_lock);
2657 	}
2658 }
2659 
2660 /*
2661  * This function will prune commit itxs that are at the head of the
2662  * commit list (it won't prune past the first non-commit itx), and
2663  * either: a) attach them to the last lwb that's still pending
2664  * completion, or b) skip them altogether.
2665  *
2666  * This is used as a performance optimization to prevent commit itxs
2667  * from generating new lwbs when it's unnecessary to do so.
2668  */
2669 static void
2670 zil_prune_commit_list(zilog_t *zilog)
2671 {
2672 	itx_t *itx;
2673 
2674 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2675 
2676 	while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) {
2677 		lr_t *lrc = &itx->itx_lr;
2678 		if (lrc->lrc_txtype != TX_COMMIT)
2679 			break;
2680 
2681 		mutex_enter(&zilog->zl_lock);
2682 
2683 		lwb_t *last_lwb = zilog->zl_last_lwb_opened;
2684 		if (last_lwb == NULL ||
2685 		    last_lwb->lwb_state == LWB_STATE_FLUSH_DONE) {
2686 			/*
2687 			 * All of the itxs this waiter was waiting on
2688 			 * must have already completed (or there were
2689 			 * never any itx's for it to wait on), so it's
2690 			 * safe to skip this waiter and mark it done.
2691 			 */
2692 			zil_commit_waiter_skip(itx->itx_private);
2693 		} else {
2694 			zil_commit_waiter_link_lwb(itx->itx_private, last_lwb);
2695 			itx->itx_private = NULL;
2696 		}
2697 
2698 		mutex_exit(&zilog->zl_lock);
2699 
2700 		list_remove(&zilog->zl_itx_commit_list, itx);
2701 		zil_itx_destroy(itx);
2702 	}
2703 
2704 	IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
2705 }
2706 
2707 static void
2708 zil_commit_writer_stall(zilog_t *zilog)
2709 {
2710 	/*
2711 	 * When zio_alloc_zil() fails to allocate the next lwb block on
2712 	 * disk, we must call txg_wait_synced() to ensure all of the
2713 	 * lwbs in the zilog's zl_lwb_list are synced and then freed (in
2714 	 * zil_sync()), such that any subsequent ZIL writer (i.e. a call
2715 	 * to zil_process_commit_list()) will have to call zil_create(),
2716 	 * and start a new ZIL chain.
2717 	 *
2718 	 * Since zil_alloc_zil() failed, the lwb that was previously
2719 	 * issued does not have a pointer to the "next" lwb on disk.
2720 	 * Thus, if another ZIL writer thread was to allocate the "next"
2721 	 * on-disk lwb, that block could be leaked in the event of a
2722 	 * crash (because the previous lwb on-disk would not point to
2723 	 * it).
2724 	 *
2725 	 * We must hold the zilog's zl_issuer_lock while we do this, to
2726 	 * ensure no new threads enter zil_process_commit_list() until
2727 	 * all lwb's in the zl_lwb_list have been synced and freed
2728 	 * (which is achieved via the txg_wait_synced() call).
2729 	 */
2730 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2731 	txg_wait_synced(zilog->zl_dmu_pool, 0);
2732 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
2733 }
2734 
2735 /*
2736  * This function will traverse the commit list, creating new lwbs as
2737  * needed, and committing the itxs from the commit list to these newly
2738  * created lwbs. Additionally, as a new lwb is created, the previous
2739  * lwb will be issued to the zio layer to be written to disk.
2740  */
2741 static void
2742 zil_process_commit_list(zilog_t *zilog, zil_commit_waiter_t *zcw, list_t *ilwbs)
2743 {
2744 	spa_t *spa = zilog->zl_spa;
2745 	list_t nolwb_itxs;
2746 	list_t nolwb_waiters;
2747 	lwb_t *lwb, *plwb;
2748 	itx_t *itx;
2749 	boolean_t first = B_TRUE;
2750 
2751 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2752 
2753 	/*
2754 	 * Return if there's nothing to commit before we dirty the fs by
2755 	 * calling zil_create().
2756 	 */
2757 	if (list_is_empty(&zilog->zl_itx_commit_list))
2758 		return;
2759 
2760 	list_create(&nolwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
2761 	list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t),
2762 	    offsetof(zil_commit_waiter_t, zcw_node));
2763 
2764 	lwb = list_tail(&zilog->zl_lwb_list);
2765 	if (lwb == NULL) {
2766 		lwb = zil_create(zilog);
2767 	} else {
2768 		/*
2769 		 * Activate SPA_FEATURE_ZILSAXATTR for the cases where ZIL will
2770 		 * have already been created (zl_lwb_list not empty).
2771 		 */
2772 		zil_commit_activate_saxattr_feature(zilog);
2773 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2774 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
2775 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
2776 		first = (lwb->lwb_state != LWB_STATE_OPENED) &&
2777 		    ((plwb = list_prev(&zilog->zl_lwb_list, lwb)) == NULL ||
2778 		    plwb->lwb_state == LWB_STATE_FLUSH_DONE);
2779 	}
2780 
2781 	while ((itx = list_remove_head(&zilog->zl_itx_commit_list)) != NULL) {
2782 		lr_t *lrc = &itx->itx_lr;
2783 		uint64_t txg = lrc->lrc_txg;
2784 
2785 		ASSERT3U(txg, !=, 0);
2786 
2787 		if (lrc->lrc_txtype == TX_COMMIT) {
2788 			DTRACE_PROBE2(zil__process__commit__itx,
2789 			    zilog_t *, zilog, itx_t *, itx);
2790 		} else {
2791 			DTRACE_PROBE2(zil__process__normal__itx,
2792 			    zilog_t *, zilog, itx_t *, itx);
2793 		}
2794 
2795 		boolean_t synced = txg <= spa_last_synced_txg(spa);
2796 		boolean_t frozen = txg > spa_freeze_txg(spa);
2797 
2798 		/*
2799 		 * If the txg of this itx has already been synced out, then
2800 		 * we don't need to commit this itx to an lwb. This is
2801 		 * because the data of this itx will have already been
2802 		 * written to the main pool. This is inherently racy, and
2803 		 * it's still ok to commit an itx whose txg has already
2804 		 * been synced; this will result in a write that's
2805 		 * unnecessary, but will do no harm.
2806 		 *
2807 		 * With that said, we always want to commit TX_COMMIT itxs
2808 		 * to an lwb, regardless of whether or not that itx's txg
2809 		 * has been synced out. We do this to ensure any OPENED lwb
2810 		 * will always have at least one zil_commit_waiter_t linked
2811 		 * to the lwb.
2812 		 *
2813 		 * As a counter-example, if we skipped TX_COMMIT itx's
2814 		 * whose txg had already been synced, the following
2815 		 * situation could occur if we happened to be racing with
2816 		 * spa_sync:
2817 		 *
2818 		 * 1. We commit a non-TX_COMMIT itx to an lwb, where the
2819 		 *    itx's txg is 10 and the last synced txg is 9.
2820 		 * 2. spa_sync finishes syncing out txg 10.
2821 		 * 3. We move to the next itx in the list, it's a TX_COMMIT
2822 		 *    whose txg is 10, so we skip it rather than committing
2823 		 *    it to the lwb used in (1).
2824 		 *
2825 		 * If the itx that is skipped in (3) is the last TX_COMMIT
2826 		 * itx in the commit list, than it's possible for the lwb
2827 		 * used in (1) to remain in the OPENED state indefinitely.
2828 		 *
2829 		 * To prevent the above scenario from occurring, ensuring
2830 		 * that once an lwb is OPENED it will transition to ISSUED
2831 		 * and eventually DONE, we always commit TX_COMMIT itx's to
2832 		 * an lwb here, even if that itx's txg has already been
2833 		 * synced.
2834 		 *
2835 		 * Finally, if the pool is frozen, we _always_ commit the
2836 		 * itx.  The point of freezing the pool is to prevent data
2837 		 * from being written to the main pool via spa_sync, and
2838 		 * instead rely solely on the ZIL to persistently store the
2839 		 * data; i.e.  when the pool is frozen, the last synced txg
2840 		 * value can't be trusted.
2841 		 */
2842 		if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) {
2843 			if (lwb != NULL) {
2844 				lwb = zil_lwb_assign(zilog, lwb, itx, ilwbs);
2845 				if (lwb == NULL) {
2846 					list_insert_tail(&nolwb_itxs, itx);
2847 				} else if ((zcw->zcw_lwb != NULL &&
2848 				    zcw->zcw_lwb != lwb) || zcw->zcw_done) {
2849 					/*
2850 					 * Our lwb is done, leave the rest of
2851 					 * itx list to somebody else who care.
2852 					 */
2853 					first = B_FALSE;
2854 					break;
2855 				}
2856 			} else {
2857 				if (lrc->lrc_txtype == TX_COMMIT) {
2858 					zil_commit_waiter_link_nolwb(
2859 					    itx->itx_private, &nolwb_waiters);
2860 				}
2861 				list_insert_tail(&nolwb_itxs, itx);
2862 			}
2863 		} else {
2864 			ASSERT3S(lrc->lrc_txtype, !=, TX_COMMIT);
2865 			zil_itx_destroy(itx);
2866 		}
2867 	}
2868 
2869 	if (lwb == NULL) {
2870 		/*
2871 		 * This indicates zio_alloc_zil() failed to allocate the
2872 		 * "next" lwb on-disk. When this happens, we must stall
2873 		 * the ZIL write pipeline; see the comment within
2874 		 * zil_commit_writer_stall() for more details.
2875 		 */
2876 		while ((lwb = list_remove_head(ilwbs)) != NULL)
2877 			zil_lwb_write_issue(zilog, lwb);
2878 		zil_commit_writer_stall(zilog);
2879 
2880 		/*
2881 		 * Additionally, we have to signal and mark the "nolwb"
2882 		 * waiters as "done" here, since without an lwb, we
2883 		 * can't do this via zil_lwb_flush_vdevs_done() like
2884 		 * normal.
2885 		 */
2886 		zil_commit_waiter_t *zcw;
2887 		while ((zcw = list_remove_head(&nolwb_waiters)) != NULL)
2888 			zil_commit_waiter_skip(zcw);
2889 
2890 		/*
2891 		 * And finally, we have to destroy the itx's that
2892 		 * couldn't be committed to an lwb; this will also call
2893 		 * the itx's callback if one exists for the itx.
2894 		 */
2895 		while ((itx = list_remove_head(&nolwb_itxs)) != NULL)
2896 			zil_itx_destroy(itx);
2897 	} else {
2898 		ASSERT(list_is_empty(&nolwb_waiters));
2899 		ASSERT3P(lwb, !=, NULL);
2900 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2901 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
2902 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
2903 
2904 		/*
2905 		 * At this point, the ZIL block pointed at by the "lwb"
2906 		 * variable is in one of the following states: "closed"
2907 		 * or "open".
2908 		 *
2909 		 * If it's "closed", then no itxs have been committed to
2910 		 * it, so there's no point in issuing its zio (i.e. it's
2911 		 * "empty").
2912 		 *
2913 		 * If it's "open", then it contains one or more itxs that
2914 		 * eventually need to be committed to stable storage. In
2915 		 * this case we intentionally do not issue the lwb's zio
2916 		 * to disk yet, and instead rely on one of the following
2917 		 * two mechanisms for issuing the zio:
2918 		 *
2919 		 * 1. Ideally, there will be more ZIL activity occurring
2920 		 * on the system, such that this function will be
2921 		 * immediately called again (not necessarily by the same
2922 		 * thread) and this lwb's zio will be issued via
2923 		 * zil_lwb_assign(). This way, the lwb is guaranteed to
2924 		 * be "full" when it is issued to disk, and we'll make
2925 		 * use of the lwb's size the best we can.
2926 		 *
2927 		 * 2. If there isn't sufficient ZIL activity occurring on
2928 		 * the system, such that this lwb's zio isn't issued via
2929 		 * zil_lwb_assign(), zil_commit_waiter() will issue the
2930 		 * lwb's zio. If this occurs, the lwb is not guaranteed
2931 		 * to be "full" by the time its zio is issued, and means
2932 		 * the size of the lwb was "too large" given the amount
2933 		 * of ZIL activity occurring on the system at that time.
2934 		 *
2935 		 * We do this for a couple of reasons:
2936 		 *
2937 		 * 1. To try and reduce the number of IOPs needed to
2938 		 * write the same number of itxs. If an lwb has space
2939 		 * available in its buffer for more itxs, and more itxs
2940 		 * will be committed relatively soon (relative to the
2941 		 * latency of performing a write), then it's beneficial
2942 		 * to wait for these "next" itxs. This way, more itxs
2943 		 * can be committed to stable storage with fewer writes.
2944 		 *
2945 		 * 2. To try and use the largest lwb block size that the
2946 		 * incoming rate of itxs can support. Again, this is to
2947 		 * try and pack as many itxs into as few lwbs as
2948 		 * possible, without significantly impacting the latency
2949 		 * of each individual itx.
2950 		 *
2951 		 * If we had no already running or open LWBs, it can be
2952 		 * the workload is single-threaded.  And if the ZIL write
2953 		 * latency is very small or if the LWB is almost full, it
2954 		 * may be cheaper to bypass the delay.
2955 		 */
2956 		if (lwb->lwb_state == LWB_STATE_OPENED && first) {
2957 			hrtime_t sleep = zilog->zl_last_lwb_latency *
2958 			    zfs_commit_timeout_pct / 100;
2959 			if (sleep < zil_min_commit_timeout ||
2960 			    lwb->lwb_sz - lwb->lwb_nused < lwb->lwb_sz / 8) {
2961 				lwb = zil_lwb_write_close(zilog, lwb, ilwbs);
2962 				zilog->zl_cur_used = 0;
2963 				if (lwb == NULL) {
2964 					while ((lwb = list_remove_head(ilwbs))
2965 					    != NULL)
2966 						zil_lwb_write_issue(zilog, lwb);
2967 					zil_commit_writer_stall(zilog);
2968 				}
2969 			}
2970 		}
2971 	}
2972 }
2973 
2974 /*
2975  * This function is responsible for ensuring the passed in commit waiter
2976  * (and associated commit itx) is committed to an lwb. If the waiter is
2977  * not already committed to an lwb, all itxs in the zilog's queue of
2978  * itxs will be processed. The assumption is the passed in waiter's
2979  * commit itx will found in the queue just like the other non-commit
2980  * itxs, such that when the entire queue is processed, the waiter will
2981  * have been committed to an lwb.
2982  *
2983  * The lwb associated with the passed in waiter is not guaranteed to
2984  * have been issued by the time this function completes. If the lwb is
2985  * not issued, we rely on future calls to zil_commit_writer() to issue
2986  * the lwb, or the timeout mechanism found in zil_commit_waiter().
2987  */
2988 static uint64_t
2989 zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw)
2990 {
2991 	list_t ilwbs;
2992 	lwb_t *lwb;
2993 	uint64_t wtxg = 0;
2994 
2995 	ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2996 	ASSERT(spa_writeable(zilog->zl_spa));
2997 
2998 	list_create(&ilwbs, sizeof (lwb_t), offsetof(lwb_t, lwb_issue_node));
2999 	mutex_enter(&zilog->zl_issuer_lock);
3000 
3001 	if (zcw->zcw_lwb != NULL || zcw->zcw_done) {
3002 		/*
3003 		 * It's possible that, while we were waiting to acquire
3004 		 * the "zl_issuer_lock", another thread committed this
3005 		 * waiter to an lwb. If that occurs, we bail out early,
3006 		 * without processing any of the zilog's queue of itxs.
3007 		 *
3008 		 * On certain workloads and system configurations, the
3009 		 * "zl_issuer_lock" can become highly contended. In an
3010 		 * attempt to reduce this contention, we immediately drop
3011 		 * the lock if the waiter has already been processed.
3012 		 *
3013 		 * We've measured this optimization to reduce CPU spent
3014 		 * contending on this lock by up to 5%, using a system
3015 		 * with 32 CPUs, low latency storage (~50 usec writes),
3016 		 * and 1024 threads performing sync writes.
3017 		 */
3018 		goto out;
3019 	}
3020 
3021 	ZIL_STAT_BUMP(zilog, zil_commit_writer_count);
3022 
3023 	wtxg = zil_get_commit_list(zilog);
3024 	zil_prune_commit_list(zilog);
3025 	zil_process_commit_list(zilog, zcw, &ilwbs);
3026 
3027 out:
3028 	mutex_exit(&zilog->zl_issuer_lock);
3029 	while ((lwb = list_remove_head(&ilwbs)) != NULL)
3030 		zil_lwb_write_issue(zilog, lwb);
3031 	list_destroy(&ilwbs);
3032 	return (wtxg);
3033 }
3034 
3035 static void
3036 zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw)
3037 {
3038 	ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
3039 	ASSERT(MUTEX_HELD(&zcw->zcw_lock));
3040 	ASSERT3B(zcw->zcw_done, ==, B_FALSE);
3041 
3042 	lwb_t *lwb = zcw->zcw_lwb;
3043 	ASSERT3P(lwb, !=, NULL);
3044 	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_CLOSED);
3045 
3046 	/*
3047 	 * If the lwb has already been issued by another thread, we can
3048 	 * immediately return since there's no work to be done (the
3049 	 * point of this function is to issue the lwb). Additionally, we
3050 	 * do this prior to acquiring the zl_issuer_lock, to avoid
3051 	 * acquiring it when it's not necessary to do so.
3052 	 */
3053 	if (lwb->lwb_state == LWB_STATE_ISSUED ||
3054 	    lwb->lwb_state == LWB_STATE_WRITE_DONE ||
3055 	    lwb->lwb_state == LWB_STATE_FLUSH_DONE)
3056 		return;
3057 
3058 	/*
3059 	 * In order to call zil_lwb_write_close() we must hold the
3060 	 * zilog's "zl_issuer_lock". We can't simply acquire that lock,
3061 	 * since we're already holding the commit waiter's "zcw_lock",
3062 	 * and those two locks are acquired in the opposite order
3063 	 * elsewhere.
3064 	 */
3065 	mutex_exit(&zcw->zcw_lock);
3066 	mutex_enter(&zilog->zl_issuer_lock);
3067 	mutex_enter(&zcw->zcw_lock);
3068 
3069 	/*
3070 	 * Since we just dropped and re-acquired the commit waiter's
3071 	 * lock, we have to re-check to see if the waiter was marked
3072 	 * "done" during that process. If the waiter was marked "done",
3073 	 * the "lwb" pointer is no longer valid (it can be free'd after
3074 	 * the waiter is marked "done"), so without this check we could
3075 	 * wind up with a use-after-free error below.
3076 	 */
3077 	if (zcw->zcw_done) {
3078 		lwb = NULL;
3079 		goto out;
3080 	}
3081 
3082 	ASSERT3P(lwb, ==, zcw->zcw_lwb);
3083 
3084 	/*
3085 	 * We've already checked this above, but since we hadn't acquired
3086 	 * the zilog's zl_issuer_lock, we have to perform this check a
3087 	 * second time while holding the lock.
3088 	 *
3089 	 * We don't need to hold the zl_lock since the lwb cannot transition
3090 	 * from OPENED to ISSUED while we hold the zl_issuer_lock. The lwb
3091 	 * _can_ transition from ISSUED to DONE, but it's OK to race with
3092 	 * that transition since we treat the lwb the same, whether it's in
3093 	 * the ISSUED or DONE states.
3094 	 *
3095 	 * The important thing, is we treat the lwb differently depending on
3096 	 * if it's ISSUED or OPENED, and block any other threads that might
3097 	 * attempt to issue this lwb. For that reason we hold the
3098 	 * zl_issuer_lock when checking the lwb_state; we must not call
3099 	 * zil_lwb_write_close() if the lwb had already been issued.
3100 	 *
3101 	 * See the comment above the lwb_state_t structure definition for
3102 	 * more details on the lwb states, and locking requirements.
3103 	 */
3104 	if (lwb->lwb_state == LWB_STATE_ISSUED ||
3105 	    lwb->lwb_state == LWB_STATE_WRITE_DONE ||
3106 	    lwb->lwb_state == LWB_STATE_FLUSH_DONE) {
3107 		lwb = NULL;
3108 		goto out;
3109 	}
3110 
3111 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
3112 
3113 	/*
3114 	 * As described in the comments above zil_commit_waiter() and
3115 	 * zil_process_commit_list(), we need to issue this lwb's zio
3116 	 * since we've reached the commit waiter's timeout and it still
3117 	 * hasn't been issued.
3118 	 */
3119 	lwb_t *nlwb = zil_lwb_write_close(zilog, lwb, NULL);
3120 
3121 	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
3122 
3123 	/*
3124 	 * Since the lwb's zio hadn't been issued by the time this thread
3125 	 * reached its timeout, we reset the zilog's "zl_cur_used" field
3126 	 * to influence the zil block size selection algorithm.
3127 	 *
3128 	 * By having to issue the lwb's zio here, it means the size of the
3129 	 * lwb was too large, given the incoming throughput of itxs.  By
3130 	 * setting "zl_cur_used" to zero, we communicate this fact to the
3131 	 * block size selection algorithm, so it can take this information
3132 	 * into account, and potentially select a smaller size for the
3133 	 * next lwb block that is allocated.
3134 	 */
3135 	zilog->zl_cur_used = 0;
3136 
3137 	if (nlwb == NULL) {
3138 		/*
3139 		 * When zil_lwb_write_close() returns NULL, this
3140 		 * indicates zio_alloc_zil() failed to allocate the
3141 		 * "next" lwb on-disk. When this occurs, the ZIL write
3142 		 * pipeline must be stalled; see the comment within the
3143 		 * zil_commit_writer_stall() function for more details.
3144 		 *
3145 		 * We must drop the commit waiter's lock prior to
3146 		 * calling zil_commit_writer_stall() or else we can wind
3147 		 * up with the following deadlock:
3148 		 *
3149 		 * - This thread is waiting for the txg to sync while
3150 		 *   holding the waiter's lock; txg_wait_synced() is
3151 		 *   used within txg_commit_writer_stall().
3152 		 *
3153 		 * - The txg can't sync because it is waiting for this
3154 		 *   lwb's zio callback to call dmu_tx_commit().
3155 		 *
3156 		 * - The lwb's zio callback can't call dmu_tx_commit()
3157 		 *   because it's blocked trying to acquire the waiter's
3158 		 *   lock, which occurs prior to calling dmu_tx_commit()
3159 		 */
3160 		mutex_exit(&zcw->zcw_lock);
3161 		zil_lwb_write_issue(zilog, lwb);
3162 		lwb = NULL;
3163 		zil_commit_writer_stall(zilog);
3164 		mutex_enter(&zcw->zcw_lock);
3165 	}
3166 
3167 out:
3168 	mutex_exit(&zilog->zl_issuer_lock);
3169 	if (lwb)
3170 		zil_lwb_write_issue(zilog, lwb);
3171 	ASSERT(MUTEX_HELD(&zcw->zcw_lock));
3172 }
3173 
3174 /*
3175  * This function is responsible for performing the following two tasks:
3176  *
3177  * 1. its primary responsibility is to block until the given "commit
3178  *    waiter" is considered "done".
3179  *
3180  * 2. its secondary responsibility is to issue the zio for the lwb that
3181  *    the given "commit waiter" is waiting on, if this function has
3182  *    waited "long enough" and the lwb is still in the "open" state.
3183  *
3184  * Given a sufficient amount of itxs being generated and written using
3185  * the ZIL, the lwb's zio will be issued via the zil_lwb_assign()
3186  * function. If this does not occur, this secondary responsibility will
3187  * ensure the lwb is issued even if there is not other synchronous
3188  * activity on the system.
3189  *
3190  * For more details, see zil_process_commit_list(); more specifically,
3191  * the comment at the bottom of that function.
3192  */
3193 static void
3194 zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw)
3195 {
3196 	ASSERT(!MUTEX_HELD(&zilog->zl_lock));
3197 	ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
3198 	ASSERT(spa_writeable(zilog->zl_spa));
3199 
3200 	mutex_enter(&zcw->zcw_lock);
3201 
3202 	/*
3203 	 * The timeout is scaled based on the lwb latency to avoid
3204 	 * significantly impacting the latency of each individual itx.
3205 	 * For more details, see the comment at the bottom of the
3206 	 * zil_process_commit_list() function.
3207 	 */
3208 	int pct = MAX(zfs_commit_timeout_pct, 1);
3209 	hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100;
3210 	hrtime_t wakeup = gethrtime() + sleep;
3211 	boolean_t timedout = B_FALSE;
3212 
3213 	while (!zcw->zcw_done) {
3214 		ASSERT(MUTEX_HELD(&zcw->zcw_lock));
3215 
3216 		lwb_t *lwb = zcw->zcw_lwb;
3217 
3218 		/*
3219 		 * Usually, the waiter will have a non-NULL lwb field here,
3220 		 * but it's possible for it to be NULL as a result of
3221 		 * zil_commit() racing with spa_sync().
3222 		 *
3223 		 * When zil_clean() is called, it's possible for the itxg
3224 		 * list (which may be cleaned via a taskq) to contain
3225 		 * commit itxs. When this occurs, the commit waiters linked
3226 		 * off of these commit itxs will not be committed to an
3227 		 * lwb.  Additionally, these commit waiters will not be
3228 		 * marked done until zil_commit_waiter_skip() is called via
3229 		 * zil_itxg_clean().
3230 		 *
3231 		 * Thus, it's possible for this commit waiter (i.e. the
3232 		 * "zcw" variable) to be found in this "in between" state;
3233 		 * where it's "zcw_lwb" field is NULL, and it hasn't yet
3234 		 * been skipped, so it's "zcw_done" field is still B_FALSE.
3235 		 */
3236 		IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_CLOSED);
3237 
3238 		if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) {
3239 			ASSERT3B(timedout, ==, B_FALSE);
3240 
3241 			/*
3242 			 * If the lwb hasn't been issued yet, then we
3243 			 * need to wait with a timeout, in case this
3244 			 * function needs to issue the lwb after the
3245 			 * timeout is reached; responsibility (2) from
3246 			 * the comment above this function.
3247 			 */
3248 			int rc = cv_timedwait_hires(&zcw->zcw_cv,
3249 			    &zcw->zcw_lock, wakeup, USEC2NSEC(1),
3250 			    CALLOUT_FLAG_ABSOLUTE);
3251 
3252 			if (rc != -1 || zcw->zcw_done)
3253 				continue;
3254 
3255 			timedout = B_TRUE;
3256 			zil_commit_waiter_timeout(zilog, zcw);
3257 
3258 			if (!zcw->zcw_done) {
3259 				/*
3260 				 * If the commit waiter has already been
3261 				 * marked "done", it's possible for the
3262 				 * waiter's lwb structure to have already
3263 				 * been freed.  Thus, we can only reliably
3264 				 * make these assertions if the waiter
3265 				 * isn't done.
3266 				 */
3267 				ASSERT3P(lwb, ==, zcw->zcw_lwb);
3268 				ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
3269 			}
3270 		} else {
3271 			/*
3272 			 * If the lwb isn't open, then it must have already
3273 			 * been issued. In that case, there's no need to
3274 			 * use a timeout when waiting for the lwb to
3275 			 * complete.
3276 			 *
3277 			 * Additionally, if the lwb is NULL, the waiter
3278 			 * will soon be signaled and marked done via
3279 			 * zil_clean() and zil_itxg_clean(), so no timeout
3280 			 * is required.
3281 			 */
3282 
3283 			IMPLY(lwb != NULL,
3284 			    lwb->lwb_state == LWB_STATE_ISSUED ||
3285 			    lwb->lwb_state == LWB_STATE_WRITE_DONE ||
3286 			    lwb->lwb_state == LWB_STATE_FLUSH_DONE);
3287 			cv_wait(&zcw->zcw_cv, &zcw->zcw_lock);
3288 		}
3289 	}
3290 
3291 	mutex_exit(&zcw->zcw_lock);
3292 }
3293 
3294 static zil_commit_waiter_t *
3295 zil_alloc_commit_waiter(void)
3296 {
3297 	zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP);
3298 
3299 	cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL);
3300 	mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL);
3301 	list_link_init(&zcw->zcw_node);
3302 	zcw->zcw_lwb = NULL;
3303 	zcw->zcw_done = B_FALSE;
3304 	zcw->zcw_zio_error = 0;
3305 
3306 	return (zcw);
3307 }
3308 
3309 static void
3310 zil_free_commit_waiter(zil_commit_waiter_t *zcw)
3311 {
3312 	ASSERT(!list_link_active(&zcw->zcw_node));
3313 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
3314 	ASSERT3B(zcw->zcw_done, ==, B_TRUE);
3315 	mutex_destroy(&zcw->zcw_lock);
3316 	cv_destroy(&zcw->zcw_cv);
3317 	kmem_cache_free(zil_zcw_cache, zcw);
3318 }
3319 
3320 /*
3321  * This function is used to create a TX_COMMIT itx and assign it. This
3322  * way, it will be linked into the ZIL's list of synchronous itxs, and
3323  * then later committed to an lwb (or skipped) when
3324  * zil_process_commit_list() is called.
3325  */
3326 static void
3327 zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw)
3328 {
3329 	dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
3330 
3331 	/*
3332 	 * Since we are not going to create any new dirty data, and we
3333 	 * can even help with clearing the existing dirty data, we
3334 	 * should not be subject to the dirty data based delays. We
3335 	 * use TXG_NOTHROTTLE to bypass the delay mechanism.
3336 	 */
3337 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE));
3338 
3339 	itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t));
3340 	itx->itx_sync = B_TRUE;
3341 	itx->itx_private = zcw;
3342 
3343 	zil_itx_assign(zilog, itx, tx);
3344 
3345 	dmu_tx_commit(tx);
3346 }
3347 
3348 /*
3349  * Commit ZFS Intent Log transactions (itxs) to stable storage.
3350  *
3351  * When writing ZIL transactions to the on-disk representation of the
3352  * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple
3353  * itxs can be committed to a single lwb. Once a lwb is written and
3354  * committed to stable storage (i.e. the lwb is written, and vdevs have
3355  * been flushed), each itx that was committed to that lwb is also
3356  * considered to be committed to stable storage.
3357  *
3358  * When an itx is committed to an lwb, the log record (lr_t) contained
3359  * by the itx is copied into the lwb's zio buffer, and once this buffer
3360  * is written to disk, it becomes an on-disk ZIL block.
3361  *
3362  * As itxs are generated, they're inserted into the ZIL's queue of
3363  * uncommitted itxs. The semantics of zil_commit() are such that it will
3364  * block until all itxs that were in the queue when it was called, are
3365  * committed to stable storage.
3366  *
3367  * If "foid" is zero, this means all "synchronous" and "asynchronous"
3368  * itxs, for all objects in the dataset, will be committed to stable
3369  * storage prior to zil_commit() returning. If "foid" is non-zero, all
3370  * "synchronous" itxs for all objects, but only "asynchronous" itxs
3371  * that correspond to the foid passed in, will be committed to stable
3372  * storage prior to zil_commit() returning.
3373  *
3374  * Generally speaking, when zil_commit() is called, the consumer doesn't
3375  * actually care about _all_ of the uncommitted itxs. Instead, they're
3376  * simply trying to waiting for a specific itx to be committed to disk,
3377  * but the interface(s) for interacting with the ZIL don't allow such
3378  * fine-grained communication. A better interface would allow a consumer
3379  * to create and assign an itx, and then pass a reference to this itx to
3380  * zil_commit(); such that zil_commit() would return as soon as that
3381  * specific itx was committed to disk (instead of waiting for _all_
3382  * itxs to be committed).
3383  *
3384  * When a thread calls zil_commit() a special "commit itx" will be
3385  * generated, along with a corresponding "waiter" for this commit itx.
3386  * zil_commit() will wait on this waiter's CV, such that when the waiter
3387  * is marked done, and signaled, zil_commit() will return.
3388  *
3389  * This commit itx is inserted into the queue of uncommitted itxs. This
3390  * provides an easy mechanism for determining which itxs were in the
3391  * queue prior to zil_commit() having been called, and which itxs were
3392  * added after zil_commit() was called.
3393  *
3394  * The commit itx is special; it doesn't have any on-disk representation.
3395  * When a commit itx is "committed" to an lwb, the waiter associated
3396  * with it is linked onto the lwb's list of waiters. Then, when that lwb
3397  * completes, each waiter on the lwb's list is marked done and signaled
3398  * -- allowing the thread waiting on the waiter to return from zil_commit().
3399  *
3400  * It's important to point out a few critical factors that allow us
3401  * to make use of the commit itxs, commit waiters, per-lwb lists of
3402  * commit waiters, and zio completion callbacks like we're doing:
3403  *
3404  *   1. The list of waiters for each lwb is traversed, and each commit
3405  *      waiter is marked "done" and signaled, in the zio completion
3406  *      callback of the lwb's zio[*].
3407  *
3408  *      * Actually, the waiters are signaled in the zio completion
3409  *        callback of the root zio for the DKIOCFLUSHWRITECACHE commands
3410  *        that are sent to the vdevs upon completion of the lwb zio.
3411  *
3412  *   2. When the itxs are inserted into the ZIL's queue of uncommitted
3413  *      itxs, the order in which they are inserted is preserved[*]; as
3414  *      itxs are added to the queue, they are added to the tail of
3415  *      in-memory linked lists.
3416  *
3417  *      When committing the itxs to lwbs (to be written to disk), they
3418  *      are committed in the same order in which the itxs were added to
3419  *      the uncommitted queue's linked list(s); i.e. the linked list of
3420  *      itxs to commit is traversed from head to tail, and each itx is
3421  *      committed to an lwb in that order.
3422  *
3423  *      * To clarify:
3424  *
3425  *        - the order of "sync" itxs is preserved w.r.t. other
3426  *          "sync" itxs, regardless of the corresponding objects.
3427  *        - the order of "async" itxs is preserved w.r.t. other
3428  *          "async" itxs corresponding to the same object.
3429  *        - the order of "async" itxs is *not* preserved w.r.t. other
3430  *          "async" itxs corresponding to different objects.
3431  *        - the order of "sync" itxs w.r.t. "async" itxs (or vice
3432  *          versa) is *not* preserved, even for itxs that correspond
3433  *          to the same object.
3434  *
3435  *      For more details, see: zil_itx_assign(), zil_async_to_sync(),
3436  *      zil_get_commit_list(), and zil_process_commit_list().
3437  *
3438  *   3. The lwbs represent a linked list of blocks on disk. Thus, any
3439  *      lwb cannot be considered committed to stable storage, until its
3440  *      "previous" lwb is also committed to stable storage. This fact,
3441  *      coupled with the fact described above, means that itxs are
3442  *      committed in (roughly) the order in which they were generated.
3443  *      This is essential because itxs are dependent on prior itxs.
3444  *      Thus, we *must not* deem an itx as being committed to stable
3445  *      storage, until *all* prior itxs have also been committed to
3446  *      stable storage.
3447  *
3448  *      To enforce this ordering of lwb zio's, while still leveraging as
3449  *      much of the underlying storage performance as possible, we rely
3450  *      on two fundamental concepts:
3451  *
3452  *          1. The creation and issuance of lwb zio's is protected by
3453  *             the zilog's "zl_issuer_lock", which ensures only a single
3454  *             thread is creating and/or issuing lwb's at a time
3455  *          2. The "previous" lwb is a child of the "current" lwb
3456  *             (leveraging the zio parent-child dependency graph)
3457  *
3458  *      By relying on this parent-child zio relationship, we can have
3459  *      many lwb zio's concurrently issued to the underlying storage,
3460  *      but the order in which they complete will be the same order in
3461  *      which they were created.
3462  */
3463 void
3464 zil_commit(zilog_t *zilog, uint64_t foid)
3465 {
3466 	/*
3467 	 * We should never attempt to call zil_commit on a snapshot for
3468 	 * a couple of reasons:
3469 	 *
3470 	 * 1. A snapshot may never be modified, thus it cannot have any
3471 	 *    in-flight itxs that would have modified the dataset.
3472 	 *
3473 	 * 2. By design, when zil_commit() is called, a commit itx will
3474 	 *    be assigned to this zilog; as a result, the zilog will be
3475 	 *    dirtied. We must not dirty the zilog of a snapshot; there's
3476 	 *    checks in the code that enforce this invariant, and will
3477 	 *    cause a panic if it's not upheld.
3478 	 */
3479 	ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE);
3480 
3481 	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
3482 		return;
3483 
3484 	if (!spa_writeable(zilog->zl_spa)) {
3485 		/*
3486 		 * If the SPA is not writable, there should never be any
3487 		 * pending itxs waiting to be committed to disk. If that
3488 		 * weren't true, we'd skip writing those itxs out, and
3489 		 * would break the semantics of zil_commit(); thus, we're
3490 		 * verifying that truth before we return to the caller.
3491 		 */
3492 		ASSERT(list_is_empty(&zilog->zl_lwb_list));
3493 		ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
3494 		for (int i = 0; i < TXG_SIZE; i++)
3495 			ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL);
3496 		return;
3497 	}
3498 
3499 	/*
3500 	 * If the ZIL is suspended, we don't want to dirty it by calling
3501 	 * zil_commit_itx_assign() below, nor can we write out
3502 	 * lwbs like would be done in zil_commit_write(). Thus, we
3503 	 * simply rely on txg_wait_synced() to maintain the necessary
3504 	 * semantics, and avoid calling those functions altogether.
3505 	 */
3506 	if (zilog->zl_suspend > 0) {
3507 		txg_wait_synced(zilog->zl_dmu_pool, 0);
3508 		return;
3509 	}
3510 
3511 	zil_commit_impl(zilog, foid);
3512 }
3513 
3514 void
3515 zil_commit_impl(zilog_t *zilog, uint64_t foid)
3516 {
3517 	ZIL_STAT_BUMP(zilog, zil_commit_count);
3518 
3519 	/*
3520 	 * Move the "async" itxs for the specified foid to the "sync"
3521 	 * queues, such that they will be later committed (or skipped)
3522 	 * to an lwb when zil_process_commit_list() is called.
3523 	 *
3524 	 * Since these "async" itxs must be committed prior to this
3525 	 * call to zil_commit returning, we must perform this operation
3526 	 * before we call zil_commit_itx_assign().
3527 	 */
3528 	zil_async_to_sync(zilog, foid);
3529 
3530 	/*
3531 	 * We allocate a new "waiter" structure which will initially be
3532 	 * linked to the commit itx using the itx's "itx_private" field.
3533 	 * Since the commit itx doesn't represent any on-disk state,
3534 	 * when it's committed to an lwb, rather than copying the its
3535 	 * lr_t into the lwb's buffer, the commit itx's "waiter" will be
3536 	 * added to the lwb's list of waiters. Then, when the lwb is
3537 	 * committed to stable storage, each waiter in the lwb's list of
3538 	 * waiters will be marked "done", and signalled.
3539 	 *
3540 	 * We must create the waiter and assign the commit itx prior to
3541 	 * calling zil_commit_writer(), or else our specific commit itx
3542 	 * is not guaranteed to be committed to an lwb prior to calling
3543 	 * zil_commit_waiter().
3544 	 */
3545 	zil_commit_waiter_t *zcw = zil_alloc_commit_waiter();
3546 	zil_commit_itx_assign(zilog, zcw);
3547 
3548 	uint64_t wtxg = zil_commit_writer(zilog, zcw);
3549 	zil_commit_waiter(zilog, zcw);
3550 
3551 	if (zcw->zcw_zio_error != 0) {
3552 		/*
3553 		 * If there was an error writing out the ZIL blocks that
3554 		 * this thread is waiting on, then we fallback to
3555 		 * relying on spa_sync() to write out the data this
3556 		 * thread is waiting on. Obviously this has performance
3557 		 * implications, but the expectation is for this to be
3558 		 * an exceptional case, and shouldn't occur often.
3559 		 */
3560 		DTRACE_PROBE2(zil__commit__io__error,
3561 		    zilog_t *, zilog, zil_commit_waiter_t *, zcw);
3562 		txg_wait_synced(zilog->zl_dmu_pool, 0);
3563 	} else if (wtxg != 0) {
3564 		txg_wait_synced(zilog->zl_dmu_pool, wtxg);
3565 	}
3566 
3567 	zil_free_commit_waiter(zcw);
3568 }
3569 
3570 /*
3571  * Called in syncing context to free committed log blocks and update log header.
3572  */
3573 void
3574 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
3575 {
3576 	zil_header_t *zh = zil_header_in_syncing_context(zilog);
3577 	uint64_t txg = dmu_tx_get_txg(tx);
3578 	spa_t *spa = zilog->zl_spa;
3579 	uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
3580 	lwb_t *lwb;
3581 
3582 	/*
3583 	 * We don't zero out zl_destroy_txg, so make sure we don't try
3584 	 * to destroy it twice.
3585 	 */
3586 	if (spa_sync_pass(spa) != 1)
3587 		return;
3588 
3589 	zil_lwb_flush_wait_all(zilog, txg);
3590 
3591 	mutex_enter(&zilog->zl_lock);
3592 
3593 	ASSERT(zilog->zl_stop_sync == 0);
3594 
3595 	if (*replayed_seq != 0) {
3596 		ASSERT(zh->zh_replay_seq < *replayed_seq);
3597 		zh->zh_replay_seq = *replayed_seq;
3598 		*replayed_seq = 0;
3599 	}
3600 
3601 	if (zilog->zl_destroy_txg == txg) {
3602 		blkptr_t blk = zh->zh_log;
3603 		dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
3604 
3605 		ASSERT(list_is_empty(&zilog->zl_lwb_list));
3606 
3607 		memset(zh, 0, sizeof (zil_header_t));
3608 		memset(zilog->zl_replayed_seq, 0,
3609 		    sizeof (zilog->zl_replayed_seq));
3610 
3611 		if (zilog->zl_keep_first) {
3612 			/*
3613 			 * If this block was part of log chain that couldn't
3614 			 * be claimed because a device was missing during
3615 			 * zil_claim(), but that device later returns,
3616 			 * then this block could erroneously appear valid.
3617 			 * To guard against this, assign a new GUID to the new
3618 			 * log chain so it doesn't matter what blk points to.
3619 			 */
3620 			zil_init_log_chain(zilog, &blk);
3621 			zh->zh_log = blk;
3622 		} else {
3623 			/*
3624 			 * A destroyed ZIL chain can't contain any TX_SETSAXATTR
3625 			 * records. So, deactivate the feature for this dataset.
3626 			 * We activate it again when we start a new ZIL chain.
3627 			 */
3628 			if (dsl_dataset_feature_is_active(ds,
3629 			    SPA_FEATURE_ZILSAXATTR))
3630 				dsl_dataset_deactivate_feature(ds,
3631 				    SPA_FEATURE_ZILSAXATTR, tx);
3632 		}
3633 	}
3634 
3635 	while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
3636 		zh->zh_log = lwb->lwb_blk;
3637 		if (lwb->lwb_state != LWB_STATE_FLUSH_DONE ||
3638 		    lwb->lwb_max_txg > txg)
3639 			break;
3640 		list_remove(&zilog->zl_lwb_list, lwb);
3641 		zio_free(spa, txg, &lwb->lwb_blk);
3642 		zil_free_lwb(zilog, lwb);
3643 
3644 		/*
3645 		 * If we don't have anything left in the lwb list then
3646 		 * we've had an allocation failure and we need to zero
3647 		 * out the zil_header blkptr so that we don't end
3648 		 * up freeing the same block twice.
3649 		 */
3650 		if (list_is_empty(&zilog->zl_lwb_list))
3651 			BP_ZERO(&zh->zh_log);
3652 	}
3653 
3654 	/*
3655 	 * Remove fastwrite on any blocks that have been pre-allocated for
3656 	 * the next commit. This prevents fastwrite counter pollution by
3657 	 * unused, long-lived LWBs.
3658 	 */
3659 	for (; lwb != NULL; lwb = list_next(&zilog->zl_lwb_list, lwb)) {
3660 		if (lwb->lwb_fastwrite && !lwb->lwb_write_zio) {
3661 			metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk);
3662 			lwb->lwb_fastwrite = 0;
3663 		}
3664 	}
3665 
3666 	mutex_exit(&zilog->zl_lock);
3667 }
3668 
3669 static int
3670 zil_lwb_cons(void *vbuf, void *unused, int kmflag)
3671 {
3672 	(void) unused, (void) kmflag;
3673 	lwb_t *lwb = vbuf;
3674 	list_create(&lwb->lwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
3675 	list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t),
3676 	    offsetof(zil_commit_waiter_t, zcw_node));
3677 	avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare,
3678 	    sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
3679 	mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
3680 	return (0);
3681 }
3682 
3683 static void
3684 zil_lwb_dest(void *vbuf, void *unused)
3685 {
3686 	(void) unused;
3687 	lwb_t *lwb = vbuf;
3688 	mutex_destroy(&lwb->lwb_vdev_lock);
3689 	avl_destroy(&lwb->lwb_vdev_tree);
3690 	list_destroy(&lwb->lwb_waiters);
3691 	list_destroy(&lwb->lwb_itxs);
3692 }
3693 
3694 void
3695 zil_init(void)
3696 {
3697 	zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
3698 	    sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0);
3699 
3700 	zil_zcw_cache = kmem_cache_create("zil_zcw_cache",
3701 	    sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
3702 
3703 	zil_sums_init(&zil_sums_global);
3704 	zil_kstats_global = kstat_create("zfs", 0, "zil", "misc",
3705 	    KSTAT_TYPE_NAMED, sizeof (zil_stats) / sizeof (kstat_named_t),
3706 	    KSTAT_FLAG_VIRTUAL);
3707 
3708 	if (zil_kstats_global != NULL) {
3709 		zil_kstats_global->ks_data = &zil_stats;
3710 		zil_kstats_global->ks_update = zil_kstats_global_update;
3711 		zil_kstats_global->ks_private = NULL;
3712 		kstat_install(zil_kstats_global);
3713 	}
3714 }
3715 
3716 void
3717 zil_fini(void)
3718 {
3719 	kmem_cache_destroy(zil_zcw_cache);
3720 	kmem_cache_destroy(zil_lwb_cache);
3721 
3722 	if (zil_kstats_global != NULL) {
3723 		kstat_delete(zil_kstats_global);
3724 		zil_kstats_global = NULL;
3725 	}
3726 
3727 	zil_sums_fini(&zil_sums_global);
3728 }
3729 
3730 void
3731 zil_set_sync(zilog_t *zilog, uint64_t sync)
3732 {
3733 	zilog->zl_sync = sync;
3734 }
3735 
3736 void
3737 zil_set_logbias(zilog_t *zilog, uint64_t logbias)
3738 {
3739 	zilog->zl_logbias = logbias;
3740 }
3741 
3742 zilog_t *
3743 zil_alloc(objset_t *os, zil_header_t *zh_phys)
3744 {
3745 	zilog_t *zilog;
3746 
3747 	zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
3748 
3749 	zilog->zl_header = zh_phys;
3750 	zilog->zl_os = os;
3751 	zilog->zl_spa = dmu_objset_spa(os);
3752 	zilog->zl_dmu_pool = dmu_objset_pool(os);
3753 	zilog->zl_destroy_txg = TXG_INITIAL - 1;
3754 	zilog->zl_logbias = dmu_objset_logbias(os);
3755 	zilog->zl_sync = dmu_objset_syncprop(os);
3756 	zilog->zl_dirty_max_txg = 0;
3757 	zilog->zl_last_lwb_opened = NULL;
3758 	zilog->zl_last_lwb_latency = 0;
3759 	zilog->zl_max_block_size = zil_maxblocksize;
3760 
3761 	mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
3762 	mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL);
3763 	mutex_init(&zilog->zl_lwb_io_lock, NULL, MUTEX_DEFAULT, NULL);
3764 
3765 	for (int i = 0; i < TXG_SIZE; i++) {
3766 		mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
3767 		    MUTEX_DEFAULT, NULL);
3768 	}
3769 
3770 	list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
3771 	    offsetof(lwb_t, lwb_node));
3772 
3773 	list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
3774 	    offsetof(itx_t, itx_node));
3775 
3776 	cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
3777 	cv_init(&zilog->zl_lwb_io_cv, NULL, CV_DEFAULT, NULL);
3778 
3779 	return (zilog);
3780 }
3781 
3782 void
3783 zil_free(zilog_t *zilog)
3784 {
3785 	int i;
3786 
3787 	zilog->zl_stop_sync = 1;
3788 
3789 	ASSERT0(zilog->zl_suspend);
3790 	ASSERT0(zilog->zl_suspending);
3791 
3792 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
3793 	list_destroy(&zilog->zl_lwb_list);
3794 
3795 	ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
3796 	list_destroy(&zilog->zl_itx_commit_list);
3797 
3798 	for (i = 0; i < TXG_SIZE; i++) {
3799 		/*
3800 		 * It's possible for an itx to be generated that doesn't dirty
3801 		 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
3802 		 * callback to remove the entry. We remove those here.
3803 		 *
3804 		 * Also free up the ziltest itxs.
3805 		 */
3806 		if (zilog->zl_itxg[i].itxg_itxs)
3807 			zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
3808 		mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
3809 	}
3810 
3811 	mutex_destroy(&zilog->zl_issuer_lock);
3812 	mutex_destroy(&zilog->zl_lock);
3813 	mutex_destroy(&zilog->zl_lwb_io_lock);
3814 
3815 	cv_destroy(&zilog->zl_cv_suspend);
3816 	cv_destroy(&zilog->zl_lwb_io_cv);
3817 
3818 	kmem_free(zilog, sizeof (zilog_t));
3819 }
3820 
3821 /*
3822  * Open an intent log.
3823  */
3824 zilog_t *
3825 zil_open(objset_t *os, zil_get_data_t *get_data, zil_sums_t *zil_sums)
3826 {
3827 	zilog_t *zilog = dmu_objset_zil(os);
3828 
3829 	ASSERT3P(zilog->zl_get_data, ==, NULL);
3830 	ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
3831 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
3832 
3833 	zilog->zl_get_data = get_data;
3834 	zilog->zl_sums = zil_sums;
3835 
3836 	return (zilog);
3837 }
3838 
3839 /*
3840  * Close an intent log.
3841  */
3842 void
3843 zil_close(zilog_t *zilog)
3844 {
3845 	lwb_t *lwb;
3846 	uint64_t txg;
3847 
3848 	if (!dmu_objset_is_snapshot(zilog->zl_os)) {
3849 		zil_commit(zilog, 0);
3850 	} else {
3851 		ASSERT(list_is_empty(&zilog->zl_lwb_list));
3852 		ASSERT0(zilog->zl_dirty_max_txg);
3853 		ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE);
3854 	}
3855 
3856 	mutex_enter(&zilog->zl_lock);
3857 	lwb = list_tail(&zilog->zl_lwb_list);
3858 	if (lwb == NULL)
3859 		txg = zilog->zl_dirty_max_txg;
3860 	else
3861 		txg = MAX(zilog->zl_dirty_max_txg, lwb->lwb_max_txg);
3862 	mutex_exit(&zilog->zl_lock);
3863 
3864 	/*
3865 	 * zl_lwb_max_issued_txg may be larger than lwb_max_txg. It depends
3866 	 * on the time when the dmu_tx transaction is assigned in
3867 	 * zil_lwb_write_close().
3868 	 */
3869 	mutex_enter(&zilog->zl_lwb_io_lock);
3870 	txg = MAX(zilog->zl_lwb_max_issued_txg, txg);
3871 	mutex_exit(&zilog->zl_lwb_io_lock);
3872 
3873 	/*
3874 	 * We need to use txg_wait_synced() to wait until that txg is synced.
3875 	 * zil_sync() will guarantee all lwbs up to that txg have been
3876 	 * written out, flushed, and cleaned.
3877 	 */
3878 	if (txg != 0)
3879 		txg_wait_synced(zilog->zl_dmu_pool, txg);
3880 
3881 	if (zilog_is_dirty(zilog))
3882 		zfs_dbgmsg("zil (%px) is dirty, txg %llu", zilog,
3883 		    (u_longlong_t)txg);
3884 	if (txg < spa_freeze_txg(zilog->zl_spa))
3885 		VERIFY(!zilog_is_dirty(zilog));
3886 
3887 	zilog->zl_get_data = NULL;
3888 
3889 	/*
3890 	 * We should have only one lwb left on the list; remove it now.
3891 	 */
3892 	mutex_enter(&zilog->zl_lock);
3893 	lwb = list_remove_head(&zilog->zl_lwb_list);
3894 	if (lwb != NULL) {
3895 		ASSERT(list_is_empty(&zilog->zl_lwb_list));
3896 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
3897 
3898 		if (lwb->lwb_fastwrite)
3899 			metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk);
3900 
3901 		zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
3902 		zil_free_lwb(zilog, lwb);
3903 	}
3904 	mutex_exit(&zilog->zl_lock);
3905 }
3906 
3907 static const char *suspend_tag = "zil suspending";
3908 
3909 /*
3910  * Suspend an intent log.  While in suspended mode, we still honor
3911  * synchronous semantics, but we rely on txg_wait_synced() to do it.
3912  * On old version pools, we suspend the log briefly when taking a
3913  * snapshot so that it will have an empty intent log.
3914  *
3915  * Long holds are not really intended to be used the way we do here --
3916  * held for such a short time.  A concurrent caller of dsl_dataset_long_held()
3917  * could fail.  Therefore we take pains to only put a long hold if it is
3918  * actually necessary.  Fortunately, it will only be necessary if the
3919  * objset is currently mounted (or the ZVOL equivalent).  In that case it
3920  * will already have a long hold, so we are not really making things any worse.
3921  *
3922  * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
3923  * zvol_state_t), and use their mechanism to prevent their hold from being
3924  * dropped (e.g. VFS_HOLD()).  However, that would be even more pain for
3925  * very little gain.
3926  *
3927  * if cookiep == NULL, this does both the suspend & resume.
3928  * Otherwise, it returns with the dataset "long held", and the cookie
3929  * should be passed into zil_resume().
3930  */
3931 int
3932 zil_suspend(const char *osname, void **cookiep)
3933 {
3934 	objset_t *os;
3935 	zilog_t *zilog;
3936 	const zil_header_t *zh;
3937 	int error;
3938 
3939 	error = dmu_objset_hold(osname, suspend_tag, &os);
3940 	if (error != 0)
3941 		return (error);
3942 	zilog = dmu_objset_zil(os);
3943 
3944 	mutex_enter(&zilog->zl_lock);
3945 	zh = zilog->zl_header;
3946 
3947 	if (zh->zh_flags & ZIL_REPLAY_NEEDED) {		/* unplayed log */
3948 		mutex_exit(&zilog->zl_lock);
3949 		dmu_objset_rele(os, suspend_tag);
3950 		return (SET_ERROR(EBUSY));
3951 	}
3952 
3953 	/*
3954 	 * Don't put a long hold in the cases where we can avoid it.  This
3955 	 * is when there is no cookie so we are doing a suspend & resume
3956 	 * (i.e. called from zil_vdev_offline()), and there's nothing to do
3957 	 * for the suspend because it's already suspended, or there's no ZIL.
3958 	 */
3959 	if (cookiep == NULL && !zilog->zl_suspending &&
3960 	    (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
3961 		mutex_exit(&zilog->zl_lock);
3962 		dmu_objset_rele(os, suspend_tag);
3963 		return (0);
3964 	}
3965 
3966 	dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
3967 	dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
3968 
3969 	zilog->zl_suspend++;
3970 
3971 	if (zilog->zl_suspend > 1) {
3972 		/*
3973 		 * Someone else is already suspending it.
3974 		 * Just wait for them to finish.
3975 		 */
3976 
3977 		while (zilog->zl_suspending)
3978 			cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
3979 		mutex_exit(&zilog->zl_lock);
3980 
3981 		if (cookiep == NULL)
3982 			zil_resume(os);
3983 		else
3984 			*cookiep = os;
3985 		return (0);
3986 	}
3987 
3988 	/*
3989 	 * If there is no pointer to an on-disk block, this ZIL must not
3990 	 * be active (e.g. filesystem not mounted), so there's nothing
3991 	 * to clean up.
3992 	 */
3993 	if (BP_IS_HOLE(&zh->zh_log)) {
3994 		ASSERT(cookiep != NULL); /* fast path already handled */
3995 
3996 		*cookiep = os;
3997 		mutex_exit(&zilog->zl_lock);
3998 		return (0);
3999 	}
4000 
4001 	/*
4002 	 * The ZIL has work to do. Ensure that the associated encryption
4003 	 * key will remain mapped while we are committing the log by
4004 	 * grabbing a reference to it. If the key isn't loaded we have no
4005 	 * choice but to return an error until the wrapping key is loaded.
4006 	 */
4007 	if (os->os_encrypted &&
4008 	    dsl_dataset_create_key_mapping(dmu_objset_ds(os)) != 0) {
4009 		zilog->zl_suspend--;
4010 		mutex_exit(&zilog->zl_lock);
4011 		dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
4012 		dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
4013 		return (SET_ERROR(EACCES));
4014 	}
4015 
4016 	zilog->zl_suspending = B_TRUE;
4017 	mutex_exit(&zilog->zl_lock);
4018 
4019 	/*
4020 	 * We need to use zil_commit_impl to ensure we wait for all
4021 	 * LWB_STATE_OPENED and LWB_STATE_ISSUED lwbs to be committed
4022 	 * to disk before proceeding. If we used zil_commit instead, it
4023 	 * would just call txg_wait_synced(), because zl_suspend is set.
4024 	 * txg_wait_synced() doesn't wait for these lwb's to be
4025 	 * LWB_STATE_FLUSH_DONE before returning.
4026 	 */
4027 	zil_commit_impl(zilog, 0);
4028 
4029 	/*
4030 	 * Now that we've ensured all lwb's are LWB_STATE_FLUSH_DONE, we
4031 	 * use txg_wait_synced() to ensure the data from the zilog has
4032 	 * migrated to the main pool before calling zil_destroy().
4033 	 */
4034 	txg_wait_synced(zilog->zl_dmu_pool, 0);
4035 
4036 	zil_destroy(zilog, B_FALSE);
4037 
4038 	mutex_enter(&zilog->zl_lock);
4039 	zilog->zl_suspending = B_FALSE;
4040 	cv_broadcast(&zilog->zl_cv_suspend);
4041 	mutex_exit(&zilog->zl_lock);
4042 
4043 	if (os->os_encrypted)
4044 		dsl_dataset_remove_key_mapping(dmu_objset_ds(os));
4045 
4046 	if (cookiep == NULL)
4047 		zil_resume(os);
4048 	else
4049 		*cookiep = os;
4050 	return (0);
4051 }
4052 
4053 void
4054 zil_resume(void *cookie)
4055 {
4056 	objset_t *os = cookie;
4057 	zilog_t *zilog = dmu_objset_zil(os);
4058 
4059 	mutex_enter(&zilog->zl_lock);
4060 	ASSERT(zilog->zl_suspend != 0);
4061 	zilog->zl_suspend--;
4062 	mutex_exit(&zilog->zl_lock);
4063 	dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
4064 	dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
4065 }
4066 
4067 typedef struct zil_replay_arg {
4068 	zil_replay_func_t *const *zr_replay;
4069 	void		*zr_arg;
4070 	boolean_t	zr_byteswap;
4071 	char		*zr_lr;
4072 } zil_replay_arg_t;
4073 
4074 static int
4075 zil_replay_error(zilog_t *zilog, const lr_t *lr, int error)
4076 {
4077 	char name[ZFS_MAX_DATASET_NAME_LEN];
4078 
4079 	zilog->zl_replaying_seq--;	/* didn't actually replay this one */
4080 
4081 	dmu_objset_name(zilog->zl_os, name);
4082 
4083 	cmn_err(CE_WARN, "ZFS replay transaction error %d, "
4084 	    "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
4085 	    (u_longlong_t)lr->lrc_seq,
4086 	    (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
4087 	    (lr->lrc_txtype & TX_CI) ? "CI" : "");
4088 
4089 	return (error);
4090 }
4091 
4092 static int
4093 zil_replay_log_record(zilog_t *zilog, const lr_t *lr, void *zra,
4094     uint64_t claim_txg)
4095 {
4096 	zil_replay_arg_t *zr = zra;
4097 	const zil_header_t *zh = zilog->zl_header;
4098 	uint64_t reclen = lr->lrc_reclen;
4099 	uint64_t txtype = lr->lrc_txtype;
4100 	int error = 0;
4101 
4102 	zilog->zl_replaying_seq = lr->lrc_seq;
4103 
4104 	if (lr->lrc_seq <= zh->zh_replay_seq)	/* already replayed */
4105 		return (0);
4106 
4107 	if (lr->lrc_txg < claim_txg)		/* already committed */
4108 		return (0);
4109 
4110 	/* Strip case-insensitive bit, still present in log record */
4111 	txtype &= ~TX_CI;
4112 
4113 	if (txtype == 0 || txtype >= TX_MAX_TYPE)
4114 		return (zil_replay_error(zilog, lr, EINVAL));
4115 
4116 	/*
4117 	 * If this record type can be logged out of order, the object
4118 	 * (lr_foid) may no longer exist.  That's legitimate, not an error.
4119 	 */
4120 	if (TX_OOO(txtype)) {
4121 		error = dmu_object_info(zilog->zl_os,
4122 		    LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL);
4123 		if (error == ENOENT || error == EEXIST)
4124 			return (0);
4125 	}
4126 
4127 	/*
4128 	 * Make a copy of the data so we can revise and extend it.
4129 	 */
4130 	memcpy(zr->zr_lr, lr, reclen);
4131 
4132 	/*
4133 	 * If this is a TX_WRITE with a blkptr, suck in the data.
4134 	 */
4135 	if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
4136 		error = zil_read_log_data(zilog, (lr_write_t *)lr,
4137 		    zr->zr_lr + reclen);
4138 		if (error != 0)
4139 			return (zil_replay_error(zilog, lr, error));
4140 	}
4141 
4142 	/*
4143 	 * The log block containing this lr may have been byteswapped
4144 	 * so that we can easily examine common fields like lrc_txtype.
4145 	 * However, the log is a mix of different record types, and only the
4146 	 * replay vectors know how to byteswap their records.  Therefore, if
4147 	 * the lr was byteswapped, undo it before invoking the replay vector.
4148 	 */
4149 	if (zr->zr_byteswap)
4150 		byteswap_uint64_array(zr->zr_lr, reclen);
4151 
4152 	/*
4153 	 * We must now do two things atomically: replay this log record,
4154 	 * and update the log header sequence number to reflect the fact that
4155 	 * we did so. At the end of each replay function the sequence number
4156 	 * is updated if we are in replay mode.
4157 	 */
4158 	error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
4159 	if (error != 0) {
4160 		/*
4161 		 * The DMU's dnode layer doesn't see removes until the txg
4162 		 * commits, so a subsequent claim can spuriously fail with
4163 		 * EEXIST. So if we receive any error we try syncing out
4164 		 * any removes then retry the transaction.  Note that we
4165 		 * specify B_FALSE for byteswap now, so we don't do it twice.
4166 		 */
4167 		txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
4168 		error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
4169 		if (error != 0)
4170 			return (zil_replay_error(zilog, lr, error));
4171 	}
4172 	return (0);
4173 }
4174 
4175 static int
4176 zil_incr_blks(zilog_t *zilog, const blkptr_t *bp, void *arg, uint64_t claim_txg)
4177 {
4178 	(void) bp, (void) arg, (void) claim_txg;
4179 
4180 	zilog->zl_replay_blks++;
4181 
4182 	return (0);
4183 }
4184 
4185 /*
4186  * If this dataset has a non-empty intent log, replay it and destroy it.
4187  * Return B_TRUE if there were any entries to replay.
4188  */
4189 boolean_t
4190 zil_replay(objset_t *os, void *arg,
4191     zil_replay_func_t *const replay_func[TX_MAX_TYPE])
4192 {
4193 	zilog_t *zilog = dmu_objset_zil(os);
4194 	const zil_header_t *zh = zilog->zl_header;
4195 	zil_replay_arg_t zr;
4196 
4197 	if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
4198 		return (zil_destroy(zilog, B_TRUE));
4199 	}
4200 
4201 	zr.zr_replay = replay_func;
4202 	zr.zr_arg = arg;
4203 	zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
4204 	zr.zr_lr = vmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
4205 
4206 	/*
4207 	 * Wait for in-progress removes to sync before starting replay.
4208 	 */
4209 	txg_wait_synced(zilog->zl_dmu_pool, 0);
4210 
4211 	zilog->zl_replay = B_TRUE;
4212 	zilog->zl_replay_time = ddi_get_lbolt();
4213 	ASSERT(zilog->zl_replay_blks == 0);
4214 	(void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
4215 	    zh->zh_claim_txg, B_TRUE);
4216 	vmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
4217 
4218 	zil_destroy(zilog, B_FALSE);
4219 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
4220 	zilog->zl_replay = B_FALSE;
4221 
4222 	return (B_TRUE);
4223 }
4224 
4225 boolean_t
4226 zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
4227 {
4228 	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
4229 		return (B_TRUE);
4230 
4231 	if (zilog->zl_replay) {
4232 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
4233 		zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
4234 		    zilog->zl_replaying_seq;
4235 		return (B_TRUE);
4236 	}
4237 
4238 	return (B_FALSE);
4239 }
4240 
4241 int
4242 zil_reset(const char *osname, void *arg)
4243 {
4244 	(void) arg;
4245 
4246 	int error = zil_suspend(osname, NULL);
4247 	/* EACCES means crypto key not loaded */
4248 	if ((error == EACCES) || (error == EBUSY))
4249 		return (SET_ERROR(error));
4250 	if (error != 0)
4251 		return (SET_ERROR(EEXIST));
4252 	return (0);
4253 }
4254 
4255 EXPORT_SYMBOL(zil_alloc);
4256 EXPORT_SYMBOL(zil_free);
4257 EXPORT_SYMBOL(zil_open);
4258 EXPORT_SYMBOL(zil_close);
4259 EXPORT_SYMBOL(zil_replay);
4260 EXPORT_SYMBOL(zil_replaying);
4261 EXPORT_SYMBOL(zil_destroy);
4262 EXPORT_SYMBOL(zil_destroy_sync);
4263 EXPORT_SYMBOL(zil_itx_create);
4264 EXPORT_SYMBOL(zil_itx_destroy);
4265 EXPORT_SYMBOL(zil_itx_assign);
4266 EXPORT_SYMBOL(zil_commit);
4267 EXPORT_SYMBOL(zil_claim);
4268 EXPORT_SYMBOL(zil_check_log_chain);
4269 EXPORT_SYMBOL(zil_sync);
4270 EXPORT_SYMBOL(zil_clean);
4271 EXPORT_SYMBOL(zil_suspend);
4272 EXPORT_SYMBOL(zil_resume);
4273 EXPORT_SYMBOL(zil_lwb_add_block);
4274 EXPORT_SYMBOL(zil_bp_tree_add);
4275 EXPORT_SYMBOL(zil_set_sync);
4276 EXPORT_SYMBOL(zil_set_logbias);
4277 EXPORT_SYMBOL(zil_sums_init);
4278 EXPORT_SYMBOL(zil_sums_fini);
4279 EXPORT_SYMBOL(zil_kstat_values_update);
4280 
4281 ZFS_MODULE_PARAM(zfs, zfs_, commit_timeout_pct, UINT, ZMOD_RW,
4282 	"ZIL block open timeout percentage");
4283 
4284 ZFS_MODULE_PARAM(zfs_zil, zil_, min_commit_timeout, U64, ZMOD_RW,
4285 	"Minimum delay we care for ZIL block commit");
4286 
4287 ZFS_MODULE_PARAM(zfs_zil, zil_, replay_disable, INT, ZMOD_RW,
4288 	"Disable intent logging replay");
4289 
4290 ZFS_MODULE_PARAM(zfs_zil, zil_, nocacheflush, INT, ZMOD_RW,
4291 	"Disable ZIL cache flushes");
4292 
4293 ZFS_MODULE_PARAM(zfs_zil, zil_, slog_bulk, U64, ZMOD_RW,
4294 	"Limit in bytes slog sync writes per commit");
4295 
4296 ZFS_MODULE_PARAM(zfs_zil, zil_, maxblocksize, UINT, ZMOD_RW,
4297 	"Limit in bytes of ZIL log block size");
4298