1 /*
2  * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
3  * All rights reserved.
4  *
5  * This source code is licensed under both the BSD-style license (found in the
6  * LICENSE file in the root directory of this source tree) and the GPLv2 (found
7  * in the COPYING file in the root directory of this source tree).
8  * You may select, at your option, one of the above-listed licenses.
9  */
10 
11 /* zstd_decompress_block :
12  * this module takes care of decompressing _compressed_ block */
13 
14 /*-*******************************************************
15 *  Dependencies
16 *********************************************************/
17 #include <string.h>      /* memcpy, memmove, memset */
18 #include "compiler.h"    /* prefetch */
19 #include "cpu.h"         /* bmi2 */
20 #include "mem.h"         /* low level memory routines */
21 #define FSE_STATIC_LINKING_ONLY
22 #include "fse.h"
23 #define HUF_STATIC_LINKING_ONLY
24 #include "huf.h"
25 #include "zstd_internal.h"
26 #include "zstd_decompress_internal.h"   /* ZSTD_DCtx */
27 #include "zstd_ddict.h"  /* ZSTD_DDictDictContent */
28 #include "zstd_decompress_block.h"
29 
30 /*_*******************************************************
31 *  Macros
32 **********************************************************/
33 
34 /* These two optional macros force the use one way or another of the two
35  * ZSTD_decompressSequences implementations. You can't force in both directions
36  * at the same time.
37  */
38 #if defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \
39     defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG)
40 #error "Cannot force the use of the short and the long ZSTD_decompressSequences variants!"
41 #endif
42 
43 
44 /*_*******************************************************
45 *  Memory operations
46 **********************************************************/
47 static void ZSTD_copy4(void* dst, const void* src) { memcpy(dst, src, 4); }
48 
49 
50 /*-*************************************************************
51  *   Block decoding
52  ***************************************************************/
53 
54 /*! ZSTD_getcBlockSize() :
55  *  Provides the size of compressed block from block header `src` */
56 size_t ZSTD_getcBlockSize(const void* src, size_t srcSize,
57                           blockProperties_t* bpPtr)
58 {
59     RETURN_ERROR_IF(srcSize < ZSTD_blockHeaderSize, srcSize_wrong);
60 
61     {   U32 const cBlockHeader = MEM_readLE24(src);
62         U32 const cSize = cBlockHeader >> 3;
63         bpPtr->lastBlock = cBlockHeader & 1;
64         bpPtr->blockType = (blockType_e)((cBlockHeader >> 1) & 3);
65         bpPtr->origSize = cSize;   /* only useful for RLE */
66         if (bpPtr->blockType == bt_rle) return 1;
67         RETURN_ERROR_IF(bpPtr->blockType == bt_reserved, corruption_detected);
68         return cSize;
69     }
70 }
71 
72 
73 /* Hidden declaration for fullbench */
74 size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx* dctx,
75                           const void* src, size_t srcSize);
76 /*! ZSTD_decodeLiteralsBlock() :
77  * @return : nb of bytes read from src (< srcSize )
78  *  note : symbol not declared but exposed for fullbench */
79 size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx* dctx,
80                           const void* src, size_t srcSize)   /* note : srcSize < BLOCKSIZE */
81 {
82     DEBUGLOG(5, "ZSTD_decodeLiteralsBlock");
83     RETURN_ERROR_IF(srcSize < MIN_CBLOCK_SIZE, corruption_detected);
84 
85     {   const BYTE* const istart = (const BYTE*) src;
86         symbolEncodingType_e const litEncType = (symbolEncodingType_e)(istart[0] & 3);
87 
88         switch(litEncType)
89         {
90         case set_repeat:
91             DEBUGLOG(5, "set_repeat flag : re-using stats from previous compressed literals block");
92             RETURN_ERROR_IF(dctx->litEntropy==0, dictionary_corrupted);
93             /* fall-through */
94 
95         case set_compressed:
96             RETURN_ERROR_IF(srcSize < 5, corruption_detected, "srcSize >= MIN_CBLOCK_SIZE == 3; here we need up to 5 for case 3");
97             {   size_t lhSize, litSize, litCSize;
98                 U32 singleStream=0;
99                 U32 const lhlCode = (istart[0] >> 2) & 3;
100                 U32 const lhc = MEM_readLE32(istart);
101                 size_t hufSuccess;
102                 switch(lhlCode)
103                 {
104                 case 0: case 1: default:   /* note : default is impossible, since lhlCode into [0..3] */
105                     /* 2 - 2 - 10 - 10 */
106                     singleStream = !lhlCode;
107                     lhSize = 3;
108                     litSize  = (lhc >> 4) & 0x3FF;
109                     litCSize = (lhc >> 14) & 0x3FF;
110                     break;
111                 case 2:
112                     /* 2 - 2 - 14 - 14 */
113                     lhSize = 4;
114                     litSize  = (lhc >> 4) & 0x3FFF;
115                     litCSize = lhc >> 18;
116                     break;
117                 case 3:
118                     /* 2 - 2 - 18 - 18 */
119                     lhSize = 5;
120                     litSize  = (lhc >> 4) & 0x3FFFF;
121                     litCSize = (lhc >> 22) + ((size_t)istart[4] << 10);
122                     break;
123                 }
124                 RETURN_ERROR_IF(litSize > ZSTD_BLOCKSIZE_MAX, corruption_detected);
125                 RETURN_ERROR_IF(litCSize + lhSize > srcSize, corruption_detected);
126 
127                 /* prefetch huffman table if cold */
128                 if (dctx->ddictIsCold && (litSize > 768 /* heuristic */)) {
129                     PREFETCH_AREA(dctx->HUFptr, sizeof(dctx->entropy.hufTable));
130                 }
131 
132                 if (litEncType==set_repeat) {
133                     if (singleStream) {
134                         hufSuccess = HUF_decompress1X_usingDTable_bmi2(
135                             dctx->litBuffer, litSize, istart+lhSize, litCSize,
136                             dctx->HUFptr, dctx->bmi2);
137                     } else {
138                         hufSuccess = HUF_decompress4X_usingDTable_bmi2(
139                             dctx->litBuffer, litSize, istart+lhSize, litCSize,
140                             dctx->HUFptr, dctx->bmi2);
141                     }
142                 } else {
143                     if (singleStream) {
144 #if defined(HUF_FORCE_DECOMPRESS_X2)
145                         hufSuccess = HUF_decompress1X_DCtx_wksp(
146                             dctx->entropy.hufTable, dctx->litBuffer, litSize,
147                             istart+lhSize, litCSize, dctx->workspace,
148                             sizeof(dctx->workspace));
149 #else
150                         hufSuccess = HUF_decompress1X1_DCtx_wksp_bmi2(
151                             dctx->entropy.hufTable, dctx->litBuffer, litSize,
152                             istart+lhSize, litCSize, dctx->workspace,
153                             sizeof(dctx->workspace), dctx->bmi2);
154 #endif
155                     } else {
156                         hufSuccess = HUF_decompress4X_hufOnly_wksp_bmi2(
157                             dctx->entropy.hufTable, dctx->litBuffer, litSize,
158                             istart+lhSize, litCSize, dctx->workspace,
159                             sizeof(dctx->workspace), dctx->bmi2);
160                     }
161                 }
162 
163                 RETURN_ERROR_IF(HUF_isError(hufSuccess), corruption_detected);
164 
165                 dctx->litPtr = dctx->litBuffer;
166                 dctx->litSize = litSize;
167                 dctx->litEntropy = 1;
168                 if (litEncType==set_compressed) dctx->HUFptr = dctx->entropy.hufTable;
169                 memset(dctx->litBuffer + dctx->litSize, 0, WILDCOPY_OVERLENGTH);
170                 return litCSize + lhSize;
171             }
172 
173         case set_basic:
174             {   size_t litSize, lhSize;
175                 U32 const lhlCode = ((istart[0]) >> 2) & 3;
176                 switch(lhlCode)
177                 {
178                 case 0: case 2: default:   /* note : default is impossible, since lhlCode into [0..3] */
179                     lhSize = 1;
180                     litSize = istart[0] >> 3;
181                     break;
182                 case 1:
183                     lhSize = 2;
184                     litSize = MEM_readLE16(istart) >> 4;
185                     break;
186                 case 3:
187                     lhSize = 3;
188                     litSize = MEM_readLE24(istart) >> 4;
189                     break;
190                 }
191 
192                 if (lhSize+litSize+WILDCOPY_OVERLENGTH > srcSize) {  /* risk reading beyond src buffer with wildcopy */
193                     RETURN_ERROR_IF(litSize+lhSize > srcSize, corruption_detected);
194                     memcpy(dctx->litBuffer, istart+lhSize, litSize);
195                     dctx->litPtr = dctx->litBuffer;
196                     dctx->litSize = litSize;
197                     memset(dctx->litBuffer + dctx->litSize, 0, WILDCOPY_OVERLENGTH);
198                     return lhSize+litSize;
199                 }
200                 /* direct reference into compressed stream */
201                 dctx->litPtr = istart+lhSize;
202                 dctx->litSize = litSize;
203                 return lhSize+litSize;
204             }
205 
206         case set_rle:
207             {   U32 const lhlCode = ((istart[0]) >> 2) & 3;
208                 size_t litSize, lhSize;
209                 switch(lhlCode)
210                 {
211                 case 0: case 2: default:   /* note : default is impossible, since lhlCode into [0..3] */
212                     lhSize = 1;
213                     litSize = istart[0] >> 3;
214                     break;
215                 case 1:
216                     lhSize = 2;
217                     litSize = MEM_readLE16(istart) >> 4;
218                     break;
219                 case 3:
220                     lhSize = 3;
221                     litSize = MEM_readLE24(istart) >> 4;
222                     RETURN_ERROR_IF(srcSize<4, corruption_detected, "srcSize >= MIN_CBLOCK_SIZE == 3; here we need lhSize+1 = 4");
223                     break;
224                 }
225                 RETURN_ERROR_IF(litSize > ZSTD_BLOCKSIZE_MAX, corruption_detected);
226                 memset(dctx->litBuffer, istart[lhSize], litSize + WILDCOPY_OVERLENGTH);
227                 dctx->litPtr = dctx->litBuffer;
228                 dctx->litSize = litSize;
229                 return lhSize+1;
230             }
231         default:
232             RETURN_ERROR(corruption_detected, "impossible");
233         }
234     }
235 }
236 
237 /* Default FSE distribution tables.
238  * These are pre-calculated FSE decoding tables using default distributions as defined in specification :
239  * https://github.com/facebook/zstd/blob/master/doc/zstd_compression_format.md#default-distributions
240  * They were generated programmatically with following method :
241  * - start from default distributions, present in /lib/common/zstd_internal.h
242  * - generate tables normally, using ZSTD_buildFSETable()
243  * - printout the content of tables
244  * - pretify output, report below, test with fuzzer to ensure it's correct */
245 
246 /* Default FSE distribution table for Literal Lengths */
247 static const ZSTD_seqSymbol LL_defaultDTable[(1<<LL_DEFAULTNORMLOG)+1] = {
248      {  1,  1,  1, LL_DEFAULTNORMLOG},  /* header : fastMode, tableLog */
249      /* nextState, nbAddBits, nbBits, baseVal */
250      {  0,  0,  4,    0},  { 16,  0,  4,    0},
251      { 32,  0,  5,    1},  {  0,  0,  5,    3},
252      {  0,  0,  5,    4},  {  0,  0,  5,    6},
253      {  0,  0,  5,    7},  {  0,  0,  5,    9},
254      {  0,  0,  5,   10},  {  0,  0,  5,   12},
255      {  0,  0,  6,   14},  {  0,  1,  5,   16},
256      {  0,  1,  5,   20},  {  0,  1,  5,   22},
257      {  0,  2,  5,   28},  {  0,  3,  5,   32},
258      {  0,  4,  5,   48},  { 32,  6,  5,   64},
259      {  0,  7,  5,  128},  {  0,  8,  6,  256},
260      {  0, 10,  6, 1024},  {  0, 12,  6, 4096},
261      { 32,  0,  4,    0},  {  0,  0,  4,    1},
262      {  0,  0,  5,    2},  { 32,  0,  5,    4},
263      {  0,  0,  5,    5},  { 32,  0,  5,    7},
264      {  0,  0,  5,    8},  { 32,  0,  5,   10},
265      {  0,  0,  5,   11},  {  0,  0,  6,   13},
266      { 32,  1,  5,   16},  {  0,  1,  5,   18},
267      { 32,  1,  5,   22},  {  0,  2,  5,   24},
268      { 32,  3,  5,   32},  {  0,  3,  5,   40},
269      {  0,  6,  4,   64},  { 16,  6,  4,   64},
270      { 32,  7,  5,  128},  {  0,  9,  6,  512},
271      {  0, 11,  6, 2048},  { 48,  0,  4,    0},
272      { 16,  0,  4,    1},  { 32,  0,  5,    2},
273      { 32,  0,  5,    3},  { 32,  0,  5,    5},
274      { 32,  0,  5,    6},  { 32,  0,  5,    8},
275      { 32,  0,  5,    9},  { 32,  0,  5,   11},
276      { 32,  0,  5,   12},  {  0,  0,  6,   15},
277      { 32,  1,  5,   18},  { 32,  1,  5,   20},
278      { 32,  2,  5,   24},  { 32,  2,  5,   28},
279      { 32,  3,  5,   40},  { 32,  4,  5,   48},
280      {  0, 16,  6,65536},  {  0, 15,  6,32768},
281      {  0, 14,  6,16384},  {  0, 13,  6, 8192},
282 };   /* LL_defaultDTable */
283 
284 /* Default FSE distribution table for Offset Codes */
285 static const ZSTD_seqSymbol OF_defaultDTable[(1<<OF_DEFAULTNORMLOG)+1] = {
286     {  1,  1,  1, OF_DEFAULTNORMLOG},  /* header : fastMode, tableLog */
287     /* nextState, nbAddBits, nbBits, baseVal */
288     {  0,  0,  5,    0},     {  0,  6,  4,   61},
289     {  0,  9,  5,  509},     {  0, 15,  5,32765},
290     {  0, 21,  5,2097149},   {  0,  3,  5,    5},
291     {  0,  7,  4,  125},     {  0, 12,  5, 4093},
292     {  0, 18,  5,262141},    {  0, 23,  5,8388605},
293     {  0,  5,  5,   29},     {  0,  8,  4,  253},
294     {  0, 14,  5,16381},     {  0, 20,  5,1048573},
295     {  0,  2,  5,    1},     { 16,  7,  4,  125},
296     {  0, 11,  5, 2045},     {  0, 17,  5,131069},
297     {  0, 22,  5,4194301},   {  0,  4,  5,   13},
298     { 16,  8,  4,  253},     {  0, 13,  5, 8189},
299     {  0, 19,  5,524285},    {  0,  1,  5,    1},
300     { 16,  6,  4,   61},     {  0, 10,  5, 1021},
301     {  0, 16,  5,65533},     {  0, 28,  5,268435453},
302     {  0, 27,  5,134217725}, {  0, 26,  5,67108861},
303     {  0, 25,  5,33554429},  {  0, 24,  5,16777213},
304 };   /* OF_defaultDTable */
305 
306 
307 /* Default FSE distribution table for Match Lengths */
308 static const ZSTD_seqSymbol ML_defaultDTable[(1<<ML_DEFAULTNORMLOG)+1] = {
309     {  1,  1,  1, ML_DEFAULTNORMLOG},  /* header : fastMode, tableLog */
310     /* nextState, nbAddBits, nbBits, baseVal */
311     {  0,  0,  6,    3},  {  0,  0,  4,    4},
312     { 32,  0,  5,    5},  {  0,  0,  5,    6},
313     {  0,  0,  5,    8},  {  0,  0,  5,    9},
314     {  0,  0,  5,   11},  {  0,  0,  6,   13},
315     {  0,  0,  6,   16},  {  0,  0,  6,   19},
316     {  0,  0,  6,   22},  {  0,  0,  6,   25},
317     {  0,  0,  6,   28},  {  0,  0,  6,   31},
318     {  0,  0,  6,   34},  {  0,  1,  6,   37},
319     {  0,  1,  6,   41},  {  0,  2,  6,   47},
320     {  0,  3,  6,   59},  {  0,  4,  6,   83},
321     {  0,  7,  6,  131},  {  0,  9,  6,  515},
322     { 16,  0,  4,    4},  {  0,  0,  4,    5},
323     { 32,  0,  5,    6},  {  0,  0,  5,    7},
324     { 32,  0,  5,    9},  {  0,  0,  5,   10},
325     {  0,  0,  6,   12},  {  0,  0,  6,   15},
326     {  0,  0,  6,   18},  {  0,  0,  6,   21},
327     {  0,  0,  6,   24},  {  0,  0,  6,   27},
328     {  0,  0,  6,   30},  {  0,  0,  6,   33},
329     {  0,  1,  6,   35},  {  0,  1,  6,   39},
330     {  0,  2,  6,   43},  {  0,  3,  6,   51},
331     {  0,  4,  6,   67},  {  0,  5,  6,   99},
332     {  0,  8,  6,  259},  { 32,  0,  4,    4},
333     { 48,  0,  4,    4},  { 16,  0,  4,    5},
334     { 32,  0,  5,    7},  { 32,  0,  5,    8},
335     { 32,  0,  5,   10},  { 32,  0,  5,   11},
336     {  0,  0,  6,   14},  {  0,  0,  6,   17},
337     {  0,  0,  6,   20},  {  0,  0,  6,   23},
338     {  0,  0,  6,   26},  {  0,  0,  6,   29},
339     {  0,  0,  6,   32},  {  0, 16,  6,65539},
340     {  0, 15,  6,32771},  {  0, 14,  6,16387},
341     {  0, 13,  6, 8195},  {  0, 12,  6, 4099},
342     {  0, 11,  6, 2051},  {  0, 10,  6, 1027},
343 };   /* ML_defaultDTable */
344 
345 
346 static void ZSTD_buildSeqTable_rle(ZSTD_seqSymbol* dt, U32 baseValue, U32 nbAddBits)
347 {
348     void* ptr = dt;
349     ZSTD_seqSymbol_header* const DTableH = (ZSTD_seqSymbol_header*)ptr;
350     ZSTD_seqSymbol* const cell = dt + 1;
351 
352     DTableH->tableLog = 0;
353     DTableH->fastMode = 0;
354 
355     cell->nbBits = 0;
356     cell->nextState = 0;
357     assert(nbAddBits < 255);
358     cell->nbAdditionalBits = (BYTE)nbAddBits;
359     cell->baseValue = baseValue;
360 }
361 
362 
363 /* ZSTD_buildFSETable() :
364  * generate FSE decoding table for one symbol (ll, ml or off)
365  * cannot fail if input is valid =>
366  * all inputs are presumed validated at this stage */
367 void
368 ZSTD_buildFSETable(ZSTD_seqSymbol* dt,
369             const short* normalizedCounter, unsigned maxSymbolValue,
370             const U32* baseValue, const U32* nbAdditionalBits,
371             unsigned tableLog)
372 {
373     ZSTD_seqSymbol* const tableDecode = dt+1;
374     U16 symbolNext[MaxSeq+1];
375 
376     U32 const maxSV1 = maxSymbolValue + 1;
377     U32 const tableSize = 1 << tableLog;
378     U32 highThreshold = tableSize-1;
379 
380     /* Sanity Checks */
381     assert(maxSymbolValue <= MaxSeq);
382     assert(tableLog <= MaxFSELog);
383 
384     /* Init, lay down lowprob symbols */
385     {   ZSTD_seqSymbol_header DTableH;
386         DTableH.tableLog = tableLog;
387         DTableH.fastMode = 1;
388         {   S16 const largeLimit= (S16)(1 << (tableLog-1));
389             U32 s;
390             for (s=0; s<maxSV1; s++) {
391                 if (normalizedCounter[s]==-1) {
392                     tableDecode[highThreshold--].baseValue = s;
393                     symbolNext[s] = 1;
394                 } else {
395                     if (normalizedCounter[s] >= largeLimit) DTableH.fastMode=0;
396                     assert(normalizedCounter[s]>=0);
397                     symbolNext[s] = (U16)normalizedCounter[s];
398         }   }   }
399         memcpy(dt, &DTableH, sizeof(DTableH));
400     }
401 
402     /* Spread symbols */
403     {   U32 const tableMask = tableSize-1;
404         U32 const step = FSE_TABLESTEP(tableSize);
405         U32 s, position = 0;
406         for (s=0; s<maxSV1; s++) {
407             int i;
408             for (i=0; i<normalizedCounter[s]; i++) {
409                 tableDecode[position].baseValue = s;
410                 position = (position + step) & tableMask;
411                 while (position > highThreshold) position = (position + step) & tableMask;   /* lowprob area */
412         }   }
413         assert(position == 0); /* position must reach all cells once, otherwise normalizedCounter is incorrect */
414     }
415 
416     /* Build Decoding table */
417     {   U32 u;
418         for (u=0; u<tableSize; u++) {
419             U32 const symbol = tableDecode[u].baseValue;
420             U32 const nextState = symbolNext[symbol]++;
421             tableDecode[u].nbBits = (BYTE) (tableLog - BIT_highbit32(nextState) );
422             tableDecode[u].nextState = (U16) ( (nextState << tableDecode[u].nbBits) - tableSize);
423             assert(nbAdditionalBits[symbol] < 255);
424             tableDecode[u].nbAdditionalBits = (BYTE)nbAdditionalBits[symbol];
425             tableDecode[u].baseValue = baseValue[symbol];
426     }   }
427 }
428 
429 
430 /*! ZSTD_buildSeqTable() :
431  * @return : nb bytes read from src,
432  *           or an error code if it fails */
433 static size_t ZSTD_buildSeqTable(ZSTD_seqSymbol* DTableSpace, const ZSTD_seqSymbol** DTablePtr,
434                                  symbolEncodingType_e type, unsigned max, U32 maxLog,
435                                  const void* src, size_t srcSize,
436                                  const U32* baseValue, const U32* nbAdditionalBits,
437                                  const ZSTD_seqSymbol* defaultTable, U32 flagRepeatTable,
438                                  int ddictIsCold, int nbSeq)
439 {
440     switch(type)
441     {
442     case set_rle :
443         RETURN_ERROR_IF(!srcSize, srcSize_wrong);
444         RETURN_ERROR_IF((*(const BYTE*)src) > max, corruption_detected);
445         {   U32 const symbol = *(const BYTE*)src;
446             U32 const baseline = baseValue[symbol];
447             U32 const nbBits = nbAdditionalBits[symbol];
448             ZSTD_buildSeqTable_rle(DTableSpace, baseline, nbBits);
449         }
450         *DTablePtr = DTableSpace;
451         return 1;
452     case set_basic :
453         *DTablePtr = defaultTable;
454         return 0;
455     case set_repeat:
456         RETURN_ERROR_IF(!flagRepeatTable, corruption_detected);
457         /* prefetch FSE table if used */
458         if (ddictIsCold && (nbSeq > 24 /* heuristic */)) {
459             const void* const pStart = *DTablePtr;
460             size_t const pSize = sizeof(ZSTD_seqSymbol) * (SEQSYMBOL_TABLE_SIZE(maxLog));
461             PREFETCH_AREA(pStart, pSize);
462         }
463         return 0;
464     case set_compressed :
465         {   unsigned tableLog;
466             S16 norm[MaxSeq+1];
467             size_t const headerSize = FSE_readNCount(norm, &max, &tableLog, src, srcSize);
468             RETURN_ERROR_IF(FSE_isError(headerSize), corruption_detected);
469             RETURN_ERROR_IF(tableLog > maxLog, corruption_detected);
470             ZSTD_buildFSETable(DTableSpace, norm, max, baseValue, nbAdditionalBits, tableLog);
471             *DTablePtr = DTableSpace;
472             return headerSize;
473         }
474     default :
475         assert(0);
476         RETURN_ERROR(GENERIC, "impossible");
477     }
478 }
479 
480 size_t ZSTD_decodeSeqHeaders(ZSTD_DCtx* dctx, int* nbSeqPtr,
481                              const void* src, size_t srcSize)
482 {
483     const BYTE* const istart = (const BYTE* const)src;
484     const BYTE* const iend = istart + srcSize;
485     const BYTE* ip = istart;
486     int nbSeq;
487     DEBUGLOG(5, "ZSTD_decodeSeqHeaders");
488 
489     /* check */
490     RETURN_ERROR_IF(srcSize < MIN_SEQUENCES_SIZE, srcSize_wrong);
491 
492     /* SeqHead */
493     nbSeq = *ip++;
494     if (!nbSeq) {
495         *nbSeqPtr=0;
496         RETURN_ERROR_IF(srcSize != 1, srcSize_wrong);
497         return 1;
498     }
499     if (nbSeq > 0x7F) {
500         if (nbSeq == 0xFF) {
501             RETURN_ERROR_IF(ip+2 > iend, srcSize_wrong);
502             nbSeq = MEM_readLE16(ip) + LONGNBSEQ, ip+=2;
503         } else {
504             RETURN_ERROR_IF(ip >= iend, srcSize_wrong);
505             nbSeq = ((nbSeq-0x80)<<8) + *ip++;
506         }
507     }
508     *nbSeqPtr = nbSeq;
509 
510     /* FSE table descriptors */
511     RETURN_ERROR_IF(ip+1 > iend, srcSize_wrong); /* minimum possible size: 1 byte for symbol encoding types */
512     {   symbolEncodingType_e const LLtype = (symbolEncodingType_e)(*ip >> 6);
513         symbolEncodingType_e const OFtype = (symbolEncodingType_e)((*ip >> 4) & 3);
514         symbolEncodingType_e const MLtype = (symbolEncodingType_e)((*ip >> 2) & 3);
515         ip++;
516 
517         /* Build DTables */
518         {   size_t const llhSize = ZSTD_buildSeqTable(dctx->entropy.LLTable, &dctx->LLTptr,
519                                                       LLtype, MaxLL, LLFSELog,
520                                                       ip, iend-ip,
521                                                       LL_base, LL_bits,
522                                                       LL_defaultDTable, dctx->fseEntropy,
523                                                       dctx->ddictIsCold, nbSeq);
524             RETURN_ERROR_IF(ZSTD_isError(llhSize), corruption_detected);
525             ip += llhSize;
526         }
527 
528         {   size_t const ofhSize = ZSTD_buildSeqTable(dctx->entropy.OFTable, &dctx->OFTptr,
529                                                       OFtype, MaxOff, OffFSELog,
530                                                       ip, iend-ip,
531                                                       OF_base, OF_bits,
532                                                       OF_defaultDTable, dctx->fseEntropy,
533                                                       dctx->ddictIsCold, nbSeq);
534             RETURN_ERROR_IF(ZSTD_isError(ofhSize), corruption_detected);
535             ip += ofhSize;
536         }
537 
538         {   size_t const mlhSize = ZSTD_buildSeqTable(dctx->entropy.MLTable, &dctx->MLTptr,
539                                                       MLtype, MaxML, MLFSELog,
540                                                       ip, iend-ip,
541                                                       ML_base, ML_bits,
542                                                       ML_defaultDTable, dctx->fseEntropy,
543                                                       dctx->ddictIsCold, nbSeq);
544             RETURN_ERROR_IF(ZSTD_isError(mlhSize), corruption_detected);
545             ip += mlhSize;
546         }
547     }
548 
549     return ip-istart;
550 }
551 
552 
553 typedef struct {
554     size_t litLength;
555     size_t matchLength;
556     size_t offset;
557     const BYTE* match;
558 } seq_t;
559 
560 typedef struct {
561     size_t state;
562     const ZSTD_seqSymbol* table;
563 } ZSTD_fseState;
564 
565 typedef struct {
566     BIT_DStream_t DStream;
567     ZSTD_fseState stateLL;
568     ZSTD_fseState stateOffb;
569     ZSTD_fseState stateML;
570     size_t prevOffset[ZSTD_REP_NUM];
571     const BYTE* prefixStart;
572     const BYTE* dictEnd;
573     size_t pos;
574 } seqState_t;
575 
576 /*! ZSTD_overlapCopy8() :
577  *  Copies 8 bytes from ip to op and updates op and ip where ip <= op.
578  *  If the offset is < 8 then the offset is spread to at least 8 bytes.
579  *
580  *  Precondition: *ip <= *op
581  *  Postcondition: *op - *op >= 8
582  */
583 static void ZSTD_overlapCopy8(BYTE** op, BYTE const** ip, size_t offset) {
584     assert(*ip <= *op);
585     if (offset < 8) {
586         /* close range match, overlap */
587         static const U32 dec32table[] = { 0, 1, 2, 1, 4, 4, 4, 4 };   /* added */
588         static const int dec64table[] = { 8, 8, 8, 7, 8, 9,10,11 };   /* subtracted */
589         int const sub2 = dec64table[offset];
590         (*op)[0] = (*ip)[0];
591         (*op)[1] = (*ip)[1];
592         (*op)[2] = (*ip)[2];
593         (*op)[3] = (*ip)[3];
594         *ip += dec32table[offset];
595         ZSTD_copy4(*op+4, *ip);
596         *ip -= sub2;
597     } else {
598         ZSTD_copy8(*op, *ip);
599     }
600     *ip += 8;
601     *op += 8;
602     assert(*op - *ip >= 8);
603 }
604 
605 /*! ZSTD_safecopy() :
606  *  Specialized version of memcpy() that is allowed to READ up to WILDCOPY_OVERLENGTH past the input buffer
607  *  and write up to 16 bytes past oend_w (op >= oend_w is allowed).
608  *  This function is only called in the uncommon case where the sequence is near the end of the block. It
609  *  should be fast for a single long sequence, but can be slow for several short sequences.
610  *
611  *  @param ovtype controls the overlap detection
612  *         - ZSTD_no_overlap: The source and destination are guaranteed to be at least WILDCOPY_VECLEN bytes apart.
613  *         - ZSTD_overlap_src_before_dst: The src and dst may overlap and may be any distance apart.
614  *           The src buffer must be before the dst buffer.
615  */
616 static void ZSTD_safecopy(BYTE* op, BYTE* const oend_w, BYTE const* ip, ptrdiff_t length, ZSTD_overlap_e ovtype) {
617     ptrdiff_t const diff = op - ip;
618     BYTE* const oend = op + length;
619 
620     assert((ovtype == ZSTD_no_overlap && (diff <= -8 || diff >= 8 || op >= oend_w)) ||
621            (ovtype == ZSTD_overlap_src_before_dst && diff >= 0));
622 
623     if (length < 8) {
624         /* Handle short lengths. */
625         while (op < oend) *op++ = *ip++;
626         return;
627     }
628     if (ovtype == ZSTD_overlap_src_before_dst) {
629         /* Copy 8 bytes and ensure the offset >= 8 when there can be overlap. */
630         assert(length >= 8);
631         ZSTD_overlapCopy8(&op, &ip, diff);
632         assert(op - ip >= 8);
633         assert(op <= oend);
634     }
635 
636     if (oend <= oend_w) {
637         /* No risk of overwrite. */
638         ZSTD_wildcopy(op, ip, length, ovtype);
639         return;
640     }
641     if (op <= oend_w) {
642         /* Wildcopy until we get close to the end. */
643         assert(oend > oend_w);
644         ZSTD_wildcopy(op, ip, oend_w - op, ovtype);
645         ip += oend_w - op;
646         op = oend_w;
647     }
648     /* Handle the leftovers. */
649     while (op < oend) *op++ = *ip++;
650 }
651 
652 /* ZSTD_execSequenceEnd():
653  * This version handles cases that are near the end of the output buffer. It requires
654  * more careful checks to make sure there is no overflow. By separating out these hard
655  * and unlikely cases, we can speed up the common cases.
656  *
657  * NOTE: This function needs to be fast for a single long sequence, but doesn't need
658  * to be optimized for many small sequences, since those fall into ZSTD_execSequence().
659  */
660 FORCE_NOINLINE
661 size_t ZSTD_execSequenceEnd(BYTE* op,
662                             BYTE* const oend, seq_t sequence,
663                             const BYTE** litPtr, const BYTE* const litLimit,
664                             const BYTE* const prefixStart, const BYTE* const virtualStart, const BYTE* const dictEnd)
665 {
666     BYTE* const oLitEnd = op + sequence.litLength;
667     size_t const sequenceLength = sequence.litLength + sequence.matchLength;
668     BYTE* const oMatchEnd = op + sequenceLength;   /* risk : address space overflow (32-bits) */
669     const BYTE* const iLitEnd = *litPtr + sequence.litLength;
670     const BYTE* match = oLitEnd - sequence.offset;
671     BYTE* const oend_w = oend - WILDCOPY_OVERLENGTH;
672 
673     /* bounds checks */
674     assert(oLitEnd < oMatchEnd);
675     RETURN_ERROR_IF(oMatchEnd > oend, dstSize_tooSmall, "last match must fit within dstBuffer");
676     RETURN_ERROR_IF(iLitEnd > litLimit, corruption_detected, "try to read beyond literal buffer");
677 
678     /* copy literals */
679     ZSTD_safecopy(op, oend_w, *litPtr, sequence.litLength, ZSTD_no_overlap);
680     op = oLitEnd;
681     *litPtr = iLitEnd;
682 
683     /* copy Match */
684     if (sequence.offset > (size_t)(oLitEnd - prefixStart)) {
685         /* offset beyond prefix */
686         RETURN_ERROR_IF(sequence.offset > (size_t)(oLitEnd - virtualStart), corruption_detected);
687         match = dictEnd - (prefixStart-match);
688         if (match + sequence.matchLength <= dictEnd) {
689             memmove(oLitEnd, match, sequence.matchLength);
690             return sequenceLength;
691         }
692         /* span extDict & currentPrefixSegment */
693         {   size_t const length1 = dictEnd - match;
694             memmove(oLitEnd, match, length1);
695             op = oLitEnd + length1;
696             sequence.matchLength -= length1;
697             match = prefixStart;
698     }   }
699     ZSTD_safecopy(op, oend_w, match, sequence.matchLength, ZSTD_overlap_src_before_dst);
700     return sequenceLength;
701 }
702 
703 HINT_INLINE
704 size_t ZSTD_execSequence(BYTE* op,
705                          BYTE* const oend, seq_t sequence,
706                          const BYTE** litPtr, const BYTE* const litLimit,
707                          const BYTE* const prefixStart, const BYTE* const virtualStart, const BYTE* const dictEnd)
708 {
709     BYTE* const oLitEnd = op + sequence.litLength;
710     size_t const sequenceLength = sequence.litLength + sequence.matchLength;
711     BYTE* const oMatchEnd = op + sequenceLength;   /* risk : address space overflow (32-bits) */
712     BYTE* const oend_w = oend - WILDCOPY_OVERLENGTH;
713     const BYTE* const iLitEnd = *litPtr + sequence.litLength;
714     const BYTE* match = oLitEnd - sequence.offset;
715 
716     /* Errors and uncommon cases handled here. */
717     assert(oLitEnd < oMatchEnd);
718     if (iLitEnd > litLimit || oMatchEnd > oend_w)
719         return ZSTD_execSequenceEnd(op, oend, sequence, litPtr, litLimit, prefixStart, virtualStart, dictEnd);
720 
721     /* Assumptions (everything else goes into ZSTD_execSequenceEnd()) */
722     assert(iLitEnd <= litLimit /* Literal length is in bounds */);
723     assert(oLitEnd <= oend_w /* Can wildcopy literals */);
724     assert(oMatchEnd <= oend_w /* Can wildcopy matches */);
725 
726     /* Copy Literals:
727      * Split out litLength <= 16 since it is nearly always true. +1.6% on gcc-9.
728      * We likely don't need the full 32-byte wildcopy.
729      */
730     assert(WILDCOPY_OVERLENGTH >= 16);
731     ZSTD_copy16(op, (*litPtr));
732     if (sequence.litLength > 16) {
733         ZSTD_wildcopy(op+16, (*litPtr)+16, sequence.litLength-16, ZSTD_no_overlap);
734     }
735     op = oLitEnd;
736     *litPtr = iLitEnd;   /* update for next sequence */
737 
738     /* Copy Match */
739     if (sequence.offset > (size_t)(oLitEnd - prefixStart)) {
740         /* offset beyond prefix -> go into extDict */
741         RETURN_ERROR_IF(sequence.offset > (size_t)(oLitEnd - virtualStart), corruption_detected);
742         match = dictEnd + (match - prefixStart);
743         if (match + sequence.matchLength <= dictEnd) {
744             memmove(oLitEnd, match, sequence.matchLength);
745             return sequenceLength;
746         }
747         /* span extDict & currentPrefixSegment */
748         {   size_t const length1 = dictEnd - match;
749             memmove(oLitEnd, match, length1);
750             op = oLitEnd + length1;
751             sequence.matchLength -= length1;
752             match = prefixStart;
753     }   }
754     /* Match within prefix of 1 or more bytes */
755     assert(op <= oMatchEnd);
756     assert(oMatchEnd <= oend_w);
757     assert(match >= prefixStart);
758     assert(sequence.matchLength >= 1);
759 
760     /* Nearly all offsets are >= WILDCOPY_VECLEN bytes, which means we can use wildcopy
761      * without overlap checking.
762      */
763     if (sequence.offset >= WILDCOPY_VECLEN) {
764         /* We bet on a full wildcopy for matches, since we expect matches to be
765          * longer than literals (in general). In silesia, ~10% of matches are longer
766          * than 16 bytes.
767          */
768         ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength, ZSTD_no_overlap);
769         return sequenceLength;
770     }
771     assert(sequence.offset < WILDCOPY_VECLEN);
772 
773     /* Copy 8 bytes and spread the offset to be >= 8. */
774     ZSTD_overlapCopy8(&op, &match, sequence.offset);
775 
776     /* If the match length is > 8 bytes, then continue with the wildcopy. */
777     if (sequence.matchLength > 8) {
778         assert(op < oMatchEnd);
779         ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength-8, ZSTD_overlap_src_before_dst);
780     }
781     return sequenceLength;
782 }
783 
784 static void
785 ZSTD_initFseState(ZSTD_fseState* DStatePtr, BIT_DStream_t* bitD, const ZSTD_seqSymbol* dt)
786 {
787     const void* ptr = dt;
788     const ZSTD_seqSymbol_header* const DTableH = (const ZSTD_seqSymbol_header*)ptr;
789     DStatePtr->state = BIT_readBits(bitD, DTableH->tableLog);
790     DEBUGLOG(6, "ZSTD_initFseState : val=%u using %u bits",
791                 (U32)DStatePtr->state, DTableH->tableLog);
792     BIT_reloadDStream(bitD);
793     DStatePtr->table = dt + 1;
794 }
795 
796 FORCE_INLINE_TEMPLATE void
797 ZSTD_updateFseState(ZSTD_fseState* DStatePtr, BIT_DStream_t* bitD)
798 {
799     ZSTD_seqSymbol const DInfo = DStatePtr->table[DStatePtr->state];
800     U32 const nbBits = DInfo.nbBits;
801     size_t const lowBits = BIT_readBits(bitD, nbBits);
802     DStatePtr->state = DInfo.nextState + lowBits;
803 }
804 
805 /* We need to add at most (ZSTD_WINDOWLOG_MAX_32 - 1) bits to read the maximum
806  * offset bits. But we can only read at most (STREAM_ACCUMULATOR_MIN_32 - 1)
807  * bits before reloading. This value is the maximum number of bytes we read
808  * after reloading when we are decoding long offsets.
809  */
810 #define LONG_OFFSETS_MAX_EXTRA_BITS_32                       \
811     (ZSTD_WINDOWLOG_MAX_32 > STREAM_ACCUMULATOR_MIN_32       \
812         ? ZSTD_WINDOWLOG_MAX_32 - STREAM_ACCUMULATOR_MIN_32  \
813         : 0)
814 
815 typedef enum { ZSTD_lo_isRegularOffset, ZSTD_lo_isLongOffset=1 } ZSTD_longOffset_e;
816 
817 #ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG
818 FORCE_INLINE_TEMPLATE seq_t
819 ZSTD_decodeSequence(seqState_t* seqState, const ZSTD_longOffset_e longOffsets)
820 {
821     seq_t seq;
822     U32 const llBits = seqState->stateLL.table[seqState->stateLL.state].nbAdditionalBits;
823     U32 const mlBits = seqState->stateML.table[seqState->stateML.state].nbAdditionalBits;
824     U32 const ofBits = seqState->stateOffb.table[seqState->stateOffb.state].nbAdditionalBits;
825     U32 const totalBits = llBits+mlBits+ofBits;
826     U32 const llBase = seqState->stateLL.table[seqState->stateLL.state].baseValue;
827     U32 const mlBase = seqState->stateML.table[seqState->stateML.state].baseValue;
828     U32 const ofBase = seqState->stateOffb.table[seqState->stateOffb.state].baseValue;
829 
830     /* sequence */
831     {   size_t offset;
832         if (!ofBits)
833             offset = 0;
834         else {
835             ZSTD_STATIC_ASSERT(ZSTD_lo_isLongOffset == 1);
836             ZSTD_STATIC_ASSERT(LONG_OFFSETS_MAX_EXTRA_BITS_32 == 5);
837             assert(ofBits <= MaxOff);
838             if (MEM_32bits() && longOffsets && (ofBits >= STREAM_ACCUMULATOR_MIN_32)) {
839                 U32 const extraBits = ofBits - MIN(ofBits, 32 - seqState->DStream.bitsConsumed);
840                 offset = ofBase + (BIT_readBitsFast(&seqState->DStream, ofBits - extraBits) << extraBits);
841                 BIT_reloadDStream(&seqState->DStream);
842                 if (extraBits) offset += BIT_readBitsFast(&seqState->DStream, extraBits);
843                 assert(extraBits <= LONG_OFFSETS_MAX_EXTRA_BITS_32);   /* to avoid another reload */
844             } else {
845                 offset = ofBase + BIT_readBitsFast(&seqState->DStream, ofBits/*>0*/);   /* <=  (ZSTD_WINDOWLOG_MAX-1) bits */
846                 if (MEM_32bits()) BIT_reloadDStream(&seqState->DStream);
847             }
848         }
849 
850         if (ofBits <= 1) {
851             offset += (llBase==0);
852             if (offset) {
853                 size_t temp = (offset==3) ? seqState->prevOffset[0] - 1 : seqState->prevOffset[offset];
854                 temp += !temp;   /* 0 is not valid; input is corrupted; force offset to 1 */
855                 if (offset != 1) seqState->prevOffset[2] = seqState->prevOffset[1];
856                 seqState->prevOffset[1] = seqState->prevOffset[0];
857                 seqState->prevOffset[0] = offset = temp;
858             } else {  /* offset == 0 */
859                 offset = seqState->prevOffset[0];
860             }
861         } else {
862             seqState->prevOffset[2] = seqState->prevOffset[1];
863             seqState->prevOffset[1] = seqState->prevOffset[0];
864             seqState->prevOffset[0] = offset;
865         }
866         seq.offset = offset;
867     }
868 
869     seq.matchLength = mlBase
870                     + ((mlBits>0) ? BIT_readBitsFast(&seqState->DStream, mlBits/*>0*/) : 0);  /* <=  16 bits */
871     if (MEM_32bits() && (mlBits+llBits >= STREAM_ACCUMULATOR_MIN_32-LONG_OFFSETS_MAX_EXTRA_BITS_32))
872         BIT_reloadDStream(&seqState->DStream);
873     if (MEM_64bits() && (totalBits >= STREAM_ACCUMULATOR_MIN_64-(LLFSELog+MLFSELog+OffFSELog)))
874         BIT_reloadDStream(&seqState->DStream);
875     /* Ensure there are enough bits to read the rest of data in 64-bit mode. */
876     ZSTD_STATIC_ASSERT(16+LLFSELog+MLFSELog+OffFSELog < STREAM_ACCUMULATOR_MIN_64);
877 
878     seq.litLength = llBase
879                   + ((llBits>0) ? BIT_readBitsFast(&seqState->DStream, llBits/*>0*/) : 0);    /* <=  16 bits */
880     if (MEM_32bits())
881         BIT_reloadDStream(&seqState->DStream);
882 
883     DEBUGLOG(6, "seq: litL=%u, matchL=%u, offset=%u",
884                 (U32)seq.litLength, (U32)seq.matchLength, (U32)seq.offset);
885 
886     /* ANS state update */
887     ZSTD_updateFseState(&seqState->stateLL, &seqState->DStream);    /* <=  9 bits */
888     ZSTD_updateFseState(&seqState->stateML, &seqState->DStream);    /* <=  9 bits */
889     if (MEM_32bits()) BIT_reloadDStream(&seqState->DStream);    /* <= 18 bits */
890     ZSTD_updateFseState(&seqState->stateOffb, &seqState->DStream);  /* <=  8 bits */
891 
892     return seq;
893 }
894 
895 FORCE_INLINE_TEMPLATE size_t
896 DONT_VECTORIZE
897 ZSTD_decompressSequences_body( ZSTD_DCtx* dctx,
898                                void* dst, size_t maxDstSize,
899                          const void* seqStart, size_t seqSize, int nbSeq,
900                          const ZSTD_longOffset_e isLongOffset)
901 {
902     const BYTE* ip = (const BYTE*)seqStart;
903     const BYTE* const iend = ip + seqSize;
904     BYTE* const ostart = (BYTE* const)dst;
905     BYTE* const oend = ostart + maxDstSize;
906     BYTE* op = ostart;
907     const BYTE* litPtr = dctx->litPtr;
908     const BYTE* const litEnd = litPtr + dctx->litSize;
909     const BYTE* const prefixStart = (const BYTE*) (dctx->prefixStart);
910     const BYTE* const vBase = (const BYTE*) (dctx->virtualStart);
911     const BYTE* const dictEnd = (const BYTE*) (dctx->dictEnd);
912     DEBUGLOG(5, "ZSTD_decompressSequences_body");
913 
914     /* Regen sequences */
915     if (nbSeq) {
916         seqState_t seqState;
917         dctx->fseEntropy = 1;
918         { U32 i; for (i=0; i<ZSTD_REP_NUM; i++) seqState.prevOffset[i] = dctx->entropy.rep[i]; }
919         RETURN_ERROR_IF(
920             ERR_isError(BIT_initDStream(&seqState.DStream, ip, iend-ip)),
921             corruption_detected);
922         ZSTD_initFseState(&seqState.stateLL, &seqState.DStream, dctx->LLTptr);
923         ZSTD_initFseState(&seqState.stateOffb, &seqState.DStream, dctx->OFTptr);
924         ZSTD_initFseState(&seqState.stateML, &seqState.DStream, dctx->MLTptr);
925 
926         ZSTD_STATIC_ASSERT(
927                 BIT_DStream_unfinished < BIT_DStream_completed &&
928                 BIT_DStream_endOfBuffer < BIT_DStream_completed &&
929                 BIT_DStream_completed < BIT_DStream_overflow);
930 
931         for ( ; (BIT_reloadDStream(&(seqState.DStream)) <= BIT_DStream_completed) && nbSeq ; ) {
932             nbSeq--;
933             {   seq_t const sequence = ZSTD_decodeSequence(&seqState, isLongOffset);
934                 size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequence, &litPtr, litEnd, prefixStart, vBase, dictEnd);
935                 DEBUGLOG(6, "regenerated sequence size : %u", (U32)oneSeqSize);
936                 if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
937                 op += oneSeqSize;
938         }   }
939 
940         /* check if reached exact end */
941         DEBUGLOG(5, "ZSTD_decompressSequences_body: after decode loop, remaining nbSeq : %i", nbSeq);
942         RETURN_ERROR_IF(nbSeq, corruption_detected);
943         RETURN_ERROR_IF(BIT_reloadDStream(&seqState.DStream) < BIT_DStream_completed, corruption_detected);
944         /* save reps for next block */
945         { U32 i; for (i=0; i<ZSTD_REP_NUM; i++) dctx->entropy.rep[i] = (U32)(seqState.prevOffset[i]); }
946     }
947 
948     /* last literal segment */
949     {   size_t const lastLLSize = litEnd - litPtr;
950         RETURN_ERROR_IF(lastLLSize > (size_t)(oend-op), dstSize_tooSmall);
951         memcpy(op, litPtr, lastLLSize);
952         op += lastLLSize;
953     }
954 
955     return op-ostart;
956 }
957 
958 static size_t
959 ZSTD_decompressSequences_default(ZSTD_DCtx* dctx,
960                                  void* dst, size_t maxDstSize,
961                            const void* seqStart, size_t seqSize, int nbSeq,
962                            const ZSTD_longOffset_e isLongOffset)
963 {
964     return ZSTD_decompressSequences_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
965 }
966 #endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG */
967 
968 
969 
970 #ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT
971 FORCE_INLINE_TEMPLATE seq_t
972 ZSTD_decodeSequenceLong(seqState_t* seqState, ZSTD_longOffset_e const longOffsets)
973 {
974     seq_t seq;
975     U32 const llBits = seqState->stateLL.table[seqState->stateLL.state].nbAdditionalBits;
976     U32 const mlBits = seqState->stateML.table[seqState->stateML.state].nbAdditionalBits;
977     U32 const ofBits = seqState->stateOffb.table[seqState->stateOffb.state].nbAdditionalBits;
978     U32 const totalBits = llBits+mlBits+ofBits;
979     U32 const llBase = seqState->stateLL.table[seqState->stateLL.state].baseValue;
980     U32 const mlBase = seqState->stateML.table[seqState->stateML.state].baseValue;
981     U32 const ofBase = seqState->stateOffb.table[seqState->stateOffb.state].baseValue;
982 
983     /* sequence */
984     {   size_t offset;
985         if (!ofBits)
986             offset = 0;
987         else {
988             ZSTD_STATIC_ASSERT(ZSTD_lo_isLongOffset == 1);
989             ZSTD_STATIC_ASSERT(LONG_OFFSETS_MAX_EXTRA_BITS_32 == 5);
990             assert(ofBits <= MaxOff);
991             if (MEM_32bits() && longOffsets) {
992                 U32 const extraBits = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN_32-1);
993                 offset = ofBase + (BIT_readBitsFast(&seqState->DStream, ofBits - extraBits) << extraBits);
994                 if (MEM_32bits() || extraBits) BIT_reloadDStream(&seqState->DStream);
995                 if (extraBits) offset += BIT_readBitsFast(&seqState->DStream, extraBits);
996             } else {
997                 offset = ofBase + BIT_readBitsFast(&seqState->DStream, ofBits);   /* <=  (ZSTD_WINDOWLOG_MAX-1) bits */
998                 if (MEM_32bits()) BIT_reloadDStream(&seqState->DStream);
999             }
1000         }
1001 
1002         if (ofBits <= 1) {
1003             offset += (llBase==0);
1004             if (offset) {
1005                 size_t temp = (offset==3) ? seqState->prevOffset[0] - 1 : seqState->prevOffset[offset];
1006                 temp += !temp;   /* 0 is not valid; input is corrupted; force offset to 1 */
1007                 if (offset != 1) seqState->prevOffset[2] = seqState->prevOffset[1];
1008                 seqState->prevOffset[1] = seqState->prevOffset[0];
1009                 seqState->prevOffset[0] = offset = temp;
1010             } else {
1011                 offset = seqState->prevOffset[0];
1012             }
1013         } else {
1014             seqState->prevOffset[2] = seqState->prevOffset[1];
1015             seqState->prevOffset[1] = seqState->prevOffset[0];
1016             seqState->prevOffset[0] = offset;
1017         }
1018         seq.offset = offset;
1019     }
1020 
1021     seq.matchLength = mlBase + ((mlBits>0) ? BIT_readBitsFast(&seqState->DStream, mlBits) : 0);  /* <=  16 bits */
1022     if (MEM_32bits() && (mlBits+llBits >= STREAM_ACCUMULATOR_MIN_32-LONG_OFFSETS_MAX_EXTRA_BITS_32))
1023         BIT_reloadDStream(&seqState->DStream);
1024     if (MEM_64bits() && (totalBits >= STREAM_ACCUMULATOR_MIN_64-(LLFSELog+MLFSELog+OffFSELog)))
1025         BIT_reloadDStream(&seqState->DStream);
1026     /* Verify that there is enough bits to read the rest of the data in 64-bit mode. */
1027     ZSTD_STATIC_ASSERT(16+LLFSELog+MLFSELog+OffFSELog < STREAM_ACCUMULATOR_MIN_64);
1028 
1029     seq.litLength = llBase + ((llBits>0) ? BIT_readBitsFast(&seqState->DStream, llBits) : 0);    /* <=  16 bits */
1030     if (MEM_32bits())
1031         BIT_reloadDStream(&seqState->DStream);
1032 
1033     {   size_t const pos = seqState->pos + seq.litLength;
1034         const BYTE* const matchBase = (seq.offset > pos) ? seqState->dictEnd : seqState->prefixStart;
1035         seq.match = matchBase + pos - seq.offset;  /* note : this operation can overflow when seq.offset is really too large, which can only happen when input is corrupted.
1036                                                     * No consequence though : no memory access will occur, overly large offset will be detected in ZSTD_execSequenceLong() */
1037         seqState->pos = pos + seq.matchLength;
1038     }
1039 
1040     /* ANS state update */
1041     ZSTD_updateFseState(&seqState->stateLL, &seqState->DStream);    /* <=  9 bits */
1042     ZSTD_updateFseState(&seqState->stateML, &seqState->DStream);    /* <=  9 bits */
1043     if (MEM_32bits()) BIT_reloadDStream(&seqState->DStream);    /* <= 18 bits */
1044     ZSTD_updateFseState(&seqState->stateOffb, &seqState->DStream);  /* <=  8 bits */
1045 
1046     return seq;
1047 }
1048 
1049 FORCE_INLINE_TEMPLATE size_t
1050 ZSTD_decompressSequencesLong_body(
1051                                ZSTD_DCtx* dctx,
1052                                void* dst, size_t maxDstSize,
1053                          const void* seqStart, size_t seqSize, int nbSeq,
1054                          const ZSTD_longOffset_e isLongOffset)
1055 {
1056     const BYTE* ip = (const BYTE*)seqStart;
1057     const BYTE* const iend = ip + seqSize;
1058     BYTE* const ostart = (BYTE* const)dst;
1059     BYTE* const oend = ostart + maxDstSize;
1060     BYTE* op = ostart;
1061     const BYTE* litPtr = dctx->litPtr;
1062     const BYTE* const litEnd = litPtr + dctx->litSize;
1063     const BYTE* const prefixStart = (const BYTE*) (dctx->prefixStart);
1064     const BYTE* const dictStart = (const BYTE*) (dctx->virtualStart);
1065     const BYTE* const dictEnd = (const BYTE*) (dctx->dictEnd);
1066 
1067     /* Regen sequences */
1068     if (nbSeq) {
1069 #define STORED_SEQS 4
1070 #define STORED_SEQS_MASK (STORED_SEQS-1)
1071 #define ADVANCED_SEQS 4
1072         seq_t sequences[STORED_SEQS];
1073         int const seqAdvance = MIN(nbSeq, ADVANCED_SEQS);
1074         seqState_t seqState;
1075         int seqNb;
1076         dctx->fseEntropy = 1;
1077         { int i; for (i=0; i<ZSTD_REP_NUM; i++) seqState.prevOffset[i] = dctx->entropy.rep[i]; }
1078         seqState.prefixStart = prefixStart;
1079         seqState.pos = (size_t)(op-prefixStart);
1080         seqState.dictEnd = dictEnd;
1081         assert(iend >= ip);
1082         RETURN_ERROR_IF(
1083             ERR_isError(BIT_initDStream(&seqState.DStream, ip, iend-ip)),
1084             corruption_detected);
1085         ZSTD_initFseState(&seqState.stateLL, &seqState.DStream, dctx->LLTptr);
1086         ZSTD_initFseState(&seqState.stateOffb, &seqState.DStream, dctx->OFTptr);
1087         ZSTD_initFseState(&seqState.stateML, &seqState.DStream, dctx->MLTptr);
1088 
1089         /* prepare in advance */
1090         for (seqNb=0; (BIT_reloadDStream(&seqState.DStream) <= BIT_DStream_completed) && (seqNb<seqAdvance); seqNb++) {
1091             sequences[seqNb] = ZSTD_decodeSequenceLong(&seqState, isLongOffset);
1092             PREFETCH_L1(sequences[seqNb].match); PREFETCH_L1(sequences[seqNb].match + sequences[seqNb].matchLength - 1); /* note : it's safe to invoke PREFETCH() on any memory address, including invalid ones */
1093         }
1094         RETURN_ERROR_IF(seqNb<seqAdvance, corruption_detected);
1095 
1096         /* decode and decompress */
1097         for ( ; (BIT_reloadDStream(&(seqState.DStream)) <= BIT_DStream_completed) && (seqNb<nbSeq) ; seqNb++) {
1098             seq_t const sequence = ZSTD_decodeSequenceLong(&seqState, isLongOffset);
1099             size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequences[(seqNb-ADVANCED_SEQS) & STORED_SEQS_MASK], &litPtr, litEnd, prefixStart, dictStart, dictEnd);
1100             if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
1101             PREFETCH_L1(sequence.match); PREFETCH_L1(sequence.match + sequence.matchLength - 1); /* note : it's safe to invoke PREFETCH() on any memory address, including invalid ones */
1102             sequences[seqNb & STORED_SEQS_MASK] = sequence;
1103             op += oneSeqSize;
1104         }
1105         RETURN_ERROR_IF(seqNb<nbSeq, corruption_detected);
1106 
1107         /* finish queue */
1108         seqNb -= seqAdvance;
1109         for ( ; seqNb<nbSeq ; seqNb++) {
1110             size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequences[seqNb&STORED_SEQS_MASK], &litPtr, litEnd, prefixStart, dictStart, dictEnd);
1111             if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
1112             op += oneSeqSize;
1113         }
1114 
1115         /* save reps for next block */
1116         { U32 i; for (i=0; i<ZSTD_REP_NUM; i++) dctx->entropy.rep[i] = (U32)(seqState.prevOffset[i]); }
1117     }
1118 
1119     /* last literal segment */
1120     {   size_t const lastLLSize = litEnd - litPtr;
1121         RETURN_ERROR_IF(lastLLSize > (size_t)(oend-op), dstSize_tooSmall);
1122         memcpy(op, litPtr, lastLLSize);
1123         op += lastLLSize;
1124     }
1125 
1126     return op-ostart;
1127 }
1128 
1129 static size_t
1130 ZSTD_decompressSequencesLong_default(ZSTD_DCtx* dctx,
1131                                  void* dst, size_t maxDstSize,
1132                            const void* seqStart, size_t seqSize, int nbSeq,
1133                            const ZSTD_longOffset_e isLongOffset)
1134 {
1135     return ZSTD_decompressSequencesLong_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
1136 }
1137 #endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT */
1138 
1139 
1140 
1141 #if DYNAMIC_BMI2
1142 
1143 #ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG
1144 static TARGET_ATTRIBUTE("bmi2") size_t
1145 DONT_VECTORIZE
1146 ZSTD_decompressSequences_bmi2(ZSTD_DCtx* dctx,
1147                                  void* dst, size_t maxDstSize,
1148                            const void* seqStart, size_t seqSize, int nbSeq,
1149                            const ZSTD_longOffset_e isLongOffset)
1150 {
1151     return ZSTD_decompressSequences_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
1152 }
1153 #endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG */
1154 
1155 #ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT
1156 static TARGET_ATTRIBUTE("bmi2") size_t
1157 ZSTD_decompressSequencesLong_bmi2(ZSTD_DCtx* dctx,
1158                                  void* dst, size_t maxDstSize,
1159                            const void* seqStart, size_t seqSize, int nbSeq,
1160                            const ZSTD_longOffset_e isLongOffset)
1161 {
1162     return ZSTD_decompressSequencesLong_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
1163 }
1164 #endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT */
1165 
1166 #endif /* DYNAMIC_BMI2 */
1167 
1168 typedef size_t (*ZSTD_decompressSequences_t)(
1169                             ZSTD_DCtx* dctx,
1170                             void* dst, size_t maxDstSize,
1171                             const void* seqStart, size_t seqSize, int nbSeq,
1172                             const ZSTD_longOffset_e isLongOffset);
1173 
1174 #ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG
1175 static size_t
1176 ZSTD_decompressSequences(ZSTD_DCtx* dctx, void* dst, size_t maxDstSize,
1177                    const void* seqStart, size_t seqSize, int nbSeq,
1178                    const ZSTD_longOffset_e isLongOffset)
1179 {
1180     DEBUGLOG(5, "ZSTD_decompressSequences");
1181 #if DYNAMIC_BMI2
1182     if (dctx->bmi2) {
1183         return ZSTD_decompressSequences_bmi2(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
1184     }
1185 #endif
1186   return ZSTD_decompressSequences_default(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
1187 }
1188 #endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG */
1189 
1190 
1191 #ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT
1192 /* ZSTD_decompressSequencesLong() :
1193  * decompression function triggered when a minimum share of offsets is considered "long",
1194  * aka out of cache.
1195  * note : "long" definition seems overloaded here, sometimes meaning "wider than bitstream register", and sometimes meaning "farther than memory cache distance".
1196  * This function will try to mitigate main memory latency through the use of prefetching */
1197 static size_t
1198 ZSTD_decompressSequencesLong(ZSTD_DCtx* dctx,
1199                              void* dst, size_t maxDstSize,
1200                              const void* seqStart, size_t seqSize, int nbSeq,
1201                              const ZSTD_longOffset_e isLongOffset)
1202 {
1203     DEBUGLOG(5, "ZSTD_decompressSequencesLong");
1204 #if DYNAMIC_BMI2
1205     if (dctx->bmi2) {
1206         return ZSTD_decompressSequencesLong_bmi2(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
1207     }
1208 #endif
1209   return ZSTD_decompressSequencesLong_default(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
1210 }
1211 #endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT */
1212 
1213 
1214 
1215 #if !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \
1216     !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG)
1217 /* ZSTD_getLongOffsetsShare() :
1218  * condition : offTable must be valid
1219  * @return : "share" of long offsets (arbitrarily defined as > (1<<23))
1220  *           compared to maximum possible of (1<<OffFSELog) */
1221 static unsigned
1222 ZSTD_getLongOffsetsShare(const ZSTD_seqSymbol* offTable)
1223 {
1224     const void* ptr = offTable;
1225     U32 const tableLog = ((const ZSTD_seqSymbol_header*)ptr)[0].tableLog;
1226     const ZSTD_seqSymbol* table = offTable + 1;
1227     U32 const max = 1 << tableLog;
1228     U32 u, total = 0;
1229     DEBUGLOG(5, "ZSTD_getLongOffsetsShare: (tableLog=%u)", tableLog);
1230 
1231     assert(max <= (1 << OffFSELog));  /* max not too large */
1232     for (u=0; u<max; u++) {
1233         if (table[u].nbAdditionalBits > 22) total += 1;
1234     }
1235 
1236     assert(tableLog <= OffFSELog);
1237     total <<= (OffFSELog - tableLog);  /* scale to OffFSELog */
1238 
1239     return total;
1240 }
1241 #endif
1242 
1243 
1244 size_t
1245 ZSTD_decompressBlock_internal(ZSTD_DCtx* dctx,
1246                               void* dst, size_t dstCapacity,
1247                         const void* src, size_t srcSize, const int frame)
1248 {   /* blockType == blockCompressed */
1249     const BYTE* ip = (const BYTE*)src;
1250     /* isLongOffset must be true if there are long offsets.
1251      * Offsets are long if they are larger than 2^STREAM_ACCUMULATOR_MIN.
1252      * We don't expect that to be the case in 64-bit mode.
1253      * In block mode, window size is not known, so we have to be conservative.
1254      * (note: but it could be evaluated from current-lowLimit)
1255      */
1256     ZSTD_longOffset_e const isLongOffset = (ZSTD_longOffset_e)(MEM_32bits() && (!frame || (dctx->fParams.windowSize > (1ULL << STREAM_ACCUMULATOR_MIN))));
1257     DEBUGLOG(5, "ZSTD_decompressBlock_internal (size : %u)", (U32)srcSize);
1258 
1259     RETURN_ERROR_IF(srcSize >= ZSTD_BLOCKSIZE_MAX, srcSize_wrong);
1260 
1261     /* Decode literals section */
1262     {   size_t const litCSize = ZSTD_decodeLiteralsBlock(dctx, src, srcSize);
1263         DEBUGLOG(5, "ZSTD_decodeLiteralsBlock : %u", (U32)litCSize);
1264         if (ZSTD_isError(litCSize)) return litCSize;
1265         ip += litCSize;
1266         srcSize -= litCSize;
1267     }
1268 
1269     /* Build Decoding Tables */
1270     {
1271         /* These macros control at build-time which decompressor implementation
1272          * we use. If neither is defined, we do some inspection and dispatch at
1273          * runtime.
1274          */
1275 #if !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \
1276     !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG)
1277         int usePrefetchDecoder = dctx->ddictIsCold;
1278 #endif
1279         int nbSeq;
1280         size_t const seqHSize = ZSTD_decodeSeqHeaders(dctx, &nbSeq, ip, srcSize);
1281         if (ZSTD_isError(seqHSize)) return seqHSize;
1282         ip += seqHSize;
1283         srcSize -= seqHSize;
1284 
1285 #if !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \
1286     !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG)
1287         if ( !usePrefetchDecoder
1288           && (!frame || (dctx->fParams.windowSize > (1<<24)))
1289           && (nbSeq>ADVANCED_SEQS) ) {  /* could probably use a larger nbSeq limit */
1290             U32 const shareLongOffsets = ZSTD_getLongOffsetsShare(dctx->OFTptr);
1291             U32 const minShare = MEM_64bits() ? 7 : 20; /* heuristic values, correspond to 2.73% and 7.81% */
1292             usePrefetchDecoder = (shareLongOffsets >= minShare);
1293         }
1294 #endif
1295 
1296         dctx->ddictIsCold = 0;
1297 
1298 #if !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \
1299     !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG)
1300         if (usePrefetchDecoder)
1301 #endif
1302 #ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT
1303             return ZSTD_decompressSequencesLong(dctx, dst, dstCapacity, ip, srcSize, nbSeq, isLongOffset);
1304 #endif
1305 
1306 #ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG
1307         /* else */
1308         return ZSTD_decompressSequences(dctx, dst, dstCapacity, ip, srcSize, nbSeq, isLongOffset);
1309 #endif
1310     }
1311 }
1312 
1313 
1314 size_t ZSTD_decompressBlock(ZSTD_DCtx* dctx,
1315                             void* dst, size_t dstCapacity,
1316                       const void* src, size_t srcSize)
1317 {
1318     size_t dSize;
1319     ZSTD_checkContinuity(dctx, dst);
1320     dSize = ZSTD_decompressBlock_internal(dctx, dst, dstCapacity, src, srcSize, /* frame */ 0);
1321     dctx->previousDstEnd = (char*)dst + dSize;
1322     return dSize;
1323 }
1324