xref: /freebsd/sys/contrib/zstd/lib/dictBuilder/zdict.c (revision 2f513db7)
1 /*
2  * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
3  * All rights reserved.
4  *
5  * This source code is licensed under both the BSD-style license (found in the
6  * LICENSE file in the root directory of this source tree) and the GPLv2 (found
7  * in the COPYING file in the root directory of this source tree).
8  * You may select, at your option, one of the above-listed licenses.
9  */
10 
11 
12 /*-**************************************
13 *  Tuning parameters
14 ****************************************/
15 #define MINRATIO 4   /* minimum nb of apparition to be selected in dictionary */
16 #define ZDICT_MAX_SAMPLES_SIZE (2000U << 20)
17 #define ZDICT_MIN_SAMPLES_SIZE (ZDICT_CONTENTSIZE_MIN * MINRATIO)
18 
19 
20 /*-**************************************
21 *  Compiler Options
22 ****************************************/
23 /* Unix Large Files support (>4GB) */
24 #define _FILE_OFFSET_BITS 64
25 #if (defined(__sun__) && (!defined(__LP64__)))   /* Sun Solaris 32-bits requires specific definitions */
26 #  define _LARGEFILE_SOURCE
27 #elif ! defined(__LP64__)                        /* No point defining Large file for 64 bit */
28 #  define _LARGEFILE64_SOURCE
29 #endif
30 
31 
32 /*-*************************************
33 *  Dependencies
34 ***************************************/
35 #include <stdlib.h>        /* malloc, free */
36 #include <string.h>        /* memset */
37 #include <stdio.h>         /* fprintf, fopen, ftello64 */
38 #include <time.h>          /* clock */
39 
40 #include "mem.h"           /* read */
41 #include "fse.h"           /* FSE_normalizeCount, FSE_writeNCount */
42 #define HUF_STATIC_LINKING_ONLY
43 #include "huf.h"           /* HUF_buildCTable, HUF_writeCTable */
44 #include "zstd_internal.h" /* includes zstd.h */
45 #include "xxhash.h"        /* XXH64 */
46 #include "divsufsort.h"
47 #ifndef ZDICT_STATIC_LINKING_ONLY
48 #  define ZDICT_STATIC_LINKING_ONLY
49 #endif
50 #include "zdict.h"
51 
52 
53 /*-*************************************
54 *  Constants
55 ***************************************/
56 #define KB *(1 <<10)
57 #define MB *(1 <<20)
58 #define GB *(1U<<30)
59 
60 #define DICTLISTSIZE_DEFAULT 10000
61 
62 #define NOISELENGTH 32
63 
64 static const int g_compressionLevel_default = 3;
65 static const U32 g_selectivity_default = 9;
66 
67 
68 /*-*************************************
69 *  Console display
70 ***************************************/
71 #define DISPLAY(...)         { fprintf(stderr, __VA_ARGS__); fflush( stderr ); }
72 #define DISPLAYLEVEL(l, ...) if (notificationLevel>=l) { DISPLAY(__VA_ARGS__); }    /* 0 : no display;   1: errors;   2: default;  3: details;  4: debug */
73 
74 static clock_t ZDICT_clockSpan(clock_t nPrevious) { return clock() - nPrevious; }
75 
76 static void ZDICT_printHex(const void* ptr, size_t length)
77 {
78     const BYTE* const b = (const BYTE*)ptr;
79     size_t u;
80     for (u=0; u<length; u++) {
81         BYTE c = b[u];
82         if (c<32 || c>126) c = '.';   /* non-printable char */
83         DISPLAY("%c", c);
84     }
85 }
86 
87 
88 /*-********************************************************
89 *  Helper functions
90 **********************************************************/
91 unsigned ZDICT_isError(size_t errorCode) { return ERR_isError(errorCode); }
92 
93 const char* ZDICT_getErrorName(size_t errorCode) { return ERR_getErrorName(errorCode); }
94 
95 unsigned ZDICT_getDictID(const void* dictBuffer, size_t dictSize)
96 {
97     if (dictSize < 8) return 0;
98     if (MEM_readLE32(dictBuffer) != ZSTD_MAGIC_DICTIONARY) return 0;
99     return MEM_readLE32((const char*)dictBuffer + 4);
100 }
101 
102 
103 /*-********************************************************
104 *  Dictionary training functions
105 **********************************************************/
106 static unsigned ZDICT_NbCommonBytes (size_t val)
107 {
108     if (MEM_isLittleEndian()) {
109         if (MEM_64bits()) {
110 #       if defined(_MSC_VER) && defined(_WIN64)
111             unsigned long r = 0;
112             _BitScanForward64( &r, (U64)val );
113             return (unsigned)(r>>3);
114 #       elif defined(__GNUC__) && (__GNUC__ >= 3)
115             return (__builtin_ctzll((U64)val) >> 3);
116 #       else
117             static const int DeBruijnBytePos[64] = { 0, 0, 0, 0, 0, 1, 1, 2, 0, 3, 1, 3, 1, 4, 2, 7, 0, 2, 3, 6, 1, 5, 3, 5, 1, 3, 4, 4, 2, 5, 6, 7, 7, 0, 1, 2, 3, 3, 4, 6, 2, 6, 5, 5, 3, 4, 5, 6, 7, 1, 2, 4, 6, 4, 4, 5, 7, 2, 6, 5, 7, 6, 7, 7 };
118             return DeBruijnBytePos[((U64)((val & -(long long)val) * 0x0218A392CDABBD3FULL)) >> 58];
119 #       endif
120         } else { /* 32 bits */
121 #       if defined(_MSC_VER)
122             unsigned long r=0;
123             _BitScanForward( &r, (U32)val );
124             return (unsigned)(r>>3);
125 #       elif defined(__GNUC__) && (__GNUC__ >= 3)
126             return (__builtin_ctz((U32)val) >> 3);
127 #       else
128             static const int DeBruijnBytePos[32] = { 0, 0, 3, 0, 3, 1, 3, 0, 3, 2, 2, 1, 3, 2, 0, 1, 3, 3, 1, 2, 2, 2, 2, 0, 3, 1, 2, 0, 1, 0, 1, 1 };
129             return DeBruijnBytePos[((U32)((val & -(S32)val) * 0x077CB531U)) >> 27];
130 #       endif
131         }
132     } else {  /* Big Endian CPU */
133         if (MEM_64bits()) {
134 #       if defined(_MSC_VER) && defined(_WIN64)
135             unsigned long r = 0;
136             _BitScanReverse64( &r, val );
137             return (unsigned)(r>>3);
138 #       elif defined(__GNUC__) && (__GNUC__ >= 3)
139             return (__builtin_clzll(val) >> 3);
140 #       else
141             unsigned r;
142             const unsigned n32 = sizeof(size_t)*4;   /* calculate this way due to compiler complaining in 32-bits mode */
143             if (!(val>>n32)) { r=4; } else { r=0; val>>=n32; }
144             if (!(val>>16)) { r+=2; val>>=8; } else { val>>=24; }
145             r += (!val);
146             return r;
147 #       endif
148         } else { /* 32 bits */
149 #       if defined(_MSC_VER)
150             unsigned long r = 0;
151             _BitScanReverse( &r, (unsigned long)val );
152             return (unsigned)(r>>3);
153 #       elif defined(__GNUC__) && (__GNUC__ >= 3)
154             return (__builtin_clz((U32)val) >> 3);
155 #       else
156             unsigned r;
157             if (!(val>>16)) { r=2; val>>=8; } else { r=0; val>>=24; }
158             r += (!val);
159             return r;
160 #       endif
161     }   }
162 }
163 
164 
165 /*! ZDICT_count() :
166     Count the nb of common bytes between 2 pointers.
167     Note : this function presumes end of buffer followed by noisy guard band.
168 */
169 static size_t ZDICT_count(const void* pIn, const void* pMatch)
170 {
171     const char* const pStart = (const char*)pIn;
172     for (;;) {
173         size_t const diff = MEM_readST(pMatch) ^ MEM_readST(pIn);
174         if (!diff) {
175             pIn = (const char*)pIn+sizeof(size_t);
176             pMatch = (const char*)pMatch+sizeof(size_t);
177             continue;
178         }
179         pIn = (const char*)pIn+ZDICT_NbCommonBytes(diff);
180         return (size_t)((const char*)pIn - pStart);
181     }
182 }
183 
184 
185 typedef struct {
186     U32 pos;
187     U32 length;
188     U32 savings;
189 } dictItem;
190 
191 static void ZDICT_initDictItem(dictItem* d)
192 {
193     d->pos = 1;
194     d->length = 0;
195     d->savings = (U32)(-1);
196 }
197 
198 
199 #define LLIMIT 64          /* heuristic determined experimentally */
200 #define MINMATCHLENGTH 7   /* heuristic determined experimentally */
201 static dictItem ZDICT_analyzePos(
202                        BYTE* doneMarks,
203                        const int* suffix, U32 start,
204                        const void* buffer, U32 minRatio, U32 notificationLevel)
205 {
206     U32 lengthList[LLIMIT] = {0};
207     U32 cumulLength[LLIMIT] = {0};
208     U32 savings[LLIMIT] = {0};
209     const BYTE* b = (const BYTE*)buffer;
210     size_t maxLength = LLIMIT;
211     size_t pos = suffix[start];
212     U32 end = start;
213     dictItem solution;
214 
215     /* init */
216     memset(&solution, 0, sizeof(solution));
217     doneMarks[pos] = 1;
218 
219     /* trivial repetition cases */
220     if ( (MEM_read16(b+pos+0) == MEM_read16(b+pos+2))
221        ||(MEM_read16(b+pos+1) == MEM_read16(b+pos+3))
222        ||(MEM_read16(b+pos+2) == MEM_read16(b+pos+4)) ) {
223         /* skip and mark segment */
224         U16 const pattern16 = MEM_read16(b+pos+4);
225         U32 u, patternEnd = 6;
226         while (MEM_read16(b+pos+patternEnd) == pattern16) patternEnd+=2 ;
227         if (b[pos+patternEnd] == b[pos+patternEnd-1]) patternEnd++;
228         for (u=1; u<patternEnd; u++)
229             doneMarks[pos+u] = 1;
230         return solution;
231     }
232 
233     /* look forward */
234     {   size_t length;
235         do {
236             end++;
237             length = ZDICT_count(b + pos, b + suffix[end]);
238         } while (length >= MINMATCHLENGTH);
239     }
240 
241     /* look backward */
242     {   size_t length;
243         do {
244             length = ZDICT_count(b + pos, b + *(suffix+start-1));
245             if (length >=MINMATCHLENGTH) start--;
246         } while(length >= MINMATCHLENGTH);
247     }
248 
249     /* exit if not found a minimum nb of repetitions */
250     if (end-start < minRatio) {
251         U32 idx;
252         for(idx=start; idx<end; idx++)
253             doneMarks[suffix[idx]] = 1;
254         return solution;
255     }
256 
257     {   int i;
258         U32 mml;
259         U32 refinedStart = start;
260         U32 refinedEnd = end;
261 
262         DISPLAYLEVEL(4, "\n");
263         DISPLAYLEVEL(4, "found %3u matches of length >= %i at pos %7u  ", (unsigned)(end-start), MINMATCHLENGTH, (unsigned)pos);
264         DISPLAYLEVEL(4, "\n");
265 
266         for (mml = MINMATCHLENGTH ; ; mml++) {
267             BYTE currentChar = 0;
268             U32 currentCount = 0;
269             U32 currentID = refinedStart;
270             U32 id;
271             U32 selectedCount = 0;
272             U32 selectedID = currentID;
273             for (id =refinedStart; id < refinedEnd; id++) {
274                 if (b[suffix[id] + mml] != currentChar) {
275                     if (currentCount > selectedCount) {
276                         selectedCount = currentCount;
277                         selectedID = currentID;
278                     }
279                     currentID = id;
280                     currentChar = b[ suffix[id] + mml];
281                     currentCount = 0;
282                 }
283                 currentCount ++;
284             }
285             if (currentCount > selectedCount) {  /* for last */
286                 selectedCount = currentCount;
287                 selectedID = currentID;
288             }
289 
290             if (selectedCount < minRatio)
291                 break;
292             refinedStart = selectedID;
293             refinedEnd = refinedStart + selectedCount;
294         }
295 
296         /* evaluate gain based on new dict */
297         start = refinedStart;
298         pos = suffix[refinedStart];
299         end = start;
300         memset(lengthList, 0, sizeof(lengthList));
301 
302         /* look forward */
303         {   size_t length;
304             do {
305                 end++;
306                 length = ZDICT_count(b + pos, b + suffix[end]);
307                 if (length >= LLIMIT) length = LLIMIT-1;
308                 lengthList[length]++;
309             } while (length >=MINMATCHLENGTH);
310         }
311 
312         /* look backward */
313         {   size_t length = MINMATCHLENGTH;
314             while ((length >= MINMATCHLENGTH) & (start > 0)) {
315                 length = ZDICT_count(b + pos, b + suffix[start - 1]);
316                 if (length >= LLIMIT) length = LLIMIT - 1;
317                 lengthList[length]++;
318                 if (length >= MINMATCHLENGTH) start--;
319             }
320         }
321 
322         /* largest useful length */
323         memset(cumulLength, 0, sizeof(cumulLength));
324         cumulLength[maxLength-1] = lengthList[maxLength-1];
325         for (i=(int)(maxLength-2); i>=0; i--)
326             cumulLength[i] = cumulLength[i+1] + lengthList[i];
327 
328         for (i=LLIMIT-1; i>=MINMATCHLENGTH; i--) if (cumulLength[i]>=minRatio) break;
329         maxLength = i;
330 
331         /* reduce maxLength in case of final into repetitive data */
332         {   U32 l = (U32)maxLength;
333             BYTE const c = b[pos + maxLength-1];
334             while (b[pos+l-2]==c) l--;
335             maxLength = l;
336         }
337         if (maxLength < MINMATCHLENGTH) return solution;   /* skip : no long-enough solution */
338 
339         /* calculate savings */
340         savings[5] = 0;
341         for (i=MINMATCHLENGTH; i<=(int)maxLength; i++)
342             savings[i] = savings[i-1] + (lengthList[i] * (i-3));
343 
344         DISPLAYLEVEL(4, "Selected dict at position %u, of length %u : saves %u (ratio: %.2f)  \n",
345                      (unsigned)pos, (unsigned)maxLength, (unsigned)savings[maxLength], (double)savings[maxLength] / maxLength);
346 
347         solution.pos = (U32)pos;
348         solution.length = (U32)maxLength;
349         solution.savings = savings[maxLength];
350 
351         /* mark positions done */
352         {   U32 id;
353             for (id=start; id<end; id++) {
354                 U32 p, pEnd, length;
355                 U32 const testedPos = suffix[id];
356                 if (testedPos == pos)
357                     length = solution.length;
358                 else {
359                     length = (U32)ZDICT_count(b+pos, b+testedPos);
360                     if (length > solution.length) length = solution.length;
361                 }
362                 pEnd = (U32)(testedPos + length);
363                 for (p=testedPos; p<pEnd; p++)
364                     doneMarks[p] = 1;
365     }   }   }
366 
367     return solution;
368 }
369 
370 
371 static int isIncluded(const void* in, const void* container, size_t length)
372 {
373     const char* const ip = (const char*) in;
374     const char* const into = (const char*) container;
375     size_t u;
376 
377     for (u=0; u<length; u++) {  /* works because end of buffer is a noisy guard band */
378         if (ip[u] != into[u]) break;
379     }
380 
381     return u==length;
382 }
383 
384 /*! ZDICT_tryMerge() :
385     check if dictItem can be merged, do it if possible
386     @return : id of destination elt, 0 if not merged
387 */
388 static U32 ZDICT_tryMerge(dictItem* table, dictItem elt, U32 eltNbToSkip, const void* buffer)
389 {
390     const U32 tableSize = table->pos;
391     const U32 eltEnd = elt.pos + elt.length;
392     const char* const buf = (const char*) buffer;
393 
394     /* tail overlap */
395     U32 u; for (u=1; u<tableSize; u++) {
396         if (u==eltNbToSkip) continue;
397         if ((table[u].pos > elt.pos) && (table[u].pos <= eltEnd)) {  /* overlap, existing > new */
398             /* append */
399             U32 const addedLength = table[u].pos - elt.pos;
400             table[u].length += addedLength;
401             table[u].pos = elt.pos;
402             table[u].savings += elt.savings * addedLength / elt.length;   /* rough approx */
403             table[u].savings += elt.length / 8;    /* rough approx bonus */
404             elt = table[u];
405             /* sort : improve rank */
406             while ((u>1) && (table[u-1].savings < elt.savings))
407             table[u] = table[u-1], u--;
408             table[u] = elt;
409             return u;
410     }   }
411 
412     /* front overlap */
413     for (u=1; u<tableSize; u++) {
414         if (u==eltNbToSkip) continue;
415 
416         if ((table[u].pos + table[u].length >= elt.pos) && (table[u].pos < elt.pos)) {  /* overlap, existing < new */
417             /* append */
418             int const addedLength = (int)eltEnd - (table[u].pos + table[u].length);
419             table[u].savings += elt.length / 8;    /* rough approx bonus */
420             if (addedLength > 0) {   /* otherwise, elt fully included into existing */
421                 table[u].length += addedLength;
422                 table[u].savings += elt.savings * addedLength / elt.length;   /* rough approx */
423             }
424             /* sort : improve rank */
425             elt = table[u];
426             while ((u>1) && (table[u-1].savings < elt.savings))
427                 table[u] = table[u-1], u--;
428             table[u] = elt;
429             return u;
430         }
431 
432         if (MEM_read64(buf + table[u].pos) == MEM_read64(buf + elt.pos + 1)) {
433             if (isIncluded(buf + table[u].pos, buf + elt.pos + 1, table[u].length)) {
434                 size_t const addedLength = MAX( (int)elt.length - (int)table[u].length , 1 );
435                 table[u].pos = elt.pos;
436                 table[u].savings += (U32)(elt.savings * addedLength / elt.length);
437                 table[u].length = MIN(elt.length, table[u].length + 1);
438                 return u;
439             }
440         }
441     }
442 
443     return 0;
444 }
445 
446 
447 static void ZDICT_removeDictItem(dictItem* table, U32 id)
448 {
449     /* convention : table[0].pos stores nb of elts */
450     U32 const max = table[0].pos;
451     U32 u;
452     if (!id) return;   /* protection, should never happen */
453     for (u=id; u<max-1; u++)
454         table[u] = table[u+1];
455     table->pos--;
456 }
457 
458 
459 static void ZDICT_insertDictItem(dictItem* table, U32 maxSize, dictItem elt, const void* buffer)
460 {
461     /* merge if possible */
462     U32 mergeId = ZDICT_tryMerge(table, elt, 0, buffer);
463     if (mergeId) {
464         U32 newMerge = 1;
465         while (newMerge) {
466             newMerge = ZDICT_tryMerge(table, table[mergeId], mergeId, buffer);
467             if (newMerge) ZDICT_removeDictItem(table, mergeId);
468             mergeId = newMerge;
469         }
470         return;
471     }
472 
473     /* insert */
474     {   U32 current;
475         U32 nextElt = table->pos;
476         if (nextElt >= maxSize) nextElt = maxSize-1;
477         current = nextElt-1;
478         while (table[current].savings < elt.savings) {
479             table[current+1] = table[current];
480             current--;
481         }
482         table[current+1] = elt;
483         table->pos = nextElt+1;
484     }
485 }
486 
487 
488 static U32 ZDICT_dictSize(const dictItem* dictList)
489 {
490     U32 u, dictSize = 0;
491     for (u=1; u<dictList[0].pos; u++)
492         dictSize += dictList[u].length;
493     return dictSize;
494 }
495 
496 
497 static size_t ZDICT_trainBuffer_legacy(dictItem* dictList, U32 dictListSize,
498                             const void* const buffer, size_t bufferSize,   /* buffer must end with noisy guard band */
499                             const size_t* fileSizes, unsigned nbFiles,
500                             unsigned minRatio, U32 notificationLevel)
501 {
502     int* const suffix0 = (int*)malloc((bufferSize+2)*sizeof(*suffix0));
503     int* const suffix = suffix0+1;
504     U32* reverseSuffix = (U32*)malloc((bufferSize)*sizeof(*reverseSuffix));
505     BYTE* doneMarks = (BYTE*)malloc((bufferSize+16)*sizeof(*doneMarks));   /* +16 for overflow security */
506     U32* filePos = (U32*)malloc(nbFiles * sizeof(*filePos));
507     size_t result = 0;
508     clock_t displayClock = 0;
509     clock_t const refreshRate = CLOCKS_PER_SEC * 3 / 10;
510 
511 #   define DISPLAYUPDATE(l, ...) if (notificationLevel>=l) { \
512             if (ZDICT_clockSpan(displayClock) > refreshRate)  \
513             { displayClock = clock(); DISPLAY(__VA_ARGS__); \
514             if (notificationLevel>=4) fflush(stderr); } }
515 
516     /* init */
517     DISPLAYLEVEL(2, "\r%70s\r", "");   /* clean display line */
518     if (!suffix0 || !reverseSuffix || !doneMarks || !filePos) {
519         result = ERROR(memory_allocation);
520         goto _cleanup;
521     }
522     if (minRatio < MINRATIO) minRatio = MINRATIO;
523     memset(doneMarks, 0, bufferSize+16);
524 
525     /* limit sample set size (divsufsort limitation)*/
526     if (bufferSize > ZDICT_MAX_SAMPLES_SIZE) DISPLAYLEVEL(3, "sample set too large : reduced to %u MB ...\n", (unsigned)(ZDICT_MAX_SAMPLES_SIZE>>20));
527     while (bufferSize > ZDICT_MAX_SAMPLES_SIZE) bufferSize -= fileSizes[--nbFiles];
528 
529     /* sort */
530     DISPLAYLEVEL(2, "sorting %u files of total size %u MB ...\n", nbFiles, (unsigned)(bufferSize>>20));
531     {   int const divSuftSortResult = divsufsort((const unsigned char*)buffer, suffix, (int)bufferSize, 0);
532         if (divSuftSortResult != 0) { result = ERROR(GENERIC); goto _cleanup; }
533     }
534     suffix[bufferSize] = (int)bufferSize;   /* leads into noise */
535     suffix0[0] = (int)bufferSize;           /* leads into noise */
536     /* build reverse suffix sort */
537     {   size_t pos;
538         for (pos=0; pos < bufferSize; pos++)
539             reverseSuffix[suffix[pos]] = (U32)pos;
540         /* note filePos tracks borders between samples.
541            It's not used at this stage, but planned to become useful in a later update */
542         filePos[0] = 0;
543         for (pos=1; pos<nbFiles; pos++)
544             filePos[pos] = (U32)(filePos[pos-1] + fileSizes[pos-1]);
545     }
546 
547     DISPLAYLEVEL(2, "finding patterns ... \n");
548     DISPLAYLEVEL(3, "minimum ratio : %u \n", minRatio);
549 
550     {   U32 cursor; for (cursor=0; cursor < bufferSize; ) {
551             dictItem solution;
552             if (doneMarks[cursor]) { cursor++; continue; }
553             solution = ZDICT_analyzePos(doneMarks, suffix, reverseSuffix[cursor], buffer, minRatio, notificationLevel);
554             if (solution.length==0) { cursor++; continue; }
555             ZDICT_insertDictItem(dictList, dictListSize, solution, buffer);
556             cursor += solution.length;
557             DISPLAYUPDATE(2, "\r%4.2f %% \r", (double)cursor / bufferSize * 100);
558     }   }
559 
560 _cleanup:
561     free(suffix0);
562     free(reverseSuffix);
563     free(doneMarks);
564     free(filePos);
565     return result;
566 }
567 
568 
569 static void ZDICT_fillNoise(void* buffer, size_t length)
570 {
571     unsigned const prime1 = 2654435761U;
572     unsigned const prime2 = 2246822519U;
573     unsigned acc = prime1;
574     size_t p=0;
575     for (p=0; p<length; p++) {
576         acc *= prime2;
577         ((unsigned char*)buffer)[p] = (unsigned char)(acc >> 21);
578     }
579 }
580 
581 
582 typedef struct
583 {
584     ZSTD_CDict* dict;    /* dictionary */
585     ZSTD_CCtx* zc;     /* working context */
586     void* workPlace;   /* must be ZSTD_BLOCKSIZE_MAX allocated */
587 } EStats_ress_t;
588 
589 #define MAXREPOFFSET 1024
590 
591 static void ZDICT_countEStats(EStats_ress_t esr, ZSTD_parameters params,
592                               unsigned* countLit, unsigned* offsetcodeCount, unsigned* matchlengthCount, unsigned* litlengthCount, U32* repOffsets,
593                               const void* src, size_t srcSize,
594                               U32 notificationLevel)
595 {
596     size_t const blockSizeMax = MIN (ZSTD_BLOCKSIZE_MAX, 1 << params.cParams.windowLog);
597     size_t cSize;
598 
599     if (srcSize > blockSizeMax) srcSize = blockSizeMax;   /* protection vs large samples */
600     {   size_t const errorCode = ZSTD_compressBegin_usingCDict(esr.zc, esr.dict);
601         if (ZSTD_isError(errorCode)) { DISPLAYLEVEL(1, "warning : ZSTD_compressBegin_usingCDict failed \n"); return; }
602 
603     }
604     cSize = ZSTD_compressBlock(esr.zc, esr.workPlace, ZSTD_BLOCKSIZE_MAX, src, srcSize);
605     if (ZSTD_isError(cSize)) { DISPLAYLEVEL(3, "warning : could not compress sample size %u \n", (unsigned)srcSize); return; }
606 
607     if (cSize) {  /* if == 0; block is not compressible */
608         const seqStore_t* const seqStorePtr = ZSTD_getSeqStore(esr.zc);
609 
610         /* literals stats */
611         {   const BYTE* bytePtr;
612             for(bytePtr = seqStorePtr->litStart; bytePtr < seqStorePtr->lit; bytePtr++)
613                 countLit[*bytePtr]++;
614         }
615 
616         /* seqStats */
617         {   U32 const nbSeq = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart);
618             ZSTD_seqToCodes(seqStorePtr);
619 
620             {   const BYTE* codePtr = seqStorePtr->ofCode;
621                 U32 u;
622                 for (u=0; u<nbSeq; u++) offsetcodeCount[codePtr[u]]++;
623             }
624 
625             {   const BYTE* codePtr = seqStorePtr->mlCode;
626                 U32 u;
627                 for (u=0; u<nbSeq; u++) matchlengthCount[codePtr[u]]++;
628             }
629 
630             {   const BYTE* codePtr = seqStorePtr->llCode;
631                 U32 u;
632                 for (u=0; u<nbSeq; u++) litlengthCount[codePtr[u]]++;
633             }
634 
635             if (nbSeq >= 2) { /* rep offsets */
636                 const seqDef* const seq = seqStorePtr->sequencesStart;
637                 U32 offset1 = seq[0].offset - 3;
638                 U32 offset2 = seq[1].offset - 3;
639                 if (offset1 >= MAXREPOFFSET) offset1 = 0;
640                 if (offset2 >= MAXREPOFFSET) offset2 = 0;
641                 repOffsets[offset1] += 3;
642                 repOffsets[offset2] += 1;
643     }   }   }
644 }
645 
646 static size_t ZDICT_totalSampleSize(const size_t* fileSizes, unsigned nbFiles)
647 {
648     size_t total=0;
649     unsigned u;
650     for (u=0; u<nbFiles; u++) total += fileSizes[u];
651     return total;
652 }
653 
654 typedef struct { U32 offset; U32 count; } offsetCount_t;
655 
656 static void ZDICT_insertSortCount(offsetCount_t table[ZSTD_REP_NUM+1], U32 val, U32 count)
657 {
658     U32 u;
659     table[ZSTD_REP_NUM].offset = val;
660     table[ZSTD_REP_NUM].count = count;
661     for (u=ZSTD_REP_NUM; u>0; u--) {
662         offsetCount_t tmp;
663         if (table[u-1].count >= table[u].count) break;
664         tmp = table[u-1];
665         table[u-1] = table[u];
666         table[u] = tmp;
667     }
668 }
669 
670 /* ZDICT_flatLit() :
671  * rewrite `countLit` to contain a mostly flat but still compressible distribution of literals.
672  * necessary to avoid generating a non-compressible distribution that HUF_writeCTable() cannot encode.
673  */
674 static void ZDICT_flatLit(unsigned* countLit)
675 {
676     int u;
677     for (u=1; u<256; u++) countLit[u] = 2;
678     countLit[0]   = 4;
679     countLit[253] = 1;
680     countLit[254] = 1;
681 }
682 
683 #define OFFCODE_MAX 30  /* only applicable to first block */
684 static size_t ZDICT_analyzeEntropy(void*  dstBuffer, size_t maxDstSize,
685                                    unsigned compressionLevel,
686                              const void*  srcBuffer, const size_t* fileSizes, unsigned nbFiles,
687                              const void* dictBuffer, size_t  dictBufferSize,
688                                    unsigned notificationLevel)
689 {
690     unsigned countLit[256];
691     HUF_CREATE_STATIC_CTABLE(hufTable, 255);
692     unsigned offcodeCount[OFFCODE_MAX+1];
693     short offcodeNCount[OFFCODE_MAX+1];
694     U32 offcodeMax = ZSTD_highbit32((U32)(dictBufferSize + 128 KB));
695     unsigned matchLengthCount[MaxML+1];
696     short matchLengthNCount[MaxML+1];
697     unsigned litLengthCount[MaxLL+1];
698     short litLengthNCount[MaxLL+1];
699     U32 repOffset[MAXREPOFFSET];
700     offsetCount_t bestRepOffset[ZSTD_REP_NUM+1];
701     EStats_ress_t esr = { NULL, NULL, NULL };
702     ZSTD_parameters params;
703     U32 u, huffLog = 11, Offlog = OffFSELog, mlLog = MLFSELog, llLog = LLFSELog, total;
704     size_t pos = 0, errorCode;
705     size_t eSize = 0;
706     size_t const totalSrcSize = ZDICT_totalSampleSize(fileSizes, nbFiles);
707     size_t const averageSampleSize = totalSrcSize / (nbFiles + !nbFiles);
708     BYTE* dstPtr = (BYTE*)dstBuffer;
709 
710     /* init */
711     DEBUGLOG(4, "ZDICT_analyzeEntropy");
712     if (offcodeMax>OFFCODE_MAX) { eSize = ERROR(dictionaryCreation_failed); goto _cleanup; }   /* too large dictionary */
713     for (u=0; u<256; u++) countLit[u] = 1;   /* any character must be described */
714     for (u=0; u<=offcodeMax; u++) offcodeCount[u] = 1;
715     for (u=0; u<=MaxML; u++) matchLengthCount[u] = 1;
716     for (u=0; u<=MaxLL; u++) litLengthCount[u] = 1;
717     memset(repOffset, 0, sizeof(repOffset));
718     repOffset[1] = repOffset[4] = repOffset[8] = 1;
719     memset(bestRepOffset, 0, sizeof(bestRepOffset));
720     if (compressionLevel==0) compressionLevel = g_compressionLevel_default;
721     params = ZSTD_getParams(compressionLevel, averageSampleSize, dictBufferSize);
722 
723     esr.dict = ZSTD_createCDict_advanced(dictBuffer, dictBufferSize, ZSTD_dlm_byRef, ZSTD_dct_rawContent, params.cParams, ZSTD_defaultCMem);
724     esr.zc = ZSTD_createCCtx();
725     esr.workPlace = malloc(ZSTD_BLOCKSIZE_MAX);
726     if (!esr.dict || !esr.zc || !esr.workPlace) {
727         eSize = ERROR(memory_allocation);
728         DISPLAYLEVEL(1, "Not enough memory \n");
729         goto _cleanup;
730     }
731 
732     /* collect stats on all samples */
733     for (u=0; u<nbFiles; u++) {
734         ZDICT_countEStats(esr, params,
735                           countLit, offcodeCount, matchLengthCount, litLengthCount, repOffset,
736                          (const char*)srcBuffer + pos, fileSizes[u],
737                           notificationLevel);
738         pos += fileSizes[u];
739     }
740 
741     /* analyze, build stats, starting with literals */
742     {   size_t maxNbBits = HUF_buildCTable (hufTable, countLit, 255, huffLog);
743         if (HUF_isError(maxNbBits)) {
744             eSize = maxNbBits;
745             DISPLAYLEVEL(1, " HUF_buildCTable error \n");
746             goto _cleanup;
747         }
748         if (maxNbBits==8) {  /* not compressible : will fail on HUF_writeCTable() */
749             DISPLAYLEVEL(2, "warning : pathological dataset : literals are not compressible : samples are noisy or too regular \n");
750             ZDICT_flatLit(countLit);  /* replace distribution by a fake "mostly flat but still compressible" distribution, that HUF_writeCTable() can encode */
751             maxNbBits = HUF_buildCTable (hufTable, countLit, 255, huffLog);
752             assert(maxNbBits==9);
753         }
754         huffLog = (U32)maxNbBits;
755     }
756 
757     /* looking for most common first offsets */
758     {   U32 offset;
759         for (offset=1; offset<MAXREPOFFSET; offset++)
760             ZDICT_insertSortCount(bestRepOffset, offset, repOffset[offset]);
761     }
762     /* note : the result of this phase should be used to better appreciate the impact on statistics */
763 
764     total=0; for (u=0; u<=offcodeMax; u++) total+=offcodeCount[u];
765     errorCode = FSE_normalizeCount(offcodeNCount, Offlog, offcodeCount, total, offcodeMax);
766     if (FSE_isError(errorCode)) {
767         eSize = errorCode;
768         DISPLAYLEVEL(1, "FSE_normalizeCount error with offcodeCount \n");
769         goto _cleanup;
770     }
771     Offlog = (U32)errorCode;
772 
773     total=0; for (u=0; u<=MaxML; u++) total+=matchLengthCount[u];
774     errorCode = FSE_normalizeCount(matchLengthNCount, mlLog, matchLengthCount, total, MaxML);
775     if (FSE_isError(errorCode)) {
776         eSize = errorCode;
777         DISPLAYLEVEL(1, "FSE_normalizeCount error with matchLengthCount \n");
778         goto _cleanup;
779     }
780     mlLog = (U32)errorCode;
781 
782     total=0; for (u=0; u<=MaxLL; u++) total+=litLengthCount[u];
783     errorCode = FSE_normalizeCount(litLengthNCount, llLog, litLengthCount, total, MaxLL);
784     if (FSE_isError(errorCode)) {
785         eSize = errorCode;
786         DISPLAYLEVEL(1, "FSE_normalizeCount error with litLengthCount \n");
787         goto _cleanup;
788     }
789     llLog = (U32)errorCode;
790 
791     /* write result to buffer */
792     {   size_t const hhSize = HUF_writeCTable(dstPtr, maxDstSize, hufTable, 255, huffLog);
793         if (HUF_isError(hhSize)) {
794             eSize = hhSize;
795             DISPLAYLEVEL(1, "HUF_writeCTable error \n");
796             goto _cleanup;
797         }
798         dstPtr += hhSize;
799         maxDstSize -= hhSize;
800         eSize += hhSize;
801     }
802 
803     {   size_t const ohSize = FSE_writeNCount(dstPtr, maxDstSize, offcodeNCount, OFFCODE_MAX, Offlog);
804         if (FSE_isError(ohSize)) {
805             eSize = ohSize;
806             DISPLAYLEVEL(1, "FSE_writeNCount error with offcodeNCount \n");
807             goto _cleanup;
808         }
809         dstPtr += ohSize;
810         maxDstSize -= ohSize;
811         eSize += ohSize;
812     }
813 
814     {   size_t const mhSize = FSE_writeNCount(dstPtr, maxDstSize, matchLengthNCount, MaxML, mlLog);
815         if (FSE_isError(mhSize)) {
816             eSize = mhSize;
817             DISPLAYLEVEL(1, "FSE_writeNCount error with matchLengthNCount \n");
818             goto _cleanup;
819         }
820         dstPtr += mhSize;
821         maxDstSize -= mhSize;
822         eSize += mhSize;
823     }
824 
825     {   size_t const lhSize = FSE_writeNCount(dstPtr, maxDstSize, litLengthNCount, MaxLL, llLog);
826         if (FSE_isError(lhSize)) {
827             eSize = lhSize;
828             DISPLAYLEVEL(1, "FSE_writeNCount error with litlengthNCount \n");
829             goto _cleanup;
830         }
831         dstPtr += lhSize;
832         maxDstSize -= lhSize;
833         eSize += lhSize;
834     }
835 
836     if (maxDstSize<12) {
837         eSize = ERROR(dstSize_tooSmall);
838         DISPLAYLEVEL(1, "not enough space to write RepOffsets \n");
839         goto _cleanup;
840     }
841 # if 0
842     MEM_writeLE32(dstPtr+0, bestRepOffset[0].offset);
843     MEM_writeLE32(dstPtr+4, bestRepOffset[1].offset);
844     MEM_writeLE32(dstPtr+8, bestRepOffset[2].offset);
845 #else
846     /* at this stage, we don't use the result of "most common first offset",
847        as the impact of statistics is not properly evaluated */
848     MEM_writeLE32(dstPtr+0, repStartValue[0]);
849     MEM_writeLE32(dstPtr+4, repStartValue[1]);
850     MEM_writeLE32(dstPtr+8, repStartValue[2]);
851 #endif
852     eSize += 12;
853 
854 _cleanup:
855     ZSTD_freeCDict(esr.dict);
856     ZSTD_freeCCtx(esr.zc);
857     free(esr.workPlace);
858 
859     return eSize;
860 }
861 
862 
863 
864 size_t ZDICT_finalizeDictionary(void* dictBuffer, size_t dictBufferCapacity,
865                           const void* customDictContent, size_t dictContentSize,
866                           const void* samplesBuffer, const size_t* samplesSizes,
867                           unsigned nbSamples, ZDICT_params_t params)
868 {
869     size_t hSize;
870 #define HBUFFSIZE 256   /* should prove large enough for all entropy headers */
871     BYTE header[HBUFFSIZE];
872     int const compressionLevel = (params.compressionLevel == 0) ? g_compressionLevel_default : params.compressionLevel;
873     U32 const notificationLevel = params.notificationLevel;
874 
875     /* check conditions */
876     DEBUGLOG(4, "ZDICT_finalizeDictionary");
877     if (dictBufferCapacity < dictContentSize) return ERROR(dstSize_tooSmall);
878     if (dictContentSize < ZDICT_CONTENTSIZE_MIN) return ERROR(srcSize_wrong);
879     if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) return ERROR(dstSize_tooSmall);
880 
881     /* dictionary header */
882     MEM_writeLE32(header, ZSTD_MAGIC_DICTIONARY);
883     {   U64 const randomID = XXH64(customDictContent, dictContentSize, 0);
884         U32 const compliantID = (randomID % ((1U<<31)-32768)) + 32768;
885         U32 const dictID = params.dictID ? params.dictID : compliantID;
886         MEM_writeLE32(header+4, dictID);
887     }
888     hSize = 8;
889 
890     /* entropy tables */
891     DISPLAYLEVEL(2, "\r%70s\r", "");   /* clean display line */
892     DISPLAYLEVEL(2, "statistics ... \n");
893     {   size_t const eSize = ZDICT_analyzeEntropy(header+hSize, HBUFFSIZE-hSize,
894                                   compressionLevel,
895                                   samplesBuffer, samplesSizes, nbSamples,
896                                   customDictContent, dictContentSize,
897                                   notificationLevel);
898         if (ZDICT_isError(eSize)) return eSize;
899         hSize += eSize;
900     }
901 
902     /* copy elements in final buffer ; note : src and dst buffer can overlap */
903     if (hSize + dictContentSize > dictBufferCapacity) dictContentSize = dictBufferCapacity - hSize;
904     {   size_t const dictSize = hSize + dictContentSize;
905         char* dictEnd = (char*)dictBuffer + dictSize;
906         memmove(dictEnd - dictContentSize, customDictContent, dictContentSize);
907         memcpy(dictBuffer, header, hSize);
908         return dictSize;
909     }
910 }
911 
912 
913 static size_t ZDICT_addEntropyTablesFromBuffer_advanced(
914         void* dictBuffer, size_t dictContentSize, size_t dictBufferCapacity,
915         const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples,
916         ZDICT_params_t params)
917 {
918     int const compressionLevel = (params.compressionLevel == 0) ? g_compressionLevel_default : params.compressionLevel;
919     U32 const notificationLevel = params.notificationLevel;
920     size_t hSize = 8;
921 
922     /* calculate entropy tables */
923     DISPLAYLEVEL(2, "\r%70s\r", "");   /* clean display line */
924     DISPLAYLEVEL(2, "statistics ... \n");
925     {   size_t const eSize = ZDICT_analyzeEntropy((char*)dictBuffer+hSize, dictBufferCapacity-hSize,
926                                   compressionLevel,
927                                   samplesBuffer, samplesSizes, nbSamples,
928                                   (char*)dictBuffer + dictBufferCapacity - dictContentSize, dictContentSize,
929                                   notificationLevel);
930         if (ZDICT_isError(eSize)) return eSize;
931         hSize += eSize;
932     }
933 
934     /* add dictionary header (after entropy tables) */
935     MEM_writeLE32(dictBuffer, ZSTD_MAGIC_DICTIONARY);
936     {   U64 const randomID = XXH64((char*)dictBuffer + dictBufferCapacity - dictContentSize, dictContentSize, 0);
937         U32 const compliantID = (randomID % ((1U<<31)-32768)) + 32768;
938         U32 const dictID = params.dictID ? params.dictID : compliantID;
939         MEM_writeLE32((char*)dictBuffer+4, dictID);
940     }
941 
942     if (hSize + dictContentSize < dictBufferCapacity)
943         memmove((char*)dictBuffer + hSize, (char*)dictBuffer + dictBufferCapacity - dictContentSize, dictContentSize);
944     return MIN(dictBufferCapacity, hSize+dictContentSize);
945 }
946 
947 /* Hidden declaration for dbio.c */
948 size_t ZDICT_trainFromBuffer_unsafe_legacy(
949                             void* dictBuffer, size_t maxDictSize,
950                             const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples,
951                             ZDICT_legacy_params_t params);
952 /*! ZDICT_trainFromBuffer_unsafe_legacy() :
953 *   Warning : `samplesBuffer` must be followed by noisy guard band.
954 *   @return : size of dictionary, or an error code which can be tested with ZDICT_isError()
955 */
956 size_t ZDICT_trainFromBuffer_unsafe_legacy(
957                             void* dictBuffer, size_t maxDictSize,
958                             const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples,
959                             ZDICT_legacy_params_t params)
960 {
961     U32 const dictListSize = MAX(MAX(DICTLISTSIZE_DEFAULT, nbSamples), (U32)(maxDictSize/16));
962     dictItem* const dictList = (dictItem*)malloc(dictListSize * sizeof(*dictList));
963     unsigned const selectivity = params.selectivityLevel == 0 ? g_selectivity_default : params.selectivityLevel;
964     unsigned const minRep = (selectivity > 30) ? MINRATIO : nbSamples >> selectivity;
965     size_t const targetDictSize = maxDictSize;
966     size_t const samplesBuffSize = ZDICT_totalSampleSize(samplesSizes, nbSamples);
967     size_t dictSize = 0;
968     U32 const notificationLevel = params.zParams.notificationLevel;
969 
970     /* checks */
971     if (!dictList) return ERROR(memory_allocation);
972     if (maxDictSize < ZDICT_DICTSIZE_MIN) { free(dictList); return ERROR(dstSize_tooSmall); }   /* requested dictionary size is too small */
973     if (samplesBuffSize < ZDICT_MIN_SAMPLES_SIZE) { free(dictList); return ERROR(dictionaryCreation_failed); }   /* not enough source to create dictionary */
974 
975     /* init */
976     ZDICT_initDictItem(dictList);
977 
978     /* build dictionary */
979     ZDICT_trainBuffer_legacy(dictList, dictListSize,
980                        samplesBuffer, samplesBuffSize,
981                        samplesSizes, nbSamples,
982                        minRep, notificationLevel);
983 
984     /* display best matches */
985     if (params.zParams.notificationLevel>= 3) {
986         unsigned const nb = MIN(25, dictList[0].pos);
987         unsigned const dictContentSize = ZDICT_dictSize(dictList);
988         unsigned u;
989         DISPLAYLEVEL(3, "\n %u segments found, of total size %u \n", (unsigned)dictList[0].pos-1, dictContentSize);
990         DISPLAYLEVEL(3, "list %u best segments \n", nb-1);
991         for (u=1; u<nb; u++) {
992             unsigned const pos = dictList[u].pos;
993             unsigned const length = dictList[u].length;
994             U32 const printedLength = MIN(40, length);
995             if ((pos > samplesBuffSize) || ((pos + length) > samplesBuffSize)) {
996                 free(dictList);
997                 return ERROR(GENERIC);   /* should never happen */
998             }
999             DISPLAYLEVEL(3, "%3u:%3u bytes at pos %8u, savings %7u bytes |",
1000                          u, length, pos, (unsigned)dictList[u].savings);
1001             ZDICT_printHex((const char*)samplesBuffer+pos, printedLength);
1002             DISPLAYLEVEL(3, "| \n");
1003     }   }
1004 
1005 
1006     /* create dictionary */
1007     {   unsigned dictContentSize = ZDICT_dictSize(dictList);
1008         if (dictContentSize < ZDICT_CONTENTSIZE_MIN) { free(dictList); return ERROR(dictionaryCreation_failed); }   /* dictionary content too small */
1009         if (dictContentSize < targetDictSize/4) {
1010             DISPLAYLEVEL(2, "!  warning : selected content significantly smaller than requested (%u < %u) \n", dictContentSize, (unsigned)maxDictSize);
1011             if (samplesBuffSize < 10 * targetDictSize)
1012                 DISPLAYLEVEL(2, "!  consider increasing the number of samples (total size : %u MB)\n", (unsigned)(samplesBuffSize>>20));
1013             if (minRep > MINRATIO) {
1014                 DISPLAYLEVEL(2, "!  consider increasing selectivity to produce larger dictionary (-s%u) \n", selectivity+1);
1015                 DISPLAYLEVEL(2, "!  note : larger dictionaries are not necessarily better, test its efficiency on samples \n");
1016             }
1017         }
1018 
1019         if ((dictContentSize > targetDictSize*3) && (nbSamples > 2*MINRATIO) && (selectivity>1)) {
1020             unsigned proposedSelectivity = selectivity-1;
1021             while ((nbSamples >> proposedSelectivity) <= MINRATIO) { proposedSelectivity--; }
1022             DISPLAYLEVEL(2, "!  note : calculated dictionary significantly larger than requested (%u > %u) \n", dictContentSize, (unsigned)maxDictSize);
1023             DISPLAYLEVEL(2, "!  consider increasing dictionary size, or produce denser dictionary (-s%u) \n", proposedSelectivity);
1024             DISPLAYLEVEL(2, "!  always test dictionary efficiency on real samples \n");
1025         }
1026 
1027         /* limit dictionary size */
1028         {   U32 const max = dictList->pos;   /* convention : nb of useful elts within dictList */
1029             U32 currentSize = 0;
1030             U32 n; for (n=1; n<max; n++) {
1031                 currentSize += dictList[n].length;
1032                 if (currentSize > targetDictSize) { currentSize -= dictList[n].length; break; }
1033             }
1034             dictList->pos = n;
1035             dictContentSize = currentSize;
1036         }
1037 
1038         /* build dict content */
1039         {   U32 u;
1040             BYTE* ptr = (BYTE*)dictBuffer + maxDictSize;
1041             for (u=1; u<dictList->pos; u++) {
1042                 U32 l = dictList[u].length;
1043                 ptr -= l;
1044                 if (ptr<(BYTE*)dictBuffer) { free(dictList); return ERROR(GENERIC); }   /* should not happen */
1045                 memcpy(ptr, (const char*)samplesBuffer+dictList[u].pos, l);
1046         }   }
1047 
1048         dictSize = ZDICT_addEntropyTablesFromBuffer_advanced(dictBuffer, dictContentSize, maxDictSize,
1049                                                              samplesBuffer, samplesSizes, nbSamples,
1050                                                              params.zParams);
1051     }
1052 
1053     /* clean up */
1054     free(dictList);
1055     return dictSize;
1056 }
1057 
1058 
1059 /* ZDICT_trainFromBuffer_legacy() :
1060  * issue : samplesBuffer need to be followed by a noisy guard band.
1061  * work around : duplicate the buffer, and add the noise */
1062 size_t ZDICT_trainFromBuffer_legacy(void* dictBuffer, size_t dictBufferCapacity,
1063                               const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples,
1064                               ZDICT_legacy_params_t params)
1065 {
1066     size_t result;
1067     void* newBuff;
1068     size_t const sBuffSize = ZDICT_totalSampleSize(samplesSizes, nbSamples);
1069     if (sBuffSize < ZDICT_MIN_SAMPLES_SIZE) return 0;   /* not enough content => no dictionary */
1070 
1071     newBuff = malloc(sBuffSize + NOISELENGTH);
1072     if (!newBuff) return ERROR(memory_allocation);
1073 
1074     memcpy(newBuff, samplesBuffer, sBuffSize);
1075     ZDICT_fillNoise((char*)newBuff + sBuffSize, NOISELENGTH);   /* guard band, for end of buffer condition */
1076 
1077     result =
1078         ZDICT_trainFromBuffer_unsafe_legacy(dictBuffer, dictBufferCapacity, newBuff,
1079                                             samplesSizes, nbSamples, params);
1080     free(newBuff);
1081     return result;
1082 }
1083 
1084 
1085 size_t ZDICT_trainFromBuffer(void* dictBuffer, size_t dictBufferCapacity,
1086                              const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples)
1087 {
1088     ZDICT_fastCover_params_t params;
1089     DEBUGLOG(3, "ZDICT_trainFromBuffer");
1090     memset(&params, 0, sizeof(params));
1091     params.d = 8;
1092     params.steps = 4;
1093     /* Default to level 6 since no compression level information is available */
1094     params.zParams.compressionLevel = 3;
1095 #if defined(DEBUGLEVEL) && (DEBUGLEVEL>=1)
1096     params.zParams.notificationLevel = DEBUGLEVEL;
1097 #endif
1098     return ZDICT_optimizeTrainFromBuffer_fastCover(dictBuffer, dictBufferCapacity,
1099                                                samplesBuffer, samplesSizes, nbSamples,
1100                                                &params);
1101 }
1102 
1103 size_t ZDICT_addEntropyTablesFromBuffer(void* dictBuffer, size_t dictContentSize, size_t dictBufferCapacity,
1104                                   const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples)
1105 {
1106     ZDICT_params_t params;
1107     memset(&params, 0, sizeof(params));
1108     return ZDICT_addEntropyTablesFromBuffer_advanced(dictBuffer, dictContentSize, dictBufferCapacity,
1109                                                      samplesBuffer, samplesSizes, nbSamples,
1110                                                      params);
1111 }
1112