xref: /freebsd/sys/dev/age/if_age.c (revision 2a01feab)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/bus.h>
38 #include <sys/endian.h>
39 #include <sys/kernel.h>
40 #include <sys/malloc.h>
41 #include <sys/mbuf.h>
42 #include <sys/rman.h>
43 #include <sys/module.h>
44 #include <sys/queue.h>
45 #include <sys/socket.h>
46 #include <sys/sockio.h>
47 #include <sys/sysctl.h>
48 #include <sys/taskqueue.h>
49 
50 #include <net/bpf.h>
51 #include <net/if.h>
52 #include <net/if_var.h>
53 #include <net/if_arp.h>
54 #include <net/ethernet.h>
55 #include <net/if_dl.h>
56 #include <net/if_media.h>
57 #include <net/if_types.h>
58 #include <net/if_vlan_var.h>
59 
60 #include <netinet/in.h>
61 #include <netinet/in_systm.h>
62 #include <netinet/ip.h>
63 #include <netinet/tcp.h>
64 
65 #include <dev/mii/mii.h>
66 #include <dev/mii/miivar.h>
67 
68 #include <dev/pci/pcireg.h>
69 #include <dev/pci/pcivar.h>
70 
71 #include <machine/bus.h>
72 #include <machine/in_cksum.h>
73 
74 #include <dev/age/if_agereg.h>
75 #include <dev/age/if_agevar.h>
76 
77 /* "device miibus" required.  See GENERIC if you get errors here. */
78 #include "miibus_if.h"
79 
80 #define	AGE_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
81 
82 MODULE_DEPEND(age, pci, 1, 1, 1);
83 MODULE_DEPEND(age, ether, 1, 1, 1);
84 MODULE_DEPEND(age, miibus, 1, 1, 1);
85 
86 /* Tunables. */
87 static int msi_disable = 0;
88 static int msix_disable = 0;
89 TUNABLE_INT("hw.age.msi_disable", &msi_disable);
90 TUNABLE_INT("hw.age.msix_disable", &msix_disable);
91 
92 /*
93  * Devices supported by this driver.
94  */
95 static struct age_dev {
96 	uint16_t	age_vendorid;
97 	uint16_t	age_deviceid;
98 	const char	*age_name;
99 } age_devs[] = {
100 	{ VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L1,
101 	    "Attansic Technology Corp, L1 Gigabit Ethernet" },
102 };
103 
104 static int age_miibus_readreg(device_t, int, int);
105 static int age_miibus_writereg(device_t, int, int, int);
106 static void age_miibus_statchg(device_t);
107 static void age_mediastatus(struct ifnet *, struct ifmediareq *);
108 static int age_mediachange(struct ifnet *);
109 static int age_probe(device_t);
110 static void age_get_macaddr(struct age_softc *);
111 static void age_phy_reset(struct age_softc *);
112 static int age_attach(device_t);
113 static int age_detach(device_t);
114 static void age_sysctl_node(struct age_softc *);
115 static void age_dmamap_cb(void *, bus_dma_segment_t *, int, int);
116 static int age_check_boundary(struct age_softc *);
117 static int age_dma_alloc(struct age_softc *);
118 static void age_dma_free(struct age_softc *);
119 static int age_shutdown(device_t);
120 static void age_setwol(struct age_softc *);
121 static int age_suspend(device_t);
122 static int age_resume(device_t);
123 static int age_encap(struct age_softc *, struct mbuf **);
124 static void age_start(struct ifnet *);
125 static void age_start_locked(struct ifnet *);
126 static void age_watchdog(struct age_softc *);
127 static int age_ioctl(struct ifnet *, u_long, caddr_t);
128 static void age_mac_config(struct age_softc *);
129 static void age_link_task(void *, int);
130 static void age_stats_update(struct age_softc *);
131 static int age_intr(void *);
132 static void age_int_task(void *, int);
133 static void age_txintr(struct age_softc *, int);
134 static void age_rxeof(struct age_softc *sc, struct rx_rdesc *);
135 static int age_rxintr(struct age_softc *, int, int);
136 static void age_tick(void *);
137 static void age_reset(struct age_softc *);
138 static void age_init(void *);
139 static void age_init_locked(struct age_softc *);
140 static void age_stop(struct age_softc *);
141 static void age_stop_txmac(struct age_softc *);
142 static void age_stop_rxmac(struct age_softc *);
143 static void age_init_tx_ring(struct age_softc *);
144 static int age_init_rx_ring(struct age_softc *);
145 static void age_init_rr_ring(struct age_softc *);
146 static void age_init_cmb_block(struct age_softc *);
147 static void age_init_smb_block(struct age_softc *);
148 #ifndef __NO_STRICT_ALIGNMENT
149 static struct mbuf *age_fixup_rx(struct ifnet *, struct mbuf *);
150 #endif
151 static int age_newbuf(struct age_softc *, struct age_rxdesc *);
152 static void age_rxvlan(struct age_softc *);
153 static void age_rxfilter(struct age_softc *);
154 static int sysctl_age_stats(SYSCTL_HANDLER_ARGS);
155 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
156 static int sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS);
157 static int sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS);
158 
159 
160 static device_method_t age_methods[] = {
161 	/* Device interface. */
162 	DEVMETHOD(device_probe,		age_probe),
163 	DEVMETHOD(device_attach,	age_attach),
164 	DEVMETHOD(device_detach,	age_detach),
165 	DEVMETHOD(device_shutdown,	age_shutdown),
166 	DEVMETHOD(device_suspend,	age_suspend),
167 	DEVMETHOD(device_resume,	age_resume),
168 
169 	/* MII interface. */
170 	DEVMETHOD(miibus_readreg,	age_miibus_readreg),
171 	DEVMETHOD(miibus_writereg,	age_miibus_writereg),
172 	DEVMETHOD(miibus_statchg,	age_miibus_statchg),
173 
174 	{ NULL, NULL }
175 };
176 
177 static driver_t age_driver = {
178 	"age",
179 	age_methods,
180 	sizeof(struct age_softc)
181 };
182 
183 static devclass_t age_devclass;
184 
185 DRIVER_MODULE(age, pci, age_driver, age_devclass, 0, 0);
186 MODULE_PNP_INFO("U16:vendor;U16:device;D:#", pci, age, age_devs,
187     nitems(age_devs));
188 DRIVER_MODULE(miibus, age, miibus_driver, miibus_devclass, 0, 0);
189 
190 static struct resource_spec age_res_spec_mem[] = {
191 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
192 	{ -1,			0,		0 }
193 };
194 
195 static struct resource_spec age_irq_spec_legacy[] = {
196 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
197 	{ -1,			0,		0 }
198 };
199 
200 static struct resource_spec age_irq_spec_msi[] = {
201 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
202 	{ -1,			0,		0 }
203 };
204 
205 static struct resource_spec age_irq_spec_msix[] = {
206 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
207 	{ -1,			0,		0 }
208 };
209 
210 /*
211  *	Read a PHY register on the MII of the L1.
212  */
213 static int
214 age_miibus_readreg(device_t dev, int phy, int reg)
215 {
216 	struct age_softc *sc;
217 	uint32_t v;
218 	int i;
219 
220 	sc = device_get_softc(dev);
221 
222 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
223 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
224 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
225 		DELAY(1);
226 		v = CSR_READ_4(sc, AGE_MDIO);
227 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
228 			break;
229 	}
230 
231 	if (i == 0) {
232 		device_printf(sc->age_dev, "phy read timeout : %d\n", reg);
233 		return (0);
234 	}
235 
236 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
237 }
238 
239 /*
240  *	Write a PHY register on the MII of the L1.
241  */
242 static int
243 age_miibus_writereg(device_t dev, int phy, int reg, int val)
244 {
245 	struct age_softc *sc;
246 	uint32_t v;
247 	int i;
248 
249 	sc = device_get_softc(dev);
250 
251 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
252 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
253 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
254 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
255 		DELAY(1);
256 		v = CSR_READ_4(sc, AGE_MDIO);
257 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
258 			break;
259 	}
260 
261 	if (i == 0)
262 		device_printf(sc->age_dev, "phy write timeout : %d\n", reg);
263 
264 	return (0);
265 }
266 
267 /*
268  *	Callback from MII layer when media changes.
269  */
270 static void
271 age_miibus_statchg(device_t dev)
272 {
273 	struct age_softc *sc;
274 
275 	sc = device_get_softc(dev);
276 	taskqueue_enqueue(taskqueue_swi, &sc->age_link_task);
277 }
278 
279 /*
280  *	Get the current interface media status.
281  */
282 static void
283 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
284 {
285 	struct age_softc *sc;
286 	struct mii_data *mii;
287 
288 	sc = ifp->if_softc;
289 	AGE_LOCK(sc);
290 	mii = device_get_softc(sc->age_miibus);
291 
292 	mii_pollstat(mii);
293 	ifmr->ifm_status = mii->mii_media_status;
294 	ifmr->ifm_active = mii->mii_media_active;
295 	AGE_UNLOCK(sc);
296 }
297 
298 /*
299  *	Set hardware to newly-selected media.
300  */
301 static int
302 age_mediachange(struct ifnet *ifp)
303 {
304 	struct age_softc *sc;
305 	struct mii_data *mii;
306 	struct mii_softc *miisc;
307 	int error;
308 
309 	sc = ifp->if_softc;
310 	AGE_LOCK(sc);
311 	mii = device_get_softc(sc->age_miibus);
312 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
313 		PHY_RESET(miisc);
314 	error = mii_mediachg(mii);
315 	AGE_UNLOCK(sc);
316 
317 	return (error);
318 }
319 
320 static int
321 age_probe(device_t dev)
322 {
323 	struct age_dev *sp;
324 	int i;
325 	uint16_t vendor, devid;
326 
327 	vendor = pci_get_vendor(dev);
328 	devid = pci_get_device(dev);
329 	sp = age_devs;
330 	for (i = 0; i < nitems(age_devs); i++, sp++) {
331 		if (vendor == sp->age_vendorid &&
332 		    devid == sp->age_deviceid) {
333 			device_set_desc(dev, sp->age_name);
334 			return (BUS_PROBE_DEFAULT);
335 		}
336 	}
337 
338 	return (ENXIO);
339 }
340 
341 static void
342 age_get_macaddr(struct age_softc *sc)
343 {
344 	uint32_t ea[2], reg;
345 	int i, vpdc;
346 
347 	reg = CSR_READ_4(sc, AGE_SPI_CTRL);
348 	if ((reg & SPI_VPD_ENB) != 0) {
349 		/* Get VPD stored in TWSI EEPROM. */
350 		reg &= ~SPI_VPD_ENB;
351 		CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
352 	}
353 
354 	if (pci_find_cap(sc->age_dev, PCIY_VPD, &vpdc) == 0) {
355 		/*
356 		 * PCI VPD capability found, let TWSI reload EEPROM.
357 		 * This will set ethernet address of controller.
358 		 */
359 		CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
360 		    TWSI_CTRL_SW_LD_START);
361 		for (i = 100; i > 0; i--) {
362 			DELAY(1000);
363 			reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
364 			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
365 				break;
366 		}
367 		if (i == 0)
368 			device_printf(sc->age_dev,
369 			    "reloading EEPROM timeout!\n");
370 	} else {
371 		if (bootverbose)
372 			device_printf(sc->age_dev,
373 			    "PCI VPD capability not found!\n");
374 	}
375 
376 	ea[0] = CSR_READ_4(sc, AGE_PAR0);
377 	ea[1] = CSR_READ_4(sc, AGE_PAR1);
378 	sc->age_eaddr[0] = (ea[1] >> 8) & 0xFF;
379 	sc->age_eaddr[1] = (ea[1] >> 0) & 0xFF;
380 	sc->age_eaddr[2] = (ea[0] >> 24) & 0xFF;
381 	sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF;
382 	sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF;
383 	sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF;
384 }
385 
386 static void
387 age_phy_reset(struct age_softc *sc)
388 {
389 	uint16_t reg, pn;
390 	int i, linkup;
391 
392 	/* Reset PHY. */
393 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
394 	DELAY(2000);
395 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
396 	DELAY(2000);
397 
398 #define	ATPHY_DBG_ADDR		0x1D
399 #define	ATPHY_DBG_DATA		0x1E
400 #define	ATPHY_CDTC		0x16
401 #define	PHY_CDTC_ENB		0x0001
402 #define	PHY_CDTC_POFF		8
403 #define	ATPHY_CDTS		0x1C
404 #define	PHY_CDTS_STAT_OK	0x0000
405 #define	PHY_CDTS_STAT_SHORT	0x0100
406 #define	PHY_CDTS_STAT_OPEN	0x0200
407 #define	PHY_CDTS_STAT_INVAL	0x0300
408 #define	PHY_CDTS_STAT_MASK	0x0300
409 
410 	/* Check power saving mode. Magic from Linux. */
411 	age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
412 	for (linkup = 0, pn = 0; pn < 4; pn++) {
413 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr, ATPHY_CDTC,
414 		    (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
415 		for (i = 200; i > 0; i--) {
416 			DELAY(1000);
417 			reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
418 			    ATPHY_CDTC);
419 			if ((reg & PHY_CDTC_ENB) == 0)
420 				break;
421 		}
422 		DELAY(1000);
423 		reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
424 		    ATPHY_CDTS);
425 		if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
426 			linkup++;
427 			break;
428 		}
429 	}
430 	age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR,
431 	    BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
432 	if (linkup == 0) {
433 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
434 		    ATPHY_DBG_ADDR, 0);
435 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
436 		    ATPHY_DBG_DATA, 0x124E);
437 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
438 		    ATPHY_DBG_ADDR, 1);
439 		reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
440 		    ATPHY_DBG_DATA);
441 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
442 		    ATPHY_DBG_DATA, reg | 0x03);
443 		/* XXX */
444 		DELAY(1500 * 1000);
445 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
446 		    ATPHY_DBG_ADDR, 0);
447 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
448 		    ATPHY_DBG_DATA, 0x024E);
449     }
450 
451 #undef	ATPHY_DBG_ADDR
452 #undef	ATPHY_DBG_DATA
453 #undef	ATPHY_CDTC
454 #undef	PHY_CDTC_ENB
455 #undef	PHY_CDTC_POFF
456 #undef	ATPHY_CDTS
457 #undef	PHY_CDTS_STAT_OK
458 #undef	PHY_CDTS_STAT_SHORT
459 #undef	PHY_CDTS_STAT_OPEN
460 #undef	PHY_CDTS_STAT_INVAL
461 #undef	PHY_CDTS_STAT_MASK
462 }
463 
464 static int
465 age_attach(device_t dev)
466 {
467 	struct age_softc *sc;
468 	struct ifnet *ifp;
469 	uint16_t burst;
470 	int error, i, msic, msixc, pmc;
471 
472 	error = 0;
473 	sc = device_get_softc(dev);
474 	sc->age_dev = dev;
475 
476 	mtx_init(&sc->age_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
477 	    MTX_DEF);
478 	callout_init_mtx(&sc->age_tick_ch, &sc->age_mtx, 0);
479 	TASK_INIT(&sc->age_int_task, 0, age_int_task, sc);
480 	TASK_INIT(&sc->age_link_task, 0, age_link_task, sc);
481 
482 	/* Map the device. */
483 	pci_enable_busmaster(dev);
484 	sc->age_res_spec = age_res_spec_mem;
485 	sc->age_irq_spec = age_irq_spec_legacy;
486 	error = bus_alloc_resources(dev, sc->age_res_spec, sc->age_res);
487 	if (error != 0) {
488 		device_printf(dev, "cannot allocate memory resources.\n");
489 		goto fail;
490 	}
491 
492 	/* Set PHY address. */
493 	sc->age_phyaddr = AGE_PHY_ADDR;
494 
495 	/* Reset PHY. */
496 	age_phy_reset(sc);
497 
498 	/* Reset the ethernet controller. */
499 	age_reset(sc);
500 
501 	/* Get PCI and chip id/revision. */
502 	sc->age_rev = pci_get_revid(dev);
503 	sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
504 	    MASTER_CHIP_REV_SHIFT;
505 	if (bootverbose) {
506 		device_printf(dev, "PCI device revision : 0x%04x\n",
507 		    sc->age_rev);
508 		device_printf(dev, "Chip id/revision : 0x%04x\n",
509 		    sc->age_chip_rev);
510 	}
511 
512 	/*
513 	 * XXX
514 	 * Unintialized hardware returns an invalid chip id/revision
515 	 * as well as 0xFFFFFFFF for Tx/Rx fifo length. It seems that
516 	 * unplugged cable results in putting hardware into automatic
517 	 * power down mode which in turn returns invalld chip revision.
518 	 */
519 	if (sc->age_chip_rev == 0xFFFF) {
520 		device_printf(dev,"invalid chip revision : 0x%04x -- "
521 		    "not initialized?\n", sc->age_chip_rev);
522 		error = ENXIO;
523 		goto fail;
524 	}
525 
526 	device_printf(dev, "%d Tx FIFO, %d Rx FIFO\n",
527 	    CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
528 	    CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
529 
530 	/* Allocate IRQ resources. */
531 	msixc = pci_msix_count(dev);
532 	msic = pci_msi_count(dev);
533 	if (bootverbose) {
534 		device_printf(dev, "MSIX count : %d\n", msixc);
535 		device_printf(dev, "MSI count : %d\n", msic);
536 	}
537 
538 	/* Prefer MSIX over MSI. */
539 	if (msix_disable == 0 || msi_disable == 0) {
540 		if (msix_disable == 0 && msixc == AGE_MSIX_MESSAGES &&
541 		    pci_alloc_msix(dev, &msixc) == 0) {
542 			if (msic == AGE_MSIX_MESSAGES) {
543 				device_printf(dev, "Using %d MSIX messages.\n",
544 				    msixc);
545 				sc->age_flags |= AGE_FLAG_MSIX;
546 				sc->age_irq_spec = age_irq_spec_msix;
547 			} else
548 				pci_release_msi(dev);
549 		}
550 		if (msi_disable == 0 && (sc->age_flags & AGE_FLAG_MSIX) == 0 &&
551 		    msic == AGE_MSI_MESSAGES &&
552 		    pci_alloc_msi(dev, &msic) == 0) {
553 			if (msic == AGE_MSI_MESSAGES) {
554 				device_printf(dev, "Using %d MSI messages.\n",
555 				    msic);
556 				sc->age_flags |= AGE_FLAG_MSI;
557 				sc->age_irq_spec = age_irq_spec_msi;
558 			} else
559 				pci_release_msi(dev);
560 		}
561 	}
562 
563 	error = bus_alloc_resources(dev, sc->age_irq_spec, sc->age_irq);
564 	if (error != 0) {
565 		device_printf(dev, "cannot allocate IRQ resources.\n");
566 		goto fail;
567 	}
568 
569 
570 	/* Get DMA parameters from PCIe device control register. */
571 	if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
572 		sc->age_flags |= AGE_FLAG_PCIE;
573 		burst = pci_read_config(dev, i + 0x08, 2);
574 		/* Max read request size. */
575 		sc->age_dma_rd_burst = ((burst >> 12) & 0x07) <<
576 		    DMA_CFG_RD_BURST_SHIFT;
577 		/* Max payload size. */
578 		sc->age_dma_wr_burst = ((burst >> 5) & 0x07) <<
579 		    DMA_CFG_WR_BURST_SHIFT;
580 		if (bootverbose) {
581 			device_printf(dev, "Read request size : %d bytes.\n",
582 			    128 << ((burst >> 12) & 0x07));
583 			device_printf(dev, "TLP payload size : %d bytes.\n",
584 			    128 << ((burst >> 5) & 0x07));
585 		}
586 	} else {
587 		sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
588 		sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
589 	}
590 
591 	/* Create device sysctl node. */
592 	age_sysctl_node(sc);
593 
594 	if ((error = age_dma_alloc(sc)) != 0)
595 		goto fail;
596 
597 	/* Load station address. */
598 	age_get_macaddr(sc);
599 
600 	ifp = sc->age_ifp = if_alloc(IFT_ETHER);
601 	if (ifp == NULL) {
602 		device_printf(dev, "cannot allocate ifnet structure.\n");
603 		error = ENXIO;
604 		goto fail;
605 	}
606 
607 	ifp->if_softc = sc;
608 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
609 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
610 	ifp->if_ioctl = age_ioctl;
611 	ifp->if_start = age_start;
612 	ifp->if_init = age_init;
613 	ifp->if_snd.ifq_drv_maxlen = AGE_TX_RING_CNT - 1;
614 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
615 	IFQ_SET_READY(&ifp->if_snd);
616 	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
617 	ifp->if_hwassist = AGE_CSUM_FEATURES | CSUM_TSO;
618 	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) {
619 		sc->age_flags |= AGE_FLAG_PMCAP;
620 		ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
621 	}
622 	ifp->if_capenable = ifp->if_capabilities;
623 
624 	/* Set up MII bus. */
625 	error = mii_attach(dev, &sc->age_miibus, ifp, age_mediachange,
626 	    age_mediastatus, BMSR_DEFCAPMASK, sc->age_phyaddr, MII_OFFSET_ANY,
627 	    0);
628 	if (error != 0) {
629 		device_printf(dev, "attaching PHYs failed\n");
630 		goto fail;
631 	}
632 
633 	ether_ifattach(ifp, sc->age_eaddr);
634 
635 	/* VLAN capability setup. */
636 	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
637 	    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
638 	ifp->if_capenable = ifp->if_capabilities;
639 
640 	/* Tell the upper layer(s) we support long frames. */
641 	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
642 
643 	/* Create local taskq. */
644 	sc->age_tq = taskqueue_create_fast("age_taskq", M_WAITOK,
645 	    taskqueue_thread_enqueue, &sc->age_tq);
646 	if (sc->age_tq == NULL) {
647 		device_printf(dev, "could not create taskqueue.\n");
648 		ether_ifdetach(ifp);
649 		error = ENXIO;
650 		goto fail;
651 	}
652 	taskqueue_start_threads(&sc->age_tq, 1, PI_NET, "%s taskq",
653 	    device_get_nameunit(sc->age_dev));
654 
655 	if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
656 		msic = AGE_MSIX_MESSAGES;
657 	else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
658 		msic = AGE_MSI_MESSAGES;
659 	else
660 		msic = 1;
661 	for (i = 0; i < msic; i++) {
662 		error = bus_setup_intr(dev, sc->age_irq[i],
663 		    INTR_TYPE_NET | INTR_MPSAFE, age_intr, NULL, sc,
664 		    &sc->age_intrhand[i]);
665 		if (error != 0)
666 			break;
667 	}
668 	if (error != 0) {
669 		device_printf(dev, "could not set up interrupt handler.\n");
670 		taskqueue_free(sc->age_tq);
671 		sc->age_tq = NULL;
672 		ether_ifdetach(ifp);
673 		goto fail;
674 	}
675 
676 fail:
677 	if (error != 0)
678 		age_detach(dev);
679 
680 	return (error);
681 }
682 
683 static int
684 age_detach(device_t dev)
685 {
686 	struct age_softc *sc;
687 	struct ifnet *ifp;
688 	int i, msic;
689 
690 	sc = device_get_softc(dev);
691 
692 	ifp = sc->age_ifp;
693 	if (device_is_attached(dev)) {
694 		AGE_LOCK(sc);
695 		sc->age_flags |= AGE_FLAG_DETACH;
696 		age_stop(sc);
697 		AGE_UNLOCK(sc);
698 		callout_drain(&sc->age_tick_ch);
699 		taskqueue_drain(sc->age_tq, &sc->age_int_task);
700 		taskqueue_drain(taskqueue_swi, &sc->age_link_task);
701 		ether_ifdetach(ifp);
702 	}
703 
704 	if (sc->age_tq != NULL) {
705 		taskqueue_drain(sc->age_tq, &sc->age_int_task);
706 		taskqueue_free(sc->age_tq);
707 		sc->age_tq = NULL;
708 	}
709 
710 	if (sc->age_miibus != NULL) {
711 		device_delete_child(dev, sc->age_miibus);
712 		sc->age_miibus = NULL;
713 	}
714 	bus_generic_detach(dev);
715 	age_dma_free(sc);
716 
717 	if (ifp != NULL) {
718 		if_free(ifp);
719 		sc->age_ifp = NULL;
720 	}
721 
722 	if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
723 		msic = AGE_MSIX_MESSAGES;
724 	else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
725 		msic = AGE_MSI_MESSAGES;
726 	else
727 		msic = 1;
728 	for (i = 0; i < msic; i++) {
729 		if (sc->age_intrhand[i] != NULL) {
730 			bus_teardown_intr(dev, sc->age_irq[i],
731 			    sc->age_intrhand[i]);
732 			sc->age_intrhand[i] = NULL;
733 		}
734 	}
735 
736 	bus_release_resources(dev, sc->age_irq_spec, sc->age_irq);
737 	if ((sc->age_flags & (AGE_FLAG_MSI | AGE_FLAG_MSIX)) != 0)
738 		pci_release_msi(dev);
739 	bus_release_resources(dev, sc->age_res_spec, sc->age_res);
740 	mtx_destroy(&sc->age_mtx);
741 
742 	return (0);
743 }
744 
745 static void
746 age_sysctl_node(struct age_softc *sc)
747 {
748 	int error;
749 
750 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
751 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
752 	    "stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_age_stats,
753 	    "I", "Statistics");
754 
755 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
756 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
757 	    "int_mod", CTLTYPE_INT | CTLFLAG_RW, &sc->age_int_mod, 0,
758 	    sysctl_hw_age_int_mod, "I", "age interrupt moderation");
759 
760 	/* Pull in device tunables. */
761 	sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
762 	error = resource_int_value(device_get_name(sc->age_dev),
763 	    device_get_unit(sc->age_dev), "int_mod", &sc->age_int_mod);
764 	if (error == 0) {
765 		if (sc->age_int_mod < AGE_IM_TIMER_MIN ||
766 		    sc->age_int_mod > AGE_IM_TIMER_MAX) {
767 			device_printf(sc->age_dev,
768 			    "int_mod value out of range; using default: %d\n",
769 			    AGE_IM_TIMER_DEFAULT);
770 			sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
771 		}
772 	}
773 
774 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
775 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
776 	    "process_limit", CTLTYPE_INT | CTLFLAG_RW, &sc->age_process_limit,
777 	    0, sysctl_hw_age_proc_limit, "I",
778 	    "max number of Rx events to process");
779 
780 	/* Pull in device tunables. */
781 	sc->age_process_limit = AGE_PROC_DEFAULT;
782 	error = resource_int_value(device_get_name(sc->age_dev),
783 	    device_get_unit(sc->age_dev), "process_limit",
784 	    &sc->age_process_limit);
785 	if (error == 0) {
786 		if (sc->age_process_limit < AGE_PROC_MIN ||
787 		    sc->age_process_limit > AGE_PROC_MAX) {
788 			device_printf(sc->age_dev,
789 			    "process_limit value out of range; "
790 			    "using default: %d\n", AGE_PROC_DEFAULT);
791 			sc->age_process_limit = AGE_PROC_DEFAULT;
792 		}
793 	}
794 }
795 
796 struct age_dmamap_arg {
797 	bus_addr_t	age_busaddr;
798 };
799 
800 static void
801 age_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
802 {
803 	struct age_dmamap_arg *ctx;
804 
805 	if (error != 0)
806 		return;
807 
808 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
809 
810 	ctx = (struct age_dmamap_arg *)arg;
811 	ctx->age_busaddr = segs[0].ds_addr;
812 }
813 
814 /*
815  * Attansic L1 controller have single register to specify high
816  * address part of DMA blocks. So all descriptor structures and
817  * DMA memory blocks should have the same high address of given
818  * 4GB address space(i.e. crossing 4GB boundary is not allowed).
819  */
820 static int
821 age_check_boundary(struct age_softc *sc)
822 {
823 	bus_addr_t rx_ring_end, rr_ring_end, tx_ring_end;
824 	bus_addr_t cmb_block_end, smb_block_end;
825 
826 	/* Tx/Rx descriptor queue should reside within 4GB boundary. */
827 	tx_ring_end = sc->age_rdata.age_tx_ring_paddr + AGE_TX_RING_SZ;
828 	rx_ring_end = sc->age_rdata.age_rx_ring_paddr + AGE_RX_RING_SZ;
829 	rr_ring_end = sc->age_rdata.age_rr_ring_paddr + AGE_RR_RING_SZ;
830 	cmb_block_end = sc->age_rdata.age_cmb_block_paddr + AGE_CMB_BLOCK_SZ;
831 	smb_block_end = sc->age_rdata.age_smb_block_paddr + AGE_SMB_BLOCK_SZ;
832 
833 	if ((AGE_ADDR_HI(tx_ring_end) !=
834 	    AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr)) ||
835 	    (AGE_ADDR_HI(rx_ring_end) !=
836 	    AGE_ADDR_HI(sc->age_rdata.age_rx_ring_paddr)) ||
837 	    (AGE_ADDR_HI(rr_ring_end) !=
838 	    AGE_ADDR_HI(sc->age_rdata.age_rr_ring_paddr)) ||
839 	    (AGE_ADDR_HI(cmb_block_end) !=
840 	    AGE_ADDR_HI(sc->age_rdata.age_cmb_block_paddr)) ||
841 	    (AGE_ADDR_HI(smb_block_end) !=
842 	    AGE_ADDR_HI(sc->age_rdata.age_smb_block_paddr)))
843 		return (EFBIG);
844 
845 	if ((AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rx_ring_end)) ||
846 	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rr_ring_end)) ||
847 	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(cmb_block_end)) ||
848 	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(smb_block_end)))
849 		return (EFBIG);
850 
851 	return (0);
852 }
853 
854 static int
855 age_dma_alloc(struct age_softc *sc)
856 {
857 	struct age_txdesc *txd;
858 	struct age_rxdesc *rxd;
859 	bus_addr_t lowaddr;
860 	struct age_dmamap_arg ctx;
861 	int error, i;
862 
863 	lowaddr = BUS_SPACE_MAXADDR;
864 
865 again:
866 	/* Create parent ring/DMA block tag. */
867 	error = bus_dma_tag_create(
868 	    bus_get_dma_tag(sc->age_dev), /* parent */
869 	    1, 0,			/* alignment, boundary */
870 	    lowaddr,			/* lowaddr */
871 	    BUS_SPACE_MAXADDR,		/* highaddr */
872 	    NULL, NULL,			/* filter, filterarg */
873 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
874 	    0,				/* nsegments */
875 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
876 	    0,				/* flags */
877 	    NULL, NULL,			/* lockfunc, lockarg */
878 	    &sc->age_cdata.age_parent_tag);
879 	if (error != 0) {
880 		device_printf(sc->age_dev,
881 		    "could not create parent DMA tag.\n");
882 		goto fail;
883 	}
884 
885 	/* Create tag for Tx ring. */
886 	error = bus_dma_tag_create(
887 	    sc->age_cdata.age_parent_tag, /* parent */
888 	    AGE_TX_RING_ALIGN, 0,	/* alignment, boundary */
889 	    BUS_SPACE_MAXADDR,		/* lowaddr */
890 	    BUS_SPACE_MAXADDR,		/* highaddr */
891 	    NULL, NULL,			/* filter, filterarg */
892 	    AGE_TX_RING_SZ,		/* maxsize */
893 	    1,				/* nsegments */
894 	    AGE_TX_RING_SZ,		/* maxsegsize */
895 	    0,				/* flags */
896 	    NULL, NULL,			/* lockfunc, lockarg */
897 	    &sc->age_cdata.age_tx_ring_tag);
898 	if (error != 0) {
899 		device_printf(sc->age_dev,
900 		    "could not create Tx ring DMA tag.\n");
901 		goto fail;
902 	}
903 
904 	/* Create tag for Rx ring. */
905 	error = bus_dma_tag_create(
906 	    sc->age_cdata.age_parent_tag, /* parent */
907 	    AGE_RX_RING_ALIGN, 0,	/* alignment, boundary */
908 	    BUS_SPACE_MAXADDR,		/* lowaddr */
909 	    BUS_SPACE_MAXADDR,		/* highaddr */
910 	    NULL, NULL,			/* filter, filterarg */
911 	    AGE_RX_RING_SZ,		/* maxsize */
912 	    1,				/* nsegments */
913 	    AGE_RX_RING_SZ,		/* maxsegsize */
914 	    0,				/* flags */
915 	    NULL, NULL,			/* lockfunc, lockarg */
916 	    &sc->age_cdata.age_rx_ring_tag);
917 	if (error != 0) {
918 		device_printf(sc->age_dev,
919 		    "could not create Rx ring DMA tag.\n");
920 		goto fail;
921 	}
922 
923 	/* Create tag for Rx return ring. */
924 	error = bus_dma_tag_create(
925 	    sc->age_cdata.age_parent_tag, /* parent */
926 	    AGE_RR_RING_ALIGN, 0,	/* alignment, boundary */
927 	    BUS_SPACE_MAXADDR,		/* lowaddr */
928 	    BUS_SPACE_MAXADDR,		/* highaddr */
929 	    NULL, NULL,			/* filter, filterarg */
930 	    AGE_RR_RING_SZ,		/* maxsize */
931 	    1,				/* nsegments */
932 	    AGE_RR_RING_SZ,		/* maxsegsize */
933 	    0,				/* flags */
934 	    NULL, NULL,			/* lockfunc, lockarg */
935 	    &sc->age_cdata.age_rr_ring_tag);
936 	if (error != 0) {
937 		device_printf(sc->age_dev,
938 		    "could not create Rx return ring DMA tag.\n");
939 		goto fail;
940 	}
941 
942 	/* Create tag for coalesing message block. */
943 	error = bus_dma_tag_create(
944 	    sc->age_cdata.age_parent_tag, /* parent */
945 	    AGE_CMB_ALIGN, 0,		/* alignment, boundary */
946 	    BUS_SPACE_MAXADDR,		/* lowaddr */
947 	    BUS_SPACE_MAXADDR,		/* highaddr */
948 	    NULL, NULL,			/* filter, filterarg */
949 	    AGE_CMB_BLOCK_SZ,		/* maxsize */
950 	    1,				/* nsegments */
951 	    AGE_CMB_BLOCK_SZ,		/* maxsegsize */
952 	    0,				/* flags */
953 	    NULL, NULL,			/* lockfunc, lockarg */
954 	    &sc->age_cdata.age_cmb_block_tag);
955 	if (error != 0) {
956 		device_printf(sc->age_dev,
957 		    "could not create CMB DMA tag.\n");
958 		goto fail;
959 	}
960 
961 	/* Create tag for statistics message block. */
962 	error = bus_dma_tag_create(
963 	    sc->age_cdata.age_parent_tag, /* parent */
964 	    AGE_SMB_ALIGN, 0,		/* alignment, boundary */
965 	    BUS_SPACE_MAXADDR,		/* lowaddr */
966 	    BUS_SPACE_MAXADDR,		/* highaddr */
967 	    NULL, NULL,			/* filter, filterarg */
968 	    AGE_SMB_BLOCK_SZ,		/* maxsize */
969 	    1,				/* nsegments */
970 	    AGE_SMB_BLOCK_SZ,		/* maxsegsize */
971 	    0,				/* flags */
972 	    NULL, NULL,			/* lockfunc, lockarg */
973 	    &sc->age_cdata.age_smb_block_tag);
974 	if (error != 0) {
975 		device_printf(sc->age_dev,
976 		    "could not create SMB DMA tag.\n");
977 		goto fail;
978 	}
979 
980 	/* Allocate DMA'able memory and load the DMA map. */
981 	error = bus_dmamem_alloc(sc->age_cdata.age_tx_ring_tag,
982 	    (void **)&sc->age_rdata.age_tx_ring,
983 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
984 	    &sc->age_cdata.age_tx_ring_map);
985 	if (error != 0) {
986 		device_printf(sc->age_dev,
987 		    "could not allocate DMA'able memory for Tx ring.\n");
988 		goto fail;
989 	}
990 	ctx.age_busaddr = 0;
991 	error = bus_dmamap_load(sc->age_cdata.age_tx_ring_tag,
992 	    sc->age_cdata.age_tx_ring_map, sc->age_rdata.age_tx_ring,
993 	    AGE_TX_RING_SZ, age_dmamap_cb, &ctx, 0);
994 	if (error != 0 || ctx.age_busaddr == 0) {
995 		device_printf(sc->age_dev,
996 		    "could not load DMA'able memory for Tx ring.\n");
997 		goto fail;
998 	}
999 	sc->age_rdata.age_tx_ring_paddr = ctx.age_busaddr;
1000 	/* Rx ring */
1001 	error = bus_dmamem_alloc(sc->age_cdata.age_rx_ring_tag,
1002 	    (void **)&sc->age_rdata.age_rx_ring,
1003 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1004 	    &sc->age_cdata.age_rx_ring_map);
1005 	if (error != 0) {
1006 		device_printf(sc->age_dev,
1007 		    "could not allocate DMA'able memory for Rx ring.\n");
1008 		goto fail;
1009 	}
1010 	ctx.age_busaddr = 0;
1011 	error = bus_dmamap_load(sc->age_cdata.age_rx_ring_tag,
1012 	    sc->age_cdata.age_rx_ring_map, sc->age_rdata.age_rx_ring,
1013 	    AGE_RX_RING_SZ, age_dmamap_cb, &ctx, 0);
1014 	if (error != 0 || ctx.age_busaddr == 0) {
1015 		device_printf(sc->age_dev,
1016 		    "could not load DMA'able memory for Rx ring.\n");
1017 		goto fail;
1018 	}
1019 	sc->age_rdata.age_rx_ring_paddr = ctx.age_busaddr;
1020 	/* Rx return ring */
1021 	error = bus_dmamem_alloc(sc->age_cdata.age_rr_ring_tag,
1022 	    (void **)&sc->age_rdata.age_rr_ring,
1023 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1024 	    &sc->age_cdata.age_rr_ring_map);
1025 	if (error != 0) {
1026 		device_printf(sc->age_dev,
1027 		    "could not allocate DMA'able memory for Rx return ring.\n");
1028 		goto fail;
1029 	}
1030 	ctx.age_busaddr = 0;
1031 	error = bus_dmamap_load(sc->age_cdata.age_rr_ring_tag,
1032 	    sc->age_cdata.age_rr_ring_map, sc->age_rdata.age_rr_ring,
1033 	    AGE_RR_RING_SZ, age_dmamap_cb,
1034 	    &ctx, 0);
1035 	if (error != 0 || ctx.age_busaddr == 0) {
1036 		device_printf(sc->age_dev,
1037 		    "could not load DMA'able memory for Rx return ring.\n");
1038 		goto fail;
1039 	}
1040 	sc->age_rdata.age_rr_ring_paddr = ctx.age_busaddr;
1041 	/* CMB block */
1042 	error = bus_dmamem_alloc(sc->age_cdata.age_cmb_block_tag,
1043 	    (void **)&sc->age_rdata.age_cmb_block,
1044 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1045 	    &sc->age_cdata.age_cmb_block_map);
1046 	if (error != 0) {
1047 		device_printf(sc->age_dev,
1048 		    "could not allocate DMA'able memory for CMB block.\n");
1049 		goto fail;
1050 	}
1051 	ctx.age_busaddr = 0;
1052 	error = bus_dmamap_load(sc->age_cdata.age_cmb_block_tag,
1053 	    sc->age_cdata.age_cmb_block_map, sc->age_rdata.age_cmb_block,
1054 	    AGE_CMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1055 	if (error != 0 || ctx.age_busaddr == 0) {
1056 		device_printf(sc->age_dev,
1057 		    "could not load DMA'able memory for CMB block.\n");
1058 		goto fail;
1059 	}
1060 	sc->age_rdata.age_cmb_block_paddr = ctx.age_busaddr;
1061 	/* SMB block */
1062 	error = bus_dmamem_alloc(sc->age_cdata.age_smb_block_tag,
1063 	    (void **)&sc->age_rdata.age_smb_block,
1064 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1065 	    &sc->age_cdata.age_smb_block_map);
1066 	if (error != 0) {
1067 		device_printf(sc->age_dev,
1068 		    "could not allocate DMA'able memory for SMB block.\n");
1069 		goto fail;
1070 	}
1071 	ctx.age_busaddr = 0;
1072 	error = bus_dmamap_load(sc->age_cdata.age_smb_block_tag,
1073 	    sc->age_cdata.age_smb_block_map, sc->age_rdata.age_smb_block,
1074 	    AGE_SMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1075 	if (error != 0 || ctx.age_busaddr == 0) {
1076 		device_printf(sc->age_dev,
1077 		    "could not load DMA'able memory for SMB block.\n");
1078 		goto fail;
1079 	}
1080 	sc->age_rdata.age_smb_block_paddr = ctx.age_busaddr;
1081 
1082 	/*
1083 	 * All ring buffer and DMA blocks should have the same
1084 	 * high address part of 64bit DMA address space.
1085 	 */
1086 	if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1087 	    (error = age_check_boundary(sc)) != 0) {
1088 		device_printf(sc->age_dev, "4GB boundary crossed, "
1089 		    "switching to 32bit DMA addressing mode.\n");
1090 		age_dma_free(sc);
1091 		/* Limit DMA address space to 32bit and try again. */
1092 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1093 		goto again;
1094 	}
1095 
1096 	/*
1097 	 * Create Tx/Rx buffer parent tag.
1098 	 * L1 supports full 64bit DMA addressing in Tx/Rx buffers
1099 	 * so it needs separate parent DMA tag.
1100 	 * XXX
1101 	 * It seems enabling 64bit DMA causes data corruption. Limit
1102 	 * DMA address space to 32bit.
1103 	 */
1104 	error = bus_dma_tag_create(
1105 	    bus_get_dma_tag(sc->age_dev), /* parent */
1106 	    1, 0,			/* alignment, boundary */
1107 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1108 	    BUS_SPACE_MAXADDR,		/* highaddr */
1109 	    NULL, NULL,			/* filter, filterarg */
1110 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1111 	    0,				/* nsegments */
1112 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1113 	    0,				/* flags */
1114 	    NULL, NULL,			/* lockfunc, lockarg */
1115 	    &sc->age_cdata.age_buffer_tag);
1116 	if (error != 0) {
1117 		device_printf(sc->age_dev,
1118 		    "could not create parent buffer DMA tag.\n");
1119 		goto fail;
1120 	}
1121 
1122 	/* Create tag for Tx buffers. */
1123 	error = bus_dma_tag_create(
1124 	    sc->age_cdata.age_buffer_tag, /* parent */
1125 	    1, 0,			/* alignment, boundary */
1126 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1127 	    BUS_SPACE_MAXADDR,		/* highaddr */
1128 	    NULL, NULL,			/* filter, filterarg */
1129 	    AGE_TSO_MAXSIZE,		/* maxsize */
1130 	    AGE_MAXTXSEGS,		/* nsegments */
1131 	    AGE_TSO_MAXSEGSIZE,		/* maxsegsize */
1132 	    0,				/* flags */
1133 	    NULL, NULL,			/* lockfunc, lockarg */
1134 	    &sc->age_cdata.age_tx_tag);
1135 	if (error != 0) {
1136 		device_printf(sc->age_dev, "could not create Tx DMA tag.\n");
1137 		goto fail;
1138 	}
1139 
1140 	/* Create tag for Rx buffers. */
1141 	error = bus_dma_tag_create(
1142 	    sc->age_cdata.age_buffer_tag, /* parent */
1143 	    AGE_RX_BUF_ALIGN, 0,	/* alignment, boundary */
1144 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1145 	    BUS_SPACE_MAXADDR,		/* highaddr */
1146 	    NULL, NULL,			/* filter, filterarg */
1147 	    MCLBYTES,			/* maxsize */
1148 	    1,				/* nsegments */
1149 	    MCLBYTES,			/* maxsegsize */
1150 	    0,				/* flags */
1151 	    NULL, NULL,			/* lockfunc, lockarg */
1152 	    &sc->age_cdata.age_rx_tag);
1153 	if (error != 0) {
1154 		device_printf(sc->age_dev, "could not create Rx DMA tag.\n");
1155 		goto fail;
1156 	}
1157 
1158 	/* Create DMA maps for Tx buffers. */
1159 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
1160 		txd = &sc->age_cdata.age_txdesc[i];
1161 		txd->tx_m = NULL;
1162 		txd->tx_dmamap = NULL;
1163 		error = bus_dmamap_create(sc->age_cdata.age_tx_tag, 0,
1164 		    &txd->tx_dmamap);
1165 		if (error != 0) {
1166 			device_printf(sc->age_dev,
1167 			    "could not create Tx dmamap.\n");
1168 			goto fail;
1169 		}
1170 	}
1171 	/* Create DMA maps for Rx buffers. */
1172 	if ((error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1173 	    &sc->age_cdata.age_rx_sparemap)) != 0) {
1174 		device_printf(sc->age_dev,
1175 		    "could not create spare Rx dmamap.\n");
1176 		goto fail;
1177 	}
1178 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
1179 		rxd = &sc->age_cdata.age_rxdesc[i];
1180 		rxd->rx_m = NULL;
1181 		rxd->rx_dmamap = NULL;
1182 		error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1183 		    &rxd->rx_dmamap);
1184 		if (error != 0) {
1185 			device_printf(sc->age_dev,
1186 			    "could not create Rx dmamap.\n");
1187 			goto fail;
1188 		}
1189 	}
1190 
1191 fail:
1192 	return (error);
1193 }
1194 
1195 static void
1196 age_dma_free(struct age_softc *sc)
1197 {
1198 	struct age_txdesc *txd;
1199 	struct age_rxdesc *rxd;
1200 	int i;
1201 
1202 	/* Tx buffers */
1203 	if (sc->age_cdata.age_tx_tag != NULL) {
1204 		for (i = 0; i < AGE_TX_RING_CNT; i++) {
1205 			txd = &sc->age_cdata.age_txdesc[i];
1206 			if (txd->tx_dmamap != NULL) {
1207 				bus_dmamap_destroy(sc->age_cdata.age_tx_tag,
1208 				    txd->tx_dmamap);
1209 				txd->tx_dmamap = NULL;
1210 			}
1211 		}
1212 		bus_dma_tag_destroy(sc->age_cdata.age_tx_tag);
1213 		sc->age_cdata.age_tx_tag = NULL;
1214 	}
1215 	/* Rx buffers */
1216 	if (sc->age_cdata.age_rx_tag != NULL) {
1217 		for (i = 0; i < AGE_RX_RING_CNT; i++) {
1218 			rxd = &sc->age_cdata.age_rxdesc[i];
1219 			if (rxd->rx_dmamap != NULL) {
1220 				bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1221 				    rxd->rx_dmamap);
1222 				rxd->rx_dmamap = NULL;
1223 			}
1224 		}
1225 		if (sc->age_cdata.age_rx_sparemap != NULL) {
1226 			bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1227 			    sc->age_cdata.age_rx_sparemap);
1228 			sc->age_cdata.age_rx_sparemap = NULL;
1229 		}
1230 		bus_dma_tag_destroy(sc->age_cdata.age_rx_tag);
1231 		sc->age_cdata.age_rx_tag = NULL;
1232 	}
1233 	/* Tx ring. */
1234 	if (sc->age_cdata.age_tx_ring_tag != NULL) {
1235 		if (sc->age_rdata.age_tx_ring_paddr != 0)
1236 			bus_dmamap_unload(sc->age_cdata.age_tx_ring_tag,
1237 			    sc->age_cdata.age_tx_ring_map);
1238 		if (sc->age_rdata.age_tx_ring != NULL)
1239 			bus_dmamem_free(sc->age_cdata.age_tx_ring_tag,
1240 			    sc->age_rdata.age_tx_ring,
1241 			    sc->age_cdata.age_tx_ring_map);
1242 		sc->age_rdata.age_tx_ring_paddr = 0;
1243 		sc->age_rdata.age_tx_ring = NULL;
1244 		bus_dma_tag_destroy(sc->age_cdata.age_tx_ring_tag);
1245 		sc->age_cdata.age_tx_ring_tag = NULL;
1246 	}
1247 	/* Rx ring. */
1248 	if (sc->age_cdata.age_rx_ring_tag != NULL) {
1249 		if (sc->age_rdata.age_rx_ring_paddr != 0)
1250 			bus_dmamap_unload(sc->age_cdata.age_rx_ring_tag,
1251 			    sc->age_cdata.age_rx_ring_map);
1252 		if (sc->age_rdata.age_rx_ring != NULL)
1253 			bus_dmamem_free(sc->age_cdata.age_rx_ring_tag,
1254 			    sc->age_rdata.age_rx_ring,
1255 			    sc->age_cdata.age_rx_ring_map);
1256 		sc->age_rdata.age_rx_ring_paddr = 0;
1257 		sc->age_rdata.age_rx_ring = NULL;
1258 		bus_dma_tag_destroy(sc->age_cdata.age_rx_ring_tag);
1259 		sc->age_cdata.age_rx_ring_tag = NULL;
1260 	}
1261 	/* Rx return ring. */
1262 	if (sc->age_cdata.age_rr_ring_tag != NULL) {
1263 		if (sc->age_rdata.age_rr_ring_paddr != 0)
1264 			bus_dmamap_unload(sc->age_cdata.age_rr_ring_tag,
1265 			    sc->age_cdata.age_rr_ring_map);
1266 		if (sc->age_rdata.age_rr_ring != NULL)
1267 			bus_dmamem_free(sc->age_cdata.age_rr_ring_tag,
1268 			    sc->age_rdata.age_rr_ring,
1269 			    sc->age_cdata.age_rr_ring_map);
1270 		sc->age_rdata.age_rr_ring_paddr = 0;
1271 		sc->age_rdata.age_rr_ring = NULL;
1272 		bus_dma_tag_destroy(sc->age_cdata.age_rr_ring_tag);
1273 		sc->age_cdata.age_rr_ring_tag = NULL;
1274 	}
1275 	/* CMB block */
1276 	if (sc->age_cdata.age_cmb_block_tag != NULL) {
1277 		if (sc->age_rdata.age_cmb_block_paddr != 0)
1278 			bus_dmamap_unload(sc->age_cdata.age_cmb_block_tag,
1279 			    sc->age_cdata.age_cmb_block_map);
1280 		if (sc->age_rdata.age_cmb_block != NULL)
1281 			bus_dmamem_free(sc->age_cdata.age_cmb_block_tag,
1282 			    sc->age_rdata.age_cmb_block,
1283 			    sc->age_cdata.age_cmb_block_map);
1284 		sc->age_rdata.age_cmb_block_paddr = 0;
1285 		sc->age_rdata.age_cmb_block = NULL;
1286 		bus_dma_tag_destroy(sc->age_cdata.age_cmb_block_tag);
1287 		sc->age_cdata.age_cmb_block_tag = NULL;
1288 	}
1289 	/* SMB block */
1290 	if (sc->age_cdata.age_smb_block_tag != NULL) {
1291 		if (sc->age_rdata.age_smb_block_paddr != 0)
1292 			bus_dmamap_unload(sc->age_cdata.age_smb_block_tag,
1293 			    sc->age_cdata.age_smb_block_map);
1294 		if (sc->age_rdata.age_smb_block != NULL)
1295 			bus_dmamem_free(sc->age_cdata.age_smb_block_tag,
1296 			    sc->age_rdata.age_smb_block,
1297 			    sc->age_cdata.age_smb_block_map);
1298 		sc->age_rdata.age_smb_block_paddr = 0;
1299 		sc->age_rdata.age_smb_block = NULL;
1300 		bus_dma_tag_destroy(sc->age_cdata.age_smb_block_tag);
1301 		sc->age_cdata.age_smb_block_tag = NULL;
1302 	}
1303 
1304 	if (sc->age_cdata.age_buffer_tag != NULL) {
1305 		bus_dma_tag_destroy(sc->age_cdata.age_buffer_tag);
1306 		sc->age_cdata.age_buffer_tag = NULL;
1307 	}
1308 	if (sc->age_cdata.age_parent_tag != NULL) {
1309 		bus_dma_tag_destroy(sc->age_cdata.age_parent_tag);
1310 		sc->age_cdata.age_parent_tag = NULL;
1311 	}
1312 }
1313 
1314 /*
1315  *	Make sure the interface is stopped at reboot time.
1316  */
1317 static int
1318 age_shutdown(device_t dev)
1319 {
1320 
1321 	return (age_suspend(dev));
1322 }
1323 
1324 static void
1325 age_setwol(struct age_softc *sc)
1326 {
1327 	struct ifnet *ifp;
1328 	struct mii_data *mii;
1329 	uint32_t reg, pmcs;
1330 	uint16_t pmstat;
1331 	int aneg, i, pmc;
1332 
1333 	AGE_LOCK_ASSERT(sc);
1334 
1335 	if (pci_find_cap(sc->age_dev, PCIY_PMG, &pmc) != 0) {
1336 		CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1337 		/*
1338 		 * No PME capability, PHY power down.
1339 		 * XXX
1340 		 * Due to an unknown reason powering down PHY resulted
1341 		 * in unexpected results such as inaccessbility of
1342 		 * hardware of freshly rebooted system. Disable
1343 		 * powering down PHY until I got more information for
1344 		 * Attansic/Atheros PHY hardwares.
1345 		 */
1346 #ifdef notyet
1347 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1348 		    MII_BMCR, BMCR_PDOWN);
1349 #endif
1350 		return;
1351 	}
1352 
1353 	ifp = sc->age_ifp;
1354 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1355 		/*
1356 		 * Note, this driver resets the link speed to 10/100Mbps with
1357 		 * auto-negotiation but we don't know whether that operation
1358 		 * would succeed or not as it have no control after powering
1359 		 * off. If the renegotiation fail WOL may not work. Running
1360 		 * at 1Gbps will draw more power than 375mA at 3.3V which is
1361 		 * specified in PCI specification and that would result in
1362 		 * complete shutdowning power to ethernet controller.
1363 		 *
1364 		 * TODO
1365 		 *  Save current negotiated media speed/duplex/flow-control
1366 		 *  to softc and restore the same link again after resuming.
1367 		 *  PHY handling such as power down/resetting to 100Mbps
1368 		 *  may be better handled in suspend method in phy driver.
1369 		 */
1370 		mii = device_get_softc(sc->age_miibus);
1371 		mii_pollstat(mii);
1372 		aneg = 0;
1373 		if ((mii->mii_media_status & IFM_AVALID) != 0) {
1374 			switch IFM_SUBTYPE(mii->mii_media_active) {
1375 			case IFM_10_T:
1376 			case IFM_100_TX:
1377 				goto got_link;
1378 			case IFM_1000_T:
1379 				aneg++;
1380 			default:
1381 				break;
1382 			}
1383 		}
1384 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1385 		    MII_100T2CR, 0);
1386 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1387 		    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD |
1388 		    ANAR_10 | ANAR_CSMA);
1389 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1390 		    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1391 		DELAY(1000);
1392 		if (aneg != 0) {
1393 			/* Poll link state until age(4) get a 10/100 link. */
1394 			for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1395 				mii_pollstat(mii);
1396 				if ((mii->mii_media_status & IFM_AVALID) != 0) {
1397 					switch (IFM_SUBTYPE(
1398 					    mii->mii_media_active)) {
1399 					case IFM_10_T:
1400 					case IFM_100_TX:
1401 						age_mac_config(sc);
1402 						goto got_link;
1403 					default:
1404 						break;
1405 					}
1406 				}
1407 				AGE_UNLOCK(sc);
1408 				pause("agelnk", hz);
1409 				AGE_LOCK(sc);
1410 			}
1411 			if (i == MII_ANEGTICKS_GIGE)
1412 				device_printf(sc->age_dev,
1413 				    "establishing link failed, "
1414 				    "WOL may not work!");
1415 		}
1416 		/*
1417 		 * No link, force MAC to have 100Mbps, full-duplex link.
1418 		 * This is the last resort and may/may not work.
1419 		 */
1420 		mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1421 		mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1422 		age_mac_config(sc);
1423 	}
1424 
1425 got_link:
1426 	pmcs = 0;
1427 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1428 		pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1429 	CSR_WRITE_4(sc, AGE_WOL_CFG, pmcs);
1430 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1431 	reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC);
1432 	reg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST);
1433 	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
1434 		reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1435 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1436 		reg |= MAC_CFG_RX_ENB;
1437 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1438 	}
1439 
1440 	/* Request PME. */
1441 	pmstat = pci_read_config(sc->age_dev, pmc + PCIR_POWER_STATUS, 2);
1442 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1443 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1444 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1445 	pci_write_config(sc->age_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1446 #ifdef notyet
1447 	/* See above for powering down PHY issues. */
1448 	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1449 		/* No WOL, PHY power down. */
1450 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1451 		    MII_BMCR, BMCR_PDOWN);
1452 	}
1453 #endif
1454 }
1455 
1456 static int
1457 age_suspend(device_t dev)
1458 {
1459 	struct age_softc *sc;
1460 
1461 	sc = device_get_softc(dev);
1462 
1463 	AGE_LOCK(sc);
1464 	age_stop(sc);
1465 	age_setwol(sc);
1466 	AGE_UNLOCK(sc);
1467 
1468 	return (0);
1469 }
1470 
1471 static int
1472 age_resume(device_t dev)
1473 {
1474 	struct age_softc *sc;
1475 	struct ifnet *ifp;
1476 
1477 	sc = device_get_softc(dev);
1478 
1479 	AGE_LOCK(sc);
1480 	age_phy_reset(sc);
1481 	ifp = sc->age_ifp;
1482 	if ((ifp->if_flags & IFF_UP) != 0)
1483 		age_init_locked(sc);
1484 
1485 	AGE_UNLOCK(sc);
1486 
1487 	return (0);
1488 }
1489 
1490 static int
1491 age_encap(struct age_softc *sc, struct mbuf **m_head)
1492 {
1493 	struct age_txdesc *txd, *txd_last;
1494 	struct tx_desc *desc;
1495 	struct mbuf *m;
1496 	struct ip *ip;
1497 	struct tcphdr *tcp;
1498 	bus_dma_segment_t txsegs[AGE_MAXTXSEGS];
1499 	bus_dmamap_t map;
1500 	uint32_t cflags, hdrlen, ip_off, poff, vtag;
1501 	int error, i, nsegs, prod, si;
1502 
1503 	AGE_LOCK_ASSERT(sc);
1504 
1505 	M_ASSERTPKTHDR((*m_head));
1506 
1507 	m = *m_head;
1508 	ip = NULL;
1509 	tcp = NULL;
1510 	cflags = vtag = 0;
1511 	ip_off = poff = 0;
1512 	if ((m->m_pkthdr.csum_flags & (AGE_CSUM_FEATURES | CSUM_TSO)) != 0) {
1513 		/*
1514 		 * L1 requires offset of TCP/UDP payload in its Tx
1515 		 * descriptor to perform hardware Tx checksum offload.
1516 		 * Additionally, TSO requires IP/TCP header size and
1517 		 * modification of IP/TCP header in order to make TSO
1518 		 * engine work. This kind of operation takes many CPU
1519 		 * cycles on FreeBSD so fast host CPU is needed to get
1520 		 * smooth TSO performance.
1521 		 */
1522 		struct ether_header *eh;
1523 
1524 		if (M_WRITABLE(m) == 0) {
1525 			/* Get a writable copy. */
1526 			m = m_dup(*m_head, M_NOWAIT);
1527 			/* Release original mbufs. */
1528 			m_freem(*m_head);
1529 			if (m == NULL) {
1530 				*m_head = NULL;
1531 				return (ENOBUFS);
1532 			}
1533 			*m_head = m;
1534 		}
1535 		ip_off = sizeof(struct ether_header);
1536 		m = m_pullup(m, ip_off);
1537 		if (m == NULL) {
1538 			*m_head = NULL;
1539 			return (ENOBUFS);
1540 		}
1541 		eh = mtod(m, struct ether_header *);
1542 		/*
1543 		 * Check if hardware VLAN insertion is off.
1544 		 * Additional check for LLC/SNAP frame?
1545 		 */
1546 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1547 			ip_off = sizeof(struct ether_vlan_header);
1548 			m = m_pullup(m, ip_off);
1549 			if (m == NULL) {
1550 				*m_head = NULL;
1551 				return (ENOBUFS);
1552 			}
1553 		}
1554 		m = m_pullup(m, ip_off + sizeof(struct ip));
1555 		if (m == NULL) {
1556 			*m_head = NULL;
1557 			return (ENOBUFS);
1558 		}
1559 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1560 		poff = ip_off + (ip->ip_hl << 2);
1561 		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1562 			m = m_pullup(m, poff + sizeof(struct tcphdr));
1563 			if (m == NULL) {
1564 				*m_head = NULL;
1565 				return (ENOBUFS);
1566 			}
1567 			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1568 			m = m_pullup(m, poff + (tcp->th_off << 2));
1569 			if (m == NULL) {
1570 				*m_head = NULL;
1571 				return (ENOBUFS);
1572 			}
1573 			/*
1574 			 * L1 requires IP/TCP header size and offset as
1575 			 * well as TCP pseudo checksum which complicates
1576 			 * TSO configuration. I guess this comes from the
1577 			 * adherence to Microsoft NDIS Large Send
1578 			 * specification which requires insertion of
1579 			 * pseudo checksum by upper stack. The pseudo
1580 			 * checksum that NDIS refers to doesn't include
1581 			 * TCP payload length so age(4) should recompute
1582 			 * the pseudo checksum here. Hopefully this wouldn't
1583 			 * be much burden on modern CPUs.
1584 			 * Reset IP checksum and recompute TCP pseudo
1585 			 * checksum as NDIS specification said.
1586 			 */
1587 			ip = (struct ip *)(mtod(m, char *) + ip_off);
1588 			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1589 			ip->ip_sum = 0;
1590 			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1591 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1592 		}
1593 		*m_head = m;
1594 	}
1595 
1596 	si = prod = sc->age_cdata.age_tx_prod;
1597 	txd = &sc->age_cdata.age_txdesc[prod];
1598 	txd_last = txd;
1599 	map = txd->tx_dmamap;
1600 
1601 	error =  bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1602 	    *m_head, txsegs, &nsegs, 0);
1603 	if (error == EFBIG) {
1604 		m = m_collapse(*m_head, M_NOWAIT, AGE_MAXTXSEGS);
1605 		if (m == NULL) {
1606 			m_freem(*m_head);
1607 			*m_head = NULL;
1608 			return (ENOMEM);
1609 		}
1610 		*m_head = m;
1611 		error = bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1612 		    *m_head, txsegs, &nsegs, 0);
1613 		if (error != 0) {
1614 			m_freem(*m_head);
1615 			*m_head = NULL;
1616 			return (error);
1617 		}
1618 	} else if (error != 0)
1619 		return (error);
1620 	if (nsegs == 0) {
1621 		m_freem(*m_head);
1622 		*m_head = NULL;
1623 		return (EIO);
1624 	}
1625 
1626 	/* Check descriptor overrun. */
1627 	if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1628 		bus_dmamap_unload(sc->age_cdata.age_tx_tag, map);
1629 		return (ENOBUFS);
1630 	}
1631 
1632 	m = *m_head;
1633 	/* Configure VLAN hardware tag insertion. */
1634 	if ((m->m_flags & M_VLANTAG) != 0) {
1635 		vtag = AGE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1636 		vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1637 		cflags |= AGE_TD_INSERT_VLAN_TAG;
1638 	}
1639 
1640 	desc = NULL;
1641 	i = 0;
1642 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1643 		/* Request TSO and set MSS. */
1644 		cflags |= AGE_TD_TSO_IPV4;
1645 		cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM;
1646 		cflags |= ((uint32_t)m->m_pkthdr.tso_segsz <<
1647 		    AGE_TD_TSO_MSS_SHIFT);
1648 		/* Set IP/TCP header size. */
1649 		cflags |= ip->ip_hl << AGE_TD_IPHDR_LEN_SHIFT;
1650 		cflags |= tcp->th_off << AGE_TD_TSO_TCPHDR_LEN_SHIFT;
1651 		/*
1652 		 * L1 requires the first buffer should only hold IP/TCP
1653 		 * header data. TCP payload should be handled in other
1654 		 * descriptors.
1655 		 */
1656 		hdrlen = poff + (tcp->th_off << 2);
1657 		desc = &sc->age_rdata.age_tx_ring[prod];
1658 		desc->addr = htole64(txsegs[0].ds_addr);
1659 		desc->len = htole32(AGE_TX_BYTES(hdrlen) | vtag);
1660 		desc->flags = htole32(cflags);
1661 		sc->age_cdata.age_tx_cnt++;
1662 		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1663 		if (m->m_len - hdrlen > 0) {
1664 			/* Handle remaining payload of the 1st fragment. */
1665 			desc = &sc->age_rdata.age_tx_ring[prod];
1666 			desc->addr = htole64(txsegs[0].ds_addr + hdrlen);
1667 			desc->len = htole32(AGE_TX_BYTES(m->m_len - hdrlen) |
1668 			    vtag);
1669 			desc->flags = htole32(cflags);
1670 			sc->age_cdata.age_tx_cnt++;
1671 			AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1672 		}
1673 		/* Handle remaining fragments. */
1674 		i = 1;
1675 	} else if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1676 		/* Configure Tx IP/TCP/UDP checksum offload. */
1677 		cflags |= AGE_TD_CSUM;
1678 		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1679 			cflags |= AGE_TD_TCPCSUM;
1680 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1681 			cflags |= AGE_TD_UDPCSUM;
1682 		/* Set checksum start offset. */
1683 		cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1684 		/* Set checksum insertion position of TCP/UDP. */
1685 		cflags |= ((poff + m->m_pkthdr.csum_data) <<
1686 		    AGE_TD_CSUM_XSUMOFFSET_SHIFT);
1687 	}
1688 	for (; i < nsegs; i++) {
1689 		desc = &sc->age_rdata.age_tx_ring[prod];
1690 		desc->addr = htole64(txsegs[i].ds_addr);
1691 		desc->len = htole32(AGE_TX_BYTES(txsegs[i].ds_len) | vtag);
1692 		desc->flags = htole32(cflags);
1693 		sc->age_cdata.age_tx_cnt++;
1694 		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1695 	}
1696 	/* Update producer index. */
1697 	sc->age_cdata.age_tx_prod = prod;
1698 
1699 	/* Set EOP on the last descriptor. */
1700 	prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1701 	desc = &sc->age_rdata.age_tx_ring[prod];
1702 	desc->flags |= htole32(AGE_TD_EOP);
1703 
1704 	/* Lastly set TSO header and modify IP/TCP header for TSO operation. */
1705 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1706 		desc = &sc->age_rdata.age_tx_ring[si];
1707 		desc->flags |= htole32(AGE_TD_TSO_HDR);
1708 	}
1709 
1710 	/* Swap dmamap of the first and the last. */
1711 	txd = &sc->age_cdata.age_txdesc[prod];
1712 	map = txd_last->tx_dmamap;
1713 	txd_last->tx_dmamap = txd->tx_dmamap;
1714 	txd->tx_dmamap = map;
1715 	txd->tx_m = m;
1716 
1717 	/* Sync descriptors. */
1718 	bus_dmamap_sync(sc->age_cdata.age_tx_tag, map, BUS_DMASYNC_PREWRITE);
1719 	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
1720 	    sc->age_cdata.age_tx_ring_map,
1721 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1722 
1723 	return (0);
1724 }
1725 
1726 static void
1727 age_start(struct ifnet *ifp)
1728 {
1729         struct age_softc *sc;
1730 
1731 	sc = ifp->if_softc;
1732 	AGE_LOCK(sc);
1733 	age_start_locked(ifp);
1734 	AGE_UNLOCK(sc);
1735 }
1736 
1737 static void
1738 age_start_locked(struct ifnet *ifp)
1739 {
1740         struct age_softc *sc;
1741         struct mbuf *m_head;
1742 	int enq;
1743 
1744 	sc = ifp->if_softc;
1745 
1746 	AGE_LOCK_ASSERT(sc);
1747 
1748 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1749 	    IFF_DRV_RUNNING || (sc->age_flags & AGE_FLAG_LINK) == 0)
1750 		return;
1751 
1752 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1753 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1754 		if (m_head == NULL)
1755 			break;
1756 		/*
1757 		 * Pack the data into the transmit ring. If we
1758 		 * don't have room, set the OACTIVE flag and wait
1759 		 * for the NIC to drain the ring.
1760 		 */
1761 		if (age_encap(sc, &m_head)) {
1762 			if (m_head == NULL)
1763 				break;
1764 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1765 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1766 			break;
1767 		}
1768 
1769 		enq++;
1770 		/*
1771 		 * If there's a BPF listener, bounce a copy of this frame
1772 		 * to him.
1773 		 */
1774 		ETHER_BPF_MTAP(ifp, m_head);
1775 	}
1776 
1777 	if (enq > 0) {
1778 		/* Update mbox. */
1779 		AGE_COMMIT_MBOX(sc);
1780 		/* Set a timeout in case the chip goes out to lunch. */
1781 		sc->age_watchdog_timer = AGE_TX_TIMEOUT;
1782 	}
1783 }
1784 
1785 static void
1786 age_watchdog(struct age_softc *sc)
1787 {
1788 	struct ifnet *ifp;
1789 
1790 	AGE_LOCK_ASSERT(sc);
1791 
1792 	if (sc->age_watchdog_timer == 0 || --sc->age_watchdog_timer)
1793 		return;
1794 
1795 	ifp = sc->age_ifp;
1796 	if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1797 		if_printf(sc->age_ifp, "watchdog timeout (missed link)\n");
1798 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1799 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1800 		age_init_locked(sc);
1801 		return;
1802 	}
1803 	if (sc->age_cdata.age_tx_cnt == 0) {
1804 		if_printf(sc->age_ifp,
1805 		    "watchdog timeout (missed Tx interrupts) -- recovering\n");
1806 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1807 			age_start_locked(ifp);
1808 		return;
1809 	}
1810 	if_printf(sc->age_ifp, "watchdog timeout\n");
1811 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1812 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1813 	age_init_locked(sc);
1814 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1815 		age_start_locked(ifp);
1816 }
1817 
1818 static int
1819 age_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1820 {
1821 	struct age_softc *sc;
1822 	struct ifreq *ifr;
1823 	struct mii_data *mii;
1824 	uint32_t reg;
1825 	int error, mask;
1826 
1827 	sc = ifp->if_softc;
1828 	ifr = (struct ifreq *)data;
1829 	error = 0;
1830 	switch (cmd) {
1831 	case SIOCSIFMTU:
1832 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > AGE_JUMBO_MTU)
1833 			error = EINVAL;
1834 		else if (ifp->if_mtu != ifr->ifr_mtu) {
1835 			AGE_LOCK(sc);
1836 			ifp->if_mtu = ifr->ifr_mtu;
1837 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1838 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1839 				age_init_locked(sc);
1840 			}
1841 			AGE_UNLOCK(sc);
1842 		}
1843 		break;
1844 	case SIOCSIFFLAGS:
1845 		AGE_LOCK(sc);
1846 		if ((ifp->if_flags & IFF_UP) != 0) {
1847 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1848 				if (((ifp->if_flags ^ sc->age_if_flags)
1849 				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1850 					age_rxfilter(sc);
1851 			} else {
1852 				if ((sc->age_flags & AGE_FLAG_DETACH) == 0)
1853 					age_init_locked(sc);
1854 			}
1855 		} else {
1856 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1857 				age_stop(sc);
1858 		}
1859 		sc->age_if_flags = ifp->if_flags;
1860 		AGE_UNLOCK(sc);
1861 		break;
1862 	case SIOCADDMULTI:
1863 	case SIOCDELMULTI:
1864 		AGE_LOCK(sc);
1865 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1866 			age_rxfilter(sc);
1867 		AGE_UNLOCK(sc);
1868 		break;
1869 	case SIOCSIFMEDIA:
1870 	case SIOCGIFMEDIA:
1871 		mii = device_get_softc(sc->age_miibus);
1872 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1873 		break;
1874 	case SIOCSIFCAP:
1875 		AGE_LOCK(sc);
1876 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1877 		if ((mask & IFCAP_TXCSUM) != 0 &&
1878 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
1879 			ifp->if_capenable ^= IFCAP_TXCSUM;
1880 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1881 				ifp->if_hwassist |= AGE_CSUM_FEATURES;
1882 			else
1883 				ifp->if_hwassist &= ~AGE_CSUM_FEATURES;
1884 		}
1885 		if ((mask & IFCAP_RXCSUM) != 0 &&
1886 		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
1887 			ifp->if_capenable ^= IFCAP_RXCSUM;
1888 			reg = CSR_READ_4(sc, AGE_MAC_CFG);
1889 			reg &= ~MAC_CFG_RXCSUM_ENB;
1890 			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
1891 				reg |= MAC_CFG_RXCSUM_ENB;
1892 			CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1893 		}
1894 		if ((mask & IFCAP_TSO4) != 0 &&
1895 		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
1896 			ifp->if_capenable ^= IFCAP_TSO4;
1897 			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
1898 				ifp->if_hwassist |= CSUM_TSO;
1899 			else
1900 				ifp->if_hwassist &= ~CSUM_TSO;
1901 		}
1902 
1903 		if ((mask & IFCAP_WOL_MCAST) != 0 &&
1904 		    (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
1905 			ifp->if_capenable ^= IFCAP_WOL_MCAST;
1906 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1907 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
1908 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1909 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1910 		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
1911 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1912 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1913 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
1914 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1915 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1916 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
1917 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1918 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
1919 				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
1920 			age_rxvlan(sc);
1921 		}
1922 		AGE_UNLOCK(sc);
1923 		VLAN_CAPABILITIES(ifp);
1924 		break;
1925 	default:
1926 		error = ether_ioctl(ifp, cmd, data);
1927 		break;
1928 	}
1929 
1930 	return (error);
1931 }
1932 
1933 static void
1934 age_mac_config(struct age_softc *sc)
1935 {
1936 	struct mii_data *mii;
1937 	uint32_t reg;
1938 
1939 	AGE_LOCK_ASSERT(sc);
1940 
1941 	mii = device_get_softc(sc->age_miibus);
1942 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1943 	reg &= ~MAC_CFG_FULL_DUPLEX;
1944 	reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1945 	reg &= ~MAC_CFG_SPEED_MASK;
1946 	/* Reprogram MAC with resolved speed/duplex. */
1947 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1948 	case IFM_10_T:
1949 	case IFM_100_TX:
1950 		reg |= MAC_CFG_SPEED_10_100;
1951 		break;
1952 	case IFM_1000_T:
1953 		reg |= MAC_CFG_SPEED_1000;
1954 		break;
1955 	}
1956 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1957 		reg |= MAC_CFG_FULL_DUPLEX;
1958 #ifdef notyet
1959 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1960 			reg |= MAC_CFG_TX_FC;
1961 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1962 			reg |= MAC_CFG_RX_FC;
1963 #endif
1964 	}
1965 
1966 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1967 }
1968 
1969 static void
1970 age_link_task(void *arg, int pending)
1971 {
1972 	struct age_softc *sc;
1973 	struct mii_data *mii;
1974 	struct ifnet *ifp;
1975 	uint32_t reg;
1976 
1977 	sc = (struct age_softc *)arg;
1978 
1979 	AGE_LOCK(sc);
1980 	mii = device_get_softc(sc->age_miibus);
1981 	ifp = sc->age_ifp;
1982 	if (mii == NULL || ifp == NULL ||
1983 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1984 		AGE_UNLOCK(sc);
1985 		return;
1986 	}
1987 
1988 	sc->age_flags &= ~AGE_FLAG_LINK;
1989 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
1990 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
1991 		case IFM_10_T:
1992 		case IFM_100_TX:
1993 		case IFM_1000_T:
1994 			sc->age_flags |= AGE_FLAG_LINK;
1995 			break;
1996 		default:
1997 			break;
1998 		}
1999 	}
2000 
2001 	/* Stop Rx/Tx MACs. */
2002 	age_stop_rxmac(sc);
2003 	age_stop_txmac(sc);
2004 
2005 	/* Program MACs with resolved speed/duplex/flow-control. */
2006 	if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
2007 		age_mac_config(sc);
2008 		reg = CSR_READ_4(sc, AGE_MAC_CFG);
2009 		/* Restart DMA engine and Tx/Rx MAC. */
2010 		CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
2011 		    DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
2012 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
2013 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2014 	}
2015 
2016 	AGE_UNLOCK(sc);
2017 }
2018 
2019 static void
2020 age_stats_update(struct age_softc *sc)
2021 {
2022 	struct age_stats *stat;
2023 	struct smb *smb;
2024 	struct ifnet *ifp;
2025 
2026 	AGE_LOCK_ASSERT(sc);
2027 
2028 	stat = &sc->age_stat;
2029 
2030 	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2031 	    sc->age_cdata.age_smb_block_map,
2032 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2033 
2034 	smb = sc->age_rdata.age_smb_block;
2035 	if (smb->updated == 0)
2036 		return;
2037 
2038 	ifp = sc->age_ifp;
2039 	/* Rx stats. */
2040 	stat->rx_frames += smb->rx_frames;
2041 	stat->rx_bcast_frames += smb->rx_bcast_frames;
2042 	stat->rx_mcast_frames += smb->rx_mcast_frames;
2043 	stat->rx_pause_frames += smb->rx_pause_frames;
2044 	stat->rx_control_frames += smb->rx_control_frames;
2045 	stat->rx_crcerrs += smb->rx_crcerrs;
2046 	stat->rx_lenerrs += smb->rx_lenerrs;
2047 	stat->rx_bytes += smb->rx_bytes;
2048 	stat->rx_runts += smb->rx_runts;
2049 	stat->rx_fragments += smb->rx_fragments;
2050 	stat->rx_pkts_64 += smb->rx_pkts_64;
2051 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2052 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2053 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2054 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2055 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2056 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2057 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2058 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2059 	stat->rx_desc_oflows += smb->rx_desc_oflows;
2060 	stat->rx_alignerrs += smb->rx_alignerrs;
2061 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2062 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2063 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2064 
2065 	/* Tx stats. */
2066 	stat->tx_frames += smb->tx_frames;
2067 	stat->tx_bcast_frames += smb->tx_bcast_frames;
2068 	stat->tx_mcast_frames += smb->tx_mcast_frames;
2069 	stat->tx_pause_frames += smb->tx_pause_frames;
2070 	stat->tx_excess_defer += smb->tx_excess_defer;
2071 	stat->tx_control_frames += smb->tx_control_frames;
2072 	stat->tx_deferred += smb->tx_deferred;
2073 	stat->tx_bytes += smb->tx_bytes;
2074 	stat->tx_pkts_64 += smb->tx_pkts_64;
2075 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2076 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2077 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2078 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2079 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2080 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2081 	stat->tx_single_colls += smb->tx_single_colls;
2082 	stat->tx_multi_colls += smb->tx_multi_colls;
2083 	stat->tx_late_colls += smb->tx_late_colls;
2084 	stat->tx_excess_colls += smb->tx_excess_colls;
2085 	stat->tx_underrun += smb->tx_underrun;
2086 	stat->tx_desc_underrun += smb->tx_desc_underrun;
2087 	stat->tx_lenerrs += smb->tx_lenerrs;
2088 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2089 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2090 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2091 
2092 	/* Update counters in ifnet. */
2093 	if_inc_counter(ifp, IFCOUNTER_OPACKETS, smb->tx_frames);
2094 
2095 	if_inc_counter(ifp, IFCOUNTER_COLLISIONS, smb->tx_single_colls +
2096 	    smb->tx_multi_colls + smb->tx_late_colls +
2097 	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT);
2098 
2099 	if_inc_counter(ifp, IFCOUNTER_OERRORS, smb->tx_excess_colls +
2100 	    smb->tx_late_colls + smb->tx_underrun +
2101 	    smb->tx_pkts_truncated);
2102 
2103 	if_inc_counter(ifp, IFCOUNTER_IPACKETS, smb->rx_frames);
2104 
2105 	if_inc_counter(ifp, IFCOUNTER_IERRORS, smb->rx_crcerrs +
2106 	    smb->rx_lenerrs + smb->rx_runts + smb->rx_pkts_truncated +
2107 	    smb->rx_fifo_oflows + smb->rx_desc_oflows +
2108 	    smb->rx_alignerrs);
2109 
2110 	/* Update done, clear. */
2111 	smb->updated = 0;
2112 
2113 	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2114 	    sc->age_cdata.age_smb_block_map,
2115 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2116 }
2117 
2118 static int
2119 age_intr(void *arg)
2120 {
2121 	struct age_softc *sc;
2122 	uint32_t status;
2123 
2124 	sc = (struct age_softc *)arg;
2125 
2126 	status = CSR_READ_4(sc, AGE_INTR_STATUS);
2127 	if (status == 0 || (status & AGE_INTRS) == 0)
2128 		return (FILTER_STRAY);
2129 	/* Disable interrupts. */
2130 	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
2131 	taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2132 
2133 	return (FILTER_HANDLED);
2134 }
2135 
2136 static void
2137 age_int_task(void *arg, int pending)
2138 {
2139 	struct age_softc *sc;
2140 	struct ifnet *ifp;
2141 	struct cmb *cmb;
2142 	uint32_t status;
2143 
2144 	sc = (struct age_softc *)arg;
2145 
2146 	AGE_LOCK(sc);
2147 
2148 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2149 	    sc->age_cdata.age_cmb_block_map,
2150 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2151 	cmb = sc->age_rdata.age_cmb_block;
2152 	status = le32toh(cmb->intr_status);
2153 	if (sc->age_morework != 0)
2154 		status |= INTR_CMB_RX;
2155 	if ((status & AGE_INTRS) == 0)
2156 		goto done;
2157 
2158 	sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
2159 	    TPD_CONS_SHIFT;
2160 	sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
2161 	    RRD_PROD_SHIFT;
2162 	/* Let hardware know CMB was served. */
2163 	cmb->intr_status = 0;
2164 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2165 	    sc->age_cdata.age_cmb_block_map,
2166 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2167 
2168 	ifp = sc->age_ifp;
2169 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2170 		if ((status & INTR_CMB_RX) != 0)
2171 			sc->age_morework = age_rxintr(sc, sc->age_rr_prod,
2172 			    sc->age_process_limit);
2173 		if ((status & INTR_CMB_TX) != 0)
2174 			age_txintr(sc, sc->age_tpd_cons);
2175 		if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
2176 			if ((status & INTR_DMA_RD_TO_RST) != 0)
2177 				device_printf(sc->age_dev,
2178 				    "DMA read error! -- resetting\n");
2179 			if ((status & INTR_DMA_WR_TO_RST) != 0)
2180 				device_printf(sc->age_dev,
2181 				    "DMA write error! -- resetting\n");
2182 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2183 			age_init_locked(sc);
2184 		}
2185 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2186 			age_start_locked(ifp);
2187 		if ((status & INTR_SMB) != 0)
2188 			age_stats_update(sc);
2189 	}
2190 
2191 	/* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
2192 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2193 	    sc->age_cdata.age_cmb_block_map,
2194 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2195 	status = le32toh(cmb->intr_status);
2196 	if (sc->age_morework != 0 || (status & AGE_INTRS) != 0) {
2197 		taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2198 		AGE_UNLOCK(sc);
2199 		return;
2200 	}
2201 
2202 done:
2203 	/* Re-enable interrupts. */
2204 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2205 	AGE_UNLOCK(sc);
2206 }
2207 
2208 static void
2209 age_txintr(struct age_softc *sc, int tpd_cons)
2210 {
2211 	struct ifnet *ifp;
2212 	struct age_txdesc *txd;
2213 	int cons, prog;
2214 
2215 	AGE_LOCK_ASSERT(sc);
2216 
2217 	ifp = sc->age_ifp;
2218 
2219 	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2220 	    sc->age_cdata.age_tx_ring_map,
2221 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2222 
2223 	/*
2224 	 * Go through our Tx list and free mbufs for those
2225 	 * frames which have been transmitted.
2226 	 */
2227 	cons = sc->age_cdata.age_tx_cons;
2228 	for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
2229 		if (sc->age_cdata.age_tx_cnt <= 0)
2230 			break;
2231 		prog++;
2232 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2233 		sc->age_cdata.age_tx_cnt--;
2234 		txd = &sc->age_cdata.age_txdesc[cons];
2235 		/*
2236 		 * Clear Tx descriptors, it's not required but would
2237 		 * help debugging in case of Tx issues.
2238 		 */
2239 		txd->tx_desc->addr = 0;
2240 		txd->tx_desc->len = 0;
2241 		txd->tx_desc->flags = 0;
2242 
2243 		if (txd->tx_m == NULL)
2244 			continue;
2245 		/* Reclaim transmitted mbufs. */
2246 		bus_dmamap_sync(sc->age_cdata.age_tx_tag, txd->tx_dmamap,
2247 		    BUS_DMASYNC_POSTWRITE);
2248 		bus_dmamap_unload(sc->age_cdata.age_tx_tag, txd->tx_dmamap);
2249 		m_freem(txd->tx_m);
2250 		txd->tx_m = NULL;
2251 	}
2252 
2253 	if (prog > 0) {
2254 		sc->age_cdata.age_tx_cons = cons;
2255 
2256 		/*
2257 		 * Unarm watchdog timer only when there are no pending
2258 		 * Tx descriptors in queue.
2259 		 */
2260 		if (sc->age_cdata.age_tx_cnt == 0)
2261 			sc->age_watchdog_timer = 0;
2262 		bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2263 		    sc->age_cdata.age_tx_ring_map,
2264 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2265 	}
2266 }
2267 
2268 #ifndef __NO_STRICT_ALIGNMENT
2269 static struct mbuf *
2270 age_fixup_rx(struct ifnet *ifp, struct mbuf *m)
2271 {
2272 	struct mbuf *n;
2273         int i;
2274         uint16_t *src, *dst;
2275 
2276 	src = mtod(m, uint16_t *);
2277 	dst = src - 3;
2278 
2279 	if (m->m_next == NULL) {
2280 		for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
2281 			*dst++ = *src++;
2282 		m->m_data -= 6;
2283 		return (m);
2284 	}
2285 	/*
2286 	 * Append a new mbuf to received mbuf chain and copy ethernet
2287 	 * header from the mbuf chain. This can save lots of CPU
2288 	 * cycles for jumbo frame.
2289 	 */
2290 	MGETHDR(n, M_NOWAIT, MT_DATA);
2291 	if (n == NULL) {
2292 		if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2293 		m_freem(m);
2294 		return (NULL);
2295 	}
2296 	bcopy(m->m_data, n->m_data, ETHER_HDR_LEN);
2297 	m->m_data += ETHER_HDR_LEN;
2298 	m->m_len -= ETHER_HDR_LEN;
2299 	n->m_len = ETHER_HDR_LEN;
2300 	M_MOVE_PKTHDR(n, m);
2301 	n->m_next = m;
2302 	return (n);
2303 }
2304 #endif
2305 
2306 /* Receive a frame. */
2307 static void
2308 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
2309 {
2310 	struct age_rxdesc *rxd;
2311 	struct ifnet *ifp;
2312 	struct mbuf *mp, *m;
2313 	uint32_t status, index, vtag;
2314 	int count, nsegs;
2315 	int rx_cons;
2316 
2317 	AGE_LOCK_ASSERT(sc);
2318 
2319 	ifp = sc->age_ifp;
2320 	status = le32toh(rxrd->flags);
2321 	index = le32toh(rxrd->index);
2322 	rx_cons = AGE_RX_CONS(index);
2323 	nsegs = AGE_RX_NSEGS(index);
2324 
2325 	sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
2326 	if ((status & (AGE_RRD_ERROR | AGE_RRD_LENGTH_NOK)) != 0) {
2327 		/*
2328 		 * We want to pass the following frames to upper
2329 		 * layer regardless of error status of Rx return
2330 		 * ring.
2331 		 *
2332 		 *  o IP/TCP/UDP checksum is bad.
2333 		 *  o frame length and protocol specific length
2334 		 *     does not match.
2335 		 */
2336 		status |= AGE_RRD_IPCSUM_NOK | AGE_RRD_TCP_UDPCSUM_NOK;
2337 		if ((status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
2338 		    AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0)
2339 			return;
2340 	}
2341 
2342 	for (count = 0; count < nsegs; count++,
2343 	    AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
2344 		rxd = &sc->age_cdata.age_rxdesc[rx_cons];
2345 		mp = rxd->rx_m;
2346 		/* Add a new receive buffer to the ring. */
2347 		if (age_newbuf(sc, rxd) != 0) {
2348 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2349 			/* Reuse Rx buffers. */
2350 			if (sc->age_cdata.age_rxhead != NULL)
2351 				m_freem(sc->age_cdata.age_rxhead);
2352 			break;
2353 		}
2354 
2355 		/*
2356 		 * Assume we've received a full sized frame.
2357 		 * Actual size is fixed when we encounter the end of
2358 		 * multi-segmented frame.
2359 		 */
2360 		mp->m_len = AGE_RX_BUF_SIZE;
2361 
2362 		/* Chain received mbufs. */
2363 		if (sc->age_cdata.age_rxhead == NULL) {
2364 			sc->age_cdata.age_rxhead = mp;
2365 			sc->age_cdata.age_rxtail = mp;
2366 		} else {
2367 			mp->m_flags &= ~M_PKTHDR;
2368 			sc->age_cdata.age_rxprev_tail =
2369 			    sc->age_cdata.age_rxtail;
2370 			sc->age_cdata.age_rxtail->m_next = mp;
2371 			sc->age_cdata.age_rxtail = mp;
2372 		}
2373 
2374 		if (count == nsegs - 1) {
2375 			/* Last desc. for this frame. */
2376 			m = sc->age_cdata.age_rxhead;
2377 			m->m_flags |= M_PKTHDR;
2378 			/*
2379 			 * It seems that L1 controller has no way
2380 			 * to tell hardware to strip CRC bytes.
2381 			 */
2382 			m->m_pkthdr.len = sc->age_cdata.age_rxlen -
2383 			    ETHER_CRC_LEN;
2384 			if (nsegs > 1) {
2385 				/* Set last mbuf size. */
2386 				mp->m_len = sc->age_cdata.age_rxlen -
2387 				    ((nsegs - 1) * AGE_RX_BUF_SIZE);
2388 				/* Remove the CRC bytes in chained mbufs. */
2389 				if (mp->m_len <= ETHER_CRC_LEN) {
2390 					sc->age_cdata.age_rxtail =
2391 					    sc->age_cdata.age_rxprev_tail;
2392 					sc->age_cdata.age_rxtail->m_len -=
2393 					    (ETHER_CRC_LEN - mp->m_len);
2394 					sc->age_cdata.age_rxtail->m_next = NULL;
2395 					m_freem(mp);
2396 				} else {
2397 					mp->m_len -= ETHER_CRC_LEN;
2398 				}
2399 			} else
2400 				m->m_len = m->m_pkthdr.len;
2401 			m->m_pkthdr.rcvif = ifp;
2402 			/*
2403 			 * Set checksum information.
2404 			 * It seems that L1 controller can compute partial
2405 			 * checksum. The partial checksum value can be used
2406 			 * to accelerate checksum computation for fragmented
2407 			 * TCP/UDP packets. Upper network stack already
2408 			 * takes advantage of the partial checksum value in
2409 			 * IP reassembly stage. But I'm not sure the
2410 			 * correctness of the partial hardware checksum
2411 			 * assistance due to lack of data sheet. If it is
2412 			 * proven to work on L1 I'll enable it.
2413 			 */
2414 			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
2415 			    (status & AGE_RRD_IPV4) != 0) {
2416 				if ((status & AGE_RRD_IPCSUM_NOK) == 0)
2417 					m->m_pkthdr.csum_flags |=
2418 					    CSUM_IP_CHECKED | CSUM_IP_VALID;
2419 				if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
2420 				    (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0) {
2421 					m->m_pkthdr.csum_flags |=
2422 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2423 					m->m_pkthdr.csum_data = 0xffff;
2424 				}
2425 				/*
2426 				 * Don't mark bad checksum for TCP/UDP frames
2427 				 * as fragmented frames may always have set
2428 				 * bad checksummed bit of descriptor status.
2429 				 */
2430 			}
2431 
2432 			/* Check for VLAN tagged frames. */
2433 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2434 			    (status & AGE_RRD_VLAN) != 0) {
2435 				vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
2436 				m->m_pkthdr.ether_vtag = AGE_RX_VLAN_TAG(vtag);
2437 				m->m_flags |= M_VLANTAG;
2438 			}
2439 #ifndef __NO_STRICT_ALIGNMENT
2440 			m = age_fixup_rx(ifp, m);
2441 			if (m != NULL)
2442 #endif
2443 			{
2444 			/* Pass it on. */
2445 			AGE_UNLOCK(sc);
2446 			(*ifp->if_input)(ifp, m);
2447 			AGE_LOCK(sc);
2448 			}
2449 		}
2450 	}
2451 
2452 	/* Reset mbuf chains. */
2453 	AGE_RXCHAIN_RESET(sc);
2454 }
2455 
2456 static int
2457 age_rxintr(struct age_softc *sc, int rr_prod, int count)
2458 {
2459 	struct rx_rdesc *rxrd;
2460 	int rr_cons, nsegs, pktlen, prog;
2461 
2462 	AGE_LOCK_ASSERT(sc);
2463 
2464 	rr_cons = sc->age_cdata.age_rr_cons;
2465 	if (rr_cons == rr_prod)
2466 		return (0);
2467 
2468 	bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2469 	    sc->age_cdata.age_rr_ring_map,
2470 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2471 	bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2472 	    sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_POSTWRITE);
2473 
2474 	for (prog = 0; rr_cons != rr_prod; prog++) {
2475 		if (count-- <= 0)
2476 			break;
2477 		rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
2478 		nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
2479 		if (nsegs == 0)
2480 			break;
2481 		/*
2482 		 * Check number of segments against received bytes.
2483 		 * Non-matching value would indicate that hardware
2484 		 * is still trying to update Rx return descriptors.
2485 		 * I'm not sure whether this check is really needed.
2486 		 */
2487 		pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
2488 		if (nsegs != howmany(pktlen, AGE_RX_BUF_SIZE))
2489 			break;
2490 
2491 		/* Received a frame. */
2492 		age_rxeof(sc, rxrd);
2493 		/* Clear return ring. */
2494 		rxrd->index = 0;
2495 		AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
2496 		sc->age_cdata.age_rx_cons += nsegs;
2497 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2498 	}
2499 
2500 	if (prog > 0) {
2501 		/* Update the consumer index. */
2502 		sc->age_cdata.age_rr_cons = rr_cons;
2503 
2504 		bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2505 		    sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE);
2506 		/* Sync descriptors. */
2507 		bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2508 		    sc->age_cdata.age_rr_ring_map,
2509 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2510 
2511 		/* Notify hardware availability of new Rx buffers. */
2512 		AGE_COMMIT_MBOX(sc);
2513 	}
2514 
2515 	return (count > 0 ? 0 : EAGAIN);
2516 }
2517 
2518 static void
2519 age_tick(void *arg)
2520 {
2521 	struct age_softc *sc;
2522 	struct mii_data *mii;
2523 
2524 	sc = (struct age_softc *)arg;
2525 
2526 	AGE_LOCK_ASSERT(sc);
2527 
2528 	mii = device_get_softc(sc->age_miibus);
2529 	mii_tick(mii);
2530 	age_watchdog(sc);
2531 	callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2532 }
2533 
2534 static void
2535 age_reset(struct age_softc *sc)
2536 {
2537 	uint32_t reg;
2538 	int i;
2539 
2540 	CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
2541 	CSR_READ_4(sc, AGE_MASTER_CFG);
2542 	DELAY(1000);
2543 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2544 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2545 			break;
2546 		DELAY(10);
2547 	}
2548 
2549 	if (i == 0)
2550 		device_printf(sc->age_dev, "reset timeout(0x%08x)!\n", reg);
2551 	/* Initialize PCIe module. From Linux. */
2552 	CSR_WRITE_4(sc, 0x12FC, 0x6500);
2553 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2554 }
2555 
2556 static void
2557 age_init(void *xsc)
2558 {
2559 	struct age_softc *sc;
2560 
2561 	sc = (struct age_softc *)xsc;
2562 	AGE_LOCK(sc);
2563 	age_init_locked(sc);
2564 	AGE_UNLOCK(sc);
2565 }
2566 
2567 static void
2568 age_init_locked(struct age_softc *sc)
2569 {
2570 	struct ifnet *ifp;
2571 	struct mii_data *mii;
2572 	uint8_t eaddr[ETHER_ADDR_LEN];
2573 	bus_addr_t paddr;
2574 	uint32_t reg, fsize;
2575 	uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
2576 	int error;
2577 
2578 	AGE_LOCK_ASSERT(sc);
2579 
2580 	ifp = sc->age_ifp;
2581 	mii = device_get_softc(sc->age_miibus);
2582 
2583 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2584 		return;
2585 
2586 	/*
2587 	 * Cancel any pending I/O.
2588 	 */
2589 	age_stop(sc);
2590 
2591 	/*
2592 	 * Reset the chip to a known state.
2593 	 */
2594 	age_reset(sc);
2595 
2596 	/* Initialize descriptors. */
2597 	error = age_init_rx_ring(sc);
2598         if (error != 0) {
2599                 device_printf(sc->age_dev, "no memory for Rx buffers.\n");
2600                 age_stop(sc);
2601 		return;
2602         }
2603 	age_init_rr_ring(sc);
2604 	age_init_tx_ring(sc);
2605 	age_init_cmb_block(sc);
2606 	age_init_smb_block(sc);
2607 
2608 	/* Reprogram the station address. */
2609 	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2610 	CSR_WRITE_4(sc, AGE_PAR0,
2611 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2612 	CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
2613 
2614 	/* Set descriptor base addresses. */
2615 	paddr = sc->age_rdata.age_tx_ring_paddr;
2616 	CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
2617 	paddr = sc->age_rdata.age_rx_ring_paddr;
2618 	CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
2619 	paddr = sc->age_rdata.age_rr_ring_paddr;
2620 	CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
2621 	paddr = sc->age_rdata.age_tx_ring_paddr;
2622 	CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
2623 	paddr = sc->age_rdata.age_cmb_block_paddr;
2624 	CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
2625 	paddr = sc->age_rdata.age_smb_block_paddr;
2626 	CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
2627 	/* Set Rx/Rx return descriptor counter. */
2628 	CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
2629 	    ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
2630 	    DESC_RRD_CNT_MASK) |
2631 	    ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
2632 	/* Set Tx descriptor counter. */
2633 	CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
2634 	    (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
2635 
2636 	/* Tell hardware that we're ready to load descriptors. */
2637 	CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
2638 
2639 	/*
2640 	 * Initialize mailbox register.
2641 	 * Updated producer/consumer index information is exchanged
2642 	 * through this mailbox register. However Tx producer and
2643 	 * Rx return consumer/Rx producer are all shared such that
2644 	 * it's hard to separate code path between Tx and Rx without
2645 	 * locking. If L1 hardware have a separate mail box register
2646 	 * for Tx and Rx consumer/producer management we could have
2647 	 * indepent Tx/Rx handler which in turn Rx handler could have
2648 	 * been run without any locking.
2649 	 */
2650 	AGE_COMMIT_MBOX(sc);
2651 
2652 	/* Configure IPG/IFG parameters. */
2653 	CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
2654 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
2655 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2656 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2657 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
2658 
2659 	/* Set parameters for half-duplex media. */
2660 	CSR_WRITE_4(sc, AGE_HDPX_CFG,
2661 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2662 	    HDPX_CFG_LCOL_MASK) |
2663 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2664 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2665 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2666 	    HDPX_CFG_ABEBT_MASK) |
2667 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2668 	    HDPX_CFG_JAMIPG_MASK));
2669 
2670 	/* Configure interrupt moderation timer. */
2671 	CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
2672 	reg = CSR_READ_4(sc, AGE_MASTER_CFG);
2673 	reg &= ~MASTER_MTIMER_ENB;
2674 	if (AGE_USECS(sc->age_int_mod) == 0)
2675 		reg &= ~MASTER_ITIMER_ENB;
2676 	else
2677 		reg |= MASTER_ITIMER_ENB;
2678 	CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
2679 	if (bootverbose)
2680 		device_printf(sc->age_dev, "interrupt moderation is %d us.\n",
2681 		    sc->age_int_mod);
2682 	CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
2683 
2684 	/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
2685 	if (ifp->if_mtu < ETHERMTU)
2686 		sc->age_max_frame_size = ETHERMTU;
2687 	else
2688 		sc->age_max_frame_size = ifp->if_mtu;
2689 	sc->age_max_frame_size += ETHER_HDR_LEN +
2690 	    sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
2691 	CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
2692 	/* Configure jumbo frame. */
2693 	fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
2694 	CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
2695 	    (((fsize / sizeof(uint64_t)) <<
2696 	    RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
2697 	    ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
2698 	    RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
2699 	    ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
2700 	    RXQ_JUMBO_CFG_RRD_TIMER_MASK));
2701 
2702 	/* Configure flow-control parameters. From Linux. */
2703 	if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
2704 		/*
2705 		 * Magic workaround for old-L1.
2706 		 * Don't know which hw revision requires this magic.
2707 		 */
2708 		CSR_WRITE_4(sc, 0x12FC, 0x6500);
2709 		/*
2710 		 * Another magic workaround for flow-control mode
2711 		 * change. From Linux.
2712 		 */
2713 		CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2714 	}
2715 	/*
2716 	 * TODO
2717 	 *  Should understand pause parameter relationships between FIFO
2718 	 *  size and number of Rx descriptors and Rx return descriptors.
2719 	 *
2720 	 *  Magic parameters came from Linux.
2721 	 */
2722 	switch (sc->age_chip_rev) {
2723 	case 0x8001:
2724 	case 0x9001:
2725 	case 0x9002:
2726 	case 0x9003:
2727 		rxf_hi = AGE_RX_RING_CNT / 16;
2728 		rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
2729 		rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
2730 		rrd_lo = AGE_RR_RING_CNT / 16;
2731 		break;
2732 	default:
2733 		reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
2734 		rxf_lo = reg / 16;
2735 		if (rxf_lo < 192)
2736 			rxf_lo = 192;
2737 		rxf_hi = (reg * 7) / 8;
2738 		if (rxf_hi < rxf_lo)
2739 			rxf_hi = rxf_lo + 16;
2740 		reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
2741 		rrd_lo = reg / 8;
2742 		rrd_hi = (reg * 7) / 8;
2743 		if (rrd_lo < 2)
2744 			rrd_lo = 2;
2745 		if (rrd_hi < rrd_lo)
2746 			rrd_hi = rrd_lo + 3;
2747 		break;
2748 	}
2749 	CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
2750 	    ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
2751 	    RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
2752 	    ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
2753 	    RXQ_FIFO_PAUSE_THRESH_HI_MASK));
2754 	CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
2755 	    ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
2756 	    RXQ_RRD_PAUSE_THRESH_LO_MASK) |
2757 	    ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
2758 	    RXQ_RRD_PAUSE_THRESH_HI_MASK));
2759 
2760 	/* Configure RxQ. */
2761 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
2762 	    ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
2763 	    RXQ_CFG_RD_BURST_MASK) |
2764 	    ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
2765 	    RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
2766 	    ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
2767 	    RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
2768 	    RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
2769 
2770 	/* Configure TxQ. */
2771 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
2772 	    ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
2773 	    TXQ_CFG_TPD_BURST_MASK) |
2774 	    ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
2775 	    TXQ_CFG_TX_FIFO_BURST_MASK) |
2776 	    ((TXQ_CFG_TPD_FETCH_DEFAULT <<
2777 	    TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
2778 	    TXQ_CFG_ENB);
2779 
2780 	CSR_WRITE_4(sc, AGE_TX_JUMBO_TPD_TH_IPG,
2781 	    (((fsize / sizeof(uint64_t) << TX_JUMBO_TPD_TH_SHIFT)) &
2782 	    TX_JUMBO_TPD_TH_MASK) |
2783 	    ((TX_JUMBO_TPD_IPG_DEFAULT << TX_JUMBO_TPD_IPG_SHIFT) &
2784 	    TX_JUMBO_TPD_IPG_MASK));
2785 	/* Configure DMA parameters. */
2786 	CSR_WRITE_4(sc, AGE_DMA_CFG,
2787 	    DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
2788 	    sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
2789 	    sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
2790 
2791 	/* Configure CMB DMA write threshold. */
2792 	CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
2793 	    ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
2794 	    CMB_WR_THRESH_RRD_MASK) |
2795 	    ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
2796 	    CMB_WR_THRESH_TPD_MASK));
2797 
2798 	/* Set CMB/SMB timer and enable them. */
2799 	CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
2800 	    ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
2801 	    ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
2802 	/* Request SMB updates for every seconds. */
2803 	CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
2804 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
2805 
2806 	/*
2807 	 * Disable all WOL bits as WOL can interfere normal Rx
2808 	 * operation.
2809 	 */
2810 	CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
2811 
2812 	/*
2813 	 * Configure Tx/Rx MACs.
2814 	 *  - Auto-padding for short frames.
2815 	 *  - Enable CRC generation.
2816 	 *  Start with full-duplex/1000Mbps media. Actual reconfiguration
2817 	 *  of MAC is followed after link establishment.
2818 	 */
2819 	CSR_WRITE_4(sc, AGE_MAC_CFG,
2820 	    MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
2821 	    MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
2822 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2823 	    MAC_CFG_PREAMBLE_MASK));
2824 	/* Set up the receive filter. */
2825 	age_rxfilter(sc);
2826 	age_rxvlan(sc);
2827 
2828 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2829 	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2830 		reg |= MAC_CFG_RXCSUM_ENB;
2831 
2832 	/* Ack all pending interrupts and clear it. */
2833 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2834 	CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
2835 
2836 	/* Finally enable Tx/Rx MAC. */
2837 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
2838 
2839 	sc->age_flags &= ~AGE_FLAG_LINK;
2840 	/* Switch to the current media. */
2841 	mii_mediachg(mii);
2842 
2843 	callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2844 
2845 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2846 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2847 }
2848 
2849 static void
2850 age_stop(struct age_softc *sc)
2851 {
2852 	struct ifnet *ifp;
2853 	struct age_txdesc *txd;
2854 	struct age_rxdesc *rxd;
2855 	uint32_t reg;
2856 	int i;
2857 
2858 	AGE_LOCK_ASSERT(sc);
2859 	/*
2860 	 * Mark the interface down and cancel the watchdog timer.
2861 	 */
2862 	ifp = sc->age_ifp;
2863 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2864 	sc->age_flags &= ~AGE_FLAG_LINK;
2865 	callout_stop(&sc->age_tick_ch);
2866 	sc->age_watchdog_timer = 0;
2867 
2868 	/*
2869 	 * Disable interrupts.
2870 	 */
2871 	CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
2872 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
2873 	/* Stop CMB/SMB updates. */
2874 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
2875 	/* Stop Rx/Tx MAC. */
2876 	age_stop_rxmac(sc);
2877 	age_stop_txmac(sc);
2878 	/* Stop DMA. */
2879 	CSR_WRITE_4(sc, AGE_DMA_CFG,
2880 	    CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
2881 	/* Stop TxQ/RxQ. */
2882 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
2883 	    CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
2884 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
2885 	    CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
2886 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2887 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2888 			break;
2889 		DELAY(10);
2890 	}
2891 	if (i == 0)
2892 		device_printf(sc->age_dev,
2893 		    "stopping Rx/Tx MACs timed out(0x%08x)!\n", reg);
2894 
2895 	 /* Reclaim Rx buffers that have been processed. */
2896 	if (sc->age_cdata.age_rxhead != NULL)
2897 		m_freem(sc->age_cdata.age_rxhead);
2898 	AGE_RXCHAIN_RESET(sc);
2899 	/*
2900 	 * Free RX and TX mbufs still in the queues.
2901 	 */
2902 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
2903 		rxd = &sc->age_cdata.age_rxdesc[i];
2904 		if (rxd->rx_m != NULL) {
2905 			bus_dmamap_sync(sc->age_cdata.age_rx_tag,
2906 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2907 			bus_dmamap_unload(sc->age_cdata.age_rx_tag,
2908 			    rxd->rx_dmamap);
2909 			m_freem(rxd->rx_m);
2910 			rxd->rx_m = NULL;
2911 		}
2912         }
2913 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2914 		txd = &sc->age_cdata.age_txdesc[i];
2915 		if (txd->tx_m != NULL) {
2916 			bus_dmamap_sync(sc->age_cdata.age_tx_tag,
2917 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2918 			bus_dmamap_unload(sc->age_cdata.age_tx_tag,
2919 			    txd->tx_dmamap);
2920 			m_freem(txd->tx_m);
2921 			txd->tx_m = NULL;
2922 		}
2923         }
2924 }
2925 
2926 static void
2927 age_stop_txmac(struct age_softc *sc)
2928 {
2929 	uint32_t reg;
2930 	int i;
2931 
2932 	AGE_LOCK_ASSERT(sc);
2933 
2934 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2935 	if ((reg & MAC_CFG_TX_ENB) != 0) {
2936 		reg &= ~MAC_CFG_TX_ENB;
2937 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2938 	}
2939 	/* Stop Tx DMA engine. */
2940 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2941 	if ((reg & DMA_CFG_RD_ENB) != 0) {
2942 		reg &= ~DMA_CFG_RD_ENB;
2943 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2944 	}
2945 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2946 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2947 		    (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2948 			break;
2949 		DELAY(10);
2950 	}
2951 	if (i == 0)
2952 		device_printf(sc->age_dev, "stopping TxMAC timeout!\n");
2953 }
2954 
2955 static void
2956 age_stop_rxmac(struct age_softc *sc)
2957 {
2958 	uint32_t reg;
2959 	int i;
2960 
2961 	AGE_LOCK_ASSERT(sc);
2962 
2963 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2964 	if ((reg & MAC_CFG_RX_ENB) != 0) {
2965 		reg &= ~MAC_CFG_RX_ENB;
2966 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2967 	}
2968 	/* Stop Rx DMA engine. */
2969 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2970 	if ((reg & DMA_CFG_WR_ENB) != 0) {
2971 		reg &= ~DMA_CFG_WR_ENB;
2972 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2973 	}
2974 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2975 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2976 		    (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2977 			break;
2978 		DELAY(10);
2979 	}
2980 	if (i == 0)
2981 		device_printf(sc->age_dev, "stopping RxMAC timeout!\n");
2982 }
2983 
2984 static void
2985 age_init_tx_ring(struct age_softc *sc)
2986 {
2987 	struct age_ring_data *rd;
2988 	struct age_txdesc *txd;
2989 	int i;
2990 
2991 	AGE_LOCK_ASSERT(sc);
2992 
2993 	sc->age_cdata.age_tx_prod = 0;
2994 	sc->age_cdata.age_tx_cons = 0;
2995 	sc->age_cdata.age_tx_cnt = 0;
2996 
2997 	rd = &sc->age_rdata;
2998 	bzero(rd->age_tx_ring, AGE_TX_RING_SZ);
2999 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
3000 		txd = &sc->age_cdata.age_txdesc[i];
3001 		txd->tx_desc = &rd->age_tx_ring[i];
3002 		txd->tx_m = NULL;
3003 	}
3004 
3005 	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
3006 	    sc->age_cdata.age_tx_ring_map,
3007 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3008 }
3009 
3010 static int
3011 age_init_rx_ring(struct age_softc *sc)
3012 {
3013 	struct age_ring_data *rd;
3014 	struct age_rxdesc *rxd;
3015 	int i;
3016 
3017 	AGE_LOCK_ASSERT(sc);
3018 
3019 	sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
3020 	sc->age_morework = 0;
3021 	rd = &sc->age_rdata;
3022 	bzero(rd->age_rx_ring, AGE_RX_RING_SZ);
3023 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
3024 		rxd = &sc->age_cdata.age_rxdesc[i];
3025 		rxd->rx_m = NULL;
3026 		rxd->rx_desc = &rd->age_rx_ring[i];
3027 		if (age_newbuf(sc, rxd) != 0)
3028 			return (ENOBUFS);
3029 	}
3030 
3031 	bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
3032 	    sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE);
3033 
3034 	return (0);
3035 }
3036 
3037 static void
3038 age_init_rr_ring(struct age_softc *sc)
3039 {
3040 	struct age_ring_data *rd;
3041 
3042 	AGE_LOCK_ASSERT(sc);
3043 
3044 	sc->age_cdata.age_rr_cons = 0;
3045 	AGE_RXCHAIN_RESET(sc);
3046 
3047 	rd = &sc->age_rdata;
3048 	bzero(rd->age_rr_ring, AGE_RR_RING_SZ);
3049 	bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
3050 	    sc->age_cdata.age_rr_ring_map,
3051 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3052 }
3053 
3054 static void
3055 age_init_cmb_block(struct age_softc *sc)
3056 {
3057 	struct age_ring_data *rd;
3058 
3059 	AGE_LOCK_ASSERT(sc);
3060 
3061 	rd = &sc->age_rdata;
3062 	bzero(rd->age_cmb_block, AGE_CMB_BLOCK_SZ);
3063 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
3064 	    sc->age_cdata.age_cmb_block_map,
3065 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3066 }
3067 
3068 static void
3069 age_init_smb_block(struct age_softc *sc)
3070 {
3071 	struct age_ring_data *rd;
3072 
3073 	AGE_LOCK_ASSERT(sc);
3074 
3075 	rd = &sc->age_rdata;
3076 	bzero(rd->age_smb_block, AGE_SMB_BLOCK_SZ);
3077 	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
3078 	    sc->age_cdata.age_smb_block_map,
3079 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3080 }
3081 
3082 static int
3083 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd)
3084 {
3085 	struct rx_desc *desc;
3086 	struct mbuf *m;
3087 	bus_dma_segment_t segs[1];
3088 	bus_dmamap_t map;
3089 	int nsegs;
3090 
3091 	AGE_LOCK_ASSERT(sc);
3092 
3093 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
3094 	if (m == NULL)
3095 		return (ENOBUFS);
3096 	m->m_len = m->m_pkthdr.len = MCLBYTES;
3097 #ifndef __NO_STRICT_ALIGNMENT
3098 	m_adj(m, AGE_RX_BUF_ALIGN);
3099 #endif
3100 
3101 	if (bus_dmamap_load_mbuf_sg(sc->age_cdata.age_rx_tag,
3102 	    sc->age_cdata.age_rx_sparemap, m, segs, &nsegs, 0) != 0) {
3103 		m_freem(m);
3104 		return (ENOBUFS);
3105 	}
3106 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
3107 
3108 	if (rxd->rx_m != NULL) {
3109 		bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3110 		    BUS_DMASYNC_POSTREAD);
3111 		bus_dmamap_unload(sc->age_cdata.age_rx_tag, rxd->rx_dmamap);
3112 	}
3113 	map = rxd->rx_dmamap;
3114 	rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
3115 	sc->age_cdata.age_rx_sparemap = map;
3116 	bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3117 	    BUS_DMASYNC_PREREAD);
3118 	rxd->rx_m = m;
3119 
3120 	desc = rxd->rx_desc;
3121 	desc->addr = htole64(segs[0].ds_addr);
3122 	desc->len = htole32((segs[0].ds_len & AGE_RD_LEN_MASK) <<
3123 	    AGE_RD_LEN_SHIFT);
3124 	return (0);
3125 }
3126 
3127 static void
3128 age_rxvlan(struct age_softc *sc)
3129 {
3130 	struct ifnet *ifp;
3131 	uint32_t reg;
3132 
3133 	AGE_LOCK_ASSERT(sc);
3134 
3135 	ifp = sc->age_ifp;
3136 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
3137 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3138 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3139 		reg |= MAC_CFG_VLAN_TAG_STRIP;
3140 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
3141 }
3142 
3143 static void
3144 age_rxfilter(struct age_softc *sc)
3145 {
3146 	struct ifnet *ifp;
3147 	struct ifmultiaddr *ifma;
3148 	uint32_t crc;
3149 	uint32_t mchash[2];
3150 	uint32_t rxcfg;
3151 
3152 	AGE_LOCK_ASSERT(sc);
3153 
3154 	ifp = sc->age_ifp;
3155 
3156 	rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
3157 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3158 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
3159 		rxcfg |= MAC_CFG_BCAST;
3160 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3161 		if ((ifp->if_flags & IFF_PROMISC) != 0)
3162 			rxcfg |= MAC_CFG_PROMISC;
3163 		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3164 			rxcfg |= MAC_CFG_ALLMULTI;
3165 		CSR_WRITE_4(sc, AGE_MAR0, 0xFFFFFFFF);
3166 		CSR_WRITE_4(sc, AGE_MAR1, 0xFFFFFFFF);
3167 		CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3168 		return;
3169 	}
3170 
3171 	/* Program new filter. */
3172 	bzero(mchash, sizeof(mchash));
3173 
3174 	if_maddr_rlock(ifp);
3175 	CK_STAILQ_FOREACH(ifma, &sc->age_ifp->if_multiaddrs, ifma_link) {
3176 		if (ifma->ifma_addr->sa_family != AF_LINK)
3177 			continue;
3178 		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
3179 		    ifma->ifma_addr), ETHER_ADDR_LEN);
3180 		mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3181 	}
3182 	if_maddr_runlock(ifp);
3183 
3184 	CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
3185 	CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
3186 	CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3187 }
3188 
3189 static int
3190 sysctl_age_stats(SYSCTL_HANDLER_ARGS)
3191 {
3192 	struct age_softc *sc;
3193 	struct age_stats *stats;
3194 	int error, result;
3195 
3196 	result = -1;
3197 	error = sysctl_handle_int(oidp, &result, 0, req);
3198 
3199 	if (error != 0 || req->newptr == NULL)
3200 		return (error);
3201 
3202 	if (result != 1)
3203 		return (error);
3204 
3205 	sc = (struct age_softc *)arg1;
3206 	stats = &sc->age_stat;
3207 	printf("%s statistics:\n", device_get_nameunit(sc->age_dev));
3208 	printf("Transmit good frames : %ju\n",
3209 	    (uintmax_t)stats->tx_frames);
3210 	printf("Transmit good broadcast frames : %ju\n",
3211 	    (uintmax_t)stats->tx_bcast_frames);
3212 	printf("Transmit good multicast frames : %ju\n",
3213 	    (uintmax_t)stats->tx_mcast_frames);
3214 	printf("Transmit pause control frames : %u\n",
3215 	    stats->tx_pause_frames);
3216 	printf("Transmit control frames : %u\n",
3217 	    stats->tx_control_frames);
3218 	printf("Transmit frames with excessive deferrals : %u\n",
3219 	    stats->tx_excess_defer);
3220 	printf("Transmit deferrals : %u\n",
3221 	    stats->tx_deferred);
3222 	printf("Transmit good octets : %ju\n",
3223 	    (uintmax_t)stats->tx_bytes);
3224 	printf("Transmit good broadcast octets : %ju\n",
3225 	    (uintmax_t)stats->tx_bcast_bytes);
3226 	printf("Transmit good multicast octets : %ju\n",
3227 	    (uintmax_t)stats->tx_mcast_bytes);
3228 	printf("Transmit frames 64 bytes : %ju\n",
3229 	    (uintmax_t)stats->tx_pkts_64);
3230 	printf("Transmit frames 65 to 127 bytes : %ju\n",
3231 	    (uintmax_t)stats->tx_pkts_65_127);
3232 	printf("Transmit frames 128 to 255 bytes : %ju\n",
3233 	    (uintmax_t)stats->tx_pkts_128_255);
3234 	printf("Transmit frames 256 to 511 bytes : %ju\n",
3235 	    (uintmax_t)stats->tx_pkts_256_511);
3236 	printf("Transmit frames 512 to 1024 bytes : %ju\n",
3237 	    (uintmax_t)stats->tx_pkts_512_1023);
3238 	printf("Transmit frames 1024 to 1518 bytes : %ju\n",
3239 	    (uintmax_t)stats->tx_pkts_1024_1518);
3240 	printf("Transmit frames 1519 to MTU bytes : %ju\n",
3241 	    (uintmax_t)stats->tx_pkts_1519_max);
3242 	printf("Transmit single collisions : %u\n",
3243 	    stats->tx_single_colls);
3244 	printf("Transmit multiple collisions : %u\n",
3245 	    stats->tx_multi_colls);
3246 	printf("Transmit late collisions : %u\n",
3247 	    stats->tx_late_colls);
3248 	printf("Transmit abort due to excessive collisions : %u\n",
3249 	    stats->tx_excess_colls);
3250 	printf("Transmit underruns due to FIFO underruns : %u\n",
3251 	    stats->tx_underrun);
3252 	printf("Transmit descriptor write-back errors : %u\n",
3253 	    stats->tx_desc_underrun);
3254 	printf("Transmit frames with length mismatched frame size : %u\n",
3255 	    stats->tx_lenerrs);
3256 	printf("Transmit frames with truncated due to MTU size : %u\n",
3257 	    stats->tx_lenerrs);
3258 
3259 	printf("Receive good frames : %ju\n",
3260 	    (uintmax_t)stats->rx_frames);
3261 	printf("Receive good broadcast frames : %ju\n",
3262 	    (uintmax_t)stats->rx_bcast_frames);
3263 	printf("Receive good multicast frames : %ju\n",
3264 	    (uintmax_t)stats->rx_mcast_frames);
3265 	printf("Receive pause control frames : %u\n",
3266 	    stats->rx_pause_frames);
3267 	printf("Receive control frames : %u\n",
3268 	    stats->rx_control_frames);
3269 	printf("Receive CRC errors : %u\n",
3270 	    stats->rx_crcerrs);
3271 	printf("Receive frames with length errors : %u\n",
3272 	    stats->rx_lenerrs);
3273 	printf("Receive good octets : %ju\n",
3274 	    (uintmax_t)stats->rx_bytes);
3275 	printf("Receive good broadcast octets : %ju\n",
3276 	    (uintmax_t)stats->rx_bcast_bytes);
3277 	printf("Receive good multicast octets : %ju\n",
3278 	    (uintmax_t)stats->rx_mcast_bytes);
3279 	printf("Receive frames too short : %u\n",
3280 	    stats->rx_runts);
3281 	printf("Receive fragmented frames : %ju\n",
3282 	    (uintmax_t)stats->rx_fragments);
3283 	printf("Receive frames 64 bytes : %ju\n",
3284 	    (uintmax_t)stats->rx_pkts_64);
3285 	printf("Receive frames 65 to 127 bytes : %ju\n",
3286 	    (uintmax_t)stats->rx_pkts_65_127);
3287 	printf("Receive frames 128 to 255 bytes : %ju\n",
3288 	    (uintmax_t)stats->rx_pkts_128_255);
3289 	printf("Receive frames 256 to 511 bytes : %ju\n",
3290 	    (uintmax_t)stats->rx_pkts_256_511);
3291 	printf("Receive frames 512 to 1024 bytes : %ju\n",
3292 	    (uintmax_t)stats->rx_pkts_512_1023);
3293 	printf("Receive frames 1024 to 1518 bytes : %ju\n",
3294 	    (uintmax_t)stats->rx_pkts_1024_1518);
3295 	printf("Receive frames 1519 to MTU bytes : %ju\n",
3296 	    (uintmax_t)stats->rx_pkts_1519_max);
3297 	printf("Receive frames too long : %ju\n",
3298 	    (uint64_t)stats->rx_pkts_truncated);
3299 	printf("Receive frames with FIFO overflow : %u\n",
3300 	    stats->rx_fifo_oflows);
3301 	printf("Receive frames with return descriptor overflow : %u\n",
3302 	    stats->rx_desc_oflows);
3303 	printf("Receive frames with alignment errors : %u\n",
3304 	    stats->rx_alignerrs);
3305 	printf("Receive frames dropped due to address filtering : %ju\n",
3306 	    (uint64_t)stats->rx_pkts_filtered);
3307 
3308 	return (error);
3309 }
3310 
3311 static int
3312 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3313 {
3314 	int error, value;
3315 
3316 	if (arg1 == NULL)
3317 		return (EINVAL);
3318 	value = *(int *)arg1;
3319 	error = sysctl_handle_int(oidp, &value, 0, req);
3320 	if (error || req->newptr == NULL)
3321 		return (error);
3322 	if (value < low || value > high)
3323 		return (EINVAL);
3324         *(int *)arg1 = value;
3325 
3326         return (0);
3327 }
3328 
3329 static int
3330 sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS)
3331 {
3332 	return (sysctl_int_range(oidp, arg1, arg2, req,
3333 	    AGE_PROC_MIN, AGE_PROC_MAX));
3334 }
3335 
3336 static int
3337 sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS)
3338 {
3339 
3340 	return (sysctl_int_range(oidp, arg1, arg2, req, AGE_IM_TIMER_MIN,
3341 	    AGE_IM_TIMER_MAX));
3342 }
3343