xref: /freebsd/sys/dev/age/if_age.c (revision 535af610)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/bus.h>
38 #include <sys/endian.h>
39 #include <sys/kernel.h>
40 #include <sys/malloc.h>
41 #include <sys/mbuf.h>
42 #include <sys/rman.h>
43 #include <sys/module.h>
44 #include <sys/queue.h>
45 #include <sys/socket.h>
46 #include <sys/sockio.h>
47 #include <sys/sysctl.h>
48 #include <sys/taskqueue.h>
49 
50 #include <net/bpf.h>
51 #include <net/if.h>
52 #include <net/if_var.h>
53 #include <net/if_arp.h>
54 #include <net/ethernet.h>
55 #include <net/if_dl.h>
56 #include <net/if_media.h>
57 #include <net/if_types.h>
58 #include <net/if_vlan_var.h>
59 
60 #include <netinet/in.h>
61 #include <netinet/in_systm.h>
62 #include <netinet/ip.h>
63 #include <netinet/tcp.h>
64 
65 #include <dev/mii/mii.h>
66 #include <dev/mii/miivar.h>
67 
68 #include <dev/pci/pcireg.h>
69 #include <dev/pci/pcivar.h>
70 
71 #include <machine/bus.h>
72 #include <machine/in_cksum.h>
73 
74 #include <dev/age/if_agereg.h>
75 #include <dev/age/if_agevar.h>
76 
77 /* "device miibus" required.  See GENERIC if you get errors here. */
78 #include "miibus_if.h"
79 
80 #define	AGE_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
81 
82 MODULE_DEPEND(age, pci, 1, 1, 1);
83 MODULE_DEPEND(age, ether, 1, 1, 1);
84 MODULE_DEPEND(age, miibus, 1, 1, 1);
85 
86 /* Tunables. */
87 static int msi_disable = 0;
88 static int msix_disable = 0;
89 TUNABLE_INT("hw.age.msi_disable", &msi_disable);
90 TUNABLE_INT("hw.age.msix_disable", &msix_disable);
91 
92 /*
93  * Devices supported by this driver.
94  */
95 static struct age_dev {
96 	uint16_t	age_vendorid;
97 	uint16_t	age_deviceid;
98 	const char	*age_name;
99 } age_devs[] = {
100 	{ VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L1,
101 	    "Attansic Technology Corp, L1 Gigabit Ethernet" },
102 };
103 
104 static int age_miibus_readreg(device_t, int, int);
105 static int age_miibus_writereg(device_t, int, int, int);
106 static void age_miibus_statchg(device_t);
107 static void age_mediastatus(if_t, struct ifmediareq *);
108 static int age_mediachange(if_t);
109 static int age_probe(device_t);
110 static void age_get_macaddr(struct age_softc *);
111 static void age_phy_reset(struct age_softc *);
112 static int age_attach(device_t);
113 static int age_detach(device_t);
114 static void age_sysctl_node(struct age_softc *);
115 static void age_dmamap_cb(void *, bus_dma_segment_t *, int, int);
116 static int age_check_boundary(struct age_softc *);
117 static int age_dma_alloc(struct age_softc *);
118 static void age_dma_free(struct age_softc *);
119 static int age_shutdown(device_t);
120 static void age_setwol(struct age_softc *);
121 static int age_suspend(device_t);
122 static int age_resume(device_t);
123 static int age_encap(struct age_softc *, struct mbuf **);
124 static void age_start(if_t);
125 static void age_start_locked(if_t);
126 static void age_watchdog(struct age_softc *);
127 static int age_ioctl(if_t, u_long, caddr_t);
128 static void age_mac_config(struct age_softc *);
129 static void age_link_task(void *, int);
130 static void age_stats_update(struct age_softc *);
131 static int age_intr(void *);
132 static void age_int_task(void *, int);
133 static void age_txintr(struct age_softc *, int);
134 static void age_rxeof(struct age_softc *sc, struct rx_rdesc *);
135 static int age_rxintr(struct age_softc *, int, int);
136 static void age_tick(void *);
137 static void age_reset(struct age_softc *);
138 static void age_init(void *);
139 static void age_init_locked(struct age_softc *);
140 static void age_stop(struct age_softc *);
141 static void age_stop_txmac(struct age_softc *);
142 static void age_stop_rxmac(struct age_softc *);
143 static void age_init_tx_ring(struct age_softc *);
144 static int age_init_rx_ring(struct age_softc *);
145 static void age_init_rr_ring(struct age_softc *);
146 static void age_init_cmb_block(struct age_softc *);
147 static void age_init_smb_block(struct age_softc *);
148 #ifndef __NO_STRICT_ALIGNMENT
149 static struct mbuf *age_fixup_rx(if_t, struct mbuf *);
150 #endif
151 static int age_newbuf(struct age_softc *, struct age_rxdesc *);
152 static void age_rxvlan(struct age_softc *);
153 static void age_rxfilter(struct age_softc *);
154 static int sysctl_age_stats(SYSCTL_HANDLER_ARGS);
155 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
156 static int sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS);
157 static int sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS);
158 
159 static device_method_t age_methods[] = {
160 	/* Device interface. */
161 	DEVMETHOD(device_probe,		age_probe),
162 	DEVMETHOD(device_attach,	age_attach),
163 	DEVMETHOD(device_detach,	age_detach),
164 	DEVMETHOD(device_shutdown,	age_shutdown),
165 	DEVMETHOD(device_suspend,	age_suspend),
166 	DEVMETHOD(device_resume,	age_resume),
167 
168 	/* MII interface. */
169 	DEVMETHOD(miibus_readreg,	age_miibus_readreg),
170 	DEVMETHOD(miibus_writereg,	age_miibus_writereg),
171 	DEVMETHOD(miibus_statchg,	age_miibus_statchg),
172 	{ NULL, NULL }
173 };
174 
175 static driver_t age_driver = {
176 	"age",
177 	age_methods,
178 	sizeof(struct age_softc)
179 };
180 
181 DRIVER_MODULE(age, pci, age_driver, 0, 0);
182 MODULE_PNP_INFO("U16:vendor;U16:device;D:#", pci, age, age_devs,
183     nitems(age_devs));
184 DRIVER_MODULE(miibus, age, miibus_driver, 0, 0);
185 
186 static struct resource_spec age_res_spec_mem[] = {
187 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
188 	{ -1,			0,		0 }
189 };
190 
191 static struct resource_spec age_irq_spec_legacy[] = {
192 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
193 	{ -1,			0,		0 }
194 };
195 
196 static struct resource_spec age_irq_spec_msi[] = {
197 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
198 	{ -1,			0,		0 }
199 };
200 
201 static struct resource_spec age_irq_spec_msix[] = {
202 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
203 	{ -1,			0,		0 }
204 };
205 
206 /*
207  *	Read a PHY register on the MII of the L1.
208  */
209 static int
210 age_miibus_readreg(device_t dev, int phy, int reg)
211 {
212 	struct age_softc *sc;
213 	uint32_t v;
214 	int i;
215 
216 	sc = device_get_softc(dev);
217 
218 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
219 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
220 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
221 		DELAY(1);
222 		v = CSR_READ_4(sc, AGE_MDIO);
223 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
224 			break;
225 	}
226 
227 	if (i == 0) {
228 		device_printf(sc->age_dev, "phy read timeout : %d\n", reg);
229 		return (0);
230 	}
231 
232 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
233 }
234 
235 /*
236  *	Write a PHY register on the MII of the L1.
237  */
238 static int
239 age_miibus_writereg(device_t dev, int phy, int reg, int val)
240 {
241 	struct age_softc *sc;
242 	uint32_t v;
243 	int i;
244 
245 	sc = device_get_softc(dev);
246 
247 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
248 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
249 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
250 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
251 		DELAY(1);
252 		v = CSR_READ_4(sc, AGE_MDIO);
253 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
254 			break;
255 	}
256 
257 	if (i == 0)
258 		device_printf(sc->age_dev, "phy write timeout : %d\n", reg);
259 
260 	return (0);
261 }
262 
263 /*
264  *	Callback from MII layer when media changes.
265  */
266 static void
267 age_miibus_statchg(device_t dev)
268 {
269 	struct age_softc *sc;
270 
271 	sc = device_get_softc(dev);
272 	taskqueue_enqueue(taskqueue_swi, &sc->age_link_task);
273 }
274 
275 /*
276  *	Get the current interface media status.
277  */
278 static void
279 age_mediastatus(if_t ifp, struct ifmediareq *ifmr)
280 {
281 	struct age_softc *sc;
282 	struct mii_data *mii;
283 
284 	sc = if_getsoftc(ifp);
285 	AGE_LOCK(sc);
286 	mii = device_get_softc(sc->age_miibus);
287 
288 	mii_pollstat(mii);
289 	ifmr->ifm_status = mii->mii_media_status;
290 	ifmr->ifm_active = mii->mii_media_active;
291 	AGE_UNLOCK(sc);
292 }
293 
294 /*
295  *	Set hardware to newly-selected media.
296  */
297 static int
298 age_mediachange(if_t ifp)
299 {
300 	struct age_softc *sc;
301 	struct mii_data *mii;
302 	struct mii_softc *miisc;
303 	int error;
304 
305 	sc = if_getsoftc(ifp);
306 	AGE_LOCK(sc);
307 	mii = device_get_softc(sc->age_miibus);
308 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
309 		PHY_RESET(miisc);
310 	error = mii_mediachg(mii);
311 	AGE_UNLOCK(sc);
312 
313 	return (error);
314 }
315 
316 static int
317 age_probe(device_t dev)
318 {
319 	struct age_dev *sp;
320 	int i;
321 	uint16_t vendor, devid;
322 
323 	vendor = pci_get_vendor(dev);
324 	devid = pci_get_device(dev);
325 	sp = age_devs;
326 	for (i = 0; i < nitems(age_devs); i++, sp++) {
327 		if (vendor == sp->age_vendorid &&
328 		    devid == sp->age_deviceid) {
329 			device_set_desc(dev, sp->age_name);
330 			return (BUS_PROBE_DEFAULT);
331 		}
332 	}
333 
334 	return (ENXIO);
335 }
336 
337 static void
338 age_get_macaddr(struct age_softc *sc)
339 {
340 	uint32_t ea[2], reg;
341 	int i, vpdc;
342 
343 	reg = CSR_READ_4(sc, AGE_SPI_CTRL);
344 	if ((reg & SPI_VPD_ENB) != 0) {
345 		/* Get VPD stored in TWSI EEPROM. */
346 		reg &= ~SPI_VPD_ENB;
347 		CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
348 	}
349 
350 	if (pci_find_cap(sc->age_dev, PCIY_VPD, &vpdc) == 0) {
351 		/*
352 		 * PCI VPD capability found, let TWSI reload EEPROM.
353 		 * This will set ethernet address of controller.
354 		 */
355 		CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
356 		    TWSI_CTRL_SW_LD_START);
357 		for (i = 100; i > 0; i--) {
358 			DELAY(1000);
359 			reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
360 			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
361 				break;
362 		}
363 		if (i == 0)
364 			device_printf(sc->age_dev,
365 			    "reloading EEPROM timeout!\n");
366 	} else {
367 		if (bootverbose)
368 			device_printf(sc->age_dev,
369 			    "PCI VPD capability not found!\n");
370 	}
371 
372 	ea[0] = CSR_READ_4(sc, AGE_PAR0);
373 	ea[1] = CSR_READ_4(sc, AGE_PAR1);
374 	sc->age_eaddr[0] = (ea[1] >> 8) & 0xFF;
375 	sc->age_eaddr[1] = (ea[1] >> 0) & 0xFF;
376 	sc->age_eaddr[2] = (ea[0] >> 24) & 0xFF;
377 	sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF;
378 	sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF;
379 	sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF;
380 }
381 
382 static void
383 age_phy_reset(struct age_softc *sc)
384 {
385 	uint16_t reg, pn;
386 	int i, linkup;
387 
388 	/* Reset PHY. */
389 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
390 	DELAY(2000);
391 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
392 	DELAY(2000);
393 
394 #define	ATPHY_DBG_ADDR		0x1D
395 #define	ATPHY_DBG_DATA		0x1E
396 #define	ATPHY_CDTC		0x16
397 #define	PHY_CDTC_ENB		0x0001
398 #define	PHY_CDTC_POFF		8
399 #define	ATPHY_CDTS		0x1C
400 #define	PHY_CDTS_STAT_OK	0x0000
401 #define	PHY_CDTS_STAT_SHORT	0x0100
402 #define	PHY_CDTS_STAT_OPEN	0x0200
403 #define	PHY_CDTS_STAT_INVAL	0x0300
404 #define	PHY_CDTS_STAT_MASK	0x0300
405 
406 	/* Check power saving mode. Magic from Linux. */
407 	age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
408 	for (linkup = 0, pn = 0; pn < 4; pn++) {
409 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr, ATPHY_CDTC,
410 		    (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
411 		for (i = 200; i > 0; i--) {
412 			DELAY(1000);
413 			reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
414 			    ATPHY_CDTC);
415 			if ((reg & PHY_CDTC_ENB) == 0)
416 				break;
417 		}
418 		DELAY(1000);
419 		reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
420 		    ATPHY_CDTS);
421 		if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
422 			linkup++;
423 			break;
424 		}
425 	}
426 	age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR,
427 	    BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
428 	if (linkup == 0) {
429 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
430 		    ATPHY_DBG_ADDR, 0);
431 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
432 		    ATPHY_DBG_DATA, 0x124E);
433 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
434 		    ATPHY_DBG_ADDR, 1);
435 		reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
436 		    ATPHY_DBG_DATA);
437 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
438 		    ATPHY_DBG_DATA, reg | 0x03);
439 		/* XXX */
440 		DELAY(1500 * 1000);
441 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
442 		    ATPHY_DBG_ADDR, 0);
443 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
444 		    ATPHY_DBG_DATA, 0x024E);
445     }
446 
447 #undef	ATPHY_DBG_ADDR
448 #undef	ATPHY_DBG_DATA
449 #undef	ATPHY_CDTC
450 #undef	PHY_CDTC_ENB
451 #undef	PHY_CDTC_POFF
452 #undef	ATPHY_CDTS
453 #undef	PHY_CDTS_STAT_OK
454 #undef	PHY_CDTS_STAT_SHORT
455 #undef	PHY_CDTS_STAT_OPEN
456 #undef	PHY_CDTS_STAT_INVAL
457 #undef	PHY_CDTS_STAT_MASK
458 }
459 
460 static int
461 age_attach(device_t dev)
462 {
463 	struct age_softc *sc;
464 	if_t ifp;
465 	uint16_t burst;
466 	int error, i, msic, msixc, pmc;
467 
468 	error = 0;
469 	sc = device_get_softc(dev);
470 	sc->age_dev = dev;
471 
472 	mtx_init(&sc->age_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
473 	    MTX_DEF);
474 	callout_init_mtx(&sc->age_tick_ch, &sc->age_mtx, 0);
475 	TASK_INIT(&sc->age_int_task, 0, age_int_task, sc);
476 	TASK_INIT(&sc->age_link_task, 0, age_link_task, sc);
477 
478 	/* Map the device. */
479 	pci_enable_busmaster(dev);
480 	sc->age_res_spec = age_res_spec_mem;
481 	sc->age_irq_spec = age_irq_spec_legacy;
482 	error = bus_alloc_resources(dev, sc->age_res_spec, sc->age_res);
483 	if (error != 0) {
484 		device_printf(dev, "cannot allocate memory resources.\n");
485 		goto fail;
486 	}
487 
488 	/* Set PHY address. */
489 	sc->age_phyaddr = AGE_PHY_ADDR;
490 
491 	/* Reset PHY. */
492 	age_phy_reset(sc);
493 
494 	/* Reset the ethernet controller. */
495 	age_reset(sc);
496 
497 	/* Get PCI and chip id/revision. */
498 	sc->age_rev = pci_get_revid(dev);
499 	sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
500 	    MASTER_CHIP_REV_SHIFT;
501 	if (bootverbose) {
502 		device_printf(dev, "PCI device revision : 0x%04x\n",
503 		    sc->age_rev);
504 		device_printf(dev, "Chip id/revision : 0x%04x\n",
505 		    sc->age_chip_rev);
506 	}
507 
508 	/*
509 	 * XXX
510 	 * Unintialized hardware returns an invalid chip id/revision
511 	 * as well as 0xFFFFFFFF for Tx/Rx fifo length. It seems that
512 	 * unplugged cable results in putting hardware into automatic
513 	 * power down mode which in turn returns invalld chip revision.
514 	 */
515 	if (sc->age_chip_rev == 0xFFFF) {
516 		device_printf(dev,"invalid chip revision : 0x%04x -- "
517 		    "not initialized?\n", sc->age_chip_rev);
518 		error = ENXIO;
519 		goto fail;
520 	}
521 
522 	device_printf(dev, "%d Tx FIFO, %d Rx FIFO\n",
523 	    CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
524 	    CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
525 
526 	/* Allocate IRQ resources. */
527 	msixc = pci_msix_count(dev);
528 	msic = pci_msi_count(dev);
529 	if (bootverbose) {
530 		device_printf(dev, "MSIX count : %d\n", msixc);
531 		device_printf(dev, "MSI count : %d\n", msic);
532 	}
533 
534 	/* Prefer MSIX over MSI. */
535 	if (msix_disable == 0 || msi_disable == 0) {
536 		if (msix_disable == 0 && msixc == AGE_MSIX_MESSAGES &&
537 		    pci_alloc_msix(dev, &msixc) == 0) {
538 			if (msic == AGE_MSIX_MESSAGES) {
539 				device_printf(dev, "Using %d MSIX messages.\n",
540 				    msixc);
541 				sc->age_flags |= AGE_FLAG_MSIX;
542 				sc->age_irq_spec = age_irq_spec_msix;
543 			} else
544 				pci_release_msi(dev);
545 		}
546 		if (msi_disable == 0 && (sc->age_flags & AGE_FLAG_MSIX) == 0 &&
547 		    msic == AGE_MSI_MESSAGES &&
548 		    pci_alloc_msi(dev, &msic) == 0) {
549 			if (msic == AGE_MSI_MESSAGES) {
550 				device_printf(dev, "Using %d MSI messages.\n",
551 				    msic);
552 				sc->age_flags |= AGE_FLAG_MSI;
553 				sc->age_irq_spec = age_irq_spec_msi;
554 			} else
555 				pci_release_msi(dev);
556 		}
557 	}
558 
559 	error = bus_alloc_resources(dev, sc->age_irq_spec, sc->age_irq);
560 	if (error != 0) {
561 		device_printf(dev, "cannot allocate IRQ resources.\n");
562 		goto fail;
563 	}
564 
565 	/* Get DMA parameters from PCIe device control register. */
566 	if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
567 		sc->age_flags |= AGE_FLAG_PCIE;
568 		burst = pci_read_config(dev, i + 0x08, 2);
569 		/* Max read request size. */
570 		sc->age_dma_rd_burst = ((burst >> 12) & 0x07) <<
571 		    DMA_CFG_RD_BURST_SHIFT;
572 		/* Max payload size. */
573 		sc->age_dma_wr_burst = ((burst >> 5) & 0x07) <<
574 		    DMA_CFG_WR_BURST_SHIFT;
575 		if (bootverbose) {
576 			device_printf(dev, "Read request size : %d bytes.\n",
577 			    128 << ((burst >> 12) & 0x07));
578 			device_printf(dev, "TLP payload size : %d bytes.\n",
579 			    128 << ((burst >> 5) & 0x07));
580 		}
581 	} else {
582 		sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
583 		sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
584 	}
585 
586 	/* Create device sysctl node. */
587 	age_sysctl_node(sc);
588 
589 	if ((error = age_dma_alloc(sc)) != 0)
590 		goto fail;
591 
592 	/* Load station address. */
593 	age_get_macaddr(sc);
594 
595 	ifp = sc->age_ifp = if_alloc(IFT_ETHER);
596 	if (ifp == NULL) {
597 		device_printf(dev, "cannot allocate ifnet structure.\n");
598 		error = ENXIO;
599 		goto fail;
600 	}
601 
602 	if_setsoftc(ifp, sc);
603 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
604 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
605 	if_setioctlfn(ifp, age_ioctl);
606 	if_setstartfn(ifp, age_start);
607 	if_setinitfn(ifp, age_init);
608 	if_setsendqlen(ifp, AGE_TX_RING_CNT - 1);
609 	if_setsendqready(ifp);
610 	if_setcapabilities(ifp, IFCAP_HWCSUM | IFCAP_TSO4);
611 	if_sethwassist(ifp, AGE_CSUM_FEATURES | CSUM_TSO);
612 	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) {
613 		sc->age_flags |= AGE_FLAG_PMCAP;
614 		if_setcapabilitiesbit(ifp, IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST, 0);
615 	}
616 	if_setcapenable(ifp, if_getcapabilities(ifp));
617 
618 	/* Set up MII bus. */
619 	error = mii_attach(dev, &sc->age_miibus, ifp, age_mediachange,
620 	    age_mediastatus, BMSR_DEFCAPMASK, sc->age_phyaddr, MII_OFFSET_ANY,
621 	    0);
622 	if (error != 0) {
623 		device_printf(dev, "attaching PHYs failed\n");
624 		goto fail;
625 	}
626 
627 	ether_ifattach(ifp, sc->age_eaddr);
628 
629 	/* VLAN capability setup. */
630 	if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
631 	    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO, 0);
632 	if_setcapenable(ifp, if_getcapabilities(ifp));
633 
634 	/* Tell the upper layer(s) we support long frames. */
635 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
636 
637 	/* Create local taskq. */
638 	sc->age_tq = taskqueue_create_fast("age_taskq", M_WAITOK,
639 	    taskqueue_thread_enqueue, &sc->age_tq);
640 	if (sc->age_tq == NULL) {
641 		device_printf(dev, "could not create taskqueue.\n");
642 		ether_ifdetach(ifp);
643 		error = ENXIO;
644 		goto fail;
645 	}
646 	taskqueue_start_threads(&sc->age_tq, 1, PI_NET, "%s taskq",
647 	    device_get_nameunit(sc->age_dev));
648 
649 	if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
650 		msic = AGE_MSIX_MESSAGES;
651 	else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
652 		msic = AGE_MSI_MESSAGES;
653 	else
654 		msic = 1;
655 	for (i = 0; i < msic; i++) {
656 		error = bus_setup_intr(dev, sc->age_irq[i],
657 		    INTR_TYPE_NET | INTR_MPSAFE, age_intr, NULL, sc,
658 		    &sc->age_intrhand[i]);
659 		if (error != 0)
660 			break;
661 	}
662 	if (error != 0) {
663 		device_printf(dev, "could not set up interrupt handler.\n");
664 		taskqueue_free(sc->age_tq);
665 		sc->age_tq = NULL;
666 		ether_ifdetach(ifp);
667 		goto fail;
668 	}
669 
670 fail:
671 	if (error != 0)
672 		age_detach(dev);
673 
674 	return (error);
675 }
676 
677 static int
678 age_detach(device_t dev)
679 {
680 	struct age_softc *sc;
681 	if_t ifp;
682 	int i, msic;
683 
684 	sc = device_get_softc(dev);
685 
686 	ifp = sc->age_ifp;
687 	if (device_is_attached(dev)) {
688 		AGE_LOCK(sc);
689 		sc->age_flags |= AGE_FLAG_DETACH;
690 		age_stop(sc);
691 		AGE_UNLOCK(sc);
692 		callout_drain(&sc->age_tick_ch);
693 		taskqueue_drain(sc->age_tq, &sc->age_int_task);
694 		taskqueue_drain(taskqueue_swi, &sc->age_link_task);
695 		ether_ifdetach(ifp);
696 	}
697 
698 	if (sc->age_tq != NULL) {
699 		taskqueue_drain(sc->age_tq, &sc->age_int_task);
700 		taskqueue_free(sc->age_tq);
701 		sc->age_tq = NULL;
702 	}
703 
704 	if (sc->age_miibus != NULL) {
705 		device_delete_child(dev, sc->age_miibus);
706 		sc->age_miibus = NULL;
707 	}
708 	bus_generic_detach(dev);
709 	age_dma_free(sc);
710 
711 	if (ifp != NULL) {
712 		if_free(ifp);
713 		sc->age_ifp = NULL;
714 	}
715 
716 	if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
717 		msic = AGE_MSIX_MESSAGES;
718 	else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
719 		msic = AGE_MSI_MESSAGES;
720 	else
721 		msic = 1;
722 	for (i = 0; i < msic; i++) {
723 		if (sc->age_intrhand[i] != NULL) {
724 			bus_teardown_intr(dev, sc->age_irq[i],
725 			    sc->age_intrhand[i]);
726 			sc->age_intrhand[i] = NULL;
727 		}
728 	}
729 
730 	bus_release_resources(dev, sc->age_irq_spec, sc->age_irq);
731 	if ((sc->age_flags & (AGE_FLAG_MSI | AGE_FLAG_MSIX)) != 0)
732 		pci_release_msi(dev);
733 	bus_release_resources(dev, sc->age_res_spec, sc->age_res);
734 	mtx_destroy(&sc->age_mtx);
735 
736 	return (0);
737 }
738 
739 static void
740 age_sysctl_node(struct age_softc *sc)
741 {
742 	int error;
743 
744 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
745 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
746 	    "stats", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
747 	    sc, 0, sysctl_age_stats, "I", "Statistics");
748 
749 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
750 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
751 	    "int_mod", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
752 	    &sc->age_int_mod, 0, sysctl_hw_age_int_mod, "I",
753 	    "age interrupt moderation");
754 
755 	/* Pull in device tunables. */
756 	sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
757 	error = resource_int_value(device_get_name(sc->age_dev),
758 	    device_get_unit(sc->age_dev), "int_mod", &sc->age_int_mod);
759 	if (error == 0) {
760 		if (sc->age_int_mod < AGE_IM_TIMER_MIN ||
761 		    sc->age_int_mod > AGE_IM_TIMER_MAX) {
762 			device_printf(sc->age_dev,
763 			    "int_mod value out of range; using default: %d\n",
764 			    AGE_IM_TIMER_DEFAULT);
765 			sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
766 		}
767 	}
768 
769 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
770 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
771 	    "process_limit", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
772 	    &sc->age_process_limit, 0, sysctl_hw_age_proc_limit, "I",
773 	    "max number of Rx events to process");
774 
775 	/* Pull in device tunables. */
776 	sc->age_process_limit = AGE_PROC_DEFAULT;
777 	error = resource_int_value(device_get_name(sc->age_dev),
778 	    device_get_unit(sc->age_dev), "process_limit",
779 	    &sc->age_process_limit);
780 	if (error == 0) {
781 		if (sc->age_process_limit < AGE_PROC_MIN ||
782 		    sc->age_process_limit > AGE_PROC_MAX) {
783 			device_printf(sc->age_dev,
784 			    "process_limit value out of range; "
785 			    "using default: %d\n", AGE_PROC_DEFAULT);
786 			sc->age_process_limit = AGE_PROC_DEFAULT;
787 		}
788 	}
789 }
790 
791 struct age_dmamap_arg {
792 	bus_addr_t	age_busaddr;
793 };
794 
795 static void
796 age_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
797 {
798 	struct age_dmamap_arg *ctx;
799 
800 	if (error != 0)
801 		return;
802 
803 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
804 
805 	ctx = (struct age_dmamap_arg *)arg;
806 	ctx->age_busaddr = segs[0].ds_addr;
807 }
808 
809 /*
810  * Attansic L1 controller have single register to specify high
811  * address part of DMA blocks. So all descriptor structures and
812  * DMA memory blocks should have the same high address of given
813  * 4GB address space(i.e. crossing 4GB boundary is not allowed).
814  */
815 static int
816 age_check_boundary(struct age_softc *sc)
817 {
818 	bus_addr_t rx_ring_end, rr_ring_end, tx_ring_end;
819 	bus_addr_t cmb_block_end, smb_block_end;
820 
821 	/* Tx/Rx descriptor queue should reside within 4GB boundary. */
822 	tx_ring_end = sc->age_rdata.age_tx_ring_paddr + AGE_TX_RING_SZ;
823 	rx_ring_end = sc->age_rdata.age_rx_ring_paddr + AGE_RX_RING_SZ;
824 	rr_ring_end = sc->age_rdata.age_rr_ring_paddr + AGE_RR_RING_SZ;
825 	cmb_block_end = sc->age_rdata.age_cmb_block_paddr + AGE_CMB_BLOCK_SZ;
826 	smb_block_end = sc->age_rdata.age_smb_block_paddr + AGE_SMB_BLOCK_SZ;
827 
828 	if ((AGE_ADDR_HI(tx_ring_end) !=
829 	    AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr)) ||
830 	    (AGE_ADDR_HI(rx_ring_end) !=
831 	    AGE_ADDR_HI(sc->age_rdata.age_rx_ring_paddr)) ||
832 	    (AGE_ADDR_HI(rr_ring_end) !=
833 	    AGE_ADDR_HI(sc->age_rdata.age_rr_ring_paddr)) ||
834 	    (AGE_ADDR_HI(cmb_block_end) !=
835 	    AGE_ADDR_HI(sc->age_rdata.age_cmb_block_paddr)) ||
836 	    (AGE_ADDR_HI(smb_block_end) !=
837 	    AGE_ADDR_HI(sc->age_rdata.age_smb_block_paddr)))
838 		return (EFBIG);
839 
840 	if ((AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rx_ring_end)) ||
841 	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rr_ring_end)) ||
842 	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(cmb_block_end)) ||
843 	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(smb_block_end)))
844 		return (EFBIG);
845 
846 	return (0);
847 }
848 
849 static int
850 age_dma_alloc(struct age_softc *sc)
851 {
852 	struct age_txdesc *txd;
853 	struct age_rxdesc *rxd;
854 	bus_addr_t lowaddr;
855 	struct age_dmamap_arg ctx;
856 	int error, i;
857 
858 	lowaddr = BUS_SPACE_MAXADDR;
859 
860 again:
861 	/* Create parent ring/DMA block tag. */
862 	error = bus_dma_tag_create(
863 	    bus_get_dma_tag(sc->age_dev), /* parent */
864 	    1, 0,			/* alignment, boundary */
865 	    lowaddr,			/* lowaddr */
866 	    BUS_SPACE_MAXADDR,		/* highaddr */
867 	    NULL, NULL,			/* filter, filterarg */
868 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
869 	    0,				/* nsegments */
870 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
871 	    0,				/* flags */
872 	    NULL, NULL,			/* lockfunc, lockarg */
873 	    &sc->age_cdata.age_parent_tag);
874 	if (error != 0) {
875 		device_printf(sc->age_dev,
876 		    "could not create parent DMA tag.\n");
877 		goto fail;
878 	}
879 
880 	/* Create tag for Tx ring. */
881 	error = bus_dma_tag_create(
882 	    sc->age_cdata.age_parent_tag, /* parent */
883 	    AGE_TX_RING_ALIGN, 0,	/* alignment, boundary */
884 	    BUS_SPACE_MAXADDR,		/* lowaddr */
885 	    BUS_SPACE_MAXADDR,		/* highaddr */
886 	    NULL, NULL,			/* filter, filterarg */
887 	    AGE_TX_RING_SZ,		/* maxsize */
888 	    1,				/* nsegments */
889 	    AGE_TX_RING_SZ,		/* maxsegsize */
890 	    0,				/* flags */
891 	    NULL, NULL,			/* lockfunc, lockarg */
892 	    &sc->age_cdata.age_tx_ring_tag);
893 	if (error != 0) {
894 		device_printf(sc->age_dev,
895 		    "could not create Tx ring DMA tag.\n");
896 		goto fail;
897 	}
898 
899 	/* Create tag for Rx ring. */
900 	error = bus_dma_tag_create(
901 	    sc->age_cdata.age_parent_tag, /* parent */
902 	    AGE_RX_RING_ALIGN, 0,	/* alignment, boundary */
903 	    BUS_SPACE_MAXADDR,		/* lowaddr */
904 	    BUS_SPACE_MAXADDR,		/* highaddr */
905 	    NULL, NULL,			/* filter, filterarg */
906 	    AGE_RX_RING_SZ,		/* maxsize */
907 	    1,				/* nsegments */
908 	    AGE_RX_RING_SZ,		/* maxsegsize */
909 	    0,				/* flags */
910 	    NULL, NULL,			/* lockfunc, lockarg */
911 	    &sc->age_cdata.age_rx_ring_tag);
912 	if (error != 0) {
913 		device_printf(sc->age_dev,
914 		    "could not create Rx ring DMA tag.\n");
915 		goto fail;
916 	}
917 
918 	/* Create tag for Rx return ring. */
919 	error = bus_dma_tag_create(
920 	    sc->age_cdata.age_parent_tag, /* parent */
921 	    AGE_RR_RING_ALIGN, 0,	/* alignment, boundary */
922 	    BUS_SPACE_MAXADDR,		/* lowaddr */
923 	    BUS_SPACE_MAXADDR,		/* highaddr */
924 	    NULL, NULL,			/* filter, filterarg */
925 	    AGE_RR_RING_SZ,		/* maxsize */
926 	    1,				/* nsegments */
927 	    AGE_RR_RING_SZ,		/* maxsegsize */
928 	    0,				/* flags */
929 	    NULL, NULL,			/* lockfunc, lockarg */
930 	    &sc->age_cdata.age_rr_ring_tag);
931 	if (error != 0) {
932 		device_printf(sc->age_dev,
933 		    "could not create Rx return ring DMA tag.\n");
934 		goto fail;
935 	}
936 
937 	/* Create tag for coalesing message block. */
938 	error = bus_dma_tag_create(
939 	    sc->age_cdata.age_parent_tag, /* parent */
940 	    AGE_CMB_ALIGN, 0,		/* alignment, boundary */
941 	    BUS_SPACE_MAXADDR,		/* lowaddr */
942 	    BUS_SPACE_MAXADDR,		/* highaddr */
943 	    NULL, NULL,			/* filter, filterarg */
944 	    AGE_CMB_BLOCK_SZ,		/* maxsize */
945 	    1,				/* nsegments */
946 	    AGE_CMB_BLOCK_SZ,		/* maxsegsize */
947 	    0,				/* flags */
948 	    NULL, NULL,			/* lockfunc, lockarg */
949 	    &sc->age_cdata.age_cmb_block_tag);
950 	if (error != 0) {
951 		device_printf(sc->age_dev,
952 		    "could not create CMB DMA tag.\n");
953 		goto fail;
954 	}
955 
956 	/* Create tag for statistics message block. */
957 	error = bus_dma_tag_create(
958 	    sc->age_cdata.age_parent_tag, /* parent */
959 	    AGE_SMB_ALIGN, 0,		/* alignment, boundary */
960 	    BUS_SPACE_MAXADDR,		/* lowaddr */
961 	    BUS_SPACE_MAXADDR,		/* highaddr */
962 	    NULL, NULL,			/* filter, filterarg */
963 	    AGE_SMB_BLOCK_SZ,		/* maxsize */
964 	    1,				/* nsegments */
965 	    AGE_SMB_BLOCK_SZ,		/* maxsegsize */
966 	    0,				/* flags */
967 	    NULL, NULL,			/* lockfunc, lockarg */
968 	    &sc->age_cdata.age_smb_block_tag);
969 	if (error != 0) {
970 		device_printf(sc->age_dev,
971 		    "could not create SMB DMA tag.\n");
972 		goto fail;
973 	}
974 
975 	/* Allocate DMA'able memory and load the DMA map. */
976 	error = bus_dmamem_alloc(sc->age_cdata.age_tx_ring_tag,
977 	    (void **)&sc->age_rdata.age_tx_ring,
978 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
979 	    &sc->age_cdata.age_tx_ring_map);
980 	if (error != 0) {
981 		device_printf(sc->age_dev,
982 		    "could not allocate DMA'able memory for Tx ring.\n");
983 		goto fail;
984 	}
985 	ctx.age_busaddr = 0;
986 	error = bus_dmamap_load(sc->age_cdata.age_tx_ring_tag,
987 	    sc->age_cdata.age_tx_ring_map, sc->age_rdata.age_tx_ring,
988 	    AGE_TX_RING_SZ, age_dmamap_cb, &ctx, 0);
989 	if (error != 0 || ctx.age_busaddr == 0) {
990 		device_printf(sc->age_dev,
991 		    "could not load DMA'able memory for Tx ring.\n");
992 		goto fail;
993 	}
994 	sc->age_rdata.age_tx_ring_paddr = ctx.age_busaddr;
995 	/* Rx ring */
996 	error = bus_dmamem_alloc(sc->age_cdata.age_rx_ring_tag,
997 	    (void **)&sc->age_rdata.age_rx_ring,
998 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
999 	    &sc->age_cdata.age_rx_ring_map);
1000 	if (error != 0) {
1001 		device_printf(sc->age_dev,
1002 		    "could not allocate DMA'able memory for Rx ring.\n");
1003 		goto fail;
1004 	}
1005 	ctx.age_busaddr = 0;
1006 	error = bus_dmamap_load(sc->age_cdata.age_rx_ring_tag,
1007 	    sc->age_cdata.age_rx_ring_map, sc->age_rdata.age_rx_ring,
1008 	    AGE_RX_RING_SZ, age_dmamap_cb, &ctx, 0);
1009 	if (error != 0 || ctx.age_busaddr == 0) {
1010 		device_printf(sc->age_dev,
1011 		    "could not load DMA'able memory for Rx ring.\n");
1012 		goto fail;
1013 	}
1014 	sc->age_rdata.age_rx_ring_paddr = ctx.age_busaddr;
1015 	/* Rx return ring */
1016 	error = bus_dmamem_alloc(sc->age_cdata.age_rr_ring_tag,
1017 	    (void **)&sc->age_rdata.age_rr_ring,
1018 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1019 	    &sc->age_cdata.age_rr_ring_map);
1020 	if (error != 0) {
1021 		device_printf(sc->age_dev,
1022 		    "could not allocate DMA'able memory for Rx return ring.\n");
1023 		goto fail;
1024 	}
1025 	ctx.age_busaddr = 0;
1026 	error = bus_dmamap_load(sc->age_cdata.age_rr_ring_tag,
1027 	    sc->age_cdata.age_rr_ring_map, sc->age_rdata.age_rr_ring,
1028 	    AGE_RR_RING_SZ, age_dmamap_cb,
1029 	    &ctx, 0);
1030 	if (error != 0 || ctx.age_busaddr == 0) {
1031 		device_printf(sc->age_dev,
1032 		    "could not load DMA'able memory for Rx return ring.\n");
1033 		goto fail;
1034 	}
1035 	sc->age_rdata.age_rr_ring_paddr = ctx.age_busaddr;
1036 	/* CMB block */
1037 	error = bus_dmamem_alloc(sc->age_cdata.age_cmb_block_tag,
1038 	    (void **)&sc->age_rdata.age_cmb_block,
1039 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1040 	    &sc->age_cdata.age_cmb_block_map);
1041 	if (error != 0) {
1042 		device_printf(sc->age_dev,
1043 		    "could not allocate DMA'able memory for CMB block.\n");
1044 		goto fail;
1045 	}
1046 	ctx.age_busaddr = 0;
1047 	error = bus_dmamap_load(sc->age_cdata.age_cmb_block_tag,
1048 	    sc->age_cdata.age_cmb_block_map, sc->age_rdata.age_cmb_block,
1049 	    AGE_CMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1050 	if (error != 0 || ctx.age_busaddr == 0) {
1051 		device_printf(sc->age_dev,
1052 		    "could not load DMA'able memory for CMB block.\n");
1053 		goto fail;
1054 	}
1055 	sc->age_rdata.age_cmb_block_paddr = ctx.age_busaddr;
1056 	/* SMB block */
1057 	error = bus_dmamem_alloc(sc->age_cdata.age_smb_block_tag,
1058 	    (void **)&sc->age_rdata.age_smb_block,
1059 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1060 	    &sc->age_cdata.age_smb_block_map);
1061 	if (error != 0) {
1062 		device_printf(sc->age_dev,
1063 		    "could not allocate DMA'able memory for SMB block.\n");
1064 		goto fail;
1065 	}
1066 	ctx.age_busaddr = 0;
1067 	error = bus_dmamap_load(sc->age_cdata.age_smb_block_tag,
1068 	    sc->age_cdata.age_smb_block_map, sc->age_rdata.age_smb_block,
1069 	    AGE_SMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1070 	if (error != 0 || ctx.age_busaddr == 0) {
1071 		device_printf(sc->age_dev,
1072 		    "could not load DMA'able memory for SMB block.\n");
1073 		goto fail;
1074 	}
1075 	sc->age_rdata.age_smb_block_paddr = ctx.age_busaddr;
1076 
1077 	/*
1078 	 * All ring buffer and DMA blocks should have the same
1079 	 * high address part of 64bit DMA address space.
1080 	 */
1081 	if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1082 	    (error = age_check_boundary(sc)) != 0) {
1083 		device_printf(sc->age_dev, "4GB boundary crossed, "
1084 		    "switching to 32bit DMA addressing mode.\n");
1085 		age_dma_free(sc);
1086 		/* Limit DMA address space to 32bit and try again. */
1087 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1088 		goto again;
1089 	}
1090 
1091 	/*
1092 	 * Create Tx/Rx buffer parent tag.
1093 	 * L1 supports full 64bit DMA addressing in Tx/Rx buffers
1094 	 * so it needs separate parent DMA tag.
1095 	 * XXX
1096 	 * It seems enabling 64bit DMA causes data corruption. Limit
1097 	 * DMA address space to 32bit.
1098 	 */
1099 	error = bus_dma_tag_create(
1100 	    bus_get_dma_tag(sc->age_dev), /* parent */
1101 	    1, 0,			/* alignment, boundary */
1102 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1103 	    BUS_SPACE_MAXADDR,		/* highaddr */
1104 	    NULL, NULL,			/* filter, filterarg */
1105 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1106 	    0,				/* nsegments */
1107 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1108 	    0,				/* flags */
1109 	    NULL, NULL,			/* lockfunc, lockarg */
1110 	    &sc->age_cdata.age_buffer_tag);
1111 	if (error != 0) {
1112 		device_printf(sc->age_dev,
1113 		    "could not create parent buffer DMA tag.\n");
1114 		goto fail;
1115 	}
1116 
1117 	/* Create tag for Tx buffers. */
1118 	error = bus_dma_tag_create(
1119 	    sc->age_cdata.age_buffer_tag, /* parent */
1120 	    1, 0,			/* alignment, boundary */
1121 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1122 	    BUS_SPACE_MAXADDR,		/* highaddr */
1123 	    NULL, NULL,			/* filter, filterarg */
1124 	    AGE_TSO_MAXSIZE,		/* maxsize */
1125 	    AGE_MAXTXSEGS,		/* nsegments */
1126 	    AGE_TSO_MAXSEGSIZE,		/* maxsegsize */
1127 	    0,				/* flags */
1128 	    NULL, NULL,			/* lockfunc, lockarg */
1129 	    &sc->age_cdata.age_tx_tag);
1130 	if (error != 0) {
1131 		device_printf(sc->age_dev, "could not create Tx DMA tag.\n");
1132 		goto fail;
1133 	}
1134 
1135 	/* Create tag for Rx buffers. */
1136 	error = bus_dma_tag_create(
1137 	    sc->age_cdata.age_buffer_tag, /* parent */
1138 	    AGE_RX_BUF_ALIGN, 0,	/* alignment, boundary */
1139 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1140 	    BUS_SPACE_MAXADDR,		/* highaddr */
1141 	    NULL, NULL,			/* filter, filterarg */
1142 	    MCLBYTES,			/* maxsize */
1143 	    1,				/* nsegments */
1144 	    MCLBYTES,			/* maxsegsize */
1145 	    0,				/* flags */
1146 	    NULL, NULL,			/* lockfunc, lockarg */
1147 	    &sc->age_cdata.age_rx_tag);
1148 	if (error != 0) {
1149 		device_printf(sc->age_dev, "could not create Rx DMA tag.\n");
1150 		goto fail;
1151 	}
1152 
1153 	/* Create DMA maps for Tx buffers. */
1154 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
1155 		txd = &sc->age_cdata.age_txdesc[i];
1156 		txd->tx_m = NULL;
1157 		txd->tx_dmamap = NULL;
1158 		error = bus_dmamap_create(sc->age_cdata.age_tx_tag, 0,
1159 		    &txd->tx_dmamap);
1160 		if (error != 0) {
1161 			device_printf(sc->age_dev,
1162 			    "could not create Tx dmamap.\n");
1163 			goto fail;
1164 		}
1165 	}
1166 	/* Create DMA maps for Rx buffers. */
1167 	if ((error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1168 	    &sc->age_cdata.age_rx_sparemap)) != 0) {
1169 		device_printf(sc->age_dev,
1170 		    "could not create spare Rx dmamap.\n");
1171 		goto fail;
1172 	}
1173 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
1174 		rxd = &sc->age_cdata.age_rxdesc[i];
1175 		rxd->rx_m = NULL;
1176 		rxd->rx_dmamap = NULL;
1177 		error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1178 		    &rxd->rx_dmamap);
1179 		if (error != 0) {
1180 			device_printf(sc->age_dev,
1181 			    "could not create Rx dmamap.\n");
1182 			goto fail;
1183 		}
1184 	}
1185 
1186 fail:
1187 	return (error);
1188 }
1189 
1190 static void
1191 age_dma_free(struct age_softc *sc)
1192 {
1193 	struct age_txdesc *txd;
1194 	struct age_rxdesc *rxd;
1195 	int i;
1196 
1197 	/* Tx buffers */
1198 	if (sc->age_cdata.age_tx_tag != NULL) {
1199 		for (i = 0; i < AGE_TX_RING_CNT; i++) {
1200 			txd = &sc->age_cdata.age_txdesc[i];
1201 			if (txd->tx_dmamap != NULL) {
1202 				bus_dmamap_destroy(sc->age_cdata.age_tx_tag,
1203 				    txd->tx_dmamap);
1204 				txd->tx_dmamap = NULL;
1205 			}
1206 		}
1207 		bus_dma_tag_destroy(sc->age_cdata.age_tx_tag);
1208 		sc->age_cdata.age_tx_tag = NULL;
1209 	}
1210 	/* Rx buffers */
1211 	if (sc->age_cdata.age_rx_tag != NULL) {
1212 		for (i = 0; i < AGE_RX_RING_CNT; i++) {
1213 			rxd = &sc->age_cdata.age_rxdesc[i];
1214 			if (rxd->rx_dmamap != NULL) {
1215 				bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1216 				    rxd->rx_dmamap);
1217 				rxd->rx_dmamap = NULL;
1218 			}
1219 		}
1220 		if (sc->age_cdata.age_rx_sparemap != NULL) {
1221 			bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1222 			    sc->age_cdata.age_rx_sparemap);
1223 			sc->age_cdata.age_rx_sparemap = NULL;
1224 		}
1225 		bus_dma_tag_destroy(sc->age_cdata.age_rx_tag);
1226 		sc->age_cdata.age_rx_tag = NULL;
1227 	}
1228 	/* Tx ring. */
1229 	if (sc->age_cdata.age_tx_ring_tag != NULL) {
1230 		if (sc->age_rdata.age_tx_ring_paddr != 0)
1231 			bus_dmamap_unload(sc->age_cdata.age_tx_ring_tag,
1232 			    sc->age_cdata.age_tx_ring_map);
1233 		if (sc->age_rdata.age_tx_ring != NULL)
1234 			bus_dmamem_free(sc->age_cdata.age_tx_ring_tag,
1235 			    sc->age_rdata.age_tx_ring,
1236 			    sc->age_cdata.age_tx_ring_map);
1237 		sc->age_rdata.age_tx_ring_paddr = 0;
1238 		sc->age_rdata.age_tx_ring = NULL;
1239 		bus_dma_tag_destroy(sc->age_cdata.age_tx_ring_tag);
1240 		sc->age_cdata.age_tx_ring_tag = NULL;
1241 	}
1242 	/* Rx ring. */
1243 	if (sc->age_cdata.age_rx_ring_tag != NULL) {
1244 		if (sc->age_rdata.age_rx_ring_paddr != 0)
1245 			bus_dmamap_unload(sc->age_cdata.age_rx_ring_tag,
1246 			    sc->age_cdata.age_rx_ring_map);
1247 		if (sc->age_rdata.age_rx_ring != NULL)
1248 			bus_dmamem_free(sc->age_cdata.age_rx_ring_tag,
1249 			    sc->age_rdata.age_rx_ring,
1250 			    sc->age_cdata.age_rx_ring_map);
1251 		sc->age_rdata.age_rx_ring_paddr = 0;
1252 		sc->age_rdata.age_rx_ring = NULL;
1253 		bus_dma_tag_destroy(sc->age_cdata.age_rx_ring_tag);
1254 		sc->age_cdata.age_rx_ring_tag = NULL;
1255 	}
1256 	/* Rx return ring. */
1257 	if (sc->age_cdata.age_rr_ring_tag != NULL) {
1258 		if (sc->age_rdata.age_rr_ring_paddr != 0)
1259 			bus_dmamap_unload(sc->age_cdata.age_rr_ring_tag,
1260 			    sc->age_cdata.age_rr_ring_map);
1261 		if (sc->age_rdata.age_rr_ring != NULL)
1262 			bus_dmamem_free(sc->age_cdata.age_rr_ring_tag,
1263 			    sc->age_rdata.age_rr_ring,
1264 			    sc->age_cdata.age_rr_ring_map);
1265 		sc->age_rdata.age_rr_ring_paddr = 0;
1266 		sc->age_rdata.age_rr_ring = NULL;
1267 		bus_dma_tag_destroy(sc->age_cdata.age_rr_ring_tag);
1268 		sc->age_cdata.age_rr_ring_tag = NULL;
1269 	}
1270 	/* CMB block */
1271 	if (sc->age_cdata.age_cmb_block_tag != NULL) {
1272 		if (sc->age_rdata.age_cmb_block_paddr != 0)
1273 			bus_dmamap_unload(sc->age_cdata.age_cmb_block_tag,
1274 			    sc->age_cdata.age_cmb_block_map);
1275 		if (sc->age_rdata.age_cmb_block != NULL)
1276 			bus_dmamem_free(sc->age_cdata.age_cmb_block_tag,
1277 			    sc->age_rdata.age_cmb_block,
1278 			    sc->age_cdata.age_cmb_block_map);
1279 		sc->age_rdata.age_cmb_block_paddr = 0;
1280 		sc->age_rdata.age_cmb_block = NULL;
1281 		bus_dma_tag_destroy(sc->age_cdata.age_cmb_block_tag);
1282 		sc->age_cdata.age_cmb_block_tag = NULL;
1283 	}
1284 	/* SMB block */
1285 	if (sc->age_cdata.age_smb_block_tag != NULL) {
1286 		if (sc->age_rdata.age_smb_block_paddr != 0)
1287 			bus_dmamap_unload(sc->age_cdata.age_smb_block_tag,
1288 			    sc->age_cdata.age_smb_block_map);
1289 		if (sc->age_rdata.age_smb_block != NULL)
1290 			bus_dmamem_free(sc->age_cdata.age_smb_block_tag,
1291 			    sc->age_rdata.age_smb_block,
1292 			    sc->age_cdata.age_smb_block_map);
1293 		sc->age_rdata.age_smb_block_paddr = 0;
1294 		sc->age_rdata.age_smb_block = NULL;
1295 		bus_dma_tag_destroy(sc->age_cdata.age_smb_block_tag);
1296 		sc->age_cdata.age_smb_block_tag = NULL;
1297 	}
1298 
1299 	if (sc->age_cdata.age_buffer_tag != NULL) {
1300 		bus_dma_tag_destroy(sc->age_cdata.age_buffer_tag);
1301 		sc->age_cdata.age_buffer_tag = NULL;
1302 	}
1303 	if (sc->age_cdata.age_parent_tag != NULL) {
1304 		bus_dma_tag_destroy(sc->age_cdata.age_parent_tag);
1305 		sc->age_cdata.age_parent_tag = NULL;
1306 	}
1307 }
1308 
1309 /*
1310  *	Make sure the interface is stopped at reboot time.
1311  */
1312 static int
1313 age_shutdown(device_t dev)
1314 {
1315 
1316 	return (age_suspend(dev));
1317 }
1318 
1319 static void
1320 age_setwol(struct age_softc *sc)
1321 {
1322 	if_t ifp;
1323 	struct mii_data *mii;
1324 	uint32_t reg, pmcs;
1325 	uint16_t pmstat;
1326 	int aneg, i, pmc;
1327 
1328 	AGE_LOCK_ASSERT(sc);
1329 
1330 	if (pci_find_cap(sc->age_dev, PCIY_PMG, &pmc) != 0) {
1331 		CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1332 		/*
1333 		 * No PME capability, PHY power down.
1334 		 * XXX
1335 		 * Due to an unknown reason powering down PHY resulted
1336 		 * in unexpected results such as inaccessbility of
1337 		 * hardware of freshly rebooted system. Disable
1338 		 * powering down PHY until I got more information for
1339 		 * Attansic/Atheros PHY hardwares.
1340 		 */
1341 #ifdef notyet
1342 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1343 		    MII_BMCR, BMCR_PDOWN);
1344 #endif
1345 		return;
1346 	}
1347 
1348 	ifp = sc->age_ifp;
1349 	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0) {
1350 		/*
1351 		 * Note, this driver resets the link speed to 10/100Mbps with
1352 		 * auto-negotiation but we don't know whether that operation
1353 		 * would succeed or not as it have no control after powering
1354 		 * off. If the renegotiation fail WOL may not work. Running
1355 		 * at 1Gbps will draw more power than 375mA at 3.3V which is
1356 		 * specified in PCI specification and that would result in
1357 		 * complete shutdowning power to ethernet controller.
1358 		 *
1359 		 * TODO
1360 		 *  Save current negotiated media speed/duplex/flow-control
1361 		 *  to softc and restore the same link again after resuming.
1362 		 *  PHY handling such as power down/resetting to 100Mbps
1363 		 *  may be better handled in suspend method in phy driver.
1364 		 */
1365 		mii = device_get_softc(sc->age_miibus);
1366 		mii_pollstat(mii);
1367 		aneg = 0;
1368 		if ((mii->mii_media_status & IFM_AVALID) != 0) {
1369 			switch IFM_SUBTYPE(mii->mii_media_active) {
1370 			case IFM_10_T:
1371 			case IFM_100_TX:
1372 				goto got_link;
1373 			case IFM_1000_T:
1374 				aneg++;
1375 			default:
1376 				break;
1377 			}
1378 		}
1379 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1380 		    MII_100T2CR, 0);
1381 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1382 		    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD |
1383 		    ANAR_10 | ANAR_CSMA);
1384 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1385 		    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1386 		DELAY(1000);
1387 		if (aneg != 0) {
1388 			/* Poll link state until age(4) get a 10/100 link. */
1389 			for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1390 				mii_pollstat(mii);
1391 				if ((mii->mii_media_status & IFM_AVALID) != 0) {
1392 					switch (IFM_SUBTYPE(
1393 					    mii->mii_media_active)) {
1394 					case IFM_10_T:
1395 					case IFM_100_TX:
1396 						age_mac_config(sc);
1397 						goto got_link;
1398 					default:
1399 						break;
1400 					}
1401 				}
1402 				AGE_UNLOCK(sc);
1403 				pause("agelnk", hz);
1404 				AGE_LOCK(sc);
1405 			}
1406 			if (i == MII_ANEGTICKS_GIGE)
1407 				device_printf(sc->age_dev,
1408 				    "establishing link failed, "
1409 				    "WOL may not work!");
1410 		}
1411 		/*
1412 		 * No link, force MAC to have 100Mbps, full-duplex link.
1413 		 * This is the last resort and may/may not work.
1414 		 */
1415 		mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1416 		mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1417 		age_mac_config(sc);
1418 	}
1419 
1420 got_link:
1421 	pmcs = 0;
1422 	if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0)
1423 		pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1424 	CSR_WRITE_4(sc, AGE_WOL_CFG, pmcs);
1425 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1426 	reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC);
1427 	reg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST);
1428 	if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) != 0)
1429 		reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1430 	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0) {
1431 		reg |= MAC_CFG_RX_ENB;
1432 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1433 	}
1434 
1435 	/* Request PME. */
1436 	pmstat = pci_read_config(sc->age_dev, pmc + PCIR_POWER_STATUS, 2);
1437 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1438 	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0)
1439 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1440 	pci_write_config(sc->age_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1441 #ifdef notyet
1442 	/* See above for powering down PHY issues. */
1443 	if ((if_getcapenable(ifp) & IFCAP_WOL) == 0) {
1444 		/* No WOL, PHY power down. */
1445 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1446 		    MII_BMCR, BMCR_PDOWN);
1447 	}
1448 #endif
1449 }
1450 
1451 static int
1452 age_suspend(device_t dev)
1453 {
1454 	struct age_softc *sc;
1455 
1456 	sc = device_get_softc(dev);
1457 
1458 	AGE_LOCK(sc);
1459 	age_stop(sc);
1460 	age_setwol(sc);
1461 	AGE_UNLOCK(sc);
1462 
1463 	return (0);
1464 }
1465 
1466 static int
1467 age_resume(device_t dev)
1468 {
1469 	struct age_softc *sc;
1470 	if_t ifp;
1471 
1472 	sc = device_get_softc(dev);
1473 
1474 	AGE_LOCK(sc);
1475 	age_phy_reset(sc);
1476 	ifp = sc->age_ifp;
1477 	if ((if_getflags(ifp) & IFF_UP) != 0)
1478 		age_init_locked(sc);
1479 
1480 	AGE_UNLOCK(sc);
1481 
1482 	return (0);
1483 }
1484 
1485 static int
1486 age_encap(struct age_softc *sc, struct mbuf **m_head)
1487 {
1488 	struct age_txdesc *txd, *txd_last;
1489 	struct tx_desc *desc;
1490 	struct mbuf *m;
1491 	struct ip *ip;
1492 	struct tcphdr *tcp;
1493 	bus_dma_segment_t txsegs[AGE_MAXTXSEGS];
1494 	bus_dmamap_t map;
1495 	uint32_t cflags, hdrlen, ip_off, poff, vtag;
1496 	int error, i, nsegs, prod, si;
1497 
1498 	AGE_LOCK_ASSERT(sc);
1499 
1500 	M_ASSERTPKTHDR((*m_head));
1501 
1502 	m = *m_head;
1503 	ip = NULL;
1504 	tcp = NULL;
1505 	cflags = vtag = 0;
1506 	ip_off = poff = 0;
1507 	if ((m->m_pkthdr.csum_flags & (AGE_CSUM_FEATURES | CSUM_TSO)) != 0) {
1508 		/*
1509 		 * L1 requires offset of TCP/UDP payload in its Tx
1510 		 * descriptor to perform hardware Tx checksum offload.
1511 		 * Additionally, TSO requires IP/TCP header size and
1512 		 * modification of IP/TCP header in order to make TSO
1513 		 * engine work. This kind of operation takes many CPU
1514 		 * cycles on FreeBSD so fast host CPU is needed to get
1515 		 * smooth TSO performance.
1516 		 */
1517 		struct ether_header *eh;
1518 
1519 		if (M_WRITABLE(m) == 0) {
1520 			/* Get a writable copy. */
1521 			m = m_dup(*m_head, M_NOWAIT);
1522 			/* Release original mbufs. */
1523 			m_freem(*m_head);
1524 			if (m == NULL) {
1525 				*m_head = NULL;
1526 				return (ENOBUFS);
1527 			}
1528 			*m_head = m;
1529 		}
1530 		ip_off = sizeof(struct ether_header);
1531 		m = m_pullup(m, ip_off);
1532 		if (m == NULL) {
1533 			*m_head = NULL;
1534 			return (ENOBUFS);
1535 		}
1536 		eh = mtod(m, struct ether_header *);
1537 		/*
1538 		 * Check if hardware VLAN insertion is off.
1539 		 * Additional check for LLC/SNAP frame?
1540 		 */
1541 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1542 			ip_off = sizeof(struct ether_vlan_header);
1543 			m = m_pullup(m, ip_off);
1544 			if (m == NULL) {
1545 				*m_head = NULL;
1546 				return (ENOBUFS);
1547 			}
1548 		}
1549 		m = m_pullup(m, ip_off + sizeof(struct ip));
1550 		if (m == NULL) {
1551 			*m_head = NULL;
1552 			return (ENOBUFS);
1553 		}
1554 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1555 		poff = ip_off + (ip->ip_hl << 2);
1556 		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1557 			m = m_pullup(m, poff + sizeof(struct tcphdr));
1558 			if (m == NULL) {
1559 				*m_head = NULL;
1560 				return (ENOBUFS);
1561 			}
1562 			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1563 			m = m_pullup(m, poff + (tcp->th_off << 2));
1564 			if (m == NULL) {
1565 				*m_head = NULL;
1566 				return (ENOBUFS);
1567 			}
1568 			/*
1569 			 * L1 requires IP/TCP header size and offset as
1570 			 * well as TCP pseudo checksum which complicates
1571 			 * TSO configuration. I guess this comes from the
1572 			 * adherence to Microsoft NDIS Large Send
1573 			 * specification which requires insertion of
1574 			 * pseudo checksum by upper stack. The pseudo
1575 			 * checksum that NDIS refers to doesn't include
1576 			 * TCP payload length so age(4) should recompute
1577 			 * the pseudo checksum here. Hopefully this wouldn't
1578 			 * be much burden on modern CPUs.
1579 			 * Reset IP checksum and recompute TCP pseudo
1580 			 * checksum as NDIS specification said.
1581 			 */
1582 			ip = (struct ip *)(mtod(m, char *) + ip_off);
1583 			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1584 			ip->ip_sum = 0;
1585 			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1586 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1587 		}
1588 		*m_head = m;
1589 	}
1590 
1591 	si = prod = sc->age_cdata.age_tx_prod;
1592 	txd = &sc->age_cdata.age_txdesc[prod];
1593 	txd_last = txd;
1594 	map = txd->tx_dmamap;
1595 
1596 	error =  bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1597 	    *m_head, txsegs, &nsegs, 0);
1598 	if (error == EFBIG) {
1599 		m = m_collapse(*m_head, M_NOWAIT, AGE_MAXTXSEGS);
1600 		if (m == NULL) {
1601 			m_freem(*m_head);
1602 			*m_head = NULL;
1603 			return (ENOMEM);
1604 		}
1605 		*m_head = m;
1606 		error = bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1607 		    *m_head, txsegs, &nsegs, 0);
1608 		if (error != 0) {
1609 			m_freem(*m_head);
1610 			*m_head = NULL;
1611 			return (error);
1612 		}
1613 	} else if (error != 0)
1614 		return (error);
1615 	if (nsegs == 0) {
1616 		m_freem(*m_head);
1617 		*m_head = NULL;
1618 		return (EIO);
1619 	}
1620 
1621 	/* Check descriptor overrun. */
1622 	if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1623 		bus_dmamap_unload(sc->age_cdata.age_tx_tag, map);
1624 		return (ENOBUFS);
1625 	}
1626 
1627 	m = *m_head;
1628 	/* Configure VLAN hardware tag insertion. */
1629 	if ((m->m_flags & M_VLANTAG) != 0) {
1630 		vtag = AGE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1631 		vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1632 		cflags |= AGE_TD_INSERT_VLAN_TAG;
1633 	}
1634 
1635 	desc = NULL;
1636 	i = 0;
1637 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1638 		/* Request TSO and set MSS. */
1639 		cflags |= AGE_TD_TSO_IPV4;
1640 		cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM;
1641 		cflags |= ((uint32_t)m->m_pkthdr.tso_segsz <<
1642 		    AGE_TD_TSO_MSS_SHIFT);
1643 		/* Set IP/TCP header size. */
1644 		cflags |= ip->ip_hl << AGE_TD_IPHDR_LEN_SHIFT;
1645 		cflags |= tcp->th_off << AGE_TD_TSO_TCPHDR_LEN_SHIFT;
1646 		/*
1647 		 * L1 requires the first buffer should only hold IP/TCP
1648 		 * header data. TCP payload should be handled in other
1649 		 * descriptors.
1650 		 */
1651 		hdrlen = poff + (tcp->th_off << 2);
1652 		desc = &sc->age_rdata.age_tx_ring[prod];
1653 		desc->addr = htole64(txsegs[0].ds_addr);
1654 		desc->len = htole32(AGE_TX_BYTES(hdrlen) | vtag);
1655 		desc->flags = htole32(cflags);
1656 		sc->age_cdata.age_tx_cnt++;
1657 		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1658 		if (m->m_len - hdrlen > 0) {
1659 			/* Handle remaining payload of the 1st fragment. */
1660 			desc = &sc->age_rdata.age_tx_ring[prod];
1661 			desc->addr = htole64(txsegs[0].ds_addr + hdrlen);
1662 			desc->len = htole32(AGE_TX_BYTES(m->m_len - hdrlen) |
1663 			    vtag);
1664 			desc->flags = htole32(cflags);
1665 			sc->age_cdata.age_tx_cnt++;
1666 			AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1667 		}
1668 		/* Handle remaining fragments. */
1669 		i = 1;
1670 	} else if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1671 		/* Configure Tx IP/TCP/UDP checksum offload. */
1672 		cflags |= AGE_TD_CSUM;
1673 		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1674 			cflags |= AGE_TD_TCPCSUM;
1675 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1676 			cflags |= AGE_TD_UDPCSUM;
1677 		/* Set checksum start offset. */
1678 		cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1679 		/* Set checksum insertion position of TCP/UDP. */
1680 		cflags |= ((poff + m->m_pkthdr.csum_data) <<
1681 		    AGE_TD_CSUM_XSUMOFFSET_SHIFT);
1682 	}
1683 	for (; i < nsegs; i++) {
1684 		desc = &sc->age_rdata.age_tx_ring[prod];
1685 		desc->addr = htole64(txsegs[i].ds_addr);
1686 		desc->len = htole32(AGE_TX_BYTES(txsegs[i].ds_len) | vtag);
1687 		desc->flags = htole32(cflags);
1688 		sc->age_cdata.age_tx_cnt++;
1689 		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1690 	}
1691 	/* Update producer index. */
1692 	sc->age_cdata.age_tx_prod = prod;
1693 
1694 	/* Set EOP on the last descriptor. */
1695 	prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1696 	desc = &sc->age_rdata.age_tx_ring[prod];
1697 	desc->flags |= htole32(AGE_TD_EOP);
1698 
1699 	/* Lastly set TSO header and modify IP/TCP header for TSO operation. */
1700 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1701 		desc = &sc->age_rdata.age_tx_ring[si];
1702 		desc->flags |= htole32(AGE_TD_TSO_HDR);
1703 	}
1704 
1705 	/* Swap dmamap of the first and the last. */
1706 	txd = &sc->age_cdata.age_txdesc[prod];
1707 	map = txd_last->tx_dmamap;
1708 	txd_last->tx_dmamap = txd->tx_dmamap;
1709 	txd->tx_dmamap = map;
1710 	txd->tx_m = m;
1711 
1712 	/* Sync descriptors. */
1713 	bus_dmamap_sync(sc->age_cdata.age_tx_tag, map, BUS_DMASYNC_PREWRITE);
1714 	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
1715 	    sc->age_cdata.age_tx_ring_map,
1716 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1717 
1718 	return (0);
1719 }
1720 
1721 static void
1722 age_start(if_t ifp)
1723 {
1724         struct age_softc *sc;
1725 
1726 	sc = if_getsoftc(ifp);
1727 	AGE_LOCK(sc);
1728 	age_start_locked(ifp);
1729 	AGE_UNLOCK(sc);
1730 }
1731 
1732 static void
1733 age_start_locked(if_t ifp)
1734 {
1735         struct age_softc *sc;
1736         struct mbuf *m_head;
1737 	int enq;
1738 
1739 	sc = if_getsoftc(ifp);
1740 
1741 	AGE_LOCK_ASSERT(sc);
1742 
1743 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1744 	    IFF_DRV_RUNNING || (sc->age_flags & AGE_FLAG_LINK) == 0)
1745 		return;
1746 
1747 	for (enq = 0; !if_sendq_empty(ifp); ) {
1748 		m_head = if_dequeue(ifp);
1749 		if (m_head == NULL)
1750 			break;
1751 		/*
1752 		 * Pack the data into the transmit ring. If we
1753 		 * don't have room, set the OACTIVE flag and wait
1754 		 * for the NIC to drain the ring.
1755 		 */
1756 		if (age_encap(sc, &m_head)) {
1757 			if (m_head == NULL)
1758 				break;
1759 			if_sendq_prepend(ifp, m_head);
1760 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1761 			break;
1762 		}
1763 
1764 		enq++;
1765 		/*
1766 		 * If there's a BPF listener, bounce a copy of this frame
1767 		 * to him.
1768 		 */
1769 		ETHER_BPF_MTAP(ifp, m_head);
1770 	}
1771 
1772 	if (enq > 0) {
1773 		/* Update mbox. */
1774 		AGE_COMMIT_MBOX(sc);
1775 		/* Set a timeout in case the chip goes out to lunch. */
1776 		sc->age_watchdog_timer = AGE_TX_TIMEOUT;
1777 	}
1778 }
1779 
1780 static void
1781 age_watchdog(struct age_softc *sc)
1782 {
1783 	if_t ifp;
1784 
1785 	AGE_LOCK_ASSERT(sc);
1786 
1787 	if (sc->age_watchdog_timer == 0 || --sc->age_watchdog_timer)
1788 		return;
1789 
1790 	ifp = sc->age_ifp;
1791 	if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1792 		if_printf(sc->age_ifp, "watchdog timeout (missed link)\n");
1793 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1794 		if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1795 		age_init_locked(sc);
1796 		return;
1797 	}
1798 	if (sc->age_cdata.age_tx_cnt == 0) {
1799 		if_printf(sc->age_ifp,
1800 		    "watchdog timeout (missed Tx interrupts) -- recovering\n");
1801 		if (!if_sendq_empty(ifp))
1802 			age_start_locked(ifp);
1803 		return;
1804 	}
1805 	if_printf(sc->age_ifp, "watchdog timeout\n");
1806 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1807 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1808 	age_init_locked(sc);
1809 	if (!if_sendq_empty(ifp))
1810 		age_start_locked(ifp);
1811 }
1812 
1813 static int
1814 age_ioctl(if_t ifp, u_long cmd, caddr_t data)
1815 {
1816 	struct age_softc *sc;
1817 	struct ifreq *ifr;
1818 	struct mii_data *mii;
1819 	uint32_t reg;
1820 	int error, mask;
1821 
1822 	sc = if_getsoftc(ifp);
1823 	ifr = (struct ifreq *)data;
1824 	error = 0;
1825 	switch (cmd) {
1826 	case SIOCSIFMTU:
1827 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > AGE_JUMBO_MTU)
1828 			error = EINVAL;
1829 		else if (if_getmtu(ifp) != ifr->ifr_mtu) {
1830 			AGE_LOCK(sc);
1831 			if_setmtu(ifp, ifr->ifr_mtu);
1832 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1833 				if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1834 				age_init_locked(sc);
1835 			}
1836 			AGE_UNLOCK(sc);
1837 		}
1838 		break;
1839 	case SIOCSIFFLAGS:
1840 		AGE_LOCK(sc);
1841 		if ((if_getflags(ifp) & IFF_UP) != 0) {
1842 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1843 				if (((if_getflags(ifp) ^ sc->age_if_flags)
1844 				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1845 					age_rxfilter(sc);
1846 			} else {
1847 				if ((sc->age_flags & AGE_FLAG_DETACH) == 0)
1848 					age_init_locked(sc);
1849 			}
1850 		} else {
1851 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1852 				age_stop(sc);
1853 		}
1854 		sc->age_if_flags = if_getflags(ifp);
1855 		AGE_UNLOCK(sc);
1856 		break;
1857 	case SIOCADDMULTI:
1858 	case SIOCDELMULTI:
1859 		AGE_LOCK(sc);
1860 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1861 			age_rxfilter(sc);
1862 		AGE_UNLOCK(sc);
1863 		break;
1864 	case SIOCSIFMEDIA:
1865 	case SIOCGIFMEDIA:
1866 		mii = device_get_softc(sc->age_miibus);
1867 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1868 		break;
1869 	case SIOCSIFCAP:
1870 		AGE_LOCK(sc);
1871 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
1872 		if ((mask & IFCAP_TXCSUM) != 0 &&
1873 		    (if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) {
1874 			if_togglecapenable(ifp, IFCAP_TXCSUM);
1875 			if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
1876 				if_sethwassistbits(ifp, AGE_CSUM_FEATURES, 0);
1877 			else
1878 				if_sethwassistbits(ifp, 0, AGE_CSUM_FEATURES);
1879 		}
1880 		if ((mask & IFCAP_RXCSUM) != 0 &&
1881 		    (if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0) {
1882 			if_togglecapenable(ifp, IFCAP_RXCSUM);
1883 			reg = CSR_READ_4(sc, AGE_MAC_CFG);
1884 			reg &= ~MAC_CFG_RXCSUM_ENB;
1885 			if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
1886 				reg |= MAC_CFG_RXCSUM_ENB;
1887 			CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1888 		}
1889 		if ((mask & IFCAP_TSO4) != 0 &&
1890 		    (if_getcapabilities(ifp) & IFCAP_TSO4) != 0) {
1891 			if_togglecapenable(ifp, IFCAP_TSO4);
1892 			if ((if_getcapenable(ifp) & IFCAP_TSO4) != 0)
1893 				if_sethwassistbits(ifp, CSUM_TSO, 0);
1894 			else
1895 				if_sethwassistbits(ifp, 0, CSUM_TSO);
1896 		}
1897 
1898 		if ((mask & IFCAP_WOL_MCAST) != 0 &&
1899 		    (if_getcapabilities(ifp) & IFCAP_WOL_MCAST) != 0)
1900 			if_togglecapenable(ifp, IFCAP_WOL_MCAST);
1901 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1902 		    (if_getcapabilities(ifp) & IFCAP_WOL_MAGIC) != 0)
1903 			if_togglecapenable(ifp, IFCAP_WOL_MAGIC);
1904 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1905 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWCSUM) != 0)
1906 			if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM);
1907 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1908 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0)
1909 			if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
1910 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1911 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
1912 			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
1913 			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0)
1914 				if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWTSO);
1915 			age_rxvlan(sc);
1916 		}
1917 		AGE_UNLOCK(sc);
1918 		VLAN_CAPABILITIES(ifp);
1919 		break;
1920 	default:
1921 		error = ether_ioctl(ifp, cmd, data);
1922 		break;
1923 	}
1924 
1925 	return (error);
1926 }
1927 
1928 static void
1929 age_mac_config(struct age_softc *sc)
1930 {
1931 	struct mii_data *mii;
1932 	uint32_t reg;
1933 
1934 	AGE_LOCK_ASSERT(sc);
1935 
1936 	mii = device_get_softc(sc->age_miibus);
1937 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1938 	reg &= ~MAC_CFG_FULL_DUPLEX;
1939 	reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1940 	reg &= ~MAC_CFG_SPEED_MASK;
1941 	/* Reprogram MAC with resolved speed/duplex. */
1942 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1943 	case IFM_10_T:
1944 	case IFM_100_TX:
1945 		reg |= MAC_CFG_SPEED_10_100;
1946 		break;
1947 	case IFM_1000_T:
1948 		reg |= MAC_CFG_SPEED_1000;
1949 		break;
1950 	}
1951 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1952 		reg |= MAC_CFG_FULL_DUPLEX;
1953 #ifdef notyet
1954 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1955 			reg |= MAC_CFG_TX_FC;
1956 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1957 			reg |= MAC_CFG_RX_FC;
1958 #endif
1959 	}
1960 
1961 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1962 }
1963 
1964 static void
1965 age_link_task(void *arg, int pending)
1966 {
1967 	struct age_softc *sc;
1968 	struct mii_data *mii;
1969 	if_t ifp;
1970 	uint32_t reg;
1971 
1972 	sc = (struct age_softc *)arg;
1973 
1974 	AGE_LOCK(sc);
1975 	mii = device_get_softc(sc->age_miibus);
1976 	ifp = sc->age_ifp;
1977 	if (mii == NULL || ifp == NULL ||
1978 	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
1979 		AGE_UNLOCK(sc);
1980 		return;
1981 	}
1982 
1983 	sc->age_flags &= ~AGE_FLAG_LINK;
1984 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
1985 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
1986 		case IFM_10_T:
1987 		case IFM_100_TX:
1988 		case IFM_1000_T:
1989 			sc->age_flags |= AGE_FLAG_LINK;
1990 			break;
1991 		default:
1992 			break;
1993 		}
1994 	}
1995 
1996 	/* Stop Rx/Tx MACs. */
1997 	age_stop_rxmac(sc);
1998 	age_stop_txmac(sc);
1999 
2000 	/* Program MACs with resolved speed/duplex/flow-control. */
2001 	if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
2002 		age_mac_config(sc);
2003 		reg = CSR_READ_4(sc, AGE_MAC_CFG);
2004 		/* Restart DMA engine and Tx/Rx MAC. */
2005 		CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
2006 		    DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
2007 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
2008 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2009 	}
2010 
2011 	AGE_UNLOCK(sc);
2012 }
2013 
2014 static void
2015 age_stats_update(struct age_softc *sc)
2016 {
2017 	struct age_stats *stat;
2018 	struct smb *smb;
2019 	if_t ifp;
2020 
2021 	AGE_LOCK_ASSERT(sc);
2022 
2023 	stat = &sc->age_stat;
2024 
2025 	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2026 	    sc->age_cdata.age_smb_block_map,
2027 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2028 
2029 	smb = sc->age_rdata.age_smb_block;
2030 	if (smb->updated == 0)
2031 		return;
2032 
2033 	ifp = sc->age_ifp;
2034 	/* Rx stats. */
2035 	stat->rx_frames += smb->rx_frames;
2036 	stat->rx_bcast_frames += smb->rx_bcast_frames;
2037 	stat->rx_mcast_frames += smb->rx_mcast_frames;
2038 	stat->rx_pause_frames += smb->rx_pause_frames;
2039 	stat->rx_control_frames += smb->rx_control_frames;
2040 	stat->rx_crcerrs += smb->rx_crcerrs;
2041 	stat->rx_lenerrs += smb->rx_lenerrs;
2042 	stat->rx_bytes += smb->rx_bytes;
2043 	stat->rx_runts += smb->rx_runts;
2044 	stat->rx_fragments += smb->rx_fragments;
2045 	stat->rx_pkts_64 += smb->rx_pkts_64;
2046 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2047 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2048 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2049 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2050 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2051 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2052 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2053 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2054 	stat->rx_desc_oflows += smb->rx_desc_oflows;
2055 	stat->rx_alignerrs += smb->rx_alignerrs;
2056 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2057 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2058 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2059 
2060 	/* Tx stats. */
2061 	stat->tx_frames += smb->tx_frames;
2062 	stat->tx_bcast_frames += smb->tx_bcast_frames;
2063 	stat->tx_mcast_frames += smb->tx_mcast_frames;
2064 	stat->tx_pause_frames += smb->tx_pause_frames;
2065 	stat->tx_excess_defer += smb->tx_excess_defer;
2066 	stat->tx_control_frames += smb->tx_control_frames;
2067 	stat->tx_deferred += smb->tx_deferred;
2068 	stat->tx_bytes += smb->tx_bytes;
2069 	stat->tx_pkts_64 += smb->tx_pkts_64;
2070 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2071 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2072 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2073 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2074 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2075 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2076 	stat->tx_single_colls += smb->tx_single_colls;
2077 	stat->tx_multi_colls += smb->tx_multi_colls;
2078 	stat->tx_late_colls += smb->tx_late_colls;
2079 	stat->tx_excess_colls += smb->tx_excess_colls;
2080 	stat->tx_underrun += smb->tx_underrun;
2081 	stat->tx_desc_underrun += smb->tx_desc_underrun;
2082 	stat->tx_lenerrs += smb->tx_lenerrs;
2083 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2084 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2085 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2086 
2087 	/* Update counters in ifnet. */
2088 	if_inc_counter(ifp, IFCOUNTER_OPACKETS, smb->tx_frames);
2089 
2090 	if_inc_counter(ifp, IFCOUNTER_COLLISIONS, smb->tx_single_colls +
2091 	    smb->tx_multi_colls + smb->tx_late_colls +
2092 	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT);
2093 
2094 	if_inc_counter(ifp, IFCOUNTER_OERRORS, smb->tx_excess_colls +
2095 	    smb->tx_late_colls + smb->tx_underrun +
2096 	    smb->tx_pkts_truncated);
2097 
2098 	if_inc_counter(ifp, IFCOUNTER_IPACKETS, smb->rx_frames);
2099 
2100 	if_inc_counter(ifp, IFCOUNTER_IERRORS, smb->rx_crcerrs +
2101 	    smb->rx_lenerrs + smb->rx_runts + smb->rx_pkts_truncated +
2102 	    smb->rx_fifo_oflows + smb->rx_desc_oflows +
2103 	    smb->rx_alignerrs);
2104 
2105 	/* Update done, clear. */
2106 	smb->updated = 0;
2107 
2108 	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2109 	    sc->age_cdata.age_smb_block_map,
2110 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2111 }
2112 
2113 static int
2114 age_intr(void *arg)
2115 {
2116 	struct age_softc *sc;
2117 	uint32_t status;
2118 
2119 	sc = (struct age_softc *)arg;
2120 
2121 	status = CSR_READ_4(sc, AGE_INTR_STATUS);
2122 	if (status == 0 || (status & AGE_INTRS) == 0)
2123 		return (FILTER_STRAY);
2124 	/* Disable interrupts. */
2125 	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
2126 	taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2127 
2128 	return (FILTER_HANDLED);
2129 }
2130 
2131 static void
2132 age_int_task(void *arg, int pending)
2133 {
2134 	struct age_softc *sc;
2135 	if_t ifp;
2136 	struct cmb *cmb;
2137 	uint32_t status;
2138 
2139 	sc = (struct age_softc *)arg;
2140 
2141 	AGE_LOCK(sc);
2142 
2143 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2144 	    sc->age_cdata.age_cmb_block_map,
2145 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2146 	cmb = sc->age_rdata.age_cmb_block;
2147 	status = le32toh(cmb->intr_status);
2148 	if (sc->age_morework != 0)
2149 		status |= INTR_CMB_RX;
2150 	if ((status & AGE_INTRS) == 0)
2151 		goto done;
2152 
2153 	sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
2154 	    TPD_CONS_SHIFT;
2155 	sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
2156 	    RRD_PROD_SHIFT;
2157 	/* Let hardware know CMB was served. */
2158 	cmb->intr_status = 0;
2159 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2160 	    sc->age_cdata.age_cmb_block_map,
2161 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2162 
2163 	ifp = sc->age_ifp;
2164 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2165 		if ((status & INTR_CMB_RX) != 0)
2166 			sc->age_morework = age_rxintr(sc, sc->age_rr_prod,
2167 			    sc->age_process_limit);
2168 		if ((status & INTR_CMB_TX) != 0)
2169 			age_txintr(sc, sc->age_tpd_cons);
2170 		if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
2171 			if ((status & INTR_DMA_RD_TO_RST) != 0)
2172 				device_printf(sc->age_dev,
2173 				    "DMA read error! -- resetting\n");
2174 			if ((status & INTR_DMA_WR_TO_RST) != 0)
2175 				device_printf(sc->age_dev,
2176 				    "DMA write error! -- resetting\n");
2177 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2178 			age_init_locked(sc);
2179 		}
2180 		if (!if_sendq_empty(ifp))
2181 			age_start_locked(ifp);
2182 		if ((status & INTR_SMB) != 0)
2183 			age_stats_update(sc);
2184 	}
2185 
2186 	/* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
2187 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2188 	    sc->age_cdata.age_cmb_block_map,
2189 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2190 	status = le32toh(cmb->intr_status);
2191 	if (sc->age_morework != 0 || (status & AGE_INTRS) != 0) {
2192 		taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2193 		AGE_UNLOCK(sc);
2194 		return;
2195 	}
2196 
2197 done:
2198 	/* Re-enable interrupts. */
2199 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2200 	AGE_UNLOCK(sc);
2201 }
2202 
2203 static void
2204 age_txintr(struct age_softc *sc, int tpd_cons)
2205 {
2206 	if_t ifp;
2207 	struct age_txdesc *txd;
2208 	int cons, prog;
2209 
2210 	AGE_LOCK_ASSERT(sc);
2211 
2212 	ifp = sc->age_ifp;
2213 
2214 	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2215 	    sc->age_cdata.age_tx_ring_map,
2216 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2217 
2218 	/*
2219 	 * Go through our Tx list and free mbufs for those
2220 	 * frames which have been transmitted.
2221 	 */
2222 	cons = sc->age_cdata.age_tx_cons;
2223 	for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
2224 		if (sc->age_cdata.age_tx_cnt <= 0)
2225 			break;
2226 		prog++;
2227 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2228 		sc->age_cdata.age_tx_cnt--;
2229 		txd = &sc->age_cdata.age_txdesc[cons];
2230 		/*
2231 		 * Clear Tx descriptors, it's not required but would
2232 		 * help debugging in case of Tx issues.
2233 		 */
2234 		txd->tx_desc->addr = 0;
2235 		txd->tx_desc->len = 0;
2236 		txd->tx_desc->flags = 0;
2237 
2238 		if (txd->tx_m == NULL)
2239 			continue;
2240 		/* Reclaim transmitted mbufs. */
2241 		bus_dmamap_sync(sc->age_cdata.age_tx_tag, txd->tx_dmamap,
2242 		    BUS_DMASYNC_POSTWRITE);
2243 		bus_dmamap_unload(sc->age_cdata.age_tx_tag, txd->tx_dmamap);
2244 		m_freem(txd->tx_m);
2245 		txd->tx_m = NULL;
2246 	}
2247 
2248 	if (prog > 0) {
2249 		sc->age_cdata.age_tx_cons = cons;
2250 
2251 		/*
2252 		 * Unarm watchdog timer only when there are no pending
2253 		 * Tx descriptors in queue.
2254 		 */
2255 		if (sc->age_cdata.age_tx_cnt == 0)
2256 			sc->age_watchdog_timer = 0;
2257 		bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2258 		    sc->age_cdata.age_tx_ring_map,
2259 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2260 	}
2261 }
2262 
2263 #ifndef __NO_STRICT_ALIGNMENT
2264 static struct mbuf *
2265 age_fixup_rx(if_t ifp, struct mbuf *m)
2266 {
2267 	struct mbuf *n;
2268         int i;
2269         uint16_t *src, *dst;
2270 
2271 	src = mtod(m, uint16_t *);
2272 	dst = src - 3;
2273 
2274 	if (m->m_next == NULL) {
2275 		for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
2276 			*dst++ = *src++;
2277 		m->m_data -= 6;
2278 		return (m);
2279 	}
2280 	/*
2281 	 * Append a new mbuf to received mbuf chain and copy ethernet
2282 	 * header from the mbuf chain. This can save lots of CPU
2283 	 * cycles for jumbo frame.
2284 	 */
2285 	MGETHDR(n, M_NOWAIT, MT_DATA);
2286 	if (n == NULL) {
2287 		if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2288 		m_freem(m);
2289 		return (NULL);
2290 	}
2291 	bcopy(m->m_data, n->m_data, ETHER_HDR_LEN);
2292 	m->m_data += ETHER_HDR_LEN;
2293 	m->m_len -= ETHER_HDR_LEN;
2294 	n->m_len = ETHER_HDR_LEN;
2295 	M_MOVE_PKTHDR(n, m);
2296 	n->m_next = m;
2297 	return (n);
2298 }
2299 #endif
2300 
2301 /* Receive a frame. */
2302 static void
2303 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
2304 {
2305 	struct age_rxdesc *rxd;
2306 	if_t ifp;
2307 	struct mbuf *mp, *m;
2308 	uint32_t status, index, vtag;
2309 	int count, nsegs;
2310 	int rx_cons;
2311 
2312 	AGE_LOCK_ASSERT(sc);
2313 
2314 	ifp = sc->age_ifp;
2315 	status = le32toh(rxrd->flags);
2316 	index = le32toh(rxrd->index);
2317 	rx_cons = AGE_RX_CONS(index);
2318 	nsegs = AGE_RX_NSEGS(index);
2319 
2320 	sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
2321 	if ((status & (AGE_RRD_ERROR | AGE_RRD_LENGTH_NOK)) != 0) {
2322 		/*
2323 		 * We want to pass the following frames to upper
2324 		 * layer regardless of error status of Rx return
2325 		 * ring.
2326 		 *
2327 		 *  o IP/TCP/UDP checksum is bad.
2328 		 *  o frame length and protocol specific length
2329 		 *     does not match.
2330 		 */
2331 		status |= AGE_RRD_IPCSUM_NOK | AGE_RRD_TCP_UDPCSUM_NOK;
2332 		if ((status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
2333 		    AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0)
2334 			return;
2335 	}
2336 
2337 	for (count = 0; count < nsegs; count++,
2338 	    AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
2339 		rxd = &sc->age_cdata.age_rxdesc[rx_cons];
2340 		mp = rxd->rx_m;
2341 		/* Add a new receive buffer to the ring. */
2342 		if (age_newbuf(sc, rxd) != 0) {
2343 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2344 			/* Reuse Rx buffers. */
2345 			if (sc->age_cdata.age_rxhead != NULL)
2346 				m_freem(sc->age_cdata.age_rxhead);
2347 			break;
2348 		}
2349 
2350 		/*
2351 		 * Assume we've received a full sized frame.
2352 		 * Actual size is fixed when we encounter the end of
2353 		 * multi-segmented frame.
2354 		 */
2355 		mp->m_len = AGE_RX_BUF_SIZE;
2356 
2357 		/* Chain received mbufs. */
2358 		if (sc->age_cdata.age_rxhead == NULL) {
2359 			sc->age_cdata.age_rxhead = mp;
2360 			sc->age_cdata.age_rxtail = mp;
2361 		} else {
2362 			mp->m_flags &= ~M_PKTHDR;
2363 			sc->age_cdata.age_rxprev_tail =
2364 			    sc->age_cdata.age_rxtail;
2365 			sc->age_cdata.age_rxtail->m_next = mp;
2366 			sc->age_cdata.age_rxtail = mp;
2367 		}
2368 
2369 		if (count == nsegs - 1) {
2370 			/* Last desc. for this frame. */
2371 			m = sc->age_cdata.age_rxhead;
2372 			m->m_flags |= M_PKTHDR;
2373 			/*
2374 			 * It seems that L1 controller has no way
2375 			 * to tell hardware to strip CRC bytes.
2376 			 */
2377 			m->m_pkthdr.len = sc->age_cdata.age_rxlen -
2378 			    ETHER_CRC_LEN;
2379 			if (nsegs > 1) {
2380 				/* Set last mbuf size. */
2381 				mp->m_len = sc->age_cdata.age_rxlen -
2382 				    ((nsegs - 1) * AGE_RX_BUF_SIZE);
2383 				/* Remove the CRC bytes in chained mbufs. */
2384 				if (mp->m_len <= ETHER_CRC_LEN) {
2385 					sc->age_cdata.age_rxtail =
2386 					    sc->age_cdata.age_rxprev_tail;
2387 					sc->age_cdata.age_rxtail->m_len -=
2388 					    (ETHER_CRC_LEN - mp->m_len);
2389 					sc->age_cdata.age_rxtail->m_next = NULL;
2390 					m_freem(mp);
2391 				} else {
2392 					mp->m_len -= ETHER_CRC_LEN;
2393 				}
2394 			} else
2395 				m->m_len = m->m_pkthdr.len;
2396 			m->m_pkthdr.rcvif = ifp;
2397 			/*
2398 			 * Set checksum information.
2399 			 * It seems that L1 controller can compute partial
2400 			 * checksum. The partial checksum value can be used
2401 			 * to accelerate checksum computation for fragmented
2402 			 * TCP/UDP packets. Upper network stack already
2403 			 * takes advantage of the partial checksum value in
2404 			 * IP reassembly stage. But I'm not sure the
2405 			 * correctness of the partial hardware checksum
2406 			 * assistance due to lack of data sheet. If it is
2407 			 * proven to work on L1 I'll enable it.
2408 			 */
2409 			if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0 &&
2410 			    (status & AGE_RRD_IPV4) != 0) {
2411 				if ((status & AGE_RRD_IPCSUM_NOK) == 0)
2412 					m->m_pkthdr.csum_flags |=
2413 					    CSUM_IP_CHECKED | CSUM_IP_VALID;
2414 				if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
2415 				    (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0) {
2416 					m->m_pkthdr.csum_flags |=
2417 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2418 					m->m_pkthdr.csum_data = 0xffff;
2419 				}
2420 				/*
2421 				 * Don't mark bad checksum for TCP/UDP frames
2422 				 * as fragmented frames may always have set
2423 				 * bad checksummed bit of descriptor status.
2424 				 */
2425 			}
2426 
2427 			/* Check for VLAN tagged frames. */
2428 			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0 &&
2429 			    (status & AGE_RRD_VLAN) != 0) {
2430 				vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
2431 				m->m_pkthdr.ether_vtag = AGE_RX_VLAN_TAG(vtag);
2432 				m->m_flags |= M_VLANTAG;
2433 			}
2434 #ifndef __NO_STRICT_ALIGNMENT
2435 			m = age_fixup_rx(ifp, m);
2436 			if (m != NULL)
2437 #endif
2438 			{
2439 			/* Pass it on. */
2440 			AGE_UNLOCK(sc);
2441 			if_input(ifp, m);
2442 			AGE_LOCK(sc);
2443 			}
2444 		}
2445 	}
2446 
2447 	/* Reset mbuf chains. */
2448 	AGE_RXCHAIN_RESET(sc);
2449 }
2450 
2451 static int
2452 age_rxintr(struct age_softc *sc, int rr_prod, int count)
2453 {
2454 	struct rx_rdesc *rxrd;
2455 	int rr_cons, nsegs, pktlen, prog;
2456 
2457 	AGE_LOCK_ASSERT(sc);
2458 
2459 	rr_cons = sc->age_cdata.age_rr_cons;
2460 	if (rr_cons == rr_prod)
2461 		return (0);
2462 
2463 	bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2464 	    sc->age_cdata.age_rr_ring_map,
2465 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2466 	bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2467 	    sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_POSTWRITE);
2468 
2469 	for (prog = 0; rr_cons != rr_prod; prog++) {
2470 		if (count-- <= 0)
2471 			break;
2472 		rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
2473 		nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
2474 		if (nsegs == 0)
2475 			break;
2476 		/*
2477 		 * Check number of segments against received bytes.
2478 		 * Non-matching value would indicate that hardware
2479 		 * is still trying to update Rx return descriptors.
2480 		 * I'm not sure whether this check is really needed.
2481 		 */
2482 		pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
2483 		if (nsegs != howmany(pktlen, AGE_RX_BUF_SIZE))
2484 			break;
2485 
2486 		/* Received a frame. */
2487 		age_rxeof(sc, rxrd);
2488 		/* Clear return ring. */
2489 		rxrd->index = 0;
2490 		AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
2491 		sc->age_cdata.age_rx_cons += nsegs;
2492 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2493 	}
2494 
2495 	if (prog > 0) {
2496 		/* Update the consumer index. */
2497 		sc->age_cdata.age_rr_cons = rr_cons;
2498 
2499 		bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2500 		    sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE);
2501 		/* Sync descriptors. */
2502 		bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2503 		    sc->age_cdata.age_rr_ring_map,
2504 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2505 
2506 		/* Notify hardware availability of new Rx buffers. */
2507 		AGE_COMMIT_MBOX(sc);
2508 	}
2509 
2510 	return (count > 0 ? 0 : EAGAIN);
2511 }
2512 
2513 static void
2514 age_tick(void *arg)
2515 {
2516 	struct age_softc *sc;
2517 	struct mii_data *mii;
2518 
2519 	sc = (struct age_softc *)arg;
2520 
2521 	AGE_LOCK_ASSERT(sc);
2522 
2523 	mii = device_get_softc(sc->age_miibus);
2524 	mii_tick(mii);
2525 	age_watchdog(sc);
2526 	callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2527 }
2528 
2529 static void
2530 age_reset(struct age_softc *sc)
2531 {
2532 	uint32_t reg;
2533 	int i;
2534 
2535 	CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
2536 	CSR_READ_4(sc, AGE_MASTER_CFG);
2537 	DELAY(1000);
2538 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2539 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2540 			break;
2541 		DELAY(10);
2542 	}
2543 
2544 	if (i == 0)
2545 		device_printf(sc->age_dev, "reset timeout(0x%08x)!\n", reg);
2546 	/* Initialize PCIe module. From Linux. */
2547 	CSR_WRITE_4(sc, 0x12FC, 0x6500);
2548 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2549 }
2550 
2551 static void
2552 age_init(void *xsc)
2553 {
2554 	struct age_softc *sc;
2555 
2556 	sc = (struct age_softc *)xsc;
2557 	AGE_LOCK(sc);
2558 	age_init_locked(sc);
2559 	AGE_UNLOCK(sc);
2560 }
2561 
2562 static void
2563 age_init_locked(struct age_softc *sc)
2564 {
2565 	if_t ifp;
2566 	struct mii_data *mii;
2567 	uint8_t eaddr[ETHER_ADDR_LEN];
2568 	bus_addr_t paddr;
2569 	uint32_t reg, fsize;
2570 	uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
2571 	int error;
2572 
2573 	AGE_LOCK_ASSERT(sc);
2574 
2575 	ifp = sc->age_ifp;
2576 	mii = device_get_softc(sc->age_miibus);
2577 
2578 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2579 		return;
2580 
2581 	/*
2582 	 * Cancel any pending I/O.
2583 	 */
2584 	age_stop(sc);
2585 
2586 	/*
2587 	 * Reset the chip to a known state.
2588 	 */
2589 	age_reset(sc);
2590 
2591 	/* Initialize descriptors. */
2592 	error = age_init_rx_ring(sc);
2593         if (error != 0) {
2594                 device_printf(sc->age_dev, "no memory for Rx buffers.\n");
2595                 age_stop(sc);
2596 		return;
2597         }
2598 	age_init_rr_ring(sc);
2599 	age_init_tx_ring(sc);
2600 	age_init_cmb_block(sc);
2601 	age_init_smb_block(sc);
2602 
2603 	/* Reprogram the station address. */
2604 	bcopy(if_getlladdr(ifp), eaddr, ETHER_ADDR_LEN);
2605 	CSR_WRITE_4(sc, AGE_PAR0,
2606 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2607 	CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
2608 
2609 	/* Set descriptor base addresses. */
2610 	paddr = sc->age_rdata.age_tx_ring_paddr;
2611 	CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
2612 	paddr = sc->age_rdata.age_rx_ring_paddr;
2613 	CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
2614 	paddr = sc->age_rdata.age_rr_ring_paddr;
2615 	CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
2616 	paddr = sc->age_rdata.age_tx_ring_paddr;
2617 	CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
2618 	paddr = sc->age_rdata.age_cmb_block_paddr;
2619 	CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
2620 	paddr = sc->age_rdata.age_smb_block_paddr;
2621 	CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
2622 	/* Set Rx/Rx return descriptor counter. */
2623 	CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
2624 	    ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
2625 	    DESC_RRD_CNT_MASK) |
2626 	    ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
2627 	/* Set Tx descriptor counter. */
2628 	CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
2629 	    (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
2630 
2631 	/* Tell hardware that we're ready to load descriptors. */
2632 	CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
2633 
2634 	/*
2635 	 * Initialize mailbox register.
2636 	 * Updated producer/consumer index information is exchanged
2637 	 * through this mailbox register. However Tx producer and
2638 	 * Rx return consumer/Rx producer are all shared such that
2639 	 * it's hard to separate code path between Tx and Rx without
2640 	 * locking. If L1 hardware have a separate mail box register
2641 	 * for Tx and Rx consumer/producer management we could have
2642 	 * independent Tx/Rx handler which in turn Rx handler could have
2643 	 * been run without any locking.
2644 	 */
2645 	AGE_COMMIT_MBOX(sc);
2646 
2647 	/* Configure IPG/IFG parameters. */
2648 	CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
2649 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
2650 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2651 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2652 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
2653 
2654 	/* Set parameters for half-duplex media. */
2655 	CSR_WRITE_4(sc, AGE_HDPX_CFG,
2656 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2657 	    HDPX_CFG_LCOL_MASK) |
2658 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2659 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2660 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2661 	    HDPX_CFG_ABEBT_MASK) |
2662 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2663 	    HDPX_CFG_JAMIPG_MASK));
2664 
2665 	/* Configure interrupt moderation timer. */
2666 	CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
2667 	reg = CSR_READ_4(sc, AGE_MASTER_CFG);
2668 	reg &= ~MASTER_MTIMER_ENB;
2669 	if (AGE_USECS(sc->age_int_mod) == 0)
2670 		reg &= ~MASTER_ITIMER_ENB;
2671 	else
2672 		reg |= MASTER_ITIMER_ENB;
2673 	CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
2674 	if (bootverbose)
2675 		device_printf(sc->age_dev, "interrupt moderation is %d us.\n",
2676 		    sc->age_int_mod);
2677 	CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
2678 
2679 	/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
2680 	if (if_getmtu(ifp) < ETHERMTU)
2681 		sc->age_max_frame_size = ETHERMTU;
2682 	else
2683 		sc->age_max_frame_size = if_getmtu(ifp);
2684 	sc->age_max_frame_size += ETHER_HDR_LEN +
2685 	    sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
2686 	CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
2687 	/* Configure jumbo frame. */
2688 	fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
2689 	CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
2690 	    (((fsize / sizeof(uint64_t)) <<
2691 	    RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
2692 	    ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
2693 	    RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
2694 	    ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
2695 	    RXQ_JUMBO_CFG_RRD_TIMER_MASK));
2696 
2697 	/* Configure flow-control parameters. From Linux. */
2698 	if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
2699 		/*
2700 		 * Magic workaround for old-L1.
2701 		 * Don't know which hw revision requires this magic.
2702 		 */
2703 		CSR_WRITE_4(sc, 0x12FC, 0x6500);
2704 		/*
2705 		 * Another magic workaround for flow-control mode
2706 		 * change. From Linux.
2707 		 */
2708 		CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2709 	}
2710 	/*
2711 	 * TODO
2712 	 *  Should understand pause parameter relationships between FIFO
2713 	 *  size and number of Rx descriptors and Rx return descriptors.
2714 	 *
2715 	 *  Magic parameters came from Linux.
2716 	 */
2717 	switch (sc->age_chip_rev) {
2718 	case 0x8001:
2719 	case 0x9001:
2720 	case 0x9002:
2721 	case 0x9003:
2722 		rxf_hi = AGE_RX_RING_CNT / 16;
2723 		rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
2724 		rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
2725 		rrd_lo = AGE_RR_RING_CNT / 16;
2726 		break;
2727 	default:
2728 		reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
2729 		rxf_lo = reg / 16;
2730 		if (rxf_lo < 192)
2731 			rxf_lo = 192;
2732 		rxf_hi = (reg * 7) / 8;
2733 		if (rxf_hi < rxf_lo)
2734 			rxf_hi = rxf_lo + 16;
2735 		reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
2736 		rrd_lo = reg / 8;
2737 		rrd_hi = (reg * 7) / 8;
2738 		if (rrd_lo < 2)
2739 			rrd_lo = 2;
2740 		if (rrd_hi < rrd_lo)
2741 			rrd_hi = rrd_lo + 3;
2742 		break;
2743 	}
2744 	CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
2745 	    ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
2746 	    RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
2747 	    ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
2748 	    RXQ_FIFO_PAUSE_THRESH_HI_MASK));
2749 	CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
2750 	    ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
2751 	    RXQ_RRD_PAUSE_THRESH_LO_MASK) |
2752 	    ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
2753 	    RXQ_RRD_PAUSE_THRESH_HI_MASK));
2754 
2755 	/* Configure RxQ. */
2756 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
2757 	    ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
2758 	    RXQ_CFG_RD_BURST_MASK) |
2759 	    ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
2760 	    RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
2761 	    ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
2762 	    RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
2763 	    RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
2764 
2765 	/* Configure TxQ. */
2766 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
2767 	    ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
2768 	    TXQ_CFG_TPD_BURST_MASK) |
2769 	    ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
2770 	    TXQ_CFG_TX_FIFO_BURST_MASK) |
2771 	    ((TXQ_CFG_TPD_FETCH_DEFAULT <<
2772 	    TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
2773 	    TXQ_CFG_ENB);
2774 
2775 	CSR_WRITE_4(sc, AGE_TX_JUMBO_TPD_TH_IPG,
2776 	    (((fsize / sizeof(uint64_t) << TX_JUMBO_TPD_TH_SHIFT)) &
2777 	    TX_JUMBO_TPD_TH_MASK) |
2778 	    ((TX_JUMBO_TPD_IPG_DEFAULT << TX_JUMBO_TPD_IPG_SHIFT) &
2779 	    TX_JUMBO_TPD_IPG_MASK));
2780 	/* Configure DMA parameters. */
2781 	CSR_WRITE_4(sc, AGE_DMA_CFG,
2782 	    DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
2783 	    sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
2784 	    sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
2785 
2786 	/* Configure CMB DMA write threshold. */
2787 	CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
2788 	    ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
2789 	    CMB_WR_THRESH_RRD_MASK) |
2790 	    ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
2791 	    CMB_WR_THRESH_TPD_MASK));
2792 
2793 	/* Set CMB/SMB timer and enable them. */
2794 	CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
2795 	    ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
2796 	    ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
2797 	/* Request SMB updates for every seconds. */
2798 	CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
2799 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
2800 
2801 	/*
2802 	 * Disable all WOL bits as WOL can interfere normal Rx
2803 	 * operation.
2804 	 */
2805 	CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
2806 
2807 	/*
2808 	 * Configure Tx/Rx MACs.
2809 	 *  - Auto-padding for short frames.
2810 	 *  - Enable CRC generation.
2811 	 *  Start with full-duplex/1000Mbps media. Actual reconfiguration
2812 	 *  of MAC is followed after link establishment.
2813 	 */
2814 	CSR_WRITE_4(sc, AGE_MAC_CFG,
2815 	    MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
2816 	    MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
2817 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2818 	    MAC_CFG_PREAMBLE_MASK));
2819 	/* Set up the receive filter. */
2820 	age_rxfilter(sc);
2821 	age_rxvlan(sc);
2822 
2823 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2824 	if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
2825 		reg |= MAC_CFG_RXCSUM_ENB;
2826 
2827 	/* Ack all pending interrupts and clear it. */
2828 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2829 	CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
2830 
2831 	/* Finally enable Tx/Rx MAC. */
2832 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
2833 
2834 	sc->age_flags &= ~AGE_FLAG_LINK;
2835 	/* Switch to the current media. */
2836 	mii_mediachg(mii);
2837 
2838 	callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2839 
2840 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
2841 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2842 }
2843 
2844 static void
2845 age_stop(struct age_softc *sc)
2846 {
2847 	if_t ifp;
2848 	struct age_txdesc *txd;
2849 	struct age_rxdesc *rxd;
2850 	uint32_t reg;
2851 	int i;
2852 
2853 	AGE_LOCK_ASSERT(sc);
2854 	/*
2855 	 * Mark the interface down and cancel the watchdog timer.
2856 	 */
2857 	ifp = sc->age_ifp;
2858 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
2859 	sc->age_flags &= ~AGE_FLAG_LINK;
2860 	callout_stop(&sc->age_tick_ch);
2861 	sc->age_watchdog_timer = 0;
2862 
2863 	/*
2864 	 * Disable interrupts.
2865 	 */
2866 	CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
2867 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
2868 	/* Stop CMB/SMB updates. */
2869 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
2870 	/* Stop Rx/Tx MAC. */
2871 	age_stop_rxmac(sc);
2872 	age_stop_txmac(sc);
2873 	/* Stop DMA. */
2874 	CSR_WRITE_4(sc, AGE_DMA_CFG,
2875 	    CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
2876 	/* Stop TxQ/RxQ. */
2877 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
2878 	    CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
2879 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
2880 	    CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
2881 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2882 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2883 			break;
2884 		DELAY(10);
2885 	}
2886 	if (i == 0)
2887 		device_printf(sc->age_dev,
2888 		    "stopping Rx/Tx MACs timed out(0x%08x)!\n", reg);
2889 
2890 	 /* Reclaim Rx buffers that have been processed. */
2891 	if (sc->age_cdata.age_rxhead != NULL)
2892 		m_freem(sc->age_cdata.age_rxhead);
2893 	AGE_RXCHAIN_RESET(sc);
2894 	/*
2895 	 * Free RX and TX mbufs still in the queues.
2896 	 */
2897 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
2898 		rxd = &sc->age_cdata.age_rxdesc[i];
2899 		if (rxd->rx_m != NULL) {
2900 			bus_dmamap_sync(sc->age_cdata.age_rx_tag,
2901 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2902 			bus_dmamap_unload(sc->age_cdata.age_rx_tag,
2903 			    rxd->rx_dmamap);
2904 			m_freem(rxd->rx_m);
2905 			rxd->rx_m = NULL;
2906 		}
2907         }
2908 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2909 		txd = &sc->age_cdata.age_txdesc[i];
2910 		if (txd->tx_m != NULL) {
2911 			bus_dmamap_sync(sc->age_cdata.age_tx_tag,
2912 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2913 			bus_dmamap_unload(sc->age_cdata.age_tx_tag,
2914 			    txd->tx_dmamap);
2915 			m_freem(txd->tx_m);
2916 			txd->tx_m = NULL;
2917 		}
2918         }
2919 }
2920 
2921 static void
2922 age_stop_txmac(struct age_softc *sc)
2923 {
2924 	uint32_t reg;
2925 	int i;
2926 
2927 	AGE_LOCK_ASSERT(sc);
2928 
2929 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2930 	if ((reg & MAC_CFG_TX_ENB) != 0) {
2931 		reg &= ~MAC_CFG_TX_ENB;
2932 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2933 	}
2934 	/* Stop Tx DMA engine. */
2935 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2936 	if ((reg & DMA_CFG_RD_ENB) != 0) {
2937 		reg &= ~DMA_CFG_RD_ENB;
2938 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2939 	}
2940 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2941 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2942 		    (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2943 			break;
2944 		DELAY(10);
2945 	}
2946 	if (i == 0)
2947 		device_printf(sc->age_dev, "stopping TxMAC timeout!\n");
2948 }
2949 
2950 static void
2951 age_stop_rxmac(struct age_softc *sc)
2952 {
2953 	uint32_t reg;
2954 	int i;
2955 
2956 	AGE_LOCK_ASSERT(sc);
2957 
2958 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2959 	if ((reg & MAC_CFG_RX_ENB) != 0) {
2960 		reg &= ~MAC_CFG_RX_ENB;
2961 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2962 	}
2963 	/* Stop Rx DMA engine. */
2964 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2965 	if ((reg & DMA_CFG_WR_ENB) != 0) {
2966 		reg &= ~DMA_CFG_WR_ENB;
2967 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2968 	}
2969 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2970 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2971 		    (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2972 			break;
2973 		DELAY(10);
2974 	}
2975 	if (i == 0)
2976 		device_printf(sc->age_dev, "stopping RxMAC timeout!\n");
2977 }
2978 
2979 static void
2980 age_init_tx_ring(struct age_softc *sc)
2981 {
2982 	struct age_ring_data *rd;
2983 	struct age_txdesc *txd;
2984 	int i;
2985 
2986 	AGE_LOCK_ASSERT(sc);
2987 
2988 	sc->age_cdata.age_tx_prod = 0;
2989 	sc->age_cdata.age_tx_cons = 0;
2990 	sc->age_cdata.age_tx_cnt = 0;
2991 
2992 	rd = &sc->age_rdata;
2993 	bzero(rd->age_tx_ring, AGE_TX_RING_SZ);
2994 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2995 		txd = &sc->age_cdata.age_txdesc[i];
2996 		txd->tx_desc = &rd->age_tx_ring[i];
2997 		txd->tx_m = NULL;
2998 	}
2999 
3000 	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
3001 	    sc->age_cdata.age_tx_ring_map,
3002 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3003 }
3004 
3005 static int
3006 age_init_rx_ring(struct age_softc *sc)
3007 {
3008 	struct age_ring_data *rd;
3009 	struct age_rxdesc *rxd;
3010 	int i;
3011 
3012 	AGE_LOCK_ASSERT(sc);
3013 
3014 	sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
3015 	sc->age_morework = 0;
3016 	rd = &sc->age_rdata;
3017 	bzero(rd->age_rx_ring, AGE_RX_RING_SZ);
3018 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
3019 		rxd = &sc->age_cdata.age_rxdesc[i];
3020 		rxd->rx_m = NULL;
3021 		rxd->rx_desc = &rd->age_rx_ring[i];
3022 		if (age_newbuf(sc, rxd) != 0)
3023 			return (ENOBUFS);
3024 	}
3025 
3026 	bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
3027 	    sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE);
3028 
3029 	return (0);
3030 }
3031 
3032 static void
3033 age_init_rr_ring(struct age_softc *sc)
3034 {
3035 	struct age_ring_data *rd;
3036 
3037 	AGE_LOCK_ASSERT(sc);
3038 
3039 	sc->age_cdata.age_rr_cons = 0;
3040 	AGE_RXCHAIN_RESET(sc);
3041 
3042 	rd = &sc->age_rdata;
3043 	bzero(rd->age_rr_ring, AGE_RR_RING_SZ);
3044 	bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
3045 	    sc->age_cdata.age_rr_ring_map,
3046 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3047 }
3048 
3049 static void
3050 age_init_cmb_block(struct age_softc *sc)
3051 {
3052 	struct age_ring_data *rd;
3053 
3054 	AGE_LOCK_ASSERT(sc);
3055 
3056 	rd = &sc->age_rdata;
3057 	bzero(rd->age_cmb_block, AGE_CMB_BLOCK_SZ);
3058 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
3059 	    sc->age_cdata.age_cmb_block_map,
3060 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3061 }
3062 
3063 static void
3064 age_init_smb_block(struct age_softc *sc)
3065 {
3066 	struct age_ring_data *rd;
3067 
3068 	AGE_LOCK_ASSERT(sc);
3069 
3070 	rd = &sc->age_rdata;
3071 	bzero(rd->age_smb_block, AGE_SMB_BLOCK_SZ);
3072 	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
3073 	    sc->age_cdata.age_smb_block_map,
3074 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3075 }
3076 
3077 static int
3078 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd)
3079 {
3080 	struct rx_desc *desc;
3081 	struct mbuf *m;
3082 	bus_dma_segment_t segs[1];
3083 	bus_dmamap_t map;
3084 	int nsegs;
3085 
3086 	AGE_LOCK_ASSERT(sc);
3087 
3088 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
3089 	if (m == NULL)
3090 		return (ENOBUFS);
3091 	m->m_len = m->m_pkthdr.len = MCLBYTES;
3092 #ifndef __NO_STRICT_ALIGNMENT
3093 	m_adj(m, AGE_RX_BUF_ALIGN);
3094 #endif
3095 
3096 	if (bus_dmamap_load_mbuf_sg(sc->age_cdata.age_rx_tag,
3097 	    sc->age_cdata.age_rx_sparemap, m, segs, &nsegs, 0) != 0) {
3098 		m_freem(m);
3099 		return (ENOBUFS);
3100 	}
3101 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
3102 
3103 	if (rxd->rx_m != NULL) {
3104 		bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3105 		    BUS_DMASYNC_POSTREAD);
3106 		bus_dmamap_unload(sc->age_cdata.age_rx_tag, rxd->rx_dmamap);
3107 	}
3108 	map = rxd->rx_dmamap;
3109 	rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
3110 	sc->age_cdata.age_rx_sparemap = map;
3111 	bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3112 	    BUS_DMASYNC_PREREAD);
3113 	rxd->rx_m = m;
3114 
3115 	desc = rxd->rx_desc;
3116 	desc->addr = htole64(segs[0].ds_addr);
3117 	desc->len = htole32((segs[0].ds_len & AGE_RD_LEN_MASK) <<
3118 	    AGE_RD_LEN_SHIFT);
3119 	return (0);
3120 }
3121 
3122 static void
3123 age_rxvlan(struct age_softc *sc)
3124 {
3125 	if_t ifp;
3126 	uint32_t reg;
3127 
3128 	AGE_LOCK_ASSERT(sc);
3129 
3130 	ifp = sc->age_ifp;
3131 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
3132 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3133 	if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0)
3134 		reg |= MAC_CFG_VLAN_TAG_STRIP;
3135 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
3136 }
3137 
3138 static u_int
3139 age_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
3140 {
3141 	uint32_t *mchash = arg;
3142 	uint32_t crc;
3143 
3144 	crc = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN);
3145 	mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3146 
3147 	return (1);
3148 }
3149 
3150 static void
3151 age_rxfilter(struct age_softc *sc)
3152 {
3153 	if_t ifp;
3154 	uint32_t mchash[2];
3155 	uint32_t rxcfg;
3156 
3157 	AGE_LOCK_ASSERT(sc);
3158 
3159 	ifp = sc->age_ifp;
3160 
3161 	rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
3162 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3163 	if ((if_getflags(ifp) & IFF_BROADCAST) != 0)
3164 		rxcfg |= MAC_CFG_BCAST;
3165 	if ((if_getflags(ifp) & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3166 		if ((if_getflags(ifp) & IFF_PROMISC) != 0)
3167 			rxcfg |= MAC_CFG_PROMISC;
3168 		if ((if_getflags(ifp) & IFF_ALLMULTI) != 0)
3169 			rxcfg |= MAC_CFG_ALLMULTI;
3170 		CSR_WRITE_4(sc, AGE_MAR0, 0xFFFFFFFF);
3171 		CSR_WRITE_4(sc, AGE_MAR1, 0xFFFFFFFF);
3172 		CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3173 		return;
3174 	}
3175 
3176 	/* Program new filter. */
3177 	bzero(mchash, sizeof(mchash));
3178 	if_foreach_llmaddr(ifp, age_hash_maddr, mchash);
3179 
3180 	CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
3181 	CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
3182 	CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3183 }
3184 
3185 static int
3186 sysctl_age_stats(SYSCTL_HANDLER_ARGS)
3187 {
3188 	struct age_softc *sc;
3189 	struct age_stats *stats;
3190 	int error, result;
3191 
3192 	result = -1;
3193 	error = sysctl_handle_int(oidp, &result, 0, req);
3194 
3195 	if (error != 0 || req->newptr == NULL)
3196 		return (error);
3197 
3198 	if (result != 1)
3199 		return (error);
3200 
3201 	sc = (struct age_softc *)arg1;
3202 	stats = &sc->age_stat;
3203 	printf("%s statistics:\n", device_get_nameunit(sc->age_dev));
3204 	printf("Transmit good frames : %ju\n",
3205 	    (uintmax_t)stats->tx_frames);
3206 	printf("Transmit good broadcast frames : %ju\n",
3207 	    (uintmax_t)stats->tx_bcast_frames);
3208 	printf("Transmit good multicast frames : %ju\n",
3209 	    (uintmax_t)stats->tx_mcast_frames);
3210 	printf("Transmit pause control frames : %u\n",
3211 	    stats->tx_pause_frames);
3212 	printf("Transmit control frames : %u\n",
3213 	    stats->tx_control_frames);
3214 	printf("Transmit frames with excessive deferrals : %u\n",
3215 	    stats->tx_excess_defer);
3216 	printf("Transmit deferrals : %u\n",
3217 	    stats->tx_deferred);
3218 	printf("Transmit good octets : %ju\n",
3219 	    (uintmax_t)stats->tx_bytes);
3220 	printf("Transmit good broadcast octets : %ju\n",
3221 	    (uintmax_t)stats->tx_bcast_bytes);
3222 	printf("Transmit good multicast octets : %ju\n",
3223 	    (uintmax_t)stats->tx_mcast_bytes);
3224 	printf("Transmit frames 64 bytes : %ju\n",
3225 	    (uintmax_t)stats->tx_pkts_64);
3226 	printf("Transmit frames 65 to 127 bytes : %ju\n",
3227 	    (uintmax_t)stats->tx_pkts_65_127);
3228 	printf("Transmit frames 128 to 255 bytes : %ju\n",
3229 	    (uintmax_t)stats->tx_pkts_128_255);
3230 	printf("Transmit frames 256 to 511 bytes : %ju\n",
3231 	    (uintmax_t)stats->tx_pkts_256_511);
3232 	printf("Transmit frames 512 to 1024 bytes : %ju\n",
3233 	    (uintmax_t)stats->tx_pkts_512_1023);
3234 	printf("Transmit frames 1024 to 1518 bytes : %ju\n",
3235 	    (uintmax_t)stats->tx_pkts_1024_1518);
3236 	printf("Transmit frames 1519 to MTU bytes : %ju\n",
3237 	    (uintmax_t)stats->tx_pkts_1519_max);
3238 	printf("Transmit single collisions : %u\n",
3239 	    stats->tx_single_colls);
3240 	printf("Transmit multiple collisions : %u\n",
3241 	    stats->tx_multi_colls);
3242 	printf("Transmit late collisions : %u\n",
3243 	    stats->tx_late_colls);
3244 	printf("Transmit abort due to excessive collisions : %u\n",
3245 	    stats->tx_excess_colls);
3246 	printf("Transmit underruns due to FIFO underruns : %u\n",
3247 	    stats->tx_underrun);
3248 	printf("Transmit descriptor write-back errors : %u\n",
3249 	    stats->tx_desc_underrun);
3250 	printf("Transmit frames with length mismatched frame size : %u\n",
3251 	    stats->tx_lenerrs);
3252 	printf("Transmit frames with truncated due to MTU size : %u\n",
3253 	    stats->tx_lenerrs);
3254 
3255 	printf("Receive good frames : %ju\n",
3256 	    (uintmax_t)stats->rx_frames);
3257 	printf("Receive good broadcast frames : %ju\n",
3258 	    (uintmax_t)stats->rx_bcast_frames);
3259 	printf("Receive good multicast frames : %ju\n",
3260 	    (uintmax_t)stats->rx_mcast_frames);
3261 	printf("Receive pause control frames : %u\n",
3262 	    stats->rx_pause_frames);
3263 	printf("Receive control frames : %u\n",
3264 	    stats->rx_control_frames);
3265 	printf("Receive CRC errors : %u\n",
3266 	    stats->rx_crcerrs);
3267 	printf("Receive frames with length errors : %u\n",
3268 	    stats->rx_lenerrs);
3269 	printf("Receive good octets : %ju\n",
3270 	    (uintmax_t)stats->rx_bytes);
3271 	printf("Receive good broadcast octets : %ju\n",
3272 	    (uintmax_t)stats->rx_bcast_bytes);
3273 	printf("Receive good multicast octets : %ju\n",
3274 	    (uintmax_t)stats->rx_mcast_bytes);
3275 	printf("Receive frames too short : %u\n",
3276 	    stats->rx_runts);
3277 	printf("Receive fragmented frames : %ju\n",
3278 	    (uintmax_t)stats->rx_fragments);
3279 	printf("Receive frames 64 bytes : %ju\n",
3280 	    (uintmax_t)stats->rx_pkts_64);
3281 	printf("Receive frames 65 to 127 bytes : %ju\n",
3282 	    (uintmax_t)stats->rx_pkts_65_127);
3283 	printf("Receive frames 128 to 255 bytes : %ju\n",
3284 	    (uintmax_t)stats->rx_pkts_128_255);
3285 	printf("Receive frames 256 to 511 bytes : %ju\n",
3286 	    (uintmax_t)stats->rx_pkts_256_511);
3287 	printf("Receive frames 512 to 1024 bytes : %ju\n",
3288 	    (uintmax_t)stats->rx_pkts_512_1023);
3289 	printf("Receive frames 1024 to 1518 bytes : %ju\n",
3290 	    (uintmax_t)stats->rx_pkts_1024_1518);
3291 	printf("Receive frames 1519 to MTU bytes : %ju\n",
3292 	    (uintmax_t)stats->rx_pkts_1519_max);
3293 	printf("Receive frames too long : %ju\n",
3294 	    (uint64_t)stats->rx_pkts_truncated);
3295 	printf("Receive frames with FIFO overflow : %u\n",
3296 	    stats->rx_fifo_oflows);
3297 	printf("Receive frames with return descriptor overflow : %u\n",
3298 	    stats->rx_desc_oflows);
3299 	printf("Receive frames with alignment errors : %u\n",
3300 	    stats->rx_alignerrs);
3301 	printf("Receive frames dropped due to address filtering : %ju\n",
3302 	    (uint64_t)stats->rx_pkts_filtered);
3303 
3304 	return (error);
3305 }
3306 
3307 static int
3308 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3309 {
3310 	int error, value;
3311 
3312 	if (arg1 == NULL)
3313 		return (EINVAL);
3314 	value = *(int *)arg1;
3315 	error = sysctl_handle_int(oidp, &value, 0, req);
3316 	if (error || req->newptr == NULL)
3317 		return (error);
3318 	if (value < low || value > high)
3319 		return (EINVAL);
3320         *(int *)arg1 = value;
3321 
3322         return (0);
3323 }
3324 
3325 static int
3326 sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS)
3327 {
3328 	return (sysctl_int_range(oidp, arg1, arg2, req,
3329 	    AGE_PROC_MIN, AGE_PROC_MAX));
3330 }
3331 
3332 static int
3333 sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS)
3334 {
3335 
3336 	return (sysctl_int_range(oidp, arg1, arg2, req, AGE_IM_TIMER_MIN,
3337 	    AGE_IM_TIMER_MAX));
3338 }
3339