xref: /freebsd/sys/dev/al_eth/al_eth.c (revision 069ac184)
1 /*-
2  * Copyright (c) 2015,2016 Annapurna Labs Ltd. and affiliates
3  * All rights reserved.
4  *
5  * Developed by Semihalf.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/bus.h>
32 #include <sys/kernel.h>
33 #include <sys/kthread.h>
34 #include <sys/lock.h>
35 #include <sys/mbuf.h>
36 #include <sys/malloc.h>
37 #include <sys/module.h>
38 #include <sys/rman.h>
39 #include <sys/socket.h>
40 #include <sys/sockio.h>
41 #include <sys/sysctl.h>
42 #include <sys/taskqueue.h>
43 
44 #include <machine/atomic.h>
45 
46 #include "opt_inet.h"
47 #include "opt_inet6.h"
48 
49 #include <net/ethernet.h>
50 #include <net/if.h>
51 #include <net/if_var.h>
52 #include <net/if_arp.h>
53 #include <net/if_dl.h>
54 #include <net/if_media.h>
55 #include <net/if_types.h>
56 #include <netinet/in.h>
57 #include <net/if_vlan_var.h>
58 #include <netinet/tcp.h>
59 #include <netinet/tcp_lro.h>
60 
61 #ifdef INET
62 #include <netinet/in.h>
63 #include <netinet/in_systm.h>
64 #include <netinet/in_var.h>
65 #include <netinet/ip.h>
66 #endif
67 
68 #ifdef INET6
69 #include <netinet/ip6.h>
70 #endif
71 
72 #include <sys/sockio.h>
73 
74 #include <dev/pci/pcireg.h>
75 #include <dev/pci/pcivar.h>
76 
77 #include <dev/mii/mii.h>
78 #include <dev/mii/miivar.h>
79 
80 #include <al_hal_common.h>
81 #include <al_hal_plat_services.h>
82 #include <al_hal_udma_config.h>
83 #include <al_hal_udma_iofic.h>
84 #include <al_hal_udma_debug.h>
85 #include <al_hal_eth.h>
86 
87 #include "al_eth.h"
88 #include "al_init_eth_lm.h"
89 #include "arm/annapurna/alpine/alpine_serdes.h"
90 
91 #include "miibus_if.h"
92 
93 #define	device_printf_dbg(fmt, ...) do {				\
94 	if (AL_DBG_LEVEL >= AL_DBG_LEVEL_DBG) { AL_DBG_LOCK();		\
95 	    device_printf(fmt, __VA_ARGS__); AL_DBG_UNLOCK();}		\
96 	} while (0)
97 
98 MALLOC_DEFINE(M_IFAL, "if_al_malloc", "All allocated data for AL ETH driver");
99 
100 /* move out to some pci header file */
101 #define	PCI_VENDOR_ID_ANNAPURNA_LABS	0x1c36
102 #define	PCI_DEVICE_ID_AL_ETH		0x0001
103 #define	PCI_DEVICE_ID_AL_ETH_ADVANCED	0x0002
104 #define	PCI_DEVICE_ID_AL_ETH_NIC	0x0003
105 #define	PCI_DEVICE_ID_AL_ETH_FPGA_NIC	0x0030
106 #define	PCI_DEVICE_ID_AL_CRYPTO		0x0011
107 #define	PCI_DEVICE_ID_AL_CRYPTO_VF	0x8011
108 #define	PCI_DEVICE_ID_AL_RAID_DMA	0x0021
109 #define	PCI_DEVICE_ID_AL_RAID_DMA_VF	0x8021
110 #define	PCI_DEVICE_ID_AL_USB		0x0041
111 
112 #define	MAC_ADDR_STR "%02x:%02x:%02x:%02x:%02x:%02x"
113 #define	MAC_ADDR(addr) addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]
114 
115 #define	AL_ETH_MAC_TABLE_UNICAST_IDX_BASE	0
116 #define	AL_ETH_MAC_TABLE_UNICAST_MAX_COUNT	4
117 #define	AL_ETH_MAC_TABLE_ALL_MULTICAST_IDX	(AL_ETH_MAC_TABLE_UNICAST_IDX_BASE + \
118 						 AL_ETH_MAC_TABLE_UNICAST_MAX_COUNT)
119 
120 #define	AL_ETH_MAC_TABLE_DROP_IDX		(AL_ETH_FWD_MAC_NUM - 1)
121 #define	AL_ETH_MAC_TABLE_BROADCAST_IDX		(AL_ETH_MAC_TABLE_DROP_IDX - 1)
122 
123 #define	AL_ETH_THASH_UDMA_SHIFT		0
124 #define	AL_ETH_THASH_UDMA_MASK		(0xF << AL_ETH_THASH_UDMA_SHIFT)
125 
126 #define	AL_ETH_THASH_Q_SHIFT		4
127 #define	AL_ETH_THASH_Q_MASK		(0x3 << AL_ETH_THASH_Q_SHIFT)
128 
129 /* the following defines should be moved to hal */
130 #define	AL_ETH_FSM_ENTRY_IPV4_TCP		0
131 #define	AL_ETH_FSM_ENTRY_IPV4_UDP		1
132 #define	AL_ETH_FSM_ENTRY_IPV6_TCP		2
133 #define	AL_ETH_FSM_ENTRY_IPV6_UDP		3
134 #define	AL_ETH_FSM_ENTRY_IPV6_NO_UDP_TCP	4
135 #define	AL_ETH_FSM_ENTRY_IPV4_NO_UDP_TCP	5
136 
137 /* FSM DATA format */
138 #define	AL_ETH_FSM_DATA_OUTER_2_TUPLE	0
139 #define	AL_ETH_FSM_DATA_OUTER_4_TUPLE	1
140 #define	AL_ETH_FSM_DATA_INNER_2_TUPLE	2
141 #define	AL_ETH_FSM_DATA_INNER_4_TUPLE	3
142 
143 #define	AL_ETH_FSM_DATA_HASH_SEL	(1 << 2)
144 
145 #define	AL_ETH_FSM_DATA_DEFAULT_Q	0
146 #define	AL_ETH_FSM_DATA_DEFAULT_UDMA	0
147 
148 #define	AL_BR_SIZE	512
149 #define	AL_TSO_SIZE	65500
150 #define	AL_DEFAULT_MTU	1500
151 
152 #define	CSUM_OFFLOAD		(CSUM_IP|CSUM_TCP|CSUM_UDP|CSUM_SCTP)
153 
154 #define	AL_IP_ALIGNMENT_OFFSET	2
155 
156 #define	SFP_I2C_ADDR		0x50
157 
158 #define	AL_MASK_GROUP_A_INT	0x7
159 #define	AL_MASK_GROUP_B_INT	0xF
160 #define	AL_MASK_GROUP_C_INT	0xF
161 #define	AL_MASK_GROUP_D_INT	0xFFFFFFFF
162 
163 #define	AL_REG_OFFSET_FORWARD_INTR	(0x1800000 + 0x1210)
164 #define	AL_EN_FORWARD_INTR	0x1FFFF
165 #define	AL_DIS_FORWARD_INTR	0
166 
167 #define	AL_M2S_MASK_INIT	0x480
168 #define	AL_S2M_MASK_INIT	0x1E0
169 #define	AL_M2S_S2M_MASK_NOT_INT	(0x3f << 25)
170 
171 #define	AL_10BASE_T_SPEED	10
172 #define	AL_100BASE_TX_SPEED	100
173 #define	AL_1000BASE_T_SPEED	1000
174 
175 #define	AL_RX_LOCK_INIT(_sc)	mtx_init(&((_sc)->if_rx_lock), "ALRXL", "ALRXL", MTX_DEF)
176 #define	AL_RX_LOCK(_sc)		mtx_lock(&((_sc)->if_rx_lock))
177 #define	AL_RX_UNLOCK(_sc)	mtx_unlock(&((_sc)->if_rx_lock))
178 
179 /* helper functions */
180 static int al_is_device_supported(device_t);
181 
182 static void al_eth_init_rings(struct al_eth_adapter *);
183 static void al_eth_flow_ctrl_disable(struct al_eth_adapter *);
184 int al_eth_fpga_read_pci_config(void *, int, uint32_t *);
185 int al_eth_fpga_write_pci_config(void *, int, uint32_t);
186 int al_eth_read_pci_config(void *, int, uint32_t *);
187 int al_eth_write_pci_config(void *, int, uint32_t);
188 void al_eth_irq_config(uint32_t *, uint32_t);
189 void al_eth_forward_int_config(uint32_t *, uint32_t);
190 static void al_eth_start_xmit(void *, int);
191 static void al_eth_rx_recv_work(void *, int);
192 static int al_eth_up(struct al_eth_adapter *);
193 static void al_eth_down(struct al_eth_adapter *);
194 static void al_eth_interrupts_unmask(struct al_eth_adapter *);
195 static void al_eth_interrupts_mask(struct al_eth_adapter *);
196 static int al_eth_check_mtu(struct al_eth_adapter *, int);
197 static uint64_t al_get_counter(if_t, ift_counter);
198 static void al_eth_req_rx_buff_size(struct al_eth_adapter *, int);
199 static int al_eth_board_params_init(struct al_eth_adapter *);
200 static int al_media_update(if_t);
201 static void al_media_status(if_t, struct ifmediareq *);
202 static int al_eth_function_reset(struct al_eth_adapter *);
203 static int al_eth_hw_init_adapter(struct al_eth_adapter *);
204 static void al_eth_serdes_init(struct al_eth_adapter *);
205 static void al_eth_lm_config(struct al_eth_adapter *);
206 static int al_eth_hw_init(struct al_eth_adapter *);
207 
208 static void al_tick_stats(void *);
209 
210 /* ifnet entry points */
211 static void al_init(void *);
212 static int al_mq_start(if_t, struct mbuf *);
213 static void al_qflush(if_t);
214 static int al_ioctl(if_t ifp, u_long, caddr_t);
215 
216 /* bus entry points */
217 static int al_probe(device_t);
218 static int al_attach(device_t);
219 static int al_detach(device_t);
220 static int al_shutdown(device_t);
221 
222 /* mii bus support routines */
223 static int al_miibus_readreg(device_t, int, int);
224 static int al_miibus_writereg(device_t, int, int, int);
225 static void al_miibus_statchg(device_t);
226 static void al_miibus_linkchg(device_t);
227 
228 struct al_eth_adapter* g_adapters[16];
229 uint32_t g_adapters_count;
230 
231 /* flag for napi-like mbuf processing, controlled from sysctl */
232 static int napi = 0;
233 
234 static device_method_t al_methods[] = {
235 	/* Device interface */
236 	DEVMETHOD(device_probe,		al_probe),
237 	DEVMETHOD(device_attach,	al_attach),
238 	DEVMETHOD(device_detach,	al_detach),
239 	DEVMETHOD(device_shutdown,	al_shutdown),
240 
241 	DEVMETHOD(miibus_readreg,	al_miibus_readreg),
242 	DEVMETHOD(miibus_writereg,	al_miibus_writereg),
243 	DEVMETHOD(miibus_statchg,	al_miibus_statchg),
244 	DEVMETHOD(miibus_linkchg,	al_miibus_linkchg),
245 	{ 0, 0 }
246 };
247 
248 static driver_t al_driver = {
249 	"al",
250 	al_methods,
251 	sizeof(struct al_eth_adapter),
252 };
253 
254 DRIVER_MODULE(al, pci, al_driver, 0, 0);
255 DRIVER_MODULE(miibus, al, miibus_driver, 0, 0);
256 
257 static int
258 al_probe(device_t dev)
259 {
260 	if ((al_is_device_supported(dev)) != 0) {
261 		device_set_desc(dev, "al");
262 		return (BUS_PROBE_DEFAULT);
263 	}
264 	return (ENXIO);
265 }
266 
267 static int
268 al_attach(device_t dev)
269 {
270 	struct al_eth_adapter *adapter;
271 	struct sysctl_oid_list *child;
272 	struct sysctl_ctx_list *ctx;
273 	struct sysctl_oid *tree;
274 	if_t ifp;
275 	uint32_t dev_id;
276 	uint32_t rev_id;
277 	int bar_udma;
278 	int bar_mac;
279 	int bar_ec;
280 	int err;
281 
282 	err = 0;
283 	ifp = NULL;
284 	dev_id = rev_id = 0;
285 	ctx = device_get_sysctl_ctx(dev);
286 	tree = SYSCTL_PARENT(device_get_sysctl_tree(dev));
287 	child = SYSCTL_CHILDREN(tree);
288 
289 	if (g_adapters_count == 0) {
290 		SYSCTL_ADD_INT(ctx, child, OID_AUTO, "napi",
291 		    CTLFLAG_RW, &napi, 0, "Use pseudo-napi mechanism");
292 	}
293 	adapter = device_get_softc(dev);
294 	adapter->dev = dev;
295 	adapter->board_type = ALPINE_INTEGRATED;
296 	snprintf(adapter->name, AL_ETH_NAME_MAX_LEN, "%s",
297 	    device_get_nameunit(dev));
298 	AL_RX_LOCK_INIT(adapter);
299 
300 	g_adapters[g_adapters_count] = adapter;
301 
302 	bar_udma = PCIR_BAR(AL_ETH_UDMA_BAR);
303 	adapter->udma_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
304 	    &bar_udma, RF_ACTIVE);
305 	if (adapter->udma_res == NULL) {
306 		device_printf(adapter->dev,
307 		    "could not allocate memory resources for DMA.\n");
308 		err = ENOMEM;
309 		goto err_res_dma;
310 	}
311 	adapter->udma_base = al_bus_dma_to_va(rman_get_bustag(adapter->udma_res),
312 	    rman_get_bushandle(adapter->udma_res));
313 	bar_mac = PCIR_BAR(AL_ETH_MAC_BAR);
314 	adapter->mac_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
315 	    &bar_mac, RF_ACTIVE);
316 	if (adapter->mac_res == NULL) {
317 		device_printf(adapter->dev,
318 		    "could not allocate memory resources for MAC.\n");
319 		err = ENOMEM;
320 		goto err_res_mac;
321 	}
322 	adapter->mac_base = al_bus_dma_to_va(rman_get_bustag(adapter->mac_res),
323 	    rman_get_bushandle(adapter->mac_res));
324 
325 	bar_ec = PCIR_BAR(AL_ETH_EC_BAR);
326 	adapter->ec_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &bar_ec,
327 	    RF_ACTIVE);
328 	if (adapter->ec_res == NULL) {
329 		device_printf(adapter->dev,
330 		    "could not allocate memory resources for EC.\n");
331 		err = ENOMEM;
332 		goto err_res_ec;
333 	}
334 	adapter->ec_base = al_bus_dma_to_va(rman_get_bustag(adapter->ec_res),
335 	    rman_get_bushandle(adapter->ec_res));
336 
337 	adapter->netdev = ifp = if_alloc(IFT_ETHER);
338 
339 	if_setsoftc(ifp, adapter);
340 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
341 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
342 	if_setflags(ifp, if_getdrvflags(ifp));
343 	if_setflagbits(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST | IFF_ALLMULTI, 0);
344 	if_settransmitfn(ifp, al_mq_start);
345 	if_setqflushfn(ifp, al_qflush);
346 	if_setioctlfn(ifp, al_ioctl);
347 	if_setinitfn(ifp, al_init);
348 	if_setgetcounterfn(ifp, al_get_counter);
349 	if_setmtu(ifp, AL_DEFAULT_MTU);
350 
351 	adapter->if_flags = if_getflags(ifp);
352 
353 	if_setcapabilities(ifp, if_getcapenable(ifp) );
354 
355 	if_setcapabilitiesbit(ifp, IFCAP_HWCSUM |
356 	    IFCAP_HWCSUM_IPV6 | IFCAP_TSO |
357 	    IFCAP_LRO | IFCAP_JUMBO_MTU, 0);
358 
359 	if_setcapenable(ifp, if_getcapabilities(ifp));
360 
361 	adapter->id_number = g_adapters_count;
362 
363 	if (adapter->board_type == ALPINE_INTEGRATED) {
364 		dev_id = pci_get_device(adapter->dev);
365 		rev_id = pci_get_revid(adapter->dev);
366 	} else {
367 		al_eth_fpga_read_pci_config(adapter->internal_pcie_base,
368 		    PCIR_DEVICE, &dev_id);
369 		al_eth_fpga_read_pci_config(adapter->internal_pcie_base,
370 		    PCIR_REVID, &rev_id);
371 	}
372 
373 	adapter->dev_id = dev_id;
374 	adapter->rev_id = rev_id;
375 
376 	/* set default ring sizes */
377 	adapter->tx_ring_count = AL_ETH_DEFAULT_TX_SW_DESCS;
378 	adapter->tx_descs_count = AL_ETH_DEFAULT_TX_HW_DESCS;
379 	adapter->rx_ring_count = AL_ETH_DEFAULT_RX_DESCS;
380 	adapter->rx_descs_count = AL_ETH_DEFAULT_RX_DESCS;
381 
382 	adapter->num_tx_queues = AL_ETH_NUM_QUEUES;
383 	adapter->num_rx_queues = AL_ETH_NUM_QUEUES;
384 
385 	adapter->small_copy_len	= AL_ETH_DEFAULT_SMALL_PACKET_LEN;
386 	adapter->link_poll_interval = AL_ETH_DEFAULT_LINK_POLL_INTERVAL;
387 	adapter->max_rx_buff_alloc_size = AL_ETH_DEFAULT_MAX_RX_BUFF_ALLOC_SIZE;
388 
389 	al_eth_req_rx_buff_size(adapter, if_getmtu(adapter->netdev));
390 
391 	adapter->link_config.force_1000_base_x = AL_ETH_DEFAULT_FORCE_1000_BASEX;
392 
393 	err = al_eth_board_params_init(adapter);
394 	if (err != 0)
395 		goto err;
396 
397 	if (adapter->mac_mode == AL_ETH_MAC_MODE_10GbE_Serial) {
398 		ifmedia_init(&adapter->media, IFM_IMASK,
399 		    al_media_update, al_media_status);
400 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_1000_LX, 0, NULL);
401 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10G_LR, 0, NULL);
402 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
403 		ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
404 	}
405 
406 	al_eth_function_reset(adapter);
407 
408 	err = al_eth_hw_init_adapter(adapter);
409 	if (err != 0)
410 		goto err;
411 
412 	al_eth_init_rings(adapter);
413 	g_adapters_count++;
414 
415 	al_eth_lm_config(adapter);
416 	mtx_init(&adapter->stats_mtx, "AlStatsMtx", NULL, MTX_DEF);
417 	mtx_init(&adapter->wd_mtx, "AlWdMtx", NULL, MTX_DEF);
418 	callout_init_mtx(&adapter->stats_callout, &adapter->stats_mtx, 0);
419 	callout_init_mtx(&adapter->wd_callout, &adapter->wd_mtx, 0);
420 
421 	ether_ifattach(ifp, adapter->mac_addr);
422 	if_setmtu(ifp, AL_DEFAULT_MTU);
423 
424 	if (adapter->mac_mode == AL_ETH_MAC_MODE_RGMII) {
425 		al_eth_hw_init(adapter);
426 
427 		/* Attach PHY(s) */
428 		err = mii_attach(adapter->dev, &adapter->miibus, adapter->netdev,
429 		    al_media_update, al_media_status, BMSR_DEFCAPMASK, 0,
430 		    MII_OFFSET_ANY, 0);
431 		if (err != 0) {
432 			device_printf(adapter->dev, "attaching PHYs failed\n");
433 			return (err);
434 		}
435 
436 		adapter->mii = device_get_softc(adapter->miibus);
437 	}
438 
439 	return (err);
440 
441 err:
442 	bus_release_resource(dev, SYS_RES_MEMORY, bar_ec, adapter->ec_res);
443 err_res_ec:
444 	bus_release_resource(dev, SYS_RES_MEMORY, bar_mac, adapter->mac_res);
445 err_res_mac:
446 	bus_release_resource(dev, SYS_RES_MEMORY, bar_udma, adapter->udma_res);
447 err_res_dma:
448 	return (err);
449 }
450 
451 static int
452 al_detach(device_t dev)
453 {
454 	struct al_eth_adapter *adapter;
455 
456 	adapter = device_get_softc(dev);
457 	ether_ifdetach(adapter->netdev);
458 
459 	mtx_destroy(&adapter->stats_mtx);
460 	mtx_destroy(&adapter->wd_mtx);
461 
462 	al_eth_down(adapter);
463 
464 	bus_release_resource(dev, SYS_RES_IRQ,    0, adapter->irq_res);
465 	bus_release_resource(dev, SYS_RES_MEMORY, 0, adapter->ec_res);
466 	bus_release_resource(dev, SYS_RES_MEMORY, 0, adapter->mac_res);
467 	bus_release_resource(dev, SYS_RES_MEMORY, 0, adapter->udma_res);
468 
469 	return (0);
470 }
471 
472 int
473 al_eth_fpga_read_pci_config(void *handle, int where, uint32_t *val)
474 {
475 
476 	/* handle is the base address of the adapter */
477 	*val = al_reg_read32((void*)((u_long)handle + where));
478 
479 	return (0);
480 }
481 
482 int
483 al_eth_fpga_write_pci_config(void *handle, int where, uint32_t val)
484 {
485 
486 	/* handle is the base address of the adapter */
487 	al_reg_write32((void*)((u_long)handle + where), val);
488 	return (0);
489 }
490 
491 int
492 al_eth_read_pci_config(void *handle, int where, uint32_t *val)
493 {
494 
495 	/* handle is a pci_dev */
496 	*val = pci_read_config((device_t)handle, where, sizeof(*val));
497 	return (0);
498 }
499 
500 int
501 al_eth_write_pci_config(void *handle, int where, uint32_t val)
502 {
503 
504 	/* handle is a pci_dev */
505 	pci_write_config((device_t)handle, where, val, sizeof(val));
506 	return (0);
507 }
508 
509 void
510 al_eth_irq_config(uint32_t *offset, uint32_t value)
511 {
512 
513 	al_reg_write32_relaxed(offset, value);
514 }
515 
516 void
517 al_eth_forward_int_config(uint32_t *offset, uint32_t value)
518 {
519 
520 	al_reg_write32(offset, value);
521 }
522 
523 static void
524 al_eth_serdes_init(struct al_eth_adapter *adapter)
525 {
526 	void __iomem	*serdes_base;
527 
528 	adapter->serdes_init = false;
529 
530 	serdes_base = alpine_serdes_resource_get(adapter->serdes_grp);
531 	if (serdes_base == NULL) {
532 		device_printf(adapter->dev, "serdes_base get failed!\n");
533 		return;
534 	}
535 
536 	serdes_base = al_bus_dma_to_va(serdes_tag, serdes_base);
537 
538 	al_serdes_handle_grp_init(serdes_base, adapter->serdes_grp,
539 	    &adapter->serdes_obj);
540 
541 	adapter->serdes_init = true;
542 }
543 
544 static void
545 al_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
546 {
547 	bus_addr_t *paddr;
548 
549 	paddr = arg;
550 	*paddr = segs->ds_addr;
551 }
552 
553 static int
554 al_dma_alloc_coherent(device_t dev, bus_dma_tag_t *tag, bus_dmamap_t *map,
555     bus_addr_t *baddr, void **vaddr, uint32_t size)
556 {
557 	int ret;
558 	uint32_t maxsize = ((size - 1)/PAGE_SIZE + 1) * PAGE_SIZE;
559 
560 	ret = bus_dma_tag_create(bus_get_dma_tag(dev), 8, 0,
561 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
562 	    maxsize, 1, maxsize, BUS_DMA_COHERENT, NULL, NULL, tag);
563 	if (ret != 0) {
564 		device_printf(dev,
565 		    "failed to create bus tag, ret = %d\n", ret);
566 		return (ret);
567 	}
568 
569 	ret = bus_dmamem_alloc(*tag, vaddr,
570 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, map);
571 	if (ret != 0) {
572 		device_printf(dev,
573 		    "failed to allocate dmamem, ret = %d\n", ret);
574 		return (ret);
575 	}
576 
577 	ret = bus_dmamap_load(*tag, *map, *vaddr,
578 	    size, al_dma_map_addr, baddr, 0);
579 	if (ret != 0) {
580 		device_printf(dev,
581 		    "failed to allocate bus_dmamap_load, ret = %d\n", ret);
582 		return (ret);
583 	}
584 
585 	return (0);
586 }
587 
588 static void
589 al_dma_free_coherent(bus_dma_tag_t tag, bus_dmamap_t map, void *vaddr)
590 {
591 
592 	bus_dmamap_unload(tag, map);
593 	bus_dmamem_free(tag, vaddr, map);
594 	bus_dma_tag_destroy(tag);
595 }
596 
597 static void
598 al_eth_mac_table_unicast_add(struct al_eth_adapter *adapter,
599     uint8_t idx, uint8_t udma_mask)
600 {
601 	struct al_eth_fwd_mac_table_entry entry = { { 0 } };
602 
603 	memcpy(entry.addr, adapter->mac_addr, sizeof(adapter->mac_addr));
604 
605 	memset(entry.mask, 0xff, sizeof(entry.mask));
606 	entry.rx_valid = true;
607 	entry.tx_valid = false;
608 	entry.udma_mask = udma_mask;
609 	entry.filter = false;
610 
611 	device_printf_dbg(adapter->dev,
612 	    "%s: [%d]: addr "MAC_ADDR_STR" mask "MAC_ADDR_STR"\n",
613 	    __func__, idx, MAC_ADDR(entry.addr), MAC_ADDR(entry.mask));
614 
615 	al_eth_fwd_mac_table_set(&adapter->hal_adapter, idx, &entry);
616 }
617 
618 static void
619 al_eth_mac_table_all_multicast_add(struct al_eth_adapter *adapter, uint8_t idx,
620     uint8_t udma_mask)
621 {
622 	struct al_eth_fwd_mac_table_entry entry = { { 0 } };
623 
624 	memset(entry.addr, 0x00, sizeof(entry.addr));
625 	memset(entry.mask, 0x00, sizeof(entry.mask));
626 	entry.mask[0] |= 1;
627 	entry.addr[0] |= 1;
628 
629 	entry.rx_valid = true;
630 	entry.tx_valid = false;
631 	entry.udma_mask = udma_mask;
632 	entry.filter = false;
633 
634 	device_printf_dbg(adapter->dev,
635 	    "%s: [%d]: addr "MAC_ADDR_STR" mask "MAC_ADDR_STR"\n",
636 	    __func__, idx, MAC_ADDR(entry.addr), MAC_ADDR(entry.mask));
637 
638 	al_eth_fwd_mac_table_set(&adapter->hal_adapter, idx, &entry);
639 }
640 
641 static void
642 al_eth_mac_table_broadcast_add(struct al_eth_adapter *adapter,
643     uint8_t idx, uint8_t udma_mask)
644 {
645 	struct al_eth_fwd_mac_table_entry entry = { { 0 } };
646 
647 	memset(entry.addr, 0xff, sizeof(entry.addr));
648 	memset(entry.mask, 0xff, sizeof(entry.mask));
649 
650 	entry.rx_valid = true;
651 	entry.tx_valid = false;
652 	entry.udma_mask = udma_mask;
653 	entry.filter = false;
654 
655 	device_printf_dbg(adapter->dev,
656 	    "%s: [%d]: addr "MAC_ADDR_STR" mask "MAC_ADDR_STR"\n",
657 	    __func__, idx, MAC_ADDR(entry.addr), MAC_ADDR(entry.mask));
658 
659 	al_eth_fwd_mac_table_set(&adapter->hal_adapter, idx, &entry);
660 }
661 
662 static void
663 al_eth_mac_table_promiscuous_set(struct al_eth_adapter *adapter,
664     bool promiscuous)
665 {
666 	struct al_eth_fwd_mac_table_entry entry = { { 0 } };
667 
668 	memset(entry.addr, 0x00, sizeof(entry.addr));
669 	memset(entry.mask, 0x00, sizeof(entry.mask));
670 
671 	entry.rx_valid = true;
672 	entry.tx_valid = false;
673 	entry.udma_mask = (promiscuous) ? 1 : 0;
674 	entry.filter = (promiscuous) ? false : true;
675 
676 	device_printf_dbg(adapter->dev, "%s: %s promiscuous mode\n",
677 	    __func__, (promiscuous) ? "enter" : "exit");
678 
679 	al_eth_fwd_mac_table_set(&adapter->hal_adapter,
680 	    AL_ETH_MAC_TABLE_DROP_IDX, &entry);
681 }
682 
683 static void
684 al_eth_set_thash_table_entry(struct al_eth_adapter *adapter, uint8_t idx,
685     uint8_t udma, uint32_t queue)
686 {
687 
688 	if (udma != 0)
689 		panic("only UDMA0 is supporter");
690 
691 	if (queue >= AL_ETH_NUM_QUEUES)
692 		panic("invalid queue number");
693 
694 	al_eth_thash_table_set(&adapter->hal_adapter, idx, udma, queue);
695 }
696 
697 /* init FSM, no tunneling supported yet, if packet is tcp/udp over ipv4/ipv6, use 4 tuple hash */
698 static void
699 al_eth_fsm_table_init(struct al_eth_adapter *adapter)
700 {
701 	uint32_t val;
702 	int i;
703 
704 	for (i = 0; i < AL_ETH_RX_FSM_TABLE_SIZE; i++) {
705 		uint8_t outer_type = AL_ETH_FSM_ENTRY_OUTER(i);
706 		switch (outer_type) {
707 		case AL_ETH_FSM_ENTRY_IPV4_TCP:
708 		case AL_ETH_FSM_ENTRY_IPV4_UDP:
709 		case AL_ETH_FSM_ENTRY_IPV6_TCP:
710 		case AL_ETH_FSM_ENTRY_IPV6_UDP:
711 			val = AL_ETH_FSM_DATA_OUTER_4_TUPLE |
712 			    AL_ETH_FSM_DATA_HASH_SEL;
713 			break;
714 		case AL_ETH_FSM_ENTRY_IPV6_NO_UDP_TCP:
715 		case AL_ETH_FSM_ENTRY_IPV4_NO_UDP_TCP:
716 			val = AL_ETH_FSM_DATA_OUTER_2_TUPLE |
717 			    AL_ETH_FSM_DATA_HASH_SEL;
718 			break;
719 		default:
720 			val = AL_ETH_FSM_DATA_DEFAULT_Q |
721 			    AL_ETH_FSM_DATA_DEFAULT_UDMA;
722 		}
723 		al_eth_fsm_table_set(&adapter->hal_adapter, i, val);
724 	}
725 }
726 
727 static void
728 al_eth_mac_table_entry_clear(struct al_eth_adapter *adapter,
729     uint8_t idx)
730 {
731 	struct al_eth_fwd_mac_table_entry entry = { { 0 } };
732 
733 	device_printf_dbg(adapter->dev, "%s: clear entry %d\n", __func__, idx);
734 
735 	al_eth_fwd_mac_table_set(&adapter->hal_adapter, idx, &entry);
736 }
737 
738 static int
739 al_eth_hw_init_adapter(struct al_eth_adapter *adapter)
740 {
741 	struct al_eth_adapter_params *params = &adapter->eth_hal_params;
742 	int rc;
743 
744 	/* params->dev_id = adapter->dev_id; */
745 	params->rev_id = adapter->rev_id;
746 	params->udma_id = 0;
747 	params->enable_rx_parser = 1; /* enable rx epe parser*/
748 	params->udma_regs_base = adapter->udma_base; /* UDMA register base address */
749 	params->ec_regs_base = adapter->ec_base; /* Ethernet controller registers base address */
750 	params->mac_regs_base = adapter->mac_base; /* Ethernet MAC registers base address */
751 	params->name = adapter->name;
752 	params->serdes_lane = adapter->serdes_lane;
753 
754 	rc = al_eth_adapter_init(&adapter->hal_adapter, params);
755 	if (rc != 0)
756 		device_printf(adapter->dev, "%s failed at hal init!\n",
757 		    __func__);
758 
759 	if ((adapter->board_type == ALPINE_NIC) ||
760 	    (adapter->board_type == ALPINE_FPGA_NIC)) {
761 		/* in pcie NIC mode, force eth UDMA to access PCIE0 using the vmid */
762 		struct al_udma_gen_tgtid_conf conf;
763 		int i;
764 		for (i = 0; i < DMA_MAX_Q; i++) {
765 			conf.tx_q_conf[i].queue_en = AL_TRUE;
766 			conf.tx_q_conf[i].desc_en = AL_FALSE;
767 			conf.tx_q_conf[i].tgtid = 0x100; /* for access from PCIE0 */
768 			conf.rx_q_conf[i].queue_en = AL_TRUE;
769 			conf.rx_q_conf[i].desc_en = AL_FALSE;
770 			conf.rx_q_conf[i].tgtid = 0x100; /* for access from PCIE0 */
771 		}
772 		al_udma_gen_tgtid_conf_set(adapter->udma_base, &conf);
773 	}
774 
775 	return (rc);
776 }
777 
778 static void
779 al_eth_lm_config(struct al_eth_adapter *adapter)
780 {
781 	struct al_eth_lm_init_params params = {0};
782 
783 	params.adapter = &adapter->hal_adapter;
784 	params.serdes_obj = &adapter->serdes_obj;
785 	params.lane = adapter->serdes_lane;
786 	params.sfp_detection = adapter->sfp_detection_needed;
787 	if (adapter->sfp_detection_needed == true) {
788 		params.sfp_bus_id = adapter->i2c_adapter_id;
789 		params.sfp_i2c_addr = SFP_I2C_ADDR;
790 	}
791 
792 	if (adapter->sfp_detection_needed == false) {
793 		switch (adapter->mac_mode) {
794 		case AL_ETH_MAC_MODE_10GbE_Serial:
795 			if ((adapter->lt_en != 0) && (adapter->an_en != 0))
796 				params.default_mode = AL_ETH_LM_MODE_10G_DA;
797 			else
798 				params.default_mode = AL_ETH_LM_MODE_10G_OPTIC;
799 			break;
800 		case AL_ETH_MAC_MODE_SGMII:
801 			params.default_mode = AL_ETH_LM_MODE_1G;
802 			break;
803 		default:
804 			params.default_mode = AL_ETH_LM_MODE_10G_DA;
805 		}
806 	} else
807 		params.default_mode = AL_ETH_LM_MODE_10G_DA;
808 
809 	params.link_training = adapter->lt_en;
810 	params.rx_equal = true;
811 	params.static_values = !adapter->dont_override_serdes;
812 	params.i2c_context = adapter;
813 	params.kr_fec_enable = false;
814 
815 	params.retimer_exist = adapter->retimer.exist;
816 	params.retimer_bus_id = adapter->retimer.bus_id;
817 	params.retimer_i2c_addr = adapter->retimer.i2c_addr;
818 	params.retimer_channel = adapter->retimer.channel;
819 
820 	al_eth_lm_init(&adapter->lm_context, &params);
821 }
822 
823 static int
824 al_eth_board_params_init(struct al_eth_adapter *adapter)
825 {
826 
827 	if (adapter->board_type == ALPINE_NIC) {
828 		adapter->mac_mode = AL_ETH_MAC_MODE_10GbE_Serial;
829 		adapter->sfp_detection_needed = false;
830 		adapter->phy_exist = false;
831 		adapter->an_en = false;
832 		adapter->lt_en = false;
833 		adapter->ref_clk_freq = AL_ETH_REF_FREQ_375_MHZ;
834 		adapter->mdio_freq = AL_ETH_DEFAULT_MDIO_FREQ_KHZ;
835 	} else if (adapter->board_type == ALPINE_FPGA_NIC) {
836 		adapter->mac_mode = AL_ETH_MAC_MODE_SGMII;
837 		adapter->sfp_detection_needed = false;
838 		adapter->phy_exist = false;
839 		adapter->an_en = false;
840 		adapter->lt_en = false;
841 		adapter->ref_clk_freq = AL_ETH_REF_FREQ_375_MHZ;
842 		adapter->mdio_freq = AL_ETH_DEFAULT_MDIO_FREQ_KHZ;
843 	} else {
844 		struct al_eth_board_params params;
845 		int rc;
846 
847 		adapter->auto_speed = false;
848 
849 		rc = al_eth_board_params_get(adapter->mac_base, &params);
850 		if (rc != 0) {
851 			device_printf(adapter->dev,
852 			    "board info not available\n");
853 			return (-1);
854 		}
855 
856 		adapter->phy_exist = params.phy_exist == true;
857 		adapter->phy_addr = params.phy_mdio_addr;
858 		adapter->an_en = params.autoneg_enable;
859 		adapter->lt_en = params.kr_lt_enable;
860 		adapter->serdes_grp = params.serdes_grp;
861 		adapter->serdes_lane = params.serdes_lane;
862 		adapter->sfp_detection_needed = params.sfp_plus_module_exist;
863 		adapter->i2c_adapter_id = params.i2c_adapter_id;
864 		adapter->ref_clk_freq = params.ref_clk_freq;
865 		adapter->dont_override_serdes = params.dont_override_serdes;
866 		adapter->link_config.active_duplex = !params.half_duplex;
867 		adapter->link_config.autoneg = !params.an_disable;
868 		adapter->link_config.force_1000_base_x = params.force_1000_base_x;
869 		adapter->retimer.exist = params.retimer_exist;
870 		adapter->retimer.bus_id = params.retimer_bus_id;
871 		adapter->retimer.i2c_addr = params.retimer_i2c_addr;
872 		adapter->retimer.channel = params.retimer_channel;
873 
874 		switch (params.speed) {
875 		default:
876 			device_printf(adapter->dev,
877 			    "%s: invalid speed (%d)\n", __func__, params.speed);
878 		case AL_ETH_BOARD_1G_SPEED_1000M:
879 			adapter->link_config.active_speed = 1000;
880 			break;
881 		case AL_ETH_BOARD_1G_SPEED_100M:
882 			adapter->link_config.active_speed = 100;
883 			break;
884 		case AL_ETH_BOARD_1G_SPEED_10M:
885 			adapter->link_config.active_speed = 10;
886 			break;
887 		}
888 
889 		switch (params.mdio_freq) {
890 		default:
891 			device_printf(adapter->dev,
892 			    "%s: invalid mdio freq (%d)\n", __func__,
893 			    params.mdio_freq);
894 		case AL_ETH_BOARD_MDIO_FREQ_2_5_MHZ:
895 			adapter->mdio_freq = AL_ETH_DEFAULT_MDIO_FREQ_KHZ;
896 			break;
897 		case AL_ETH_BOARD_MDIO_FREQ_1_MHZ:
898 			adapter->mdio_freq = AL_ETH_MDIO_FREQ_1000_KHZ;
899 			break;
900 		}
901 
902 		switch (params.media_type) {
903 		case AL_ETH_BOARD_MEDIA_TYPE_RGMII:
904 			if (params.sfp_plus_module_exist == true)
905 				/* Backward compatibility */
906 				adapter->mac_mode = AL_ETH_MAC_MODE_SGMII;
907 			else
908 				adapter->mac_mode = AL_ETH_MAC_MODE_RGMII;
909 
910 			adapter->use_lm = false;
911 			break;
912 		case AL_ETH_BOARD_MEDIA_TYPE_SGMII:
913 			adapter->mac_mode = AL_ETH_MAC_MODE_SGMII;
914 			adapter->use_lm = true;
915 			break;
916 		case AL_ETH_BOARD_MEDIA_TYPE_10GBASE_SR:
917 			adapter->mac_mode = AL_ETH_MAC_MODE_10GbE_Serial;
918 			adapter->use_lm = true;
919 			break;
920 		case AL_ETH_BOARD_MEDIA_TYPE_AUTO_DETECT:
921 			adapter->sfp_detection_needed = true;
922 			adapter->auto_speed = false;
923 			adapter->use_lm = true;
924 			break;
925 		case AL_ETH_BOARD_MEDIA_TYPE_AUTO_DETECT_AUTO_SPEED:
926 			adapter->sfp_detection_needed = true;
927 			adapter->auto_speed = true;
928 			adapter->mac_mode_set = false;
929 			adapter->use_lm = true;
930 
931 			adapter->mac_mode = AL_ETH_MAC_MODE_10GbE_Serial;
932 			break;
933 		default:
934 			device_printf(adapter->dev,
935 			    "%s: unsupported media type %d\n",
936 			    __func__, params.media_type);
937 			return (-1);
938 		}
939 
940 		device_printf(adapter->dev,
941 		    "Board info: phy exist %s. phy addr %d. mdio freq %u Khz. "
942 		    "SFP connected %s. media %d\n",
943 		    params.phy_exist ? "Yes" : "No",
944 		    params.phy_mdio_addr, adapter->mdio_freq,
945 		    params.sfp_plus_module_exist ? "Yes" : "No",
946 		    params.media_type);
947 	}
948 
949 	al_eth_mac_addr_read(adapter->ec_base, 0, adapter->mac_addr);
950 
951 	return (0);
952 }
953 
954 static int
955 al_eth_function_reset(struct al_eth_adapter *adapter)
956 {
957 	struct al_eth_board_params params;
958 	int rc;
959 
960 	/* save board params so we restore it after reset */
961 	al_eth_board_params_get(adapter->mac_base, &params);
962 	al_eth_mac_addr_read(adapter->ec_base, 0, adapter->mac_addr);
963 	if (adapter->board_type == ALPINE_INTEGRATED)
964 		rc = al_eth_flr_rmn(&al_eth_read_pci_config,
965 		    &al_eth_write_pci_config,
966 		    adapter->dev, adapter->mac_base);
967 	else
968 		rc = al_eth_flr_rmn(&al_eth_fpga_read_pci_config,
969 		    &al_eth_fpga_write_pci_config,
970 		    adapter->internal_pcie_base, adapter->mac_base);
971 
972 	/* restore params */
973 	al_eth_board_params_set(adapter->mac_base, &params);
974 	al_eth_mac_addr_store(adapter->ec_base, 0, adapter->mac_addr);
975 
976 	return (rc);
977 }
978 
979 static void
980 al_eth_init_rings(struct al_eth_adapter *adapter)
981 {
982 	int i;
983 
984 	for (i = 0; i < adapter->num_tx_queues; i++) {
985 		struct al_eth_ring *ring = &adapter->tx_ring[i];
986 
987 		ring->ring_id = i;
988 		ring->dev = adapter->dev;
989 		ring->adapter = adapter;
990 		ring->netdev = adapter->netdev;
991 		al_udma_q_handle_get(&adapter->hal_adapter.tx_udma, i,
992 		    &ring->dma_q);
993 		ring->sw_count = adapter->tx_ring_count;
994 		ring->hw_count = adapter->tx_descs_count;
995 		ring->unmask_reg_offset = al_udma_iofic_unmask_offset_get((struct unit_regs *)adapter->udma_base, AL_UDMA_IOFIC_LEVEL_PRIMARY, AL_INT_GROUP_C);
996 		ring->unmask_val = ~(1 << i);
997 	}
998 
999 	for (i = 0; i < adapter->num_rx_queues; i++) {
1000 		struct al_eth_ring *ring = &adapter->rx_ring[i];
1001 
1002 		ring->ring_id = i;
1003 		ring->dev = adapter->dev;
1004 		ring->adapter = adapter;
1005 		ring->netdev = adapter->netdev;
1006 		al_udma_q_handle_get(&adapter->hal_adapter.rx_udma, i, &ring->dma_q);
1007 		ring->sw_count = adapter->rx_ring_count;
1008 		ring->hw_count = adapter->rx_descs_count;
1009 		ring->unmask_reg_offset = al_udma_iofic_unmask_offset_get(
1010 		    (struct unit_regs *)adapter->udma_base,
1011 		    AL_UDMA_IOFIC_LEVEL_PRIMARY, AL_INT_GROUP_B);
1012 		ring->unmask_val = ~(1 << i);
1013 	}
1014 }
1015 
1016 static void
1017 al_init_locked(void *arg)
1018 {
1019 	struct al_eth_adapter *adapter = arg;
1020 	if_t ifp = adapter->netdev;
1021 	int rc = 0;
1022 
1023 	al_eth_down(adapter);
1024 	rc = al_eth_up(adapter);
1025 
1026 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1027 	if (rc == 0)
1028 		if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
1029 }
1030 
1031 static void
1032 al_init(void *arg)
1033 {
1034 	struct al_eth_adapter *adapter = arg;
1035 
1036 	al_init_locked(adapter);
1037 }
1038 
1039 static inline int
1040 al_eth_alloc_rx_buf(struct al_eth_adapter *adapter,
1041     struct al_eth_ring *rx_ring,
1042     struct al_eth_rx_buffer *rx_info)
1043 {
1044 	struct al_buf *al_buf;
1045 	bus_dma_segment_t segs[2];
1046 	int error;
1047 	int nsegs;
1048 
1049 	if (rx_info->m != NULL)
1050 		return (0);
1051 
1052 	rx_info->data_size = adapter->rx_mbuf_sz;
1053 
1054 	AL_RX_LOCK(adapter);
1055 
1056 	/* Get mbuf using UMA allocator */
1057 	rx_info->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
1058 	    rx_info->data_size);
1059 	AL_RX_UNLOCK(adapter);
1060 
1061 	if (rx_info->m == NULL)
1062 		return (ENOMEM);
1063 
1064 	rx_info->m->m_pkthdr.len = rx_info->m->m_len = adapter->rx_mbuf_sz;
1065 
1066 	/* Map packets for DMA */
1067 	error = bus_dmamap_load_mbuf_sg(rx_ring->dma_buf_tag, rx_info->dma_map,
1068 	    rx_info->m, segs, &nsegs, BUS_DMA_NOWAIT);
1069 	if (__predict_false(error)) {
1070 		device_printf(rx_ring->dev, "failed to map mbuf, error = %d\n",
1071 		    error);
1072 		m_freem(rx_info->m);
1073 		rx_info->m = NULL;
1074 		return (EFAULT);
1075 	}
1076 
1077 	al_buf = &rx_info->al_buf;
1078 	al_buf->addr = segs[0].ds_addr + AL_IP_ALIGNMENT_OFFSET;
1079 	al_buf->len = rx_info->data_size - AL_IP_ALIGNMENT_OFFSET;
1080 
1081 	return (0);
1082 }
1083 
1084 static int
1085 al_eth_refill_rx_bufs(struct al_eth_adapter *adapter, unsigned int qid,
1086     unsigned int num)
1087 {
1088 	struct al_eth_ring *rx_ring = &adapter->rx_ring[qid];
1089 	uint16_t next_to_use;
1090 	unsigned int i;
1091 
1092 	next_to_use = rx_ring->next_to_use;
1093 
1094 	for (i = 0; i < num; i++) {
1095 		int rc;
1096 		struct al_eth_rx_buffer *rx_info =
1097 		    &rx_ring->rx_buffer_info[next_to_use];
1098 
1099 		if (__predict_false(al_eth_alloc_rx_buf(adapter,
1100 		    rx_ring, rx_info) < 0)) {
1101 			device_printf(adapter->dev,
1102 			    "failed to alloc buffer for rx queue %d\n", qid);
1103 			break;
1104 		}
1105 
1106 		rc = al_eth_rx_buffer_add(rx_ring->dma_q,
1107 		    &rx_info->al_buf, AL_ETH_RX_FLAGS_INT, NULL);
1108 		if (__predict_false(rc)) {
1109 			device_printf(adapter->dev,
1110 			    "failed to add buffer for rx queue %d\n", qid);
1111 			break;
1112 		}
1113 
1114 		next_to_use = AL_ETH_RX_RING_IDX_NEXT(rx_ring, next_to_use);
1115 	}
1116 
1117 	if (__predict_false(i < num))
1118 		device_printf(adapter->dev,
1119 		    "refilled rx queue %d with %d pages only - available %d\n",
1120 		    qid, i, al_udma_available_get(rx_ring->dma_q));
1121 
1122 	if (__predict_true(i))
1123 		al_eth_rx_buffer_action(rx_ring->dma_q, i);
1124 
1125 	rx_ring->next_to_use = next_to_use;
1126 
1127 	return (i);
1128 }
1129 
1130 /*
1131  * al_eth_refill_all_rx_bufs - allocate all queues Rx buffers
1132  * @adapter: board private structure
1133  */
1134 static void
1135 al_eth_refill_all_rx_bufs(struct al_eth_adapter *adapter)
1136 {
1137 	int i;
1138 
1139 	for (i = 0; i < adapter->num_rx_queues; i++)
1140 		al_eth_refill_rx_bufs(adapter, i, AL_ETH_DEFAULT_RX_DESCS - 1);
1141 }
1142 
1143 static void
1144 al_eth_tx_do_cleanup(struct al_eth_ring *tx_ring)
1145 {
1146 	unsigned int total_done;
1147 	uint16_t next_to_clean;
1148 	int qid = tx_ring->ring_id;
1149 
1150 	total_done = al_eth_comp_tx_get(tx_ring->dma_q);
1151 	device_printf_dbg(tx_ring->dev,
1152 	    "tx_poll: q %d total completed descs %x\n", qid, total_done);
1153 	next_to_clean = tx_ring->next_to_clean;
1154 
1155 	while (total_done != 0) {
1156 		struct al_eth_tx_buffer *tx_info;
1157 		struct mbuf *mbuf;
1158 
1159 		tx_info = &tx_ring->tx_buffer_info[next_to_clean];
1160 		/* stop if not all descriptors of the packet are completed */
1161 		if (tx_info->tx_descs > total_done)
1162 			break;
1163 
1164 		mbuf = tx_info->m;
1165 
1166 		tx_info->m = NULL;
1167 
1168 		device_printf_dbg(tx_ring->dev,
1169 		    "tx_poll: q %d mbuf %p completed\n", qid, mbuf);
1170 
1171 		/* map is no longer required */
1172 		bus_dmamap_unload(tx_ring->dma_buf_tag, tx_info->dma_map);
1173 
1174 		m_freem(mbuf);
1175 		total_done -= tx_info->tx_descs;
1176 		next_to_clean = AL_ETH_TX_RING_IDX_NEXT(tx_ring, next_to_clean);
1177 	}
1178 
1179 	tx_ring->next_to_clean = next_to_clean;
1180 
1181 	device_printf_dbg(tx_ring->dev, "tx_poll: q %d done next to clean %x\n",
1182 	    qid, next_to_clean);
1183 
1184 	/*
1185 	 * need to make the rings circular update visible to
1186 	 * al_eth_start_xmit() before checking for netif_queue_stopped().
1187 	 */
1188 	al_smp_data_memory_barrier();
1189 }
1190 
1191 static void
1192 al_eth_tx_csum(struct al_eth_ring *tx_ring, struct al_eth_tx_buffer *tx_info,
1193     struct al_eth_pkt *hal_pkt, struct mbuf *m)
1194 {
1195 	uint32_t mss = m->m_pkthdr.tso_segsz;
1196 	struct ether_vlan_header *eh;
1197 	uint16_t etype;
1198 #ifdef INET
1199 	struct ip *ip;
1200 #endif
1201 #ifdef INET6
1202 	struct ip6_hdr *ip6;
1203 #endif
1204 	struct tcphdr *th = NULL;
1205 	int	ehdrlen, ip_hlen = 0;
1206 	uint8_t	ipproto = 0;
1207 	uint32_t offload = 0;
1208 
1209 	if (mss != 0)
1210 		offload = 1;
1211 
1212 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0)
1213 		offload = 1;
1214 
1215 	if ((m->m_pkthdr.csum_flags & CSUM_OFFLOAD) != 0)
1216 		offload = 1;
1217 
1218 	if (offload != 0) {
1219 		struct al_eth_meta_data *meta = &tx_ring->hal_meta;
1220 
1221 		if (mss != 0)
1222 			hal_pkt->flags |= (AL_ETH_TX_FLAGS_TSO |
1223 			    AL_ETH_TX_FLAGS_L4_CSUM);
1224 		else
1225 			hal_pkt->flags |= (AL_ETH_TX_FLAGS_L4_CSUM |
1226 			    AL_ETH_TX_FLAGS_L4_PARTIAL_CSUM);
1227 
1228 		/*
1229 		 * Determine where frame payload starts.
1230 		 * Jump over vlan headers if already present,
1231 		 * helpful for QinQ too.
1232 		 */
1233 		eh = mtod(m, struct ether_vlan_header *);
1234 		if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
1235 			etype = ntohs(eh->evl_proto);
1236 			ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1237 		} else {
1238 			etype = ntohs(eh->evl_encap_proto);
1239 			ehdrlen = ETHER_HDR_LEN;
1240 		}
1241 
1242 		switch (etype) {
1243 #ifdef INET
1244 		case ETHERTYPE_IP:
1245 			ip = (struct ip *)(m->m_data + ehdrlen);
1246 			ip_hlen = ip->ip_hl << 2;
1247 			ipproto = ip->ip_p;
1248 			hal_pkt->l3_proto_idx = AL_ETH_PROTO_ID_IPv4;
1249 			th = (struct tcphdr *)((caddr_t)ip + ip_hlen);
1250 			if (mss != 0)
1251 				hal_pkt->flags |= AL_ETH_TX_FLAGS_IPV4_L3_CSUM;
1252 			if (ipproto == IPPROTO_TCP)
1253 				hal_pkt->l4_proto_idx = AL_ETH_PROTO_ID_TCP;
1254 			else
1255 				hal_pkt->l4_proto_idx = AL_ETH_PROTO_ID_UDP;
1256 			break;
1257 #endif /* INET */
1258 #ifdef INET6
1259 		case ETHERTYPE_IPV6:
1260 			ip6 = (struct ip6_hdr *)(m->m_data + ehdrlen);
1261 			hal_pkt->l3_proto_idx = AL_ETH_PROTO_ID_IPv6;
1262 			ip_hlen = sizeof(struct ip6_hdr);
1263 			th = (struct tcphdr *)((caddr_t)ip6 + ip_hlen);
1264 			ipproto = ip6->ip6_nxt;
1265 			if (ipproto == IPPROTO_TCP)
1266 				hal_pkt->l4_proto_idx = AL_ETH_PROTO_ID_TCP;
1267 			else
1268 				hal_pkt->l4_proto_idx = AL_ETH_PROTO_ID_UDP;
1269 			break;
1270 #endif /* INET6 */
1271 		default:
1272 			break;
1273 		}
1274 
1275 		meta->words_valid = 4;
1276 		meta->l3_header_len = ip_hlen;
1277 		meta->l3_header_offset = ehdrlen;
1278 		if (th != NULL)
1279 			meta->l4_header_len = th->th_off; /* this param needed only for TSO */
1280 		meta->mss_idx_sel = 0;			/* check how to select MSS */
1281 		meta->mss_val = mss;
1282 		hal_pkt->meta = meta;
1283 	} else
1284 		hal_pkt->meta = NULL;
1285 }
1286 
1287 #define	XMIT_QUEUE_TIMEOUT	100
1288 
1289 static void
1290 al_eth_xmit_mbuf(struct al_eth_ring *tx_ring, struct mbuf *m)
1291 {
1292 	struct al_eth_tx_buffer *tx_info;
1293 	int error;
1294 	int nsegs, a;
1295 	uint16_t next_to_use;
1296 	bus_dma_segment_t segs[AL_ETH_PKT_MAX_BUFS + 1];
1297 	struct al_eth_pkt *hal_pkt;
1298 	struct al_buf *al_buf;
1299 	bool remap;
1300 
1301 	/* Check if queue is ready */
1302 	if (unlikely(tx_ring->stall) != 0) {
1303 		for (a = 0; a < XMIT_QUEUE_TIMEOUT; a++) {
1304 			if (al_udma_available_get(tx_ring->dma_q) >=
1305 			    (AL_ETH_DEFAULT_TX_HW_DESCS -
1306 			    AL_ETH_TX_WAKEUP_THRESH)) {
1307 				tx_ring->stall = 0;
1308 				break;
1309 			}
1310 			pause("stall", 1);
1311 		}
1312 		if (a == XMIT_QUEUE_TIMEOUT) {
1313 			device_printf(tx_ring->dev,
1314 			    "timeout waiting for queue %d ready!\n",
1315 			    tx_ring->ring_id);
1316 			return;
1317 		} else {
1318 			device_printf_dbg(tx_ring->dev,
1319 			    "queue %d is ready!\n", tx_ring->ring_id);
1320 		}
1321 	}
1322 
1323 	next_to_use = tx_ring->next_to_use;
1324 	tx_info = &tx_ring->tx_buffer_info[next_to_use];
1325 	tx_info->m = m;
1326 	hal_pkt = &tx_info->hal_pkt;
1327 
1328 	if (m == NULL) {
1329 		device_printf(tx_ring->dev, "mbuf is NULL\n");
1330 		return;
1331 	}
1332 
1333 	remap = true;
1334 	/* Map packets for DMA */
1335 retry:
1336 	error = bus_dmamap_load_mbuf_sg(tx_ring->dma_buf_tag, tx_info->dma_map,
1337 	    m, segs, &nsegs, BUS_DMA_NOWAIT);
1338 	if (__predict_false(error)) {
1339 		struct mbuf *m_new;
1340 
1341 		if (error == EFBIG) {
1342 			/* Try it again? - one try */
1343 			if (remap == true) {
1344 				remap = false;
1345 				m_new = m_defrag(m, M_NOWAIT);
1346 				if (m_new == NULL) {
1347 					device_printf(tx_ring->dev,
1348 					    "failed to defrag mbuf\n");
1349 					goto exit;
1350 				}
1351 				m = m_new;
1352 				goto retry;
1353 			} else {
1354 				device_printf(tx_ring->dev,
1355 				    "failed to map mbuf, error %d\n", error);
1356 				goto exit;
1357 			}
1358 		} else {
1359 			device_printf(tx_ring->dev,
1360 			    "failed to map mbuf, error %d\n", error);
1361 			goto exit;
1362 		}
1363 	}
1364 
1365 	/* set flags and meta data */
1366 	hal_pkt->flags = AL_ETH_TX_FLAGS_INT;
1367 	al_eth_tx_csum(tx_ring, tx_info, hal_pkt, m);
1368 
1369 	al_buf = hal_pkt->bufs;
1370 	for (a = 0; a < nsegs; a++) {
1371 		al_buf->addr = segs[a].ds_addr;
1372 		al_buf->len = segs[a].ds_len;
1373 
1374 		al_buf++;
1375 	}
1376 
1377 	hal_pkt->num_of_bufs = nsegs;
1378 
1379 	/* prepare the packet's descriptors to dma engine */
1380 	tx_info->tx_descs = al_eth_tx_pkt_prepare(tx_ring->dma_q, hal_pkt);
1381 
1382 	if (tx_info->tx_descs == 0)
1383 		goto exit;
1384 
1385 	/*
1386 	 * stop the queue when no more space available, the packet can have up
1387 	 * to AL_ETH_PKT_MAX_BUFS + 1 buffers and a meta descriptor
1388 	 */
1389 	if (unlikely(al_udma_available_get(tx_ring->dma_q) <
1390 	    (AL_ETH_PKT_MAX_BUFS + 2))) {
1391 		tx_ring->stall = 1;
1392 		device_printf_dbg(tx_ring->dev, "stall, stopping queue %d...\n",
1393 		    tx_ring->ring_id);
1394 		al_data_memory_barrier();
1395 	}
1396 
1397 	tx_ring->next_to_use = AL_ETH_TX_RING_IDX_NEXT(tx_ring, next_to_use);
1398 
1399 	/* trigger the dma engine */
1400 	al_eth_tx_dma_action(tx_ring->dma_q, tx_info->tx_descs);
1401 	return;
1402 
1403 exit:
1404 	m_freem(m);
1405 }
1406 
1407 static void
1408 al_eth_tx_cmpl_work(void *arg, int pending)
1409 {
1410 	struct al_eth_ring *tx_ring = arg;
1411 
1412 	if (napi != 0) {
1413 		tx_ring->cmpl_is_running = 1;
1414 		al_data_memory_barrier();
1415 	}
1416 
1417 	al_eth_tx_do_cleanup(tx_ring);
1418 
1419 	if (napi != 0) {
1420 		tx_ring->cmpl_is_running = 0;
1421 		al_data_memory_barrier();
1422 	}
1423 	/* all work done, enable IRQs */
1424 	al_eth_irq_config(tx_ring->unmask_reg_offset, tx_ring->unmask_val);
1425 }
1426 
1427 static int
1428 al_eth_tx_cmlp_irq_filter(void *arg)
1429 {
1430 	struct al_eth_ring *tx_ring = arg;
1431 
1432 	/* Interrupt should be auto-masked upon arrival */
1433 
1434 	device_printf_dbg(tx_ring->dev, "%s for ring ID = %d\n", __func__,
1435 	    tx_ring->ring_id);
1436 
1437 	/*
1438 	 * For napi, if work is not running, schedule it. Always schedule
1439 	 * for casual (non-napi) packet handling.
1440 	 */
1441 	if ((napi == 0) || (napi && tx_ring->cmpl_is_running == 0))
1442 		taskqueue_enqueue(tx_ring->cmpl_tq, &tx_ring->cmpl_task);
1443 
1444 	/* Do not run bottom half */
1445 	return (FILTER_HANDLED);
1446 }
1447 
1448 static int
1449 al_eth_rx_recv_irq_filter(void *arg)
1450 {
1451 	struct al_eth_ring *rx_ring = arg;
1452 
1453 	/* Interrupt should be auto-masked upon arrival */
1454 
1455 	device_printf_dbg(rx_ring->dev, "%s for ring ID = %d\n", __func__,
1456 	    rx_ring->ring_id);
1457 
1458 	/*
1459 	 * For napi, if work is not running, schedule it. Always schedule
1460 	 * for casual (non-napi) packet handling.
1461 	 */
1462 	if ((napi == 0) || (napi && rx_ring->enqueue_is_running == 0))
1463 		taskqueue_enqueue(rx_ring->enqueue_tq, &rx_ring->enqueue_task);
1464 
1465 	/* Do not run bottom half */
1466 	return (FILTER_HANDLED);
1467 }
1468 
1469 /*
1470  * al_eth_rx_checksum - indicate in mbuf if hw indicated a good cksum
1471  * @adapter: structure containing adapter specific data
1472  * @hal_pkt: HAL structure for the packet
1473  * @mbuf: mbuf currently being received and modified
1474  */
1475 static inline void
1476 al_eth_rx_checksum(struct al_eth_adapter *adapter,
1477     struct al_eth_pkt *hal_pkt, struct mbuf *mbuf)
1478 {
1479 
1480 	/* if IPv4 and error */
1481 	if (unlikely((if_getcapenable(adapter->netdev) & IFCAP_RXCSUM) &&
1482 	    (hal_pkt->l3_proto_idx == AL_ETH_PROTO_ID_IPv4) &&
1483 	    (hal_pkt->flags & AL_ETH_RX_FLAGS_L3_CSUM_ERR))) {
1484 		device_printf(adapter->dev,"rx ipv4 header checksum error\n");
1485 		return;
1486 	}
1487 
1488 	/* if IPv6 and error */
1489 	if (unlikely((if_getcapenable(adapter->netdev) & IFCAP_RXCSUM_IPV6) &&
1490 	    (hal_pkt->l3_proto_idx == AL_ETH_PROTO_ID_IPv6) &&
1491 	    (hal_pkt->flags & AL_ETH_RX_FLAGS_L3_CSUM_ERR))) {
1492 		device_printf(adapter->dev,"rx ipv6 header checksum error\n");
1493 		return;
1494 	}
1495 
1496 	/* if TCP/UDP */
1497 	if (likely((hal_pkt->l4_proto_idx == AL_ETH_PROTO_ID_TCP) ||
1498 	   (hal_pkt->l4_proto_idx == AL_ETH_PROTO_ID_UDP))) {
1499 		if (unlikely(hal_pkt->flags & AL_ETH_RX_FLAGS_L4_CSUM_ERR)) {
1500 			device_printf_dbg(adapter->dev, "rx L4 checksum error\n");
1501 
1502 			/* TCP/UDP checksum error */
1503 			mbuf->m_pkthdr.csum_flags = 0;
1504 		} else {
1505 			device_printf_dbg(adapter->dev, "rx checksum correct\n");
1506 
1507 			/* IP Checksum Good */
1508 			mbuf->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
1509 			mbuf->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1510 		}
1511 	}
1512 }
1513 
1514 static struct mbuf*
1515 al_eth_rx_mbuf(struct al_eth_adapter *adapter,
1516     struct al_eth_ring *rx_ring, struct al_eth_pkt *hal_pkt,
1517     unsigned int descs, uint16_t *next_to_clean)
1518 {
1519 	struct mbuf *mbuf;
1520 	struct al_eth_rx_buffer *rx_info =
1521 	    &rx_ring->rx_buffer_info[*next_to_clean];
1522 	unsigned int len;
1523 
1524 	len = hal_pkt->bufs[0].len;
1525 	device_printf_dbg(adapter->dev, "rx_info %p data %p\n", rx_info,
1526 	   rx_info->m);
1527 
1528 	if (rx_info->m == NULL) {
1529 		*next_to_clean = AL_ETH_RX_RING_IDX_NEXT(rx_ring,
1530 		    *next_to_clean);
1531 		return (NULL);
1532 	}
1533 
1534 	mbuf = rx_info->m;
1535 	mbuf->m_pkthdr.len = len;
1536 	mbuf->m_len = len;
1537 	mbuf->m_pkthdr.rcvif = rx_ring->netdev;
1538 	mbuf->m_flags |= M_PKTHDR;
1539 
1540 	if (len <= adapter->small_copy_len) {
1541 		struct mbuf *smbuf;
1542 		device_printf_dbg(adapter->dev, "rx small packet. len %d\n", len);
1543 
1544 		AL_RX_LOCK(adapter);
1545 		smbuf = m_gethdr(M_NOWAIT, MT_DATA);
1546 		AL_RX_UNLOCK(adapter);
1547 		if (__predict_false(smbuf == NULL)) {
1548 			device_printf(adapter->dev, "smbuf is NULL\n");
1549 			return (NULL);
1550 		}
1551 
1552 		smbuf->m_data = smbuf->m_data + AL_IP_ALIGNMENT_OFFSET;
1553 		memcpy(smbuf->m_data, mbuf->m_data + AL_IP_ALIGNMENT_OFFSET, len);
1554 
1555 		smbuf->m_len = len;
1556 		smbuf->m_pkthdr.rcvif = rx_ring->netdev;
1557 
1558 		/* first desc of a non-ps chain */
1559 		smbuf->m_flags |= M_PKTHDR;
1560 		smbuf->m_pkthdr.len = smbuf->m_len;
1561 
1562 		*next_to_clean = AL_ETH_RX_RING_IDX_NEXT(rx_ring,
1563 		    *next_to_clean);
1564 
1565 		return (smbuf);
1566 	}
1567 	mbuf->m_data = mbuf->m_data + AL_IP_ALIGNMENT_OFFSET;
1568 
1569 	/* Unmap the buffer */
1570 	bus_dmamap_unload(rx_ring->dma_buf_tag, rx_info->dma_map);
1571 
1572 	rx_info->m = NULL;
1573 	*next_to_clean = AL_ETH_RX_RING_IDX_NEXT(rx_ring, *next_to_clean);
1574 
1575 	return (mbuf);
1576 }
1577 
1578 static void
1579 al_eth_rx_recv_work(void *arg, int pending)
1580 {
1581 	struct al_eth_ring *rx_ring = arg;
1582 	struct mbuf *mbuf;
1583 	struct lro_entry *queued;
1584 	unsigned int qid = rx_ring->ring_id;
1585 	struct al_eth_pkt *hal_pkt = &rx_ring->hal_pkt;
1586 	uint16_t next_to_clean = rx_ring->next_to_clean;
1587 	uint32_t refill_required;
1588 	uint32_t refill_actual;
1589 	uint32_t do_if_input;
1590 
1591 	if (napi != 0) {
1592 		rx_ring->enqueue_is_running = 1;
1593 		al_data_memory_barrier();
1594 	}
1595 
1596 	do {
1597 		unsigned int descs;
1598 
1599 		descs = al_eth_pkt_rx(rx_ring->dma_q, hal_pkt);
1600 		if (unlikely(descs == 0))
1601 			break;
1602 
1603 		device_printf_dbg(rx_ring->dev, "rx_poll: q %d got packet "
1604 		    "from hal. descs %d\n", qid, descs);
1605 		device_printf_dbg(rx_ring->dev, "rx_poll: q %d flags %x. "
1606 		    "l3 proto %d l4 proto %d\n", qid, hal_pkt->flags,
1607 		    hal_pkt->l3_proto_idx, hal_pkt->l4_proto_idx);
1608 
1609 		/* ignore if detected dma or eth controller errors */
1610 		if ((hal_pkt->flags & (AL_ETH_RX_ERROR |
1611 		    AL_UDMA_CDESC_ERROR)) != 0) {
1612 			device_printf(rx_ring->dev, "receive packet with error. "
1613 			    "flags = 0x%x\n", hal_pkt->flags);
1614 			next_to_clean = AL_ETH_RX_RING_IDX_ADD(rx_ring,
1615 			    next_to_clean, descs);
1616 			continue;
1617 		}
1618 
1619 		/* allocate mbuf and fill it */
1620 		mbuf = al_eth_rx_mbuf(rx_ring->adapter, rx_ring, hal_pkt, descs,
1621 		    &next_to_clean);
1622 
1623 		/* exit if we failed to retrieve a buffer */
1624 		if (unlikely(mbuf == NULL)) {
1625 			next_to_clean = AL_ETH_RX_RING_IDX_ADD(rx_ring,
1626 			    next_to_clean, descs);
1627 			break;
1628 		}
1629 
1630 		if (__predict_true(if_getcapenable(rx_ring->netdev) & IFCAP_RXCSUM ||
1631 		    if_getcapenable(rx_ring->netdev) & IFCAP_RXCSUM_IPV6)) {
1632 			al_eth_rx_checksum(rx_ring->adapter, hal_pkt, mbuf);
1633 		}
1634 
1635 		mbuf->m_pkthdr.flowid = qid;
1636 		M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE);
1637 
1638 		/*
1639 		 * LRO is only for IP/TCP packets and TCP checksum of the packet
1640 		 * should be computed by hardware.
1641 		 */
1642 		do_if_input = 1;
1643 		if ((rx_ring->lro_enabled != 0) &&
1644 		    ((mbuf->m_pkthdr.csum_flags & CSUM_IP_VALID) != 0) &&
1645 		    hal_pkt->l4_proto_idx == AL_ETH_PROTO_ID_TCP) {
1646 			/*
1647 			 * Send to the stack if:
1648 			 *  - LRO not enabled, or
1649 			 *  - no LRO resources, or
1650 			 *  - lro enqueue fails
1651 			 */
1652 			if (rx_ring->lro.lro_cnt != 0) {
1653 				if (tcp_lro_rx(&rx_ring->lro, mbuf, 0) == 0)
1654 					do_if_input = 0;
1655 			}
1656 		}
1657 
1658 		if (do_if_input)
1659 			if_input(rx_ring->netdev, mbuf);
1660 
1661 	} while (1);
1662 
1663 	rx_ring->next_to_clean = next_to_clean;
1664 
1665 	refill_required = al_udma_available_get(rx_ring->dma_q);
1666 	refill_actual = al_eth_refill_rx_bufs(rx_ring->adapter, qid,
1667 	    refill_required);
1668 
1669 	if (unlikely(refill_actual < refill_required)) {
1670 		device_printf_dbg(rx_ring->dev,
1671 		    "%s: not filling rx queue %d\n", __func__, qid);
1672 	}
1673 
1674 	while (((queued = LIST_FIRST(&rx_ring->lro.lro_active)) != NULL)) {
1675 		LIST_REMOVE(queued, next);
1676 		tcp_lro_flush(&rx_ring->lro, queued);
1677 	}
1678 
1679 	if (napi != 0) {
1680 		rx_ring->enqueue_is_running = 0;
1681 		al_data_memory_barrier();
1682 	}
1683 	/* unmask irq */
1684 	al_eth_irq_config(rx_ring->unmask_reg_offset, rx_ring->unmask_val);
1685 }
1686 
1687 static void
1688 al_eth_start_xmit(void *arg, int pending)
1689 {
1690 	struct al_eth_ring *tx_ring = arg;
1691 	struct mbuf *mbuf;
1692 
1693 	if (napi != 0) {
1694 		tx_ring->enqueue_is_running = 1;
1695 		al_data_memory_barrier();
1696 	}
1697 
1698 	while (1) {
1699 		mtx_lock(&tx_ring->br_mtx);
1700 		mbuf = drbr_dequeue(NULL, tx_ring->br);
1701 		mtx_unlock(&tx_ring->br_mtx);
1702 
1703 		if (mbuf == NULL)
1704 			break;
1705 
1706 		al_eth_xmit_mbuf(tx_ring, mbuf);
1707 	}
1708 
1709 	if (napi != 0) {
1710 		tx_ring->enqueue_is_running = 0;
1711 		al_data_memory_barrier();
1712 		while (1) {
1713 			mtx_lock(&tx_ring->br_mtx);
1714 			mbuf = drbr_dequeue(NULL, tx_ring->br);
1715 			mtx_unlock(&tx_ring->br_mtx);
1716 			if (mbuf == NULL)
1717 				break;
1718 			al_eth_xmit_mbuf(tx_ring, mbuf);
1719 		}
1720 	}
1721 }
1722 
1723 static int
1724 al_mq_start(if_t ifp, struct mbuf *m)
1725 {
1726 	struct al_eth_adapter *adapter = if_getsoftc(ifp);
1727 	struct al_eth_ring *tx_ring;
1728 	int i;
1729 	int ret;
1730 
1731 	/* Which queue to use */
1732 	if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
1733 		i = m->m_pkthdr.flowid % adapter->num_tx_queues;
1734 	else
1735 		i = curcpu % adapter->num_tx_queues;
1736 
1737 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING|IFF_DRV_OACTIVE)) !=
1738 	    IFF_DRV_RUNNING) {
1739 		return (EFAULT);
1740 	}
1741 
1742 	tx_ring = &adapter->tx_ring[i];
1743 
1744 	device_printf_dbg(adapter->dev, "dgb start() - assuming link is active, "
1745 	    "sending packet to queue %d\n", i);
1746 
1747 	ret = drbr_enqueue(ifp, tx_ring->br, m);
1748 
1749 	/*
1750 	 * For napi, if work is not running, schedule it. Always schedule
1751 	 * for casual (non-napi) packet handling.
1752 	 */
1753 	if ((napi == 0) || ((napi != 0) && (tx_ring->enqueue_is_running == 0)))
1754 		taskqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task);
1755 
1756 	return (ret);
1757 }
1758 
1759 static void
1760 al_qflush(if_t ifp)
1761 {
1762 
1763 	/* unused */
1764 }
1765 
1766 static inline void
1767 al_eth_flow_ctrl_init(struct al_eth_adapter *adapter)
1768 {
1769 	uint8_t default_flow_ctrl;
1770 
1771 	default_flow_ctrl = AL_ETH_FLOW_CTRL_TX_PAUSE;
1772 	default_flow_ctrl |= AL_ETH_FLOW_CTRL_RX_PAUSE;
1773 
1774 	adapter->link_config.flow_ctrl_supported = default_flow_ctrl;
1775 }
1776 
1777 static int
1778 al_eth_flow_ctrl_config(struct al_eth_adapter *adapter)
1779 {
1780 	struct al_eth_flow_control_params *flow_ctrl_params;
1781 	uint8_t active = adapter->link_config.flow_ctrl_active;
1782 	int i;
1783 
1784 	flow_ctrl_params = &adapter->flow_ctrl_params;
1785 
1786 	flow_ctrl_params->type = AL_ETH_FLOW_CONTROL_TYPE_LINK_PAUSE;
1787 	flow_ctrl_params->obay_enable =
1788 	    ((active & AL_ETH_FLOW_CTRL_RX_PAUSE) != 0);
1789 	flow_ctrl_params->gen_enable =
1790 	    ((active & AL_ETH_FLOW_CTRL_TX_PAUSE) != 0);
1791 
1792 	flow_ctrl_params->rx_fifo_th_high = AL_ETH_FLOW_CTRL_RX_FIFO_TH_HIGH;
1793 	flow_ctrl_params->rx_fifo_th_low = AL_ETH_FLOW_CTRL_RX_FIFO_TH_LOW;
1794 	flow_ctrl_params->quanta = AL_ETH_FLOW_CTRL_QUANTA;
1795 	flow_ctrl_params->quanta_th = AL_ETH_FLOW_CTRL_QUANTA_TH;
1796 
1797 	/* map priority to queue index, queue id = priority/2 */
1798 	for (i = 0; i < AL_ETH_FWD_PRIO_TABLE_NUM; i++)
1799 		flow_ctrl_params->prio_q_map[0][i] =  1 << (i >> 1);
1800 
1801 	al_eth_flow_control_config(&adapter->hal_adapter, flow_ctrl_params);
1802 
1803 	return (0);
1804 }
1805 
1806 static void
1807 al_eth_flow_ctrl_enable(struct al_eth_adapter *adapter)
1808 {
1809 
1810 	/*
1811 	 * change the active configuration to the default / force by ethtool
1812 	 * and call to configure
1813 	 */
1814 	adapter->link_config.flow_ctrl_active =
1815 	    adapter->link_config.flow_ctrl_supported;
1816 
1817 	al_eth_flow_ctrl_config(adapter);
1818 }
1819 
1820 static void
1821 al_eth_flow_ctrl_disable(struct al_eth_adapter *adapter)
1822 {
1823 
1824 	adapter->link_config.flow_ctrl_active = 0;
1825 	al_eth_flow_ctrl_config(adapter);
1826 }
1827 
1828 static int
1829 al_eth_hw_init(struct al_eth_adapter *adapter)
1830 {
1831 	int rc;
1832 
1833 	rc = al_eth_hw_init_adapter(adapter);
1834 	if (rc != 0)
1835 		return (rc);
1836 
1837 	rc = al_eth_mac_config(&adapter->hal_adapter, adapter->mac_mode);
1838 	if (rc < 0) {
1839 		device_printf(adapter->dev, "%s failed to configure mac!\n",
1840 		    __func__);
1841 		return (rc);
1842 	}
1843 
1844 	if ((adapter->mac_mode == AL_ETH_MAC_MODE_SGMII) ||
1845 	    (adapter->mac_mode == AL_ETH_MAC_MODE_RGMII &&
1846 	     adapter->phy_exist == false)) {
1847 		rc = al_eth_mac_link_config(&adapter->hal_adapter,
1848 		    adapter->link_config.force_1000_base_x,
1849 		    adapter->link_config.autoneg,
1850 		    adapter->link_config.active_speed,
1851 		    adapter->link_config.active_duplex);
1852 		if (rc != 0) {
1853 			device_printf(adapter->dev,
1854 			    "%s failed to configure link parameters!\n",
1855 			    __func__);
1856 			return (rc);
1857 		}
1858 	}
1859 
1860 	rc = al_eth_mdio_config(&adapter->hal_adapter,
1861 	    AL_ETH_MDIO_TYPE_CLAUSE_22, AL_TRUE /* shared_mdio_if */,
1862 	    adapter->ref_clk_freq, adapter->mdio_freq);
1863 	if (rc != 0) {
1864 		device_printf(adapter->dev, "%s failed at mdio config!\n",
1865 		    __func__);
1866 		return (rc);
1867 	}
1868 
1869 	al_eth_flow_ctrl_init(adapter);
1870 
1871 	return (rc);
1872 }
1873 
1874 static int
1875 al_eth_hw_stop(struct al_eth_adapter *adapter)
1876 {
1877 
1878 	al_eth_mac_stop(&adapter->hal_adapter);
1879 
1880 	/*
1881 	 * wait till pending rx packets written and UDMA becomes idle,
1882 	 * the MAC has ~10KB fifo, 10us should be enough time for the
1883 	 * UDMA to write to the memory
1884 	 */
1885 	DELAY(10);
1886 
1887 	al_eth_adapter_stop(&adapter->hal_adapter);
1888 
1889 	adapter->flags |= AL_ETH_FLAG_RESET_REQUESTED;
1890 
1891 	/* disable flow ctrl to avoid pause packets*/
1892 	al_eth_flow_ctrl_disable(adapter);
1893 
1894 	return (0);
1895 }
1896 
1897 /*
1898  * al_eth_intr_intx_all - Legacy Interrupt Handler for all interrupts
1899  * @irq: interrupt number
1900  * @data: pointer to a network interface device structure
1901  */
1902 static int
1903 al_eth_intr_intx_all(void *data)
1904 {
1905 	struct al_eth_adapter *adapter = data;
1906 
1907 	struct unit_regs __iomem *regs_base =
1908 	    (struct unit_regs __iomem *)adapter->udma_base;
1909 	uint32_t reg;
1910 
1911 	reg = al_udma_iofic_read_cause(regs_base, AL_UDMA_IOFIC_LEVEL_PRIMARY,
1912 	    AL_INT_GROUP_A);
1913 	if (likely(reg))
1914 		device_printf_dbg(adapter->dev, "%s group A cause %x\n",
1915 		    __func__, reg);
1916 
1917 	if (unlikely(reg & AL_INT_GROUP_A_GROUP_D_SUM)) {
1918 		struct al_iofic_grp_ctrl __iomem *sec_ints_base;
1919 		uint32_t cause_d =  al_udma_iofic_read_cause(regs_base,
1920 		    AL_UDMA_IOFIC_LEVEL_PRIMARY, AL_INT_GROUP_D);
1921 
1922 		sec_ints_base =
1923 		    &regs_base->gen.interrupt_regs.secondary_iofic_ctrl[0];
1924 		if (cause_d != 0) {
1925 			device_printf_dbg(adapter->dev,
1926 			    "got interrupt from group D. cause %x\n", cause_d);
1927 
1928 			cause_d = al_iofic_read_cause(sec_ints_base,
1929 			    AL_INT_GROUP_A);
1930 			device_printf(adapter->dev,
1931 			    "secondary A cause %x\n", cause_d);
1932 
1933 			cause_d = al_iofic_read_cause(sec_ints_base,
1934 			    AL_INT_GROUP_B);
1935 
1936 			device_printf_dbg(adapter->dev,
1937 			    "secondary B cause %x\n", cause_d);
1938 		}
1939 	}
1940 	if ((reg & AL_INT_GROUP_A_GROUP_B_SUM) != 0 ) {
1941 		uint32_t cause_b = al_udma_iofic_read_cause(regs_base,
1942 		    AL_UDMA_IOFIC_LEVEL_PRIMARY, AL_INT_GROUP_B);
1943 		int qid;
1944 		device_printf_dbg(adapter->dev, "secondary B cause %x\n",
1945 		    cause_b);
1946 		for (qid = 0; qid < adapter->num_rx_queues; qid++) {
1947 			if (cause_b & (1 << qid)) {
1948 				/* mask */
1949 				al_udma_iofic_mask(
1950 				    (struct unit_regs __iomem *)adapter->udma_base,
1951 				    AL_UDMA_IOFIC_LEVEL_PRIMARY,
1952 				    AL_INT_GROUP_B, 1 << qid);
1953 			}
1954 		}
1955 	}
1956 	if ((reg & AL_INT_GROUP_A_GROUP_C_SUM) != 0) {
1957 		uint32_t cause_c = al_udma_iofic_read_cause(regs_base,
1958 		    AL_UDMA_IOFIC_LEVEL_PRIMARY, AL_INT_GROUP_C);
1959 		int qid;
1960 		device_printf_dbg(adapter->dev, "secondary C cause %x\n", cause_c);
1961 		for (qid = 0; qid < adapter->num_tx_queues; qid++) {
1962 			if ((cause_c & (1 << qid)) != 0) {
1963 				al_udma_iofic_mask(
1964 				    (struct unit_regs __iomem *)adapter->udma_base,
1965 				    AL_UDMA_IOFIC_LEVEL_PRIMARY,
1966 				    AL_INT_GROUP_C, 1 << qid);
1967 			}
1968 		}
1969 	}
1970 
1971 	al_eth_tx_cmlp_irq_filter(adapter->tx_ring);
1972 
1973 	return (0);
1974 }
1975 
1976 static int
1977 al_eth_intr_msix_all(void *data)
1978 {
1979 	struct al_eth_adapter *adapter = data;
1980 
1981 	device_printf_dbg(adapter->dev, "%s\n", __func__);
1982 	return (0);
1983 }
1984 
1985 static int
1986 al_eth_intr_msix_mgmt(void *data)
1987 {
1988 	struct al_eth_adapter *adapter = data;
1989 
1990 	device_printf_dbg(adapter->dev, "%s\n", __func__);
1991 	return (0);
1992 }
1993 
1994 static int
1995 al_eth_enable_msix(struct al_eth_adapter *adapter)
1996 {
1997 	int i, msix_vecs, rc, count;
1998 
1999 	device_printf_dbg(adapter->dev, "%s\n", __func__);
2000 	msix_vecs = 1 + adapter->num_rx_queues + adapter->num_tx_queues;
2001 
2002 	device_printf_dbg(adapter->dev,
2003 	    "Try to enable MSIX, vector numbers = %d\n", msix_vecs);
2004 
2005 	adapter->msix_entries = malloc(msix_vecs*sizeof(*adapter->msix_entries),
2006 	    M_IFAL, M_ZERO | M_WAITOK);
2007 
2008 	if (adapter->msix_entries == NULL) {
2009 		device_printf_dbg(adapter->dev, "failed to allocate"
2010 		    " msix_entries %d\n", msix_vecs);
2011 		rc = ENOMEM;
2012 		goto exit;
2013 	}
2014 
2015 	/* management vector (GROUP_A) @2*/
2016 	adapter->msix_entries[AL_ETH_MGMT_IRQ_IDX].entry = 2;
2017 	adapter->msix_entries[AL_ETH_MGMT_IRQ_IDX].vector = 0;
2018 
2019 	/* rx queues start @3 */
2020 	for (i = 0; i < adapter->num_rx_queues; i++) {
2021 		int irq_idx = AL_ETH_RXQ_IRQ_IDX(adapter, i);
2022 
2023 		adapter->msix_entries[irq_idx].entry = 3 + i;
2024 		adapter->msix_entries[irq_idx].vector = 0;
2025 	}
2026 	/* tx queues start @7 */
2027 	for (i = 0; i < adapter->num_tx_queues; i++) {
2028 		int irq_idx = AL_ETH_TXQ_IRQ_IDX(adapter, i);
2029 
2030 		adapter->msix_entries[irq_idx].entry = 3 +
2031 		    AL_ETH_MAX_HW_QUEUES + i;
2032 		adapter->msix_entries[irq_idx].vector = 0;
2033 	}
2034 
2035 	count = msix_vecs + 2; /* entries start from 2 */
2036 	rc = pci_alloc_msix(adapter->dev, &count);
2037 
2038 	if (rc != 0) {
2039 		device_printf_dbg(adapter->dev, "failed to allocate MSIX "
2040 		    "vectors %d\n", msix_vecs+2);
2041 		device_printf_dbg(adapter->dev, "ret = %d\n", rc);
2042 		goto msix_entries_exit;
2043 	}
2044 
2045 	if (count != msix_vecs + 2) {
2046 		device_printf_dbg(adapter->dev, "failed to allocate all MSIX "
2047 		    "vectors %d, allocated %d\n", msix_vecs+2, count);
2048 		rc = ENOSPC;
2049 		goto msix_entries_exit;
2050 	}
2051 
2052 	for (i = 0; i < msix_vecs; i++)
2053 	    adapter->msix_entries[i].vector = 2 + 1 + i;
2054 
2055 	device_printf_dbg(adapter->dev, "successfully enabled MSIX,"
2056 	    " vectors %d\n", msix_vecs);
2057 
2058 	adapter->msix_vecs = msix_vecs;
2059 	adapter->flags |= AL_ETH_FLAG_MSIX_ENABLED;
2060 	goto exit;
2061 
2062 msix_entries_exit:
2063 	adapter->msix_vecs = 0;
2064 	free(adapter->msix_entries, M_IFAL);
2065 	adapter->msix_entries = NULL;
2066 
2067 exit:
2068 	return (rc);
2069 }
2070 
2071 static int
2072 al_eth_setup_int_mode(struct al_eth_adapter *adapter)
2073 {
2074 	int i, rc;
2075 
2076 	rc = al_eth_enable_msix(adapter);
2077 	if (rc != 0) {
2078 		device_printf(adapter->dev, "Failed to enable MSIX mode.\n");
2079 		return (rc);
2080 	}
2081 
2082 	adapter->irq_vecs = max(1, adapter->msix_vecs);
2083 	/* single INTX mode */
2084 	if (adapter->msix_vecs == 0) {
2085 		snprintf(adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].name,
2086 		    AL_ETH_IRQNAME_SIZE, "al-eth-intx-all@pci:%s",
2087 		    device_get_name(adapter->dev));
2088 		adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].handler =
2089 		    al_eth_intr_intx_all;
2090 		/* IRQ vector will be resolved from device resources */
2091 		adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].vector = 0;
2092 		adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].data = adapter;
2093 
2094 		device_printf(adapter->dev, "%s and vector %d \n", __func__,
2095 		    adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].vector);
2096 
2097 		return (0);
2098 	}
2099 	/* single MSI-X mode */
2100 	if (adapter->msix_vecs == 1) {
2101 		snprintf(adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].name,
2102 		    AL_ETH_IRQNAME_SIZE, "al-eth-msix-all@pci:%s",
2103 		    device_get_name(adapter->dev));
2104 		adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].handler =
2105 		    al_eth_intr_msix_all;
2106 		adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].vector =
2107 		    adapter->msix_entries[AL_ETH_MGMT_IRQ_IDX].vector;
2108 		adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].data = adapter;
2109 
2110 		return (0);
2111 	}
2112 	/* MSI-X per queue */
2113 	snprintf(adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].name, AL_ETH_IRQNAME_SIZE,
2114 	    "al-eth-msix-mgmt@pci:%s", device_get_name(adapter->dev));
2115 	adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].handler = al_eth_intr_msix_mgmt;
2116 
2117 	adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].data = adapter;
2118 	adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].vector =
2119 	    adapter->msix_entries[AL_ETH_MGMT_IRQ_IDX].vector;
2120 
2121 	for (i = 0; i < adapter->num_rx_queues; i++) {
2122 		int irq_idx = AL_ETH_RXQ_IRQ_IDX(adapter, i);
2123 
2124 		snprintf(adapter->irq_tbl[irq_idx].name, AL_ETH_IRQNAME_SIZE,
2125 		    "al-eth-rx-comp-%d@pci:%s", i,
2126 		    device_get_name(adapter->dev));
2127 		adapter->irq_tbl[irq_idx].handler = al_eth_rx_recv_irq_filter;
2128 		adapter->irq_tbl[irq_idx].data = &adapter->rx_ring[i];
2129 		adapter->irq_tbl[irq_idx].vector =
2130 		    adapter->msix_entries[irq_idx].vector;
2131 	}
2132 
2133 	for (i = 0; i < adapter->num_tx_queues; i++) {
2134 		int irq_idx = AL_ETH_TXQ_IRQ_IDX(adapter, i);
2135 
2136 		snprintf(adapter->irq_tbl[irq_idx].name,
2137 		    AL_ETH_IRQNAME_SIZE, "al-eth-tx-comp-%d@pci:%s", i,
2138 		    device_get_name(adapter->dev));
2139 		adapter->irq_tbl[irq_idx].handler = al_eth_tx_cmlp_irq_filter;
2140 		adapter->irq_tbl[irq_idx].data = &adapter->tx_ring[i];
2141 		adapter->irq_tbl[irq_idx].vector =
2142 		    adapter->msix_entries[irq_idx].vector;
2143 	}
2144 
2145 	return (0);
2146 }
2147 
2148 static void
2149 __al_eth_free_irq(struct al_eth_adapter *adapter)
2150 {
2151 	struct al_eth_irq *irq;
2152 	int i, rc;
2153 
2154 	for (i = 0; i < adapter->irq_vecs; i++) {
2155 		irq = &adapter->irq_tbl[i];
2156 		if (irq->requested != 0) {
2157 			device_printf_dbg(adapter->dev, "tear down irq: %d\n",
2158 			    irq->vector);
2159 			rc = bus_teardown_intr(adapter->dev, irq->res,
2160 			    irq->cookie);
2161 			if (rc != 0)
2162 				device_printf(adapter->dev, "failed to tear "
2163 				    "down irq: %d\n", irq->vector);
2164 		}
2165 		irq->requested = 0;
2166 	}
2167 }
2168 
2169 static void
2170 al_eth_free_irq(struct al_eth_adapter *adapter)
2171 {
2172 	struct al_eth_irq *irq;
2173 	int i, rc;
2174 #ifdef CONFIG_RFS_ACCEL
2175 	if (adapter->msix_vecs >= 1) {
2176 		free_irq_cpu_rmap(adapter->netdev->rx_cpu_rmap);
2177 		adapter->netdev->rx_cpu_rmap = NULL;
2178 	}
2179 #endif
2180 
2181 	__al_eth_free_irq(adapter);
2182 
2183 	for (i = 0; i < adapter->irq_vecs; i++) {
2184 		irq = &adapter->irq_tbl[i];
2185 		if (irq->res == NULL)
2186 			continue;
2187 		device_printf_dbg(adapter->dev, "release resource irq: %d\n",
2188 		    irq->vector);
2189 		rc = bus_release_resource(adapter->dev, SYS_RES_IRQ, irq->vector,
2190 		    irq->res);
2191 		irq->res = NULL;
2192 		if (rc != 0)
2193 			device_printf(adapter->dev, "dev has no parent while "
2194 			    "releasing res for irq: %d\n", irq->vector);
2195 	}
2196 
2197 	pci_release_msi(adapter->dev);
2198 
2199 	adapter->flags &= ~AL_ETH_FLAG_MSIX_ENABLED;
2200 
2201 	adapter->msix_vecs = 0;
2202 	free(adapter->msix_entries, M_IFAL);
2203 	adapter->msix_entries = NULL;
2204 }
2205 
2206 static int
2207 al_eth_request_irq(struct al_eth_adapter *adapter)
2208 {
2209 	unsigned long flags;
2210 	struct al_eth_irq *irq;
2211 	int rc = 0, i, v;
2212 
2213 	if ((adapter->flags & AL_ETH_FLAG_MSIX_ENABLED) != 0)
2214 		flags = RF_ACTIVE;
2215 	else
2216 		flags = RF_ACTIVE | RF_SHAREABLE;
2217 
2218 	for (i = 0; i < adapter->irq_vecs; i++) {
2219 		irq = &adapter->irq_tbl[i];
2220 
2221 		if (irq->requested != 0)
2222 			continue;
2223 
2224 		irq->res = bus_alloc_resource_any(adapter->dev, SYS_RES_IRQ,
2225 		    &irq->vector, flags);
2226 		if (irq->res == NULL) {
2227 			device_printf(adapter->dev, "could not allocate "
2228 			    "irq vector=%d\n", irq->vector);
2229 			rc = ENXIO;
2230 			goto exit_res;
2231 		}
2232 
2233 		if ((rc = bus_setup_intr(adapter->dev, irq->res,
2234 		    INTR_TYPE_NET | INTR_MPSAFE, irq->handler,
2235 		    NULL, irq->data, &irq->cookie)) != 0) {
2236 			device_printf(adapter->dev, "failed to register "
2237 			    "interrupt handler for irq %ju: %d\n",
2238 			    (uintmax_t)rman_get_start(irq->res), rc);
2239 			goto exit_intr;
2240 		}
2241 		irq->requested = 1;
2242 	}
2243 	goto exit;
2244 
2245 exit_intr:
2246 	v = i - 1; /* -1 because we omit the operation that failed */
2247 	while (v-- >= 0) {
2248 		int bti;
2249 		irq = &adapter->irq_tbl[v];
2250 		bti = bus_teardown_intr(adapter->dev, irq->res, irq->cookie);
2251 		if (bti != 0) {
2252 			device_printf(adapter->dev, "failed to tear "
2253 			    "down irq: %d\n", irq->vector);
2254 		}
2255 
2256 		irq->requested = 0;
2257 		device_printf_dbg(adapter->dev, "exit_intr: releasing irq %d\n",
2258 		    irq->vector);
2259 	}
2260 
2261 exit_res:
2262 	v = i - 1; /* -1 because we omit the operation that failed */
2263 	while (v-- >= 0) {
2264 		int brr;
2265 		irq = &adapter->irq_tbl[v];
2266 		device_printf_dbg(adapter->dev, "exit_res: releasing resource"
2267 		    " for irq %d\n", irq->vector);
2268 		brr = bus_release_resource(adapter->dev, SYS_RES_IRQ,
2269 		    irq->vector, irq->res);
2270 		if (brr != 0)
2271 			device_printf(adapter->dev, "dev has no parent while "
2272 			    "releasing res for irq: %d\n", irq->vector);
2273 		irq->res = NULL;
2274 	}
2275 
2276 exit:
2277 	return (rc);
2278 }
2279 
2280 /**
2281  * al_eth_setup_tx_resources - allocate Tx resources (Descriptors)
2282  * @adapter: network interface device structure
2283  * @qid: queue index
2284  *
2285  * Return 0 on success, negative on failure
2286  **/
2287 static int
2288 al_eth_setup_tx_resources(struct al_eth_adapter *adapter, int qid)
2289 {
2290 	struct al_eth_ring *tx_ring = &adapter->tx_ring[qid];
2291 	device_t dev = tx_ring->dev;
2292 	struct al_udma_q_params *q_params = &tx_ring->q_params;
2293 	int size;
2294 	int ret;
2295 
2296 	if (adapter->up)
2297 		return (0);
2298 
2299 	size = sizeof(struct al_eth_tx_buffer) * tx_ring->sw_count;
2300 
2301 	tx_ring->tx_buffer_info = malloc(size, M_IFAL, M_ZERO | M_WAITOK);
2302 	if (tx_ring->tx_buffer_info == NULL)
2303 		return (ENOMEM);
2304 
2305 	tx_ring->descs_size = tx_ring->hw_count * sizeof(union al_udma_desc);
2306 	q_params->size = tx_ring->hw_count;
2307 
2308 	ret = al_dma_alloc_coherent(dev, &q_params->desc_phy_base_tag,
2309 	    (bus_dmamap_t *)&q_params->desc_phy_base_map,
2310 	    (bus_addr_t *)&q_params->desc_phy_base,
2311 	    (void**)&q_params->desc_base, tx_ring->descs_size);
2312 	if (ret != 0) {
2313 		device_printf(dev, "failed to al_dma_alloc_coherent,"
2314 		    " ret = %d\n", ret);
2315 		return (ENOMEM);
2316 	}
2317 
2318 	if (q_params->desc_base == NULL)
2319 		return (ENOMEM);
2320 
2321 	device_printf_dbg(dev, "Initializing ring queues %d\n", qid);
2322 
2323 	/* Allocate Ring Queue */
2324 	mtx_init(&tx_ring->br_mtx, "AlRingMtx", NULL, MTX_DEF);
2325 	tx_ring->br = buf_ring_alloc(AL_BR_SIZE, M_DEVBUF, M_WAITOK,
2326 	    &tx_ring->br_mtx);
2327 	if (tx_ring->br == NULL) {
2328 		device_printf(dev, "Critical Failure setting up buf ring\n");
2329 		return (ENOMEM);
2330 	}
2331 
2332 	/* Allocate taskqueues */
2333 	TASK_INIT(&tx_ring->enqueue_task, 0, al_eth_start_xmit, tx_ring);
2334 	tx_ring->enqueue_tq = taskqueue_create_fast("al_tx_enque", M_NOWAIT,
2335 	    taskqueue_thread_enqueue, &tx_ring->enqueue_tq);
2336 	taskqueue_start_threads(&tx_ring->enqueue_tq, 1, PI_NET, "%s txeq",
2337 	    device_get_nameunit(adapter->dev));
2338 	TASK_INIT(&tx_ring->cmpl_task, 0, al_eth_tx_cmpl_work, tx_ring);
2339 	tx_ring->cmpl_tq = taskqueue_create_fast("al_tx_cmpl", M_NOWAIT,
2340 	    taskqueue_thread_enqueue, &tx_ring->cmpl_tq);
2341 	taskqueue_start_threads(&tx_ring->cmpl_tq, 1, PI_REALTIME, "%s txcq",
2342 	    device_get_nameunit(adapter->dev));
2343 
2344 	/* Setup DMA descriptor areas. */
2345 	ret = bus_dma_tag_create(bus_get_dma_tag(dev),
2346 	    1, 0,			/* alignment, bounds */
2347 	    BUS_SPACE_MAXADDR,		/* lowaddr */
2348 	    BUS_SPACE_MAXADDR,		/* highaddr */
2349 	    NULL, NULL,			/* filter, filterarg */
2350 	    AL_TSO_SIZE,		/* maxsize */
2351 	    AL_ETH_PKT_MAX_BUFS,	/* nsegments */
2352 	    PAGE_SIZE,			/* maxsegsize */
2353 	    0,				/* flags */
2354 	    NULL,			/* lockfunc */
2355 	    NULL,			/* lockfuncarg */
2356 	    &tx_ring->dma_buf_tag);
2357 
2358 	if (ret != 0) {
2359 		device_printf(dev,"Unable to allocate dma_buf_tag, ret = %d\n",
2360 		    ret);
2361 		return (ret);
2362 	}
2363 
2364 	for (size = 0; size < tx_ring->sw_count; size++) {
2365 		ret = bus_dmamap_create(tx_ring->dma_buf_tag, 0,
2366 		    &tx_ring->tx_buffer_info[size].dma_map);
2367 		if (ret != 0) {
2368 			device_printf(dev, "Unable to map DMA TX "
2369 			    "buffer memory [iter=%d]\n", size);
2370 			return (ret);
2371 		}
2372 	}
2373 
2374 	/* completion queue not used for tx */
2375 	q_params->cdesc_base = NULL;
2376 	/* size in bytes of the udma completion ring descriptor */
2377 	q_params->cdesc_size = 8;
2378 	tx_ring->next_to_use = 0;
2379 	tx_ring->next_to_clean = 0;
2380 
2381 	return (0);
2382 }
2383 
2384 /*
2385  * al_eth_free_tx_resources - Free Tx Resources per Queue
2386  * @adapter: network interface device structure
2387  * @qid: queue index
2388  *
2389  * Free all transmit software resources
2390  */
2391 static void
2392 al_eth_free_tx_resources(struct al_eth_adapter *adapter, int qid)
2393 {
2394 	struct al_eth_ring *tx_ring = &adapter->tx_ring[qid];
2395 	struct al_udma_q_params *q_params = &tx_ring->q_params;
2396 	int size;
2397 
2398 	/* At this point interrupts' handlers must be deactivated */
2399 	while (taskqueue_cancel(tx_ring->cmpl_tq, &tx_ring->cmpl_task, NULL))
2400 		taskqueue_drain(tx_ring->cmpl_tq, &tx_ring->cmpl_task);
2401 
2402 	taskqueue_free(tx_ring->cmpl_tq);
2403 	while (taskqueue_cancel(tx_ring->enqueue_tq,
2404 	    &tx_ring->enqueue_task, NULL)) {
2405 		taskqueue_drain(tx_ring->enqueue_tq, &tx_ring->enqueue_task);
2406 	}
2407 
2408 	taskqueue_free(tx_ring->enqueue_tq);
2409 
2410 	if (tx_ring->br != NULL) {
2411 		drbr_flush(adapter->netdev, tx_ring->br);
2412 		buf_ring_free(tx_ring->br, M_DEVBUF);
2413 	}
2414 
2415 	for (size = 0; size < tx_ring->sw_count; size++) {
2416 		m_freem(tx_ring->tx_buffer_info[size].m);
2417 		tx_ring->tx_buffer_info[size].m = NULL;
2418 
2419 		bus_dmamap_unload(tx_ring->dma_buf_tag,
2420 		    tx_ring->tx_buffer_info[size].dma_map);
2421 		bus_dmamap_destroy(tx_ring->dma_buf_tag,
2422 		    tx_ring->tx_buffer_info[size].dma_map);
2423 	}
2424 	bus_dma_tag_destroy(tx_ring->dma_buf_tag);
2425 
2426 	free(tx_ring->tx_buffer_info, M_IFAL);
2427 	tx_ring->tx_buffer_info = NULL;
2428 
2429 	mtx_destroy(&tx_ring->br_mtx);
2430 
2431 	/* if not set, then don't free */
2432 	if (q_params->desc_base == NULL)
2433 		return;
2434 
2435 	al_dma_free_coherent(q_params->desc_phy_base_tag,
2436 	    q_params->desc_phy_base_map, q_params->desc_base);
2437 
2438 	q_params->desc_base = NULL;
2439 }
2440 
2441 /*
2442  * al_eth_free_all_tx_resources - Free Tx Resources for All Queues
2443  * @adapter: board private structure
2444  *
2445  * Free all transmit software resources
2446  */
2447 static void
2448 al_eth_free_all_tx_resources(struct al_eth_adapter *adapter)
2449 {
2450 	int i;
2451 
2452 	for (i = 0; i < adapter->num_tx_queues; i++)
2453 		if (adapter->tx_ring[i].q_params.desc_base)
2454 			al_eth_free_tx_resources(adapter, i);
2455 }
2456 
2457 /*
2458  * al_eth_setup_rx_resources - allocate Rx resources (Descriptors)
2459  * @adapter: network interface device structure
2460  * @qid: queue index
2461  *
2462  * Returns 0 on success, negative on failure
2463  */
2464 static int
2465 al_eth_setup_rx_resources(struct al_eth_adapter *adapter, unsigned int qid)
2466 {
2467 	struct al_eth_ring *rx_ring = &adapter->rx_ring[qid];
2468 	device_t dev = rx_ring->dev;
2469 	struct al_udma_q_params *q_params = &rx_ring->q_params;
2470 	int size;
2471 	int ret;
2472 
2473 	size = sizeof(struct al_eth_rx_buffer) * rx_ring->sw_count;
2474 
2475 	/* alloc extra element so in rx path we can always prefetch rx_info + 1 */
2476 	size += 1;
2477 
2478 	rx_ring->rx_buffer_info = malloc(size, M_IFAL, M_ZERO | M_WAITOK);
2479 	if (rx_ring->rx_buffer_info == NULL)
2480 		return (ENOMEM);
2481 
2482 	rx_ring->descs_size = rx_ring->hw_count * sizeof(union al_udma_desc);
2483 	q_params->size = rx_ring->hw_count;
2484 
2485 	ret = al_dma_alloc_coherent(dev, &q_params->desc_phy_base_tag,
2486 	    &q_params->desc_phy_base_map,
2487 	    (bus_addr_t *)&q_params->desc_phy_base,
2488 	    (void**)&q_params->desc_base, rx_ring->descs_size);
2489 
2490 	if ((q_params->desc_base == NULL) || (ret != 0))
2491 		return (ENOMEM);
2492 
2493 	/* size in bytes of the udma completion ring descriptor */
2494 	q_params->cdesc_size = 16;
2495 	rx_ring->cdescs_size = rx_ring->hw_count * q_params->cdesc_size;
2496 	ret = al_dma_alloc_coherent(dev, &q_params->cdesc_phy_base_tag,
2497 	    &q_params->cdesc_phy_base_map,
2498 	    (bus_addr_t *)&q_params->cdesc_phy_base,
2499 	    (void**)&q_params->cdesc_base, rx_ring->cdescs_size);
2500 
2501 	if ((q_params->cdesc_base == NULL) || (ret != 0))
2502 		return (ENOMEM);
2503 
2504 	/* Allocate taskqueues */
2505 	NET_TASK_INIT(&rx_ring->enqueue_task, 0, al_eth_rx_recv_work, rx_ring);
2506 	rx_ring->enqueue_tq = taskqueue_create_fast("al_rx_enque", M_NOWAIT,
2507 	    taskqueue_thread_enqueue, &rx_ring->enqueue_tq);
2508 	taskqueue_start_threads(&rx_ring->enqueue_tq, 1, PI_NET, "%s rxeq",
2509 	    device_get_nameunit(adapter->dev));
2510 
2511 	/* Setup DMA descriptor areas. */
2512 	ret = bus_dma_tag_create(bus_get_dma_tag(dev),
2513 	    1, 0,			/* alignment, bounds */
2514 	    BUS_SPACE_MAXADDR,		/* lowaddr */
2515 	    BUS_SPACE_MAXADDR,		/* highaddr */
2516 	    NULL, NULL,			/* filter, filterarg */
2517 	    AL_TSO_SIZE,		/* maxsize */
2518 	    1,				/* nsegments */
2519 	    AL_TSO_SIZE,		/* maxsegsize */
2520 	    0,				/* flags */
2521 	    NULL,			/* lockfunc */
2522 	    NULL,			/* lockfuncarg */
2523 	    &rx_ring->dma_buf_tag);
2524 
2525 	if (ret != 0) {
2526 		device_printf(dev,"Unable to allocate RX dma_buf_tag\n");
2527 		return (ret);
2528 	}
2529 
2530 	for (size = 0; size < rx_ring->sw_count; size++) {
2531 		ret = bus_dmamap_create(rx_ring->dma_buf_tag, 0,
2532 		    &rx_ring->rx_buffer_info[size].dma_map);
2533 		if (ret != 0) {
2534 			device_printf(dev,"Unable to map DMA RX buffer memory\n");
2535 			return (ret);
2536 		}
2537 	}
2538 
2539 	/* Zero out the descriptor ring */
2540 	memset(q_params->cdesc_base, 0, rx_ring->cdescs_size);
2541 
2542 	/* Create LRO for the ring */
2543 	if ((if_getcapenable(adapter->netdev) & IFCAP_LRO) != 0) {
2544 		int err = tcp_lro_init(&rx_ring->lro);
2545 		if (err != 0) {
2546 			device_printf(adapter->dev,
2547 			    "LRO[%d] Initialization failed!\n", qid);
2548 		} else {
2549 			device_printf_dbg(adapter->dev,
2550 			    "RX Soft LRO[%d] Initialized\n", qid);
2551 			rx_ring->lro_enabled = true;
2552 			rx_ring->lro.ifp = adapter->netdev;
2553 		}
2554 	}
2555 
2556 	rx_ring->next_to_clean = 0;
2557 	rx_ring->next_to_use = 0;
2558 
2559 	return (0);
2560 }
2561 
2562 /*
2563  * al_eth_free_rx_resources - Free Rx Resources
2564  * @adapter: network interface device structure
2565  * @qid: queue index
2566  *
2567  * Free all receive software resources
2568  */
2569 static void
2570 al_eth_free_rx_resources(struct al_eth_adapter *adapter, unsigned int qid)
2571 {
2572 	struct al_eth_ring *rx_ring = &adapter->rx_ring[qid];
2573 	struct al_udma_q_params *q_params = &rx_ring->q_params;
2574 	int size;
2575 
2576 	/* At this point interrupts' handlers must be deactivated */
2577 	while (taskqueue_cancel(rx_ring->enqueue_tq,
2578 	    &rx_ring->enqueue_task, NULL)) {
2579 		taskqueue_drain(rx_ring->enqueue_tq, &rx_ring->enqueue_task);
2580 	}
2581 
2582 	taskqueue_free(rx_ring->enqueue_tq);
2583 
2584 	for (size = 0; size < rx_ring->sw_count; size++) {
2585 		m_freem(rx_ring->rx_buffer_info[size].m);
2586 		rx_ring->rx_buffer_info[size].m = NULL;
2587 		bus_dmamap_unload(rx_ring->dma_buf_tag,
2588 		    rx_ring->rx_buffer_info[size].dma_map);
2589 		bus_dmamap_destroy(rx_ring->dma_buf_tag,
2590 		    rx_ring->rx_buffer_info[size].dma_map);
2591 	}
2592 	bus_dma_tag_destroy(rx_ring->dma_buf_tag);
2593 
2594 	free(rx_ring->rx_buffer_info, M_IFAL);
2595 	rx_ring->rx_buffer_info = NULL;
2596 
2597 	/* if not set, then don't free */
2598 	if (q_params->desc_base == NULL)
2599 		return;
2600 
2601 	al_dma_free_coherent(q_params->desc_phy_base_tag,
2602 	    q_params->desc_phy_base_map, q_params->desc_base);
2603 
2604 	q_params->desc_base = NULL;
2605 
2606 	/* if not set, then don't free */
2607 	if (q_params->cdesc_base == NULL)
2608 		return;
2609 
2610 	al_dma_free_coherent(q_params->cdesc_phy_base_tag,
2611 	    q_params->cdesc_phy_base_map, q_params->cdesc_base);
2612 
2613 	q_params->cdesc_phy_base = 0;
2614 
2615 	/* Free LRO resources */
2616 	tcp_lro_free(&rx_ring->lro);
2617 }
2618 
2619 /*
2620  * al_eth_free_all_rx_resources - Free Rx Resources for All Queues
2621  * @adapter: board private structure
2622  *
2623  * Free all receive software resources
2624  */
2625 static void
2626 al_eth_free_all_rx_resources(struct al_eth_adapter *adapter)
2627 {
2628 	int i;
2629 
2630 	for (i = 0; i < adapter->num_rx_queues; i++)
2631 		if (adapter->rx_ring[i].q_params.desc_base != 0)
2632 			al_eth_free_rx_resources(adapter, i);
2633 }
2634 
2635 /*
2636  * al_eth_setup_all_rx_resources - allocate all queues Rx resources
2637  * @adapter: board private structure
2638  *
2639  * Return 0 on success, negative on failure
2640  */
2641 static int
2642 al_eth_setup_all_rx_resources(struct al_eth_adapter *adapter)
2643 {
2644 	int i, rc = 0;
2645 
2646 	for (i = 0; i < adapter->num_rx_queues; i++) {
2647 		rc = al_eth_setup_rx_resources(adapter, i);
2648 		if (rc == 0)
2649 			continue;
2650 
2651 		device_printf(adapter->dev, "Allocation for Rx Queue %u failed\n", i);
2652 		goto err_setup_rx;
2653 	}
2654 	return (0);
2655 
2656 err_setup_rx:
2657 	/* rewind the index freeing the rings as we go */
2658 	while (i--)
2659 		al_eth_free_rx_resources(adapter, i);
2660 	return (rc);
2661 }
2662 
2663 /*
2664  * al_eth_setup_all_tx_resources - allocate all queues Tx resources
2665  * @adapter: private structure
2666  *
2667  * Return 0 on success, negative on failure
2668  */
2669 static int
2670 al_eth_setup_all_tx_resources(struct al_eth_adapter *adapter)
2671 {
2672 	int i, rc = 0;
2673 
2674 	for (i = 0; i < adapter->num_tx_queues; i++) {
2675 		rc = al_eth_setup_tx_resources(adapter, i);
2676 		if (rc == 0)
2677 			continue;
2678 
2679 		device_printf(adapter->dev,
2680 		    "Allocation for Tx Queue %u failed\n", i);
2681 		goto err_setup_tx;
2682 	}
2683 
2684 	return (0);
2685 
2686 err_setup_tx:
2687 	/* rewind the index freeing the rings as we go */
2688 	while (i--)
2689 		al_eth_free_tx_resources(adapter, i);
2690 
2691 	return (rc);
2692 }
2693 
2694 static void
2695 al_eth_disable_int_sync(struct al_eth_adapter *adapter)
2696 {
2697 
2698 	/* disable forwarding interrupts from eth through pci end point */
2699 	if ((adapter->board_type == ALPINE_FPGA_NIC) ||
2700 	    (adapter->board_type == ALPINE_NIC)) {
2701 		al_eth_forward_int_config((uint32_t*)adapter->internal_pcie_base +
2702 		    AL_REG_OFFSET_FORWARD_INTR, AL_DIS_FORWARD_INTR);
2703 	}
2704 
2705 	/* mask hw interrupts */
2706 	al_eth_interrupts_mask(adapter);
2707 }
2708 
2709 static void
2710 al_eth_interrupts_unmask(struct al_eth_adapter *adapter)
2711 {
2712 	uint32_t group_a_mask = AL_INT_GROUP_A_GROUP_D_SUM; /* enable group D summery */
2713 	uint32_t group_b_mask = (1 << adapter->num_rx_queues) - 1;/* bit per Rx q*/
2714 	uint32_t group_c_mask = (1 << adapter->num_tx_queues) - 1;/* bit per Tx q*/
2715 	uint32_t group_d_mask = 3 << 8;
2716 	struct unit_regs __iomem *regs_base =
2717 	    (struct unit_regs __iomem *)adapter->udma_base;
2718 
2719 	if (adapter->int_mode == AL_IOFIC_MODE_LEGACY)
2720 		group_a_mask |= AL_INT_GROUP_A_GROUP_B_SUM |
2721 		    AL_INT_GROUP_A_GROUP_C_SUM |
2722 		    AL_INT_GROUP_A_GROUP_D_SUM;
2723 
2724 	al_udma_iofic_unmask(regs_base, AL_UDMA_IOFIC_LEVEL_PRIMARY,
2725 	    AL_INT_GROUP_A, group_a_mask);
2726 	al_udma_iofic_unmask(regs_base, AL_UDMA_IOFIC_LEVEL_PRIMARY,
2727 	    AL_INT_GROUP_B, group_b_mask);
2728 	al_udma_iofic_unmask(regs_base, AL_UDMA_IOFIC_LEVEL_PRIMARY,
2729 	    AL_INT_GROUP_C, group_c_mask);
2730 	al_udma_iofic_unmask(regs_base, AL_UDMA_IOFIC_LEVEL_PRIMARY,
2731 	    AL_INT_GROUP_D, group_d_mask);
2732 }
2733 
2734 static void
2735 al_eth_interrupts_mask(struct al_eth_adapter *adapter)
2736 {
2737 	struct unit_regs __iomem *regs_base =
2738 	    (struct unit_regs __iomem *)adapter->udma_base;
2739 
2740 	/* mask all interrupts */
2741 	al_udma_iofic_mask(regs_base, AL_UDMA_IOFIC_LEVEL_PRIMARY,
2742 	    AL_INT_GROUP_A, AL_MASK_GROUP_A_INT);
2743 	al_udma_iofic_mask(regs_base, AL_UDMA_IOFIC_LEVEL_PRIMARY,
2744 	    AL_INT_GROUP_B, AL_MASK_GROUP_B_INT);
2745 	al_udma_iofic_mask(regs_base, AL_UDMA_IOFIC_LEVEL_PRIMARY,
2746 	    AL_INT_GROUP_C, AL_MASK_GROUP_C_INT);
2747 	al_udma_iofic_mask(regs_base, AL_UDMA_IOFIC_LEVEL_PRIMARY,
2748 	    AL_INT_GROUP_D, AL_MASK_GROUP_D_INT);
2749 }
2750 
2751 static int
2752 al_eth_configure_int_mode(struct al_eth_adapter *adapter)
2753 {
2754 	enum al_iofic_mode int_mode;
2755 	uint32_t m2s_errors_disable = AL_M2S_MASK_INIT;
2756 	uint32_t m2s_aborts_disable = AL_M2S_MASK_INIT;
2757 	uint32_t s2m_errors_disable = AL_S2M_MASK_INIT;
2758 	uint32_t s2m_aborts_disable = AL_S2M_MASK_INIT;
2759 
2760 	/* single INTX mode */
2761 	if (adapter->msix_vecs == 0)
2762 		int_mode = AL_IOFIC_MODE_LEGACY;
2763 	else if (adapter->msix_vecs > 1)
2764 		int_mode = AL_IOFIC_MODE_MSIX_PER_Q;
2765 	else {
2766 		device_printf(adapter->dev,
2767 		    "udma doesn't support single MSI-X mode yet.\n");
2768 		return (EIO);
2769 	}
2770 
2771 	if (adapter->board_type != ALPINE_INTEGRATED) {
2772 		m2s_errors_disable |= AL_M2S_S2M_MASK_NOT_INT;
2773 		m2s_errors_disable |= AL_M2S_S2M_MASK_NOT_INT;
2774 		s2m_aborts_disable |= AL_M2S_S2M_MASK_NOT_INT;
2775 		s2m_aborts_disable |= AL_M2S_S2M_MASK_NOT_INT;
2776 	}
2777 
2778 	if (al_udma_iofic_config((struct unit_regs __iomem *)adapter->udma_base,
2779 	    int_mode, m2s_errors_disable, m2s_aborts_disable,
2780 	    s2m_errors_disable, s2m_aborts_disable)) {
2781 		device_printf(adapter->dev,
2782 		    "al_udma_unit_int_config failed!.\n");
2783 		return (EIO);
2784 	}
2785 	adapter->int_mode = int_mode;
2786 	device_printf_dbg(adapter->dev, "using %s interrupt mode\n",
2787 	    int_mode == AL_IOFIC_MODE_LEGACY ? "INTx" :
2788 	    int_mode == AL_IOFIC_MODE_MSIX_PER_Q ? "MSI-X per Queue" : "Unknown");
2789 	/* set interrupt moderation resolution to 15us */
2790 	al_iofic_moder_res_config(&((struct unit_regs *)(adapter->udma_base))->gen.interrupt_regs.main_iofic, AL_INT_GROUP_B, 15);
2791 	al_iofic_moder_res_config(&((struct unit_regs *)(adapter->udma_base))->gen.interrupt_regs.main_iofic, AL_INT_GROUP_C, 15);
2792 	/* by default interrupt coalescing is disabled */
2793 	adapter->tx_usecs = 0;
2794 	adapter->rx_usecs = 0;
2795 
2796 	return (0);
2797 }
2798 
2799 /*
2800  * ethtool_rxfh_indir_default - get default value for RX flow hash indirection
2801  * @index: Index in RX flow hash indirection table
2802  * @n_rx_rings: Number of RX rings to use
2803  *
2804  * This function provides the default policy for RX flow hash indirection.
2805  */
2806 static inline uint32_t
2807 ethtool_rxfh_indir_default(uint32_t index, uint32_t n_rx_rings)
2808 {
2809 
2810 	return (index % n_rx_rings);
2811 }
2812 
2813 static void*
2814 al_eth_update_stats(struct al_eth_adapter *adapter)
2815 {
2816 	struct al_eth_mac_stats *mac_stats = &adapter->mac_stats;
2817 
2818 	if (adapter->up == 0)
2819 		return (NULL);
2820 
2821 	al_eth_mac_stats_get(&adapter->hal_adapter, mac_stats);
2822 
2823 	return (NULL);
2824 }
2825 
2826 static uint64_t
2827 al_get_counter(if_t ifp, ift_counter cnt)
2828 {
2829 	struct al_eth_adapter *adapter;
2830 	struct al_eth_mac_stats *mac_stats;
2831 	uint64_t rv;
2832 
2833 	adapter = if_getsoftc(ifp);
2834 	mac_stats = &adapter->mac_stats;
2835 
2836 	switch (cnt) {
2837 	case IFCOUNTER_IPACKETS:
2838 		return (mac_stats->aFramesReceivedOK); /* including pause frames */
2839 	case IFCOUNTER_OPACKETS:
2840 		return (mac_stats->aFramesTransmittedOK);
2841 	case IFCOUNTER_IBYTES:
2842 		return (mac_stats->aOctetsReceivedOK);
2843 	case IFCOUNTER_OBYTES:
2844 		return (mac_stats->aOctetsTransmittedOK);
2845 	case IFCOUNTER_IMCASTS:
2846 		return (mac_stats->ifInMulticastPkts);
2847 	case IFCOUNTER_OMCASTS:
2848 		return (mac_stats->ifOutMulticastPkts);
2849 	case IFCOUNTER_COLLISIONS:
2850 		return (0);
2851 	case IFCOUNTER_IQDROPS:
2852 		return (mac_stats->etherStatsDropEvents);
2853 	case IFCOUNTER_IERRORS:
2854 		rv = mac_stats->ifInErrors +
2855 		    mac_stats->etherStatsUndersizePkts + /* good but short */
2856 		    mac_stats->etherStatsFragments + /* short and bad*/
2857 		    mac_stats->etherStatsJabbers + /* with crc errors */
2858 		    mac_stats->etherStatsOversizePkts +
2859 		    mac_stats->aFrameCheckSequenceErrors +
2860 		    mac_stats->aAlignmentErrors;
2861 		return (rv);
2862 	case IFCOUNTER_OERRORS:
2863 		return (mac_stats->ifOutErrors);
2864 	default:
2865 		return (if_get_counter_default(ifp, cnt));
2866 	}
2867 }
2868 
2869 static u_int
2870 al_count_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
2871 {
2872 	unsigned char *mac;
2873 
2874 	mac = LLADDR(sdl);
2875 	/* default mc address inside mac address */
2876 	if (mac[3] != 0 && mac[4] != 0 && mac[5] != 1)
2877 		return (1);
2878 	else
2879 		return (0);
2880 }
2881 
2882 static u_int
2883 al_program_addr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
2884 {
2885 	struct al_eth_adapter *adapter = arg;
2886 
2887 	al_eth_mac_table_unicast_add(adapter,
2888 	    AL_ETH_MAC_TABLE_UNICAST_IDX_BASE + 1 + cnt, 1);
2889 
2890 	return (1);
2891 }
2892 
2893 /*
2894  *  Unicast, Multicast and Promiscuous mode set
2895  *
2896  *  The set_rx_mode entry point is called whenever the unicast or multicast
2897  *  address lists or the network interface flags are updated.  This routine is
2898  *  responsible for configuring the hardware for proper unicast, multicast,
2899  *  promiscuous mode, and all-multi behavior.
2900  */
2901 static void
2902 al_eth_set_rx_mode(struct al_eth_adapter *adapter)
2903 {
2904 	if_t ifp = adapter->netdev;
2905 	int mc, uc;
2906 	uint8_t i;
2907 
2908 	/* XXXGL: why generic count won't work? */
2909 	mc = if_foreach_llmaddr(ifp, al_count_maddr, NULL);
2910 	uc = if_lladdr_count(ifp);
2911 
2912 	if ((if_getflags(ifp) & IFF_PROMISC) != 0) {
2913 		al_eth_mac_table_promiscuous_set(adapter, true);
2914 	} else {
2915 		if ((if_getflags(ifp) & IFF_ALLMULTI) != 0) {
2916 			/* This interface is in all-multicasts mode (used by multicast routers). */
2917 			al_eth_mac_table_all_multicast_add(adapter,
2918 			    AL_ETH_MAC_TABLE_ALL_MULTICAST_IDX, 1);
2919 		} else {
2920 			if (mc == 0) {
2921 				al_eth_mac_table_entry_clear(adapter,
2922 				    AL_ETH_MAC_TABLE_ALL_MULTICAST_IDX);
2923 			} else {
2924 				al_eth_mac_table_all_multicast_add(adapter,
2925 				    AL_ETH_MAC_TABLE_ALL_MULTICAST_IDX, 1);
2926 			}
2927 		}
2928 		if (uc != 0) {
2929 			i = AL_ETH_MAC_TABLE_UNICAST_IDX_BASE + 1;
2930 			if (uc > AL_ETH_MAC_TABLE_UNICAST_MAX_COUNT) {
2931 				/*
2932 				 * In this case there are more addresses then
2933 				 * entries in the mac table - set promiscuous
2934 				 */
2935 				al_eth_mac_table_promiscuous_set(adapter, true);
2936 				return;
2937 			}
2938 
2939 			/* clear the last configuration */
2940 			while (i < (AL_ETH_MAC_TABLE_UNICAST_IDX_BASE +
2941 				    AL_ETH_MAC_TABLE_UNICAST_MAX_COUNT)) {
2942 				al_eth_mac_table_entry_clear(adapter, i);
2943 				i++;
2944 			}
2945 
2946 			/* set new addresses */
2947 			if_foreach_lladdr(ifp, al_program_addr, adapter);
2948 		}
2949 		al_eth_mac_table_promiscuous_set(adapter, false);
2950 	}
2951 }
2952 
2953 static void
2954 al_eth_config_rx_fwd(struct al_eth_adapter *adapter)
2955 {
2956 	struct al_eth_fwd_ctrl_table_entry entry;
2957 	int i;
2958 
2959 	/* let priority be equal to pbits */
2960 	for (i = 0; i < AL_ETH_FWD_PBITS_TABLE_NUM; i++)
2961 		al_eth_fwd_pbits_table_set(&adapter->hal_adapter, i, i);
2962 
2963 	/* map priority to queue index, queue id = priority/2 */
2964 	for (i = 0; i < AL_ETH_FWD_PRIO_TABLE_NUM; i++)
2965 		al_eth_fwd_priority_table_set(&adapter->hal_adapter, i, i >> 1);
2966 
2967 	entry.prio_sel = AL_ETH_CTRL_TABLE_PRIO_SEL_VAL_0;
2968 	entry.queue_sel_1 = AL_ETH_CTRL_TABLE_QUEUE_SEL_1_THASH_TABLE;
2969 	entry.queue_sel_2 = AL_ETH_CTRL_TABLE_QUEUE_SEL_2_NO_PRIO;
2970 	entry.udma_sel = AL_ETH_CTRL_TABLE_UDMA_SEL_MAC_TABLE;
2971 	entry.filter = false;
2972 
2973 	al_eth_ctrl_table_def_set(&adapter->hal_adapter, AL_FALSE, &entry);
2974 
2975 	/*
2976 	 * By default set the mac table to forward all unicast packets to our
2977 	 * MAC address and all broadcast. all the rest will be dropped.
2978 	 */
2979 	al_eth_mac_table_unicast_add(adapter, AL_ETH_MAC_TABLE_UNICAST_IDX_BASE,
2980 	    1);
2981 	al_eth_mac_table_broadcast_add(adapter, AL_ETH_MAC_TABLE_BROADCAST_IDX, 1);
2982 	al_eth_mac_table_promiscuous_set(adapter, false);
2983 
2984 	/* set toeplitz hash keys */
2985 	for (i = 0; i < sizeof(adapter->toeplitz_hash_key); i++)
2986 		*((uint8_t*)adapter->toeplitz_hash_key + i) = (uint8_t)random();
2987 
2988 	for (i = 0; i < AL_ETH_RX_HASH_KEY_NUM; i++)
2989 		al_eth_hash_key_set(&adapter->hal_adapter, i,
2990 		    htonl(adapter->toeplitz_hash_key[i]));
2991 
2992 	for (i = 0; i < AL_ETH_RX_RSS_TABLE_SIZE; i++) {
2993 		adapter->rss_ind_tbl[i] = ethtool_rxfh_indir_default(i,
2994 		    AL_ETH_NUM_QUEUES);
2995 		al_eth_set_thash_table_entry(adapter, i, 0,
2996 		    adapter->rss_ind_tbl[i]);
2997 	}
2998 
2999 	al_eth_fsm_table_init(adapter);
3000 }
3001 
3002 static void
3003 al_eth_req_rx_buff_size(struct al_eth_adapter *adapter, int size)
3004 {
3005 
3006 	/*
3007 	* Determine the correct mbuf pool
3008 	* for doing jumbo frames
3009 	* Try from the smallest up to maximum supported
3010 	*/
3011 	adapter->rx_mbuf_sz = MCLBYTES;
3012 	if (size > 2048) {
3013 		if (adapter->max_rx_buff_alloc_size > 2048)
3014 			adapter->rx_mbuf_sz = MJUMPAGESIZE;
3015 		else
3016 			return;
3017 	}
3018 	if (size > 4096) {
3019 		if (adapter->max_rx_buff_alloc_size > 4096)
3020 			adapter->rx_mbuf_sz = MJUM9BYTES;
3021 		else
3022 			return;
3023 	}
3024 	if (size > 9216) {
3025 		if (adapter->max_rx_buff_alloc_size > 9216)
3026 			adapter->rx_mbuf_sz = MJUM16BYTES;
3027 		else
3028 			return;
3029 	}
3030 }
3031 
3032 static int
3033 al_eth_change_mtu(struct al_eth_adapter *adapter, int new_mtu)
3034 {
3035 	int max_frame = new_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
3036 	    ETHER_VLAN_ENCAP_LEN;
3037 
3038 	al_eth_req_rx_buff_size(adapter, new_mtu);
3039 
3040 	device_printf_dbg(adapter->dev, "set MTU to %d\n", new_mtu);
3041 	al_eth_rx_pkt_limit_config(&adapter->hal_adapter,
3042 	    AL_ETH_MIN_FRAME_LEN, max_frame);
3043 
3044 	al_eth_tso_mss_config(&adapter->hal_adapter, 0, new_mtu - 100);
3045 
3046 	return (0);
3047 }
3048 
3049 static int
3050 al_eth_check_mtu(struct al_eth_adapter *adapter, int new_mtu)
3051 {
3052 	int max_frame = new_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN;
3053 
3054 	if ((new_mtu < AL_ETH_MIN_FRAME_LEN) ||
3055 	    (max_frame > AL_ETH_MAX_FRAME_LEN)) {
3056 		return (EINVAL);
3057 	}
3058 
3059 	return (0);
3060 }
3061 
3062 static int
3063 al_eth_udma_queue_enable(struct al_eth_adapter *adapter, enum al_udma_type type,
3064     int qid)
3065 {
3066 	int rc = 0;
3067 	char *name = (type == UDMA_TX) ? "Tx" : "Rx";
3068 	struct al_udma_q_params *q_params;
3069 
3070 	if (type == UDMA_TX)
3071 		q_params = &adapter->tx_ring[qid].q_params;
3072 	else
3073 		q_params = &adapter->rx_ring[qid].q_params;
3074 
3075 	rc = al_eth_queue_config(&adapter->hal_adapter, type, qid, q_params);
3076 	if (rc < 0) {
3077 		device_printf(adapter->dev, "config %s queue %u failed\n", name,
3078 		    qid);
3079 		return (rc);
3080 	}
3081 	return (rc);
3082 }
3083 
3084 static int
3085 al_eth_udma_queues_enable_all(struct al_eth_adapter *adapter)
3086 {
3087 	int i;
3088 
3089 	for (i = 0; i < adapter->num_tx_queues; i++)
3090 		al_eth_udma_queue_enable(adapter, UDMA_TX, i);
3091 
3092 	for (i = 0; i < adapter->num_rx_queues; i++)
3093 		al_eth_udma_queue_enable(adapter, UDMA_RX, i);
3094 
3095 	return (0);
3096 }
3097 
3098 static void
3099 al_eth_up_complete(struct al_eth_adapter *adapter)
3100 {
3101 
3102 	al_eth_configure_int_mode(adapter);
3103 	al_eth_config_rx_fwd(adapter);
3104 	al_eth_change_mtu(adapter, if_getmtu(adapter->netdev));
3105 	al_eth_udma_queues_enable_all(adapter);
3106 	al_eth_refill_all_rx_bufs(adapter);
3107 	al_eth_interrupts_unmask(adapter);
3108 
3109 	/* enable forwarding interrupts from eth through pci end point */
3110 	if ((adapter->board_type == ALPINE_FPGA_NIC) ||
3111 	    (adapter->board_type == ALPINE_NIC)) {
3112 		al_eth_forward_int_config((uint32_t*)adapter->internal_pcie_base +
3113 		    AL_REG_OFFSET_FORWARD_INTR, AL_EN_FORWARD_INTR);
3114 	}
3115 
3116 	al_eth_flow_ctrl_enable(adapter);
3117 
3118 	mtx_lock(&adapter->stats_mtx);
3119 	callout_reset(&adapter->stats_callout, hz, al_tick_stats, (void*)adapter);
3120 	mtx_unlock(&adapter->stats_mtx);
3121 
3122 	al_eth_mac_start(&adapter->hal_adapter);
3123 }
3124 
3125 static int
3126 al_media_update(if_t ifp)
3127 {
3128 	struct al_eth_adapter *adapter = if_getsoftc(ifp);
3129 
3130 	if ((if_getflags(ifp) & IFF_UP) != 0)
3131 		mii_mediachg(adapter->mii);
3132 
3133 	return (0);
3134 }
3135 
3136 static void
3137 al_media_status(if_t ifp, struct ifmediareq *ifmr)
3138 {
3139 	struct al_eth_adapter *sc = if_getsoftc(ifp);
3140 	struct mii_data *mii;
3141 
3142 	if (sc->mii == NULL) {
3143 		ifmr->ifm_active = IFM_ETHER | IFM_NONE;
3144 		ifmr->ifm_status = 0;
3145 
3146 		return;
3147 	}
3148 
3149 	mii = sc->mii;
3150 	mii_pollstat(mii);
3151 
3152 	ifmr->ifm_active = mii->mii_media_active;
3153 	ifmr->ifm_status = mii->mii_media_status;
3154 }
3155 
3156 static void
3157 al_tick(void *arg)
3158 {
3159 	struct al_eth_adapter *adapter = arg;
3160 
3161 	mii_tick(adapter->mii);
3162 
3163 	/* Schedule another timeout one second from now */
3164 	callout_schedule(&adapter->wd_callout, hz);
3165 }
3166 
3167 static void
3168 al_tick_stats(void *arg)
3169 {
3170 	struct al_eth_adapter *adapter = arg;
3171 
3172 	al_eth_update_stats(adapter);
3173 
3174 	callout_schedule(&adapter->stats_callout, hz);
3175 }
3176 
3177 static int
3178 al_eth_up(struct al_eth_adapter *adapter)
3179 {
3180 	if_t ifp = adapter->netdev;
3181 	int rc;
3182 
3183 	if (adapter->up)
3184 		return (0);
3185 
3186 	if ((adapter->flags & AL_ETH_FLAG_RESET_REQUESTED) != 0) {
3187 		al_eth_function_reset(adapter);
3188 		adapter->flags &= ~AL_ETH_FLAG_RESET_REQUESTED;
3189 	}
3190 
3191 	if_sethwassist(ifp, 0);
3192 	if ((if_getcapenable(ifp) & IFCAP_TSO) != 0)
3193 		if_sethwassistbits(ifp, CSUM_TSO, 0);
3194 	if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
3195 		if_sethwassistbits(ifp, (CSUM_TCP | CSUM_UDP), 0);
3196 	if ((if_getcapenable(ifp) & IFCAP_TXCSUM_IPV6) != 0)
3197 		if_sethwassistbits(ifp, (CSUM_TCP_IPV6 | CSUM_UDP_IPV6), 0);
3198 
3199 	al_eth_serdes_init(adapter);
3200 
3201 	rc = al_eth_hw_init(adapter);
3202 	if (rc != 0)
3203 		goto err_hw_init_open;
3204 
3205 	rc = al_eth_setup_int_mode(adapter);
3206 	if (rc != 0) {
3207 		device_printf(adapter->dev,
3208 		    "%s failed at setup interrupt mode!\n", __func__);
3209 		goto err_setup_int;
3210 	}
3211 
3212 	/* allocate transmit descriptors */
3213 	rc = al_eth_setup_all_tx_resources(adapter);
3214 	if (rc != 0)
3215 		goto err_setup_tx;
3216 
3217 	/* allocate receive descriptors */
3218 	rc = al_eth_setup_all_rx_resources(adapter);
3219 	if (rc != 0)
3220 		goto err_setup_rx;
3221 
3222 	rc = al_eth_request_irq(adapter);
3223 	if (rc != 0)
3224 		goto err_req_irq;
3225 
3226 	al_eth_up_complete(adapter);
3227 
3228 	adapter->up = true;
3229 
3230 	if (adapter->mac_mode == AL_ETH_MAC_MODE_10GbE_Serial)
3231 		if_link_state_change(adapter->netdev, LINK_STATE_UP);
3232 
3233 	if (adapter->mac_mode == AL_ETH_MAC_MODE_RGMII) {
3234 		mii_mediachg(adapter->mii);
3235 
3236 		/* Schedule watchdog timeout */
3237 		mtx_lock(&adapter->wd_mtx);
3238 		callout_reset(&adapter->wd_callout, hz, al_tick, adapter);
3239 		mtx_unlock(&adapter->wd_mtx);
3240 
3241 		mii_pollstat(adapter->mii);
3242 	}
3243 
3244 	return (rc);
3245 
3246 err_req_irq:
3247 	al_eth_free_all_rx_resources(adapter);
3248 err_setup_rx:
3249 	al_eth_free_all_tx_resources(adapter);
3250 err_setup_tx:
3251 	al_eth_free_irq(adapter);
3252 err_setup_int:
3253 	al_eth_hw_stop(adapter);
3254 err_hw_init_open:
3255 	al_eth_function_reset(adapter);
3256 
3257 	return (rc);
3258 }
3259 
3260 static int
3261 al_shutdown(device_t dev)
3262 {
3263 	struct al_eth_adapter *adapter = device_get_softc(dev);
3264 
3265 	al_eth_down(adapter);
3266 
3267 	return (0);
3268 }
3269 
3270 static void
3271 al_eth_down(struct al_eth_adapter *adapter)
3272 {
3273 
3274 	device_printf_dbg(adapter->dev, "al_eth_down: begin\n");
3275 
3276 	adapter->up = false;
3277 
3278 	mtx_lock(&adapter->wd_mtx);
3279 	callout_stop(&adapter->wd_callout);
3280 	mtx_unlock(&adapter->wd_mtx);
3281 
3282 	al_eth_disable_int_sync(adapter);
3283 
3284 	mtx_lock(&adapter->stats_mtx);
3285 	callout_stop(&adapter->stats_callout);
3286 	mtx_unlock(&adapter->stats_mtx);
3287 
3288 	al_eth_free_irq(adapter);
3289 	al_eth_hw_stop(adapter);
3290 
3291 	al_eth_free_all_tx_resources(adapter);
3292 	al_eth_free_all_rx_resources(adapter);
3293 }
3294 
3295 static int
3296 al_ioctl(if_t ifp, u_long command, caddr_t data)
3297 {
3298 	struct al_eth_adapter	*adapter = if_getsoftc(ifp);
3299 	struct ifreq		*ifr = (struct ifreq *)data;
3300 	int			error = 0;
3301 
3302 	switch (command) {
3303 	case SIOCSIFMTU:
3304 	{
3305 		error = al_eth_check_mtu(adapter, ifr->ifr_mtu);
3306 		if (error != 0) {
3307 			device_printf(adapter->dev, "ioctl wrong mtu %u\n",
3308 			    if_getmtu(adapter->netdev));
3309 			break;
3310 		}
3311 
3312 		if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
3313 		if_setmtu(adapter->netdev, ifr->ifr_mtu);
3314 		al_init(adapter);
3315 		break;
3316 	}
3317 	case SIOCSIFFLAGS:
3318 		if ((if_getflags(ifp) & IFF_UP) != 0) {
3319 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
3320 				if (((if_getflags(ifp) ^ adapter->if_flags) &
3321 				    (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3322 					device_printf_dbg(adapter->dev,
3323 					    "ioctl promisc/allmulti\n");
3324 					al_eth_set_rx_mode(adapter);
3325 				}
3326 			} else {
3327 				error = al_eth_up(adapter);
3328 				if (error == 0)
3329 					if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
3330 			}
3331 		} else {
3332 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
3333 				al_eth_down(adapter);
3334 				if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
3335 			}
3336 		}
3337 
3338 		adapter->if_flags = if_getflags(ifp);
3339 		break;
3340 
3341 	case SIOCADDMULTI:
3342 	case SIOCDELMULTI:
3343 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
3344 			device_printf_dbg(adapter->dev,
3345 			    "ioctl add/del multi before\n");
3346 			al_eth_set_rx_mode(adapter);
3347 #ifdef DEVICE_POLLING
3348 			if ((if_getcapenable(ifp) & IFCAP_POLLING) == 0)
3349 #endif
3350 		}
3351 		break;
3352 	case SIOCSIFMEDIA:
3353 	case SIOCGIFMEDIA:
3354 		if (adapter->mii != NULL)
3355 			error = ifmedia_ioctl(ifp, ifr,
3356 			    &adapter->mii->mii_media, command);
3357 		else
3358 			error = ifmedia_ioctl(ifp, ifr,
3359 			    &adapter->media, command);
3360 		break;
3361 	case SIOCSIFCAP:
3362 	    {
3363 		int mask, reinit;
3364 
3365 		reinit = 0;
3366 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
3367 #ifdef DEVICE_POLLING
3368 		if ((mask & IFCAP_POLLING) != 0) {
3369 			if ((ifr->ifr_reqcap & IFCAP_POLLING) != 0) {
3370 				if (error != 0)
3371 					return (error);
3372 				if_setcapenablebit(ifp, IFCAP_POLLING, 0);
3373 			} else {
3374 				error = ether_poll_deregister(ifp);
3375 				/* Enable interrupt even in error case */
3376 				if_setcapenablebit(ifp, 0, IFCAP_POLLING);
3377 			}
3378 		}
3379 #endif
3380 		if ((mask & IFCAP_HWCSUM) != 0) {
3381 			/* apply to both rx and tx */
3382 			if_togglecapenable(ifp, IFCAP_HWCSUM);
3383 			reinit = 1;
3384 		}
3385 		if ((mask & IFCAP_HWCSUM_IPV6) != 0) {
3386 			if_togglecapenable(ifp, IFCAP_HWCSUM_IPV6);
3387 			reinit = 1;
3388 		}
3389 		if ((mask & IFCAP_TSO) != 0) {
3390 			if_togglecapenable(ifp, IFCAP_TSO);
3391 			reinit = 1;
3392 		}
3393 		if ((mask & IFCAP_LRO) != 0) {
3394 			if_togglecapenable(ifp, IFCAP_LRO);
3395 		}
3396 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0) {
3397 			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
3398 			reinit = 1;
3399 		}
3400 		if ((mask & IFCAP_VLAN_HWFILTER) != 0) {
3401 			if_togglecapenable(ifp, IFCAP_VLAN_HWFILTER);
3402 			reinit = 1;
3403 		}
3404 		if ((mask & IFCAP_VLAN_HWTSO) != 0) {
3405 			if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
3406 			reinit = 1;
3407 		}
3408 		if ((reinit != 0) &&
3409 		    ((if_getdrvflags(ifp) & IFF_DRV_RUNNING)) != 0)
3410 		{
3411 			al_init(adapter);
3412 		}
3413 		break;
3414 	    }
3415 
3416 	default:
3417 		error = ether_ioctl(ifp, command, data);
3418 		break;
3419 	}
3420 
3421 	return (error);
3422 }
3423 
3424 static int
3425 al_is_device_supported(device_t dev)
3426 {
3427 	uint16_t pci_vendor_id = pci_get_vendor(dev);
3428 	uint16_t pci_device_id = pci_get_device(dev);
3429 
3430 	return (pci_vendor_id == PCI_VENDOR_ID_ANNAPURNA_LABS &&
3431 	    (pci_device_id == PCI_DEVICE_ID_AL_ETH ||
3432 	    pci_device_id == PCI_DEVICE_ID_AL_ETH_ADVANCED ||
3433 	    pci_device_id == PCI_DEVICE_ID_AL_ETH_NIC ||
3434 	    pci_device_id == PCI_DEVICE_ID_AL_ETH_FPGA_NIC));
3435 }
3436 
3437 /* Time in mSec to keep trying to read / write from MDIO in case of error */
3438 #define	MDIO_TIMEOUT_MSEC	100
3439 #define	MDIO_PAUSE_MSEC		10
3440 
3441 static int
3442 al_miibus_readreg(device_t dev, int phy, int reg)
3443 {
3444 	struct al_eth_adapter *adapter = device_get_softc(dev);
3445 	uint16_t value = 0;
3446 	int rc;
3447 	int timeout = MDIO_TIMEOUT_MSEC;
3448 
3449 	while (timeout > 0) {
3450 		rc = al_eth_mdio_read(&adapter->hal_adapter, adapter->phy_addr,
3451 		    -1, reg, &value);
3452 
3453 		if (rc == 0)
3454 			return (value);
3455 
3456 		device_printf_dbg(adapter->dev,
3457 		    "mdio read failed. try again in 10 msec\n");
3458 
3459 		timeout -= MDIO_PAUSE_MSEC;
3460 		pause("readred pause", MDIO_PAUSE_MSEC);
3461 	}
3462 
3463 	if (rc != 0)
3464 		device_printf(adapter->dev, "MDIO read failed on timeout\n");
3465 
3466 	return (value);
3467 }
3468 
3469 static int
3470 al_miibus_writereg(device_t dev, int phy, int reg, int value)
3471 {
3472 	struct al_eth_adapter *adapter = device_get_softc(dev);
3473 	int rc;
3474 	int timeout = MDIO_TIMEOUT_MSEC;
3475 
3476 	while (timeout > 0) {
3477 		rc = al_eth_mdio_write(&adapter->hal_adapter, adapter->phy_addr,
3478 		    -1, reg, value);
3479 
3480 		if (rc == 0)
3481 			return (0);
3482 
3483 		device_printf(adapter->dev,
3484 		    "mdio write failed. try again in 10 msec\n");
3485 
3486 		timeout -= MDIO_PAUSE_MSEC;
3487 		pause("miibus writereg", MDIO_PAUSE_MSEC);
3488 	}
3489 
3490 	if (rc != 0)
3491 		device_printf(adapter->dev, "MDIO write failed on timeout\n");
3492 
3493 	return (rc);
3494 }
3495 
3496 static void
3497 al_miibus_statchg(device_t dev)
3498 {
3499 	struct al_eth_adapter *adapter = device_get_softc(dev);
3500 
3501 	device_printf_dbg(adapter->dev,
3502 	    "al_miibus_statchg: state has changed!\n");
3503 	device_printf_dbg(adapter->dev,
3504 	    "al_miibus_statchg: active = 0x%x status = 0x%x\n",
3505 	    adapter->mii->mii_media_active, adapter->mii->mii_media_status);
3506 
3507 	if (adapter->up == 0)
3508 		return;
3509 
3510 	if ((adapter->mii->mii_media_status & IFM_AVALID) != 0) {
3511 		if (adapter->mii->mii_media_status & IFM_ACTIVE) {
3512 			device_printf(adapter->dev, "link is UP\n");
3513 			if_link_state_change(adapter->netdev, LINK_STATE_UP);
3514 		} else {
3515 			device_printf(adapter->dev, "link is DOWN\n");
3516 			if_link_state_change(adapter->netdev, LINK_STATE_DOWN);
3517 		}
3518 	}
3519 }
3520 
3521 static void
3522 al_miibus_linkchg(device_t dev)
3523 {
3524 	struct al_eth_adapter *adapter = device_get_softc(dev);
3525 	uint8_t duplex = 0;
3526 	uint8_t speed = 0;
3527 
3528 	if (adapter->mii == NULL)
3529 		return;
3530 
3531 	if ((if_getflags(adapter->netdev) & IFF_UP) == 0)
3532 		return;
3533 
3534 	/* Ignore link changes when link is not ready */
3535 	if ((adapter->mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) !=
3536 	    (IFM_AVALID | IFM_ACTIVE)) {
3537 		return;
3538 	}
3539 
3540 	if ((adapter->mii->mii_media_active & IFM_FDX) != 0)
3541 		duplex = 1;
3542 
3543 	speed = IFM_SUBTYPE(adapter->mii->mii_media_active);
3544 
3545 	if (speed == IFM_10_T) {
3546 		al_eth_mac_link_config(&adapter->hal_adapter, 0, 1,
3547 		    AL_10BASE_T_SPEED, duplex);
3548 		return;
3549 	}
3550 
3551 	if (speed == IFM_100_TX) {
3552 		al_eth_mac_link_config(&adapter->hal_adapter, 0, 1,
3553 		    AL_100BASE_TX_SPEED, duplex);
3554 		return;
3555 	}
3556 
3557 	if (speed == IFM_1000_T) {
3558 		al_eth_mac_link_config(&adapter->hal_adapter, 0, 1,
3559 		    AL_1000BASE_T_SPEED, duplex);
3560 		return;
3561 	}
3562 
3563 	device_printf(adapter->dev, "ERROR: unknown MII media active 0x%08x\n",
3564 	    adapter->mii->mii_media_active);
3565 }
3566