xref: /freebsd/sys/dev/ale/if_ale.c (revision 224e0c2f)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /* Driver for Atheros AR8121/AR8113/AR8114 PCIe Ethernet. */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/bus.h>
38 #include <sys/endian.h>
39 #include <sys/kernel.h>
40 #include <sys/malloc.h>
41 #include <sys/mbuf.h>
42 #include <sys/module.h>
43 #include <sys/rman.h>
44 #include <sys/queue.h>
45 #include <sys/socket.h>
46 #include <sys/sockio.h>
47 #include <sys/sysctl.h>
48 #include <sys/taskqueue.h>
49 
50 #include <net/bpf.h>
51 #include <net/if.h>
52 #include <net/if_var.h>
53 #include <net/if_arp.h>
54 #include <net/ethernet.h>
55 #include <net/if_dl.h>
56 #include <net/if_llc.h>
57 #include <net/if_media.h>
58 #include <net/if_types.h>
59 #include <net/if_vlan_var.h>
60 
61 #include <netinet/in.h>
62 #include <netinet/in_systm.h>
63 #include <netinet/ip.h>
64 #include <netinet/tcp.h>
65 
66 #include <dev/mii/mii.h>
67 #include <dev/mii/miivar.h>
68 
69 #include <dev/pci/pcireg.h>
70 #include <dev/pci/pcivar.h>
71 
72 #include <machine/bus.h>
73 #include <machine/in_cksum.h>
74 
75 #include <dev/ale/if_alereg.h>
76 #include <dev/ale/if_alevar.h>
77 
78 /* "device miibus" required.  See GENERIC if you get errors here. */
79 #include "miibus_if.h"
80 
81 /* For more information about Tx checksum offload issues see ale_encap(). */
82 #define	ALE_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
83 
84 MODULE_DEPEND(ale, pci, 1, 1, 1);
85 MODULE_DEPEND(ale, ether, 1, 1, 1);
86 MODULE_DEPEND(ale, miibus, 1, 1, 1);
87 
88 /* Tunables. */
89 static int msi_disable = 0;
90 static int msix_disable = 0;
91 TUNABLE_INT("hw.ale.msi_disable", &msi_disable);
92 TUNABLE_INT("hw.ale.msix_disable", &msix_disable);
93 
94 /*
95  * Devices supported by this driver.
96  */
97 static const struct ale_dev {
98 	uint16_t	ale_vendorid;
99 	uint16_t	ale_deviceid;
100 	const char	*ale_name;
101 } ale_devs[] = {
102     { VENDORID_ATHEROS, DEVICEID_ATHEROS_AR81XX,
103     "Atheros AR8121/AR8113/AR8114 PCIe Ethernet" },
104 };
105 
106 static int	ale_attach(device_t);
107 static int	ale_check_boundary(struct ale_softc *);
108 static int	ale_detach(device_t);
109 static int	ale_dma_alloc(struct ale_softc *);
110 static void	ale_dma_free(struct ale_softc *);
111 static void	ale_dmamap_cb(void *, bus_dma_segment_t *, int, int);
112 static int	ale_encap(struct ale_softc *, struct mbuf **);
113 static void	ale_get_macaddr(struct ale_softc *);
114 static void	ale_init(void *);
115 static void	ale_init_locked(struct ale_softc *);
116 static void	ale_init_rx_pages(struct ale_softc *);
117 static void	ale_init_tx_ring(struct ale_softc *);
118 static void	ale_int_task(void *, int);
119 static int	ale_intr(void *);
120 static int	ale_ioctl(struct ifnet *, u_long, caddr_t);
121 static void	ale_mac_config(struct ale_softc *);
122 static int	ale_miibus_readreg(device_t, int, int);
123 static void	ale_miibus_statchg(device_t);
124 static int	ale_miibus_writereg(device_t, int, int, int);
125 static int	ale_mediachange(struct ifnet *);
126 static void	ale_mediastatus(struct ifnet *, struct ifmediareq *);
127 static void	ale_phy_reset(struct ale_softc *);
128 static int	ale_probe(device_t);
129 static void	ale_reset(struct ale_softc *);
130 static int	ale_resume(device_t);
131 static void	ale_rx_update_page(struct ale_softc *, struct ale_rx_page **,
132     uint32_t, uint32_t *);
133 static void	ale_rxcsum(struct ale_softc *, struct mbuf *, uint32_t);
134 static int	ale_rxeof(struct ale_softc *sc, int);
135 static void	ale_rxfilter(struct ale_softc *);
136 static void	ale_rxvlan(struct ale_softc *);
137 static void	ale_setlinkspeed(struct ale_softc *);
138 static void	ale_setwol(struct ale_softc *);
139 static int	ale_shutdown(device_t);
140 static void	ale_start(struct ifnet *);
141 static void	ale_start_locked(struct ifnet *);
142 static void	ale_stats_clear(struct ale_softc *);
143 static void	ale_stats_update(struct ale_softc *);
144 static void	ale_stop(struct ale_softc *);
145 static void	ale_stop_mac(struct ale_softc *);
146 static int	ale_suspend(device_t);
147 static void	ale_sysctl_node(struct ale_softc *);
148 static void	ale_tick(void *);
149 static void	ale_txeof(struct ale_softc *);
150 static void	ale_watchdog(struct ale_softc *);
151 static int	sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
152 static int	sysctl_hw_ale_proc_limit(SYSCTL_HANDLER_ARGS);
153 static int	sysctl_hw_ale_int_mod(SYSCTL_HANDLER_ARGS);
154 
155 static device_method_t ale_methods[] = {
156 	/* Device interface. */
157 	DEVMETHOD(device_probe,		ale_probe),
158 	DEVMETHOD(device_attach,	ale_attach),
159 	DEVMETHOD(device_detach,	ale_detach),
160 	DEVMETHOD(device_shutdown,	ale_shutdown),
161 	DEVMETHOD(device_suspend,	ale_suspend),
162 	DEVMETHOD(device_resume,	ale_resume),
163 
164 	/* MII interface. */
165 	DEVMETHOD(miibus_readreg,	ale_miibus_readreg),
166 	DEVMETHOD(miibus_writereg,	ale_miibus_writereg),
167 	DEVMETHOD(miibus_statchg,	ale_miibus_statchg),
168 
169 	DEVMETHOD_END
170 };
171 
172 static driver_t ale_driver = {
173 	"ale",
174 	ale_methods,
175 	sizeof(struct ale_softc)
176 };
177 
178 static devclass_t ale_devclass;
179 
180 DRIVER_MODULE(ale, pci, ale_driver, ale_devclass, NULL, NULL);
181 DRIVER_MODULE(miibus, ale, miibus_driver, miibus_devclass, NULL, NULL);
182 
183 static struct resource_spec ale_res_spec_mem[] = {
184 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
185 	{ -1,			0,		0 }
186 };
187 
188 static struct resource_spec ale_irq_spec_legacy[] = {
189 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
190 	{ -1,			0,		0 }
191 };
192 
193 static struct resource_spec ale_irq_spec_msi[] = {
194 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
195 	{ -1,			0,		0 }
196 };
197 
198 static struct resource_spec ale_irq_spec_msix[] = {
199 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
200 	{ -1,			0,		0 }
201 };
202 
203 static int
204 ale_miibus_readreg(device_t dev, int phy, int reg)
205 {
206 	struct ale_softc *sc;
207 	uint32_t v;
208 	int i;
209 
210 	sc = device_get_softc(dev);
211 
212 	CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
213 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
214 	for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
215 		DELAY(5);
216 		v = CSR_READ_4(sc, ALE_MDIO);
217 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
218 			break;
219 	}
220 
221 	if (i == 0) {
222 		device_printf(sc->ale_dev, "phy read timeout : %d\n", reg);
223 		return (0);
224 	}
225 
226 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
227 }
228 
229 static int
230 ale_miibus_writereg(device_t dev, int phy, int reg, int val)
231 {
232 	struct ale_softc *sc;
233 	uint32_t v;
234 	int i;
235 
236 	sc = device_get_softc(dev);
237 
238 	CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
239 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
240 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
241 	for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
242 		DELAY(5);
243 		v = CSR_READ_4(sc, ALE_MDIO);
244 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
245 			break;
246 	}
247 
248 	if (i == 0)
249 		device_printf(sc->ale_dev, "phy write timeout : %d\n", reg);
250 
251 	return (0);
252 }
253 
254 static void
255 ale_miibus_statchg(device_t dev)
256 {
257 	struct ale_softc *sc;
258 	struct mii_data *mii;
259 	struct ifnet *ifp;
260 	uint32_t reg;
261 
262 	sc = device_get_softc(dev);
263 	mii = device_get_softc(sc->ale_miibus);
264 	ifp = sc->ale_ifp;
265 	if (mii == NULL || ifp == NULL ||
266 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
267 		return;
268 
269 	sc->ale_flags &= ~ALE_FLAG_LINK;
270 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
271 	    (IFM_ACTIVE | IFM_AVALID)) {
272 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
273 		case IFM_10_T:
274 		case IFM_100_TX:
275 			sc->ale_flags |= ALE_FLAG_LINK;
276 			break;
277 		case IFM_1000_T:
278 			if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
279 				sc->ale_flags |= ALE_FLAG_LINK;
280 			break;
281 		default:
282 			break;
283 		}
284 	}
285 
286 	/* Stop Rx/Tx MACs. */
287 	ale_stop_mac(sc);
288 
289 	/* Program MACs with resolved speed/duplex/flow-control. */
290 	if ((sc->ale_flags & ALE_FLAG_LINK) != 0) {
291 		ale_mac_config(sc);
292 		/* Reenable Tx/Rx MACs. */
293 		reg = CSR_READ_4(sc, ALE_MAC_CFG);
294 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
295 		CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
296 	}
297 }
298 
299 static void
300 ale_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
301 {
302 	struct ale_softc *sc;
303 	struct mii_data *mii;
304 
305 	sc = ifp->if_softc;
306 	ALE_LOCK(sc);
307 	if ((ifp->if_flags & IFF_UP) == 0) {
308 		ALE_UNLOCK(sc);
309 		return;
310 	}
311 	mii = device_get_softc(sc->ale_miibus);
312 
313 	mii_pollstat(mii);
314 	ifmr->ifm_status = mii->mii_media_status;
315 	ifmr->ifm_active = mii->mii_media_active;
316 	ALE_UNLOCK(sc);
317 }
318 
319 static int
320 ale_mediachange(struct ifnet *ifp)
321 {
322 	struct ale_softc *sc;
323 	struct mii_data *mii;
324 	struct mii_softc *miisc;
325 	int error;
326 
327 	sc = ifp->if_softc;
328 	ALE_LOCK(sc);
329 	mii = device_get_softc(sc->ale_miibus);
330 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
331 		PHY_RESET(miisc);
332 	error = mii_mediachg(mii);
333 	ALE_UNLOCK(sc);
334 
335 	return (error);
336 }
337 
338 static int
339 ale_probe(device_t dev)
340 {
341 	const struct ale_dev *sp;
342 	int i;
343 	uint16_t vendor, devid;
344 
345 	vendor = pci_get_vendor(dev);
346 	devid = pci_get_device(dev);
347 	sp = ale_devs;
348 	for (i = 0; i < nitems(ale_devs); i++) {
349 		if (vendor == sp->ale_vendorid &&
350 		    devid == sp->ale_deviceid) {
351 			device_set_desc(dev, sp->ale_name);
352 			return (BUS_PROBE_DEFAULT);
353 		}
354 		sp++;
355 	}
356 
357 	return (ENXIO);
358 }
359 
360 static void
361 ale_get_macaddr(struct ale_softc *sc)
362 {
363 	uint32_t ea[2], reg;
364 	int i, vpdc;
365 
366 	reg = CSR_READ_4(sc, ALE_SPI_CTRL);
367 	if ((reg & SPI_VPD_ENB) != 0) {
368 		reg &= ~SPI_VPD_ENB;
369 		CSR_WRITE_4(sc, ALE_SPI_CTRL, reg);
370 	}
371 
372 	if (pci_find_cap(sc->ale_dev, PCIY_VPD, &vpdc) == 0) {
373 		/*
374 		 * PCI VPD capability found, let TWSI reload EEPROM.
375 		 * This will set ethernet address of controller.
376 		 */
377 		CSR_WRITE_4(sc, ALE_TWSI_CTRL, CSR_READ_4(sc, ALE_TWSI_CTRL) |
378 		    TWSI_CTRL_SW_LD_START);
379 		for (i = 100; i > 0; i--) {
380 			DELAY(1000);
381 			reg = CSR_READ_4(sc, ALE_TWSI_CTRL);
382 			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
383 				break;
384 		}
385 		if (i == 0)
386 			device_printf(sc->ale_dev,
387 			    "reloading EEPROM timeout!\n");
388 	} else {
389 		if (bootverbose)
390 			device_printf(sc->ale_dev,
391 			    "PCI VPD capability not found!\n");
392 	}
393 
394 	ea[0] = CSR_READ_4(sc, ALE_PAR0);
395 	ea[1] = CSR_READ_4(sc, ALE_PAR1);
396 	sc->ale_eaddr[0] = (ea[1] >> 8) & 0xFF;
397 	sc->ale_eaddr[1] = (ea[1] >> 0) & 0xFF;
398 	sc->ale_eaddr[2] = (ea[0] >> 24) & 0xFF;
399 	sc->ale_eaddr[3] = (ea[0] >> 16) & 0xFF;
400 	sc->ale_eaddr[4] = (ea[0] >> 8) & 0xFF;
401 	sc->ale_eaddr[5] = (ea[0] >> 0) & 0xFF;
402 }
403 
404 static void
405 ale_phy_reset(struct ale_softc *sc)
406 {
407 
408 	/* Reset magic from Linux. */
409 	CSR_WRITE_2(sc, ALE_GPHY_CTRL,
410 	    GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
411 	    GPHY_CTRL_PHY_PLL_ON);
412 	DELAY(1000);
413 	CSR_WRITE_2(sc, ALE_GPHY_CTRL,
414 	    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE |
415 	    GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_PLL_ON);
416 	DELAY(1000);
417 
418 #define	ATPHY_DBG_ADDR		0x1D
419 #define	ATPHY_DBG_DATA		0x1E
420 
421 	/* Enable hibernation mode. */
422 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
423 	    ATPHY_DBG_ADDR, 0x0B);
424 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
425 	    ATPHY_DBG_DATA, 0xBC00);
426 	/* Set Class A/B for all modes. */
427 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
428 	    ATPHY_DBG_ADDR, 0x00);
429 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
430 	    ATPHY_DBG_DATA, 0x02EF);
431 	/* Enable 10BT power saving. */
432 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
433 	    ATPHY_DBG_ADDR, 0x12);
434 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
435 	    ATPHY_DBG_DATA, 0x4C04);
436 	/* Adjust 1000T power. */
437 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
438 	    ATPHY_DBG_ADDR, 0x04);
439 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
440 	    ATPHY_DBG_ADDR, 0x8BBB);
441 	/* 10BT center tap voltage. */
442 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
443 	    ATPHY_DBG_ADDR, 0x05);
444 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
445 	    ATPHY_DBG_ADDR, 0x2C46);
446 
447 #undef	ATPHY_DBG_ADDR
448 #undef	ATPHY_DBG_DATA
449 	DELAY(1000);
450 }
451 
452 static int
453 ale_attach(device_t dev)
454 {
455 	struct ale_softc *sc;
456 	struct ifnet *ifp;
457 	uint16_t burst;
458 	int error, i, msic, msixc, pmc;
459 	uint32_t rxf_len, txf_len;
460 
461 	error = 0;
462 	sc = device_get_softc(dev);
463 	sc->ale_dev = dev;
464 
465 	mtx_init(&sc->ale_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
466 	    MTX_DEF);
467 	callout_init_mtx(&sc->ale_tick_ch, &sc->ale_mtx, 0);
468 	TASK_INIT(&sc->ale_int_task, 0, ale_int_task, sc);
469 
470 	/* Map the device. */
471 	pci_enable_busmaster(dev);
472 	sc->ale_res_spec = ale_res_spec_mem;
473 	sc->ale_irq_spec = ale_irq_spec_legacy;
474 	error = bus_alloc_resources(dev, sc->ale_res_spec, sc->ale_res);
475 	if (error != 0) {
476 		device_printf(dev, "cannot allocate memory resources.\n");
477 		goto fail;
478 	}
479 
480 	/* Set PHY address. */
481 	sc->ale_phyaddr = ALE_PHY_ADDR;
482 
483 	/* Reset PHY. */
484 	ale_phy_reset(sc);
485 
486 	/* Reset the ethernet controller. */
487 	ale_reset(sc);
488 
489 	/* Get PCI and chip id/revision. */
490 	sc->ale_rev = pci_get_revid(dev);
491 	if (sc->ale_rev >= 0xF0) {
492 		/* L2E Rev. B. AR8114 */
493 		sc->ale_flags |= ALE_FLAG_FASTETHER;
494 	} else {
495 		if ((CSR_READ_4(sc, ALE_PHY_STATUS) & PHY_STATUS_100M) != 0) {
496 			/* L1E AR8121 */
497 			sc->ale_flags |= ALE_FLAG_JUMBO;
498 		} else {
499 			/* L2E Rev. A. AR8113 */
500 			sc->ale_flags |= ALE_FLAG_FASTETHER;
501 		}
502 	}
503 	/*
504 	 * All known controllers seems to require 4 bytes alignment
505 	 * of Tx buffers to make Tx checksum offload with custom
506 	 * checksum generation method work.
507 	 */
508 	sc->ale_flags |= ALE_FLAG_TXCSUM_BUG;
509 	/*
510 	 * All known controllers seems to have issues on Rx checksum
511 	 * offload for fragmented IP datagrams.
512 	 */
513 	sc->ale_flags |= ALE_FLAG_RXCSUM_BUG;
514 	/*
515 	 * Don't use Tx CMB. It is known to cause RRS update failure
516 	 * under certain circumstances. Typical phenomenon of the
517 	 * issue would be unexpected sequence number encountered in
518 	 * Rx handler.
519 	 */
520 	sc->ale_flags |= ALE_FLAG_TXCMB_BUG;
521 	sc->ale_chip_rev = CSR_READ_4(sc, ALE_MASTER_CFG) >>
522 	    MASTER_CHIP_REV_SHIFT;
523 	if (bootverbose) {
524 		device_printf(dev, "PCI device revision : 0x%04x\n",
525 		    sc->ale_rev);
526 		device_printf(dev, "Chip id/revision : 0x%04x\n",
527 		    sc->ale_chip_rev);
528 	}
529 	txf_len = CSR_READ_4(sc, ALE_SRAM_TX_FIFO_LEN);
530 	rxf_len = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
531 	/*
532 	 * Uninitialized hardware returns an invalid chip id/revision
533 	 * as well as 0xFFFFFFFF for Tx/Rx fifo length.
534 	 */
535 	if (sc->ale_chip_rev == 0xFFFF || txf_len == 0xFFFFFFFF ||
536 	    rxf_len == 0xFFFFFFF) {
537 		device_printf(dev,"chip revision : 0x%04x, %u Tx FIFO "
538 		    "%u Rx FIFO -- not initialized?\n", sc->ale_chip_rev,
539 		    txf_len, rxf_len);
540 		error = ENXIO;
541 		goto fail;
542 	}
543 	device_printf(dev, "%u Tx FIFO, %u Rx FIFO\n", txf_len, rxf_len);
544 
545 	/* Allocate IRQ resources. */
546 	msixc = pci_msix_count(dev);
547 	msic = pci_msi_count(dev);
548 	if (bootverbose) {
549 		device_printf(dev, "MSIX count : %d\n", msixc);
550 		device_printf(dev, "MSI count : %d\n", msic);
551 	}
552 
553 	/* Prefer MSIX over MSI. */
554 	if (msix_disable == 0 || msi_disable == 0) {
555 		if (msix_disable == 0 && msixc == ALE_MSIX_MESSAGES &&
556 		    pci_alloc_msix(dev, &msixc) == 0) {
557 			if (msixc == ALE_MSIX_MESSAGES) {
558 				device_printf(dev, "Using %d MSIX messages.\n",
559 				    msixc);
560 				sc->ale_flags |= ALE_FLAG_MSIX;
561 				sc->ale_irq_spec = ale_irq_spec_msix;
562 			} else
563 				pci_release_msi(dev);
564 		}
565 		if (msi_disable == 0 && (sc->ale_flags & ALE_FLAG_MSIX) == 0 &&
566 		    msic == ALE_MSI_MESSAGES &&
567 		    pci_alloc_msi(dev, &msic) == 0) {
568 			if (msic == ALE_MSI_MESSAGES) {
569 				device_printf(dev, "Using %d MSI messages.\n",
570 				    msic);
571 				sc->ale_flags |= ALE_FLAG_MSI;
572 				sc->ale_irq_spec = ale_irq_spec_msi;
573 			} else
574 				pci_release_msi(dev);
575 		}
576 	}
577 
578 	error = bus_alloc_resources(dev, sc->ale_irq_spec, sc->ale_irq);
579 	if (error != 0) {
580 		device_printf(dev, "cannot allocate IRQ resources.\n");
581 		goto fail;
582 	}
583 
584 	/* Get DMA parameters from PCIe device control register. */
585 	if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
586 		sc->ale_flags |= ALE_FLAG_PCIE;
587 		burst = pci_read_config(dev, i + 0x08, 2);
588 		/* Max read request size. */
589 		sc->ale_dma_rd_burst = ((burst >> 12) & 0x07) <<
590 		    DMA_CFG_RD_BURST_SHIFT;
591 		/* Max payload size. */
592 		sc->ale_dma_wr_burst = ((burst >> 5) & 0x07) <<
593 		    DMA_CFG_WR_BURST_SHIFT;
594 		if (bootverbose) {
595 			device_printf(dev, "Read request size : %d bytes.\n",
596 			    128 << ((burst >> 12) & 0x07));
597 			device_printf(dev, "TLP payload size : %d bytes.\n",
598 			    128 << ((burst >> 5) & 0x07));
599 		}
600 	} else {
601 		sc->ale_dma_rd_burst = DMA_CFG_RD_BURST_128;
602 		sc->ale_dma_wr_burst = DMA_CFG_WR_BURST_128;
603 	}
604 
605 	/* Create device sysctl node. */
606 	ale_sysctl_node(sc);
607 
608 	if ((error = ale_dma_alloc(sc)) != 0)
609 		goto fail;
610 
611 	/* Load station address. */
612 	ale_get_macaddr(sc);
613 
614 	ifp = sc->ale_ifp = if_alloc(IFT_ETHER);
615 	if (ifp == NULL) {
616 		device_printf(dev, "cannot allocate ifnet structure.\n");
617 		error = ENXIO;
618 		goto fail;
619 	}
620 
621 	ifp->if_softc = sc;
622 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
623 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
624 	ifp->if_ioctl = ale_ioctl;
625 	ifp->if_start = ale_start;
626 	ifp->if_init = ale_init;
627 	ifp->if_snd.ifq_drv_maxlen = ALE_TX_RING_CNT - 1;
628 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
629 	IFQ_SET_READY(&ifp->if_snd);
630 	ifp->if_capabilities = IFCAP_RXCSUM | IFCAP_TXCSUM | IFCAP_TSO4;
631 	ifp->if_hwassist = ALE_CSUM_FEATURES | CSUM_TSO;
632 	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) {
633 		sc->ale_flags |= ALE_FLAG_PMCAP;
634 		ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
635 	}
636 	ifp->if_capenable = ifp->if_capabilities;
637 
638 	/* Set up MII bus. */
639 	error = mii_attach(dev, &sc->ale_miibus, ifp, ale_mediachange,
640 	    ale_mediastatus, BMSR_DEFCAPMASK, sc->ale_phyaddr, MII_OFFSET_ANY,
641 	    MIIF_DOPAUSE);
642 	if (error != 0) {
643 		device_printf(dev, "attaching PHYs failed\n");
644 		goto fail;
645 	}
646 
647 	ether_ifattach(ifp, sc->ale_eaddr);
648 
649 	/* VLAN capability setup. */
650 	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
651 	    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
652 	ifp->if_capenable = ifp->if_capabilities;
653 	/*
654 	 * Even though controllers supported by ale(3) have Rx checksum
655 	 * offload bug the workaround for fragmented frames seemed to
656 	 * work so far. However it seems Rx checksum offload does not
657 	 * work under certain conditions. So disable Rx checksum offload
658 	 * until I find more clue about it but allow users to override it.
659 	 */
660 	ifp->if_capenable &= ~IFCAP_RXCSUM;
661 
662 	/* Tell the upper layer(s) we support long frames. */
663 	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
664 
665 	/* Create local taskq. */
666 	sc->ale_tq = taskqueue_create_fast("ale_taskq", M_WAITOK,
667 	    taskqueue_thread_enqueue, &sc->ale_tq);
668 	if (sc->ale_tq == NULL) {
669 		device_printf(dev, "could not create taskqueue.\n");
670 		ether_ifdetach(ifp);
671 		error = ENXIO;
672 		goto fail;
673 	}
674 	taskqueue_start_threads(&sc->ale_tq, 1, PI_NET, "%s taskq",
675 	    device_get_nameunit(sc->ale_dev));
676 
677 	if ((sc->ale_flags & ALE_FLAG_MSIX) != 0)
678 		msic = ALE_MSIX_MESSAGES;
679 	else if ((sc->ale_flags & ALE_FLAG_MSI) != 0)
680 		msic = ALE_MSI_MESSAGES;
681 	else
682 		msic = 1;
683 	for (i = 0; i < msic; i++) {
684 		error = bus_setup_intr(dev, sc->ale_irq[i],
685 		    INTR_TYPE_NET | INTR_MPSAFE, ale_intr, NULL, sc,
686 		    &sc->ale_intrhand[i]);
687 		if (error != 0)
688 			break;
689 	}
690 	if (error != 0) {
691 		device_printf(dev, "could not set up interrupt handler.\n");
692 		taskqueue_free(sc->ale_tq);
693 		sc->ale_tq = NULL;
694 		ether_ifdetach(ifp);
695 		goto fail;
696 	}
697 
698 fail:
699 	if (error != 0)
700 		ale_detach(dev);
701 
702 	return (error);
703 }
704 
705 static int
706 ale_detach(device_t dev)
707 {
708 	struct ale_softc *sc;
709 	struct ifnet *ifp;
710 	int i, msic;
711 
712 	sc = device_get_softc(dev);
713 
714 	ifp = sc->ale_ifp;
715 	if (device_is_attached(dev)) {
716 		ether_ifdetach(ifp);
717 		ALE_LOCK(sc);
718 		ale_stop(sc);
719 		ALE_UNLOCK(sc);
720 		callout_drain(&sc->ale_tick_ch);
721 		taskqueue_drain(sc->ale_tq, &sc->ale_int_task);
722 	}
723 
724 	if (sc->ale_tq != NULL) {
725 		taskqueue_drain(sc->ale_tq, &sc->ale_int_task);
726 		taskqueue_free(sc->ale_tq);
727 		sc->ale_tq = NULL;
728 	}
729 
730 	if (sc->ale_miibus != NULL) {
731 		device_delete_child(dev, sc->ale_miibus);
732 		sc->ale_miibus = NULL;
733 	}
734 	bus_generic_detach(dev);
735 	ale_dma_free(sc);
736 
737 	if (ifp != NULL) {
738 		if_free(ifp);
739 		sc->ale_ifp = NULL;
740 	}
741 
742 	if ((sc->ale_flags & ALE_FLAG_MSIX) != 0)
743 		msic = ALE_MSIX_MESSAGES;
744 	else if ((sc->ale_flags & ALE_FLAG_MSI) != 0)
745 		msic = ALE_MSI_MESSAGES;
746 	else
747 		msic = 1;
748 	for (i = 0; i < msic; i++) {
749 		if (sc->ale_intrhand[i] != NULL) {
750 			bus_teardown_intr(dev, sc->ale_irq[i],
751 			    sc->ale_intrhand[i]);
752 			sc->ale_intrhand[i] = NULL;
753 		}
754 	}
755 
756 	bus_release_resources(dev, sc->ale_irq_spec, sc->ale_irq);
757 	if ((sc->ale_flags & (ALE_FLAG_MSI | ALE_FLAG_MSIX)) != 0)
758 		pci_release_msi(dev);
759 	bus_release_resources(dev, sc->ale_res_spec, sc->ale_res);
760 	mtx_destroy(&sc->ale_mtx);
761 
762 	return (0);
763 }
764 
765 #define	ALE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
766 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
767 
768 #if __FreeBSD_version >= 900030
769 #define	ALE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
770 	    SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
771 #elif __FreeBSD_version > 800000
772 #define	ALE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
773 	    SYSCTL_ADD_QUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
774 #else
775 #define	ALE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
776 	    SYSCTL_ADD_ULONG(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
777 #endif
778 
779 static void
780 ale_sysctl_node(struct ale_softc *sc)
781 {
782 	struct sysctl_ctx_list *ctx;
783 	struct sysctl_oid_list *child, *parent;
784 	struct sysctl_oid *tree;
785 	struct ale_hw_stats *stats;
786 	int error;
787 
788 	stats = &sc->ale_stats;
789 	ctx = device_get_sysctl_ctx(sc->ale_dev);
790 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ale_dev));
791 
792 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_rx_mod",
793 	    CTLTYPE_INT | CTLFLAG_RW, &sc->ale_int_rx_mod, 0,
794 	    sysctl_hw_ale_int_mod, "I", "ale Rx interrupt moderation");
795 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_tx_mod",
796 	    CTLTYPE_INT | CTLFLAG_RW, &sc->ale_int_tx_mod, 0,
797 	    sysctl_hw_ale_int_mod, "I", "ale Tx interrupt moderation");
798 	/* Pull in device tunables. */
799 	sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
800 	error = resource_int_value(device_get_name(sc->ale_dev),
801 	    device_get_unit(sc->ale_dev), "int_rx_mod", &sc->ale_int_rx_mod);
802 	if (error == 0) {
803 		if (sc->ale_int_rx_mod < ALE_IM_TIMER_MIN ||
804 		    sc->ale_int_rx_mod > ALE_IM_TIMER_MAX) {
805 			device_printf(sc->ale_dev, "int_rx_mod value out of "
806 			    "range; using default: %d\n",
807 			    ALE_IM_RX_TIMER_DEFAULT);
808 			sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
809 		}
810 	}
811 	sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
812 	error = resource_int_value(device_get_name(sc->ale_dev),
813 	    device_get_unit(sc->ale_dev), "int_tx_mod", &sc->ale_int_tx_mod);
814 	if (error == 0) {
815 		if (sc->ale_int_tx_mod < ALE_IM_TIMER_MIN ||
816 		    sc->ale_int_tx_mod > ALE_IM_TIMER_MAX) {
817 			device_printf(sc->ale_dev, "int_tx_mod value out of "
818 			    "range; using default: %d\n",
819 			    ALE_IM_TX_TIMER_DEFAULT);
820 			sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
821 		}
822 	}
823 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit",
824 	    CTLTYPE_INT | CTLFLAG_RW, &sc->ale_process_limit, 0,
825 	    sysctl_hw_ale_proc_limit, "I",
826 	    "max number of Rx events to process");
827 	/* Pull in device tunables. */
828 	sc->ale_process_limit = ALE_PROC_DEFAULT;
829 	error = resource_int_value(device_get_name(sc->ale_dev),
830 	    device_get_unit(sc->ale_dev), "process_limit",
831 	    &sc->ale_process_limit);
832 	if (error == 0) {
833 		if (sc->ale_process_limit < ALE_PROC_MIN ||
834 		    sc->ale_process_limit > ALE_PROC_MAX) {
835 			device_printf(sc->ale_dev,
836 			    "process_limit value out of range; "
837 			    "using default: %d\n", ALE_PROC_DEFAULT);
838 			sc->ale_process_limit = ALE_PROC_DEFAULT;
839 		}
840 	}
841 
842 	/* Misc statistics. */
843 	ALE_SYSCTL_STAT_ADD32(ctx, child, "reset_brk_seq",
844 	    &stats->reset_brk_seq,
845 	    "Controller resets due to broken Rx sequnce number");
846 
847 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
848 	    NULL, "ATE statistics");
849 	parent = SYSCTL_CHILDREN(tree);
850 
851 	/* Rx statistics. */
852 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
853 	    NULL, "Rx MAC statistics");
854 	child = SYSCTL_CHILDREN(tree);
855 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
856 	    &stats->rx_frames, "Good frames");
857 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
858 	    &stats->rx_bcast_frames, "Good broadcast frames");
859 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
860 	    &stats->rx_mcast_frames, "Good multicast frames");
861 	ALE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
862 	    &stats->rx_pause_frames, "Pause control frames");
863 	ALE_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
864 	    &stats->rx_control_frames, "Control frames");
865 	ALE_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
866 	    &stats->rx_crcerrs, "CRC errors");
867 	ALE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
868 	    &stats->rx_lenerrs, "Frames with length mismatched");
869 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
870 	    &stats->rx_bytes, "Good octets");
871 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
872 	    &stats->rx_bcast_bytes, "Good broadcast octets");
873 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
874 	    &stats->rx_mcast_bytes, "Good multicast octets");
875 	ALE_SYSCTL_STAT_ADD32(ctx, child, "runts",
876 	    &stats->rx_runts, "Too short frames");
877 	ALE_SYSCTL_STAT_ADD32(ctx, child, "fragments",
878 	    &stats->rx_fragments, "Fragmented frames");
879 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
880 	    &stats->rx_pkts_64, "64 bytes frames");
881 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
882 	    &stats->rx_pkts_65_127, "65 to 127 bytes frames");
883 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
884 	    &stats->rx_pkts_128_255, "128 to 255 bytes frames");
885 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
886 	    &stats->rx_pkts_256_511, "256 to 511 bytes frames");
887 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
888 	    &stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
889 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
890 	    &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
891 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
892 	    &stats->rx_pkts_1519_max, "1519 to max frames");
893 	ALE_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
894 	    &stats->rx_pkts_truncated, "Truncated frames due to MTU size");
895 	ALE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
896 	    &stats->rx_fifo_oflows, "FIFO overflows");
897 	ALE_SYSCTL_STAT_ADD32(ctx, child, "rrs_errs",
898 	    &stats->rx_rrs_errs, "Return status write-back errors");
899 	ALE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
900 	    &stats->rx_alignerrs, "Alignment errors");
901 	ALE_SYSCTL_STAT_ADD32(ctx, child, "filtered",
902 	    &stats->rx_pkts_filtered,
903 	    "Frames dropped due to address filtering");
904 
905 	/* Tx statistics. */
906 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
907 	    NULL, "Tx MAC statistics");
908 	child = SYSCTL_CHILDREN(tree);
909 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
910 	    &stats->tx_frames, "Good frames");
911 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
912 	    &stats->tx_bcast_frames, "Good broadcast frames");
913 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
914 	    &stats->tx_mcast_frames, "Good multicast frames");
915 	ALE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
916 	    &stats->tx_pause_frames, "Pause control frames");
917 	ALE_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
918 	    &stats->tx_control_frames, "Control frames");
919 	ALE_SYSCTL_STAT_ADD32(ctx, child, "excess_defers",
920 	    &stats->tx_excess_defer, "Frames with excessive derferrals");
921 	ALE_SYSCTL_STAT_ADD32(ctx, child, "defers",
922 	    &stats->tx_excess_defer, "Frames with derferrals");
923 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
924 	    &stats->tx_bytes, "Good octets");
925 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
926 	    &stats->tx_bcast_bytes, "Good broadcast octets");
927 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
928 	    &stats->tx_mcast_bytes, "Good multicast octets");
929 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
930 	    &stats->tx_pkts_64, "64 bytes frames");
931 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
932 	    &stats->tx_pkts_65_127, "65 to 127 bytes frames");
933 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
934 	    &stats->tx_pkts_128_255, "128 to 255 bytes frames");
935 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
936 	    &stats->tx_pkts_256_511, "256 to 511 bytes frames");
937 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
938 	    &stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
939 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
940 	    &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
941 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
942 	    &stats->tx_pkts_1519_max, "1519 to max frames");
943 	ALE_SYSCTL_STAT_ADD32(ctx, child, "single_colls",
944 	    &stats->tx_single_colls, "Single collisions");
945 	ALE_SYSCTL_STAT_ADD32(ctx, child, "multi_colls",
946 	    &stats->tx_multi_colls, "Multiple collisions");
947 	ALE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
948 	    &stats->tx_late_colls, "Late collisions");
949 	ALE_SYSCTL_STAT_ADD32(ctx, child, "excess_colls",
950 	    &stats->tx_excess_colls, "Excessive collisions");
951 	ALE_SYSCTL_STAT_ADD32(ctx, child, "underruns",
952 	    &stats->tx_underrun, "FIFO underruns");
953 	ALE_SYSCTL_STAT_ADD32(ctx, child, "desc_underruns",
954 	    &stats->tx_desc_underrun, "Descriptor write-back errors");
955 	ALE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
956 	    &stats->tx_lenerrs, "Frames with length mismatched");
957 	ALE_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
958 	    &stats->tx_pkts_truncated, "Truncated frames due to MTU size");
959 }
960 
961 #undef ALE_SYSCTL_STAT_ADD32
962 #undef ALE_SYSCTL_STAT_ADD64
963 
964 struct ale_dmamap_arg {
965 	bus_addr_t	ale_busaddr;
966 };
967 
968 static void
969 ale_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
970 {
971 	struct ale_dmamap_arg *ctx;
972 
973 	if (error != 0)
974 		return;
975 
976 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
977 
978 	ctx = (struct ale_dmamap_arg *)arg;
979 	ctx->ale_busaddr = segs[0].ds_addr;
980 }
981 
982 /*
983  * Tx descriptors/RXF0/CMB DMA blocks share ALE_DESC_ADDR_HI register
984  * which specifies high address region of DMA blocks. Therefore these
985  * blocks should have the same high address of given 4GB address
986  * space(i.e. crossing 4GB boundary is not allowed).
987  */
988 static int
989 ale_check_boundary(struct ale_softc *sc)
990 {
991 	bus_addr_t rx_cmb_end[ALE_RX_PAGES], tx_cmb_end;
992 	bus_addr_t rx_page_end[ALE_RX_PAGES], tx_ring_end;
993 
994 	rx_page_end[0] = sc->ale_cdata.ale_rx_page[0].page_paddr +
995 	    sc->ale_pagesize;
996 	rx_page_end[1] = sc->ale_cdata.ale_rx_page[1].page_paddr +
997 	    sc->ale_pagesize;
998 	tx_ring_end = sc->ale_cdata.ale_tx_ring_paddr + ALE_TX_RING_SZ;
999 	tx_cmb_end = sc->ale_cdata.ale_tx_cmb_paddr + ALE_TX_CMB_SZ;
1000 	rx_cmb_end[0] = sc->ale_cdata.ale_rx_page[0].cmb_paddr + ALE_RX_CMB_SZ;
1001 	rx_cmb_end[1] = sc->ale_cdata.ale_rx_page[1].cmb_paddr + ALE_RX_CMB_SZ;
1002 
1003 	if ((ALE_ADDR_HI(tx_ring_end) !=
1004 	    ALE_ADDR_HI(sc->ale_cdata.ale_tx_ring_paddr)) ||
1005 	    (ALE_ADDR_HI(rx_page_end[0]) !=
1006 	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[0].page_paddr)) ||
1007 	    (ALE_ADDR_HI(rx_page_end[1]) !=
1008 	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[1].page_paddr)) ||
1009 	    (ALE_ADDR_HI(tx_cmb_end) !=
1010 	    ALE_ADDR_HI(sc->ale_cdata.ale_tx_cmb_paddr)) ||
1011 	    (ALE_ADDR_HI(rx_cmb_end[0]) !=
1012 	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[0].cmb_paddr)) ||
1013 	    (ALE_ADDR_HI(rx_cmb_end[1]) !=
1014 	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[1].cmb_paddr)))
1015 		return (EFBIG);
1016 
1017 	if ((ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_page_end[0])) ||
1018 	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_page_end[1])) ||
1019 	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_cmb_end[0])) ||
1020 	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_cmb_end[1])) ||
1021 	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(tx_cmb_end)))
1022 		return (EFBIG);
1023 
1024 	return (0);
1025 }
1026 
1027 static int
1028 ale_dma_alloc(struct ale_softc *sc)
1029 {
1030 	struct ale_txdesc *txd;
1031 	bus_addr_t lowaddr;
1032 	struct ale_dmamap_arg ctx;
1033 	int error, guard_size, i;
1034 
1035 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
1036 		guard_size = ALE_JUMBO_FRAMELEN;
1037 	else
1038 		guard_size = ALE_MAX_FRAMELEN;
1039 	sc->ale_pagesize = roundup(guard_size + ALE_RX_PAGE_SZ,
1040 	    ALE_RX_PAGE_ALIGN);
1041 	lowaddr = BUS_SPACE_MAXADDR;
1042 again:
1043 	/* Create parent DMA tag. */
1044 	error = bus_dma_tag_create(
1045 	    bus_get_dma_tag(sc->ale_dev), /* parent */
1046 	    1, 0,			/* alignment, boundary */
1047 	    lowaddr,			/* lowaddr */
1048 	    BUS_SPACE_MAXADDR,		/* highaddr */
1049 	    NULL, NULL,			/* filter, filterarg */
1050 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1051 	    0,				/* nsegments */
1052 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1053 	    0,				/* flags */
1054 	    NULL, NULL,			/* lockfunc, lockarg */
1055 	    &sc->ale_cdata.ale_parent_tag);
1056 	if (error != 0) {
1057 		device_printf(sc->ale_dev,
1058 		    "could not create parent DMA tag.\n");
1059 		goto fail;
1060 	}
1061 
1062 	/* Create DMA tag for Tx descriptor ring. */
1063 	error = bus_dma_tag_create(
1064 	    sc->ale_cdata.ale_parent_tag, /* parent */
1065 	    ALE_TX_RING_ALIGN, 0,	/* alignment, boundary */
1066 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1067 	    BUS_SPACE_MAXADDR,		/* highaddr */
1068 	    NULL, NULL,			/* filter, filterarg */
1069 	    ALE_TX_RING_SZ,		/* maxsize */
1070 	    1,				/* nsegments */
1071 	    ALE_TX_RING_SZ,		/* maxsegsize */
1072 	    0,				/* flags */
1073 	    NULL, NULL,			/* lockfunc, lockarg */
1074 	    &sc->ale_cdata.ale_tx_ring_tag);
1075 	if (error != 0) {
1076 		device_printf(sc->ale_dev,
1077 		    "could not create Tx ring DMA tag.\n");
1078 		goto fail;
1079 	}
1080 
1081 	/* Create DMA tag for Rx pages. */
1082 	for (i = 0; i < ALE_RX_PAGES; i++) {
1083 		error = bus_dma_tag_create(
1084 		    sc->ale_cdata.ale_parent_tag, /* parent */
1085 		    ALE_RX_PAGE_ALIGN, 0,	/* alignment, boundary */
1086 		    BUS_SPACE_MAXADDR,		/* lowaddr */
1087 		    BUS_SPACE_MAXADDR,		/* highaddr */
1088 		    NULL, NULL,			/* filter, filterarg */
1089 		    sc->ale_pagesize,		/* maxsize */
1090 		    1,				/* nsegments */
1091 		    sc->ale_pagesize,		/* maxsegsize */
1092 		    0,				/* flags */
1093 		    NULL, NULL,			/* lockfunc, lockarg */
1094 		    &sc->ale_cdata.ale_rx_page[i].page_tag);
1095 		if (error != 0) {
1096 			device_printf(sc->ale_dev,
1097 			    "could not create Rx page %d DMA tag.\n", i);
1098 			goto fail;
1099 		}
1100 	}
1101 
1102 	/* Create DMA tag for Tx coalescing message block. */
1103 	error = bus_dma_tag_create(
1104 	    sc->ale_cdata.ale_parent_tag, /* parent */
1105 	    ALE_CMB_ALIGN, 0,		/* alignment, boundary */
1106 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1107 	    BUS_SPACE_MAXADDR,		/* highaddr */
1108 	    NULL, NULL,			/* filter, filterarg */
1109 	    ALE_TX_CMB_SZ,		/* maxsize */
1110 	    1,				/* nsegments */
1111 	    ALE_TX_CMB_SZ,		/* maxsegsize */
1112 	    0,				/* flags */
1113 	    NULL, NULL,			/* lockfunc, lockarg */
1114 	    &sc->ale_cdata.ale_tx_cmb_tag);
1115 	if (error != 0) {
1116 		device_printf(sc->ale_dev,
1117 		    "could not create Tx CMB DMA tag.\n");
1118 		goto fail;
1119 	}
1120 
1121 	/* Create DMA tag for Rx coalescing message block. */
1122 	for (i = 0; i < ALE_RX_PAGES; i++) {
1123 		error = bus_dma_tag_create(
1124 		    sc->ale_cdata.ale_parent_tag, /* parent */
1125 		    ALE_CMB_ALIGN, 0,		/* alignment, boundary */
1126 		    BUS_SPACE_MAXADDR,		/* lowaddr */
1127 		    BUS_SPACE_MAXADDR,		/* highaddr */
1128 		    NULL, NULL,			/* filter, filterarg */
1129 		    ALE_RX_CMB_SZ,		/* maxsize */
1130 		    1,				/* nsegments */
1131 		    ALE_RX_CMB_SZ,		/* maxsegsize */
1132 		    0,				/* flags */
1133 		    NULL, NULL,			/* lockfunc, lockarg */
1134 		    &sc->ale_cdata.ale_rx_page[i].cmb_tag);
1135 		if (error != 0) {
1136 			device_printf(sc->ale_dev,
1137 			    "could not create Rx page %d CMB DMA tag.\n", i);
1138 			goto fail;
1139 		}
1140 	}
1141 
1142 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
1143 	error = bus_dmamem_alloc(sc->ale_cdata.ale_tx_ring_tag,
1144 	    (void **)&sc->ale_cdata.ale_tx_ring,
1145 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1146 	    &sc->ale_cdata.ale_tx_ring_map);
1147 	if (error != 0) {
1148 		device_printf(sc->ale_dev,
1149 		    "could not allocate DMA'able memory for Tx ring.\n");
1150 		goto fail;
1151 	}
1152 	ctx.ale_busaddr = 0;
1153 	error = bus_dmamap_load(sc->ale_cdata.ale_tx_ring_tag,
1154 	    sc->ale_cdata.ale_tx_ring_map, sc->ale_cdata.ale_tx_ring,
1155 	    ALE_TX_RING_SZ, ale_dmamap_cb, &ctx, 0);
1156 	if (error != 0 || ctx.ale_busaddr == 0) {
1157 		device_printf(sc->ale_dev,
1158 		    "could not load DMA'able memory for Tx ring.\n");
1159 		goto fail;
1160 	}
1161 	sc->ale_cdata.ale_tx_ring_paddr = ctx.ale_busaddr;
1162 
1163 	/* Rx pages. */
1164 	for (i = 0; i < ALE_RX_PAGES; i++) {
1165 		error = bus_dmamem_alloc(sc->ale_cdata.ale_rx_page[i].page_tag,
1166 		    (void **)&sc->ale_cdata.ale_rx_page[i].page_addr,
1167 		    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1168 		    &sc->ale_cdata.ale_rx_page[i].page_map);
1169 		if (error != 0) {
1170 			device_printf(sc->ale_dev,
1171 			    "could not allocate DMA'able memory for "
1172 			    "Rx page %d.\n", i);
1173 			goto fail;
1174 		}
1175 		ctx.ale_busaddr = 0;
1176 		error = bus_dmamap_load(sc->ale_cdata.ale_rx_page[i].page_tag,
1177 		    sc->ale_cdata.ale_rx_page[i].page_map,
1178 		    sc->ale_cdata.ale_rx_page[i].page_addr,
1179 		    sc->ale_pagesize, ale_dmamap_cb, &ctx, 0);
1180 		if (error != 0 || ctx.ale_busaddr == 0) {
1181 			device_printf(sc->ale_dev,
1182 			    "could not load DMA'able memory for "
1183 			    "Rx page %d.\n", i);
1184 			goto fail;
1185 		}
1186 		sc->ale_cdata.ale_rx_page[i].page_paddr = ctx.ale_busaddr;
1187 	}
1188 
1189 	/* Tx CMB. */
1190 	error = bus_dmamem_alloc(sc->ale_cdata.ale_tx_cmb_tag,
1191 	    (void **)&sc->ale_cdata.ale_tx_cmb,
1192 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1193 	    &sc->ale_cdata.ale_tx_cmb_map);
1194 	if (error != 0) {
1195 		device_printf(sc->ale_dev,
1196 		    "could not allocate DMA'able memory for Tx CMB.\n");
1197 		goto fail;
1198 	}
1199 	ctx.ale_busaddr = 0;
1200 	error = bus_dmamap_load(sc->ale_cdata.ale_tx_cmb_tag,
1201 	    sc->ale_cdata.ale_tx_cmb_map, sc->ale_cdata.ale_tx_cmb,
1202 	    ALE_TX_CMB_SZ, ale_dmamap_cb, &ctx, 0);
1203 	if (error != 0 || ctx.ale_busaddr == 0) {
1204 		device_printf(sc->ale_dev,
1205 		    "could not load DMA'able memory for Tx CMB.\n");
1206 		goto fail;
1207 	}
1208 	sc->ale_cdata.ale_tx_cmb_paddr = ctx.ale_busaddr;
1209 
1210 	/* Rx CMB. */
1211 	for (i = 0; i < ALE_RX_PAGES; i++) {
1212 		error = bus_dmamem_alloc(sc->ale_cdata.ale_rx_page[i].cmb_tag,
1213 		    (void **)&sc->ale_cdata.ale_rx_page[i].cmb_addr,
1214 		    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1215 		    &sc->ale_cdata.ale_rx_page[i].cmb_map);
1216 		if (error != 0) {
1217 			device_printf(sc->ale_dev, "could not allocate "
1218 			    "DMA'able memory for Rx page %d CMB.\n", i);
1219 			goto fail;
1220 		}
1221 		ctx.ale_busaddr = 0;
1222 		error = bus_dmamap_load(sc->ale_cdata.ale_rx_page[i].cmb_tag,
1223 		    sc->ale_cdata.ale_rx_page[i].cmb_map,
1224 		    sc->ale_cdata.ale_rx_page[i].cmb_addr,
1225 		    ALE_RX_CMB_SZ, ale_dmamap_cb, &ctx, 0);
1226 		if (error != 0 || ctx.ale_busaddr == 0) {
1227 			device_printf(sc->ale_dev, "could not load DMA'able "
1228 			    "memory for Rx page %d CMB.\n", i);
1229 			goto fail;
1230 		}
1231 		sc->ale_cdata.ale_rx_page[i].cmb_paddr = ctx.ale_busaddr;
1232 	}
1233 
1234 	/*
1235 	 * Tx descriptors/RXF0/CMB DMA blocks share the same
1236 	 * high address region of 64bit DMA address space.
1237 	 */
1238 	if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1239 	    (error = ale_check_boundary(sc)) != 0) {
1240 		device_printf(sc->ale_dev, "4GB boundary crossed, "
1241 		    "switching to 32bit DMA addressing mode.\n");
1242 		ale_dma_free(sc);
1243 		/*
1244 		 * Limit max allowable DMA address space to 32bit
1245 		 * and try again.
1246 		 */
1247 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1248 		goto again;
1249 	}
1250 
1251 	/*
1252 	 * Create Tx buffer parent tag.
1253 	 * AR81xx allows 64bit DMA addressing of Tx buffers so it
1254 	 * needs separate parent DMA tag as parent DMA address space
1255 	 * could be restricted to be within 32bit address space by
1256 	 * 4GB boundary crossing.
1257 	 */
1258 	error = bus_dma_tag_create(
1259 	    bus_get_dma_tag(sc->ale_dev), /* parent */
1260 	    1, 0,			/* alignment, boundary */
1261 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1262 	    BUS_SPACE_MAXADDR,		/* highaddr */
1263 	    NULL, NULL,			/* filter, filterarg */
1264 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1265 	    0,				/* nsegments */
1266 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1267 	    0,				/* flags */
1268 	    NULL, NULL,			/* lockfunc, lockarg */
1269 	    &sc->ale_cdata.ale_buffer_tag);
1270 	if (error != 0) {
1271 		device_printf(sc->ale_dev,
1272 		    "could not create parent buffer DMA tag.\n");
1273 		goto fail;
1274 	}
1275 
1276 	/* Create DMA tag for Tx buffers. */
1277 	error = bus_dma_tag_create(
1278 	    sc->ale_cdata.ale_buffer_tag, /* parent */
1279 	    1, 0,			/* alignment, boundary */
1280 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1281 	    BUS_SPACE_MAXADDR,		/* highaddr */
1282 	    NULL, NULL,			/* filter, filterarg */
1283 	    ALE_TSO_MAXSIZE,		/* maxsize */
1284 	    ALE_MAXTXSEGS,		/* nsegments */
1285 	    ALE_TSO_MAXSEGSIZE,		/* maxsegsize */
1286 	    0,				/* flags */
1287 	    NULL, NULL,			/* lockfunc, lockarg */
1288 	    &sc->ale_cdata.ale_tx_tag);
1289 	if (error != 0) {
1290 		device_printf(sc->ale_dev, "could not create Tx DMA tag.\n");
1291 		goto fail;
1292 	}
1293 
1294 	/* Create DMA maps for Tx buffers. */
1295 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
1296 		txd = &sc->ale_cdata.ale_txdesc[i];
1297 		txd->tx_m = NULL;
1298 		txd->tx_dmamap = NULL;
1299 		error = bus_dmamap_create(sc->ale_cdata.ale_tx_tag, 0,
1300 		    &txd->tx_dmamap);
1301 		if (error != 0) {
1302 			device_printf(sc->ale_dev,
1303 			    "could not create Tx dmamap.\n");
1304 			goto fail;
1305 		}
1306 	}
1307 
1308 fail:
1309 	return (error);
1310 }
1311 
1312 static void
1313 ale_dma_free(struct ale_softc *sc)
1314 {
1315 	struct ale_txdesc *txd;
1316 	int i;
1317 
1318 	/* Tx buffers. */
1319 	if (sc->ale_cdata.ale_tx_tag != NULL) {
1320 		for (i = 0; i < ALE_TX_RING_CNT; i++) {
1321 			txd = &sc->ale_cdata.ale_txdesc[i];
1322 			if (txd->tx_dmamap != NULL) {
1323 				bus_dmamap_destroy(sc->ale_cdata.ale_tx_tag,
1324 				    txd->tx_dmamap);
1325 				txd->tx_dmamap = NULL;
1326 			}
1327 		}
1328 		bus_dma_tag_destroy(sc->ale_cdata.ale_tx_tag);
1329 		sc->ale_cdata.ale_tx_tag = NULL;
1330 	}
1331 	/* Tx descriptor ring. */
1332 	if (sc->ale_cdata.ale_tx_ring_tag != NULL) {
1333 		if (sc->ale_cdata.ale_tx_ring_paddr != 0)
1334 			bus_dmamap_unload(sc->ale_cdata.ale_tx_ring_tag,
1335 			    sc->ale_cdata.ale_tx_ring_map);
1336 		if (sc->ale_cdata.ale_tx_ring != NULL)
1337 			bus_dmamem_free(sc->ale_cdata.ale_tx_ring_tag,
1338 			    sc->ale_cdata.ale_tx_ring,
1339 			    sc->ale_cdata.ale_tx_ring_map);
1340 		sc->ale_cdata.ale_tx_ring_paddr = 0;
1341 		sc->ale_cdata.ale_tx_ring = NULL;
1342 		bus_dma_tag_destroy(sc->ale_cdata.ale_tx_ring_tag);
1343 		sc->ale_cdata.ale_tx_ring_tag = NULL;
1344 	}
1345 	/* Rx page block. */
1346 	for (i = 0; i < ALE_RX_PAGES; i++) {
1347 		if (sc->ale_cdata.ale_rx_page[i].page_tag != NULL) {
1348 			if (sc->ale_cdata.ale_rx_page[i].page_paddr != 0)
1349 				bus_dmamap_unload(
1350 				    sc->ale_cdata.ale_rx_page[i].page_tag,
1351 				    sc->ale_cdata.ale_rx_page[i].page_map);
1352 			if (sc->ale_cdata.ale_rx_page[i].page_addr != NULL)
1353 				bus_dmamem_free(
1354 				    sc->ale_cdata.ale_rx_page[i].page_tag,
1355 				    sc->ale_cdata.ale_rx_page[i].page_addr,
1356 				    sc->ale_cdata.ale_rx_page[i].page_map);
1357 			sc->ale_cdata.ale_rx_page[i].page_paddr = 0;
1358 			sc->ale_cdata.ale_rx_page[i].page_addr = NULL;
1359 			bus_dma_tag_destroy(
1360 			    sc->ale_cdata.ale_rx_page[i].page_tag);
1361 			sc->ale_cdata.ale_rx_page[i].page_tag = NULL;
1362 		}
1363 	}
1364 	/* Rx CMB. */
1365 	for (i = 0; i < ALE_RX_PAGES; i++) {
1366 		if (sc->ale_cdata.ale_rx_page[i].cmb_tag != NULL) {
1367 			if (sc->ale_cdata.ale_rx_page[i].cmb_paddr != 0)
1368 				bus_dmamap_unload(
1369 				    sc->ale_cdata.ale_rx_page[i].cmb_tag,
1370 				    sc->ale_cdata.ale_rx_page[i].cmb_map);
1371 			if (sc->ale_cdata.ale_rx_page[i].cmb_addr != NULL)
1372 				bus_dmamem_free(
1373 				    sc->ale_cdata.ale_rx_page[i].cmb_tag,
1374 				    sc->ale_cdata.ale_rx_page[i].cmb_addr,
1375 				    sc->ale_cdata.ale_rx_page[i].cmb_map);
1376 			sc->ale_cdata.ale_rx_page[i].cmb_paddr = 0;
1377 			sc->ale_cdata.ale_rx_page[i].cmb_addr = NULL;
1378 			bus_dma_tag_destroy(
1379 			    sc->ale_cdata.ale_rx_page[i].cmb_tag);
1380 			sc->ale_cdata.ale_rx_page[i].cmb_tag = NULL;
1381 		}
1382 	}
1383 	/* Tx CMB. */
1384 	if (sc->ale_cdata.ale_tx_cmb_tag != NULL) {
1385 		if (sc->ale_cdata.ale_tx_cmb_paddr != 0)
1386 			bus_dmamap_unload(sc->ale_cdata.ale_tx_cmb_tag,
1387 			    sc->ale_cdata.ale_tx_cmb_map);
1388 		if (sc->ale_cdata.ale_tx_cmb != NULL)
1389 			bus_dmamem_free(sc->ale_cdata.ale_tx_cmb_tag,
1390 			    sc->ale_cdata.ale_tx_cmb,
1391 			    sc->ale_cdata.ale_tx_cmb_map);
1392 		sc->ale_cdata.ale_tx_cmb_paddr = 0;
1393 		sc->ale_cdata.ale_tx_cmb = NULL;
1394 		bus_dma_tag_destroy(sc->ale_cdata.ale_tx_cmb_tag);
1395 		sc->ale_cdata.ale_tx_cmb_tag = NULL;
1396 	}
1397 	if (sc->ale_cdata.ale_buffer_tag != NULL) {
1398 		bus_dma_tag_destroy(sc->ale_cdata.ale_buffer_tag);
1399 		sc->ale_cdata.ale_buffer_tag = NULL;
1400 	}
1401 	if (sc->ale_cdata.ale_parent_tag != NULL) {
1402 		bus_dma_tag_destroy(sc->ale_cdata.ale_parent_tag);
1403 		sc->ale_cdata.ale_parent_tag = NULL;
1404 	}
1405 }
1406 
1407 static int
1408 ale_shutdown(device_t dev)
1409 {
1410 
1411 	return (ale_suspend(dev));
1412 }
1413 
1414 /*
1415  * Note, this driver resets the link speed to 10/100Mbps by
1416  * restarting auto-negotiation in suspend/shutdown phase but we
1417  * don't know whether that auto-negotiation would succeed or not
1418  * as driver has no control after powering off/suspend operation.
1419  * If the renegotiation fail WOL may not work. Running at 1Gbps
1420  * will draw more power than 375mA at 3.3V which is specified in
1421  * PCI specification and that would result in complete
1422  * shutdowning power to ethernet controller.
1423  *
1424  * TODO
1425  * Save current negotiated media speed/duplex/flow-control to
1426  * softc and restore the same link again after resuming. PHY
1427  * handling such as power down/resetting to 100Mbps may be better
1428  * handled in suspend method in phy driver.
1429  */
1430 static void
1431 ale_setlinkspeed(struct ale_softc *sc)
1432 {
1433 	struct mii_data *mii;
1434 	int aneg, i;
1435 
1436 	mii = device_get_softc(sc->ale_miibus);
1437 	mii_pollstat(mii);
1438 	aneg = 0;
1439 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
1440 	    (IFM_ACTIVE | IFM_AVALID)) {
1441 		switch IFM_SUBTYPE(mii->mii_media_active) {
1442 		case IFM_10_T:
1443 		case IFM_100_TX:
1444 			return;
1445 		case IFM_1000_T:
1446 			aneg++;
1447 			break;
1448 		default:
1449 			break;
1450 		}
1451 	}
1452 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, MII_100T2CR, 0);
1453 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
1454 	    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
1455 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
1456 	    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1457 	DELAY(1000);
1458 	if (aneg != 0) {
1459 		/*
1460 		 * Poll link state until ale(4) get a 10/100Mbps link.
1461 		 */
1462 		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1463 			mii_pollstat(mii);
1464 			if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
1465 			    == (IFM_ACTIVE | IFM_AVALID)) {
1466 				switch (IFM_SUBTYPE(
1467 				    mii->mii_media_active)) {
1468 				case IFM_10_T:
1469 				case IFM_100_TX:
1470 					ale_mac_config(sc);
1471 					return;
1472 				default:
1473 					break;
1474 				}
1475 			}
1476 			ALE_UNLOCK(sc);
1477 			pause("alelnk", hz);
1478 			ALE_LOCK(sc);
1479 		}
1480 		if (i == MII_ANEGTICKS_GIGE)
1481 			device_printf(sc->ale_dev,
1482 			    "establishing a link failed, WOL may not work!");
1483 	}
1484 	/*
1485 	 * No link, force MAC to have 100Mbps, full-duplex link.
1486 	 * This is the last resort and may/may not work.
1487 	 */
1488 	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1489 	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1490 	ale_mac_config(sc);
1491 }
1492 
1493 static void
1494 ale_setwol(struct ale_softc *sc)
1495 {
1496 	struct ifnet *ifp;
1497 	uint32_t reg, pmcs;
1498 	uint16_t pmstat;
1499 	int pmc;
1500 
1501 	ALE_LOCK_ASSERT(sc);
1502 
1503 	if (pci_find_cap(sc->ale_dev, PCIY_PMG, &pmc) != 0) {
1504 		/* Disable WOL. */
1505 		CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
1506 		reg = CSR_READ_4(sc, ALE_PCIE_PHYMISC);
1507 		reg |= PCIE_PHYMISC_FORCE_RCV_DET;
1508 		CSR_WRITE_4(sc, ALE_PCIE_PHYMISC, reg);
1509 		/* Force PHY power down. */
1510 		CSR_WRITE_2(sc, ALE_GPHY_CTRL,
1511 		    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN |
1512 		    GPHY_CTRL_HIB_PULSE | GPHY_CTRL_PHY_PLL_ON |
1513 		    GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_IDDQ |
1514 		    GPHY_CTRL_PCLK_SEL_DIS | GPHY_CTRL_PWDOWN_HW);
1515 		return;
1516 	}
1517 
1518 	ifp = sc->ale_ifp;
1519 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1520 		if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
1521 			ale_setlinkspeed(sc);
1522 	}
1523 
1524 	pmcs = 0;
1525 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1526 		pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1527 	CSR_WRITE_4(sc, ALE_WOL_CFG, pmcs);
1528 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
1529 	reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC | MAC_CFG_ALLMULTI |
1530 	    MAC_CFG_BCAST);
1531 	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
1532 		reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1533 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1534 		reg |= MAC_CFG_RX_ENB;
1535 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1536 
1537 	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1538 		/* WOL disabled, PHY power down. */
1539 		reg = CSR_READ_4(sc, ALE_PCIE_PHYMISC);
1540 		reg |= PCIE_PHYMISC_FORCE_RCV_DET;
1541 		CSR_WRITE_4(sc, ALE_PCIE_PHYMISC, reg);
1542 		CSR_WRITE_2(sc, ALE_GPHY_CTRL,
1543 		    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN |
1544 		    GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
1545 		    GPHY_CTRL_PHY_IDDQ | GPHY_CTRL_PCLK_SEL_DIS |
1546 		    GPHY_CTRL_PWDOWN_HW);
1547 	}
1548 	/* Request PME. */
1549 	pmstat = pci_read_config(sc->ale_dev, pmc + PCIR_POWER_STATUS, 2);
1550 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1551 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1552 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1553 	pci_write_config(sc->ale_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1554 }
1555 
1556 static int
1557 ale_suspend(device_t dev)
1558 {
1559 	struct ale_softc *sc;
1560 
1561 	sc = device_get_softc(dev);
1562 
1563 	ALE_LOCK(sc);
1564 	ale_stop(sc);
1565 	ale_setwol(sc);
1566 	ALE_UNLOCK(sc);
1567 
1568 	return (0);
1569 }
1570 
1571 static int
1572 ale_resume(device_t dev)
1573 {
1574 	struct ale_softc *sc;
1575 	struct ifnet *ifp;
1576 	int pmc;
1577 	uint16_t pmstat;
1578 
1579 	sc = device_get_softc(dev);
1580 
1581 	ALE_LOCK(sc);
1582 	if (pci_find_cap(sc->ale_dev, PCIY_PMG, &pmc) == 0) {
1583 		/* Disable PME and clear PME status. */
1584 		pmstat = pci_read_config(sc->ale_dev,
1585 		    pmc + PCIR_POWER_STATUS, 2);
1586 		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
1587 			pmstat &= ~PCIM_PSTAT_PMEENABLE;
1588 			pci_write_config(sc->ale_dev,
1589 			    pmc + PCIR_POWER_STATUS, pmstat, 2);
1590 		}
1591 	}
1592 	/* Reset PHY. */
1593 	ale_phy_reset(sc);
1594 	ifp = sc->ale_ifp;
1595 	if ((ifp->if_flags & IFF_UP) != 0) {
1596 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1597 		ale_init_locked(sc);
1598 	}
1599 	ALE_UNLOCK(sc);
1600 
1601 	return (0);
1602 }
1603 
1604 static int
1605 ale_encap(struct ale_softc *sc, struct mbuf **m_head)
1606 {
1607 	struct ale_txdesc *txd, *txd_last;
1608 	struct tx_desc *desc;
1609 	struct mbuf *m;
1610 	struct ip *ip;
1611 	struct tcphdr *tcp;
1612 	bus_dma_segment_t txsegs[ALE_MAXTXSEGS];
1613 	bus_dmamap_t map;
1614 	uint32_t cflags, hdrlen, ip_off, poff, vtag;
1615 	int error, i, nsegs, prod, si;
1616 
1617 	ALE_LOCK_ASSERT(sc);
1618 
1619 	M_ASSERTPKTHDR((*m_head));
1620 
1621 	m = *m_head;
1622 	ip = NULL;
1623 	tcp = NULL;
1624 	cflags = vtag = 0;
1625 	ip_off = poff = 0;
1626 	if ((m->m_pkthdr.csum_flags & (ALE_CSUM_FEATURES | CSUM_TSO)) != 0) {
1627 		/*
1628 		 * AR81xx requires offset of TCP/UDP payload in its Tx
1629 		 * descriptor to perform hardware Tx checksum offload.
1630 		 * Additionally, TSO requires IP/TCP header size and
1631 		 * modification of IP/TCP header in order to make TSO
1632 		 * engine work. This kind of operation takes many CPU
1633 		 * cycles on FreeBSD so fast host CPU is required to
1634 		 * get smooth TSO performance.
1635 		 */
1636 		struct ether_header *eh;
1637 
1638 		if (M_WRITABLE(m) == 0) {
1639 			/* Get a writable copy. */
1640 			m = m_dup(*m_head, M_NOWAIT);
1641 			/* Release original mbufs. */
1642 			m_freem(*m_head);
1643 			if (m == NULL) {
1644 				*m_head = NULL;
1645 				return (ENOBUFS);
1646 			}
1647 			*m_head = m;
1648 		}
1649 
1650 		/*
1651 		 * Buggy-controller requires 4 byte aligned Tx buffer
1652 		 * to make custom checksum offload work.
1653 		 */
1654 		if ((sc->ale_flags & ALE_FLAG_TXCSUM_BUG) != 0 &&
1655 		    (m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0 &&
1656 		    (mtod(m, intptr_t) & 3) != 0) {
1657 			m = m_defrag(*m_head, M_NOWAIT);
1658 			if (m == NULL) {
1659 				m_freem(*m_head);
1660 				*m_head = NULL;
1661 				return (ENOBUFS);
1662 			}
1663 			*m_head = m;
1664 		}
1665 
1666 		ip_off = sizeof(struct ether_header);
1667 		m = m_pullup(m, ip_off);
1668 		if (m == NULL) {
1669 			*m_head = NULL;
1670 			return (ENOBUFS);
1671 		}
1672 		eh = mtod(m, struct ether_header *);
1673 		/*
1674 		 * Check if hardware VLAN insertion is off.
1675 		 * Additional check for LLC/SNAP frame?
1676 		 */
1677 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1678 			ip_off = sizeof(struct ether_vlan_header);
1679 			m = m_pullup(m, ip_off);
1680 			if (m == NULL) {
1681 				*m_head = NULL;
1682 				return (ENOBUFS);
1683 			}
1684 		}
1685 		m = m_pullup(m, ip_off + sizeof(struct ip));
1686 		if (m == NULL) {
1687 			*m_head = NULL;
1688 			return (ENOBUFS);
1689 		}
1690 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1691 		poff = ip_off + (ip->ip_hl << 2);
1692 		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1693 			/*
1694 			 * XXX
1695 			 * AR81xx requires the first descriptor should
1696 			 * not include any TCP playload for TSO case.
1697 			 * (i.e. ethernet header + IP + TCP header only)
1698 			 * m_pullup(9) above will ensure this too.
1699 			 * However it's not correct if the first mbuf
1700 			 * of the chain does not use cluster.
1701 			 */
1702 			m = m_pullup(m, poff + sizeof(struct tcphdr));
1703 			if (m == NULL) {
1704 				*m_head = NULL;
1705 				return (ENOBUFS);
1706 			}
1707 			ip = (struct ip *)(mtod(m, char *) + ip_off);
1708 			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1709 			m = m_pullup(m, poff + (tcp->th_off << 2));
1710 			if (m == NULL) {
1711 				*m_head = NULL;
1712 				return (ENOBUFS);
1713 			}
1714 			/*
1715 			 * AR81xx requires IP/TCP header size and offset as
1716 			 * well as TCP pseudo checksum which complicates
1717 			 * TSO configuration. I guess this comes from the
1718 			 * adherence to Microsoft NDIS Large Send
1719 			 * specification which requires insertion of
1720 			 * pseudo checksum by upper stack. The pseudo
1721 			 * checksum that NDIS refers to doesn't include
1722 			 * TCP payload length so ale(4) should recompute
1723 			 * the pseudo checksum here. Hopefully this wouldn't
1724 			 * be much burden on modern CPUs.
1725 			 * Reset IP checksum and recompute TCP pseudo
1726 			 * checksum as NDIS specification said.
1727 			 */
1728 			ip->ip_sum = 0;
1729 			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1730 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1731 		}
1732 		*m_head = m;
1733 	}
1734 
1735 	si = prod = sc->ale_cdata.ale_tx_prod;
1736 	txd = &sc->ale_cdata.ale_txdesc[prod];
1737 	txd_last = txd;
1738 	map = txd->tx_dmamap;
1739 
1740 	error =  bus_dmamap_load_mbuf_sg(sc->ale_cdata.ale_tx_tag, map,
1741 	    *m_head, txsegs, &nsegs, 0);
1742 	if (error == EFBIG) {
1743 		m = m_collapse(*m_head, M_NOWAIT, ALE_MAXTXSEGS);
1744 		if (m == NULL) {
1745 			m_freem(*m_head);
1746 			*m_head = NULL;
1747 			return (ENOMEM);
1748 		}
1749 		*m_head = m;
1750 		error = bus_dmamap_load_mbuf_sg(sc->ale_cdata.ale_tx_tag, map,
1751 		    *m_head, txsegs, &nsegs, 0);
1752 		if (error != 0) {
1753 			m_freem(*m_head);
1754 			*m_head = NULL;
1755 			return (error);
1756 		}
1757 	} else if (error != 0)
1758 		return (error);
1759 	if (nsegs == 0) {
1760 		m_freem(*m_head);
1761 		*m_head = NULL;
1762 		return (EIO);
1763 	}
1764 
1765 	/* Check descriptor overrun. */
1766 	if (sc->ale_cdata.ale_tx_cnt + nsegs >= ALE_TX_RING_CNT - 3) {
1767 		bus_dmamap_unload(sc->ale_cdata.ale_tx_tag, map);
1768 		return (ENOBUFS);
1769 	}
1770 	bus_dmamap_sync(sc->ale_cdata.ale_tx_tag, map, BUS_DMASYNC_PREWRITE);
1771 
1772 	m = *m_head;
1773 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1774 		/* Request TSO and set MSS. */
1775 		cflags |= ALE_TD_TSO;
1776 		cflags |= ((uint32_t)m->m_pkthdr.tso_segsz << ALE_TD_MSS_SHIFT);
1777 		/* Set IP/TCP header size. */
1778 		cflags |= ip->ip_hl << ALE_TD_IPHDR_LEN_SHIFT;
1779 		cflags |= tcp->th_off << ALE_TD_TCPHDR_LEN_SHIFT;
1780 	} else if ((m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0) {
1781 		/*
1782 		 * AR81xx supports Tx custom checksum offload feature
1783 		 * that offloads single 16bit checksum computation.
1784 		 * So you can choose one among IP, TCP and UDP.
1785 		 * Normally driver sets checksum start/insertion
1786 		 * position from the information of TCP/UDP frame as
1787 		 * TCP/UDP checksum takes more time than that of IP.
1788 		 * However it seems that custom checksum offload
1789 		 * requires 4 bytes aligned Tx buffers due to hardware
1790 		 * bug.
1791 		 * AR81xx also supports explicit Tx checksum computation
1792 		 * if it is told that the size of IP header and TCP
1793 		 * header(for UDP, the header size does not matter
1794 		 * because it's fixed length). However with this scheme
1795 		 * TSO does not work so you have to choose one either
1796 		 * TSO or explicit Tx checksum offload. I chosen TSO
1797 		 * plus custom checksum offload with work-around which
1798 		 * will cover most common usage for this consumer
1799 		 * ethernet controller. The work-around takes a lot of
1800 		 * CPU cycles if Tx buffer is not aligned on 4 bytes
1801 		 * boundary, though.
1802 		 */
1803 		cflags |= ALE_TD_CXSUM;
1804 		/* Set checksum start offset. */
1805 		cflags |= (poff << ALE_TD_CSUM_PLOADOFFSET_SHIFT);
1806 		/* Set checksum insertion position of TCP/UDP. */
1807 		cflags |= ((poff + m->m_pkthdr.csum_data) <<
1808 		    ALE_TD_CSUM_XSUMOFFSET_SHIFT);
1809 	}
1810 
1811 	/* Configure VLAN hardware tag insertion. */
1812 	if ((m->m_flags & M_VLANTAG) != 0) {
1813 		vtag = ALE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1814 		vtag = ((vtag << ALE_TD_VLAN_SHIFT) & ALE_TD_VLAN_MASK);
1815 		cflags |= ALE_TD_INSERT_VLAN_TAG;
1816 	}
1817 
1818 	i = 0;
1819 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1820 		/*
1821 		 * Make sure the first fragment contains
1822 		 * only ethernet and IP/TCP header with options.
1823 		 */
1824 		hdrlen =  poff + (tcp->th_off << 2);
1825 		desc = &sc->ale_cdata.ale_tx_ring[prod];
1826 		desc->addr = htole64(txsegs[i].ds_addr);
1827 		desc->len = htole32(ALE_TX_BYTES(hdrlen) | vtag);
1828 		desc->flags = htole32(cflags);
1829 		sc->ale_cdata.ale_tx_cnt++;
1830 		ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1831 		if (m->m_len - hdrlen > 0) {
1832 			/* Handle remaining payload of the first fragment. */
1833 			desc = &sc->ale_cdata.ale_tx_ring[prod];
1834 			desc->addr = htole64(txsegs[i].ds_addr + hdrlen);
1835 			desc->len = htole32(ALE_TX_BYTES(m->m_len - hdrlen) |
1836 			    vtag);
1837 			desc->flags = htole32(cflags);
1838 			sc->ale_cdata.ale_tx_cnt++;
1839 			ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1840 		}
1841 		i = 1;
1842 	}
1843 	for (; i < nsegs; i++) {
1844 		desc = &sc->ale_cdata.ale_tx_ring[prod];
1845 		desc->addr = htole64(txsegs[i].ds_addr);
1846 		desc->len = htole32(ALE_TX_BYTES(txsegs[i].ds_len) | vtag);
1847 		desc->flags = htole32(cflags);
1848 		sc->ale_cdata.ale_tx_cnt++;
1849 		ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1850 	}
1851 	/* Update producer index. */
1852 	sc->ale_cdata.ale_tx_prod = prod;
1853 	/* Set TSO header on the first descriptor. */
1854 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1855 		desc = &sc->ale_cdata.ale_tx_ring[si];
1856 		desc->flags |= htole32(ALE_TD_TSO_HDR);
1857 	}
1858 
1859 	/* Finally set EOP on the last descriptor. */
1860 	prod = (prod + ALE_TX_RING_CNT - 1) % ALE_TX_RING_CNT;
1861 	desc = &sc->ale_cdata.ale_tx_ring[prod];
1862 	desc->flags |= htole32(ALE_TD_EOP);
1863 
1864 	/* Swap dmamap of the first and the last. */
1865 	txd = &sc->ale_cdata.ale_txdesc[prod];
1866 	map = txd_last->tx_dmamap;
1867 	txd_last->tx_dmamap = txd->tx_dmamap;
1868 	txd->tx_dmamap = map;
1869 	txd->tx_m = m;
1870 
1871 	/* Sync descriptors. */
1872 	bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
1873 	    sc->ale_cdata.ale_tx_ring_map,
1874 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1875 
1876 	return (0);
1877 }
1878 
1879 static void
1880 ale_start(struct ifnet *ifp)
1881 {
1882         struct ale_softc *sc;
1883 
1884 	sc = ifp->if_softc;
1885 	ALE_LOCK(sc);
1886 	ale_start_locked(ifp);
1887 	ALE_UNLOCK(sc);
1888 }
1889 
1890 static void
1891 ale_start_locked(struct ifnet *ifp)
1892 {
1893         struct ale_softc *sc;
1894         struct mbuf *m_head;
1895 	int enq;
1896 
1897 	sc = ifp->if_softc;
1898 
1899 	ALE_LOCK_ASSERT(sc);
1900 
1901 	/* Reclaim transmitted frames. */
1902 	if (sc->ale_cdata.ale_tx_cnt >= ALE_TX_DESC_HIWAT)
1903 		ale_txeof(sc);
1904 
1905 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1906 	    IFF_DRV_RUNNING || (sc->ale_flags & ALE_FLAG_LINK) == 0)
1907 		return;
1908 
1909 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1910 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1911 		if (m_head == NULL)
1912 			break;
1913 		/*
1914 		 * Pack the data into the transmit ring. If we
1915 		 * don't have room, set the OACTIVE flag and wait
1916 		 * for the NIC to drain the ring.
1917 		 */
1918 		if (ale_encap(sc, &m_head)) {
1919 			if (m_head == NULL)
1920 				break;
1921 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1922 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1923 			break;
1924 		}
1925 
1926 		enq++;
1927 		/*
1928 		 * If there's a BPF listener, bounce a copy of this frame
1929 		 * to him.
1930 		 */
1931 		ETHER_BPF_MTAP(ifp, m_head);
1932 	}
1933 
1934 	if (enq > 0) {
1935 		/* Kick. */
1936 		CSR_WRITE_4(sc, ALE_MBOX_TPD_PROD_IDX,
1937 		    sc->ale_cdata.ale_tx_prod);
1938 		/* Set a timeout in case the chip goes out to lunch. */
1939 		sc->ale_watchdog_timer = ALE_TX_TIMEOUT;
1940 	}
1941 }
1942 
1943 static void
1944 ale_watchdog(struct ale_softc *sc)
1945 {
1946 	struct ifnet *ifp;
1947 
1948 	ALE_LOCK_ASSERT(sc);
1949 
1950 	if (sc->ale_watchdog_timer == 0 || --sc->ale_watchdog_timer)
1951 		return;
1952 
1953 	ifp = sc->ale_ifp;
1954 	if ((sc->ale_flags & ALE_FLAG_LINK) == 0) {
1955 		if_printf(sc->ale_ifp, "watchdog timeout (lost link)\n");
1956 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1957 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1958 		ale_init_locked(sc);
1959 		return;
1960 	}
1961 	if_printf(sc->ale_ifp, "watchdog timeout -- resetting\n");
1962 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1963 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1964 	ale_init_locked(sc);
1965 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1966 		ale_start_locked(ifp);
1967 }
1968 
1969 static int
1970 ale_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1971 {
1972 	struct ale_softc *sc;
1973 	struct ifreq *ifr;
1974 	struct mii_data *mii;
1975 	int error, mask;
1976 
1977 	sc = ifp->if_softc;
1978 	ifr = (struct ifreq *)data;
1979 	error = 0;
1980 	switch (cmd) {
1981 	case SIOCSIFMTU:
1982 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ALE_JUMBO_MTU ||
1983 		    ((sc->ale_flags & ALE_FLAG_JUMBO) == 0 &&
1984 		    ifr->ifr_mtu > ETHERMTU))
1985 			error = EINVAL;
1986 		else if (ifp->if_mtu != ifr->ifr_mtu) {
1987 			ALE_LOCK(sc);
1988 			ifp->if_mtu = ifr->ifr_mtu;
1989 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1990 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1991 				ale_init_locked(sc);
1992 			}
1993 			ALE_UNLOCK(sc);
1994 		}
1995 		break;
1996 	case SIOCSIFFLAGS:
1997 		ALE_LOCK(sc);
1998 		if ((ifp->if_flags & IFF_UP) != 0) {
1999 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2000 				if (((ifp->if_flags ^ sc->ale_if_flags)
2001 				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2002 					ale_rxfilter(sc);
2003 			} else {
2004 				ale_init_locked(sc);
2005 			}
2006 		} else {
2007 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2008 				ale_stop(sc);
2009 		}
2010 		sc->ale_if_flags = ifp->if_flags;
2011 		ALE_UNLOCK(sc);
2012 		break;
2013 	case SIOCADDMULTI:
2014 	case SIOCDELMULTI:
2015 		ALE_LOCK(sc);
2016 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2017 			ale_rxfilter(sc);
2018 		ALE_UNLOCK(sc);
2019 		break;
2020 	case SIOCSIFMEDIA:
2021 	case SIOCGIFMEDIA:
2022 		mii = device_get_softc(sc->ale_miibus);
2023 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
2024 		break;
2025 	case SIOCSIFCAP:
2026 		ALE_LOCK(sc);
2027 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2028 		if ((mask & IFCAP_TXCSUM) != 0 &&
2029 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
2030 			ifp->if_capenable ^= IFCAP_TXCSUM;
2031 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2032 				ifp->if_hwassist |= ALE_CSUM_FEATURES;
2033 			else
2034 				ifp->if_hwassist &= ~ALE_CSUM_FEATURES;
2035 		}
2036 		if ((mask & IFCAP_RXCSUM) != 0 &&
2037 		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
2038 			ifp->if_capenable ^= IFCAP_RXCSUM;
2039 		if ((mask & IFCAP_TSO4) != 0 &&
2040 		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
2041 			ifp->if_capenable ^= IFCAP_TSO4;
2042 			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
2043 				ifp->if_hwassist |= CSUM_TSO;
2044 			else
2045 				ifp->if_hwassist &= ~CSUM_TSO;
2046 		}
2047 
2048 		if ((mask & IFCAP_WOL_MCAST) != 0 &&
2049 		    (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
2050 			ifp->if_capenable ^= IFCAP_WOL_MCAST;
2051 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2052 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2053 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2054 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2055 		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2056 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2057 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
2058 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
2059 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
2060 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2061 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
2062 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2063 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
2064 				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
2065 			ale_rxvlan(sc);
2066 		}
2067 		ALE_UNLOCK(sc);
2068 		VLAN_CAPABILITIES(ifp);
2069 		break;
2070 	default:
2071 		error = ether_ioctl(ifp, cmd, data);
2072 		break;
2073 	}
2074 
2075 	return (error);
2076 }
2077 
2078 static void
2079 ale_mac_config(struct ale_softc *sc)
2080 {
2081 	struct mii_data *mii;
2082 	uint32_t reg;
2083 
2084 	ALE_LOCK_ASSERT(sc);
2085 
2086 	mii = device_get_softc(sc->ale_miibus);
2087 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
2088 	reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
2089 	    MAC_CFG_SPEED_MASK);
2090 	/* Reprogram MAC with resolved speed/duplex. */
2091 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
2092 	case IFM_10_T:
2093 	case IFM_100_TX:
2094 		reg |= MAC_CFG_SPEED_10_100;
2095 		break;
2096 	case IFM_1000_T:
2097 		reg |= MAC_CFG_SPEED_1000;
2098 		break;
2099 	}
2100 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
2101 		reg |= MAC_CFG_FULL_DUPLEX;
2102 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
2103 			reg |= MAC_CFG_TX_FC;
2104 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
2105 			reg |= MAC_CFG_RX_FC;
2106 	}
2107 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2108 }
2109 
2110 static void
2111 ale_stats_clear(struct ale_softc *sc)
2112 {
2113 	struct smb sb;
2114 	uint32_t *reg;
2115 	int i;
2116 
2117 	for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
2118 		CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
2119 		i += sizeof(uint32_t);
2120 	}
2121 	/* Read Tx statistics. */
2122 	for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
2123 		CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
2124 		i += sizeof(uint32_t);
2125 	}
2126 }
2127 
2128 static void
2129 ale_stats_update(struct ale_softc *sc)
2130 {
2131 	struct ale_hw_stats *stat;
2132 	struct smb sb, *smb;
2133 	struct ifnet *ifp;
2134 	uint32_t *reg;
2135 	int i;
2136 
2137 	ALE_LOCK_ASSERT(sc);
2138 
2139 	ifp = sc->ale_ifp;
2140 	stat = &sc->ale_stats;
2141 	smb = &sb;
2142 
2143 	/* Read Rx statistics. */
2144 	for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
2145 		*reg = CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
2146 		i += sizeof(uint32_t);
2147 	}
2148 	/* Read Tx statistics. */
2149 	for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
2150 		*reg = CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
2151 		i += sizeof(uint32_t);
2152 	}
2153 
2154 	/* Rx stats. */
2155 	stat->rx_frames += smb->rx_frames;
2156 	stat->rx_bcast_frames += smb->rx_bcast_frames;
2157 	stat->rx_mcast_frames += smb->rx_mcast_frames;
2158 	stat->rx_pause_frames += smb->rx_pause_frames;
2159 	stat->rx_control_frames += smb->rx_control_frames;
2160 	stat->rx_crcerrs += smb->rx_crcerrs;
2161 	stat->rx_lenerrs += smb->rx_lenerrs;
2162 	stat->rx_bytes += smb->rx_bytes;
2163 	stat->rx_runts += smb->rx_runts;
2164 	stat->rx_fragments += smb->rx_fragments;
2165 	stat->rx_pkts_64 += smb->rx_pkts_64;
2166 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2167 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2168 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2169 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2170 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2171 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2172 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2173 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2174 	stat->rx_rrs_errs += smb->rx_rrs_errs;
2175 	stat->rx_alignerrs += smb->rx_alignerrs;
2176 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2177 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2178 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2179 
2180 	/* Tx stats. */
2181 	stat->tx_frames += smb->tx_frames;
2182 	stat->tx_bcast_frames += smb->tx_bcast_frames;
2183 	stat->tx_mcast_frames += smb->tx_mcast_frames;
2184 	stat->tx_pause_frames += smb->tx_pause_frames;
2185 	stat->tx_excess_defer += smb->tx_excess_defer;
2186 	stat->tx_control_frames += smb->tx_control_frames;
2187 	stat->tx_deferred += smb->tx_deferred;
2188 	stat->tx_bytes += smb->tx_bytes;
2189 	stat->tx_pkts_64 += smb->tx_pkts_64;
2190 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2191 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2192 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2193 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2194 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2195 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2196 	stat->tx_single_colls += smb->tx_single_colls;
2197 	stat->tx_multi_colls += smb->tx_multi_colls;
2198 	stat->tx_late_colls += smb->tx_late_colls;
2199 	stat->tx_excess_colls += smb->tx_excess_colls;
2200 	stat->tx_underrun += smb->tx_underrun;
2201 	stat->tx_desc_underrun += smb->tx_desc_underrun;
2202 	stat->tx_lenerrs += smb->tx_lenerrs;
2203 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2204 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2205 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2206 
2207 	/* Update counters in ifnet. */
2208 	if_inc_counter(ifp, IFCOUNTER_OPACKETS, smb->tx_frames);
2209 
2210 	if_inc_counter(ifp, IFCOUNTER_COLLISIONS, smb->tx_single_colls +
2211 	    smb->tx_multi_colls * 2 + smb->tx_late_colls +
2212 	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT);
2213 
2214 	if_inc_counter(ifp, IFCOUNTER_OERRORS, smb->tx_late_colls +
2215 	    smb->tx_excess_colls + smb->tx_underrun + smb->tx_pkts_truncated);
2216 
2217 	if_inc_counter(ifp, IFCOUNTER_IPACKETS, smb->rx_frames);
2218 
2219 	if_inc_counter(ifp, IFCOUNTER_IERRORS,
2220 	    smb->rx_crcerrs + smb->rx_lenerrs +
2221 	    smb->rx_runts + smb->rx_pkts_truncated +
2222 	    smb->rx_fifo_oflows + smb->rx_rrs_errs +
2223 	    smb->rx_alignerrs);
2224 }
2225 
2226 static int
2227 ale_intr(void *arg)
2228 {
2229 	struct ale_softc *sc;
2230 	uint32_t status;
2231 
2232 	sc = (struct ale_softc *)arg;
2233 
2234 	status = CSR_READ_4(sc, ALE_INTR_STATUS);
2235 	if ((status & ALE_INTRS) == 0)
2236 		return (FILTER_STRAY);
2237 	/* Disable interrupts. */
2238 	CSR_WRITE_4(sc, ALE_INTR_STATUS, INTR_DIS_INT);
2239 	taskqueue_enqueue(sc->ale_tq, &sc->ale_int_task);
2240 
2241 	return (FILTER_HANDLED);
2242 }
2243 
2244 static void
2245 ale_int_task(void *arg, int pending)
2246 {
2247 	struct ale_softc *sc;
2248 	struct ifnet *ifp;
2249 	uint32_t status;
2250 	int more;
2251 
2252 	sc = (struct ale_softc *)arg;
2253 
2254 	status = CSR_READ_4(sc, ALE_INTR_STATUS);
2255 	ALE_LOCK(sc);
2256 	if (sc->ale_morework != 0)
2257 		status |= INTR_RX_PKT;
2258 	if ((status & ALE_INTRS) == 0)
2259 		goto done;
2260 
2261 	/* Acknowledge interrupts but still disable interrupts. */
2262 	CSR_WRITE_4(sc, ALE_INTR_STATUS, status | INTR_DIS_INT);
2263 
2264 	ifp = sc->ale_ifp;
2265 	more = 0;
2266 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2267 		more = ale_rxeof(sc, sc->ale_process_limit);
2268 		if (more == EAGAIN)
2269 			sc->ale_morework = 1;
2270 		else if (more == EIO) {
2271 			sc->ale_stats.reset_brk_seq++;
2272 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2273 			ale_init_locked(sc);
2274 			ALE_UNLOCK(sc);
2275 			return;
2276 		}
2277 
2278 		if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
2279 			if ((status & INTR_DMA_RD_TO_RST) != 0)
2280 				device_printf(sc->ale_dev,
2281 				    "DMA read error! -- resetting\n");
2282 			if ((status & INTR_DMA_WR_TO_RST) != 0)
2283 				device_printf(sc->ale_dev,
2284 				    "DMA write error! -- resetting\n");
2285 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2286 			ale_init_locked(sc);
2287 			ALE_UNLOCK(sc);
2288 			return;
2289 		}
2290 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2291 			ale_start_locked(ifp);
2292 	}
2293 
2294 	if (more == EAGAIN ||
2295 	    (CSR_READ_4(sc, ALE_INTR_STATUS) & ALE_INTRS) != 0) {
2296 		ALE_UNLOCK(sc);
2297 		taskqueue_enqueue(sc->ale_tq, &sc->ale_int_task);
2298 		return;
2299 	}
2300 
2301 done:
2302 	ALE_UNLOCK(sc);
2303 
2304 	/* Re-enable interrupts. */
2305 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0x7FFFFFFF);
2306 }
2307 
2308 static void
2309 ale_txeof(struct ale_softc *sc)
2310 {
2311 	struct ifnet *ifp;
2312 	struct ale_txdesc *txd;
2313 	uint32_t cons, prod;
2314 	int prog;
2315 
2316 	ALE_LOCK_ASSERT(sc);
2317 
2318 	ifp = sc->ale_ifp;
2319 
2320 	if (sc->ale_cdata.ale_tx_cnt == 0)
2321 		return;
2322 
2323 	bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
2324 	    sc->ale_cdata.ale_tx_ring_map,
2325 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2326 	if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) {
2327 		bus_dmamap_sync(sc->ale_cdata.ale_tx_cmb_tag,
2328 		    sc->ale_cdata.ale_tx_cmb_map,
2329 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2330 		prod = *sc->ale_cdata.ale_tx_cmb & TPD_CNT_MASK;
2331 	} else
2332 		prod = CSR_READ_2(sc, ALE_TPD_CONS_IDX);
2333 	cons = sc->ale_cdata.ale_tx_cons;
2334 	/*
2335 	 * Go through our Tx list and free mbufs for those
2336 	 * frames which have been transmitted.
2337 	 */
2338 	for (prog = 0; cons != prod; prog++,
2339 	    ALE_DESC_INC(cons, ALE_TX_RING_CNT)) {
2340 		if (sc->ale_cdata.ale_tx_cnt <= 0)
2341 			break;
2342 		prog++;
2343 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2344 		sc->ale_cdata.ale_tx_cnt--;
2345 		txd = &sc->ale_cdata.ale_txdesc[cons];
2346 		if (txd->tx_m != NULL) {
2347 			/* Reclaim transmitted mbufs. */
2348 			bus_dmamap_sync(sc->ale_cdata.ale_tx_tag,
2349 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2350 			bus_dmamap_unload(sc->ale_cdata.ale_tx_tag,
2351 			    txd->tx_dmamap);
2352 			m_freem(txd->tx_m);
2353 			txd->tx_m = NULL;
2354 		}
2355 	}
2356 
2357 	if (prog > 0) {
2358 		sc->ale_cdata.ale_tx_cons = cons;
2359 		/*
2360 		 * Unarm watchdog timer only when there is no pending
2361 		 * Tx descriptors in queue.
2362 		 */
2363 		if (sc->ale_cdata.ale_tx_cnt == 0)
2364 			sc->ale_watchdog_timer = 0;
2365 	}
2366 }
2367 
2368 static void
2369 ale_rx_update_page(struct ale_softc *sc, struct ale_rx_page **page,
2370     uint32_t length, uint32_t *prod)
2371 {
2372 	struct ale_rx_page *rx_page;
2373 
2374 	rx_page = *page;
2375 	/* Update consumer position. */
2376 	rx_page->cons += roundup(length + sizeof(struct rx_rs),
2377 	    ALE_RX_PAGE_ALIGN);
2378 	if (rx_page->cons >= ALE_RX_PAGE_SZ) {
2379 		/*
2380 		 * End of Rx page reached, let hardware reuse
2381 		 * this page.
2382 		 */
2383 		rx_page->cons = 0;
2384 		*rx_page->cmb_addr = 0;
2385 		bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2386 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2387 		CSR_WRITE_1(sc, ALE_RXF0_PAGE0 + sc->ale_cdata.ale_rx_curp,
2388 		    RXF_VALID);
2389 		/* Switch to alternate Rx page. */
2390 		sc->ale_cdata.ale_rx_curp ^= 1;
2391 		rx_page = *page =
2392 		    &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
2393 		/* Page flipped, sync CMB and Rx page. */
2394 		bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
2395 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2396 		bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2397 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2398 		/* Sync completed, cache updated producer index. */
2399 		*prod = *rx_page->cmb_addr;
2400 	}
2401 }
2402 
2403 
2404 /*
2405  * It seems that AR81xx controller can compute partial checksum.
2406  * The partial checksum value can be used to accelerate checksum
2407  * computation for fragmented TCP/UDP packets. Upper network stack
2408  * already takes advantage of the partial checksum value in IP
2409  * reassembly stage. But I'm not sure the correctness of the
2410  * partial hardware checksum assistance due to lack of data sheet.
2411  * In addition, the Rx feature of controller that requires copying
2412  * for every frames effectively nullifies one of most nice offload
2413  * capability of controller.
2414  */
2415 static void
2416 ale_rxcsum(struct ale_softc *sc, struct mbuf *m, uint32_t status)
2417 {
2418 	struct ifnet *ifp;
2419 	struct ip *ip;
2420 	char *p;
2421 
2422 	ifp = sc->ale_ifp;
2423 	m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2424 	if ((status & ALE_RD_IPCSUM_NOK) == 0)
2425 		m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2426 
2427 	if ((sc->ale_flags & ALE_FLAG_RXCSUM_BUG) == 0) {
2428 		if (((status & ALE_RD_IPV4_FRAG) == 0) &&
2429 		    ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) &&
2430 		    ((status & ALE_RD_TCP_UDPCSUM_NOK) == 0)) {
2431 			m->m_pkthdr.csum_flags |=
2432 			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2433 			m->m_pkthdr.csum_data = 0xffff;
2434 		}
2435 	} else {
2436 		if ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0 &&
2437 		    (status & ALE_RD_TCP_UDPCSUM_NOK) == 0) {
2438 			p = mtod(m, char *);
2439 			p += ETHER_HDR_LEN;
2440 			if ((status & ALE_RD_802_3) != 0)
2441 				p += LLC_SNAPFRAMELEN;
2442 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0 &&
2443 			    (status & ALE_RD_VLAN) != 0)
2444 				p += ETHER_VLAN_ENCAP_LEN;
2445 			ip = (struct ip *)p;
2446 			if (ip->ip_off != 0 && (status & ALE_RD_IPV4_DF) == 0)
2447 				return;
2448 			m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
2449 			    CSUM_PSEUDO_HDR;
2450 			m->m_pkthdr.csum_data = 0xffff;
2451 		}
2452 	}
2453 	/*
2454 	 * Don't mark bad checksum for TCP/UDP frames
2455 	 * as fragmented frames may always have set
2456 	 * bad checksummed bit of frame status.
2457 	 */
2458 }
2459 
2460 /* Process received frames. */
2461 static int
2462 ale_rxeof(struct ale_softc *sc, int count)
2463 {
2464 	struct ale_rx_page *rx_page;
2465 	struct rx_rs *rs;
2466 	struct ifnet *ifp;
2467 	struct mbuf *m;
2468 	uint32_t length, prod, seqno, status, vtags;
2469 	int prog;
2470 
2471 	ifp = sc->ale_ifp;
2472 	rx_page = &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
2473 	bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2474 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2475 	bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
2476 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2477 	/*
2478 	 * Don't directly access producer index as hardware may
2479 	 * update it while Rx handler is in progress. It would
2480 	 * be even better if there is a way to let hardware
2481 	 * know how far driver processed its received frames.
2482 	 * Alternatively, hardware could provide a way to disable
2483 	 * CMB updates until driver acknowledges the end of CMB
2484 	 * access.
2485 	 */
2486 	prod = *rx_page->cmb_addr;
2487 	for (prog = 0; prog < count; prog++) {
2488 		if (rx_page->cons >= prod)
2489 			break;
2490 		rs = (struct rx_rs *)(rx_page->page_addr + rx_page->cons);
2491 		seqno = ALE_RX_SEQNO(le32toh(rs->seqno));
2492 		if (sc->ale_cdata.ale_rx_seqno != seqno) {
2493 			/*
2494 			 * Normally I believe this should not happen unless
2495 			 * severe driver bug or corrupted memory. However
2496 			 * it seems to happen under certain conditions which
2497 			 * is triggered by abrupt Rx events such as initiation
2498 			 * of bulk transfer of remote host. It's not easy to
2499 			 * reproduce this and I doubt it could be related
2500 			 * with FIFO overflow of hardware or activity of Tx
2501 			 * CMB updates. I also remember similar behaviour
2502 			 * seen on RealTek 8139 which uses resembling Rx
2503 			 * scheme.
2504 			 */
2505 			if (bootverbose)
2506 				device_printf(sc->ale_dev,
2507 				    "garbled seq: %u, expected: %u -- "
2508 				    "resetting!\n", seqno,
2509 				    sc->ale_cdata.ale_rx_seqno);
2510 			return (EIO);
2511 		}
2512 		/* Frame received. */
2513 		sc->ale_cdata.ale_rx_seqno++;
2514 		length = ALE_RX_BYTES(le32toh(rs->length));
2515 		status = le32toh(rs->flags);
2516 		if ((status & ALE_RD_ERROR) != 0) {
2517 			/*
2518 			 * We want to pass the following frames to upper
2519 			 * layer regardless of error status of Rx return
2520 			 * status.
2521 			 *
2522 			 *  o IP/TCP/UDP checksum is bad.
2523 			 *  o frame length and protocol specific length
2524 			 *     does not match.
2525 			 */
2526 			if ((status & (ALE_RD_CRC | ALE_RD_CODE |
2527 			    ALE_RD_DRIBBLE | ALE_RD_RUNT | ALE_RD_OFLOW |
2528 			    ALE_RD_TRUNC)) != 0) {
2529 				ale_rx_update_page(sc, &rx_page, length, &prod);
2530 				continue;
2531 			}
2532 		}
2533 		/*
2534 		 * m_devget(9) is major bottle-neck of ale(4)(It comes
2535 		 * from hardware limitation). For jumbo frames we could
2536 		 * get a slightly better performance if driver use
2537 		 * m_getjcl(9) with proper buffer size argument. However
2538 		 * that would make code more complicated and I don't
2539 		 * think users would expect good Rx performance numbers
2540 		 * on these low-end consumer ethernet controller.
2541 		 */
2542 		m = m_devget((char *)(rs + 1), length - ETHER_CRC_LEN,
2543 		    ETHER_ALIGN, ifp, NULL);
2544 		if (m == NULL) {
2545 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2546 			ale_rx_update_page(sc, &rx_page, length, &prod);
2547 			continue;
2548 		}
2549 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
2550 		    (status & ALE_RD_IPV4) != 0)
2551 			ale_rxcsum(sc, m, status);
2552 		if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2553 		    (status & ALE_RD_VLAN) != 0) {
2554 			vtags = ALE_RX_VLAN(le32toh(rs->vtags));
2555 			m->m_pkthdr.ether_vtag = ALE_RX_VLAN_TAG(vtags);
2556 			m->m_flags |= M_VLANTAG;
2557 		}
2558 
2559 		/* Pass it to upper layer. */
2560 		ALE_UNLOCK(sc);
2561 		(*ifp->if_input)(ifp, m);
2562 		ALE_LOCK(sc);
2563 
2564 		ale_rx_update_page(sc, &rx_page, length, &prod);
2565 	}
2566 
2567 	return (count > 0 ? 0 : EAGAIN);
2568 }
2569 
2570 static void
2571 ale_tick(void *arg)
2572 {
2573 	struct ale_softc *sc;
2574 	struct mii_data *mii;
2575 
2576 	sc = (struct ale_softc *)arg;
2577 
2578 	ALE_LOCK_ASSERT(sc);
2579 
2580 	mii = device_get_softc(sc->ale_miibus);
2581 	mii_tick(mii);
2582 	ale_stats_update(sc);
2583 	/*
2584 	 * Reclaim Tx buffers that have been transferred. It's not
2585 	 * needed here but it would release allocated mbuf chains
2586 	 * faster and limit the maximum delay to a hz.
2587 	 */
2588 	ale_txeof(sc);
2589 	ale_watchdog(sc);
2590 	callout_reset(&sc->ale_tick_ch, hz, ale_tick, sc);
2591 }
2592 
2593 static void
2594 ale_reset(struct ale_softc *sc)
2595 {
2596 	uint32_t reg;
2597 	int i;
2598 
2599 	/* Initialize PCIe module. From Linux. */
2600 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2601 
2602 	CSR_WRITE_4(sc, ALE_MASTER_CFG, MASTER_RESET);
2603 	for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
2604 		DELAY(10);
2605 		if ((CSR_READ_4(sc, ALE_MASTER_CFG) & MASTER_RESET) == 0)
2606 			break;
2607 	}
2608 	if (i == 0)
2609 		device_printf(sc->ale_dev, "master reset timeout!\n");
2610 
2611 	for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
2612 		if ((reg = CSR_READ_4(sc, ALE_IDLE_STATUS)) == 0)
2613 			break;
2614 		DELAY(10);
2615 	}
2616 
2617 	if (i == 0)
2618 		device_printf(sc->ale_dev, "reset timeout(0x%08x)!\n", reg);
2619 }
2620 
2621 static void
2622 ale_init(void *xsc)
2623 {
2624 	struct ale_softc *sc;
2625 
2626 	sc = (struct ale_softc *)xsc;
2627 	ALE_LOCK(sc);
2628 	ale_init_locked(sc);
2629 	ALE_UNLOCK(sc);
2630 }
2631 
2632 static void
2633 ale_init_locked(struct ale_softc *sc)
2634 {
2635 	struct ifnet *ifp;
2636 	struct mii_data *mii;
2637 	uint8_t eaddr[ETHER_ADDR_LEN];
2638 	bus_addr_t paddr;
2639 	uint32_t reg, rxf_hi, rxf_lo;
2640 
2641 	ALE_LOCK_ASSERT(sc);
2642 
2643 	ifp = sc->ale_ifp;
2644 	mii = device_get_softc(sc->ale_miibus);
2645 
2646 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2647 		return;
2648 	/*
2649 	 * Cancel any pending I/O.
2650 	 */
2651 	ale_stop(sc);
2652 	/*
2653 	 * Reset the chip to a known state.
2654 	 */
2655 	ale_reset(sc);
2656 	/* Initialize Tx descriptors, DMA memory blocks. */
2657 	ale_init_rx_pages(sc);
2658 	ale_init_tx_ring(sc);
2659 
2660 	/* Reprogram the station address. */
2661 	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2662 	CSR_WRITE_4(sc, ALE_PAR0,
2663 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2664 	CSR_WRITE_4(sc, ALE_PAR1, eaddr[0] << 8 | eaddr[1]);
2665 	/*
2666 	 * Clear WOL status and disable all WOL feature as WOL
2667 	 * would interfere Rx operation under normal environments.
2668 	 */
2669 	CSR_READ_4(sc, ALE_WOL_CFG);
2670 	CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
2671 	/*
2672 	 * Set Tx descriptor/RXF0/CMB base addresses. They share
2673 	 * the same high address part of DMAable region.
2674 	 */
2675 	paddr = sc->ale_cdata.ale_tx_ring_paddr;
2676 	CSR_WRITE_4(sc, ALE_TPD_ADDR_HI, ALE_ADDR_HI(paddr));
2677 	CSR_WRITE_4(sc, ALE_TPD_ADDR_LO, ALE_ADDR_LO(paddr));
2678 	CSR_WRITE_4(sc, ALE_TPD_CNT,
2679 	    (ALE_TX_RING_CNT << TPD_CNT_SHIFT) & TPD_CNT_MASK);
2680 	/* Set Rx page base address, note we use single queue. */
2681 	paddr = sc->ale_cdata.ale_rx_page[0].page_paddr;
2682 	CSR_WRITE_4(sc, ALE_RXF0_PAGE0_ADDR_LO, ALE_ADDR_LO(paddr));
2683 	paddr = sc->ale_cdata.ale_rx_page[1].page_paddr;
2684 	CSR_WRITE_4(sc, ALE_RXF0_PAGE1_ADDR_LO, ALE_ADDR_LO(paddr));
2685 	/* Set Tx/Rx CMB addresses. */
2686 	paddr = sc->ale_cdata.ale_tx_cmb_paddr;
2687 	CSR_WRITE_4(sc, ALE_TX_CMB_ADDR_LO, ALE_ADDR_LO(paddr));
2688 	paddr = sc->ale_cdata.ale_rx_page[0].cmb_paddr;
2689 	CSR_WRITE_4(sc, ALE_RXF0_CMB0_ADDR_LO, ALE_ADDR_LO(paddr));
2690 	paddr = sc->ale_cdata.ale_rx_page[1].cmb_paddr;
2691 	CSR_WRITE_4(sc, ALE_RXF0_CMB1_ADDR_LO, ALE_ADDR_LO(paddr));
2692 	/* Mark RXF0 is valid. */
2693 	CSR_WRITE_1(sc, ALE_RXF0_PAGE0, RXF_VALID);
2694 	CSR_WRITE_1(sc, ALE_RXF0_PAGE1, RXF_VALID);
2695 	/*
2696 	 * No need to initialize RFX1/RXF2/RXF3. We don't use
2697 	 * multi-queue yet.
2698 	 */
2699 
2700 	/* Set Rx page size, excluding guard frame size. */
2701 	CSR_WRITE_4(sc, ALE_RXF_PAGE_SIZE, ALE_RX_PAGE_SZ);
2702 	/* Tell hardware that we're ready to load DMA blocks. */
2703 	CSR_WRITE_4(sc, ALE_DMA_BLOCK, DMA_BLOCK_LOAD);
2704 
2705 	/* Set Rx/Tx interrupt trigger threshold. */
2706 	CSR_WRITE_4(sc, ALE_INT_TRIG_THRESH, (1 << INT_TRIG_RX_THRESH_SHIFT) |
2707 	    (4 << INT_TRIG_TX_THRESH_SHIFT));
2708 	/*
2709 	 * XXX
2710 	 * Set interrupt trigger timer, its purpose and relation
2711 	 * with interrupt moderation mechanism is not clear yet.
2712 	 */
2713 	CSR_WRITE_4(sc, ALE_INT_TRIG_TIMER,
2714 	    ((ALE_USECS(10) << INT_TRIG_RX_TIMER_SHIFT) |
2715 	    (ALE_USECS(1000) << INT_TRIG_TX_TIMER_SHIFT)));
2716 
2717 	/* Configure interrupt moderation timer. */
2718 	reg = ALE_USECS(sc->ale_int_rx_mod) << IM_TIMER_RX_SHIFT;
2719 	reg |= ALE_USECS(sc->ale_int_tx_mod) << IM_TIMER_TX_SHIFT;
2720 	CSR_WRITE_4(sc, ALE_IM_TIMER, reg);
2721 	reg = CSR_READ_4(sc, ALE_MASTER_CFG);
2722 	reg &= ~(MASTER_CHIP_REV_MASK | MASTER_CHIP_ID_MASK);
2723 	reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB);
2724 	if (ALE_USECS(sc->ale_int_rx_mod) != 0)
2725 		reg |= MASTER_IM_RX_TIMER_ENB;
2726 	if (ALE_USECS(sc->ale_int_tx_mod) != 0)
2727 		reg |= MASTER_IM_TX_TIMER_ENB;
2728 	CSR_WRITE_4(sc, ALE_MASTER_CFG, reg);
2729 	CSR_WRITE_2(sc, ALE_INTR_CLR_TIMER, ALE_USECS(1000));
2730 
2731 	/* Set Maximum frame size of controller. */
2732 	if (ifp->if_mtu < ETHERMTU)
2733 		sc->ale_max_frame_size = ETHERMTU;
2734 	else
2735 		sc->ale_max_frame_size = ifp->if_mtu;
2736 	sc->ale_max_frame_size += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
2737 	    ETHER_CRC_LEN;
2738 	CSR_WRITE_4(sc, ALE_FRAME_SIZE, sc->ale_max_frame_size);
2739 	/* Configure IPG/IFG parameters. */
2740 	CSR_WRITE_4(sc, ALE_IPG_IFG_CFG,
2741 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
2742 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2743 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2744 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
2745 	/* Set parameters for half-duplex media. */
2746 	CSR_WRITE_4(sc, ALE_HDPX_CFG,
2747 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2748 	    HDPX_CFG_LCOL_MASK) |
2749 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2750 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2751 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2752 	    HDPX_CFG_ABEBT_MASK) |
2753 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2754 	    HDPX_CFG_JAMIPG_MASK));
2755 
2756 	/* Configure Tx jumbo frame parameters. */
2757 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
2758 		if (ifp->if_mtu < ETHERMTU)
2759 			reg = sc->ale_max_frame_size;
2760 		else if (ifp->if_mtu < 6 * 1024)
2761 			reg = (sc->ale_max_frame_size * 2) / 3;
2762 		else
2763 			reg = sc->ale_max_frame_size / 2;
2764 		CSR_WRITE_4(sc, ALE_TX_JUMBO_THRESH,
2765 		    roundup(reg, TX_JUMBO_THRESH_UNIT) >>
2766 		    TX_JUMBO_THRESH_UNIT_SHIFT);
2767 	}
2768 	/* Configure TxQ. */
2769 	reg = (128 << (sc->ale_dma_rd_burst >> DMA_CFG_RD_BURST_SHIFT))
2770 	    << TXQ_CFG_TX_FIFO_BURST_SHIFT;
2771 	reg |= (TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
2772 	    TXQ_CFG_TPD_BURST_MASK;
2773 	CSR_WRITE_4(sc, ALE_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE | TXQ_CFG_ENB);
2774 
2775 	/* Configure Rx jumbo frame & flow control parameters. */
2776 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
2777 		reg = roundup(sc->ale_max_frame_size, RX_JUMBO_THRESH_UNIT);
2778 		CSR_WRITE_4(sc, ALE_RX_JUMBO_THRESH,
2779 		    (((reg >> RX_JUMBO_THRESH_UNIT_SHIFT) <<
2780 		    RX_JUMBO_THRESH_MASK_SHIFT) & RX_JUMBO_THRESH_MASK) |
2781 		    ((RX_JUMBO_LKAH_DEFAULT << RX_JUMBO_LKAH_SHIFT) &
2782 		    RX_JUMBO_LKAH_MASK));
2783 		reg = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
2784 		rxf_hi = (reg * 7) / 10;
2785 		rxf_lo = (reg * 3)/ 10;
2786 		CSR_WRITE_4(sc, ALE_RX_FIFO_PAUSE_THRESH,
2787 		    ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
2788 		    RX_FIFO_PAUSE_THRESH_LO_MASK) |
2789 		    ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
2790 		    RX_FIFO_PAUSE_THRESH_HI_MASK));
2791 	}
2792 
2793 	/* Disable RSS. */
2794 	CSR_WRITE_4(sc, ALE_RSS_IDT_TABLE0, 0);
2795 	CSR_WRITE_4(sc, ALE_RSS_CPU, 0);
2796 
2797 	/* Configure RxQ. */
2798 	CSR_WRITE_4(sc, ALE_RXQ_CFG,
2799 	    RXQ_CFG_ALIGN_32 | RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
2800 
2801 	/* Configure DMA parameters. */
2802 	reg = 0;
2803 	if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0)
2804 		reg |= DMA_CFG_TXCMB_ENB;
2805 	CSR_WRITE_4(sc, ALE_DMA_CFG,
2806 	    DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI | DMA_CFG_RCB_64 |
2807 	    sc->ale_dma_rd_burst | reg |
2808 	    sc->ale_dma_wr_burst | DMA_CFG_RXCMB_ENB |
2809 	    ((DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
2810 	    DMA_CFG_RD_DELAY_CNT_MASK) |
2811 	    ((DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
2812 	    DMA_CFG_WR_DELAY_CNT_MASK));
2813 
2814 	/*
2815 	 * Hardware can be configured to issue SMB interrupt based
2816 	 * on programmed interval. Since there is a callout that is
2817 	 * invoked for every hz in driver we use that instead of
2818 	 * relying on periodic SMB interrupt.
2819 	 */
2820 	CSR_WRITE_4(sc, ALE_SMB_STAT_TIMER, ALE_USECS(0));
2821 	/* Clear MAC statistics. */
2822 	ale_stats_clear(sc);
2823 
2824 	/*
2825 	 * Configure Tx/Rx MACs.
2826 	 *  - Auto-padding for short frames.
2827 	 *  - Enable CRC generation.
2828 	 *  Actual reconfiguration of MAC for resolved speed/duplex
2829 	 *  is followed after detection of link establishment.
2830 	 *  AR81xx always does checksum computation regardless of
2831 	 *  MAC_CFG_RXCSUM_ENB bit. In fact, setting the bit will
2832 	 *  cause Rx handling issue for fragmented IP datagrams due
2833 	 *  to silicon bug.
2834 	 */
2835 	reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
2836 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2837 	    MAC_CFG_PREAMBLE_MASK);
2838 	if ((sc->ale_flags & ALE_FLAG_FASTETHER) != 0)
2839 		reg |= MAC_CFG_SPEED_10_100;
2840 	else
2841 		reg |= MAC_CFG_SPEED_1000;
2842 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2843 
2844 	/* Set up the receive filter. */
2845 	ale_rxfilter(sc);
2846 	ale_rxvlan(sc);
2847 
2848 	/* Acknowledge all pending interrupts and clear it. */
2849 	CSR_WRITE_4(sc, ALE_INTR_MASK, ALE_INTRS);
2850 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
2851 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0);
2852 
2853 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2854 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2855 
2856 	sc->ale_flags &= ~ALE_FLAG_LINK;
2857 	/* Switch to the current media. */
2858 	mii_mediachg(mii);
2859 
2860 	callout_reset(&sc->ale_tick_ch, hz, ale_tick, sc);
2861 }
2862 
2863 static void
2864 ale_stop(struct ale_softc *sc)
2865 {
2866 	struct ifnet *ifp;
2867 	struct ale_txdesc *txd;
2868 	uint32_t reg;
2869 	int i;
2870 
2871 	ALE_LOCK_ASSERT(sc);
2872 	/*
2873 	 * Mark the interface down and cancel the watchdog timer.
2874 	 */
2875 	ifp = sc->ale_ifp;
2876 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2877 	sc->ale_flags &= ~ALE_FLAG_LINK;
2878 	callout_stop(&sc->ale_tick_ch);
2879 	sc->ale_watchdog_timer = 0;
2880 	ale_stats_update(sc);
2881 	/* Disable interrupts. */
2882 	CSR_WRITE_4(sc, ALE_INTR_MASK, 0);
2883 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
2884 	/* Disable queue processing and DMA. */
2885 	reg = CSR_READ_4(sc, ALE_TXQ_CFG);
2886 	reg &= ~TXQ_CFG_ENB;
2887 	CSR_WRITE_4(sc, ALE_TXQ_CFG, reg);
2888 	reg = CSR_READ_4(sc, ALE_RXQ_CFG);
2889 	reg &= ~RXQ_CFG_ENB;
2890 	CSR_WRITE_4(sc, ALE_RXQ_CFG, reg);
2891 	reg = CSR_READ_4(sc, ALE_DMA_CFG);
2892 	reg &= ~(DMA_CFG_TXCMB_ENB | DMA_CFG_RXCMB_ENB);
2893 	CSR_WRITE_4(sc, ALE_DMA_CFG, reg);
2894 	DELAY(1000);
2895 	/* Stop Rx/Tx MACs. */
2896 	ale_stop_mac(sc);
2897 	/* Disable interrupts which might be touched in taskq handler. */
2898 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
2899 
2900 	/*
2901 	 * Free TX mbufs still in the queues.
2902 	 */
2903 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
2904 		txd = &sc->ale_cdata.ale_txdesc[i];
2905 		if (txd->tx_m != NULL) {
2906 			bus_dmamap_sync(sc->ale_cdata.ale_tx_tag,
2907 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2908 			bus_dmamap_unload(sc->ale_cdata.ale_tx_tag,
2909 			    txd->tx_dmamap);
2910 			m_freem(txd->tx_m);
2911 			txd->tx_m = NULL;
2912 		}
2913         }
2914 }
2915 
2916 static void
2917 ale_stop_mac(struct ale_softc *sc)
2918 {
2919 	uint32_t reg;
2920 	int i;
2921 
2922 	ALE_LOCK_ASSERT(sc);
2923 
2924 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
2925 	if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
2926 		reg &= ~(MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
2927 		CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2928 	}
2929 
2930 	for (i = ALE_TIMEOUT; i > 0; i--) {
2931 		reg = CSR_READ_4(sc, ALE_IDLE_STATUS);
2932 		if (reg == 0)
2933 			break;
2934 		DELAY(10);
2935 	}
2936 	if (i == 0)
2937 		device_printf(sc->ale_dev,
2938 		    "could not disable Tx/Rx MAC(0x%08x)!\n", reg);
2939 }
2940 
2941 static void
2942 ale_init_tx_ring(struct ale_softc *sc)
2943 {
2944 	struct ale_txdesc *txd;
2945 	int i;
2946 
2947 	ALE_LOCK_ASSERT(sc);
2948 
2949 	sc->ale_cdata.ale_tx_prod = 0;
2950 	sc->ale_cdata.ale_tx_cons = 0;
2951 	sc->ale_cdata.ale_tx_cnt = 0;
2952 
2953 	bzero(sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ);
2954 	bzero(sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ);
2955 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
2956 		txd = &sc->ale_cdata.ale_txdesc[i];
2957 		txd->tx_m = NULL;
2958 	}
2959 	*sc->ale_cdata.ale_tx_cmb = 0;
2960 	bus_dmamap_sync(sc->ale_cdata.ale_tx_cmb_tag,
2961 	    sc->ale_cdata.ale_tx_cmb_map,
2962 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2963 	bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
2964 	    sc->ale_cdata.ale_tx_ring_map,
2965 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2966 }
2967 
2968 static void
2969 ale_init_rx_pages(struct ale_softc *sc)
2970 {
2971 	struct ale_rx_page *rx_page;
2972 	int i;
2973 
2974 	ALE_LOCK_ASSERT(sc);
2975 
2976 	sc->ale_morework = 0;
2977 	sc->ale_cdata.ale_rx_seqno = 0;
2978 	sc->ale_cdata.ale_rx_curp = 0;
2979 
2980 	for (i = 0; i < ALE_RX_PAGES; i++) {
2981 		rx_page = &sc->ale_cdata.ale_rx_page[i];
2982 		bzero(rx_page->page_addr, sc->ale_pagesize);
2983 		bzero(rx_page->cmb_addr, ALE_RX_CMB_SZ);
2984 		rx_page->cons = 0;
2985 		*rx_page->cmb_addr = 0;
2986 		bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
2987 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2988 		bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2989 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2990 	}
2991 }
2992 
2993 static void
2994 ale_rxvlan(struct ale_softc *sc)
2995 {
2996 	struct ifnet *ifp;
2997 	uint32_t reg;
2998 
2999 	ALE_LOCK_ASSERT(sc);
3000 
3001 	ifp = sc->ale_ifp;
3002 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
3003 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3004 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3005 		reg |= MAC_CFG_VLAN_TAG_STRIP;
3006 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
3007 }
3008 
3009 static void
3010 ale_rxfilter(struct ale_softc *sc)
3011 {
3012 	struct ifnet *ifp;
3013 	struct ifmultiaddr *ifma;
3014 	uint32_t crc;
3015 	uint32_t mchash[2];
3016 	uint32_t rxcfg;
3017 
3018 	ALE_LOCK_ASSERT(sc);
3019 
3020 	ifp = sc->ale_ifp;
3021 
3022 	rxcfg = CSR_READ_4(sc, ALE_MAC_CFG);
3023 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3024 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
3025 		rxcfg |= MAC_CFG_BCAST;
3026 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3027 		if ((ifp->if_flags & IFF_PROMISC) != 0)
3028 			rxcfg |= MAC_CFG_PROMISC;
3029 		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3030 			rxcfg |= MAC_CFG_ALLMULTI;
3031 		CSR_WRITE_4(sc, ALE_MAR0, 0xFFFFFFFF);
3032 		CSR_WRITE_4(sc, ALE_MAR1, 0xFFFFFFFF);
3033 		CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
3034 		return;
3035 	}
3036 
3037 	/* Program new filter. */
3038 	bzero(mchash, sizeof(mchash));
3039 
3040 	if_maddr_rlock(ifp);
3041 	TAILQ_FOREACH(ifma, &sc->ale_ifp->if_multiaddrs, ifma_link) {
3042 		if (ifma->ifma_addr->sa_family != AF_LINK)
3043 			continue;
3044 		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
3045 		    ifma->ifma_addr), ETHER_ADDR_LEN);
3046 		mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3047 	}
3048 	if_maddr_runlock(ifp);
3049 
3050 	CSR_WRITE_4(sc, ALE_MAR0, mchash[0]);
3051 	CSR_WRITE_4(sc, ALE_MAR1, mchash[1]);
3052 	CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
3053 }
3054 
3055 static int
3056 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3057 {
3058 	int error, value;
3059 
3060 	if (arg1 == NULL)
3061 		return (EINVAL);
3062 	value = *(int *)arg1;
3063 	error = sysctl_handle_int(oidp, &value, 0, req);
3064 	if (error || req->newptr == NULL)
3065 		return (error);
3066 	if (value < low || value > high)
3067 		return (EINVAL);
3068         *(int *)arg1 = value;
3069 
3070         return (0);
3071 }
3072 
3073 static int
3074 sysctl_hw_ale_proc_limit(SYSCTL_HANDLER_ARGS)
3075 {
3076 	return (sysctl_int_range(oidp, arg1, arg2, req,
3077 	    ALE_PROC_MIN, ALE_PROC_MAX));
3078 }
3079 
3080 static int
3081 sysctl_hw_ale_int_mod(SYSCTL_HANDLER_ARGS)
3082 {
3083 
3084 	return (sysctl_int_range(oidp, arg1, arg2, req,
3085 	    ALE_IM_TIMER_MIN, ALE_IM_TIMER_MAX));
3086 }
3087