1 /*-
2  * SPDX-License-Identifier: ISC
3  *
4  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5  * Copyright (c) 2002-2006 Atheros Communications, Inc.
6  *
7  * Permission to use, copy, modify, and/or distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  *
19  * $FreeBSD$
20  */
21 #include "opt_ah.h"
22 
23 /*
24  * Chips specific device attachment and device info collection
25  * Connects Init Reg Vectors, EEPROM Data, and device Functions.
26  */
27 #include "ah.h"
28 #include "ah_internal.h"
29 #include "ah_devid.h"
30 
31 #include "ar5211/ar5211.h"
32 #include "ar5211/ar5211reg.h"
33 #include "ar5211/ar5211phy.h"
34 
35 #include "ah_eeprom_v3.h"
36 
37 /* Add static register initialization vectors */
38 #include "ar5211/boss.ini"
39 
40 /*
41  * Structure to hold 11b tuning information for Beanie/Sombrero
42  * 16 MHz mode, divider ratio = 198 = NP+S. N=16, S=4 or 6, P=12
43  */
44 typedef struct {
45 	uint32_t	refClkSel;	/* reference clock, 1 for 16 MHz */
46 	uint32_t	channelSelect;	/* P[7:4]S[3:0] bits */
47 	uint16_t	channel5111;	/* 11a channel for 5111 */
48 } CHAN_INFO_2GHZ;
49 
50 #define CI_2GHZ_INDEX_CORRECTION 19
51 static const CHAN_INFO_2GHZ chan2GHzData[] = {
52 	{ 1, 0x46, 96  },	/* 2312 -19 */
53 	{ 1, 0x46, 97  },	/* 2317 -18 */
54 	{ 1, 0x46, 98  },	/* 2322 -17 */
55 	{ 1, 0x46, 99  },	/* 2327 -16 */
56 	{ 1, 0x46, 100 },	/* 2332 -15 */
57 	{ 1, 0x46, 101 },	/* 2337 -14 */
58 	{ 1, 0x46, 102 },	/* 2342 -13 */
59 	{ 1, 0x46, 103 },	/* 2347 -12 */
60 	{ 1, 0x46, 104 },	/* 2352 -11 */
61 	{ 1, 0x46, 105 },	/* 2357 -10 */
62 	{ 1, 0x46, 106 },	/* 2362  -9 */
63 	{ 1, 0x46, 107 },	/* 2367  -8 */
64 	{ 1, 0x46, 108 },	/* 2372  -7 */
65 	/* index -6 to 0 are pad to make this a nolookup table */
66 	{ 1, 0x46, 116 },	/*       -6 */
67 	{ 1, 0x46, 116 },	/*       -5 */
68 	{ 1, 0x46, 116 },	/*       -4 */
69 	{ 1, 0x46, 116 },	/*       -3 */
70 	{ 1, 0x46, 116 },	/*       -2 */
71 	{ 1, 0x46, 116 },	/*       -1 */
72 	{ 1, 0x46, 116 },	/*        0 */
73 	{ 1, 0x46, 116 },	/* 2412   1 */
74 	{ 1, 0x46, 117 },	/* 2417   2 */
75 	{ 1, 0x46, 118 },	/* 2422   3 */
76 	{ 1, 0x46, 119 },	/* 2427   4 */
77 	{ 1, 0x46, 120 },	/* 2432   5 */
78 	{ 1, 0x46, 121 },	/* 2437   6 */
79 	{ 1, 0x46, 122 },	/* 2442   7 */
80 	{ 1, 0x46, 123 },	/* 2447   8 */
81 	{ 1, 0x46, 124 },	/* 2452   9 */
82 	{ 1, 0x46, 125 },	/* 2457  10 */
83 	{ 1, 0x46, 126 },	/* 2462  11 */
84 	{ 1, 0x46, 127 },	/* 2467  12 */
85 	{ 1, 0x46, 128 },	/* 2472  13 */
86 	{ 1, 0x44, 124 },	/* 2484  14 */
87 	{ 1, 0x46, 136 },	/* 2512  15 */
88 	{ 1, 0x46, 140 },	/* 2532  16 */
89 	{ 1, 0x46, 144 },	/* 2552  17 */
90 	{ 1, 0x46, 148 },	/* 2572  18 */
91 	{ 1, 0x46, 152 },	/* 2592  19 */
92 	{ 1, 0x46, 156 },	/* 2612  20 */
93 	{ 1, 0x46, 160 },	/* 2632  21 */
94 	{ 1, 0x46, 164 },	/* 2652  22 */
95 	{ 1, 0x46, 168 },	/* 2672  23 */
96 	{ 1, 0x46, 172 },	/* 2692  24 */
97 	{ 1, 0x46, 176 },	/* 2712  25 */
98 	{ 1, 0x46, 180 } 	/* 2732  26 */
99 };
100 
101 /* Power timeouts in usec to wait for chip to wake-up. */
102 #define POWER_UP_TIME	2000
103 
104 #define	DELAY_PLL_SETTLE	300		/* 300 us */
105 #define	DELAY_BASE_ACTIVATE	100		/* 100 us */
106 
107 #define NUM_RATES	8
108 
109 static HAL_BOOL ar5211SetResetReg(struct ath_hal *ah, uint32_t resetMask);
110 static HAL_BOOL ar5211SetChannel(struct ath_hal *,
111 		const struct ieee80211_channel *);
112 static int16_t ar5211RunNoiseFloor(struct ath_hal *,
113 		uint8_t runTime, int16_t startingNF);
114 static HAL_BOOL ar5211IsNfGood(struct ath_hal *,
115 		struct ieee80211_channel *chan);
116 static HAL_BOOL ar5211SetRf6and7(struct ath_hal *,
117 		const struct ieee80211_channel *chan);
118 static HAL_BOOL ar5211SetBoardValues(struct ath_hal *,
119 		const struct ieee80211_channel *chan);
120 static void ar5211SetPowerTable(struct ath_hal *,
121 		PCDACS_EEPROM *pSrcStruct, uint16_t channel);
122 static HAL_BOOL ar5211SetTransmitPower(struct ath_hal *,
123 		const struct ieee80211_channel *);
124 static void ar5211SetRateTable(struct ath_hal *,
125 		RD_EDGES_POWER *pRdEdgesPower, TRGT_POWER_INFO *pPowerInfo,
126 		uint16_t numChannels, const struct ieee80211_channel *chan);
127 static uint16_t ar5211GetScaledPower(uint16_t channel, uint16_t pcdacValue,
128 		const PCDACS_EEPROM *pSrcStruct);
129 static HAL_BOOL ar5211FindValueInList(uint16_t channel, uint16_t pcdacValue,
130 		const PCDACS_EEPROM *pSrcStruct, uint16_t *powerValue);
131 static uint16_t ar5211GetInterpolatedValue(uint16_t target,
132 		uint16_t srcLeft, uint16_t srcRight,
133 		uint16_t targetLeft, uint16_t targetRight, HAL_BOOL scaleUp);
134 static void ar5211GetLowerUpperValues(uint16_t value,
135 		const uint16_t *pList, uint16_t listSize,
136 		uint16_t *pLowerValue, uint16_t *pUpperValue);
137 static void ar5211GetLowerUpperPcdacs(uint16_t pcdac,
138 		uint16_t channel, const PCDACS_EEPROM *pSrcStruct,
139 		uint16_t *pLowerPcdac, uint16_t *pUpperPcdac);
140 
141 static void ar5211SetRfgain(struct ath_hal *, const GAIN_VALUES *);
142 static void ar5211RequestRfgain(struct ath_hal *);
143 static HAL_BOOL ar5211InvalidGainReadback(struct ath_hal *, GAIN_VALUES *);
144 static HAL_BOOL ar5211IsGainAdjustNeeded(struct ath_hal *, const GAIN_VALUES *);
145 static int32_t ar5211AdjustGain(struct ath_hal *, GAIN_VALUES *);
146 static void ar5211SetOperatingMode(struct ath_hal *, int opmode);
147 
148 /*
149  * Places the device in and out of reset and then places sane
150  * values in the registers based on EEPROM config, initialization
151  * vectors (as determined by the mode), and station configuration
152  *
153  * bChannelChange is used to preserve DMA/PCU registers across
154  * a HW Reset during channel change.
155  */
156 HAL_BOOL
157 ar5211Reset(struct ath_hal *ah, HAL_OPMODE opmode,
158 	struct ieee80211_channel *chan, HAL_BOOL bChannelChange,
159 	HAL_RESET_TYPE resetType,
160 	HAL_STATUS *status)
161 {
162 uint32_t softLedCfg, softLedState;
163 #define	N(a)	(sizeof (a) /sizeof (a[0]))
164 #define	FAIL(_code)	do { ecode = _code; goto bad; } while (0)
165 	struct ath_hal_5211 *ahp = AH5211(ah);
166 	HAL_CHANNEL_INTERNAL *ichan;
167 	uint32_t i, ledstate;
168 	HAL_STATUS ecode;
169 	int q;
170 
171 	uint32_t		data, synthDelay;
172 	uint32_t		macStaId1;
173 	uint16_t		modesIndex = 0, freqIndex = 0;
174 	uint32_t		saveFrameSeqCount[AR_NUM_DCU];
175 	uint32_t		saveTsfLow = 0, saveTsfHigh = 0;
176 	uint32_t		saveDefAntenna;
177 
178 	HALDEBUG(ah, HAL_DEBUG_RESET,
179 	     "%s: opmode %u channel %u/0x%x %s channel\n",
180 	     __func__, opmode, chan->ic_freq, chan->ic_flags,
181 	     bChannelChange ? "change" : "same");
182 
183 	OS_MARK(ah, AH_MARK_RESET, bChannelChange);
184 	/*
185 	 * Map public channel to private.
186 	 */
187 	ichan = ath_hal_checkchannel(ah, chan);
188 	if (ichan == AH_NULL)
189 		FAIL(HAL_EINVAL);
190 	switch (opmode) {
191 	case HAL_M_STA:
192 	case HAL_M_IBSS:
193 	case HAL_M_HOSTAP:
194 	case HAL_M_MONITOR:
195 		break;
196 	default:
197 		HALDEBUG(ah, HAL_DEBUG_ANY,
198 		    "%s: invalid operating mode %u\n", __func__, opmode);
199 		FAIL(HAL_EINVAL);
200 		break;
201 	}
202 	HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3);
203 
204 	/* Preserve certain DMA hardware registers on a channel change */
205 	if (bChannelChange) {
206 		/*
207 		 * Need to save/restore the TSF because of an issue
208 		 * that accelerates the TSF during a chip reset.
209 		 *
210 		 * We could use system timer routines to more
211 		 * accurately restore the TSF, but
212 		 * 1. Timer routines on certain platforms are
213 		 *	not accurate enough (e.g. 1 ms resolution).
214 		 * 2. It would still not be accurate.
215 		 *
216 		 * The most important aspect of this workaround,
217 		 * is that, after reset, the TSF is behind
218 		 * other STAs TSFs.  This will allow the STA to
219 		 * properly resynchronize its TSF in adhoc mode.
220 		 */
221 		saveTsfLow  = OS_REG_READ(ah, AR_TSF_L32);
222 		saveTsfHigh = OS_REG_READ(ah, AR_TSF_U32);
223 
224 		/* Read frame sequence count */
225 		if (AH_PRIVATE(ah)->ah_macVersion >= AR_SREV_VERSION_OAHU) {
226 			saveFrameSeqCount[0] = OS_REG_READ(ah, AR_D0_SEQNUM);
227 		} else {
228 			for (i = 0; i < AR_NUM_DCU; i++)
229 				saveFrameSeqCount[i] = OS_REG_READ(ah, AR_DSEQNUM(i));
230 		}
231 		if (!IEEE80211_IS_CHAN_DFS(chan))
232 			chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT;
233 	}
234 
235 	/*
236 	 * Preserve the antenna on a channel change
237 	 */
238 	saveDefAntenna = OS_REG_READ(ah, AR_DEF_ANTENNA);
239 	if (saveDefAntenna == 0)
240 		saveDefAntenna = 1;
241 
242 	/* Save hardware flag before chip reset clears the register */
243 	macStaId1 = OS_REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
244 
245 	/* Save led state from pci config register */
246 	ledstate = OS_REG_READ(ah, AR_PCICFG) &
247 		(AR_PCICFG_LEDCTL | AR_PCICFG_LEDMODE | AR_PCICFG_LEDBLINK |
248 		 AR_PCICFG_LEDSLOW);
249 	softLedCfg = OS_REG_READ(ah, AR_GPIOCR);
250 	softLedState = OS_REG_READ(ah, AR_GPIODO);
251 
252 	if (!ar5211ChipReset(ah, chan)) {
253 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__);
254 		FAIL(HAL_EIO);
255 	}
256 
257 	/* Setup the indices for the next set of register array writes */
258 	if (IEEE80211_IS_CHAN_5GHZ(chan)) {
259 		freqIndex = 1;
260 		if (IEEE80211_IS_CHAN_TURBO(chan))
261 			modesIndex = 2;
262 		else if (IEEE80211_IS_CHAN_A(chan))
263 			modesIndex = 1;
264 		else {
265 			HALDEBUG(ah, HAL_DEBUG_ANY,
266 			    "%s: invalid channel %u/0x%x\n",
267 			    __func__, chan->ic_freq, chan->ic_flags);
268 			FAIL(HAL_EINVAL);
269 		}
270 	} else {
271 		freqIndex = 2;
272 		if (IEEE80211_IS_CHAN_B(chan))
273 			modesIndex = 3;
274 		else if (IEEE80211_IS_CHAN_PUREG(chan))
275 			modesIndex = 4;
276 		else {
277 			HALDEBUG(ah, HAL_DEBUG_ANY,
278 			    "%s: invalid channel %u/0x%x\n",
279 			    __func__, chan->ic_freq, chan->ic_flags);
280 			FAIL(HAL_EINVAL);
281 		}
282 	}
283 
284 	/* Set correct Baseband to analog shift setting to access analog chips. */
285 	if (AH_PRIVATE(ah)->ah_macVersion >= AR_SREV_VERSION_OAHU) {
286 		OS_REG_WRITE(ah, AR_PHY_BASE, 0x00000007);
287 	} else {
288 		OS_REG_WRITE(ah, AR_PHY_BASE, 0x00000047);
289 	}
290 
291 	/* Write parameters specific to AR5211 */
292 	if (AH_PRIVATE(ah)->ah_macVersion >= AR_SREV_VERSION_OAHU) {
293 		if (IEEE80211_IS_CHAN_2GHZ(chan) &&
294 		    AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3_1) {
295 			HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
296 			uint32_t ob2GHz, db2GHz;
297 
298 			if (IEEE80211_IS_CHAN_CCK(chan)) {
299 				ob2GHz = ee->ee_ob2GHz[0];
300 				db2GHz = ee->ee_db2GHz[0];
301 			} else {
302 				ob2GHz = ee->ee_ob2GHz[1];
303 				db2GHz = ee->ee_db2GHz[1];
304 			}
305 			ob2GHz = ath_hal_reverseBits(ob2GHz, 3);
306 			db2GHz = ath_hal_reverseBits(db2GHz, 3);
307 			ar5211Mode2_4[25][freqIndex] =
308 				(ar5211Mode2_4[25][freqIndex] & ~0xC0) |
309 					((ob2GHz << 6) & 0xC0);
310 			ar5211Mode2_4[26][freqIndex] =
311 				(ar5211Mode2_4[26][freqIndex] & ~0x0F) |
312 					(((ob2GHz >> 2) & 0x1) |
313 					 ((db2GHz << 1) & 0x0E));
314 		}
315 		for (i = 0; i < N(ar5211Mode2_4); i++)
316 			OS_REG_WRITE(ah, ar5211Mode2_4[i][0],
317 				ar5211Mode2_4[i][freqIndex]);
318 	}
319 
320 	/* Write the analog registers 6 and 7 before other config */
321 	ar5211SetRf6and7(ah, chan);
322 
323 	/* Write registers that vary across all modes */
324 	for (i = 0; i < N(ar5211Modes); i++)
325 		OS_REG_WRITE(ah, ar5211Modes[i][0], ar5211Modes[i][modesIndex]);
326 
327 	/* Write RFGain Parameters that differ between 2.4 and 5 GHz */
328 	for (i = 0; i < N(ar5211BB_RfGain); i++)
329 		OS_REG_WRITE(ah, ar5211BB_RfGain[i][0], ar5211BB_RfGain[i][freqIndex]);
330 
331 	/* Write Common Array Parameters */
332 	for (i = 0; i < N(ar5211Common); i++) {
333 		uint32_t reg = ar5211Common[i][0];
334 		/* On channel change, don't reset the PCU registers */
335 		if (!(bChannelChange && (0x8000 <= reg && reg < 0x9000)))
336 			OS_REG_WRITE(ah, reg, ar5211Common[i][1]);
337 	}
338 
339 	/* Fix pre-AR5211 register values, this includes AR5311s. */
340 	if (AH_PRIVATE(ah)->ah_macVersion < AR_SREV_VERSION_OAHU) {
341 		/*
342 		 * The TX and RX latency values have changed locations
343 		 * within the USEC register in AR5211.  Since they're
344 		 * set via the .ini, for both AR5211 and AR5311, they
345 		 * are written properly here for AR5311.
346 		 */
347 		data = OS_REG_READ(ah, AR_USEC);
348 		/* Must be 0 for proper write in AR5311 */
349 		HALASSERT((data & 0x00700000) == 0);
350 		OS_REG_WRITE(ah, AR_USEC,
351 			(data & (AR_USEC_M | AR_USEC_32_M | AR5311_USEC_TX_LAT_M)) |
352 			((29 << AR5311_USEC_RX_LAT_S) & AR5311_USEC_RX_LAT_M));
353 		/* The following registers exist only on AR5311. */
354 		OS_REG_WRITE(ah, AR5311_QDCLKGATE, 0);
355 
356 		/* Set proper ADC & DAC delays for AR5311. */
357 		OS_REG_WRITE(ah, 0x00009878, 0x00000008);
358 
359 		/* Enable the PCU FIFO corruption ECO on AR5311. */
360 		OS_REG_WRITE(ah, AR_DIAG_SW,
361 			OS_REG_READ(ah, AR_DIAG_SW) | AR5311_DIAG_SW_USE_ECO);
362 	}
363 
364 	/* Restore certain DMA hardware registers on a channel change */
365 	if (bChannelChange) {
366 		/* Restore TSF */
367 		OS_REG_WRITE(ah, AR_TSF_L32, saveTsfLow);
368 		OS_REG_WRITE(ah, AR_TSF_U32, saveTsfHigh);
369 
370 		if (AH_PRIVATE(ah)->ah_macVersion >= AR_SREV_VERSION_OAHU) {
371 			OS_REG_WRITE(ah, AR_D0_SEQNUM, saveFrameSeqCount[0]);
372 		} else {
373 			for (i = 0; i < AR_NUM_DCU; i++)
374 				OS_REG_WRITE(ah, AR_DSEQNUM(i), saveFrameSeqCount[i]);
375 		}
376 	}
377 
378 	OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr));
379 	OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4)
380 		| macStaId1
381 	);
382 	ar5211SetOperatingMode(ah, opmode);
383 
384 	/* Restore previous led state */
385 	OS_REG_WRITE(ah, AR_PCICFG, OS_REG_READ(ah, AR_PCICFG) | ledstate);
386 	OS_REG_WRITE(ah, AR_GPIOCR, softLedCfg);
387 	OS_REG_WRITE(ah, AR_GPIODO, softLedState);
388 
389 	/* Restore previous antenna */
390 	OS_REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
391 
392 	OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
393 	OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4));
394 
395 	/* Restore bmiss rssi & count thresholds */
396 	OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr);
397 
398 	OS_REG_WRITE(ah, AR_ISR, ~0);		/* cleared on write */
399 
400 	/*
401 	 * for pre-Production Oahu only.
402 	 * Disable clock gating in all DMA blocks. Helps when using
403 	 * 11B and AES but results in higher power consumption.
404 	 */
405 	if (AH_PRIVATE(ah)->ah_macVersion == AR_SREV_VERSION_OAHU &&
406 	    AH_PRIVATE(ah)->ah_macRev < AR_SREV_OAHU_PROD) {
407 		OS_REG_WRITE(ah, AR_CFG,
408 			OS_REG_READ(ah, AR_CFG) | AR_CFG_CLK_GATE_DIS);
409 	}
410 
411 	/* Setup the transmit power values. */
412 	if (!ar5211SetTransmitPower(ah, chan)) {
413 		HALDEBUG(ah, HAL_DEBUG_ANY,
414 		    "%s: error init'ing transmit power\n", __func__);
415 		FAIL(HAL_EIO);
416 	}
417 
418 	/*
419 	 * Configurable OFDM spoofing for 11n compatibility; used
420 	 * only when operating in station mode.
421 	 */
422 	if (opmode != HAL_M_HOSTAP &&
423 	    (AH_PRIVATE(ah)->ah_11nCompat & HAL_DIAG_11N_SERVICES) != 0) {
424 		/* NB: override the .ini setting */
425 		OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL,
426 			AR_PHY_FRAME_CTL_ERR_SERV,
427 			MS(AH_PRIVATE(ah)->ah_11nCompat, HAL_DIAG_11N_SERVICES)&1);
428 	}
429 
430 	/* Setup board specific options for EEPROM version 3 */
431 	ar5211SetBoardValues(ah, chan);
432 
433 	if (!ar5211SetChannel(ah, chan)) {
434 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set channel\n",
435 		    __func__);
436 		FAIL(HAL_EIO);
437 	}
438 
439 	/* Activate the PHY */
440 	if (AH_PRIVATE(ah)->ah_devid == AR5211_FPGA11B &&
441 	    IEEE80211_IS_CHAN_2GHZ(chan))
442 		OS_REG_WRITE(ah, 0xd808, 0x502); /* required for FPGA */
443 	OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
444 
445 	/*
446 	 * Wait for the frequency synth to settle (synth goes on
447 	 * via AR_PHY_ACTIVE_EN).  Read the phy active delay register.
448 	 * Value is in 100ns increments.
449 	 */
450 	data = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_M;
451 	if (IEEE80211_IS_CHAN_CCK(chan)) {
452 		synthDelay = (4 * data) / 22;
453 	} else {
454 		synthDelay = data / 10;
455 	}
456 	/*
457 	 * There is an issue if the AP starts the calibration before
458 	 * the baseband timeout completes.  This could result in the
459 	 * rxclear false triggering.  Add an extra delay to ensure this
460 	 * this does not happen.
461 	 */
462 	OS_DELAY(synthDelay + DELAY_BASE_ACTIVATE);
463 
464 	/* Calibrate the AGC and wait for completion. */
465 	OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL,
466 		 OS_REG_READ(ah, AR_PHY_AGC_CONTROL) | AR_PHY_AGC_CONTROL_CAL);
467 	(void) ath_hal_wait(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL, 0);
468 
469 	/* Perform noise floor and set status */
470 	if (!ar5211CalNoiseFloor(ah, chan)) {
471 		if (!IEEE80211_IS_CHAN_CCK(chan))
472 			chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
473 		HALDEBUG(ah, HAL_DEBUG_ANY,
474 		    "%s: noise floor calibration failed\n", __func__);
475 		FAIL(HAL_EIO);
476 	}
477 
478 	/* Start IQ calibration w/ 2^(INIT_IQCAL_LOG_COUNT_MAX+1) samples */
479 	if (ahp->ah_calibrationTime != 0) {
480 		OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4,
481 			AR_PHY_TIMING_CTRL4_DO_IQCAL | (INIT_IQCAL_LOG_COUNT_MAX << AR_PHY_TIMING_CTRL4_IQCAL_LOG_COUNT_MAX_S));
482 		ahp->ah_bIQCalibration = AH_TRUE;
483 	}
484 
485 	/* set 1:1 QCU to DCU mapping for all queues */
486 	for (q = 0; q < AR_NUM_DCU; q++)
487 		OS_REG_WRITE(ah, AR_DQCUMASK(q), 1<<q);
488 
489 	for (q = 0; q < HAL_NUM_TX_QUEUES; q++)
490 		ar5211ResetTxQueue(ah, q);
491 
492 	/* Setup QCU0 transmit interrupt masks (TX_ERR, TX_OK, TX_DESC, TX_URN) */
493 	OS_REG_WRITE(ah, AR_IMR_S0,
494 		 (AR_IMR_S0_QCU_TXOK & AR_QCU_0) |
495 		 (AR_IMR_S0_QCU_TXDESC & (AR_QCU_0<<AR_IMR_S0_QCU_TXDESC_S)));
496 	OS_REG_WRITE(ah, AR_IMR_S1, (AR_IMR_S1_QCU_TXERR & AR_QCU_0));
497 	OS_REG_WRITE(ah, AR_IMR_S2, (AR_IMR_S2_QCU_TXURN & AR_QCU_0));
498 
499 	/*
500 	 * GBL_EIFS must always be written after writing
501 	 *		to any QCUMASK register.
502 	 */
503 	OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, OS_REG_READ(ah, AR_D_GBL_IFS_EIFS));
504 
505 	/* Now set up the Interrupt Mask Register and save it for future use */
506 	OS_REG_WRITE(ah, AR_IMR, INIT_INTERRUPT_MASK);
507 	ahp->ah_maskReg = INIT_INTERRUPT_MASK;
508 
509 	/* Enable bus error interrupts */
510 	OS_REG_WRITE(ah, AR_IMR_S2, OS_REG_READ(ah, AR_IMR_S2) |
511 		 AR_IMR_S2_MCABT | AR_IMR_S2_SSERR | AR_IMR_S2_DPERR);
512 
513 	/* Enable interrupts specific to AP */
514 	if (opmode == HAL_M_HOSTAP) {
515 		OS_REG_WRITE(ah, AR_IMR, OS_REG_READ(ah, AR_IMR) | AR_IMR_MIB);
516 		ahp->ah_maskReg |= AR_IMR_MIB;
517 	}
518 
519 	if (AH_PRIVATE(ah)->ah_rfkillEnabled)
520 		ar5211EnableRfKill(ah);
521 
522 	/*
523 	 * Writing to AR_BEACON will start timers. Hence it should
524 	 * be the last register to be written. Do not reset tsf, do
525 	 * not enable beacons at this point, but preserve other values
526 	 * like beaconInterval.
527 	 */
528 	OS_REG_WRITE(ah, AR_BEACON,
529 		(OS_REG_READ(ah, AR_BEACON) &~ (AR_BEACON_EN | AR_BEACON_RESET_TSF)));
530 
531 	/* Restore user-specified slot time and timeouts */
532 	if (ahp->ah_sifstime != (u_int) -1)
533 		ar5211SetSifsTime(ah, ahp->ah_sifstime);
534 	if (ahp->ah_slottime != (u_int) -1)
535 		ar5211SetSlotTime(ah, ahp->ah_slottime);
536 	if (ahp->ah_acktimeout != (u_int) -1)
537 		ar5211SetAckTimeout(ah, ahp->ah_acktimeout);
538 	if (ahp->ah_ctstimeout != (u_int) -1)
539 		ar5211SetCTSTimeout(ah, ahp->ah_ctstimeout);
540 	if (AH_PRIVATE(ah)->ah_diagreg != 0)
541 		OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
542 
543 	AH_PRIVATE(ah)->ah_opmode = opmode;	/* record operating mode */
544 
545 	HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__);
546 
547 	return AH_TRUE;
548 bad:
549 	if (status != AH_NULL)
550 		*status = ecode;
551 	return AH_FALSE;
552 #undef FAIL
553 #undef N
554 }
555 
556 /*
557  * Places the PHY and Radio chips into reset.  A full reset
558  * must be called to leave this state.  The PCI/MAC/PCU are
559  * not placed into reset as we must receive interrupt to
560  * re-enable the hardware.
561  */
562 HAL_BOOL
563 ar5211PhyDisable(struct ath_hal *ah)
564 {
565 	return ar5211SetResetReg(ah, AR_RC_BB);
566 }
567 
568 /*
569  * Places all of hardware into reset
570  */
571 HAL_BOOL
572 ar5211Disable(struct ath_hal *ah)
573 {
574 	if (!ar5211SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
575 		return AH_FALSE;
576 	/*
577 	 * Reset the HW - PCI must be reset after the rest of the
578 	 * device has been reset.
579 	 */
580 	if (!ar5211SetResetReg(ah, AR_RC_MAC | AR_RC_BB | AR_RC_PCI))
581 		return AH_FALSE;
582 	OS_DELAY(2100);	   /* 8245 @ 96Mhz hangs with 2000us. */
583 
584 	return AH_TRUE;
585 }
586 
587 /*
588  * Places the hardware into reset and then pulls it out of reset
589  *
590  * Only write the PLL if we're changing to or from CCK mode
591  *
592  * Attach calls with channelFlags = 0, as the coldreset should have
593  * us in the correct mode and we cannot check the hwchannel flags.
594  */
595 HAL_BOOL
596 ar5211ChipReset(struct ath_hal *ah, const struct ieee80211_channel *chan)
597 {
598 	if (!ar5211SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
599 		return AH_FALSE;
600 
601 	/* NB: called from attach with chan null */
602 	if (chan != AH_NULL) {
603 		/* Set CCK and Turbo modes correctly */
604 		OS_REG_WRITE(ah, AR_PHY_TURBO, IEEE80211_IS_CHAN_TURBO(chan) ?
605 		    AR_PHY_FC_TURBO_MODE | AR_PHY_FC_TURBO_SHORT : 0);
606 		if (IEEE80211_IS_CHAN_B(chan)) {
607 			OS_REG_WRITE(ah, AR5211_PHY_MODE,
608 			    AR5211_PHY_MODE_CCK | AR5211_PHY_MODE_RF2GHZ);
609 			OS_REG_WRITE(ah, AR_PHY_PLL_CTL, AR_PHY_PLL_CTL_44);
610 			/* Wait for the PLL to settle */
611 			OS_DELAY(DELAY_PLL_SETTLE);
612 		} else if (AH_PRIVATE(ah)->ah_devid == AR5211_DEVID) {
613 			OS_REG_WRITE(ah, AR_PHY_PLL_CTL, AR_PHY_PLL_CTL_40);
614 			OS_DELAY(DELAY_PLL_SETTLE);
615 			OS_REG_WRITE(ah, AR5211_PHY_MODE,
616 			    AR5211_PHY_MODE_OFDM | (IEEE80211_IS_CHAN_2GHZ(chan) ?
617 				AR5211_PHY_MODE_RF2GHZ :
618 				AR5211_PHY_MODE_RF5GHZ));
619 		}
620 	}
621 
622 	/*
623 	 * Reset the HW - PCI must be reset after the rest of the
624 	 * device has been reset
625 	 */
626 	if (!ar5211SetResetReg(ah, AR_RC_MAC | AR_RC_BB | AR_RC_PCI))
627 		return AH_FALSE;
628 	OS_DELAY(2100);	   /* 8245 @ 96Mhz hangs with 2000us. */
629 
630 	/* Bring out of sleep mode (AGAIN) */
631 	if (!ar5211SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
632 		return AH_FALSE;
633 
634 	/* Clear warm reset register */
635 	return ar5211SetResetReg(ah, 0);
636 }
637 
638 /*
639  * Recalibrate the lower PHY chips to account for temperature/environment
640  * changes.
641  */
642 HAL_BOOL
643 ar5211PerCalibrationN(struct ath_hal *ah,  struct ieee80211_channel *chan,
644 	u_int chainMask, HAL_BOOL longCal, HAL_BOOL *isCalDone)
645 {
646 	struct ath_hal_5211 *ahp = AH5211(ah);
647 	HAL_CHANNEL_INTERNAL *ichan;
648 	int32_t qCoff, qCoffDenom;
649 	uint32_t data;
650 	int32_t iqCorrMeas;
651 	int32_t iCoff, iCoffDenom;
652 	uint32_t powerMeasQ, powerMeasI;
653 
654 	ichan = ath_hal_checkchannel(ah, chan);
655 	if (ichan == AH_NULL) {
656 		HALDEBUG(ah, HAL_DEBUG_ANY,
657 		    "%s: invalid channel %u/0x%x; no mapping\n",
658 		    __func__, chan->ic_freq, chan->ic_flags);
659 		return AH_FALSE;
660 	}
661 	/* IQ calibration in progress. Check to see if it has finished. */
662 	if (ahp->ah_bIQCalibration &&
663 	    !(OS_REG_READ(ah, AR_PHY_TIMING_CTRL4) & AR_PHY_TIMING_CTRL4_DO_IQCAL)) {
664 		/* IQ Calibration has finished. */
665 		ahp->ah_bIQCalibration = AH_FALSE;
666 
667 		/* Read calibration results. */
668 		powerMeasI = OS_REG_READ(ah, AR_PHY_IQCAL_RES_PWR_MEAS_I);
669 		powerMeasQ = OS_REG_READ(ah, AR_PHY_IQCAL_RES_PWR_MEAS_Q);
670 		iqCorrMeas = OS_REG_READ(ah, AR_PHY_IQCAL_RES_IQ_CORR_MEAS);
671 
672 		/*
673 		 * Prescale these values to remove 64-bit operation requirement at the loss
674 		 * of a little precision.
675 		 */
676 		iCoffDenom = (powerMeasI / 2 + powerMeasQ / 2) / 128;
677 		qCoffDenom = powerMeasQ / 64;
678 
679 		/* Protect against divide-by-0. */
680 		if (iCoffDenom != 0 && qCoffDenom != 0) {
681 			iCoff = (-iqCorrMeas) / iCoffDenom;
682 			/* IQCORR_Q_I_COFF is a signed 6 bit number */
683 			iCoff = iCoff & 0x3f;
684 
685 			qCoff = ((int32_t)powerMeasI / qCoffDenom) - 64;
686 			/* IQCORR_Q_Q_COFF is a signed 5 bit number */
687 			qCoff = qCoff & 0x1f;
688 
689 			HALDEBUG(ah, HAL_DEBUG_PERCAL, "powerMeasI = 0x%08x\n",
690 			    powerMeasI);
691 			HALDEBUG(ah, HAL_DEBUG_PERCAL, "powerMeasQ = 0x%08x\n",
692 			    powerMeasQ);
693 			HALDEBUG(ah, HAL_DEBUG_PERCAL, "iqCorrMeas = 0x%08x\n",
694 			    iqCorrMeas);
695 			HALDEBUG(ah, HAL_DEBUG_PERCAL, "iCoff	  = %d\n",
696 			    iCoff);
697 			HALDEBUG(ah, HAL_DEBUG_PERCAL, "qCoff	  = %d\n",
698 			    qCoff);
699 
700 			/* Write IQ */
701 			data  = OS_REG_READ(ah, AR_PHY_TIMING_CTRL4) |
702 				AR_PHY_TIMING_CTRL4_IQCORR_ENABLE |
703 				(((uint32_t)iCoff) << AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF_S) |
704 				((uint32_t)qCoff);
705 			OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4, data);
706 		}
707 	}
708 	*isCalDone = !ahp->ah_bIQCalibration;
709 
710 	if (longCal) {
711 		/* Perform noise floor and set status */
712 		if (!ar5211IsNfGood(ah, chan)) {
713 			/* report up and clear internal state */
714 			chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
715 			return AH_FALSE;
716 		}
717 		if (!ar5211CalNoiseFloor(ah, chan)) {
718 			/*
719 			 * Delay 5ms before retrying the noise floor
720 			 * just to make sure, as we are in an error
721 			 * condition here.
722 			 */
723 			OS_DELAY(5000);
724 			if (!ar5211CalNoiseFloor(ah, chan)) {
725 				if (!IEEE80211_IS_CHAN_CCK(chan))
726 					chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
727 				return AH_FALSE;
728 			}
729 		}
730 		ar5211RequestRfgain(ah);
731 	}
732 	return AH_TRUE;
733 }
734 
735 HAL_BOOL
736 ar5211PerCalibration(struct ath_hal *ah, struct ieee80211_channel *chan,
737 	HAL_BOOL *isIQdone)
738 {
739 	return ar5211PerCalibrationN(ah,  chan, 0x1, AH_TRUE, isIQdone);
740 }
741 
742 HAL_BOOL
743 ar5211ResetCalValid(struct ath_hal *ah, const struct ieee80211_channel *chan)
744 {
745 	/* XXX */
746 	return AH_TRUE;
747 }
748 
749 /*
750  * Writes the given reset bit mask into the reset register
751  */
752 static HAL_BOOL
753 ar5211SetResetReg(struct ath_hal *ah, uint32_t resetMask)
754 {
755 	uint32_t mask = resetMask ? resetMask : ~0;
756 	HAL_BOOL rt;
757 
758 	(void) OS_REG_READ(ah, AR_RXDP);/* flush any pending MMR writes */
759 	OS_REG_WRITE(ah, AR_RC, resetMask);
760 
761 	/* need to wait at least 128 clocks when reseting PCI before read */
762 	OS_DELAY(15);
763 
764 	resetMask &= AR_RC_MAC | AR_RC_BB;
765 	mask &= AR_RC_MAC | AR_RC_BB;
766 	rt = ath_hal_wait(ah, AR_RC, mask, resetMask);
767         if ((resetMask & AR_RC_MAC) == 0) {
768 		if (isBigEndian()) {
769 			/*
770 			 * Set CFG, little-endian for descriptor accesses.
771 			 */
772 			mask = INIT_CONFIG_STATUS | AR_CFG_SWTD | AR_CFG_SWRD;
773 			OS_REG_WRITE(ah, AR_CFG, mask);
774 		} else
775 			OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS);
776 	}
777 	return rt;
778 }
779 
780 /*
781  * Takes the MHz channel value and sets the Channel value
782  *
783  * ASSUMES: Writes enabled to analog bus before AGC is active
784  *   or by disabling the AGC.
785  */
786 static HAL_BOOL
787 ar5211SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
788 {
789 	uint32_t refClk, reg32, data2111;
790 	int16_t chan5111, chanIEEE;
791 
792 	chanIEEE = chan->ic_ieee;
793 	if (IEEE80211_IS_CHAN_2GHZ(chan)) {
794 		const CHAN_INFO_2GHZ* ci =
795 			&chan2GHzData[chanIEEE + CI_2GHZ_INDEX_CORRECTION];
796 
797 		data2111 = ((ath_hal_reverseBits(ci->channelSelect, 8) & 0xff)
798 				<< 5)
799 			 | (ci->refClkSel << 4);
800 		chan5111 = ci->channel5111;
801 	} else {
802 		data2111 = 0;
803 		chan5111 = chanIEEE;
804 	}
805 
806 	/* Rest of the code is common for 5 GHz and 2.4 GHz. */
807 	if (chan5111 >= 145 || (chan5111 & 0x1)) {
808 		reg32 = ath_hal_reverseBits(chan5111 - 24, 8) & 0xFF;
809 		refClk = 1;
810 	} else {
811 		reg32 = ath_hal_reverseBits(((chan5111 - 24) / 2), 8) & 0xFF;
812 		refClk = 0;
813 	}
814 
815 	reg32 = (reg32 << 2) | (refClk << 1) | (1 << 10) | 0x1;
816 	OS_REG_WRITE(ah, AR_PHY(0x27), ((data2111 & 0xff) << 8) | (reg32 & 0xff));
817 	reg32 >>= 8;
818 	OS_REG_WRITE(ah, AR_PHY(0x34), (data2111 & 0xff00) | (reg32 & 0xff));
819 
820 	AH_PRIVATE(ah)->ah_curchan = chan;
821 	return AH_TRUE;
822 }
823 
824 static int16_t
825 ar5211GetNoiseFloor(struct ath_hal *ah)
826 {
827 	int16_t nf;
828 
829 	nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
830 	if (nf & 0x100)
831 		nf = 0 - ((nf ^ 0x1ff) + 1);
832 	return nf;
833 }
834 
835 /*
836  * Peform the noisefloor calibration for the length of time set
837  * in runTime (valid values 1 to 7)
838  *
839  * Returns: The NF value at the end of the given time (or 0 for failure)
840  */
841 int16_t
842 ar5211RunNoiseFloor(struct ath_hal *ah, uint8_t runTime, int16_t startingNF)
843 {
844 	int i, searchTime;
845 
846 	HALASSERT(runTime <= 7);
847 
848 	/* Setup  noise floor run time and starting value */
849 	OS_REG_WRITE(ah, AR_PHY(25),
850 		(OS_REG_READ(ah, AR_PHY(25)) & ~0xFFF) |
851 			 ((runTime << 9) & 0xE00) | (startingNF & 0x1FF));
852 	/* Calibrate the noise floor */
853 	OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL,
854 		OS_REG_READ(ah, AR_PHY_AGC_CONTROL) | AR_PHY_AGC_CONTROL_NF);
855 
856 	/* Compute the required amount of searchTime needed to finish NF */
857 	if (runTime == 0) {
858 		/* 8 search windows * 6.4us each */
859 		searchTime = 8  * 7;
860 	} else {
861 		/* 512 * runtime search windows * 6.4us each */
862 		searchTime = (runTime * 512)  * 7;
863 	}
864 
865 	/*
866 	 * Do not read noise floor until it has been updated
867 	 *
868 	 * As a guesstimate - we may only get 1/60th the time on
869 	 * the air to see search windows  in a heavily congested
870 	 * network (40 us every 2400 us of time)
871 	 */
872 	for (i = 0; i < 60; i++) {
873 		if ((OS_REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) == 0)
874 			break;
875 		OS_DELAY(searchTime);
876 	}
877 	if (i >= 60) {
878 		HALDEBUG(ah, HAL_DEBUG_NFCAL,
879 		    "NF with runTime %d failed to end on channel %d\n",
880 		    runTime, AH_PRIVATE(ah)->ah_curchan->ic_freq);
881 		HALDEBUG(ah, HAL_DEBUG_NFCAL,
882 		    "  PHY NF Reg state:	 0x%x\n",
883 		    OS_REG_READ(ah, AR_PHY_AGC_CONTROL));
884 		HALDEBUG(ah, HAL_DEBUG_NFCAL,
885 		    "  PHY Active Reg state: 0x%x\n",
886 		    OS_REG_READ(ah, AR_PHY_ACTIVE));
887 		return 0;
888 	}
889 
890 	return ar5211GetNoiseFloor(ah);
891 }
892 
893 static HAL_BOOL
894 getNoiseFloorThresh(struct ath_hal *ah, const struct ieee80211_channel *chan,
895 	int16_t *nft)
896 {
897 	HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
898 
899 	switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
900 	case IEEE80211_CHAN_A:
901 		*nft = ee->ee_noiseFloorThresh[0];
902 		break;
903 	case IEEE80211_CHAN_B:
904 		*nft = ee->ee_noiseFloorThresh[1];
905 		break;
906 	case IEEE80211_CHAN_PUREG:
907 		*nft = ee->ee_noiseFloorThresh[2];
908 		break;
909 	default:
910 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
911 		    __func__, chan->ic_flags);
912 		return AH_FALSE;
913 	}
914 	return AH_TRUE;
915 }
916 
917 /*
918  * Read the NF and check it against the noise floor threshold
919  *
920  * Returns: TRUE if the NF is good
921  */
922 static HAL_BOOL
923 ar5211IsNfGood(struct ath_hal *ah, struct ieee80211_channel *chan)
924 {
925 	HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
926 	int16_t nf, nfThresh;
927 
928 	if (!getNoiseFloorThresh(ah, chan, &nfThresh))
929 		return AH_FALSE;
930 	if (OS_REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) {
931 		HALDEBUG(ah, HAL_DEBUG_ANY,
932 		    "%s: NF did not complete in calibration window\n", __func__);
933 	}
934 	nf = ar5211GetNoiseFloor(ah);
935 	if (nf > nfThresh) {
936 		HALDEBUG(ah, HAL_DEBUG_ANY,
937 		    "%s: noise floor failed; detected %u, threshold %u\n",
938 		    __func__, nf, nfThresh);
939 		/*
940 		 * NB: Don't discriminate 2.4 vs 5Ghz, if this
941 		 *     happens it indicates a problem regardless
942 		 *     of the band.
943 		 */
944 		chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
945 	}
946 	ichan->rawNoiseFloor = nf;
947 	return (nf <= nfThresh);
948 }
949 
950 /*
951  * Peform the noisefloor calibration and check for any constant channel
952  * interference.
953  *
954  * NOTE: preAR5211 have a lengthy carrier wave detection process - hence
955  * it is if'ed for MKK regulatory domain only.
956  *
957  * Returns: TRUE for a successful noise floor calibration; else FALSE
958  */
959 HAL_BOOL
960 ar5211CalNoiseFloor(struct ath_hal *ah, const struct ieee80211_channel *chan)
961 {
962 #define	N(a)	(sizeof (a) / sizeof (a[0]))
963 	/* Check for Carrier Wave interference in MKK regulatory zone */
964 	if (AH_PRIVATE(ah)->ah_macVersion < AR_SREV_VERSION_OAHU &&
965 	    (chan->ic_flags & CHANNEL_NFCREQUIRED)) {
966 		static const uint8_t runtime[3] = { 0, 2, 7 };
967 		HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
968 		int16_t nf, nfThresh;
969 		int i;
970 
971 		if (!getNoiseFloorThresh(ah, chan, &nfThresh))
972 			return AH_FALSE;
973 		/*
974 		 * Run a quick noise floor that will hopefully
975 		 * complete (decrease delay time).
976 		 */
977 		for (i = 0; i < N(runtime); i++) {
978 			nf = ar5211RunNoiseFloor(ah, runtime[i], 0);
979 			if (nf > nfThresh) {
980 				HALDEBUG(ah, HAL_DEBUG_ANY,
981 				    "%s: run failed with %u > threshold %u "
982 				    "(runtime %u)\n", __func__,
983 				    nf, nfThresh, runtime[i]);
984 				ichan->rawNoiseFloor = 0;
985 			} else
986 				ichan->rawNoiseFloor = nf;
987 		}
988 		return (i <= N(runtime));
989 	} else {
990 		/* Calibrate the noise floor */
991 		OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL,
992 			OS_REG_READ(ah, AR_PHY_AGC_CONTROL) |
993 				 AR_PHY_AGC_CONTROL_NF);
994 	}
995 	return AH_TRUE;
996 #undef N
997 }
998 
999 /*
1000  * Adjust NF based on statistical values for 5GHz frequencies.
1001  */
1002 int16_t
1003 ar5211GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c)
1004 {
1005 	static const struct {
1006 		uint16_t freqLow;
1007 		int16_t	  adjust;
1008 	} adjust5111[] = {
1009 		{ 5790,	11 },	/* NB: ordered high -> low */
1010 		{ 5730, 10 },
1011 		{ 5690,  9 },
1012 		{ 5660,  8 },
1013 		{ 5610,  7 },
1014 		{ 5530,  5 },
1015 		{ 5450,  4 },
1016 		{ 5379,  2 },
1017 		{ 5209,  0 },	/* XXX? bogus but doesn't matter */
1018 		{    0,  1 },
1019 	};
1020 	int i;
1021 
1022 	for (i = 0; c->channel <= adjust5111[i].freqLow; i++)
1023 		;
1024 	/* NB: placeholder for 5111's less severe requirement */
1025 	return adjust5111[i].adjust / 3;
1026 }
1027 
1028 /*
1029  * Reads EEPROM header info from device structure and programs
1030  * analog registers 6 and 7
1031  *
1032  * REQUIRES: Access to the analog device
1033  */
1034 static HAL_BOOL
1035 ar5211SetRf6and7(struct ath_hal *ah, const struct ieee80211_channel *chan)
1036 {
1037 #define	N(a)	(sizeof (a) / sizeof (a[0]))
1038 	uint16_t freq = ath_hal_gethwchannel(ah, chan);
1039 	HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1040 	struct ath_hal_5211 *ahp = AH5211(ah);
1041 	uint16_t rfXpdGain, rfPloSel, rfPwdXpd;
1042 	uint16_t tempOB, tempDB;
1043 	uint16_t freqIndex;
1044 	int i;
1045 
1046 	freqIndex = IEEE80211_IS_CHAN_2GHZ(chan) ? 2 : 1;
1047 
1048 	/*
1049 	 * TODO: This array mode correspondes with the index used
1050 	 *	 during the read.
1051 	 * For readability, this should be changed to an enum or #define
1052 	 */
1053 	switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
1054 	case IEEE80211_CHAN_A:
1055 		if (freq > 4000 && freq < 5260) {
1056 			tempOB = ee->ee_ob1;
1057 			tempDB = ee->ee_db1;
1058 		} else if (freq >= 5260 && freq < 5500) {
1059 			tempOB = ee->ee_ob2;
1060 			tempDB = ee->ee_db2;
1061 		} else if (freq >= 5500 && freq < 5725) {
1062 			tempOB = ee->ee_ob3;
1063 			tempDB = ee->ee_db3;
1064 		} else if (freq >= 5725) {
1065 			tempOB = ee->ee_ob4;
1066 			tempDB = ee->ee_db4;
1067 		} else {
1068 			/* XXX panic?? */
1069 			tempOB = tempDB = 0;
1070 		}
1071 
1072 		rfXpdGain = ee->ee_xgain[0];
1073 		rfPloSel  = ee->ee_xpd[0];
1074 		rfPwdXpd  = !ee->ee_xpd[0];
1075 
1076 		ar5211Rf6n7[5][freqIndex]  =
1077 			(ar5211Rf6n7[5][freqIndex] & ~0x10000000) |
1078 				(ee->ee_cornerCal.pd84<< 28);
1079 		ar5211Rf6n7[6][freqIndex]  =
1080 			(ar5211Rf6n7[6][freqIndex] & ~0x04000000) |
1081 				(ee->ee_cornerCal.pd90 << 26);
1082 		ar5211Rf6n7[21][freqIndex] =
1083 			(ar5211Rf6n7[21][freqIndex] & ~0x08) |
1084 				(ee->ee_cornerCal.gSel << 3);
1085 		break;
1086 	case IEEE80211_CHAN_B:
1087 		tempOB = ee->ee_obFor24;
1088 		tempDB = ee->ee_dbFor24;
1089 		rfXpdGain = ee->ee_xgain[1];
1090 		rfPloSel  = ee->ee_xpd[1];
1091 		rfPwdXpd  = !ee->ee_xpd[1];
1092 		break;
1093 	case IEEE80211_CHAN_PUREG:
1094 		tempOB = ee->ee_obFor24g;
1095 		tempDB = ee->ee_dbFor24g;
1096 		rfXpdGain = ee->ee_xgain[2];
1097 		rfPloSel  = ee->ee_xpd[2];
1098 		rfPwdXpd  = !ee->ee_xpd[2];
1099 		break;
1100 	default:
1101 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
1102 		    __func__, chan->ic_flags);
1103 		return AH_FALSE;
1104 	}
1105 
1106 	HALASSERT(1 <= tempOB && tempOB <= 5);
1107 	HALASSERT(1 <= tempDB && tempDB <= 5);
1108 
1109 	/* Set rfXpdGain and rfPwdXpd */
1110 	ar5211Rf6n7[11][freqIndex] =  (ar5211Rf6n7[11][freqIndex] & ~0xC0) |
1111 		(((ath_hal_reverseBits(rfXpdGain, 4) << 7) | (rfPwdXpd << 6)) & 0xC0);
1112 	ar5211Rf6n7[12][freqIndex] =  (ar5211Rf6n7[12][freqIndex] & ~0x07) |
1113 		((ath_hal_reverseBits(rfXpdGain, 4) >> 1) & 0x07);
1114 
1115 	/* Set OB */
1116 	ar5211Rf6n7[12][freqIndex] =  (ar5211Rf6n7[12][freqIndex] & ~0x80) |
1117 		((ath_hal_reverseBits(tempOB, 3) << 7) & 0x80);
1118 	ar5211Rf6n7[13][freqIndex] =  (ar5211Rf6n7[13][freqIndex] & ~0x03) |
1119 		((ath_hal_reverseBits(tempOB, 3) >> 1) & 0x03);
1120 
1121 	/* Set DB */
1122 	ar5211Rf6n7[13][freqIndex] =  (ar5211Rf6n7[13][freqIndex] & ~0x1C) |
1123 		((ath_hal_reverseBits(tempDB, 3) << 2) & 0x1C);
1124 
1125 	/* Set rfPloSel */
1126 	ar5211Rf6n7[17][freqIndex] =  (ar5211Rf6n7[17][freqIndex] & ~0x08) |
1127 		((rfPloSel << 3) & 0x08);
1128 
1129 	/* Write the Rf registers 6 & 7 */
1130 	for (i = 0; i < N(ar5211Rf6n7); i++)
1131 		OS_REG_WRITE(ah, ar5211Rf6n7[i][0], ar5211Rf6n7[i][freqIndex]);
1132 
1133 	/* Now that we have reprogrammed rfgain value, clear the flag. */
1134 	ahp->ah_rfgainState = RFGAIN_INACTIVE;
1135 
1136 	return AH_TRUE;
1137 #undef N
1138 }
1139 
1140 HAL_BOOL
1141 ar5211SetAntennaSwitchInternal(struct ath_hal *ah, HAL_ANT_SETTING settings,
1142 	const struct ieee80211_channel *chan)
1143 {
1144 #define	ANT_SWITCH_TABLE1	0x9960
1145 #define	ANT_SWITCH_TABLE2	0x9964
1146 	HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1147 	struct ath_hal_5211 *ahp = AH5211(ah);
1148 	uint32_t antSwitchA, antSwitchB;
1149 	int ix;
1150 
1151 	switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
1152 	case IEEE80211_CHAN_A:		ix = 0; break;
1153 	case IEEE80211_CHAN_B:		ix = 1; break;
1154 	case IEEE80211_CHAN_PUREG:	ix = 2; break;
1155 	default:
1156 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
1157 		    __func__, chan->ic_flags);
1158 		return AH_FALSE;
1159 	}
1160 
1161 	antSwitchA =  ee->ee_antennaControl[1][ix]
1162 		   | (ee->ee_antennaControl[2][ix] << 6)
1163 		   | (ee->ee_antennaControl[3][ix] << 12)
1164 		   | (ee->ee_antennaControl[4][ix] << 18)
1165 		   | (ee->ee_antennaControl[5][ix] << 24)
1166 		   ;
1167 	antSwitchB =  ee->ee_antennaControl[6][ix]
1168 		   | (ee->ee_antennaControl[7][ix] << 6)
1169 		   | (ee->ee_antennaControl[8][ix] << 12)
1170 		   | (ee->ee_antennaControl[9][ix] << 18)
1171 		   | (ee->ee_antennaControl[10][ix] << 24)
1172 		   ;
1173 	/*
1174 	 * For fixed antenna, give the same setting for both switch banks
1175 	 */
1176 	switch (settings) {
1177 	case HAL_ANT_FIXED_A:
1178 		antSwitchB = antSwitchA;
1179 		break;
1180 	case HAL_ANT_FIXED_B:
1181 		antSwitchA = antSwitchB;
1182 		break;
1183 	case HAL_ANT_VARIABLE:
1184 		break;
1185 	default:
1186 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad antenna setting %u\n",
1187 		    __func__, settings);
1188 		return AH_FALSE;
1189 	}
1190 	ahp->ah_diversityControl = settings;
1191 
1192 	OS_REG_WRITE(ah, ANT_SWITCH_TABLE1, antSwitchA);
1193 	OS_REG_WRITE(ah, ANT_SWITCH_TABLE2, antSwitchB);
1194 
1195 	return AH_TRUE;
1196 #undef ANT_SWITCH_TABLE1
1197 #undef ANT_SWITCH_TABLE2
1198 }
1199 
1200 /*
1201  * Reads EEPROM header info and programs the device for correct operation
1202  * given the channel value
1203  */
1204 static HAL_BOOL
1205 ar5211SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan)
1206 {
1207 	HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1208 	struct ath_hal_5211 *ahp = AH5211(ah);
1209 	int arrayMode, falseDectectBackoff;
1210 
1211 	switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
1212 	case IEEE80211_CHAN_A:
1213 		arrayMode = 0;
1214 		OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL,
1215 			AR_PHY_FRAME_CTL_TX_CLIP, ee->ee_cornerCal.clip);
1216 		break;
1217 	case IEEE80211_CHAN_B:
1218 		arrayMode = 1;
1219 		break;
1220 	case IEEE80211_CHAN_PUREG:
1221 		arrayMode = 2;
1222 		break;
1223 	default:
1224 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
1225 		    __func__, chan->ic_flags);
1226 		return AH_FALSE;
1227 	}
1228 
1229 	/* Set the antenna register(s) correctly for the chip revision */
1230 	if (AH_PRIVATE(ah)->ah_macVersion < AR_SREV_VERSION_OAHU) {
1231 		OS_REG_WRITE(ah, AR_PHY(68),
1232 			(OS_REG_READ(ah, AR_PHY(68)) & 0xFFFFFFFC) | 0x3);
1233 	} else {
1234 		OS_REG_WRITE(ah, AR_PHY(68),
1235 			(OS_REG_READ(ah, AR_PHY(68)) & 0xFFFFFC06) |
1236 			(ee->ee_antennaControl[0][arrayMode] << 4) | 0x1);
1237 
1238 		ar5211SetAntennaSwitchInternal(ah,
1239 			ahp->ah_diversityControl, chan);
1240 
1241 		/* Set the Noise Floor Thresh on ar5211 devices */
1242 		OS_REG_WRITE(ah, AR_PHY_BASE + (90 << 2),
1243 			(ee->ee_noiseFloorThresh[arrayMode] & 0x1FF) | (1<<9));
1244 	}
1245 	OS_REG_WRITE(ah, AR_PHY_BASE + (17 << 2),
1246 		(OS_REG_READ(ah, AR_PHY_BASE + (17 << 2)) & 0xFFFFC07F) |
1247 		((ee->ee_switchSettling[arrayMode] << 7) & 0x3F80));
1248 	OS_REG_WRITE(ah, AR_PHY_BASE + (18 << 2),
1249 		(OS_REG_READ(ah, AR_PHY_BASE + (18 << 2)) & 0xFFFC0FFF) |
1250 		((ee->ee_txrxAtten[arrayMode] << 12) & 0x3F000));
1251 	OS_REG_WRITE(ah, AR_PHY_BASE + (20 << 2),
1252 		(OS_REG_READ(ah, AR_PHY_BASE + (20 << 2)) & 0xFFFF0000) |
1253 		((ee->ee_pgaDesiredSize[arrayMode] << 8) & 0xFF00) |
1254 		(ee->ee_adcDesiredSize[arrayMode] & 0x00FF));
1255 	OS_REG_WRITE(ah, AR_PHY_BASE + (13 << 2),
1256 		(ee->ee_txEndToXPAOff[arrayMode] << 24) |
1257 		(ee->ee_txEndToXPAOff[arrayMode] << 16) |
1258 		(ee->ee_txFrameToXPAOn[arrayMode] << 8) |
1259 		ee->ee_txFrameToXPAOn[arrayMode]);
1260 	OS_REG_WRITE(ah, AR_PHY_BASE + (10 << 2),
1261 		(OS_REG_READ(ah, AR_PHY_BASE + (10 << 2)) & 0xFFFF00FF) |
1262 		(ee->ee_txEndToXLNAOn[arrayMode] << 8));
1263 	OS_REG_WRITE(ah, AR_PHY_BASE + (25 << 2),
1264 		(OS_REG_READ(ah, AR_PHY_BASE + (25 << 2)) & 0xFFF80FFF) |
1265 		((ee->ee_thresh62[arrayMode] << 12) & 0x7F000));
1266 
1267 #define NO_FALSE_DETECT_BACKOFF   2
1268 #define CB22_FALSE_DETECT_BACKOFF 6
1269 	/*
1270 	 * False detect backoff - suspected 32 MHz spur causes
1271 	 * false detects in OFDM, causing Tx Hangs.  Decrease
1272 	 * weak signal sensitivity for this card.
1273 	 */
1274 	falseDectectBackoff = NO_FALSE_DETECT_BACKOFF;
1275 	if (AH_PRIVATE(ah)->ah_eeversion < AR_EEPROM_VER3_3) {
1276 		if (AH_PRIVATE(ah)->ah_subvendorid == 0x1022 &&
1277 		    IEEE80211_IS_CHAN_OFDM(chan))
1278 			falseDectectBackoff += CB22_FALSE_DETECT_BACKOFF;
1279 	} else {
1280 		uint16_t freq = ath_hal_gethwchannel(ah, chan);
1281 		uint32_t remainder = freq % 32;
1282 
1283 		if (remainder && (remainder < 10 || remainder > 22))
1284 			falseDectectBackoff += ee->ee_falseDetectBackoff[arrayMode];
1285 	}
1286 	OS_REG_WRITE(ah, 0x9924,
1287 		(OS_REG_READ(ah, 0x9924) & 0xFFFFFF01)
1288 		| ((falseDectectBackoff << 1) & 0xF7));
1289 
1290 	return AH_TRUE;
1291 #undef NO_FALSE_DETECT_BACKOFF
1292 #undef CB22_FALSE_DETECT_BACKOFF
1293 }
1294 
1295 /*
1296  * Set the limit on the overall output power.  Used for dynamic
1297  * transmit power control and the like.
1298  *
1299  * NOTE: The power is passed in is in units of 0.5 dBm.
1300  */
1301 HAL_BOOL
1302 ar5211SetTxPowerLimit(struct ath_hal *ah, uint32_t limit)
1303 {
1304 
1305 	AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, MAX_RATE_POWER);
1306 	OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, limit);
1307 	return AH_TRUE;
1308 }
1309 
1310 /*
1311  * Sets the transmit power in the baseband for the given
1312  * operating channel and mode.
1313  */
1314 static HAL_BOOL
1315 ar5211SetTransmitPower(struct ath_hal *ah, const struct ieee80211_channel *chan)
1316 {
1317 	uint16_t freq = ath_hal_gethwchannel(ah, chan);
1318 	HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1319 	TRGT_POWER_INFO *pi;
1320 	RD_EDGES_POWER *rep;
1321 	PCDACS_EEPROM eepromPcdacs;
1322 	u_int nchan, cfgCtl;
1323 	int i;
1324 
1325 	/* setup the pcdac struct to point to the correct info, based on mode */
1326 	switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
1327 	case IEEE80211_CHAN_A:
1328 		eepromPcdacs.numChannels = ee->ee_numChannels11a;
1329 		eepromPcdacs.pChannelList= ee->ee_channels11a;
1330 		eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11a;
1331 		nchan = ee->ee_numTargetPwr_11a;
1332 		pi = ee->ee_trgtPwr_11a;
1333 		break;
1334 	case IEEE80211_CHAN_PUREG:
1335 		eepromPcdacs.numChannels = ee->ee_numChannels2_4;
1336 		eepromPcdacs.pChannelList= ee->ee_channels11g;
1337 		eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11g;
1338 		nchan = ee->ee_numTargetPwr_11g;
1339 		pi = ee->ee_trgtPwr_11g;
1340 		break;
1341 	case IEEE80211_CHAN_B:
1342 		eepromPcdacs.numChannels = ee->ee_numChannels2_4;
1343 		eepromPcdacs.pChannelList= ee->ee_channels11b;
1344 		eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11b;
1345 		nchan = ee->ee_numTargetPwr_11b;
1346 		pi = ee->ee_trgtPwr_11b;
1347 		break;
1348 	default:
1349 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
1350 		    __func__, chan->ic_flags);
1351 		return AH_FALSE;
1352 	}
1353 
1354 	ar5211SetPowerTable(ah, &eepromPcdacs, freq);
1355 
1356 	rep = AH_NULL;
1357 	/* Match CTL to EEPROM value */
1358 	cfgCtl = ath_hal_getctl(ah, chan);
1359 	for (i = 0; i < ee->ee_numCtls; i++)
1360 		if (ee->ee_ctl[i] != 0 && ee->ee_ctl[i] == cfgCtl) {
1361 			rep = &ee->ee_rdEdgesPower[i * NUM_EDGES];
1362 			break;
1363 		}
1364 	ar5211SetRateTable(ah, rep, pi, nchan, chan);
1365 
1366 	return AH_TRUE;
1367 }
1368 
1369 /*
1370  * Read the transmit power levels from the structures taken
1371  * from EEPROM. Interpolate read transmit power values for
1372  * this channel. Organize the transmit power values into a
1373  * table for writing into the hardware.
1374  */
1375 void
1376 ar5211SetPowerTable(struct ath_hal *ah, PCDACS_EEPROM *pSrcStruct,
1377 	uint16_t channel)
1378 {
1379 	static FULL_PCDAC_STRUCT pcdacStruct;
1380 	static uint16_t pcdacTable[PWR_TABLE_SIZE];
1381 
1382 	uint16_t	 i, j;
1383 	uint16_t	 *pPcdacValues;
1384 	int16_t	  *pScaledUpDbm;
1385 	int16_t	  minScaledPwr;
1386 	int16_t	  maxScaledPwr;
1387 	int16_t	  pwr;
1388 	uint16_t	 pcdacMin = 0;
1389 	uint16_t	 pcdacMax = 63;
1390 	uint16_t	 pcdacTableIndex;
1391 	uint16_t	 scaledPcdac;
1392 	uint32_t	 addr;
1393 	uint32_t	 temp32;
1394 
1395 	OS_MEMZERO(&pcdacStruct, sizeof(FULL_PCDAC_STRUCT));
1396 	OS_MEMZERO(pcdacTable, sizeof(uint16_t) * PWR_TABLE_SIZE);
1397 	pPcdacValues = pcdacStruct.PcdacValues;
1398 	pScaledUpDbm = pcdacStruct.PwrValues;
1399 
1400 	/* Initialize the pcdacs to dBM structs pcdacs to be 1 to 63 */
1401 	for (i = PCDAC_START, j = 0; i <= PCDAC_STOP; i+= PCDAC_STEP, j++)
1402 		pPcdacValues[j] = i;
1403 
1404 	pcdacStruct.numPcdacValues = j;
1405 	pcdacStruct.pcdacMin = PCDAC_START;
1406 	pcdacStruct.pcdacMax = PCDAC_STOP;
1407 
1408 	/* Fill out the power values for this channel */
1409 	for (j = 0; j < pcdacStruct.numPcdacValues; j++ )
1410 		pScaledUpDbm[j] = ar5211GetScaledPower(channel, pPcdacValues[j], pSrcStruct);
1411 
1412 	/* Now scale the pcdac values to fit in the 64 entry power table */
1413 	minScaledPwr = pScaledUpDbm[0];
1414 	maxScaledPwr = pScaledUpDbm[pcdacStruct.numPcdacValues - 1];
1415 
1416 	/* find minimum and make monotonic */
1417 	for (j = 0; j < pcdacStruct.numPcdacValues; j++) {
1418 		if (minScaledPwr >= pScaledUpDbm[j]) {
1419 			minScaledPwr = pScaledUpDbm[j];
1420 			pcdacMin = j;
1421 		}
1422 		/*
1423 		 * Make the full_hsh monotonically increasing otherwise
1424 		 * interpolation algorithm will get fooled gotta start
1425 		 * working from the top, hence i = 63 - j.
1426 		 */
1427 		i = (uint16_t)(pcdacStruct.numPcdacValues - 1 - j);
1428 		if (i == 0)
1429 			break;
1430 		if (pScaledUpDbm[i-1] > pScaledUpDbm[i]) {
1431 			/*
1432 			 * It could be a glitch, so make the power for
1433 			 * this pcdac the same as the power from the
1434 			 * next highest pcdac.
1435 			 */
1436 			pScaledUpDbm[i - 1] = pScaledUpDbm[i];
1437 		}
1438 	}
1439 
1440 	for (j = 0; j < pcdacStruct.numPcdacValues; j++)
1441 		if (maxScaledPwr < pScaledUpDbm[j]) {
1442 			maxScaledPwr = pScaledUpDbm[j];
1443 			pcdacMax = j;
1444 		}
1445 
1446 	/* Find the first power level with a pcdac */
1447 	pwr = (uint16_t)(PWR_STEP * ((minScaledPwr - PWR_MIN + PWR_STEP / 2) / PWR_STEP)  + PWR_MIN);
1448 
1449 	/* Write all the first pcdac entries based off the pcdacMin */
1450 	pcdacTableIndex = 0;
1451 	for (i = 0; i < (2 * (pwr - PWR_MIN) / EEP_SCALE + 1); i++)
1452 		pcdacTable[pcdacTableIndex++] = pcdacMin;
1453 
1454 	i = 0;
1455 	while (pwr < pScaledUpDbm[pcdacStruct.numPcdacValues - 1]) {
1456 		pwr += PWR_STEP;
1457 		/* stop if dbM > max_power_possible */
1458 		while (pwr < pScaledUpDbm[pcdacStruct.numPcdacValues - 1] &&
1459 		       (pwr - pScaledUpDbm[i])*(pwr - pScaledUpDbm[i+1]) > 0)
1460 			i++;
1461 		/* scale by 2 and add 1 to enable round up or down as needed */
1462 		scaledPcdac = (uint16_t)(ar5211GetInterpolatedValue(pwr,
1463 				pScaledUpDbm[i], pScaledUpDbm[i+1],
1464 				(uint16_t)(pPcdacValues[i] * 2),
1465 				(uint16_t)(pPcdacValues[i+1] * 2), 0) + 1);
1466 
1467 		pcdacTable[pcdacTableIndex] = scaledPcdac / 2;
1468 		if (pcdacTable[pcdacTableIndex] > pcdacMax)
1469 			pcdacTable[pcdacTableIndex] = pcdacMax;
1470 		pcdacTableIndex++;
1471 	}
1472 
1473 	/* Write all the last pcdac entries based off the last valid pcdac */
1474 	while (pcdacTableIndex < PWR_TABLE_SIZE) {
1475 		pcdacTable[pcdacTableIndex] = pcdacTable[pcdacTableIndex - 1];
1476 		pcdacTableIndex++;
1477 	}
1478 
1479 	/* Finally, write the power values into the baseband power table */
1480 	addr = AR_PHY_BASE + (608 << 2);
1481 	for (i = 0; i < 32; i++) {
1482 		temp32 = 0xffff & ((pcdacTable[2 * i + 1] << 8) | 0xff);
1483 		temp32 = (temp32 << 16) | (0xffff & ((pcdacTable[2 * i] << 8) | 0xff));
1484 		OS_REG_WRITE(ah, addr, temp32);
1485 		addr += 4;
1486 	}
1487 
1488 }
1489 
1490 /*
1491  * Set the transmit power in the baseband for the given
1492  * operating channel and mode.
1493  */
1494 static void
1495 ar5211SetRateTable(struct ath_hal *ah, RD_EDGES_POWER *pRdEdgesPower,
1496 	TRGT_POWER_INFO *pPowerInfo, uint16_t numChannels,
1497 	const struct ieee80211_channel *chan)
1498 {
1499 	uint16_t freq = ath_hal_gethwchannel(ah, chan);
1500 	HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1501 	struct ath_hal_5211 *ahp = AH5211(ah);
1502 	static uint16_t ratesArray[NUM_RATES];
1503 	static const uint16_t tpcScaleReductionTable[5] =
1504 		{ 0, 3, 6, 9, MAX_RATE_POWER };
1505 
1506 	uint16_t	*pRatesPower;
1507 	uint16_t	lowerChannel, lowerIndex=0, lowerPower=0;
1508 	uint16_t	upperChannel, upperIndex=0, upperPower=0;
1509 	uint16_t	twiceMaxEdgePower=63;
1510 	uint16_t	twicePower = 0;
1511 	uint16_t	i, numEdges;
1512 	uint16_t	tempChannelList[NUM_EDGES]; /* temp array for holding edge channels */
1513 	uint16_t	twiceMaxRDPower;
1514 	int16_t	 scaledPower = 0;		/* for gcc -O2 */
1515 	uint16_t	mask = 0x3f;
1516 	HAL_BOOL	  paPreDEnable = 0;
1517 	int8_t	  twiceAntennaGain, twiceAntennaReduction = 0;
1518 
1519 	pRatesPower = ratesArray;
1520 	twiceMaxRDPower = chan->ic_maxregpower * 2;
1521 
1522 	if (IEEE80211_IS_CHAN_5GHZ(chan)) {
1523 		twiceAntennaGain = ee->ee_antennaGainMax[0];
1524 	} else {
1525 		twiceAntennaGain = ee->ee_antennaGainMax[1];
1526 	}
1527 
1528 	twiceAntennaReduction = ath_hal_getantennareduction(ah, chan, twiceAntennaGain);
1529 
1530 	if (pRdEdgesPower) {
1531 		/* Get the edge power */
1532 		for (i = 0; i < NUM_EDGES; i++) {
1533 			if (pRdEdgesPower[i].rdEdge == 0)
1534 				break;
1535 			tempChannelList[i] = pRdEdgesPower[i].rdEdge;
1536 		}
1537 		numEdges = i;
1538 
1539 		ar5211GetLowerUpperValues(freq, tempChannelList,
1540 			numEdges, &lowerChannel, &upperChannel);
1541 		/* Get the index for this channel */
1542 		for (i = 0; i < numEdges; i++)
1543 			if (lowerChannel == tempChannelList[i])
1544 				break;
1545 		HALASSERT(i != numEdges);
1546 
1547 		if ((lowerChannel == upperChannel &&
1548 		     lowerChannel == freq) ||
1549 		    pRdEdgesPower[i].flag) {
1550 			twiceMaxEdgePower = pRdEdgesPower[i].twice_rdEdgePower;
1551 			HALASSERT(twiceMaxEdgePower > 0);
1552 		}
1553 	}
1554 
1555 	/* extrapolate the power values for the test Groups */
1556 	for (i = 0; i < numChannels; i++)
1557 		tempChannelList[i] = pPowerInfo[i].testChannel;
1558 
1559 	ar5211GetLowerUpperValues(freq, tempChannelList,
1560 		numChannels, &lowerChannel, &upperChannel);
1561 
1562 	/* get the index for the channel */
1563 	for (i = 0; i < numChannels; i++) {
1564 		if (lowerChannel == tempChannelList[i])
1565 			lowerIndex = i;
1566 		if (upperChannel == tempChannelList[i]) {
1567 			upperIndex = i;
1568 			break;
1569 		}
1570 	}
1571 
1572 	for (i = 0; i < NUM_RATES; i++) {
1573 		if (IEEE80211_IS_CHAN_OFDM(chan)) {
1574 			/* power for rates 6,9,12,18,24 is all the same */
1575 			if (i < 5) {
1576 				lowerPower = pPowerInfo[lowerIndex].twicePwr6_24;
1577 				upperPower = pPowerInfo[upperIndex].twicePwr6_24;
1578 			} else if (i == 5) {
1579 				lowerPower = pPowerInfo[lowerIndex].twicePwr36;
1580 				upperPower = pPowerInfo[upperIndex].twicePwr36;
1581 			} else if (i == 6) {
1582 				lowerPower = pPowerInfo[lowerIndex].twicePwr48;
1583 				upperPower = pPowerInfo[upperIndex].twicePwr48;
1584 			} else if (i == 7) {
1585 				lowerPower = pPowerInfo[lowerIndex].twicePwr54;
1586 				upperPower = pPowerInfo[upperIndex].twicePwr54;
1587 			}
1588 		} else {
1589 			switch (i) {
1590 			case 0:
1591 			case 1:
1592 				lowerPower = pPowerInfo[lowerIndex].twicePwr6_24;
1593 				upperPower = pPowerInfo[upperIndex].twicePwr6_24;
1594 				break;
1595 			case 2:
1596 			case 3:
1597 				lowerPower = pPowerInfo[lowerIndex].twicePwr36;
1598 				upperPower = pPowerInfo[upperIndex].twicePwr36;
1599 				break;
1600 			case 4:
1601 			case 5:
1602 				lowerPower = pPowerInfo[lowerIndex].twicePwr48;
1603 				upperPower = pPowerInfo[upperIndex].twicePwr48;
1604 				break;
1605 			case 6:
1606 			case 7:
1607 				lowerPower = pPowerInfo[lowerIndex].twicePwr54;
1608 				upperPower = pPowerInfo[upperIndex].twicePwr54;
1609 				break;
1610 			}
1611 		}
1612 
1613 		twicePower = ar5211GetInterpolatedValue(freq,
1614 			lowerChannel, upperChannel, lowerPower, upperPower, 0);
1615 
1616 		/* Reduce power by band edge restrictions */
1617 		twicePower = AH_MIN(twicePower, twiceMaxEdgePower);
1618 
1619 		/*
1620 		 * If turbo is set, reduce power to keep power
1621 		 * consumption under 2 Watts.  Note that we always do
1622 		 * this unless specially configured.  Then we limit
1623 		 * power only for non-AP operation.
1624 		 */
1625 		if (IEEE80211_IS_CHAN_TURBO(chan) &&
1626 		    AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3_1
1627 #ifdef AH_ENABLE_AP_SUPPORT
1628 		    && AH_PRIVATE(ah)->ah_opmode != HAL_M_HOSTAP
1629 #endif
1630 		) {
1631 			twicePower = AH_MIN(twicePower, ee->ee_turbo2WMaxPower5);
1632 		}
1633 
1634 		/* Reduce power by max regulatory domain allowed restrictions */
1635 		pRatesPower[i] = AH_MIN(twicePower, twiceMaxRDPower - twiceAntennaReduction);
1636 
1637 		/* Use 6 Mb power level for transmit power scaling reduction */
1638 		/* We don't want to reduce higher rates if its not needed */
1639 		if (i == 0) {
1640 			scaledPower = pRatesPower[0] -
1641 				(tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale] * 2);
1642 			if (scaledPower < 1)
1643 				scaledPower = 1;
1644 		}
1645 
1646 		pRatesPower[i] = AH_MIN(pRatesPower[i], scaledPower);
1647 	}
1648 
1649 	/* Record txPower at Rate 6 for info gathering */
1650 	ahp->ah_tx6PowerInHalfDbm = pRatesPower[0];
1651 
1652 #ifdef AH_DEBUG
1653 	HALDEBUG(ah, HAL_DEBUG_RESET,
1654 	    "%s: final output power setting %d MHz:\n",
1655 	    __func__, chan->ic_freq);
1656 	HALDEBUG(ah, HAL_DEBUG_RESET,
1657 	    "6 Mb %d dBm, MaxRD: %d dBm, MaxEdge %d dBm\n",
1658 	    scaledPower / 2, twiceMaxRDPower / 2, twiceMaxEdgePower / 2);
1659 	HALDEBUG(ah, HAL_DEBUG_RESET, "TPC Scale %d dBm - Ant Red %d dBm\n",
1660 	    tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale] * 2,
1661 	    twiceAntennaReduction / 2);
1662 	if (IEEE80211_IS_CHAN_TURBO(chan) &&
1663 	    AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3_1)
1664 		HALDEBUG(ah, HAL_DEBUG_RESET, "Max Turbo %d dBm\n",
1665 		    ee->ee_turbo2WMaxPower5);
1666 	HALDEBUG(ah, HAL_DEBUG_RESET,
1667 	    "  %2d | %2d | %2d | %2d | %2d | %2d | %2d | %2d dBm\n",
1668 	    pRatesPower[0] / 2, pRatesPower[1] / 2, pRatesPower[2] / 2,
1669 	    pRatesPower[3] / 2, pRatesPower[4] / 2, pRatesPower[5] / 2,
1670 	    pRatesPower[6] / 2, pRatesPower[7] / 2);
1671 #endif /* AH_DEBUG */
1672 
1673 	/* Write the power table into the hardware */
1674 	OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
1675 		 ((paPreDEnable & 1)<< 30) | ((pRatesPower[3] & mask) << 24) |
1676 		 ((paPreDEnable & 1)<< 22) | ((pRatesPower[2] & mask) << 16) |
1677 		 ((paPreDEnable & 1)<< 14) | ((pRatesPower[1] & mask) << 8) |
1678 		 ((paPreDEnable & 1)<< 6 ) |  (pRatesPower[0] & mask));
1679 	OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
1680 		 ((paPreDEnable & 1)<< 30) | ((pRatesPower[7] & mask) << 24) |
1681 		 ((paPreDEnable & 1)<< 22) | ((pRatesPower[6] & mask) << 16) |
1682 		 ((paPreDEnable & 1)<< 14) | ((pRatesPower[5] & mask) << 8) |
1683 		 ((paPreDEnable & 1)<< 6 ) |  (pRatesPower[4] & mask));
1684 
1685 	/* set max power to the power value at rate 6 */
1686 	ar5211SetTxPowerLimit(ah, pRatesPower[0]);
1687 
1688 	AH_PRIVATE(ah)->ah_maxPowerLevel = pRatesPower[0];
1689 }
1690 
1691 /*
1692  * Get or interpolate the pcdac value from the calibrated data
1693  */
1694 uint16_t
1695 ar5211GetScaledPower(uint16_t channel, uint16_t pcdacValue,
1696 	const PCDACS_EEPROM *pSrcStruct)
1697 {
1698 	uint16_t powerValue;
1699 	uint16_t lFreq, rFreq;		/* left and right frequency values */
1700 	uint16_t llPcdac, ulPcdac;	/* lower and upper left pcdac values */
1701 	uint16_t lrPcdac, urPcdac;	/* lower and upper right pcdac values */
1702 	uint16_t lPwr, uPwr;		/* lower and upper temp pwr values */
1703 	uint16_t lScaledPwr, rScaledPwr; /* left and right scaled power */
1704 
1705 	if (ar5211FindValueInList(channel, pcdacValue, pSrcStruct, &powerValue))
1706 		/* value was copied from srcStruct */
1707 		return powerValue;
1708 
1709 	ar5211GetLowerUpperValues(channel, pSrcStruct->pChannelList,
1710 		pSrcStruct->numChannels, &lFreq, &rFreq);
1711 	ar5211GetLowerUpperPcdacs(pcdacValue, lFreq, pSrcStruct,
1712 		&llPcdac, &ulPcdac);
1713 	ar5211GetLowerUpperPcdacs(pcdacValue, rFreq, pSrcStruct,
1714 		&lrPcdac, &urPcdac);
1715 
1716 	/* get the power index for the pcdac value */
1717 	ar5211FindValueInList(lFreq, llPcdac, pSrcStruct, &lPwr);
1718 	ar5211FindValueInList(lFreq, ulPcdac, pSrcStruct, &uPwr);
1719 	lScaledPwr = ar5211GetInterpolatedValue(pcdacValue,
1720 				llPcdac, ulPcdac, lPwr, uPwr, 0);
1721 
1722 	ar5211FindValueInList(rFreq, lrPcdac, pSrcStruct, &lPwr);
1723 	ar5211FindValueInList(rFreq, urPcdac, pSrcStruct, &uPwr);
1724 	rScaledPwr = ar5211GetInterpolatedValue(pcdacValue,
1725 				lrPcdac, urPcdac, lPwr, uPwr, 0);
1726 
1727 	return ar5211GetInterpolatedValue(channel, lFreq, rFreq,
1728 		lScaledPwr, rScaledPwr, 0);
1729 }
1730 
1731 /*
1732  * Find the value from the calibrated source data struct
1733  */
1734 HAL_BOOL
1735 ar5211FindValueInList(uint16_t channel, uint16_t pcdacValue,
1736 	const PCDACS_EEPROM *pSrcStruct, uint16_t *powerValue)
1737 {
1738 	const DATA_PER_CHANNEL *pChannelData;
1739 	const uint16_t *pPcdac;
1740 	uint16_t i, j;
1741 
1742 	pChannelData = pSrcStruct->pDataPerChannel;
1743 	for (i = 0; i < pSrcStruct->numChannels; i++ ) {
1744 		if (pChannelData->channelValue == channel) {
1745 			pPcdac = pChannelData->PcdacValues;
1746 			for (j = 0; j < pChannelData->numPcdacValues; j++ ) {
1747 				if (*pPcdac == pcdacValue) {
1748 					*powerValue = pChannelData->PwrValues[j];
1749 					return AH_TRUE;
1750 				}
1751 				pPcdac++;
1752 			}
1753 		}
1754 		pChannelData++;
1755 	}
1756 	return AH_FALSE;
1757 }
1758 
1759 /*
1760  * Returns interpolated or the scaled up interpolated value
1761  */
1762 uint16_t
1763 ar5211GetInterpolatedValue(uint16_t target,
1764 	uint16_t srcLeft, uint16_t srcRight,
1765 	uint16_t targetLeft, uint16_t targetRight,
1766 	HAL_BOOL scaleUp)
1767 {
1768 	uint16_t rv;
1769 	int16_t lRatio;
1770 	uint16_t scaleValue = EEP_SCALE;
1771 
1772 	/* to get an accurate ratio, always scale, if want to scale, then don't scale back down */
1773 	if ((targetLeft * targetRight) == 0)
1774 		return 0;
1775 	if (scaleUp)
1776 		scaleValue = 1;
1777 
1778 	if (srcRight != srcLeft) {
1779 		/*
1780 		 * Note the ratio always need to be scaled,
1781 		 * since it will be a fraction.
1782 		 */
1783 		lRatio = (target - srcLeft) * EEP_SCALE / (srcRight - srcLeft);
1784 		if (lRatio < 0) {
1785 		    /* Return as Left target if value would be negative */
1786 		    rv = targetLeft * (scaleUp ? EEP_SCALE : 1);
1787 		} else if (lRatio > EEP_SCALE) {
1788 		    /* Return as Right target if Ratio is greater than 100% (SCALE) */
1789 		    rv = targetRight * (scaleUp ? EEP_SCALE : 1);
1790 		} else {
1791 			rv = (lRatio * targetRight + (EEP_SCALE - lRatio) *
1792 					targetLeft) / scaleValue;
1793 		}
1794 	} else {
1795 		rv = targetLeft;
1796 		if (scaleUp)
1797 			rv *= EEP_SCALE;
1798 	}
1799 	return rv;
1800 }
1801 
1802 /*
1803  *  Look for value being within 0.1 of the search values
1804  *  however, NDIS can't do float calculations, so multiply everything
1805  *  up by EEP_SCALE so can do integer arithmatic
1806  *
1807  * INPUT  value	   -value to search for
1808  * INPUT  pList	   -ptr to the list to search
1809  * INPUT  listSize	-number of entries in list
1810  * OUTPUT pLowerValue -return the lower value
1811  * OUTPUT pUpperValue -return the upper value
1812  */
1813 void
1814 ar5211GetLowerUpperValues(uint16_t value,
1815 	const uint16_t *pList, uint16_t listSize,
1816 	uint16_t *pLowerValue, uint16_t *pUpperValue)
1817 {
1818 	const uint16_t listEndValue = *(pList + listSize - 1);
1819 	uint32_t target = value * EEP_SCALE;
1820 	int i;
1821 
1822 	/*
1823 	 * See if value is lower than the first value in the list
1824 	 * if so return first value
1825 	 */
1826 	if (target < (uint32_t)(*pList * EEP_SCALE - EEP_DELTA)) {
1827 		*pLowerValue = *pList;
1828 		*pUpperValue = *pList;
1829 		return;
1830 	}
1831 
1832 	/*
1833 	 * See if value is greater than last value in list
1834 	 * if so return last value
1835 	 */
1836 	if (target > (uint32_t)(listEndValue * EEP_SCALE + EEP_DELTA)) {
1837 		*pLowerValue = listEndValue;
1838 		*pUpperValue = listEndValue;
1839 		return;
1840 	}
1841 
1842 	/* look for value being near or between 2 values in list */
1843 	for (i = 0; i < listSize; i++) {
1844 		/*
1845 		 * If value is close to the current value of the list
1846 		 * then target is not between values, it is one of the values
1847 		 */
1848 		if (abs(pList[i] * EEP_SCALE - (int32_t) target) < EEP_DELTA) {
1849 			*pLowerValue = pList[i];
1850 			*pUpperValue = pList[i];
1851 			return;
1852 		}
1853 
1854 		/*
1855 		 * Look for value being between current value and next value
1856 		 * if so return these 2 values
1857 		 */
1858 		if (target < (uint32_t)(pList[i + 1] * EEP_SCALE - EEP_DELTA)) {
1859 			*pLowerValue = pList[i];
1860 			*pUpperValue = pList[i + 1];
1861 			return;
1862 		}
1863 	}
1864 }
1865 
1866 /*
1867  * Get the upper and lower pcdac given the channel and the pcdac
1868  * used in the search
1869  */
1870 void
1871 ar5211GetLowerUpperPcdacs(uint16_t pcdac, uint16_t channel,
1872 	const PCDACS_EEPROM *pSrcStruct,
1873 	uint16_t *pLowerPcdac, uint16_t *pUpperPcdac)
1874 {
1875 	const DATA_PER_CHANNEL *pChannelData;
1876 	int i;
1877 
1878 	/* Find the channel information */
1879 	pChannelData = pSrcStruct->pDataPerChannel;
1880 	for (i = 0; i < pSrcStruct->numChannels; i++) {
1881 		if (pChannelData->channelValue == channel)
1882 			break;
1883 		pChannelData++;
1884 	}
1885 	ar5211GetLowerUpperValues(pcdac, pChannelData->PcdacValues,
1886 		pChannelData->numPcdacValues, pLowerPcdac, pUpperPcdac);
1887 }
1888 
1889 #define	DYN_ADJ_UP_MARGIN	15
1890 #define	DYN_ADJ_LO_MARGIN	20
1891 
1892 static const GAIN_OPTIMIZATION_LADDER gainLadder = {
1893 	9,					/* numStepsInLadder */
1894 	4,					/* defaultStepNum */
1895 	{ { {4, 1, 1, 1},  6, "FG8"},
1896 	  { {4, 0, 1, 1},  4, "FG7"},
1897 	  { {3, 1, 1, 1},  3, "FG6"},
1898 	  { {4, 0, 0, 1},  1, "FG5"},
1899 	  { {4, 1, 1, 0},  0, "FG4"},	/* noJack */
1900 	  { {4, 0, 1, 0}, -2, "FG3"},	/* halfJack */
1901 	  { {3, 1, 1, 0}, -3, "FG2"},	/* clip3 */
1902 	  { {4, 0, 0, 0}, -4, "FG1"},	/* noJack */
1903 	  { {2, 1, 1, 0}, -6, "FG0"} 	/* clip2 */
1904 	}
1905 };
1906 
1907 /*
1908  * Initialize the gain structure to good values
1909  */
1910 void
1911 ar5211InitializeGainValues(struct ath_hal *ah)
1912 {
1913 	struct ath_hal_5211 *ahp = AH5211(ah);
1914 	GAIN_VALUES *gv = &ahp->ah_gainValues;
1915 
1916 	/* initialize gain optimization values */
1917 	gv->currStepNum = gainLadder.defaultStepNum;
1918 	gv->currStep = &gainLadder.optStep[gainLadder.defaultStepNum];
1919 	gv->active = AH_TRUE;
1920 	gv->loTrig = 20;
1921 	gv->hiTrig = 35;
1922 }
1923 
1924 static HAL_BOOL
1925 ar5211InvalidGainReadback(struct ath_hal *ah, GAIN_VALUES *gv)
1926 {
1927 	const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
1928 	uint32_t gStep, g;
1929 	uint32_t L1, L2, L3, L4;
1930 
1931 	if (IEEE80211_IS_CHAN_CCK(chan)) {
1932 		gStep = 0x18;
1933 		L1 = 0;
1934 		L2 = gStep + 4;
1935 		L3 = 0x40;
1936 		L4 = L3 + 50;
1937 
1938 		gv->loTrig = L1;
1939 		gv->hiTrig = L4+5;
1940 	} else {
1941 		gStep = 0x3f;
1942 		L1 = 0;
1943 		L2 = 50;
1944 		L3 = L1;
1945 		L4 = L3 + 50;
1946 
1947 		gv->loTrig = L1 + DYN_ADJ_LO_MARGIN;
1948 		gv->hiTrig = L4 - DYN_ADJ_UP_MARGIN;
1949 	}
1950 	g = gv->currGain;
1951 
1952 	return !((g >= L1 && g<= L2) || (g >= L3 && g <= L4));
1953 }
1954 
1955 /*
1956  * Enable the probe gain check on the next packet
1957  */
1958 static void
1959 ar5211RequestRfgain(struct ath_hal *ah)
1960 {
1961 	struct ath_hal_5211 *ahp = AH5211(ah);
1962 
1963 	/* Enable the gain readback probe */
1964 	OS_REG_WRITE(ah, AR_PHY_PAPD_PROBE,
1965 		  SM(ahp->ah_tx6PowerInHalfDbm, AR_PHY_PAPD_PROBE_POWERTX)
1966 		| AR_PHY_PAPD_PROBE_NEXT_TX);
1967 
1968 	ahp->ah_rfgainState = HAL_RFGAIN_READ_REQUESTED;
1969 }
1970 
1971 /*
1972  * Exported call to check for a recent gain reading and return
1973  * the current state of the thermal calibration gain engine.
1974  */
1975 HAL_RFGAIN
1976 ar5211GetRfgain(struct ath_hal *ah)
1977 {
1978 	struct ath_hal_5211 *ahp = AH5211(ah);
1979 	GAIN_VALUES *gv = &ahp->ah_gainValues;
1980 	uint32_t rddata;
1981 
1982 	if (!gv->active)
1983 		return HAL_RFGAIN_INACTIVE;
1984 
1985 	if (ahp->ah_rfgainState == HAL_RFGAIN_READ_REQUESTED) {
1986 		/* Caller had asked to setup a new reading. Check it. */
1987 		rddata = OS_REG_READ(ah, AR_PHY_PAPD_PROBE);
1988 
1989 		if ((rddata & AR_PHY_PAPD_PROBE_NEXT_TX) == 0) {
1990 			/* bit got cleared, we have a new reading. */
1991 			gv->currGain = rddata >> AR_PHY_PAPD_PROBE_GAINF_S;
1992 			/* inactive by default */
1993 			ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
1994 
1995 			if (!ar5211InvalidGainReadback(ah, gv) &&
1996 			    ar5211IsGainAdjustNeeded(ah, gv) &&
1997 			    ar5211AdjustGain(ah, gv) > 0) {
1998 				/*
1999 				 * Change needed. Copy ladder info
2000 				 * into eeprom info.
2001 				 */
2002 				ar5211SetRfgain(ah, gv);
2003 				ahp->ah_rfgainState = HAL_RFGAIN_NEED_CHANGE;
2004 			}
2005 		}
2006 	}
2007 	return ahp->ah_rfgainState;
2008 }
2009 
2010 /*
2011  * Check to see if our readback gain level sits within the linear
2012  * region of our current variable attenuation window
2013  */
2014 static HAL_BOOL
2015 ar5211IsGainAdjustNeeded(struct ath_hal *ah, const GAIN_VALUES *gv)
2016 {
2017 	return (gv->currGain <= gv->loTrig || gv->currGain >= gv->hiTrig);
2018 }
2019 
2020 /*
2021  * Move the rabbit ears in the correct direction.
2022  */
2023 static int32_t
2024 ar5211AdjustGain(struct ath_hal *ah, GAIN_VALUES *gv)
2025 {
2026 	/* return > 0 for valid adjustments. */
2027 	if (!gv->active)
2028 		return -1;
2029 
2030 	gv->currStep = &gainLadder.optStep[gv->currStepNum];
2031 	if (gv->currGain >= gv->hiTrig) {
2032 		if (gv->currStepNum == 0) {
2033 			HALDEBUG(ah, HAL_DEBUG_RFPARAM,
2034 			    "%s: Max gain limit.\n", __func__);
2035 			return -1;
2036 		}
2037 		HALDEBUG(ah, HAL_DEBUG_RFPARAM,
2038 		    "%s: Adding gain: currG=%d [%s] --> ",
2039 		    __func__, gv->currGain, gv->currStep->stepName);
2040 		gv->targetGain = gv->currGain;
2041 		while (gv->targetGain >= gv->hiTrig && gv->currStepNum > 0) {
2042 			gv->targetGain -= 2 * (gainLadder.optStep[--(gv->currStepNum)].stepGain -
2043 				gv->currStep->stepGain);
2044 			gv->currStep = &gainLadder.optStep[gv->currStepNum];
2045 		}
2046 		HALDEBUG(ah, HAL_DEBUG_RFPARAM, "targG=%d [%s]\n",
2047 		    gv->targetGain, gv->currStep->stepName);
2048 		return 1;
2049 	}
2050 	if (gv->currGain <= gv->loTrig) {
2051 		if (gv->currStepNum == gainLadder.numStepsInLadder-1) {
2052 			HALDEBUG(ah, HAL_DEBUG_RFPARAM,
2053 			    "%s: Min gain limit.\n", __func__);
2054 			return -2;
2055 		}
2056 		HALDEBUG(ah, HAL_DEBUG_RFPARAM,
2057 		    "%s: Deducting gain: currG=%d [%s] --> ",
2058 		    __func__, gv->currGain, gv->currStep->stepName);
2059 		gv->targetGain = gv->currGain;
2060 		while (gv->targetGain <= gv->loTrig &&
2061 		      gv->currStepNum < (gainLadder.numStepsInLadder - 1)) {
2062 			gv->targetGain -= 2 *
2063 				(gainLadder.optStep[++(gv->currStepNum)].stepGain - gv->currStep->stepGain);
2064 			gv->currStep = &gainLadder.optStep[gv->currStepNum];
2065 		}
2066 		HALDEBUG(ah, HAL_DEBUG_RFPARAM, "targG=%d [%s]\n",
2067 		    gv->targetGain, gv->currStep->stepName);
2068 		return 2;
2069 	}
2070 	return 0;		/* caller didn't call needAdjGain first */
2071 }
2072 
2073 /*
2074  * Adjust the 5GHz EEPROM information with the desired calibration values.
2075  */
2076 static void
2077 ar5211SetRfgain(struct ath_hal *ah, const GAIN_VALUES *gv)
2078 {
2079 	HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
2080 
2081 	if (!gv->active)
2082 		return;
2083 	ee->ee_cornerCal.clip = gv->currStep->paramVal[0]; /* bb_tx_clip */
2084 	ee->ee_cornerCal.pd90 = gv->currStep->paramVal[1]; /* rf_pwd_90 */
2085 	ee->ee_cornerCal.pd84 = gv->currStep->paramVal[2]; /* rf_pwd_84 */
2086 	ee->ee_cornerCal.gSel = gv->currStep->paramVal[3]; /* rf_rfgainsel */
2087 }
2088 
2089 static void
2090 ar5211SetOperatingMode(struct ath_hal *ah, int opmode)
2091 {
2092 	struct ath_hal_5211 *ahp = AH5211(ah);
2093 	uint32_t val;
2094 
2095 	val = OS_REG_READ(ah, AR_STA_ID1) & 0xffff;
2096 	switch (opmode) {
2097 	case HAL_M_HOSTAP:
2098 		OS_REG_WRITE(ah, AR_STA_ID1, val
2099 			| AR_STA_ID1_STA_AP
2100 			| AR_STA_ID1_RTS_USE_DEF
2101 			| ahp->ah_staId1Defaults);
2102 		break;
2103 	case HAL_M_IBSS:
2104 		OS_REG_WRITE(ah, AR_STA_ID1, val
2105 			| AR_STA_ID1_ADHOC
2106 			| AR_STA_ID1_DESC_ANTENNA
2107 			| ahp->ah_staId1Defaults);
2108 		break;
2109 	case HAL_M_STA:
2110 	case HAL_M_MONITOR:
2111 		OS_REG_WRITE(ah, AR_STA_ID1, val
2112 			| AR_STA_ID1_DEFAULT_ANTENNA
2113 			| ahp->ah_staId1Defaults);
2114 		break;
2115 	}
2116 }
2117 
2118 void
2119 ar5211SetPCUConfig(struct ath_hal *ah)
2120 {
2121 	ar5211SetOperatingMode(ah, AH_PRIVATE(ah)->ah_opmode);
2122 }
2123