xref: /freebsd/sys/dev/ath/ath_hal/ar5212/ar5111.c (revision 069ac184)
1 /*-
2  * SPDX-License-Identifier: ISC
3  *
4  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5  * Copyright (c) 2002-2008 Atheros Communications, Inc.
6  *
7  * Permission to use, copy, modify, and/or distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 #include "opt_ah.h"
20 
21 #include "ah.h"
22 #include "ah_internal.h"
23 
24 #include "ah_eeprom_v3.h"
25 
26 #include "ar5212/ar5212.h"
27 #include "ar5212/ar5212reg.h"
28 #include "ar5212/ar5212phy.h"
29 
30 #define AH_5212_5111
31 #include "ar5212/ar5212.ini"
32 
33 #define	N(a)	(sizeof(a)/sizeof(a[0]))
34 
35 struct ar5111State {
36 	RF_HAL_FUNCS	base;		/* public state, must be first */
37 	uint16_t	pcdacTable[PWR_TABLE_SIZE];
38 
39 	uint32_t	Bank0Data[N(ar5212Bank0_5111)];
40 	uint32_t	Bank1Data[N(ar5212Bank1_5111)];
41 	uint32_t	Bank2Data[N(ar5212Bank2_5111)];
42 	uint32_t	Bank3Data[N(ar5212Bank3_5111)];
43 	uint32_t	Bank6Data[N(ar5212Bank6_5111)];
44 	uint32_t	Bank7Data[N(ar5212Bank7_5111)];
45 };
46 #define	AR5111(ah)	((struct ar5111State *) AH5212(ah)->ah_rfHal)
47 
48 static uint16_t ar5212GetScaledPower(uint16_t channel, uint16_t pcdacValue,
49 		const PCDACS_EEPROM *pSrcStruct);
50 static HAL_BOOL ar5212FindValueInList(uint16_t channel, uint16_t pcdacValue,
51 		const PCDACS_EEPROM *pSrcStruct, uint16_t *powerValue);
52 static void ar5212GetLowerUpperPcdacs(uint16_t pcdac, uint16_t channel,
53 		const PCDACS_EEPROM *pSrcStruct,
54 		uint16_t *pLowerPcdac, uint16_t *pUpperPcdac);
55 
56 extern void ar5212GetLowerUpperValues(uint16_t value,
57 		const uint16_t *pList, uint16_t listSize,
58 		uint16_t *pLowerValue, uint16_t *pUpperValue);
59 extern	void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
60 		uint32_t numBits, uint32_t firstBit, uint32_t column);
61 
62 static void
63 ar5111WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
64 	int writes)
65 {
66 	HAL_INI_WRITE_ARRAY(ah, ar5212Modes_5111, modesIndex, writes);
67 	HAL_INI_WRITE_ARRAY(ah, ar5212Common_5111, 1, writes);
68 	HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_5111, freqIndex, writes);
69 }
70 
71 /*
72  * Take the MHz channel value and set the Channel value
73  *
74  * ASSUMES: Writes enabled to analog bus
75  */
76 static HAL_BOOL
77 ar5111SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
78 {
79 #define CI_2GHZ_INDEX_CORRECTION 19
80 	uint16_t freq = ath_hal_gethwchannel(ah, chan);
81 	uint32_t refClk, reg32, data2111;
82 	int16_t chan5111, chanIEEE;
83 
84 	/*
85 	 * Structure to hold 11b tuning information for 5111/2111
86 	 * 16 MHz mode, divider ratio = 198 = NP+S. N=16, S=4 or 6, P=12
87 	 */
88 	typedef struct {
89 		uint32_t	refClkSel;	/* reference clock, 1 for 16 MHz */
90 		uint32_t	channelSelect;	/* P[7:4]S[3:0] bits */
91 		uint16_t	channel5111;	/* 11a channel for 5111 */
92 	} CHAN_INFO_2GHZ;
93 
94 	static const CHAN_INFO_2GHZ chan2GHzData[] = {
95 		{ 1, 0x46, 96  },	/* 2312 -19 */
96 		{ 1, 0x46, 97  },	/* 2317 -18 */
97 		{ 1, 0x46, 98  },	/* 2322 -17 */
98 		{ 1, 0x46, 99  },	/* 2327 -16 */
99 		{ 1, 0x46, 100 },	/* 2332 -15 */
100 		{ 1, 0x46, 101 },	/* 2337 -14 */
101 		{ 1, 0x46, 102 },	/* 2342 -13 */
102 		{ 1, 0x46, 103 },	/* 2347 -12 */
103 		{ 1, 0x46, 104 },	/* 2352 -11 */
104 		{ 1, 0x46, 105 },	/* 2357 -10 */
105 		{ 1, 0x46, 106 },	/* 2362  -9 */
106 		{ 1, 0x46, 107 },	/* 2367  -8 */
107 		{ 1, 0x46, 108 },	/* 2372  -7 */
108 		/* index -6 to 0 are pad to make this a nolookup table */
109 		{ 1, 0x46, 116 },	/*       -6 */
110 		{ 1, 0x46, 116 },	/*       -5 */
111 		{ 1, 0x46, 116 },	/*       -4 */
112 		{ 1, 0x46, 116 },	/*       -3 */
113 		{ 1, 0x46, 116 },	/*       -2 */
114 		{ 1, 0x46, 116 },	/*       -1 */
115 		{ 1, 0x46, 116 },	/*        0 */
116 		{ 1, 0x46, 116 },	/* 2412   1 */
117 		{ 1, 0x46, 117 },	/* 2417   2 */
118 		{ 1, 0x46, 118 },	/* 2422   3 */
119 		{ 1, 0x46, 119 },	/* 2427   4 */
120 		{ 1, 0x46, 120 },	/* 2432   5 */
121 		{ 1, 0x46, 121 },	/* 2437   6 */
122 		{ 1, 0x46, 122 },	/* 2442   7 */
123 		{ 1, 0x46, 123 },	/* 2447   8 */
124 		{ 1, 0x46, 124 },	/* 2452   9 */
125 		{ 1, 0x46, 125 },	/* 2457  10 */
126 		{ 1, 0x46, 126 },	/* 2462  11 */
127 		{ 1, 0x46, 127 },	/* 2467  12 */
128 		{ 1, 0x46, 128 },	/* 2472  13 */
129 		{ 1, 0x44, 124 },	/* 2484  14 */
130 		{ 1, 0x46, 136 },	/* 2512  15 */
131 		{ 1, 0x46, 140 },	/* 2532  16 */
132 		{ 1, 0x46, 144 },	/* 2552  17 */
133 		{ 1, 0x46, 148 },	/* 2572  18 */
134 		{ 1, 0x46, 152 },	/* 2592  19 */
135 		{ 1, 0x46, 156 },	/* 2612  20 */
136 		{ 1, 0x46, 160 },	/* 2632  21 */
137 		{ 1, 0x46, 164 },	/* 2652  22 */
138 		{ 1, 0x46, 168 },	/* 2672  23 */
139 		{ 1, 0x46, 172 },	/* 2692  24 */
140 		{ 1, 0x46, 176 },	/* 2712  25 */
141 		{ 1, 0x46, 180 } 	/* 2732  26 */
142 	};
143 
144 	OS_MARK(ah, AH_MARK_SETCHANNEL, freq);
145 
146 	chanIEEE = chan->ic_ieee;
147 	if (IEEE80211_IS_CHAN_2GHZ(chan)) {
148 		const CHAN_INFO_2GHZ* ci =
149 			&chan2GHzData[chanIEEE + CI_2GHZ_INDEX_CORRECTION];
150 		uint32_t txctl;
151 
152 		data2111 = ((ath_hal_reverseBits(ci->channelSelect, 8) & 0xff)
153 				<< 5)
154 			 | (ci->refClkSel << 4);
155 		chan5111 = ci->channel5111;
156 		txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
157 		if (freq == 2484) {
158 			/* Enable channel spreading for channel 14 */
159 			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
160 				txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
161 		} else {
162 			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
163 				txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
164 		}
165 	} else {
166 		chan5111 = chanIEEE;	/* no conversion needed */
167 		data2111 = 0;
168 	}
169 
170 	/* Rest of the code is common for 5 GHz and 2.4 GHz. */
171 	if (chan5111 >= 145 || (chan5111 & 0x1)) {
172 		reg32  = ath_hal_reverseBits(chan5111 - 24, 8) & 0xff;
173 		refClk = 1;
174 	} else {
175 		reg32  = ath_hal_reverseBits(((chan5111 - 24)/2), 8) & 0xff;
176 		refClk = 0;
177 	}
178 
179 	reg32 = (reg32 << 2) | (refClk << 1) | (1 << 10) | 0x1;
180 	OS_REG_WRITE(ah, AR_PHY(0x27), ((data2111 & 0xff) << 8) | (reg32 & 0xff));
181 	reg32 >>= 8;
182 	OS_REG_WRITE(ah, AR_PHY(0x34), (data2111 & 0xff00) | (reg32 & 0xff));
183 
184 	AH_PRIVATE(ah)->ah_curchan = chan;
185 	return AH_TRUE;
186 #undef CI_2GHZ_INDEX_CORRECTION
187 }
188 
189 /*
190  * Return a reference to the requested RF Bank.
191  */
192 static uint32_t *
193 ar5111GetRfBank(struct ath_hal *ah, int bank)
194 {
195 	struct ar5111State *priv = AR5111(ah);
196 
197 	HALASSERT(priv != AH_NULL);
198 	switch (bank) {
199 	case 0: return priv->Bank0Data;
200 	case 1: return priv->Bank1Data;
201 	case 2: return priv->Bank2Data;
202 	case 3: return priv->Bank3Data;
203 	case 6: return priv->Bank6Data;
204 	case 7: return priv->Bank7Data;
205 	}
206 	HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
207 	    __func__, bank);
208 	return AH_NULL;
209 }
210 
211 /*
212  * Reads EEPROM header info from device structure and programs
213  * all rf registers
214  *
215  * REQUIRES: Access to the analog rf device
216  */
217 static HAL_BOOL
218 ar5111SetRfRegs(struct ath_hal *ah, const struct ieee80211_channel *chan,
219 	uint16_t modesIndex, uint16_t *rfXpdGain)
220 {
221 	uint16_t freq = ath_hal_gethwchannel(ah, chan);
222 	struct ath_hal_5212 *ahp = AH5212(ah);
223 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
224 	uint16_t rfXpdGainFixed, rfPloSel, rfPwdXpd, gainI;
225 	uint16_t tempOB, tempDB;
226 	uint32_t ob2GHz, db2GHz, rfReg[N(ar5212Bank6_5111)];
227 	int i, regWrites = 0;
228 
229 	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan %u/0x%x modesIndex %u\n",
230 	    __func__, chan->ic_freq, chan->ic_flags, modesIndex);
231 
232 	/* Setup rf parameters */
233 	switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
234 	case IEEE80211_CHAN_A:
235 		if (4000 < freq && freq < 5260) {
236 			tempOB = ee->ee_ob1;
237 			tempDB = ee->ee_db1;
238 		} else if (5260 <= freq && freq < 5500) {
239 			tempOB = ee->ee_ob2;
240 			tempDB = ee->ee_db2;
241 		} else if (5500 <= freq && freq < 5725) {
242 			tempOB = ee->ee_ob3;
243 			tempDB = ee->ee_db3;
244 		} else if (freq >= 5725) {
245 			tempOB = ee->ee_ob4;
246 			tempDB = ee->ee_db4;
247 		} else {
248 			/* XXX when does this happen??? */
249 			tempOB = tempDB = 0;
250 		}
251 		ob2GHz = db2GHz = 0;
252 
253 		rfXpdGainFixed = ee->ee_xgain[headerInfo11A];
254 		rfPloSel = ee->ee_xpd[headerInfo11A];
255 		rfPwdXpd = !ee->ee_xpd[headerInfo11A];
256 		gainI = ee->ee_gainI[headerInfo11A];
257 		break;
258 	case IEEE80211_CHAN_B:
259 		tempOB = ee->ee_obFor24;
260 		tempDB = ee->ee_dbFor24;
261 		ob2GHz = ee->ee_ob2GHz[0];
262 		db2GHz = ee->ee_db2GHz[0];
263 
264 		rfXpdGainFixed = ee->ee_xgain[headerInfo11B];
265 		rfPloSel = ee->ee_xpd[headerInfo11B];
266 		rfPwdXpd = !ee->ee_xpd[headerInfo11B];
267 		gainI = ee->ee_gainI[headerInfo11B];
268 		break;
269 	case IEEE80211_CHAN_G:
270 	case IEEE80211_CHAN_PUREG:	/* NB: really 108G */
271 		tempOB = ee->ee_obFor24g;
272 		tempDB = ee->ee_dbFor24g;
273 		ob2GHz = ee->ee_ob2GHz[1];
274 		db2GHz = ee->ee_db2GHz[1];
275 
276 		rfXpdGainFixed = ee->ee_xgain[headerInfo11G];
277 		rfPloSel = ee->ee_xpd[headerInfo11G];
278 		rfPwdXpd = !ee->ee_xpd[headerInfo11G];
279 		gainI = ee->ee_gainI[headerInfo11G];
280 		break;
281 	default:
282 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
283 		    __func__, chan->ic_flags);
284 		return AH_FALSE;
285 	}
286 
287 	HALASSERT(1 <= tempOB && tempOB <= 5);
288 	HALASSERT(1 <= tempDB && tempDB <= 5);
289 
290 	/* Bank 0 Write */
291 	for (i = 0; i < N(ar5212Bank0_5111); i++)
292 		rfReg[i] = ar5212Bank0_5111[i][modesIndex];
293 	if (IEEE80211_IS_CHAN_2GHZ(chan)) {
294 		ar5212ModifyRfBuffer(rfReg, ob2GHz, 3, 119, 0);
295 		ar5212ModifyRfBuffer(rfReg, db2GHz, 3, 122, 0);
296 	}
297 	HAL_INI_WRITE_BANK(ah, ar5212Bank0_5111, rfReg, regWrites);
298 
299 	/* Bank 1 Write */
300 	HAL_INI_WRITE_ARRAY(ah, ar5212Bank1_5111, 1, regWrites);
301 
302 	/* Bank 2 Write */
303 	HAL_INI_WRITE_ARRAY(ah, ar5212Bank2_5111, modesIndex, regWrites);
304 
305 	/* Bank 3 Write */
306 	HAL_INI_WRITE_ARRAY(ah, ar5212Bank3_5111, modesIndex, regWrites);
307 
308 	/* Bank 6 Write */
309 	for (i = 0; i < N(ar5212Bank6_5111); i++)
310 		rfReg[i] = ar5212Bank6_5111[i][modesIndex];
311 	if (IEEE80211_IS_CHAN_A(chan)) {	/* NB: CHANNEL_A | CHANNEL_T */
312 		ar5212ModifyRfBuffer(rfReg, ee->ee_cornerCal.pd84, 1, 51, 3);
313 		ar5212ModifyRfBuffer(rfReg, ee->ee_cornerCal.pd90, 1, 45, 3);
314 	}
315 	ar5212ModifyRfBuffer(rfReg, rfPwdXpd, 1, 95, 0);
316 	ar5212ModifyRfBuffer(rfReg, rfXpdGainFixed, 4, 96, 0);
317 	/* Set 5212 OB & DB */
318 	ar5212ModifyRfBuffer(rfReg, tempOB, 3, 104, 0);
319 	ar5212ModifyRfBuffer(rfReg, tempDB, 3, 107, 0);
320 	HAL_INI_WRITE_BANK(ah, ar5212Bank6_5111, rfReg, regWrites);
321 
322 	/* Bank 7 Write */
323 	for (i = 0; i < N(ar5212Bank7_5111); i++)
324 		rfReg[i] = ar5212Bank7_5111[i][modesIndex];
325 	ar5212ModifyRfBuffer(rfReg, gainI, 6, 29, 0);
326 	ar5212ModifyRfBuffer(rfReg, rfPloSel, 1, 4, 0);
327 
328 	if (IEEE80211_IS_CHAN_QUARTER(chan) || IEEE80211_IS_CHAN_HALF(chan)) {
329         	uint32_t	rfWaitI, rfWaitS, rfMaxTime;
330 
331         	rfWaitS = 0x1f;
332         	rfWaitI = (IEEE80211_IS_CHAN_HALF(chan)) ?  0x10 : 0x1f;
333         	rfMaxTime = 3;
334         	ar5212ModifyRfBuffer(rfReg, rfWaitS, 5, 19, 0);
335         	ar5212ModifyRfBuffer(rfReg, rfWaitI, 5, 24, 0);
336         	ar5212ModifyRfBuffer(rfReg, rfMaxTime, 2, 49, 0);
337 	}
338 
339 	HAL_INI_WRITE_BANK(ah, ar5212Bank7_5111, rfReg, regWrites);
340 
341 	/* Now that we have reprogrammed rfgain value, clear the flag. */
342 	ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
343 
344 	return AH_TRUE;
345 }
346 
347 /*
348  * Returns interpolated or the scaled up interpolated value
349  */
350 static uint16_t
351 interpolate(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
352 	uint16_t targetLeft, uint16_t targetRight)
353 {
354 	uint16_t rv;
355 	int16_t lRatio;
356 
357 	/* to get an accurate ratio, always scale, if want to scale, then don't scale back down */
358 	if ((targetLeft * targetRight) == 0)
359 		return 0;
360 
361 	if (srcRight != srcLeft) {
362 		/*
363 		 * Note the ratio always need to be scaled,
364 		 * since it will be a fraction.
365 		 */
366 		lRatio = (target - srcLeft) * EEP_SCALE / (srcRight - srcLeft);
367 		if (lRatio < 0) {
368 		    /* Return as Left target if value would be negative */
369 		    rv = targetLeft;
370 		} else if (lRatio > EEP_SCALE) {
371 		    /* Return as Right target if Ratio is greater than 100% (SCALE) */
372 		    rv = targetRight;
373 		} else {
374 			rv = (lRatio * targetRight + (EEP_SCALE - lRatio) *
375 					targetLeft) / EEP_SCALE;
376 		}
377 	} else {
378 		rv = targetLeft;
379 	}
380 	return rv;
381 }
382 
383 /*
384  * Read the transmit power levels from the structures taken from EEPROM
385  * Interpolate read transmit power values for this channel
386  * Organize the transmit power values into a table for writing into the hardware
387  */
388 static HAL_BOOL
389 ar5111SetPowerTable(struct ath_hal *ah,
390 	int16_t *pMinPower, int16_t *pMaxPower,
391 	const struct ieee80211_channel *chan,
392 	uint16_t *rfXpdGain)
393 {
394 	uint16_t freq = ath_hal_gethwchannel(ah, chan);
395 	struct ath_hal_5212 *ahp = AH5212(ah);
396 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
397 	FULL_PCDAC_STRUCT pcdacStruct;
398 	int i, j;
399 
400 	uint16_t     *pPcdacValues;
401 	int16_t      *pScaledUpDbm;
402 	int16_t      minScaledPwr;
403 	int16_t      maxScaledPwr;
404 	int16_t      pwr;
405 	uint16_t     pcdacMin = 0;
406 	uint16_t     pcdacMax = PCDAC_STOP;
407 	uint16_t     pcdacTableIndex;
408 	uint16_t     scaledPcdac;
409 	PCDACS_EEPROM *pSrcStruct;
410 	PCDACS_EEPROM eepromPcdacs;
411 
412 	/* setup the pcdac struct to point to the correct info, based on mode */
413 	switch (chan->ic_flags & IEEE80211_CHAN_ALLTURBOFULL) {
414 	case IEEE80211_CHAN_A:
415 	case IEEE80211_CHAN_ST:
416 		eepromPcdacs.numChannels     = ee->ee_numChannels11a;
417 		eepromPcdacs.pChannelList    = ee->ee_channels11a;
418 		eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11a;
419 		break;
420 	case IEEE80211_CHAN_B:
421 		eepromPcdacs.numChannels     = ee->ee_numChannels2_4;
422 		eepromPcdacs.pChannelList    = ee->ee_channels11b;
423 		eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11b;
424 		break;
425 	case IEEE80211_CHAN_G:
426 	case IEEE80211_CHAN_108G:
427 		eepromPcdacs.numChannels     = ee->ee_numChannels2_4;
428 		eepromPcdacs.pChannelList    = ee->ee_channels11g;
429 		eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11g;
430 		break;
431 	default:
432 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
433 		    __func__, chan->ic_flags);
434 		return AH_FALSE;
435 	}
436 
437 	pSrcStruct = &eepromPcdacs;
438 
439 	OS_MEMZERO(&pcdacStruct, sizeof(pcdacStruct));
440 	pPcdacValues = pcdacStruct.PcdacValues;
441 	pScaledUpDbm = pcdacStruct.PwrValues;
442 
443 	/* Initialize the pcdacs to dBM structs pcdacs to be 1 to 63 */
444 	for (i = PCDAC_START, j = 0; i <= PCDAC_STOP; i+= PCDAC_STEP, j++)
445 		pPcdacValues[j] = i;
446 
447 	pcdacStruct.numPcdacValues = j;
448 	pcdacStruct.pcdacMin = PCDAC_START;
449 	pcdacStruct.pcdacMax = PCDAC_STOP;
450 
451 	/* Fill out the power values for this channel */
452 	for (j = 0; j < pcdacStruct.numPcdacValues; j++ )
453 		pScaledUpDbm[j] = ar5212GetScaledPower(freq,
454 			pPcdacValues[j], pSrcStruct);
455 
456 	/* Now scale the pcdac values to fit in the 64 entry power table */
457 	minScaledPwr = pScaledUpDbm[0];
458 	maxScaledPwr = pScaledUpDbm[pcdacStruct.numPcdacValues - 1];
459 
460 	/* find minimum and make monotonic */
461 	for (j = 0; j < pcdacStruct.numPcdacValues; j++) {
462 		if (minScaledPwr >= pScaledUpDbm[j]) {
463 			minScaledPwr = pScaledUpDbm[j];
464 			pcdacMin = j;
465 		}
466 		/*
467 		 * Make the full_hsh monotonically increasing otherwise
468 		 * interpolation algorithm will get fooled gotta start
469 		 * working from the top, hence i = 63 - j.
470 		 */
471 		i = (uint16_t)(pcdacStruct.numPcdacValues - 1 - j);
472 		if (i == 0)
473 			break;
474 		if (pScaledUpDbm[i-1] > pScaledUpDbm[i]) {
475 			/*
476 			 * It could be a glitch, so make the power for
477 			 * this pcdac the same as the power from the
478 			 * next highest pcdac.
479 			 */
480 			pScaledUpDbm[i - 1] = pScaledUpDbm[i];
481 		}
482 	}
483 
484 	for (j = 0; j < pcdacStruct.numPcdacValues; j++)
485 		if (maxScaledPwr < pScaledUpDbm[j]) {
486 			maxScaledPwr = pScaledUpDbm[j];
487 			pcdacMax = j;
488 		}
489 
490 	/* Find the first power level with a pcdac */
491 	pwr = (uint16_t)(PWR_STEP *
492 		((minScaledPwr - PWR_MIN + PWR_STEP / 2) / PWR_STEP) + PWR_MIN);
493 
494 	/* Write all the first pcdac entries based off the pcdacMin */
495 	pcdacTableIndex = 0;
496 	for (i = 0; i < (2 * (pwr - PWR_MIN) / EEP_SCALE + 1); i++) {
497 		HALASSERT(pcdacTableIndex < PWR_TABLE_SIZE);
498 		ahp->ah_pcdacTable[pcdacTableIndex++] = pcdacMin;
499 	}
500 
501 	i = 0;
502 	while (pwr < pScaledUpDbm[pcdacStruct.numPcdacValues - 1] &&
503 	    pcdacTableIndex < PWR_TABLE_SIZE) {
504 		pwr += PWR_STEP;
505 		/* stop if dbM > max_power_possible */
506 		while (pwr < pScaledUpDbm[pcdacStruct.numPcdacValues - 1] &&
507 		       (pwr - pScaledUpDbm[i])*(pwr - pScaledUpDbm[i+1]) > 0)
508 			i++;
509 		/* scale by 2 and add 1 to enable round up or down as needed */
510 		scaledPcdac = (uint16_t)(interpolate(pwr,
511 			pScaledUpDbm[i], pScaledUpDbm[i + 1],
512 			(uint16_t)(pPcdacValues[i] * 2),
513 			(uint16_t)(pPcdacValues[i + 1] * 2)) + 1);
514 
515 		HALASSERT(pcdacTableIndex < PWR_TABLE_SIZE);
516 		ahp->ah_pcdacTable[pcdacTableIndex] = scaledPcdac / 2;
517 		if (ahp->ah_pcdacTable[pcdacTableIndex] > pcdacMax)
518 			ahp->ah_pcdacTable[pcdacTableIndex] = pcdacMax;
519 		pcdacTableIndex++;
520 	}
521 
522 	/* Write all the last pcdac entries based off the last valid pcdac */
523 	while (pcdacTableIndex < PWR_TABLE_SIZE) {
524 		ahp->ah_pcdacTable[pcdacTableIndex] =
525 			ahp->ah_pcdacTable[pcdacTableIndex - 1];
526 		pcdacTableIndex++;
527 	}
528 
529 	/* No power table adjustment for 5111 */
530 	ahp->ah_txPowerIndexOffset = 0;
531 
532 	return AH_TRUE;
533 }
534 
535 /*
536  * Get or interpolate the pcdac value from the calibrated data.
537  */
538 static uint16_t
539 ar5212GetScaledPower(uint16_t channel, uint16_t pcdacValue,
540 	const PCDACS_EEPROM *pSrcStruct)
541 {
542 	uint16_t powerValue;
543 	uint16_t lFreq, rFreq;		/* left and right frequency values */
544 	uint16_t llPcdac, ulPcdac;	/* lower and upper left pcdac values */
545 	uint16_t lrPcdac, urPcdac;	/* lower and upper right pcdac values */
546 	uint16_t lPwr, uPwr;		/* lower and upper temp pwr values */
547 	uint16_t lScaledPwr, rScaledPwr; /* left and right scaled power */
548 
549 	if (ar5212FindValueInList(channel, pcdacValue, pSrcStruct, &powerValue)) {
550 		/* value was copied from srcStruct */
551 		return powerValue;
552 	}
553 
554 	ar5212GetLowerUpperValues(channel,
555 		pSrcStruct->pChannelList, pSrcStruct->numChannels,
556 		&lFreq, &rFreq);
557 	ar5212GetLowerUpperPcdacs(pcdacValue,
558 		lFreq, pSrcStruct, &llPcdac, &ulPcdac);
559 	ar5212GetLowerUpperPcdacs(pcdacValue,
560 		rFreq, pSrcStruct, &lrPcdac, &urPcdac);
561 
562 	/* get the power index for the pcdac value */
563 	ar5212FindValueInList(lFreq, llPcdac, pSrcStruct, &lPwr);
564 	ar5212FindValueInList(lFreq, ulPcdac, pSrcStruct, &uPwr);
565 	lScaledPwr = interpolate(pcdacValue, llPcdac, ulPcdac, lPwr, uPwr);
566 
567 	ar5212FindValueInList(rFreq, lrPcdac, pSrcStruct, &lPwr);
568 	ar5212FindValueInList(rFreq, urPcdac, pSrcStruct, &uPwr);
569 	rScaledPwr = interpolate(pcdacValue, lrPcdac, urPcdac, lPwr, uPwr);
570 
571 	return interpolate(channel, lFreq, rFreq, lScaledPwr, rScaledPwr);
572 }
573 
574 /*
575  * Find the value from the calibrated source data struct
576  */
577 static HAL_BOOL
578 ar5212FindValueInList(uint16_t channel, uint16_t pcdacValue,
579 	const PCDACS_EEPROM *pSrcStruct, uint16_t *powerValue)
580 {
581 	const DATA_PER_CHANNEL *pChannelData = pSrcStruct->pDataPerChannel;
582 	int i;
583 
584 	for (i = 0; i < pSrcStruct->numChannels; i++ ) {
585 		if (pChannelData->channelValue == channel) {
586 			const uint16_t* pPcdac = pChannelData->PcdacValues;
587 			int j;
588 
589 			for (j = 0; j < pChannelData->numPcdacValues; j++ ) {
590 				if (*pPcdac == pcdacValue) {
591 					*powerValue = pChannelData->PwrValues[j];
592 					return AH_TRUE;
593 				}
594 				pPcdac++;
595 			}
596 		}
597 		pChannelData++;
598 	}
599 	return AH_FALSE;
600 }
601 
602 /*
603  * Get the upper and lower pcdac given the channel and the pcdac
604  * used in the search
605  */
606 static void
607 ar5212GetLowerUpperPcdacs(uint16_t pcdac, uint16_t channel,
608 	const PCDACS_EEPROM *pSrcStruct,
609 	uint16_t *pLowerPcdac, uint16_t *pUpperPcdac)
610 {
611 	const DATA_PER_CHANNEL *pChannelData = pSrcStruct->pDataPerChannel;
612 	int i;
613 
614 	/* Find the channel information */
615 	for (i = 0; i < pSrcStruct->numChannels; i++) {
616 		if (pChannelData->channelValue == channel)
617 			break;
618 		pChannelData++;
619 	}
620 	ar5212GetLowerUpperValues(pcdac, pChannelData->PcdacValues,
621 		      pChannelData->numPcdacValues,
622 		      pLowerPcdac, pUpperPcdac);
623 }
624 
625 static HAL_BOOL
626 ar5111GetChannelMaxMinPower(struct ath_hal *ah,
627 	const struct ieee80211_channel *chan,
628 	int16_t *maxPow, int16_t *minPow)
629 {
630 	/* XXX - Get 5111 power limits! */
631 	/* NB: caller will cope */
632 	return AH_FALSE;
633 }
634 
635 /*
636  * Adjust NF based on statistical values for 5GHz frequencies.
637  */
638 static int16_t
639 ar5111GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c)
640 {
641 	static const struct {
642 		uint16_t freqLow;
643 		int16_t	  adjust;
644 	} adjust5111[] = {
645 		{ 5790,	6 },	/* NB: ordered high -> low */
646 		{ 5730, 4 },
647 		{ 5690, 3 },
648 		{ 5660, 2 },
649 		{ 5610, 1 },
650 		{ 5530, 0 },
651 		{ 5450, 0 },
652 		{ 5379, 1 },
653 		{ 5209, 3 },
654 		{ 3000, 5 },
655 		{    0, 0 },
656 	};
657 	int i;
658 
659 	for (i = 0; c->channel <= adjust5111[i].freqLow; i++)
660 		;
661 	return adjust5111[i].adjust;
662 }
663 
664 /*
665  * Free memory for analog bank scratch buffers
666  */
667 static void
668 ar5111RfDetach(struct ath_hal *ah)
669 {
670 	struct ath_hal_5212 *ahp = AH5212(ah);
671 
672 	HALASSERT(ahp->ah_rfHal != AH_NULL);
673 	ath_hal_free(ahp->ah_rfHal);
674 	ahp->ah_rfHal = AH_NULL;
675 }
676 
677 /*
678  * Allocate memory for analog bank scratch buffers
679  * Scratch Buffer will be reinitialized every reset so no need to zero now
680  */
681 static HAL_BOOL
682 ar5111RfAttach(struct ath_hal *ah, HAL_STATUS *status)
683 {
684 	struct ath_hal_5212 *ahp = AH5212(ah);
685 	struct ar5111State *priv;
686 
687 	HALASSERT(ah->ah_magic == AR5212_MAGIC);
688 
689 	HALASSERT(ahp->ah_rfHal == AH_NULL);
690 	priv = ath_hal_malloc(sizeof(struct ar5111State));
691 	if (priv == AH_NULL) {
692 		HALDEBUG(ah, HAL_DEBUG_ANY,
693 		    "%s: cannot allocate private state\n", __func__);
694 		*status = HAL_ENOMEM;		/* XXX */
695 		return AH_FALSE;
696 	}
697 	priv->base.rfDetach		= ar5111RfDetach;
698 	priv->base.writeRegs		= ar5111WriteRegs;
699 	priv->base.getRfBank		= ar5111GetRfBank;
700 	priv->base.setChannel		= ar5111SetChannel;
701 	priv->base.setRfRegs		= ar5111SetRfRegs;
702 	priv->base.setPowerTable	= ar5111SetPowerTable;
703 	priv->base.getChannelMaxMinPower = ar5111GetChannelMaxMinPower;
704 	priv->base.getNfAdjust		= ar5111GetNfAdjust;
705 
706 	ahp->ah_pcdacTable = priv->pcdacTable;
707 	ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
708 	ahp->ah_rfHal = &priv->base;
709 
710 	return AH_TRUE;
711 }
712 
713 static HAL_BOOL
714 ar5111Probe(struct ath_hal *ah)
715 {
716 	return IS_RAD5111(ah);
717 }
718 AH_RF(RF5111, ar5111Probe, ar5111RfAttach);
719