xref: /freebsd/sys/dev/ath/if_ath.c (revision 41840d75)
1 /*-
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13  *    redistribution must be conditioned upon including a substantially
14  *    similar Disclaimer requirement for further binary redistribution.
15  *
16  * NO WARRANTY
17  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27  * THE POSSIBILITY OF SUCH DAMAGES.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Driver for the Atheros Wireless LAN controller.
35  *
36  * This software is derived from work of Atsushi Onoe; his contribution
37  * is greatly appreciated.
38  */
39 
40 #include "opt_inet.h"
41 #include "opt_ath.h"
42 /*
43  * This is needed for register operations which are performed
44  * by the driver - eg, calls to ath_hal_gettsf32().
45  *
46  * It's also required for any AH_DEBUG checks in here, eg the
47  * module dependencies.
48  */
49 #include "opt_ah.h"
50 #include "opt_wlan.h"
51 
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/sysctl.h>
55 #include <sys/mbuf.h>
56 #include <sys/malloc.h>
57 #include <sys/lock.h>
58 #include <sys/mutex.h>
59 #include <sys/kernel.h>
60 #include <sys/socket.h>
61 #include <sys/sockio.h>
62 #include <sys/errno.h>
63 #include <sys/callout.h>
64 #include <sys/bus.h>
65 #include <sys/endian.h>
66 #include <sys/kthread.h>
67 #include <sys/taskqueue.h>
68 #include <sys/priv.h>
69 #include <sys/module.h>
70 #include <sys/ktr.h>
71 #include <sys/smp.h>	/* for mp_ncpus */
72 
73 #include <machine/bus.h>
74 
75 #include <net/if.h>
76 #include <net/if_dl.h>
77 #include <net/if_media.h>
78 #include <net/if_types.h>
79 #include <net/if_arp.h>
80 #include <net/ethernet.h>
81 #include <net/if_llc.h>
82 
83 #include <net80211/ieee80211_var.h>
84 #include <net80211/ieee80211_regdomain.h>
85 #ifdef IEEE80211_SUPPORT_SUPERG
86 #include <net80211/ieee80211_superg.h>
87 #endif
88 #ifdef IEEE80211_SUPPORT_TDMA
89 #include <net80211/ieee80211_tdma.h>
90 #endif
91 
92 #include <net/bpf.h>
93 
94 #ifdef INET
95 #include <netinet/in.h>
96 #include <netinet/if_ether.h>
97 #endif
98 
99 #include <dev/ath/if_athvar.h>
100 #include <dev/ath/ath_hal/ah_devid.h>		/* XXX for softled */
101 #include <dev/ath/ath_hal/ah_diagcodes.h>
102 
103 #include <dev/ath/if_ath_debug.h>
104 #include <dev/ath/if_ath_misc.h>
105 #include <dev/ath/if_ath_tsf.h>
106 #include <dev/ath/if_ath_tx.h>
107 #include <dev/ath/if_ath_sysctl.h>
108 #include <dev/ath/if_ath_led.h>
109 #include <dev/ath/if_ath_keycache.h>
110 #include <dev/ath/if_ath_rx.h>
111 #include <dev/ath/if_ath_rx_edma.h>
112 #include <dev/ath/if_ath_tx_edma.h>
113 #include <dev/ath/if_ath_beacon.h>
114 #include <dev/ath/if_ath_btcoex.h>
115 #include <dev/ath/if_ath_spectral.h>
116 #include <dev/ath/if_ath_lna_div.h>
117 #include <dev/ath/if_athdfs.h>
118 
119 #ifdef ATH_TX99_DIAG
120 #include <dev/ath/ath_tx99/ath_tx99.h>
121 #endif
122 
123 #ifdef	ATH_DEBUG_ALQ
124 #include <dev/ath/if_ath_alq.h>
125 #endif
126 
127 /*
128  * Only enable this if you're working on PS-POLL support.
129  */
130 #define	ATH_SW_PSQ
131 
132 /*
133  * ATH_BCBUF determines the number of vap's that can transmit
134  * beacons and also (currently) the number of vap's that can
135  * have unique mac addresses/bssid.  When staggering beacons
136  * 4 is probably a good max as otherwise the beacons become
137  * very closely spaced and there is limited time for cab q traffic
138  * to go out.  You can burst beacons instead but that is not good
139  * for stations in power save and at some point you really want
140  * another radio (and channel).
141  *
142  * The limit on the number of mac addresses is tied to our use of
143  * the U/L bit and tracking addresses in a byte; it would be
144  * worthwhile to allow more for applications like proxy sta.
145  */
146 CTASSERT(ATH_BCBUF <= 8);
147 
148 static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
149 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
150 		    const uint8_t [IEEE80211_ADDR_LEN],
151 		    const uint8_t [IEEE80211_ADDR_LEN]);
152 static void	ath_vap_delete(struct ieee80211vap *);
153 static void	ath_init(void *);
154 static void	ath_stop_locked(struct ifnet *);
155 static void	ath_stop(struct ifnet *);
156 static int	ath_reset_vap(struct ieee80211vap *, u_long);
157 static int	ath_transmit(struct ifnet *ifp, struct mbuf *m);
158 static void	ath_qflush(struct ifnet *ifp);
159 static int	ath_media_change(struct ifnet *);
160 static void	ath_watchdog(void *);
161 static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
162 static void	ath_fatal_proc(void *, int);
163 static void	ath_bmiss_vap(struct ieee80211vap *);
164 static void	ath_bmiss_proc(void *, int);
165 static void	ath_key_update_begin(struct ieee80211vap *);
166 static void	ath_key_update_end(struct ieee80211vap *);
167 static void	ath_update_mcast(struct ifnet *);
168 static void	ath_update_promisc(struct ifnet *);
169 static void	ath_updateslot(struct ifnet *);
170 static void	ath_bstuck_proc(void *, int);
171 static void	ath_reset_proc(void *, int);
172 static int	ath_desc_alloc(struct ath_softc *);
173 static void	ath_desc_free(struct ath_softc *);
174 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
175 			const uint8_t [IEEE80211_ADDR_LEN]);
176 static void	ath_node_cleanup(struct ieee80211_node *);
177 static void	ath_node_free(struct ieee80211_node *);
178 static void	ath_node_getsignal(const struct ieee80211_node *,
179 			int8_t *, int8_t *);
180 static void	ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
181 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
182 static int	ath_tx_setup(struct ath_softc *, int, int);
183 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
184 static void	ath_tx_cleanup(struct ath_softc *);
185 static int	ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq,
186 		    int dosched);
187 static void	ath_tx_proc_q0(void *, int);
188 static void	ath_tx_proc_q0123(void *, int);
189 static void	ath_tx_proc(void *, int);
190 static void	ath_txq_sched_tasklet(void *, int);
191 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
192 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
193 static void	ath_scan_start(struct ieee80211com *);
194 static void	ath_scan_end(struct ieee80211com *);
195 static void	ath_set_channel(struct ieee80211com *);
196 #ifdef	ATH_ENABLE_11N
197 static void	ath_update_chw(struct ieee80211com *);
198 #endif	/* ATH_ENABLE_11N */
199 static void	ath_calibrate(void *);
200 static int	ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
201 static void	ath_setup_stationkey(struct ieee80211_node *);
202 static void	ath_newassoc(struct ieee80211_node *, int);
203 static int	ath_setregdomain(struct ieee80211com *,
204 		    struct ieee80211_regdomain *, int,
205 		    struct ieee80211_channel []);
206 static void	ath_getradiocaps(struct ieee80211com *, int, int *,
207 		    struct ieee80211_channel []);
208 static int	ath_getchannels(struct ath_softc *);
209 
210 static int	ath_rate_setup(struct ath_softc *, u_int mode);
211 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
212 
213 static void	ath_announce(struct ath_softc *);
214 
215 static void	ath_dfs_tasklet(void *, int);
216 static void	ath_node_powersave(struct ieee80211_node *, int);
217 static int	ath_node_set_tim(struct ieee80211_node *, int);
218 static void	ath_node_recv_pspoll(struct ieee80211_node *, struct mbuf *);
219 
220 #ifdef IEEE80211_SUPPORT_TDMA
221 #include <dev/ath/if_ath_tdma.h>
222 #endif
223 
224 SYSCTL_DECL(_hw_ath);
225 
226 /* XXX validate sysctl values */
227 static	int ath_longcalinterval = 30;		/* long cals every 30 secs */
228 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval,
229 	    0, "long chip calibration interval (secs)");
230 static	int ath_shortcalinterval = 100;		/* short cals every 100 ms */
231 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval,
232 	    0, "short chip calibration interval (msecs)");
233 static	int ath_resetcalinterval = 20*60;	/* reset cal state 20 mins */
234 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval,
235 	    0, "reset chip calibration results (secs)");
236 static	int ath_anicalinterval = 100;		/* ANI calibration - 100 msec */
237 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval,
238 	    0, "ANI calibration (msecs)");
239 
240 int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
241 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf,
242 	    0, "rx buffers allocated");
243 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
244 int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
245 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf,
246 	    0, "tx buffers allocated");
247 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
248 int ath_txbuf_mgmt = ATH_MGMT_TXBUF;	/* # mgmt tx buffers to allocate */
249 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RW, &ath_txbuf_mgmt,
250 	    0, "tx (mgmt) buffers allocated");
251 TUNABLE_INT("hw.ath.txbuf_mgmt", &ath_txbuf_mgmt);
252 
253 int ath_bstuck_threshold = 4;		/* max missed beacons */
254 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold,
255 	    0, "max missed beacon xmits before chip reset");
256 
257 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
258 
259 void
260 ath_legacy_attach_comp_func(struct ath_softc *sc)
261 {
262 
263 	/*
264 	 * Special case certain configurations.  Note the
265 	 * CAB queue is handled by these specially so don't
266 	 * include them when checking the txq setup mask.
267 	 */
268 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
269 	case 0x01:
270 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
271 		break;
272 	case 0x0f:
273 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
274 		break;
275 	default:
276 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
277 		break;
278 	}
279 }
280 
281 #define	HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20)
282 #define	HAL_MODE_HT40 \
283 	(HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \
284 	HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS)
285 int
286 ath_attach(u_int16_t devid, struct ath_softc *sc)
287 {
288 	struct ifnet *ifp;
289 	struct ieee80211com *ic;
290 	struct ath_hal *ah = NULL;
291 	HAL_STATUS status;
292 	int error = 0, i;
293 	u_int wmodes;
294 	uint8_t macaddr[IEEE80211_ADDR_LEN];
295 	int rx_chainmask, tx_chainmask;
296 
297 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
298 
299 	CURVNET_SET(vnet0);
300 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
301 	if (ifp == NULL) {
302 		device_printf(sc->sc_dev, "can not if_alloc()\n");
303 		error = ENOSPC;
304 		CURVNET_RESTORE();
305 		goto bad;
306 	}
307 	ic = ifp->if_l2com;
308 
309 	/* set these up early for if_printf use */
310 	if_initname(ifp, device_get_name(sc->sc_dev),
311 		device_get_unit(sc->sc_dev));
312 	CURVNET_RESTORE();
313 
314 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh,
315 	    sc->sc_eepromdata, &status);
316 	if (ah == NULL) {
317 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
318 			status);
319 		error = ENXIO;
320 		goto bad;
321 	}
322 	sc->sc_ah = ah;
323 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
324 #ifdef	ATH_DEBUG
325 	sc->sc_debug = ath_debug;
326 #endif
327 
328 	/*
329 	 * Setup the DMA/EDMA functions based on the current
330 	 * hardware support.
331 	 *
332 	 * This is required before the descriptors are allocated.
333 	 */
334 	if (ath_hal_hasedma(sc->sc_ah)) {
335 		sc->sc_isedma = 1;
336 		ath_recv_setup_edma(sc);
337 		ath_xmit_setup_edma(sc);
338 	} else {
339 		ath_recv_setup_legacy(sc);
340 		ath_xmit_setup_legacy(sc);
341 	}
342 
343 	/*
344 	 * Check if the MAC has multi-rate retry support.
345 	 * We do this by trying to setup a fake extended
346 	 * descriptor.  MAC's that don't have support will
347 	 * return false w/o doing anything.  MAC's that do
348 	 * support it will return true w/o doing anything.
349 	 */
350 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
351 
352 	/*
353 	 * Check if the device has hardware counters for PHY
354 	 * errors.  If so we need to enable the MIB interrupt
355 	 * so we can act on stat triggers.
356 	 */
357 	if (ath_hal_hwphycounters(ah))
358 		sc->sc_needmib = 1;
359 
360 	/*
361 	 * Get the hardware key cache size.
362 	 */
363 	sc->sc_keymax = ath_hal_keycachesize(ah);
364 	if (sc->sc_keymax > ATH_KEYMAX) {
365 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
366 			ATH_KEYMAX, sc->sc_keymax);
367 		sc->sc_keymax = ATH_KEYMAX;
368 	}
369 	/*
370 	 * Reset the key cache since some parts do not
371 	 * reset the contents on initial power up.
372 	 */
373 	for (i = 0; i < sc->sc_keymax; i++)
374 		ath_hal_keyreset(ah, i);
375 
376 	/*
377 	 * Collect the default channel list.
378 	 */
379 	error = ath_getchannels(sc);
380 	if (error != 0)
381 		goto bad;
382 
383 	/*
384 	 * Setup rate tables for all potential media types.
385 	 */
386 	ath_rate_setup(sc, IEEE80211_MODE_11A);
387 	ath_rate_setup(sc, IEEE80211_MODE_11B);
388 	ath_rate_setup(sc, IEEE80211_MODE_11G);
389 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
390 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
391 	ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
392 	ath_rate_setup(sc, IEEE80211_MODE_11NA);
393 	ath_rate_setup(sc, IEEE80211_MODE_11NG);
394 	ath_rate_setup(sc, IEEE80211_MODE_HALF);
395 	ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
396 
397 	/* NB: setup here so ath_rate_update is happy */
398 	ath_setcurmode(sc, IEEE80211_MODE_11A);
399 
400 	/*
401 	 * Allocate TX descriptors and populate the lists.
402 	 */
403 	error = ath_desc_alloc(sc);
404 	if (error != 0) {
405 		if_printf(ifp, "failed to allocate TX descriptors: %d\n",
406 		    error);
407 		goto bad;
408 	}
409 	error = ath_txdma_setup(sc);
410 	if (error != 0) {
411 		if_printf(ifp, "failed to allocate TX descriptors: %d\n",
412 		    error);
413 		goto bad;
414 	}
415 
416 	/*
417 	 * Allocate RX descriptors and populate the lists.
418 	 */
419 	error = ath_rxdma_setup(sc);
420 	if (error != 0) {
421 		if_printf(ifp, "failed to allocate RX descriptors: %d\n",
422 		    error);
423 		goto bad;
424 	}
425 
426 	callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0);
427 	callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0);
428 
429 	ATH_TXBUF_LOCK_INIT(sc);
430 
431 	sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
432 		taskqueue_thread_enqueue, &sc->sc_tq);
433 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
434 		"%s taskq", ifp->if_xname);
435 
436 	TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc);
437 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
438 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
439 	TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc);
440 	TASK_INIT(&sc->sc_txqtask, 0, ath_txq_sched_tasklet, sc);
441 	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
442 
443 	/*
444 	 * Allocate hardware transmit queues: one queue for
445 	 * beacon frames and one data queue for each QoS
446 	 * priority.  Note that the hal handles resetting
447 	 * these queues at the needed time.
448 	 *
449 	 * XXX PS-Poll
450 	 */
451 	sc->sc_bhalq = ath_beaconq_setup(sc);
452 	if (sc->sc_bhalq == (u_int) -1) {
453 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
454 		error = EIO;
455 		goto bad2;
456 	}
457 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
458 	if (sc->sc_cabq == NULL) {
459 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
460 		error = EIO;
461 		goto bad2;
462 	}
463 	/* NB: insure BK queue is the lowest priority h/w queue */
464 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
465 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
466 			ieee80211_wme_acnames[WME_AC_BK]);
467 		error = EIO;
468 		goto bad2;
469 	}
470 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
471 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
472 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
473 		/*
474 		 * Not enough hardware tx queues to properly do WME;
475 		 * just punt and assign them all to the same h/w queue.
476 		 * We could do a better job of this if, for example,
477 		 * we allocate queues when we switch from station to
478 		 * AP mode.
479 		 */
480 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
481 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
482 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
483 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
484 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
485 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
486 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
487 	}
488 
489 	/*
490 	 * Attach the TX completion function.
491 	 *
492 	 * The non-EDMA chips may have some special case optimisations;
493 	 * this method gives everyone a chance to attach cleanly.
494 	 */
495 	sc->sc_tx.xmit_attach_comp_func(sc);
496 
497 	/*
498 	 * Setup rate control.  Some rate control modules
499 	 * call back to change the anntena state so expose
500 	 * the necessary entry points.
501 	 * XXX maybe belongs in struct ath_ratectrl?
502 	 */
503 	sc->sc_setdefantenna = ath_setdefantenna;
504 	sc->sc_rc = ath_rate_attach(sc);
505 	if (sc->sc_rc == NULL) {
506 		error = EIO;
507 		goto bad2;
508 	}
509 
510 	/* Attach DFS module */
511 	if (! ath_dfs_attach(sc)) {
512 		device_printf(sc->sc_dev,
513 		    "%s: unable to attach DFS\n", __func__);
514 		error = EIO;
515 		goto bad2;
516 	}
517 
518 	/* Attach spectral module */
519 	if (ath_spectral_attach(sc) < 0) {
520 		device_printf(sc->sc_dev,
521 		    "%s: unable to attach spectral\n", __func__);
522 		error = EIO;
523 		goto bad2;
524 	}
525 
526 	/* Attach bluetooth coexistence module */
527 	if (ath_btcoex_attach(sc) < 0) {
528 		device_printf(sc->sc_dev,
529 		    "%s: unable to attach bluetooth coexistence\n", __func__);
530 		error = EIO;
531 		goto bad2;
532 	}
533 
534 	/* Attach LNA diversity module */
535 	if (ath_lna_div_attach(sc) < 0) {
536 		device_printf(sc->sc_dev,
537 		    "%s: unable to attach LNA diversity\n", __func__);
538 		error = EIO;
539 		goto bad2;
540 	}
541 
542 	/* Start DFS processing tasklet */
543 	TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc);
544 
545 	/* Configure LED state */
546 	sc->sc_blinking = 0;
547 	sc->sc_ledstate = 1;
548 	sc->sc_ledon = 0;			/* low true */
549 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
550 	callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
551 
552 	/*
553 	 * Don't setup hardware-based blinking.
554 	 *
555 	 * Although some NICs may have this configured in the
556 	 * default reset register values, the user may wish
557 	 * to alter which pins have which function.
558 	 *
559 	 * The reference driver attaches the MAC network LED to GPIO1 and
560 	 * the MAC power LED to GPIO2.  However, the DWA-552 cardbus
561 	 * NIC has these reversed.
562 	 */
563 	sc->sc_hardled = (1 == 0);
564 	sc->sc_led_net_pin = -1;
565 	sc->sc_led_pwr_pin = -1;
566 	/*
567 	 * Auto-enable soft led processing for IBM cards and for
568 	 * 5211 minipci cards.  Users can also manually enable/disable
569 	 * support with a sysctl.
570 	 */
571 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
572 	ath_led_config(sc);
573 	ath_hal_setledstate(ah, HAL_LED_INIT);
574 
575 	ifp->if_softc = sc;
576 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
577 	ifp->if_transmit = ath_transmit;
578 	ifp->if_qflush = ath_qflush;
579 	ifp->if_ioctl = ath_ioctl;
580 	ifp->if_init = ath_init;
581 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
582 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
583 	IFQ_SET_READY(&ifp->if_snd);
584 
585 	ic->ic_ifp = ifp;
586 	/* XXX not right but it's not used anywhere important */
587 	ic->ic_phytype = IEEE80211_T_OFDM;
588 	ic->ic_opmode = IEEE80211_M_STA;
589 	ic->ic_caps =
590 		  IEEE80211_C_STA		/* station mode */
591 		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
592 		| IEEE80211_C_HOSTAP		/* hostap mode */
593 		| IEEE80211_C_MONITOR		/* monitor mode */
594 		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
595 		| IEEE80211_C_WDS		/* 4-address traffic works */
596 		| IEEE80211_C_MBSS		/* mesh point link mode */
597 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
598 		| IEEE80211_C_SHSLOT		/* short slot time supported */
599 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
600 #ifndef	ATH_ENABLE_11N
601 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
602 #endif
603 		| IEEE80211_C_TXFRAG		/* handle tx frags */
604 #ifdef	ATH_ENABLE_DFS
605 		| IEEE80211_C_DFS		/* Enable radar detection */
606 #endif
607 		;
608 	/*
609 	 * Query the hal to figure out h/w crypto support.
610 	 */
611 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
612 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
613 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
614 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
615 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
616 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
617 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
618 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
619 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
620 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
621 		/*
622 		 * Check if h/w does the MIC and/or whether the
623 		 * separate key cache entries are required to
624 		 * handle both tx+rx MIC keys.
625 		 */
626 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
627 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
628 		/*
629 		 * If the h/w supports storing tx+rx MIC keys
630 		 * in one cache slot automatically enable use.
631 		 */
632 		if (ath_hal_hastkipsplit(ah) ||
633 		    !ath_hal_settkipsplit(ah, AH_FALSE))
634 			sc->sc_splitmic = 1;
635 		/*
636 		 * If the h/w can do TKIP MIC together with WME then
637 		 * we use it; otherwise we force the MIC to be done
638 		 * in software by the net80211 layer.
639 		 */
640 		if (ath_hal_haswmetkipmic(ah))
641 			sc->sc_wmetkipmic = 1;
642 	}
643 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
644 	/*
645 	 * Check for multicast key search support.
646 	 */
647 	if (ath_hal_hasmcastkeysearch(sc->sc_ah) &&
648 	    !ath_hal_getmcastkeysearch(sc->sc_ah)) {
649 		ath_hal_setmcastkeysearch(sc->sc_ah, 1);
650 	}
651 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
652 	/*
653 	 * Mark key cache slots associated with global keys
654 	 * as in use.  If we knew TKIP was not to be used we
655 	 * could leave the +32, +64, and +32+64 slots free.
656 	 */
657 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
658 		setbit(sc->sc_keymap, i);
659 		setbit(sc->sc_keymap, i+64);
660 		if (sc->sc_splitmic) {
661 			setbit(sc->sc_keymap, i+32);
662 			setbit(sc->sc_keymap, i+32+64);
663 		}
664 	}
665 	/*
666 	 * TPC support can be done either with a global cap or
667 	 * per-packet support.  The latter is not available on
668 	 * all parts.  We're a bit pedantic here as all parts
669 	 * support a global cap.
670 	 */
671 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
672 		ic->ic_caps |= IEEE80211_C_TXPMGT;
673 
674 	/*
675 	 * Mark WME capability only if we have sufficient
676 	 * hardware queues to do proper priority scheduling.
677 	 */
678 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
679 		ic->ic_caps |= IEEE80211_C_WME;
680 	/*
681 	 * Check for misc other capabilities.
682 	 */
683 	if (ath_hal_hasbursting(ah))
684 		ic->ic_caps |= IEEE80211_C_BURST;
685 	sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
686 	sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah);
687 	sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
688 	sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah);
689 	sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah);
690 	sc->sc_hasenforcetxop = ath_hal_hasenforcetxop(ah);
691 	sc->sc_rx_lnamixer = ath_hal_hasrxlnamixer(ah);
692 	sc->sc_hasdivcomb = ath_hal_hasdivantcomb(ah);
693 
694 	if (ath_hal_hasfastframes(ah))
695 		ic->ic_caps |= IEEE80211_C_FF;
696 	wmodes = ath_hal_getwirelessmodes(ah);
697 	if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
698 		ic->ic_caps |= IEEE80211_C_TURBOP;
699 #ifdef IEEE80211_SUPPORT_TDMA
700 	if (ath_hal_macversion(ah) > 0x78) {
701 		ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */
702 		ic->ic_tdma_update = ath_tdma_update;
703 	}
704 #endif
705 
706 	/*
707 	 * TODO: enforce that at least this many frames are available
708 	 * in the txbuf list before allowing data frames (raw or
709 	 * otherwise) to be transmitted.
710 	 */
711 	sc->sc_txq_data_minfree = 10;
712 	/*
713 	 * Leave this as default to maintain legacy behaviour.
714 	 * Shortening the cabq/mcastq may end up causing some
715 	 * undesirable behaviour.
716 	 */
717 	sc->sc_txq_mcastq_maxdepth = ath_txbuf;
718 
719 	/*
720 	 * How deep can the node software TX queue get whilst it's asleep.
721 	 */
722 	sc->sc_txq_node_psq_maxdepth = 16;
723 
724 	/*
725 	 * Default the maximum queue depth for a given node
726 	 * to 1/4'th the TX buffers, or 64, whichever
727 	 * is larger.
728 	 */
729 	sc->sc_txq_node_maxdepth = MAX(64, ath_txbuf / 4);
730 
731 	/* Enable CABQ by default */
732 	sc->sc_cabq_enable = 1;
733 
734 	/*
735 	 * Allow the TX and RX chainmasks to be overridden by
736 	 * environment variables and/or device.hints.
737 	 *
738 	 * This must be done early - before the hardware is
739 	 * calibrated or before the 802.11n stream calculation
740 	 * is done.
741 	 */
742 	if (resource_int_value(device_get_name(sc->sc_dev),
743 	    device_get_unit(sc->sc_dev), "rx_chainmask",
744 	    &rx_chainmask) == 0) {
745 		device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n",
746 		    rx_chainmask);
747 		(void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask);
748 	}
749 	if (resource_int_value(device_get_name(sc->sc_dev),
750 	    device_get_unit(sc->sc_dev), "tx_chainmask",
751 	    &tx_chainmask) == 0) {
752 		device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n",
753 		    tx_chainmask);
754 		(void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask);
755 	}
756 
757 	/*
758 	 * Query the TX/RX chainmask configuration.
759 	 *
760 	 * This is only relevant for 11n devices.
761 	 */
762 	ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask);
763 	ath_hal_gettxchainmask(ah, &sc->sc_txchainmask);
764 
765 	/*
766 	 * Disable MRR with protected frames by default.
767 	 * Only 802.11n series NICs can handle this.
768 	 */
769 	sc->sc_mrrprot = 0;	/* XXX should be a capability */
770 
771 	/*
772 	 * Query the enterprise mode information the HAL.
773 	 */
774 	if (ath_hal_getcapability(ah, HAL_CAP_ENTERPRISE_MODE, 0,
775 	    &sc->sc_ent_cfg) == HAL_OK)
776 		sc->sc_use_ent = 1;
777 
778 #ifdef	ATH_ENABLE_11N
779 	/*
780 	 * Query HT capabilities
781 	 */
782 	if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK &&
783 	    (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) {
784 		uint32_t rxs, txs;
785 
786 		device_printf(sc->sc_dev, "[HT] enabling HT modes\n");
787 
788 		sc->sc_mrrprot = 1;	/* XXX should be a capability */
789 
790 		ic->ic_htcaps = IEEE80211_HTC_HT	/* HT operation */
791 			    | IEEE80211_HTC_AMPDU	/* A-MPDU tx/rx */
792 			    | IEEE80211_HTC_AMSDU	/* A-MSDU tx/rx */
793 			    | IEEE80211_HTCAP_MAXAMSDU_3839
794 			    				/* max A-MSDU length */
795 			    | IEEE80211_HTCAP_SMPS_OFF;	/* SM power save off */
796 			;
797 
798 		/*
799 		 * Enable short-GI for HT20 only if the hardware
800 		 * advertises support.
801 		 * Notably, anything earlier than the AR9287 doesn't.
802 		 */
803 		if ((ath_hal_getcapability(ah,
804 		    HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) &&
805 		    (wmodes & HAL_MODE_HT20)) {
806 			device_printf(sc->sc_dev,
807 			    "[HT] enabling short-GI in 20MHz mode\n");
808 			ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20;
809 		}
810 
811 		if (wmodes & HAL_MODE_HT40)
812 			ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40
813 			    |  IEEE80211_HTCAP_SHORTGI40;
814 
815 		/*
816 		 * TX/RX streams need to be taken into account when
817 		 * negotiating which MCS rates it'll receive and
818 		 * what MCS rates are available for TX.
819 		 */
820 		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs);
821 		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs);
822 		ic->ic_txstream = txs;
823 		ic->ic_rxstream = rxs;
824 
825 		/*
826 		 * Setup TX and RX STBC based on what the HAL allows and
827 		 * the currently configured chainmask set.
828 		 * Ie - don't enable STBC TX if only one chain is enabled.
829 		 * STBC RX is fine on a single RX chain; it just won't
830 		 * provide any real benefit.
831 		 */
832 		if (ath_hal_getcapability(ah, HAL_CAP_RX_STBC, 0,
833 		    NULL) == HAL_OK) {
834 			sc->sc_rx_stbc = 1;
835 			device_printf(sc->sc_dev,
836 			    "[HT] 1 stream STBC receive enabled\n");
837 			ic->ic_htcaps |= IEEE80211_HTCAP_RXSTBC_1STREAM;
838 		}
839 		if (txs > 1 && ath_hal_getcapability(ah, HAL_CAP_TX_STBC, 0,
840 		    NULL) == HAL_OK) {
841 			sc->sc_tx_stbc = 1;
842 			device_printf(sc->sc_dev,
843 			    "[HT] 1 stream STBC transmit enabled\n");
844 			ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC;
845 		}
846 
847 		(void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1,
848 		    &sc->sc_rts_aggr_limit);
849 		if (sc->sc_rts_aggr_limit != (64 * 1024))
850 			device_printf(sc->sc_dev,
851 			    "[HT] RTS aggregates limited to %d KiB\n",
852 			    sc->sc_rts_aggr_limit / 1024);
853 
854 		device_printf(sc->sc_dev,
855 		    "[HT] %d RX streams; %d TX streams\n", rxs, txs);
856 	}
857 #endif
858 
859 	/*
860 	 * Initial aggregation settings.
861 	 */
862 	sc->sc_hwq_limit_aggr = ATH_AGGR_MIN_QDEPTH;
863 	sc->sc_hwq_limit_nonaggr = ATH_NONAGGR_MIN_QDEPTH;
864 	sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW;
865 	sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH;
866 	sc->sc_aggr_limit = ATH_AGGR_MAXSIZE;
867 	sc->sc_delim_min_pad = 0;
868 
869 	/*
870 	 * Check if the hardware requires PCI register serialisation.
871 	 * Some of the Owl based MACs require this.
872 	 */
873 	if (mp_ncpus > 1 &&
874 	    ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR,
875 	     0, NULL) == HAL_OK) {
876 		sc->sc_ah->ah_config.ah_serialise_reg_war = 1;
877 		device_printf(sc->sc_dev,
878 		    "Enabling register serialisation\n");
879 	}
880 
881 	/*
882 	 * Initialise the deferred completed RX buffer list.
883 	 */
884 	TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_HP]);
885 	TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_LP]);
886 
887 	/*
888 	 * Indicate we need the 802.11 header padded to a
889 	 * 32-bit boundary for 4-address and QoS frames.
890 	 */
891 	ic->ic_flags |= IEEE80211_F_DATAPAD;
892 
893 	/*
894 	 * Query the hal about antenna support.
895 	 */
896 	sc->sc_defant = ath_hal_getdefantenna(ah);
897 
898 	/*
899 	 * Not all chips have the VEOL support we want to
900 	 * use with IBSS beacons; check here for it.
901 	 */
902 	sc->sc_hasveol = ath_hal_hasveol(ah);
903 
904 	/* get mac address from hardware */
905 	ath_hal_getmac(ah, macaddr);
906 	if (sc->sc_hasbmask)
907 		ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
908 
909 	/* NB: used to size node table key mapping array */
910 	ic->ic_max_keyix = sc->sc_keymax;
911 	/* call MI attach routine. */
912 	ieee80211_ifattach(ic, macaddr);
913 	ic->ic_setregdomain = ath_setregdomain;
914 	ic->ic_getradiocaps = ath_getradiocaps;
915 	sc->sc_opmode = HAL_M_STA;
916 
917 	/* override default methods */
918 	ic->ic_newassoc = ath_newassoc;
919 	ic->ic_updateslot = ath_updateslot;
920 	ic->ic_wme.wme_update = ath_wme_update;
921 	ic->ic_vap_create = ath_vap_create;
922 	ic->ic_vap_delete = ath_vap_delete;
923 	ic->ic_raw_xmit = ath_raw_xmit;
924 	ic->ic_update_mcast = ath_update_mcast;
925 	ic->ic_update_promisc = ath_update_promisc;
926 	ic->ic_node_alloc = ath_node_alloc;
927 	sc->sc_node_free = ic->ic_node_free;
928 	ic->ic_node_free = ath_node_free;
929 	sc->sc_node_cleanup = ic->ic_node_cleanup;
930 	ic->ic_node_cleanup = ath_node_cleanup;
931 	ic->ic_node_getsignal = ath_node_getsignal;
932 	ic->ic_scan_start = ath_scan_start;
933 	ic->ic_scan_end = ath_scan_end;
934 	ic->ic_set_channel = ath_set_channel;
935 #ifdef	ATH_ENABLE_11N
936 	/* 802.11n specific - but just override anyway */
937 	sc->sc_addba_request = ic->ic_addba_request;
938 	sc->sc_addba_response = ic->ic_addba_response;
939 	sc->sc_addba_stop = ic->ic_addba_stop;
940 	sc->sc_bar_response = ic->ic_bar_response;
941 	sc->sc_addba_response_timeout = ic->ic_addba_response_timeout;
942 
943 	ic->ic_addba_request = ath_addba_request;
944 	ic->ic_addba_response = ath_addba_response;
945 	ic->ic_addba_response_timeout = ath_addba_response_timeout;
946 	ic->ic_addba_stop = ath_addba_stop;
947 	ic->ic_bar_response = ath_bar_response;
948 
949 	ic->ic_update_chw = ath_update_chw;
950 #endif	/* ATH_ENABLE_11N */
951 
952 #ifdef	ATH_ENABLE_RADIOTAP_VENDOR_EXT
953 	/*
954 	 * There's one vendor bitmap entry in the RX radiotap
955 	 * header; make sure that's taken into account.
956 	 */
957 	ieee80211_radiotap_attachv(ic,
958 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0,
959 		ATH_TX_RADIOTAP_PRESENT,
960 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1,
961 		ATH_RX_RADIOTAP_PRESENT);
962 #else
963 	/*
964 	 * No vendor bitmap/extensions are present.
965 	 */
966 	ieee80211_radiotap_attach(ic,
967 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
968 		ATH_TX_RADIOTAP_PRESENT,
969 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
970 		ATH_RX_RADIOTAP_PRESENT);
971 #endif	/* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
972 
973 	/*
974 	 * Setup the ALQ logging if required
975 	 */
976 #ifdef	ATH_DEBUG_ALQ
977 	if_ath_alq_init(&sc->sc_alq, device_get_nameunit(sc->sc_dev));
978 	if_ath_alq_setcfg(&sc->sc_alq,
979 	    sc->sc_ah->ah_macVersion,
980 	    sc->sc_ah->ah_macRev,
981 	    sc->sc_ah->ah_phyRev,
982 	    sc->sc_ah->ah_magic);
983 #endif
984 
985 	/*
986 	 * Setup dynamic sysctl's now that country code and
987 	 * regdomain are available from the hal.
988 	 */
989 	ath_sysctlattach(sc);
990 	ath_sysctl_stats_attach(sc);
991 	ath_sysctl_hal_attach(sc);
992 
993 	if (bootverbose)
994 		ieee80211_announce(ic);
995 	ath_announce(sc);
996 	return 0;
997 bad2:
998 	ath_tx_cleanup(sc);
999 	ath_desc_free(sc);
1000 	ath_txdma_teardown(sc);
1001 	ath_rxdma_teardown(sc);
1002 bad:
1003 	if (ah)
1004 		ath_hal_detach(ah);
1005 
1006 	/*
1007 	 * To work around scoping issues with CURVNET_SET/CURVNET_RESTORE..
1008 	 */
1009 	if (ifp != NULL && ifp->if_vnet) {
1010 		CURVNET_SET(ifp->if_vnet);
1011 		if_free(ifp);
1012 		CURVNET_RESTORE();
1013 	} else if (ifp != NULL)
1014 		if_free(ifp);
1015 	sc->sc_invalid = 1;
1016 	return error;
1017 }
1018 
1019 int
1020 ath_detach(struct ath_softc *sc)
1021 {
1022 	struct ifnet *ifp = sc->sc_ifp;
1023 
1024 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1025 		__func__, ifp->if_flags);
1026 
1027 	/*
1028 	 * NB: the order of these is important:
1029 	 * o stop the chip so no more interrupts will fire
1030 	 * o call the 802.11 layer before detaching the hal to
1031 	 *   insure callbacks into the driver to delete global
1032 	 *   key cache entries can be handled
1033 	 * o free the taskqueue which drains any pending tasks
1034 	 * o reclaim the tx queue data structures after calling
1035 	 *   the 802.11 layer as we'll get called back to reclaim
1036 	 *   node state and potentially want to use them
1037 	 * o to cleanup the tx queues the hal is called, so detach
1038 	 *   it last
1039 	 * Other than that, it's straightforward...
1040 	 */
1041 	ath_stop(ifp);
1042 	ieee80211_ifdetach(ifp->if_l2com);
1043 	taskqueue_free(sc->sc_tq);
1044 #ifdef ATH_TX99_DIAG
1045 	if (sc->sc_tx99 != NULL)
1046 		sc->sc_tx99->detach(sc->sc_tx99);
1047 #endif
1048 	ath_rate_detach(sc->sc_rc);
1049 #ifdef	ATH_DEBUG_ALQ
1050 	if_ath_alq_tidyup(&sc->sc_alq);
1051 #endif
1052 	ath_lna_div_detach(sc);
1053 	ath_btcoex_detach(sc);
1054 	ath_spectral_detach(sc);
1055 	ath_dfs_detach(sc);
1056 	ath_desc_free(sc);
1057 	ath_txdma_teardown(sc);
1058 	ath_rxdma_teardown(sc);
1059 	ath_tx_cleanup(sc);
1060 	ath_hal_detach(sc->sc_ah);	/* NB: sets chip in full sleep */
1061 
1062 	CURVNET_SET(ifp->if_vnet);
1063 	if_free(ifp);
1064 	CURVNET_RESTORE();
1065 
1066 	return 0;
1067 }
1068 
1069 /*
1070  * MAC address handling for multiple BSS on the same radio.
1071  * The first vap uses the MAC address from the EEPROM.  For
1072  * subsequent vap's we set the U/L bit (bit 1) in the MAC
1073  * address and use the next six bits as an index.
1074  */
1075 static void
1076 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
1077 {
1078 	int i;
1079 
1080 	if (clone && sc->sc_hasbmask) {
1081 		/* NB: we only do this if h/w supports multiple bssid */
1082 		for (i = 0; i < 8; i++)
1083 			if ((sc->sc_bssidmask & (1<<i)) == 0)
1084 				break;
1085 		if (i != 0)
1086 			mac[0] |= (i << 2)|0x2;
1087 	} else
1088 		i = 0;
1089 	sc->sc_bssidmask |= 1<<i;
1090 	sc->sc_hwbssidmask[0] &= ~mac[0];
1091 	if (i == 0)
1092 		sc->sc_nbssid0++;
1093 }
1094 
1095 static void
1096 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
1097 {
1098 	int i = mac[0] >> 2;
1099 	uint8_t mask;
1100 
1101 	if (i != 0 || --sc->sc_nbssid0 == 0) {
1102 		sc->sc_bssidmask &= ~(1<<i);
1103 		/* recalculate bssid mask from remaining addresses */
1104 		mask = 0xff;
1105 		for (i = 1; i < 8; i++)
1106 			if (sc->sc_bssidmask & (1<<i))
1107 				mask &= ~((i<<2)|0x2);
1108 		sc->sc_hwbssidmask[0] |= mask;
1109 	}
1110 }
1111 
1112 /*
1113  * Assign a beacon xmit slot.  We try to space out
1114  * assignments so when beacons are staggered the
1115  * traffic coming out of the cab q has maximal time
1116  * to go out before the next beacon is scheduled.
1117  */
1118 static int
1119 assign_bslot(struct ath_softc *sc)
1120 {
1121 	u_int slot, free;
1122 
1123 	free = 0;
1124 	for (slot = 0; slot < ATH_BCBUF; slot++)
1125 		if (sc->sc_bslot[slot] == NULL) {
1126 			if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
1127 			    sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
1128 				return slot;
1129 			free = slot;
1130 			/* NB: keep looking for a double slot */
1131 		}
1132 	return free;
1133 }
1134 
1135 static struct ieee80211vap *
1136 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
1137     enum ieee80211_opmode opmode, int flags,
1138     const uint8_t bssid[IEEE80211_ADDR_LEN],
1139     const uint8_t mac0[IEEE80211_ADDR_LEN])
1140 {
1141 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1142 	struct ath_vap *avp;
1143 	struct ieee80211vap *vap;
1144 	uint8_t mac[IEEE80211_ADDR_LEN];
1145 	int needbeacon, error;
1146 	enum ieee80211_opmode ic_opmode;
1147 
1148 	avp = (struct ath_vap *) malloc(sizeof(struct ath_vap),
1149 	    M_80211_VAP, M_WAITOK | M_ZERO);
1150 	needbeacon = 0;
1151 	IEEE80211_ADDR_COPY(mac, mac0);
1152 
1153 	ATH_LOCK(sc);
1154 	ic_opmode = opmode;		/* default to opmode of new vap */
1155 	switch (opmode) {
1156 	case IEEE80211_M_STA:
1157 		if (sc->sc_nstavaps != 0) {	/* XXX only 1 for now */
1158 			device_printf(sc->sc_dev, "only 1 sta vap supported\n");
1159 			goto bad;
1160 		}
1161 		if (sc->sc_nvaps) {
1162 			/*
1163 			 * With multiple vaps we must fall back
1164 			 * to s/w beacon miss handling.
1165 			 */
1166 			flags |= IEEE80211_CLONE_NOBEACONS;
1167 		}
1168 		if (flags & IEEE80211_CLONE_NOBEACONS) {
1169 			/*
1170 			 * Station mode w/o beacons are implemented w/ AP mode.
1171 			 */
1172 			ic_opmode = IEEE80211_M_HOSTAP;
1173 		}
1174 		break;
1175 	case IEEE80211_M_IBSS:
1176 		if (sc->sc_nvaps != 0) {	/* XXX only 1 for now */
1177 			device_printf(sc->sc_dev,
1178 			    "only 1 ibss vap supported\n");
1179 			goto bad;
1180 		}
1181 		needbeacon = 1;
1182 		break;
1183 	case IEEE80211_M_AHDEMO:
1184 #ifdef IEEE80211_SUPPORT_TDMA
1185 		if (flags & IEEE80211_CLONE_TDMA) {
1186 			if (sc->sc_nvaps != 0) {
1187 				device_printf(sc->sc_dev,
1188 				    "only 1 tdma vap supported\n");
1189 				goto bad;
1190 			}
1191 			needbeacon = 1;
1192 			flags |= IEEE80211_CLONE_NOBEACONS;
1193 		}
1194 		/* fall thru... */
1195 #endif
1196 	case IEEE80211_M_MONITOR:
1197 		if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
1198 			/*
1199 			 * Adopt existing mode.  Adding a monitor or ahdemo
1200 			 * vap to an existing configuration is of dubious
1201 			 * value but should be ok.
1202 			 */
1203 			/* XXX not right for monitor mode */
1204 			ic_opmode = ic->ic_opmode;
1205 		}
1206 		break;
1207 	case IEEE80211_M_HOSTAP:
1208 	case IEEE80211_M_MBSS:
1209 		needbeacon = 1;
1210 		break;
1211 	case IEEE80211_M_WDS:
1212 		if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) {
1213 			device_printf(sc->sc_dev,
1214 			    "wds not supported in sta mode\n");
1215 			goto bad;
1216 		}
1217 		/*
1218 		 * Silently remove any request for a unique
1219 		 * bssid; WDS vap's always share the local
1220 		 * mac address.
1221 		 */
1222 		flags &= ~IEEE80211_CLONE_BSSID;
1223 		if (sc->sc_nvaps == 0)
1224 			ic_opmode = IEEE80211_M_HOSTAP;
1225 		else
1226 			ic_opmode = ic->ic_opmode;
1227 		break;
1228 	default:
1229 		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
1230 		goto bad;
1231 	}
1232 	/*
1233 	 * Check that a beacon buffer is available; the code below assumes it.
1234 	 */
1235 	if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) {
1236 		device_printf(sc->sc_dev, "no beacon buffer available\n");
1237 		goto bad;
1238 	}
1239 
1240 	/* STA, AHDEMO? */
1241 	if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) {
1242 		assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
1243 		ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1244 	}
1245 
1246 	vap = &avp->av_vap;
1247 	/* XXX can't hold mutex across if_alloc */
1248 	ATH_UNLOCK(sc);
1249 	error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags,
1250 	    bssid, mac);
1251 	ATH_LOCK(sc);
1252 	if (error != 0) {
1253 		device_printf(sc->sc_dev, "%s: error %d creating vap\n",
1254 		    __func__, error);
1255 		goto bad2;
1256 	}
1257 
1258 	/* h/w crypto support */
1259 	vap->iv_key_alloc = ath_key_alloc;
1260 	vap->iv_key_delete = ath_key_delete;
1261 	vap->iv_key_set = ath_key_set;
1262 	vap->iv_key_update_begin = ath_key_update_begin;
1263 	vap->iv_key_update_end = ath_key_update_end;
1264 
1265 	/* override various methods */
1266 	avp->av_recv_mgmt = vap->iv_recv_mgmt;
1267 	vap->iv_recv_mgmt = ath_recv_mgmt;
1268 	vap->iv_reset = ath_reset_vap;
1269 	vap->iv_update_beacon = ath_beacon_update;
1270 	avp->av_newstate = vap->iv_newstate;
1271 	vap->iv_newstate = ath_newstate;
1272 	avp->av_bmiss = vap->iv_bmiss;
1273 	vap->iv_bmiss = ath_bmiss_vap;
1274 
1275 	avp->av_node_ps = vap->iv_node_ps;
1276 	vap->iv_node_ps = ath_node_powersave;
1277 
1278 	avp->av_set_tim = vap->iv_set_tim;
1279 	vap->iv_set_tim = ath_node_set_tim;
1280 
1281 	avp->av_recv_pspoll = vap->iv_recv_pspoll;
1282 	vap->iv_recv_pspoll = ath_node_recv_pspoll;
1283 
1284 	/* Set default parameters */
1285 
1286 	/*
1287 	 * Anything earlier than some AR9300 series MACs don't
1288 	 * support a smaller MPDU density.
1289 	 */
1290 	vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8;
1291 	/*
1292 	 * All NICs can handle the maximum size, however
1293 	 * AR5416 based MACs can only TX aggregates w/ RTS
1294 	 * protection when the total aggregate size is <= 8k.
1295 	 * However, for now that's enforced by the TX path.
1296 	 */
1297 	vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
1298 
1299 	avp->av_bslot = -1;
1300 	if (needbeacon) {
1301 		/*
1302 		 * Allocate beacon state and setup the q for buffered
1303 		 * multicast frames.  We know a beacon buffer is
1304 		 * available because we checked above.
1305 		 */
1306 		avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf);
1307 		TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list);
1308 		if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
1309 			/*
1310 			 * Assign the vap to a beacon xmit slot.  As above
1311 			 * this cannot fail to find a free one.
1312 			 */
1313 			avp->av_bslot = assign_bslot(sc);
1314 			KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
1315 			    ("beacon slot %u not empty", avp->av_bslot));
1316 			sc->sc_bslot[avp->av_bslot] = vap;
1317 			sc->sc_nbcnvaps++;
1318 		}
1319 		if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
1320 			/*
1321 			 * Multple vaps are to transmit beacons and we
1322 			 * have h/w support for TSF adjusting; enable
1323 			 * use of staggered beacons.
1324 			 */
1325 			sc->sc_stagbeacons = 1;
1326 		}
1327 		ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
1328 	}
1329 
1330 	ic->ic_opmode = ic_opmode;
1331 	if (opmode != IEEE80211_M_WDS) {
1332 		sc->sc_nvaps++;
1333 		if (opmode == IEEE80211_M_STA)
1334 			sc->sc_nstavaps++;
1335 		if (opmode == IEEE80211_M_MBSS)
1336 			sc->sc_nmeshvaps++;
1337 	}
1338 	switch (ic_opmode) {
1339 	case IEEE80211_M_IBSS:
1340 		sc->sc_opmode = HAL_M_IBSS;
1341 		break;
1342 	case IEEE80211_M_STA:
1343 		sc->sc_opmode = HAL_M_STA;
1344 		break;
1345 	case IEEE80211_M_AHDEMO:
1346 #ifdef IEEE80211_SUPPORT_TDMA
1347 		if (vap->iv_caps & IEEE80211_C_TDMA) {
1348 			sc->sc_tdma = 1;
1349 			/* NB: disable tsf adjust */
1350 			sc->sc_stagbeacons = 0;
1351 		}
1352 		/*
1353 		 * NB: adhoc demo mode is a pseudo mode; to the hal it's
1354 		 * just ap mode.
1355 		 */
1356 		/* fall thru... */
1357 #endif
1358 	case IEEE80211_M_HOSTAP:
1359 	case IEEE80211_M_MBSS:
1360 		sc->sc_opmode = HAL_M_HOSTAP;
1361 		break;
1362 	case IEEE80211_M_MONITOR:
1363 		sc->sc_opmode = HAL_M_MONITOR;
1364 		break;
1365 	default:
1366 		/* XXX should not happen */
1367 		break;
1368 	}
1369 	if (sc->sc_hastsfadd) {
1370 		/*
1371 		 * Configure whether or not TSF adjust should be done.
1372 		 */
1373 		ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
1374 	}
1375 	if (flags & IEEE80211_CLONE_NOBEACONS) {
1376 		/*
1377 		 * Enable s/w beacon miss handling.
1378 		 */
1379 		sc->sc_swbmiss = 1;
1380 	}
1381 	ATH_UNLOCK(sc);
1382 
1383 	/* complete setup */
1384 	ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status);
1385 	return vap;
1386 bad2:
1387 	reclaim_address(sc, mac);
1388 	ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1389 bad:
1390 	free(avp, M_80211_VAP);
1391 	ATH_UNLOCK(sc);
1392 	return NULL;
1393 }
1394 
1395 static void
1396 ath_vap_delete(struct ieee80211vap *vap)
1397 {
1398 	struct ieee80211com *ic = vap->iv_ic;
1399 	struct ifnet *ifp = ic->ic_ifp;
1400 	struct ath_softc *sc = ifp->if_softc;
1401 	struct ath_hal *ah = sc->sc_ah;
1402 	struct ath_vap *avp = ATH_VAP(vap);
1403 
1404 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
1405 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1406 		/*
1407 		 * Quiesce the hardware while we remove the vap.  In
1408 		 * particular we need to reclaim all references to
1409 		 * the vap state by any frames pending on the tx queues.
1410 		 */
1411 		ath_hal_intrset(ah, 0);		/* disable interrupts */
1412 		ath_draintxq(sc, ATH_RESET_DEFAULT);		/* stop hw xmit side */
1413 		/* XXX Do all frames from all vaps/nodes need draining here? */
1414 		ath_stoprecv(sc, 1);		/* stop recv side */
1415 	}
1416 
1417 	ieee80211_vap_detach(vap);
1418 
1419 	/*
1420 	 * XXX Danger Will Robinson! Danger!
1421 	 *
1422 	 * Because ieee80211_vap_detach() can queue a frame (the station
1423 	 * diassociate message?) after we've drained the TXQ and
1424 	 * flushed the software TXQ, we will end up with a frame queued
1425 	 * to a node whose vap is about to be freed.
1426 	 *
1427 	 * To work around this, flush the hardware/software again.
1428 	 * This may be racy - the ath task may be running and the packet
1429 	 * may be being scheduled between sw->hw txq. Tsk.
1430 	 *
1431 	 * TODO: figure out why a new node gets allocated somewhere around
1432 	 * here (after the ath_tx_swq() call; and after an ath_stop_locked()
1433 	 * call!)
1434 	 */
1435 
1436 	ath_draintxq(sc, ATH_RESET_DEFAULT);
1437 
1438 	ATH_LOCK(sc);
1439 	/*
1440 	 * Reclaim beacon state.  Note this must be done before
1441 	 * the vap instance is reclaimed as we may have a reference
1442 	 * to it in the buffer for the beacon frame.
1443 	 */
1444 	if (avp->av_bcbuf != NULL) {
1445 		if (avp->av_bslot != -1) {
1446 			sc->sc_bslot[avp->av_bslot] = NULL;
1447 			sc->sc_nbcnvaps--;
1448 		}
1449 		ath_beacon_return(sc, avp->av_bcbuf);
1450 		avp->av_bcbuf = NULL;
1451 		if (sc->sc_nbcnvaps == 0) {
1452 			sc->sc_stagbeacons = 0;
1453 			if (sc->sc_hastsfadd)
1454 				ath_hal_settsfadjust(sc->sc_ah, 0);
1455 		}
1456 		/*
1457 		 * Reclaim any pending mcast frames for the vap.
1458 		 */
1459 		ath_tx_draintxq(sc, &avp->av_mcastq);
1460 	}
1461 	/*
1462 	 * Update bookkeeping.
1463 	 */
1464 	if (vap->iv_opmode == IEEE80211_M_STA) {
1465 		sc->sc_nstavaps--;
1466 		if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
1467 			sc->sc_swbmiss = 0;
1468 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1469 	    vap->iv_opmode == IEEE80211_M_MBSS) {
1470 		reclaim_address(sc, vap->iv_myaddr);
1471 		ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
1472 		if (vap->iv_opmode == IEEE80211_M_MBSS)
1473 			sc->sc_nmeshvaps--;
1474 	}
1475 	if (vap->iv_opmode != IEEE80211_M_WDS)
1476 		sc->sc_nvaps--;
1477 #ifdef IEEE80211_SUPPORT_TDMA
1478 	/* TDMA operation ceases when the last vap is destroyed */
1479 	if (sc->sc_tdma && sc->sc_nvaps == 0) {
1480 		sc->sc_tdma = 0;
1481 		sc->sc_swbmiss = 0;
1482 	}
1483 #endif
1484 	free(avp, M_80211_VAP);
1485 
1486 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1487 		/*
1488 		 * Restart rx+tx machines if still running (RUNNING will
1489 		 * be reset if we just destroyed the last vap).
1490 		 */
1491 		if (ath_startrecv(sc) != 0)
1492 			if_printf(ifp, "%s: unable to restart recv logic\n",
1493 			    __func__);
1494 		if (sc->sc_beacons) {		/* restart beacons */
1495 #ifdef IEEE80211_SUPPORT_TDMA
1496 			if (sc->sc_tdma)
1497 				ath_tdma_config(sc, NULL);
1498 			else
1499 #endif
1500 				ath_beacon_config(sc, NULL);
1501 		}
1502 		ath_hal_intrset(ah, sc->sc_imask);
1503 	}
1504 	ATH_UNLOCK(sc);
1505 }
1506 
1507 void
1508 ath_suspend(struct ath_softc *sc)
1509 {
1510 	struct ifnet *ifp = sc->sc_ifp;
1511 	struct ieee80211com *ic = ifp->if_l2com;
1512 
1513 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1514 		__func__, ifp->if_flags);
1515 
1516 	sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0;
1517 
1518 	ieee80211_suspend_all(ic);
1519 	/*
1520 	 * NB: don't worry about putting the chip in low power
1521 	 * mode; pci will power off our socket on suspend and
1522 	 * CardBus detaches the device.
1523 	 */
1524 
1525 	/*
1526 	 * XXX ensure none of the taskqueues are running
1527 	 * XXX ensure sc_invalid is 1
1528 	 * XXX ensure the calibration callout is disabled
1529 	 */
1530 
1531 	/* Disable the PCIe PHY, complete with workarounds */
1532 	ath_hal_enablepcie(sc->sc_ah, 1, 1);
1533 }
1534 
1535 /*
1536  * Reset the key cache since some parts do not reset the
1537  * contents on resume.  First we clear all entries, then
1538  * re-load keys that the 802.11 layer assumes are setup
1539  * in h/w.
1540  */
1541 static void
1542 ath_reset_keycache(struct ath_softc *sc)
1543 {
1544 	struct ifnet *ifp = sc->sc_ifp;
1545 	struct ieee80211com *ic = ifp->if_l2com;
1546 	struct ath_hal *ah = sc->sc_ah;
1547 	int i;
1548 
1549 	for (i = 0; i < sc->sc_keymax; i++)
1550 		ath_hal_keyreset(ah, i);
1551 	ieee80211_crypto_reload_keys(ic);
1552 }
1553 
1554 /*
1555  * Fetch the current chainmask configuration based on the current
1556  * operating channel and options.
1557  */
1558 static void
1559 ath_update_chainmasks(struct ath_softc *sc, struct ieee80211_channel *chan)
1560 {
1561 
1562 	/*
1563 	 * Set TX chainmask to the currently configured chainmask;
1564 	 * the TX chainmask depends upon the current operating mode.
1565 	 */
1566 	sc->sc_cur_rxchainmask = sc->sc_rxchainmask;
1567 	if (IEEE80211_IS_CHAN_HT(chan)) {
1568 		sc->sc_cur_txchainmask = sc->sc_txchainmask;
1569 	} else {
1570 		sc->sc_cur_txchainmask = 1;
1571 	}
1572 
1573 	DPRINTF(sc, ATH_DEBUG_RESET,
1574 	    "%s: TX chainmask is now 0x%x, RX is now 0x%x\n",
1575 	    __func__,
1576 	    sc->sc_cur_txchainmask,
1577 	    sc->sc_cur_rxchainmask);
1578 }
1579 
1580 void
1581 ath_resume(struct ath_softc *sc)
1582 {
1583 	struct ifnet *ifp = sc->sc_ifp;
1584 	struct ieee80211com *ic = ifp->if_l2com;
1585 	struct ath_hal *ah = sc->sc_ah;
1586 	HAL_STATUS status;
1587 
1588 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1589 		__func__, ifp->if_flags);
1590 
1591 	/* Re-enable PCIe, re-enable the PCIe bus */
1592 	ath_hal_enablepcie(ah, 0, 0);
1593 
1594 	/*
1595 	 * Must reset the chip before we reload the
1596 	 * keycache as we were powered down on suspend.
1597 	 */
1598 	ath_update_chainmasks(sc,
1599 	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan);
1600 	ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
1601 	    sc->sc_cur_rxchainmask);
1602 	ath_hal_reset(ah, sc->sc_opmode,
1603 	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan,
1604 	    AH_FALSE, &status);
1605 	ath_reset_keycache(sc);
1606 
1607 	/* Let DFS at it in case it's a DFS channel */
1608 	ath_dfs_radar_enable(sc, ic->ic_curchan);
1609 
1610 	/* Let spectral at in case spectral is enabled */
1611 	ath_spectral_enable(sc, ic->ic_curchan);
1612 
1613 	/*
1614 	 * Let bluetooth coexistence at in case it's needed for this channel
1615 	 */
1616 	ath_btcoex_enable(sc, ic->ic_curchan);
1617 
1618 	/*
1619 	 * If we're doing TDMA, enforce the TXOP limitation for chips that
1620 	 * support it.
1621 	 */
1622 	if (sc->sc_hasenforcetxop && sc->sc_tdma)
1623 		ath_hal_setenforcetxop(sc->sc_ah, 1);
1624 	else
1625 		ath_hal_setenforcetxop(sc->sc_ah, 0);
1626 
1627 	/* Restore the LED configuration */
1628 	ath_led_config(sc);
1629 	ath_hal_setledstate(ah, HAL_LED_INIT);
1630 
1631 	if (sc->sc_resume_up)
1632 		ieee80211_resume_all(ic);
1633 
1634 	/* XXX beacons ? */
1635 }
1636 
1637 void
1638 ath_shutdown(struct ath_softc *sc)
1639 {
1640 	struct ifnet *ifp = sc->sc_ifp;
1641 
1642 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1643 		__func__, ifp->if_flags);
1644 
1645 	ath_stop(ifp);
1646 	/* NB: no point powering down chip as we're about to reboot */
1647 }
1648 
1649 /*
1650  * Interrupt handler.  Most of the actual processing is deferred.
1651  */
1652 void
1653 ath_intr(void *arg)
1654 {
1655 	struct ath_softc *sc = arg;
1656 	struct ifnet *ifp = sc->sc_ifp;
1657 	struct ath_hal *ah = sc->sc_ah;
1658 	HAL_INT status = 0;
1659 	uint32_t txqs;
1660 
1661 	/*
1662 	 * If we're inside a reset path, just print a warning and
1663 	 * clear the ISR. The reset routine will finish it for us.
1664 	 */
1665 	ATH_PCU_LOCK(sc);
1666 	if (sc->sc_inreset_cnt) {
1667 		HAL_INT status;
1668 		ath_hal_getisr(ah, &status);	/* clear ISR */
1669 		ath_hal_intrset(ah, 0);		/* disable further intr's */
1670 		DPRINTF(sc, ATH_DEBUG_ANY,
1671 		    "%s: in reset, ignoring: status=0x%x\n",
1672 		    __func__, status);
1673 		ATH_PCU_UNLOCK(sc);
1674 		return;
1675 	}
1676 
1677 	if (sc->sc_invalid) {
1678 		/*
1679 		 * The hardware is not ready/present, don't touch anything.
1680 		 * Note this can happen early on if the IRQ is shared.
1681 		 */
1682 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
1683 		ATH_PCU_UNLOCK(sc);
1684 		return;
1685 	}
1686 	if (!ath_hal_intrpend(ah)) {		/* shared irq, not for us */
1687 		ATH_PCU_UNLOCK(sc);
1688 		return;
1689 	}
1690 
1691 	if ((ifp->if_flags & IFF_UP) == 0 ||
1692 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1693 		HAL_INT status;
1694 
1695 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1696 			__func__, ifp->if_flags);
1697 		ath_hal_getisr(ah, &status);	/* clear ISR */
1698 		ath_hal_intrset(ah, 0);		/* disable further intr's */
1699 		ATH_PCU_UNLOCK(sc);
1700 		return;
1701 	}
1702 
1703 	/*
1704 	 * Figure out the reason(s) for the interrupt.  Note
1705 	 * that the hal returns a pseudo-ISR that may include
1706 	 * bits we haven't explicitly enabled so we mask the
1707 	 * value to insure we only process bits we requested.
1708 	 */
1709 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
1710 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
1711 	ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status);
1712 #ifdef	ATH_DEBUG_ALQ
1713 	if_ath_alq_post_intr(&sc->sc_alq, status, ah->ah_intrstate,
1714 	    ah->ah_syncstate);
1715 #endif	/* ATH_DEBUG_ALQ */
1716 #ifdef	ATH_KTR_INTR_DEBUG
1717 	ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5,
1718 	    "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x",
1719 	    ah->ah_intrstate[0],
1720 	    ah->ah_intrstate[1],
1721 	    ah->ah_intrstate[2],
1722 	    ah->ah_intrstate[3],
1723 	    ah->ah_intrstate[6]);
1724 #endif
1725 
1726 	/* Squirrel away SYNC interrupt debugging */
1727 	if (ah->ah_syncstate != 0) {
1728 		int i;
1729 		for (i = 0; i < 32; i++)
1730 			if (ah->ah_syncstate & (i << i))
1731 				sc->sc_intr_stats.sync_intr[i]++;
1732 	}
1733 
1734 	status &= sc->sc_imask;			/* discard unasked for bits */
1735 
1736 	/* Short-circuit un-handled interrupts */
1737 	if (status == 0x0) {
1738 		ATH_PCU_UNLOCK(sc);
1739 		return;
1740 	}
1741 
1742 	/*
1743 	 * Take a note that we're inside the interrupt handler, so
1744 	 * the reset routines know to wait.
1745 	 */
1746 	sc->sc_intr_cnt++;
1747 	ATH_PCU_UNLOCK(sc);
1748 
1749 	/*
1750 	 * Handle the interrupt. We won't run concurrent with the reset
1751 	 * or channel change routines as they'll wait for sc_intr_cnt
1752 	 * to be 0 before continuing.
1753 	 */
1754 	if (status & HAL_INT_FATAL) {
1755 		sc->sc_stats.ast_hardware++;
1756 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
1757 		taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask);
1758 	} else {
1759 		if (status & HAL_INT_SWBA) {
1760 			/*
1761 			 * Software beacon alert--time to send a beacon.
1762 			 * Handle beacon transmission directly; deferring
1763 			 * this is too slow to meet timing constraints
1764 			 * under load.
1765 			 */
1766 #ifdef IEEE80211_SUPPORT_TDMA
1767 			if (sc->sc_tdma) {
1768 				if (sc->sc_tdmaswba == 0) {
1769 					struct ieee80211com *ic = ifp->if_l2com;
1770 					struct ieee80211vap *vap =
1771 					    TAILQ_FIRST(&ic->ic_vaps);
1772 					ath_tdma_beacon_send(sc, vap);
1773 					sc->sc_tdmaswba =
1774 					    vap->iv_tdma->tdma_bintval;
1775 				} else
1776 					sc->sc_tdmaswba--;
1777 			} else
1778 #endif
1779 			{
1780 				ath_beacon_proc(sc, 0);
1781 #ifdef IEEE80211_SUPPORT_SUPERG
1782 				/*
1783 				 * Schedule the rx taskq in case there's no
1784 				 * traffic so any frames held on the staging
1785 				 * queue are aged and potentially flushed.
1786 				 */
1787 				sc->sc_rx.recv_sched(sc, 1);
1788 #endif
1789 			}
1790 		}
1791 		if (status & HAL_INT_RXEOL) {
1792 			int imask;
1793 			ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL");
1794 			ATH_PCU_LOCK(sc);
1795 			/*
1796 			 * NB: the hardware should re-read the link when
1797 			 *     RXE bit is written, but it doesn't work at
1798 			 *     least on older hardware revs.
1799 			 */
1800 			sc->sc_stats.ast_rxeol++;
1801 			/*
1802 			 * Disable RXEOL/RXORN - prevent an interrupt
1803 			 * storm until the PCU logic can be reset.
1804 			 * In case the interface is reset some other
1805 			 * way before "sc_kickpcu" is called, don't
1806 			 * modify sc_imask - that way if it is reset
1807 			 * by a call to ath_reset() somehow, the
1808 			 * interrupt mask will be correctly reprogrammed.
1809 			 */
1810 			imask = sc->sc_imask;
1811 			imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN);
1812 			ath_hal_intrset(ah, imask);
1813 			/*
1814 			 * Only blank sc_rxlink if we've not yet kicked
1815 			 * the PCU.
1816 			 *
1817 			 * This isn't entirely correct - the correct solution
1818 			 * would be to have a PCU lock and engage that for
1819 			 * the duration of the PCU fiddling; which would include
1820 			 * running the RX process. Otherwise we could end up
1821 			 * messing up the RX descriptor chain and making the
1822 			 * RX desc list much shorter.
1823 			 */
1824 			if (! sc->sc_kickpcu)
1825 				sc->sc_rxlink = NULL;
1826 			sc->sc_kickpcu = 1;
1827 			ATH_PCU_UNLOCK(sc);
1828 			/*
1829 			 * Enqueue an RX proc, to handled whatever
1830 			 * is in the RX queue.
1831 			 * This will then kick the PCU.
1832 			 */
1833 			sc->sc_rx.recv_sched(sc, 1);
1834 		}
1835 		if (status & HAL_INT_TXURN) {
1836 			sc->sc_stats.ast_txurn++;
1837 			/* bump tx trigger level */
1838 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
1839 		}
1840 		/*
1841 		 * Handle both the legacy and RX EDMA interrupt bits.
1842 		 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC.
1843 		 */
1844 		if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) {
1845 			sc->sc_stats.ast_rx_intr++;
1846 			sc->sc_rx.recv_sched(sc, 1);
1847 		}
1848 		if (status & HAL_INT_TX) {
1849 			sc->sc_stats.ast_tx_intr++;
1850 			/*
1851 			 * Grab all the currently set bits in the HAL txq bitmap
1852 			 * and blank them. This is the only place we should be
1853 			 * doing this.
1854 			 */
1855 			if (! sc->sc_isedma) {
1856 				ATH_PCU_LOCK(sc);
1857 				txqs = 0xffffffff;
1858 				ath_hal_gettxintrtxqs(sc->sc_ah, &txqs);
1859 				ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3,
1860 				    "ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x",
1861 				    txqs,
1862 				    sc->sc_txq_active,
1863 				    sc->sc_txq_active | txqs);
1864 				sc->sc_txq_active |= txqs;
1865 				ATH_PCU_UNLOCK(sc);
1866 			}
1867 			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
1868 		}
1869 		if (status & HAL_INT_BMISS) {
1870 			sc->sc_stats.ast_bmiss++;
1871 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
1872 		}
1873 		if (status & HAL_INT_GTT)
1874 			sc->sc_stats.ast_tx_timeout++;
1875 		if (status & HAL_INT_CST)
1876 			sc->sc_stats.ast_tx_cst++;
1877 		if (status & HAL_INT_MIB) {
1878 			sc->sc_stats.ast_mib++;
1879 			ATH_PCU_LOCK(sc);
1880 			/*
1881 			 * Disable interrupts until we service the MIB
1882 			 * interrupt; otherwise it will continue to fire.
1883 			 */
1884 			ath_hal_intrset(ah, 0);
1885 			/*
1886 			 * Let the hal handle the event.  We assume it will
1887 			 * clear whatever condition caused the interrupt.
1888 			 */
1889 			ath_hal_mibevent(ah, &sc->sc_halstats);
1890 			/*
1891 			 * Don't reset the interrupt if we've just
1892 			 * kicked the PCU, or we may get a nested
1893 			 * RXEOL before the rxproc has had a chance
1894 			 * to run.
1895 			 */
1896 			if (sc->sc_kickpcu == 0)
1897 				ath_hal_intrset(ah, sc->sc_imask);
1898 			ATH_PCU_UNLOCK(sc);
1899 		}
1900 		if (status & HAL_INT_RXORN) {
1901 			/* NB: hal marks HAL_INT_FATAL when RXORN is fatal */
1902 			ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN");
1903 			sc->sc_stats.ast_rxorn++;
1904 		}
1905 	}
1906 	ATH_PCU_LOCK(sc);
1907 	sc->sc_intr_cnt--;
1908 	ATH_PCU_UNLOCK(sc);
1909 }
1910 
1911 static void
1912 ath_fatal_proc(void *arg, int pending)
1913 {
1914 	struct ath_softc *sc = arg;
1915 	struct ifnet *ifp = sc->sc_ifp;
1916 	u_int32_t *state;
1917 	u_int32_t len;
1918 	void *sp;
1919 
1920 	if_printf(ifp, "hardware error; resetting\n");
1921 	/*
1922 	 * Fatal errors are unrecoverable.  Typically these
1923 	 * are caused by DMA errors.  Collect h/w state from
1924 	 * the hal so we can diagnose what's going on.
1925 	 */
1926 	if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
1927 		KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
1928 		state = sp;
1929 		if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
1930 		    state[0], state[1] , state[2], state[3],
1931 		    state[4], state[5]);
1932 	}
1933 	ath_reset(ifp, ATH_RESET_NOLOSS);
1934 }
1935 
1936 static void
1937 ath_bmiss_vap(struct ieee80211vap *vap)
1938 {
1939 	/*
1940 	 * Workaround phantom bmiss interrupts by sanity-checking
1941 	 * the time of our last rx'd frame.  If it is within the
1942 	 * beacon miss interval then ignore the interrupt.  If it's
1943 	 * truly a bmiss we'll get another interrupt soon and that'll
1944 	 * be dispatched up for processing.  Note this applies only
1945 	 * for h/w beacon miss events.
1946 	 */
1947 	if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
1948 		struct ifnet *ifp = vap->iv_ic->ic_ifp;
1949 		struct ath_softc *sc = ifp->if_softc;
1950 		u_int64_t lastrx = sc->sc_lastrx;
1951 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
1952 		/* XXX should take a locked ref to iv_bss */
1953 		u_int bmisstimeout =
1954 			vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
1955 
1956 		DPRINTF(sc, ATH_DEBUG_BEACON,
1957 		    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
1958 		    __func__, (unsigned long long) tsf,
1959 		    (unsigned long long)(tsf - lastrx),
1960 		    (unsigned long long) lastrx, bmisstimeout);
1961 
1962 		if (tsf - lastrx <= bmisstimeout) {
1963 			sc->sc_stats.ast_bmiss_phantom++;
1964 			return;
1965 		}
1966 	}
1967 	ATH_VAP(vap)->av_bmiss(vap);
1968 }
1969 
1970 int
1971 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs)
1972 {
1973 	uint32_t rsize;
1974 	void *sp;
1975 
1976 	if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize))
1977 		return 0;
1978 	KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize));
1979 	*hangs = *(uint32_t *)sp;
1980 	return 1;
1981 }
1982 
1983 static void
1984 ath_bmiss_proc(void *arg, int pending)
1985 {
1986 	struct ath_softc *sc = arg;
1987 	struct ifnet *ifp = sc->sc_ifp;
1988 	uint32_t hangs;
1989 
1990 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
1991 
1992 	/*
1993 	 * Do a reset upon any becaon miss event.
1994 	 *
1995 	 * It may be a non-recognised RX clear hang which needs a reset
1996 	 * to clear.
1997 	 */
1998 	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) {
1999 		ath_reset(ifp, ATH_RESET_NOLOSS);
2000 		if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs);
2001 	} else {
2002 		ath_reset(ifp, ATH_RESET_NOLOSS);
2003 		ieee80211_beacon_miss(ifp->if_l2com);
2004 	}
2005 }
2006 
2007 /*
2008  * Handle TKIP MIC setup to deal hardware that doesn't do MIC
2009  * calcs together with WME.  If necessary disable the crypto
2010  * hardware and mark the 802.11 state so keys will be setup
2011  * with the MIC work done in software.
2012  */
2013 static void
2014 ath_settkipmic(struct ath_softc *sc)
2015 {
2016 	struct ifnet *ifp = sc->sc_ifp;
2017 	struct ieee80211com *ic = ifp->if_l2com;
2018 
2019 	if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
2020 		if (ic->ic_flags & IEEE80211_F_WME) {
2021 			ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
2022 			ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
2023 		} else {
2024 			ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
2025 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
2026 		}
2027 	}
2028 }
2029 
2030 static void
2031 ath_init(void *arg)
2032 {
2033 	struct ath_softc *sc = (struct ath_softc *) arg;
2034 	struct ifnet *ifp = sc->sc_ifp;
2035 	struct ieee80211com *ic = ifp->if_l2com;
2036 	struct ath_hal *ah = sc->sc_ah;
2037 	HAL_STATUS status;
2038 
2039 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
2040 		__func__, ifp->if_flags);
2041 
2042 	ATH_LOCK(sc);
2043 	/*
2044 	 * Stop anything previously setup.  This is safe
2045 	 * whether this is the first time through or not.
2046 	 */
2047 	ath_stop_locked(ifp);
2048 
2049 	/*
2050 	 * The basic interface to setting the hardware in a good
2051 	 * state is ``reset''.  On return the hardware is known to
2052 	 * be powered up and with interrupts disabled.  This must
2053 	 * be followed by initialization of the appropriate bits
2054 	 * and then setup of the interrupt mask.
2055 	 */
2056 	ath_settkipmic(sc);
2057 	ath_update_chainmasks(sc, ic->ic_curchan);
2058 	ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
2059 	    sc->sc_cur_rxchainmask);
2060 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) {
2061 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
2062 			status);
2063 		ATH_UNLOCK(sc);
2064 		return;
2065 	}
2066 	ath_chan_change(sc, ic->ic_curchan);
2067 
2068 	/* Let DFS at it in case it's a DFS channel */
2069 	ath_dfs_radar_enable(sc, ic->ic_curchan);
2070 
2071 	/* Let spectral at in case spectral is enabled */
2072 	ath_spectral_enable(sc, ic->ic_curchan);
2073 
2074 	/*
2075 	 * Let bluetooth coexistence at in case it's needed for this channel
2076 	 */
2077 	ath_btcoex_enable(sc, ic->ic_curchan);
2078 
2079 	/*
2080 	 * If we're doing TDMA, enforce the TXOP limitation for chips that
2081 	 * support it.
2082 	 */
2083 	if (sc->sc_hasenforcetxop && sc->sc_tdma)
2084 		ath_hal_setenforcetxop(sc->sc_ah, 1);
2085 	else
2086 		ath_hal_setenforcetxop(sc->sc_ah, 0);
2087 
2088 	/*
2089 	 * Likewise this is set during reset so update
2090 	 * state cached in the driver.
2091 	 */
2092 	sc->sc_diversity = ath_hal_getdiversity(ah);
2093 	sc->sc_lastlongcal = 0;
2094 	sc->sc_resetcal = 1;
2095 	sc->sc_lastcalreset = 0;
2096 	sc->sc_lastani = 0;
2097 	sc->sc_lastshortcal = 0;
2098 	sc->sc_doresetcal = AH_FALSE;
2099 	/*
2100 	 * Beacon timers were cleared here; give ath_newstate()
2101 	 * a hint that the beacon timers should be poked when
2102 	 * things transition to the RUN state.
2103 	 */
2104 	sc->sc_beacons = 0;
2105 
2106 	/*
2107 	 * Setup the hardware after reset: the key cache
2108 	 * is filled as needed and the receive engine is
2109 	 * set going.  Frame transmit is handled entirely
2110 	 * in the frame output path; there's nothing to do
2111 	 * here except setup the interrupt mask.
2112 	 */
2113 	if (ath_startrecv(sc) != 0) {
2114 		if_printf(ifp, "unable to start recv logic\n");
2115 		ATH_UNLOCK(sc);
2116 		return;
2117 	}
2118 
2119 	/*
2120 	 * Enable interrupts.
2121 	 */
2122 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
2123 		  | HAL_INT_RXEOL | HAL_INT_RXORN
2124 		  | HAL_INT_TXURN
2125 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
2126 
2127 	/*
2128 	 * Enable RX EDMA bits.  Note these overlap with
2129 	 * HAL_INT_RX and HAL_INT_RXDESC respectively.
2130 	 */
2131 	if (sc->sc_isedma)
2132 		sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP);
2133 
2134 	/*
2135 	 * Enable MIB interrupts when there are hardware phy counters.
2136 	 * Note we only do this (at the moment) for station mode.
2137 	 */
2138 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
2139 		sc->sc_imask |= HAL_INT_MIB;
2140 
2141 	/* Enable global TX timeout and carrier sense timeout if available */
2142 	if (ath_hal_gtxto_supported(ah))
2143 		sc->sc_imask |= HAL_INT_GTT;
2144 
2145 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n",
2146 		__func__, sc->sc_imask);
2147 
2148 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2149 	callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc);
2150 	ath_hal_intrset(ah, sc->sc_imask);
2151 
2152 	ATH_UNLOCK(sc);
2153 
2154 #ifdef ATH_TX99_DIAG
2155 	if (sc->sc_tx99 != NULL)
2156 		sc->sc_tx99->start(sc->sc_tx99);
2157 	else
2158 #endif
2159 	ieee80211_start_all(ic);		/* start all vap's */
2160 }
2161 
2162 static void
2163 ath_stop_locked(struct ifnet *ifp)
2164 {
2165 	struct ath_softc *sc = ifp->if_softc;
2166 	struct ath_hal *ah = sc->sc_ah;
2167 
2168 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
2169 		__func__, sc->sc_invalid, ifp->if_flags);
2170 
2171 	ATH_LOCK_ASSERT(sc);
2172 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2173 		/*
2174 		 * Shutdown the hardware and driver:
2175 		 *    reset 802.11 state machine
2176 		 *    turn off timers
2177 		 *    disable interrupts
2178 		 *    turn off the radio
2179 		 *    clear transmit machinery
2180 		 *    clear receive machinery
2181 		 *    drain and release tx queues
2182 		 *    reclaim beacon resources
2183 		 *    power down hardware
2184 		 *
2185 		 * Note that some of this work is not possible if the
2186 		 * hardware is gone (invalid).
2187 		 */
2188 #ifdef ATH_TX99_DIAG
2189 		if (sc->sc_tx99 != NULL)
2190 			sc->sc_tx99->stop(sc->sc_tx99);
2191 #endif
2192 		callout_stop(&sc->sc_wd_ch);
2193 		sc->sc_wd_timer = 0;
2194 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2195 		if (!sc->sc_invalid) {
2196 			if (sc->sc_softled) {
2197 				callout_stop(&sc->sc_ledtimer);
2198 				ath_hal_gpioset(ah, sc->sc_ledpin,
2199 					!sc->sc_ledon);
2200 				sc->sc_blinking = 0;
2201 			}
2202 			ath_hal_intrset(ah, 0);
2203 		}
2204 		ath_draintxq(sc, ATH_RESET_DEFAULT);
2205 		if (!sc->sc_invalid) {
2206 			ath_stoprecv(sc, 1);
2207 			ath_hal_phydisable(ah);
2208 		} else
2209 			sc->sc_rxlink = NULL;
2210 		ath_beacon_free(sc);	/* XXX not needed */
2211 	}
2212 }
2213 
2214 #define	MAX_TXRX_ITERATIONS	1000
2215 static void
2216 ath_txrx_stop_locked(struct ath_softc *sc)
2217 {
2218 	int i = MAX_TXRX_ITERATIONS;
2219 
2220 	ATH_UNLOCK_ASSERT(sc);
2221 	ATH_PCU_LOCK_ASSERT(sc);
2222 
2223 	/*
2224 	 * Sleep until all the pending operations have completed.
2225 	 *
2226 	 * The caller must ensure that reset has been incremented
2227 	 * or the pending operations may continue being queued.
2228 	 */
2229 	while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt ||
2230 	    sc->sc_txstart_cnt || sc->sc_intr_cnt) {
2231 		if (i <= 0)
2232 			break;
2233 		msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 1);
2234 		i--;
2235 	}
2236 
2237 	if (i <= 0)
2238 		device_printf(sc->sc_dev,
2239 		    "%s: didn't finish after %d iterations\n",
2240 		    __func__, MAX_TXRX_ITERATIONS);
2241 }
2242 #undef	MAX_TXRX_ITERATIONS
2243 
2244 #if 0
2245 static void
2246 ath_txrx_stop(struct ath_softc *sc)
2247 {
2248 	ATH_UNLOCK_ASSERT(sc);
2249 	ATH_PCU_UNLOCK_ASSERT(sc);
2250 
2251 	ATH_PCU_LOCK(sc);
2252 	ath_txrx_stop_locked(sc);
2253 	ATH_PCU_UNLOCK(sc);
2254 }
2255 #endif
2256 
2257 static void
2258 ath_txrx_start(struct ath_softc *sc)
2259 {
2260 
2261 	taskqueue_unblock(sc->sc_tq);
2262 }
2263 
2264 /*
2265  * Grab the reset lock, and wait around until noone else
2266  * is trying to do anything with it.
2267  *
2268  * This is totally horrible but we can't hold this lock for
2269  * long enough to do TX/RX or we end up with net80211/ip stack
2270  * LORs and eventual deadlock.
2271  *
2272  * "dowait" signals whether to spin, waiting for the reset
2273  * lock count to reach 0. This should (for now) only be used
2274  * during the reset path, as the rest of the code may not
2275  * be locking-reentrant enough to behave correctly.
2276  *
2277  * Another, cleaner way should be found to serialise all of
2278  * these operations.
2279  */
2280 #define	MAX_RESET_ITERATIONS	10
2281 static int
2282 ath_reset_grablock(struct ath_softc *sc, int dowait)
2283 {
2284 	int w = 0;
2285 	int i = MAX_RESET_ITERATIONS;
2286 
2287 	ATH_PCU_LOCK_ASSERT(sc);
2288 	do {
2289 		if (sc->sc_inreset_cnt == 0) {
2290 			w = 1;
2291 			break;
2292 		}
2293 		if (dowait == 0) {
2294 			w = 0;
2295 			break;
2296 		}
2297 		ATH_PCU_UNLOCK(sc);
2298 		pause("ath_reset_grablock", 1);
2299 		i--;
2300 		ATH_PCU_LOCK(sc);
2301 	} while (i > 0);
2302 
2303 	/*
2304 	 * We always increment the refcounter, regardless
2305 	 * of whether we succeeded to get it in an exclusive
2306 	 * way.
2307 	 */
2308 	sc->sc_inreset_cnt++;
2309 
2310 	if (i <= 0)
2311 		device_printf(sc->sc_dev,
2312 		    "%s: didn't finish after %d iterations\n",
2313 		    __func__, MAX_RESET_ITERATIONS);
2314 
2315 	if (w == 0)
2316 		device_printf(sc->sc_dev,
2317 		    "%s: warning, recursive reset path!\n",
2318 		    __func__);
2319 
2320 	return w;
2321 }
2322 #undef MAX_RESET_ITERATIONS
2323 
2324 /*
2325  * XXX TODO: write ath_reset_releaselock
2326  */
2327 
2328 static void
2329 ath_stop(struct ifnet *ifp)
2330 {
2331 	struct ath_softc *sc = ifp->if_softc;
2332 
2333 	ATH_LOCK(sc);
2334 	ath_stop_locked(ifp);
2335 	ATH_UNLOCK(sc);
2336 }
2337 
2338 /*
2339  * Reset the hardware w/o losing operational state.  This is
2340  * basically a more efficient way of doing ath_stop, ath_init,
2341  * followed by state transitions to the current 802.11
2342  * operational state.  Used to recover from various errors and
2343  * to reset or reload hardware state.
2344  */
2345 int
2346 ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type)
2347 {
2348 	struct ath_softc *sc = ifp->if_softc;
2349 	struct ieee80211com *ic = ifp->if_l2com;
2350 	struct ath_hal *ah = sc->sc_ah;
2351 	HAL_STATUS status;
2352 	int i;
2353 
2354 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
2355 
2356 	/* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */
2357 	ATH_PCU_UNLOCK_ASSERT(sc);
2358 	ATH_UNLOCK_ASSERT(sc);
2359 
2360 	/* Try to (stop any further TX/RX from occuring */
2361 	taskqueue_block(sc->sc_tq);
2362 
2363 	ATH_PCU_LOCK(sc);
2364 
2365 	/*
2366 	 * Grab the reset lock before TX/RX is stopped.
2367 	 *
2368 	 * This is needed to ensure that when the TX/RX actually does finish,
2369 	 * no further TX/RX/reset runs in parallel with this.
2370 	 */
2371 	if (ath_reset_grablock(sc, 1) == 0) {
2372 		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
2373 		    __func__);
2374 	}
2375 
2376 	/* disable interrupts */
2377 	ath_hal_intrset(ah, 0);
2378 
2379 	/*
2380 	 * Now, ensure that any in progress TX/RX completes before we
2381 	 * continue.
2382 	 */
2383 	ath_txrx_stop_locked(sc);
2384 
2385 	ATH_PCU_UNLOCK(sc);
2386 
2387 	/*
2388 	 * Should now wait for pending TX/RX to complete
2389 	 * and block future ones from occuring. This needs to be
2390 	 * done before the TX queue is drained.
2391 	 */
2392 	ath_draintxq(sc, reset_type);	/* stop xmit side */
2393 
2394 	/*
2395 	 * Regardless of whether we're doing a no-loss flush or
2396 	 * not, stop the PCU and handle what's in the RX queue.
2397 	 * That way frames aren't dropped which shouldn't be.
2398 	 */
2399 	ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS));
2400 	ath_rx_flush(sc);
2401 
2402 	ath_settkipmic(sc);		/* configure TKIP MIC handling */
2403 	/* NB: indicate channel change so we do a full reset */
2404 	ath_update_chainmasks(sc, ic->ic_curchan);
2405 	ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
2406 	    sc->sc_cur_rxchainmask);
2407 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status))
2408 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
2409 			__func__, status);
2410 	sc->sc_diversity = ath_hal_getdiversity(ah);
2411 
2412 	/* Let DFS at it in case it's a DFS channel */
2413 	ath_dfs_radar_enable(sc, ic->ic_curchan);
2414 
2415 	/* Let spectral at in case spectral is enabled */
2416 	ath_spectral_enable(sc, ic->ic_curchan);
2417 
2418 	/*
2419 	 * Let bluetooth coexistence at in case it's needed for this channel
2420 	 */
2421 	ath_btcoex_enable(sc, ic->ic_curchan);
2422 
2423 	/*
2424 	 * If we're doing TDMA, enforce the TXOP limitation for chips that
2425 	 * support it.
2426 	 */
2427 	if (sc->sc_hasenforcetxop && sc->sc_tdma)
2428 		ath_hal_setenforcetxop(sc->sc_ah, 1);
2429 	else
2430 		ath_hal_setenforcetxop(sc->sc_ah, 0);
2431 
2432 	if (ath_startrecv(sc) != 0)	/* restart recv */
2433 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
2434 	/*
2435 	 * We may be doing a reset in response to an ioctl
2436 	 * that changes the channel so update any state that
2437 	 * might change as a result.
2438 	 */
2439 	ath_chan_change(sc, ic->ic_curchan);
2440 	if (sc->sc_beacons) {		/* restart beacons */
2441 #ifdef IEEE80211_SUPPORT_TDMA
2442 		if (sc->sc_tdma)
2443 			ath_tdma_config(sc, NULL);
2444 		else
2445 #endif
2446 			ath_beacon_config(sc, NULL);
2447 	}
2448 
2449 	/*
2450 	 * Release the reset lock and re-enable interrupts here.
2451 	 * If an interrupt was being processed in ath_intr(),
2452 	 * it would disable interrupts at this point. So we have
2453 	 * to atomically enable interrupts and decrement the
2454 	 * reset counter - this way ath_intr() doesn't end up
2455 	 * disabling interrupts without a corresponding enable
2456 	 * in the rest or channel change path.
2457 	 */
2458 	ATH_PCU_LOCK(sc);
2459 	sc->sc_inreset_cnt--;
2460 	/* XXX only do this if sc_inreset_cnt == 0? */
2461 	ath_hal_intrset(ah, sc->sc_imask);
2462 	ATH_PCU_UNLOCK(sc);
2463 
2464 	/*
2465 	 * TX and RX can be started here. If it were started with
2466 	 * sc_inreset_cnt > 0, the TX and RX path would abort.
2467 	 * Thus if this is a nested call through the reset or
2468 	 * channel change code, TX completion will occur but
2469 	 * RX completion and ath_start / ath_tx_start will not
2470 	 * run.
2471 	 */
2472 
2473 	/* Restart TX/RX as needed */
2474 	ath_txrx_start(sc);
2475 
2476 	/* Restart TX completion and pending TX */
2477 	if (reset_type == ATH_RESET_NOLOSS) {
2478 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
2479 			if (ATH_TXQ_SETUP(sc, i)) {
2480 				ATH_TXQ_LOCK(&sc->sc_txq[i]);
2481 				ath_txq_restart_dma(sc, &sc->sc_txq[i]);
2482 				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
2483 
2484 				ATH_TX_LOCK(sc);
2485 				ath_txq_sched(sc, &sc->sc_txq[i]);
2486 				ATH_TX_UNLOCK(sc);
2487 			}
2488 		}
2489 	}
2490 
2491 	/*
2492 	 * This may have been set during an ath_start() call which
2493 	 * set this once it detected a concurrent TX was going on.
2494 	 * So, clear it.
2495 	 */
2496 	IF_LOCK(&ifp->if_snd);
2497 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2498 	IF_UNLOCK(&ifp->if_snd);
2499 
2500 	/* Handle any frames in the TX queue */
2501 	/*
2502 	 * XXX should this be done by the caller, rather than
2503 	 * ath_reset() ?
2504 	 */
2505 	ath_tx_kick(sc);		/* restart xmit */
2506 	return 0;
2507 }
2508 
2509 static int
2510 ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
2511 {
2512 	struct ieee80211com *ic = vap->iv_ic;
2513 	struct ifnet *ifp = ic->ic_ifp;
2514 	struct ath_softc *sc = ifp->if_softc;
2515 	struct ath_hal *ah = sc->sc_ah;
2516 
2517 	switch (cmd) {
2518 	case IEEE80211_IOC_TXPOWER:
2519 		/*
2520 		 * If per-packet TPC is enabled, then we have nothing
2521 		 * to do; otherwise we need to force the global limit.
2522 		 * All this can happen directly; no need to reset.
2523 		 */
2524 		if (!ath_hal_gettpc(ah))
2525 			ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
2526 		return 0;
2527 	}
2528 	/* XXX? Full or NOLOSS? */
2529 	return ath_reset(ifp, ATH_RESET_FULL);
2530 }
2531 
2532 struct ath_buf *
2533 _ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype)
2534 {
2535 	struct ath_buf *bf;
2536 
2537 	ATH_TXBUF_LOCK_ASSERT(sc);
2538 
2539 	if (btype == ATH_BUFTYPE_MGMT)
2540 		bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt);
2541 	else
2542 		bf = TAILQ_FIRST(&sc->sc_txbuf);
2543 
2544 	if (bf == NULL) {
2545 		sc->sc_stats.ast_tx_getnobuf++;
2546 	} else {
2547 		if (bf->bf_flags & ATH_BUF_BUSY) {
2548 			sc->sc_stats.ast_tx_getbusybuf++;
2549 			bf = NULL;
2550 		}
2551 	}
2552 
2553 	if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) {
2554 		if (btype == ATH_BUFTYPE_MGMT)
2555 			TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list);
2556 		else {
2557 			TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
2558 			sc->sc_txbuf_cnt--;
2559 
2560 			/*
2561 			 * This shuldn't happen; however just to be
2562 			 * safe print a warning and fudge the txbuf
2563 			 * count.
2564 			 */
2565 			if (sc->sc_txbuf_cnt < 0) {
2566 				device_printf(sc->sc_dev,
2567 				    "%s: sc_txbuf_cnt < 0?\n",
2568 				    __func__);
2569 				sc->sc_txbuf_cnt = 0;
2570 			}
2571 		}
2572 	} else
2573 		bf = NULL;
2574 
2575 	if (bf == NULL) {
2576 		/* XXX should check which list, mgmt or otherwise */
2577 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__,
2578 		    TAILQ_FIRST(&sc->sc_txbuf) == NULL ?
2579 			"out of xmit buffers" : "xmit buffer busy");
2580 		return NULL;
2581 	}
2582 
2583 	/* XXX TODO: should do this at buffer list initialisation */
2584 	/* XXX (then, ensure the buffer has the right flag set) */
2585 	bf->bf_flags = 0;
2586 	if (btype == ATH_BUFTYPE_MGMT)
2587 		bf->bf_flags |= ATH_BUF_MGMT;
2588 	else
2589 		bf->bf_flags &= (~ATH_BUF_MGMT);
2590 
2591 	/* Valid bf here; clear some basic fields */
2592 	bf->bf_next = NULL;	/* XXX just to be sure */
2593 	bf->bf_last = NULL;	/* XXX again, just to be sure */
2594 	bf->bf_comp = NULL;	/* XXX again, just to be sure */
2595 	bzero(&bf->bf_state, sizeof(bf->bf_state));
2596 
2597 	/*
2598 	 * Track the descriptor ID only if doing EDMA
2599 	 */
2600 	if (sc->sc_isedma) {
2601 		bf->bf_descid = sc->sc_txbuf_descid;
2602 		sc->sc_txbuf_descid++;
2603 	}
2604 
2605 	return bf;
2606 }
2607 
2608 /*
2609  * When retrying a software frame, buffers marked ATH_BUF_BUSY
2610  * can't be thrown back on the queue as they could still be
2611  * in use by the hardware.
2612  *
2613  * This duplicates the buffer, or returns NULL.
2614  *
2615  * The descriptor is also copied but the link pointers and
2616  * the DMA segments aren't copied; this frame should thus
2617  * be again passed through the descriptor setup/chain routines
2618  * so the link is correct.
2619  *
2620  * The caller must free the buffer using ath_freebuf().
2621  */
2622 struct ath_buf *
2623 ath_buf_clone(struct ath_softc *sc, struct ath_buf *bf)
2624 {
2625 	struct ath_buf *tbf;
2626 
2627 	tbf = ath_getbuf(sc,
2628 	    (bf->bf_flags & ATH_BUF_MGMT) ?
2629 	     ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL);
2630 	if (tbf == NULL)
2631 		return NULL;	/* XXX failure? Why? */
2632 
2633 	/* Copy basics */
2634 	tbf->bf_next = NULL;
2635 	tbf->bf_nseg = bf->bf_nseg;
2636 	tbf->bf_flags = bf->bf_flags & ATH_BUF_FLAGS_CLONE;
2637 	tbf->bf_status = bf->bf_status;
2638 	tbf->bf_m = bf->bf_m;
2639 	tbf->bf_node = bf->bf_node;
2640 	/* will be setup by the chain/setup function */
2641 	tbf->bf_lastds = NULL;
2642 	/* for now, last == self */
2643 	tbf->bf_last = tbf;
2644 	tbf->bf_comp = bf->bf_comp;
2645 
2646 	/* NOTE: DMA segments will be setup by the setup/chain functions */
2647 
2648 	/* The caller has to re-init the descriptor + links */
2649 
2650 	/*
2651 	 * Free the DMA mapping here, before we NULL the mbuf.
2652 	 * We must only call bus_dmamap_unload() once per mbuf chain
2653 	 * or behaviour is undefined.
2654 	 */
2655 	if (bf->bf_m != NULL) {
2656 		/*
2657 		 * XXX is this POSTWRITE call required?
2658 		 */
2659 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
2660 		    BUS_DMASYNC_POSTWRITE);
2661 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2662 	}
2663 
2664 	bf->bf_m = NULL;
2665 	bf->bf_node = NULL;
2666 
2667 	/* Copy state */
2668 	memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state));
2669 
2670 	return tbf;
2671 }
2672 
2673 struct ath_buf *
2674 ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype)
2675 {
2676 	struct ath_buf *bf;
2677 
2678 	ATH_TXBUF_LOCK(sc);
2679 	bf = _ath_getbuf_locked(sc, btype);
2680 	/*
2681 	 * If a mgmt buffer was requested but we're out of those,
2682 	 * try requesting a normal one.
2683 	 */
2684 	if (bf == NULL && btype == ATH_BUFTYPE_MGMT)
2685 		bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL);
2686 	ATH_TXBUF_UNLOCK(sc);
2687 	if (bf == NULL) {
2688 		struct ifnet *ifp = sc->sc_ifp;
2689 
2690 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__);
2691 		sc->sc_stats.ast_tx_qstop++;
2692 		IF_LOCK(&ifp->if_snd);
2693 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2694 		IF_UNLOCK(&ifp->if_snd);
2695 	}
2696 	return bf;
2697 }
2698 
2699 static void
2700 ath_qflush(struct ifnet *ifp)
2701 {
2702 
2703 	/* XXX TODO */
2704 }
2705 
2706 /*
2707  * Transmit a single frame.
2708  *
2709  * net80211 will free the node reference if the transmit
2710  * fails, so don't free the node reference here.
2711  */
2712 static int
2713 ath_transmit(struct ifnet *ifp, struct mbuf *m)
2714 {
2715 	struct ieee80211com *ic = ifp->if_l2com;
2716 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2717 	struct ieee80211_node *ni;
2718 	struct mbuf *next;
2719 	struct ath_buf *bf;
2720 	ath_bufhead frags;
2721 	int retval = 0;
2722 
2723 	/*
2724 	 * Tell the reset path that we're currently transmitting.
2725 	 */
2726 	ATH_PCU_LOCK(sc);
2727 	if (sc->sc_inreset_cnt > 0) {
2728 		device_printf(sc->sc_dev,
2729 		    "%s: sc_inreset_cnt > 0; bailing\n", __func__);
2730 		ATH_PCU_UNLOCK(sc);
2731 		IF_LOCK(&ifp->if_snd);
2732 		sc->sc_stats.ast_tx_qstop++;
2733 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2734 		IF_UNLOCK(&ifp->if_snd);
2735 		ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: OACTIVE, finish");
2736 		return (ENOBUFS);	/* XXX should be EINVAL or? */
2737 	}
2738 	sc->sc_txstart_cnt++;
2739 	ATH_PCU_UNLOCK(sc);
2740 
2741 	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: start");
2742 	/*
2743 	 * Grab the TX lock - it's ok to do this here; we haven't
2744 	 * yet started transmitting.
2745 	 */
2746 	ATH_TX_LOCK(sc);
2747 
2748 	/*
2749 	 * Node reference, if there's one.
2750 	 */
2751 	ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2752 
2753 	/*
2754 	 * Enforce how deep a node queue can get.
2755 	 *
2756 	 * XXX it would be nicer if we kept an mbuf queue per
2757 	 * node and only whacked them into ath_bufs when we
2758 	 * are ready to schedule some traffic from them.
2759 	 * .. that may come later.
2760 	 *
2761 	 * XXX we should also track the per-node hardware queue
2762 	 * depth so it is easy to limit the _SUM_ of the swq and
2763 	 * hwq frames.  Since we only schedule two HWQ frames
2764 	 * at a time, this should be OK for now.
2765 	 */
2766 	if ((!(m->m_flags & M_EAPOL)) &&
2767 	    (ATH_NODE(ni)->an_swq_depth > sc->sc_txq_node_maxdepth)) {
2768 		sc->sc_stats.ast_tx_nodeq_overflow++;
2769 		m_freem(m);
2770 		m = NULL;
2771 		retval = ENOBUFS;
2772 		goto finish;
2773 	}
2774 
2775 	/*
2776 	 * Check how many TX buffers are available.
2777 	 *
2778 	 * If this is for non-EAPOL traffic, just leave some
2779 	 * space free in order for buffer cloning and raw
2780 	 * frame transmission to occur.
2781 	 *
2782 	 * If it's for EAPOL traffic, ignore this for now.
2783 	 * Management traffic will be sent via the raw transmit
2784 	 * method which bypasses this check.
2785 	 *
2786 	 * This is needed to ensure that EAPOL frames during
2787 	 * (re) keying have a chance to go out.
2788 	 *
2789 	 * See kern/138379 for more information.
2790 	 */
2791 	if ((!(m->m_flags & M_EAPOL)) &&
2792 	    (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree)) {
2793 		sc->sc_stats.ast_tx_nobuf++;
2794 		m_freem(m);
2795 		m = NULL;
2796 		retval = ENOBUFS;
2797 		goto finish;
2798 	}
2799 
2800 	/*
2801 	 * Grab a TX buffer and associated resources.
2802 	 *
2803 	 * If it's an EAPOL frame, allocate a MGMT ath_buf.
2804 	 * That way even with temporary buffer exhaustion due to
2805 	 * the data path doesn't leave us without the ability
2806 	 * to transmit management frames.
2807 	 *
2808 	 * Otherwise allocate a normal buffer.
2809 	 */
2810 	if (m->m_flags & M_EAPOL)
2811 		bf = ath_getbuf(sc, ATH_BUFTYPE_MGMT);
2812 	else
2813 		bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL);
2814 
2815 	if (bf == NULL) {
2816 		/*
2817 		 * If we failed to allocate a buffer, fail.
2818 		 *
2819 		 * We shouldn't fail normally, due to the check
2820 		 * above.
2821 		 */
2822 		sc->sc_stats.ast_tx_nobuf++;
2823 		IF_LOCK(&ifp->if_snd);
2824 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2825 		IF_UNLOCK(&ifp->if_snd);
2826 		m_freem(m);
2827 		m = NULL;
2828 		retval = ENOBUFS;
2829 		goto finish;
2830 	}
2831 
2832 	/*
2833 	 * At this point we have a buffer; so we need to free it
2834 	 * if we hit any error conditions.
2835 	 */
2836 
2837 	/*
2838 	 * Check for fragmentation.  If this frame
2839 	 * has been broken up verify we have enough
2840 	 * buffers to send all the fragments so all
2841 	 * go out or none...
2842 	 */
2843 	TAILQ_INIT(&frags);
2844 	if ((m->m_flags & M_FRAG) &&
2845 	    !ath_txfrag_setup(sc, &frags, m, ni)) {
2846 		DPRINTF(sc, ATH_DEBUG_XMIT,
2847 		    "%s: out of txfrag buffers\n", __func__);
2848 		sc->sc_stats.ast_tx_nofrag++;
2849 		ifp->if_oerrors++;
2850 		ath_freetx(m);
2851 		goto bad;
2852 	}
2853 
2854 	/*
2855 	 * At this point if we have any TX fragments, then we will
2856 	 * have bumped the node reference once for each of those.
2857 	 */
2858 
2859 	/*
2860 	 * XXX Is there anything actually _enforcing_ that the
2861 	 * fragments are being transmitted in one hit, rather than
2862 	 * being interleaved with other transmissions on that
2863 	 * hardware queue?
2864 	 *
2865 	 * The ATH TX output lock is the only thing serialising this
2866 	 * right now.
2867 	 */
2868 
2869 	/*
2870 	 * Calculate the "next fragment" length field in ath_buf
2871 	 * in order to let the transmit path know enough about
2872 	 * what to next write to the hardware.
2873 	 */
2874 	if (m->m_flags & M_FRAG) {
2875 		struct ath_buf *fbf = bf;
2876 		struct ath_buf *n_fbf = NULL;
2877 		struct mbuf *fm = m->m_nextpkt;
2878 
2879 		/*
2880 		 * We need to walk the list of fragments and set
2881 		 * the next size to the following buffer.
2882 		 * However, the first buffer isn't in the frag
2883 		 * list, so we have to do some gymnastics here.
2884 		 */
2885 		TAILQ_FOREACH(n_fbf, &frags, bf_list) {
2886 			fbf->bf_nextfraglen = fm->m_pkthdr.len;
2887 			fbf = n_fbf;
2888 			fm = fm->m_nextpkt;
2889 		}
2890 	}
2891 
2892 	/*
2893 	 * Bump the ifp output counter.
2894 	 *
2895 	 * XXX should use atomics?
2896 	 */
2897 	ifp->if_opackets++;
2898 nextfrag:
2899 	/*
2900 	 * Pass the frame to the h/w for transmission.
2901 	 * Fragmented frames have each frag chained together
2902 	 * with m_nextpkt.  We know there are sufficient ath_buf's
2903 	 * to send all the frags because of work done by
2904 	 * ath_txfrag_setup.  We leave m_nextpkt set while
2905 	 * calling ath_tx_start so it can use it to extend the
2906 	 * the tx duration to cover the subsequent frag and
2907 	 * so it can reclaim all the mbufs in case of an error;
2908 	 * ath_tx_start clears m_nextpkt once it commits to
2909 	 * handing the frame to the hardware.
2910 	 *
2911 	 * Note: if this fails, then the mbufs are freed but
2912 	 * not the node reference.
2913 	 */
2914 	next = m->m_nextpkt;
2915 	if (ath_tx_start(sc, ni, bf, m)) {
2916 bad:
2917 		ifp->if_oerrors++;
2918 reclaim:
2919 		bf->bf_m = NULL;
2920 		bf->bf_node = NULL;
2921 		ATH_TXBUF_LOCK(sc);
2922 		ath_returnbuf_head(sc, bf);
2923 		/*
2924 		 * Free the rest of the node references and
2925 		 * buffers for the fragment list.
2926 		 */
2927 		ath_txfrag_cleanup(sc, &frags, ni);
2928 		ATH_TXBUF_UNLOCK(sc);
2929 		retval = ENOBUFS;
2930 		goto finish;
2931 	}
2932 
2933 	/*
2934 	 * Check here if the node is in power save state.
2935 	 */
2936 	ath_tx_update_tim(sc, ni, 1);
2937 
2938 	if (next != NULL) {
2939 		/*
2940 		 * Beware of state changing between frags.
2941 		 * XXX check sta power-save state?
2942 		 */
2943 		if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
2944 			DPRINTF(sc, ATH_DEBUG_XMIT,
2945 			    "%s: flush fragmented packet, state %s\n",
2946 			    __func__,
2947 			    ieee80211_state_name[ni->ni_vap->iv_state]);
2948 			/* XXX dmamap */
2949 			ath_freetx(next);
2950 			goto reclaim;
2951 		}
2952 		m = next;
2953 		bf = TAILQ_FIRST(&frags);
2954 		KASSERT(bf != NULL, ("no buf for txfrag"));
2955 		TAILQ_REMOVE(&frags, bf, bf_list);
2956 		goto nextfrag;
2957 	}
2958 
2959 	/*
2960 	 * Bump watchdog timer.
2961 	 */
2962 	sc->sc_wd_timer = 5;
2963 
2964 finish:
2965 	ATH_TX_UNLOCK(sc);
2966 
2967 	/*
2968 	 * Finished transmitting!
2969 	 */
2970 	ATH_PCU_LOCK(sc);
2971 	sc->sc_txstart_cnt--;
2972 	ATH_PCU_UNLOCK(sc);
2973 
2974 	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: finished");
2975 
2976 	return (retval);
2977 }
2978 
2979 static int
2980 ath_media_change(struct ifnet *ifp)
2981 {
2982 	int error = ieee80211_media_change(ifp);
2983 	/* NB: only the fixed rate can change and that doesn't need a reset */
2984 	return (error == ENETRESET ? 0 : error);
2985 }
2986 
2987 /*
2988  * Block/unblock tx+rx processing while a key change is done.
2989  * We assume the caller serializes key management operations
2990  * so we only need to worry about synchronization with other
2991  * uses that originate in the driver.
2992  */
2993 static void
2994 ath_key_update_begin(struct ieee80211vap *vap)
2995 {
2996 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2997 	struct ath_softc *sc = ifp->if_softc;
2998 
2999 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
3000 	taskqueue_block(sc->sc_tq);
3001 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
3002 }
3003 
3004 static void
3005 ath_key_update_end(struct ieee80211vap *vap)
3006 {
3007 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3008 	struct ath_softc *sc = ifp->if_softc;
3009 
3010 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
3011 	IF_UNLOCK(&ifp->if_snd);
3012 	taskqueue_unblock(sc->sc_tq);
3013 }
3014 
3015 static void
3016 ath_update_promisc(struct ifnet *ifp)
3017 {
3018 	struct ath_softc *sc = ifp->if_softc;
3019 	u_int32_t rfilt;
3020 
3021 	/* configure rx filter */
3022 	rfilt = ath_calcrxfilter(sc);
3023 	ath_hal_setrxfilter(sc->sc_ah, rfilt);
3024 
3025 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
3026 }
3027 
3028 static void
3029 ath_update_mcast(struct ifnet *ifp)
3030 {
3031 	struct ath_softc *sc = ifp->if_softc;
3032 	u_int32_t mfilt[2];
3033 
3034 	/* calculate and install multicast filter */
3035 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3036 		struct ifmultiaddr *ifma;
3037 		/*
3038 		 * Merge multicast addresses to form the hardware filter.
3039 		 */
3040 		mfilt[0] = mfilt[1] = 0;
3041 		if_maddr_rlock(ifp);	/* XXX need some fiddling to remove? */
3042 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
3043 			caddr_t dl;
3044 			u_int32_t val;
3045 			u_int8_t pos;
3046 
3047 			/* calculate XOR of eight 6bit values */
3048 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
3049 			val = LE_READ_4(dl + 0);
3050 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
3051 			val = LE_READ_4(dl + 3);
3052 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
3053 			pos &= 0x3f;
3054 			mfilt[pos / 32] |= (1 << (pos % 32));
3055 		}
3056 		if_maddr_runlock(ifp);
3057 	} else
3058 		mfilt[0] = mfilt[1] = ~0;
3059 	ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
3060 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
3061 		__func__, mfilt[0], mfilt[1]);
3062 }
3063 
3064 void
3065 ath_mode_init(struct ath_softc *sc)
3066 {
3067 	struct ifnet *ifp = sc->sc_ifp;
3068 	struct ath_hal *ah = sc->sc_ah;
3069 	u_int32_t rfilt;
3070 
3071 	/* configure rx filter */
3072 	rfilt = ath_calcrxfilter(sc);
3073 	ath_hal_setrxfilter(ah, rfilt);
3074 
3075 	/* configure operational mode */
3076 	ath_hal_setopmode(ah);
3077 
3078 	DPRINTF(sc, ATH_DEBUG_STATE | ATH_DEBUG_MODE,
3079 	    "%s: ah=%p, ifp=%p, if_addr=%p\n",
3080 	    __func__,
3081 	    ah,
3082 	    ifp,
3083 	    (ifp == NULL) ? NULL : ifp->if_addr);
3084 
3085 	/* handle any link-level address change */
3086 	ath_hal_setmac(ah, IF_LLADDR(ifp));
3087 
3088 	/* calculate and install multicast filter */
3089 	ath_update_mcast(ifp);
3090 }
3091 
3092 /*
3093  * Set the slot time based on the current setting.
3094  */
3095 void
3096 ath_setslottime(struct ath_softc *sc)
3097 {
3098 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3099 	struct ath_hal *ah = sc->sc_ah;
3100 	u_int usec;
3101 
3102 	if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
3103 		usec = 13;
3104 	else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
3105 		usec = 21;
3106 	else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
3107 		/* honor short/long slot time only in 11g */
3108 		/* XXX shouldn't honor on pure g or turbo g channel */
3109 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
3110 			usec = HAL_SLOT_TIME_9;
3111 		else
3112 			usec = HAL_SLOT_TIME_20;
3113 	} else
3114 		usec = HAL_SLOT_TIME_9;
3115 
3116 	DPRINTF(sc, ATH_DEBUG_RESET,
3117 	    "%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
3118 	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
3119 	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
3120 
3121 	ath_hal_setslottime(ah, usec);
3122 	sc->sc_updateslot = OK;
3123 }
3124 
3125 /*
3126  * Callback from the 802.11 layer to update the
3127  * slot time based on the current setting.
3128  */
3129 static void
3130 ath_updateslot(struct ifnet *ifp)
3131 {
3132 	struct ath_softc *sc = ifp->if_softc;
3133 	struct ieee80211com *ic = ifp->if_l2com;
3134 
3135 	/*
3136 	 * When not coordinating the BSS, change the hardware
3137 	 * immediately.  For other operation we defer the change
3138 	 * until beacon updates have propagated to the stations.
3139 	 */
3140 	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
3141 	    ic->ic_opmode == IEEE80211_M_MBSS)
3142 		sc->sc_updateslot = UPDATE;
3143 	else
3144 		ath_setslottime(sc);
3145 }
3146 
3147 /*
3148  * Append the contents of src to dst; both queues
3149  * are assumed to be locked.
3150  */
3151 void
3152 ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
3153 {
3154 
3155 	ATH_TXQ_LOCK_ASSERT(src);
3156 	ATH_TXQ_LOCK_ASSERT(dst);
3157 
3158 	TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list);
3159 	dst->axq_link = src->axq_link;
3160 	src->axq_link = NULL;
3161 	dst->axq_depth += src->axq_depth;
3162 	dst->axq_aggr_depth += src->axq_aggr_depth;
3163 	src->axq_depth = 0;
3164 	src->axq_aggr_depth = 0;
3165 }
3166 
3167 /*
3168  * Reset the hardware, with no loss.
3169  *
3170  * This can't be used for a general case reset.
3171  */
3172 static void
3173 ath_reset_proc(void *arg, int pending)
3174 {
3175 	struct ath_softc *sc = arg;
3176 	struct ifnet *ifp = sc->sc_ifp;
3177 
3178 #if 0
3179 	if_printf(ifp, "%s: resetting\n", __func__);
3180 #endif
3181 	ath_reset(ifp, ATH_RESET_NOLOSS);
3182 }
3183 
3184 /*
3185  * Reset the hardware after detecting beacons have stopped.
3186  */
3187 static void
3188 ath_bstuck_proc(void *arg, int pending)
3189 {
3190 	struct ath_softc *sc = arg;
3191 	struct ifnet *ifp = sc->sc_ifp;
3192 	uint32_t hangs = 0;
3193 
3194 	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0)
3195 		if_printf(ifp, "bb hang detected (0x%x)\n", hangs);
3196 
3197 #ifdef	ATH_DEBUG_ALQ
3198 	if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_STUCK_BEACON))
3199 		if_ath_alq_post(&sc->sc_alq, ATH_ALQ_STUCK_BEACON, 0, NULL);
3200 #endif
3201 
3202 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
3203 		sc->sc_bmisscount);
3204 	sc->sc_stats.ast_bstuck++;
3205 	/*
3206 	 * This assumes that there's no simultaneous channel mode change
3207 	 * occuring.
3208 	 */
3209 	ath_reset(ifp, ATH_RESET_NOLOSS);
3210 }
3211 
3212 static void
3213 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
3214 {
3215 	bus_addr_t *paddr = (bus_addr_t*) arg;
3216 	KASSERT(error == 0, ("error %u on bus_dma callback", error));
3217 	*paddr = segs->ds_addr;
3218 }
3219 
3220 /*
3221  * Allocate the descriptors and appropriate DMA tag/setup.
3222  *
3223  * For some situations (eg EDMA TX completion), there isn't a requirement
3224  * for the ath_buf entries to be allocated.
3225  */
3226 int
3227 ath_descdma_alloc_desc(struct ath_softc *sc,
3228 	struct ath_descdma *dd, ath_bufhead *head,
3229 	const char *name, int ds_size, int ndesc)
3230 {
3231 #define	DS2PHYS(_dd, _ds) \
3232 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
3233 #define	ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \
3234 	((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0)
3235 	struct ifnet *ifp = sc->sc_ifp;
3236 	int error;
3237 
3238 	dd->dd_descsize = ds_size;
3239 
3240 	DPRINTF(sc, ATH_DEBUG_RESET,
3241 	    "%s: %s DMA: %u desc, %d bytes per descriptor\n",
3242 	    __func__, name, ndesc, dd->dd_descsize);
3243 
3244 	dd->dd_name = name;
3245 	dd->dd_desc_len = dd->dd_descsize * ndesc;
3246 
3247 	/*
3248 	 * Merlin work-around:
3249 	 * Descriptors that cross the 4KB boundary can't be used.
3250 	 * Assume one skipped descriptor per 4KB page.
3251 	 */
3252 	if (! ath_hal_split4ktrans(sc->sc_ah)) {
3253 		int numpages = dd->dd_desc_len / 4096;
3254 		dd->dd_desc_len += ds_size * numpages;
3255 	}
3256 
3257 	/*
3258 	 * Setup DMA descriptor area.
3259 	 *
3260 	 * BUS_DMA_ALLOCNOW is not used; we never use bounce
3261 	 * buffers for the descriptors themselves.
3262 	 */
3263 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
3264 		       PAGE_SIZE, 0,		/* alignment, bounds */
3265 		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
3266 		       BUS_SPACE_MAXADDR,	/* highaddr */
3267 		       NULL, NULL,		/* filter, filterarg */
3268 		       dd->dd_desc_len,		/* maxsize */
3269 		       1,			/* nsegments */
3270 		       dd->dd_desc_len,		/* maxsegsize */
3271 		       0,			/* flags */
3272 		       NULL,			/* lockfunc */
3273 		       NULL,			/* lockarg */
3274 		       &dd->dd_dmat);
3275 	if (error != 0) {
3276 		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
3277 		return error;
3278 	}
3279 
3280 	/* allocate descriptors */
3281 	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
3282 				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
3283 				 &dd->dd_dmamap);
3284 	if (error != 0) {
3285 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
3286 			"error %u\n", ndesc, dd->dd_name, error);
3287 		goto fail1;
3288 	}
3289 
3290 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
3291 				dd->dd_desc, dd->dd_desc_len,
3292 				ath_load_cb, &dd->dd_desc_paddr,
3293 				BUS_DMA_NOWAIT);
3294 	if (error != 0) {
3295 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
3296 			dd->dd_name, error);
3297 		goto fail2;
3298 	}
3299 
3300 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
3301 	    __func__, dd->dd_name, (uint8_t *) dd->dd_desc,
3302 	    (u_long) dd->dd_desc_len, (caddr_t) dd->dd_desc_paddr,
3303 	    /*XXX*/ (u_long) dd->dd_desc_len);
3304 
3305 	return (0);
3306 
3307 fail2:
3308 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3309 fail1:
3310 	bus_dma_tag_destroy(dd->dd_dmat);
3311 	memset(dd, 0, sizeof(*dd));
3312 	return error;
3313 #undef DS2PHYS
3314 #undef ATH_DESC_4KB_BOUND_CHECK
3315 }
3316 
3317 int
3318 ath_descdma_setup(struct ath_softc *sc,
3319 	struct ath_descdma *dd, ath_bufhead *head,
3320 	const char *name, int ds_size, int nbuf, int ndesc)
3321 {
3322 #define	DS2PHYS(_dd, _ds) \
3323 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
3324 #define	ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \
3325 	((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0)
3326 	struct ifnet *ifp = sc->sc_ifp;
3327 	uint8_t *ds;
3328 	struct ath_buf *bf;
3329 	int i, bsize, error;
3330 
3331 	/* Allocate descriptors */
3332 	error = ath_descdma_alloc_desc(sc, dd, head, name, ds_size,
3333 	    nbuf * ndesc);
3334 
3335 	/* Assume any errors during allocation were dealt with */
3336 	if (error != 0) {
3337 		return (error);
3338 	}
3339 
3340 	ds = (uint8_t *) dd->dd_desc;
3341 
3342 	/* allocate rx buffers */
3343 	bsize = sizeof(struct ath_buf) * nbuf;
3344 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
3345 	if (bf == NULL) {
3346 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
3347 			dd->dd_name, bsize);
3348 		goto fail3;
3349 	}
3350 	dd->dd_bufptr = bf;
3351 
3352 	TAILQ_INIT(head);
3353 	for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * dd->dd_descsize)) {
3354 		bf->bf_desc = (struct ath_desc *) ds;
3355 		bf->bf_daddr = DS2PHYS(dd, ds);
3356 		if (! ath_hal_split4ktrans(sc->sc_ah)) {
3357 			/*
3358 			 * Merlin WAR: Skip descriptor addresses which
3359 			 * cause 4KB boundary crossing along any point
3360 			 * in the descriptor.
3361 			 */
3362 			 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr,
3363 			     dd->dd_descsize)) {
3364 				/* Start at the next page */
3365 				ds += 0x1000 - (bf->bf_daddr & 0xFFF);
3366 				bf->bf_desc = (struct ath_desc *) ds;
3367 				bf->bf_daddr = DS2PHYS(dd, ds);
3368 			}
3369 		}
3370 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3371 				&bf->bf_dmamap);
3372 		if (error != 0) {
3373 			if_printf(ifp, "unable to create dmamap for %s "
3374 				"buffer %u, error %u\n", dd->dd_name, i, error);
3375 			ath_descdma_cleanup(sc, dd, head);
3376 			return error;
3377 		}
3378 		bf->bf_lastds = bf->bf_desc;	/* Just an initial value */
3379 		TAILQ_INSERT_TAIL(head, bf, bf_list);
3380 	}
3381 
3382 	/*
3383 	 * XXX TODO: ensure that ds doesn't overflow the descriptor
3384 	 * allocation otherwise weird stuff will occur and crash your
3385 	 * machine.
3386 	 */
3387 	return 0;
3388 	/* XXX this should likely just call ath_descdma_cleanup() */
3389 fail3:
3390 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3391 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3392 	bus_dma_tag_destroy(dd->dd_dmat);
3393 	memset(dd, 0, sizeof(*dd));
3394 	return error;
3395 #undef DS2PHYS
3396 #undef ATH_DESC_4KB_BOUND_CHECK
3397 }
3398 
3399 /*
3400  * Allocate ath_buf entries but no descriptor contents.
3401  *
3402  * This is for RX EDMA where the descriptors are the header part of
3403  * the RX buffer.
3404  */
3405 int
3406 ath_descdma_setup_rx_edma(struct ath_softc *sc,
3407 	struct ath_descdma *dd, ath_bufhead *head,
3408 	const char *name, int nbuf, int rx_status_len)
3409 {
3410 	struct ifnet *ifp = sc->sc_ifp;
3411 	struct ath_buf *bf;
3412 	int i, bsize, error;
3413 
3414 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers\n",
3415 	    __func__, name, nbuf);
3416 
3417 	dd->dd_name = name;
3418 	/*
3419 	 * This is (mostly) purely for show.  We're not allocating any actual
3420 	 * descriptors here as EDMA RX has the descriptor be part
3421 	 * of the RX buffer.
3422 	 *
3423 	 * However, dd_desc_len is used by ath_descdma_free() to determine
3424 	 * whether we have already freed this DMA mapping.
3425 	 */
3426 	dd->dd_desc_len = rx_status_len * nbuf;
3427 	dd->dd_descsize = rx_status_len;
3428 
3429 	/* allocate rx buffers */
3430 	bsize = sizeof(struct ath_buf) * nbuf;
3431 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
3432 	if (bf == NULL) {
3433 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
3434 			dd->dd_name, bsize);
3435 		error = ENOMEM;
3436 		goto fail3;
3437 	}
3438 	dd->dd_bufptr = bf;
3439 
3440 	TAILQ_INIT(head);
3441 	for (i = 0; i < nbuf; i++, bf++) {
3442 		bf->bf_desc = NULL;
3443 		bf->bf_daddr = 0;
3444 		bf->bf_lastds = NULL;	/* Just an initial value */
3445 
3446 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3447 				&bf->bf_dmamap);
3448 		if (error != 0) {
3449 			if_printf(ifp, "unable to create dmamap for %s "
3450 				"buffer %u, error %u\n", dd->dd_name, i, error);
3451 			ath_descdma_cleanup(sc, dd, head);
3452 			return error;
3453 		}
3454 		TAILQ_INSERT_TAIL(head, bf, bf_list);
3455 	}
3456 	return 0;
3457 fail3:
3458 	memset(dd, 0, sizeof(*dd));
3459 	return error;
3460 }
3461 
3462 void
3463 ath_descdma_cleanup(struct ath_softc *sc,
3464 	struct ath_descdma *dd, ath_bufhead *head)
3465 {
3466 	struct ath_buf *bf;
3467 	struct ieee80211_node *ni;
3468 	int do_warning = 0;
3469 
3470 	if (dd->dd_dmamap != 0) {
3471 		bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3472 		bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3473 		bus_dma_tag_destroy(dd->dd_dmat);
3474 	}
3475 
3476 	if (head != NULL) {
3477 		TAILQ_FOREACH(bf, head, bf_list) {
3478 			if (bf->bf_m) {
3479 				/*
3480 				 * XXX warn if there's buffers here.
3481 				 * XXX it should have been freed by the
3482 				 * owner!
3483 				 */
3484 
3485 				if (do_warning == 0) {
3486 					do_warning = 1;
3487 					device_printf(sc->sc_dev,
3488 					    "%s: %s: mbuf should've been"
3489 					    " unmapped/freed!\n",
3490 					    __func__,
3491 					    dd->dd_name);
3492 				}
3493 				bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3494 				    BUS_DMASYNC_POSTREAD);
3495 				bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3496 				m_freem(bf->bf_m);
3497 				bf->bf_m = NULL;
3498 			}
3499 			if (bf->bf_dmamap != NULL) {
3500 				bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
3501 				bf->bf_dmamap = NULL;
3502 			}
3503 			ni = bf->bf_node;
3504 			bf->bf_node = NULL;
3505 			if (ni != NULL) {
3506 				/*
3507 				 * Reclaim node reference.
3508 				 */
3509 				ieee80211_free_node(ni);
3510 			}
3511 		}
3512 	}
3513 
3514 	if (head != NULL)
3515 		TAILQ_INIT(head);
3516 
3517 	if (dd->dd_bufptr != NULL)
3518 		free(dd->dd_bufptr, M_ATHDEV);
3519 	memset(dd, 0, sizeof(*dd));
3520 }
3521 
3522 static int
3523 ath_desc_alloc(struct ath_softc *sc)
3524 {
3525 	int error;
3526 
3527 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
3528 		    "tx", sc->sc_tx_desclen, ath_txbuf, ATH_MAX_SCATTER);
3529 	if (error != 0) {
3530 		return error;
3531 	}
3532 	sc->sc_txbuf_cnt = ath_txbuf;
3533 
3534 	error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt,
3535 		    "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt,
3536 		    ATH_TXDESC);
3537 	if (error != 0) {
3538 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3539 		return error;
3540 	}
3541 
3542 	/*
3543 	 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the
3544 	 * flag doesn't have to be set in ath_getbuf_locked().
3545 	 */
3546 
3547 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
3548 			"beacon", sc->sc_tx_desclen, ATH_BCBUF, 1);
3549 	if (error != 0) {
3550 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3551 		ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
3552 		    &sc->sc_txbuf_mgmt);
3553 		return error;
3554 	}
3555 	return 0;
3556 }
3557 
3558 static void
3559 ath_desc_free(struct ath_softc *sc)
3560 {
3561 
3562 	if (sc->sc_bdma.dd_desc_len != 0)
3563 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
3564 	if (sc->sc_txdma.dd_desc_len != 0)
3565 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3566 	if (sc->sc_txdma_mgmt.dd_desc_len != 0)
3567 		ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
3568 		    &sc->sc_txbuf_mgmt);
3569 }
3570 
3571 static struct ieee80211_node *
3572 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
3573 {
3574 	struct ieee80211com *ic = vap->iv_ic;
3575 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3576 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
3577 	struct ath_node *an;
3578 
3579 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
3580 	if (an == NULL) {
3581 		/* XXX stat+msg */
3582 		return NULL;
3583 	}
3584 	ath_rate_node_init(sc, an);
3585 
3586 	/* Setup the mutex - there's no associd yet so set the name to NULL */
3587 	snprintf(an->an_name, sizeof(an->an_name), "%s: node %p",
3588 	    device_get_nameunit(sc->sc_dev), an);
3589 	mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF);
3590 
3591 	/* XXX setup ath_tid */
3592 	ath_tx_tid_init(sc, an);
3593 
3594 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, mac, ":", an);
3595 	return &an->an_node;
3596 }
3597 
3598 static void
3599 ath_node_cleanup(struct ieee80211_node *ni)
3600 {
3601 	struct ieee80211com *ic = ni->ni_ic;
3602 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3603 
3604 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__,
3605 	    ni->ni_macaddr, ":", ATH_NODE(ni));
3606 
3607 	/* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */
3608 	ath_tx_node_flush(sc, ATH_NODE(ni));
3609 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
3610 	sc->sc_node_cleanup(ni);
3611 }
3612 
3613 static void
3614 ath_node_free(struct ieee80211_node *ni)
3615 {
3616 	struct ieee80211com *ic = ni->ni_ic;
3617 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3618 
3619 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__,
3620 	    ni->ni_macaddr, ":", ATH_NODE(ni));
3621 	mtx_destroy(&ATH_NODE(ni)->an_mtx);
3622 	sc->sc_node_free(ni);
3623 }
3624 
3625 static void
3626 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
3627 {
3628 	struct ieee80211com *ic = ni->ni_ic;
3629 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3630 	struct ath_hal *ah = sc->sc_ah;
3631 
3632 	*rssi = ic->ic_node_getrssi(ni);
3633 	if (ni->ni_chan != IEEE80211_CHAN_ANYC)
3634 		*noise = ath_hal_getchannoise(ah, ni->ni_chan);
3635 	else
3636 		*noise = -95;		/* nominally correct */
3637 }
3638 
3639 /*
3640  * Set the default antenna.
3641  */
3642 void
3643 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
3644 {
3645 	struct ath_hal *ah = sc->sc_ah;
3646 
3647 	/* XXX block beacon interrupts */
3648 	ath_hal_setdefantenna(ah, antenna);
3649 	if (sc->sc_defant != antenna)
3650 		sc->sc_stats.ast_ant_defswitch++;
3651 	sc->sc_defant = antenna;
3652 	sc->sc_rxotherant = 0;
3653 }
3654 
3655 static void
3656 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
3657 {
3658 	txq->axq_qnum = qnum;
3659 	txq->axq_ac = 0;
3660 	txq->axq_depth = 0;
3661 	txq->axq_aggr_depth = 0;
3662 	txq->axq_intrcnt = 0;
3663 	txq->axq_link = NULL;
3664 	txq->axq_softc = sc;
3665 	TAILQ_INIT(&txq->axq_q);
3666 	TAILQ_INIT(&txq->axq_tidq);
3667 	TAILQ_INIT(&txq->fifo.axq_q);
3668 	ATH_TXQ_LOCK_INIT(sc, txq);
3669 }
3670 
3671 /*
3672  * Setup a h/w transmit queue.
3673  */
3674 static struct ath_txq *
3675 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3676 {
3677 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3678 	struct ath_hal *ah = sc->sc_ah;
3679 	HAL_TXQ_INFO qi;
3680 	int qnum;
3681 
3682 	memset(&qi, 0, sizeof(qi));
3683 	qi.tqi_subtype = subtype;
3684 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3685 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3686 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3687 	/*
3688 	 * Enable interrupts only for EOL and DESC conditions.
3689 	 * We mark tx descriptors to receive a DESC interrupt
3690 	 * when a tx queue gets deep; otherwise waiting for the
3691 	 * EOL to reap descriptors.  Note that this is done to
3692 	 * reduce interrupt load and this only defers reaping
3693 	 * descriptors, never transmitting frames.  Aside from
3694 	 * reducing interrupts this also permits more concurrency.
3695 	 * The only potential downside is if the tx queue backs
3696 	 * up in which case the top half of the kernel may backup
3697 	 * due to a lack of tx descriptors.
3698 	 */
3699 	if (sc->sc_isedma)
3700 		qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE |
3701 		    HAL_TXQ_TXOKINT_ENABLE;
3702 	else
3703 		qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE |
3704 		    HAL_TXQ_TXDESCINT_ENABLE;
3705 
3706 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3707 	if (qnum == -1) {
3708 		/*
3709 		 * NB: don't print a message, this happens
3710 		 * normally on parts with too few tx queues
3711 		 */
3712 		return NULL;
3713 	}
3714 	if (qnum >= N(sc->sc_txq)) {
3715 		device_printf(sc->sc_dev,
3716 			"hal qnum %u out of range, max %zu!\n",
3717 			qnum, N(sc->sc_txq));
3718 		ath_hal_releasetxqueue(ah, qnum);
3719 		return NULL;
3720 	}
3721 	if (!ATH_TXQ_SETUP(sc, qnum)) {
3722 		ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
3723 		sc->sc_txqsetup |= 1<<qnum;
3724 	}
3725 	return &sc->sc_txq[qnum];
3726 #undef N
3727 }
3728 
3729 /*
3730  * Setup a hardware data transmit queue for the specified
3731  * access control.  The hal may not support all requested
3732  * queues in which case it will return a reference to a
3733  * previously setup queue.  We record the mapping from ac's
3734  * to h/w queues for use by ath_tx_start and also track
3735  * the set of h/w queues being used to optimize work in the
3736  * transmit interrupt handler and related routines.
3737  */
3738 static int
3739 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3740 {
3741 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3742 	struct ath_txq *txq;
3743 
3744 	if (ac >= N(sc->sc_ac2q)) {
3745 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3746 			ac, N(sc->sc_ac2q));
3747 		return 0;
3748 	}
3749 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3750 	if (txq != NULL) {
3751 		txq->axq_ac = ac;
3752 		sc->sc_ac2q[ac] = txq;
3753 		return 1;
3754 	} else
3755 		return 0;
3756 #undef N
3757 }
3758 
3759 /*
3760  * Update WME parameters for a transmit queue.
3761  */
3762 static int
3763 ath_txq_update(struct ath_softc *sc, int ac)
3764 {
3765 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
3766 #define	ATH_TXOP_TO_US(v)		(v<<5)
3767 	struct ifnet *ifp = sc->sc_ifp;
3768 	struct ieee80211com *ic = ifp->if_l2com;
3769 	struct ath_txq *txq = sc->sc_ac2q[ac];
3770 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3771 	struct ath_hal *ah = sc->sc_ah;
3772 	HAL_TXQ_INFO qi;
3773 
3774 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3775 #ifdef IEEE80211_SUPPORT_TDMA
3776 	if (sc->sc_tdma) {
3777 		/*
3778 		 * AIFS is zero so there's no pre-transmit wait.  The
3779 		 * burst time defines the slot duration and is configured
3780 		 * through net80211.  The QCU is setup to not do post-xmit
3781 		 * back off, lockout all lower-priority QCU's, and fire
3782 		 * off the DMA beacon alert timer which is setup based
3783 		 * on the slot configuration.
3784 		 */
3785 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
3786 			      | HAL_TXQ_TXERRINT_ENABLE
3787 			      | HAL_TXQ_TXURNINT_ENABLE
3788 			      | HAL_TXQ_TXEOLINT_ENABLE
3789 			      | HAL_TXQ_DBA_GATED
3790 			      | HAL_TXQ_BACKOFF_DISABLE
3791 			      | HAL_TXQ_ARB_LOCKOUT_GLOBAL
3792 			      ;
3793 		qi.tqi_aifs = 0;
3794 		/* XXX +dbaprep? */
3795 		qi.tqi_readyTime = sc->sc_tdmaslotlen;
3796 		qi.tqi_burstTime = qi.tqi_readyTime;
3797 	} else {
3798 #endif
3799 		/*
3800 		 * XXX shouldn't this just use the default flags
3801 		 * used in the previous queue setup?
3802 		 */
3803 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
3804 			      | HAL_TXQ_TXERRINT_ENABLE
3805 			      | HAL_TXQ_TXDESCINT_ENABLE
3806 			      | HAL_TXQ_TXURNINT_ENABLE
3807 			      | HAL_TXQ_TXEOLINT_ENABLE
3808 			      ;
3809 		qi.tqi_aifs = wmep->wmep_aifsn;
3810 		qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3811 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3812 		qi.tqi_readyTime = 0;
3813 		qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3814 #ifdef IEEE80211_SUPPORT_TDMA
3815 	}
3816 #endif
3817 
3818 	DPRINTF(sc, ATH_DEBUG_RESET,
3819 	    "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n",
3820 	    __func__, txq->axq_qnum, qi.tqi_qflags,
3821 	    qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime);
3822 
3823 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3824 		if_printf(ifp, "unable to update hardware queue "
3825 			"parameters for %s traffic!\n",
3826 			ieee80211_wme_acnames[ac]);
3827 		return 0;
3828 	} else {
3829 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3830 		return 1;
3831 	}
3832 #undef ATH_TXOP_TO_US
3833 #undef ATH_EXPONENT_TO_VALUE
3834 }
3835 
3836 /*
3837  * Callback from the 802.11 layer to update WME parameters.
3838  */
3839 int
3840 ath_wme_update(struct ieee80211com *ic)
3841 {
3842 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3843 
3844 	return !ath_txq_update(sc, WME_AC_BE) ||
3845 	    !ath_txq_update(sc, WME_AC_BK) ||
3846 	    !ath_txq_update(sc, WME_AC_VI) ||
3847 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3848 }
3849 
3850 /*
3851  * Reclaim resources for a setup queue.
3852  */
3853 static void
3854 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3855 {
3856 
3857 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3858 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3859 	ATH_TXQ_LOCK_DESTROY(txq);
3860 }
3861 
3862 /*
3863  * Reclaim all tx queue resources.
3864  */
3865 static void
3866 ath_tx_cleanup(struct ath_softc *sc)
3867 {
3868 	int i;
3869 
3870 	ATH_TXBUF_LOCK_DESTROY(sc);
3871 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3872 		if (ATH_TXQ_SETUP(sc, i))
3873 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3874 }
3875 
3876 /*
3877  * Return h/w rate index for an IEEE rate (w/o basic rate bit)
3878  * using the current rates in sc_rixmap.
3879  */
3880 int
3881 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate)
3882 {
3883 	int rix = sc->sc_rixmap[rate];
3884 	/* NB: return lowest rix for invalid rate */
3885 	return (rix == 0xff ? 0 : rix);
3886 }
3887 
3888 static void
3889 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts,
3890     struct ath_buf *bf)
3891 {
3892 	struct ieee80211_node *ni = bf->bf_node;
3893 	struct ifnet *ifp = sc->sc_ifp;
3894 	struct ieee80211com *ic = ifp->if_l2com;
3895 	int sr, lr, pri;
3896 
3897 	if (ts->ts_status == 0) {
3898 		u_int8_t txant = ts->ts_antenna;
3899 		sc->sc_stats.ast_ant_tx[txant]++;
3900 		sc->sc_ant_tx[txant]++;
3901 		if (ts->ts_finaltsi != 0)
3902 			sc->sc_stats.ast_tx_altrate++;
3903 		pri = M_WME_GETAC(bf->bf_m);
3904 		if (pri >= WME_AC_VO)
3905 			ic->ic_wme.wme_hipri_traffic++;
3906 		if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)
3907 			ni->ni_inact = ni->ni_inact_reload;
3908 	} else {
3909 		if (ts->ts_status & HAL_TXERR_XRETRY)
3910 			sc->sc_stats.ast_tx_xretries++;
3911 		if (ts->ts_status & HAL_TXERR_FIFO)
3912 			sc->sc_stats.ast_tx_fifoerr++;
3913 		if (ts->ts_status & HAL_TXERR_FILT)
3914 			sc->sc_stats.ast_tx_filtered++;
3915 		if (ts->ts_status & HAL_TXERR_XTXOP)
3916 			sc->sc_stats.ast_tx_xtxop++;
3917 		if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED)
3918 			sc->sc_stats.ast_tx_timerexpired++;
3919 
3920 		if (bf->bf_m->m_flags & M_FF)
3921 			sc->sc_stats.ast_ff_txerr++;
3922 	}
3923 	/* XXX when is this valid? */
3924 	if (ts->ts_flags & HAL_TX_DESC_CFG_ERR)
3925 		sc->sc_stats.ast_tx_desccfgerr++;
3926 	/*
3927 	 * This can be valid for successful frame transmission!
3928 	 * If there's a TX FIFO underrun during aggregate transmission,
3929 	 * the MAC will pad the rest of the aggregate with delimiters.
3930 	 * If a BA is returned, the frame is marked as "OK" and it's up
3931 	 * to the TX completion code to notice which frames weren't
3932 	 * successfully transmitted.
3933 	 */
3934 	if (ts->ts_flags & HAL_TX_DATA_UNDERRUN)
3935 		sc->sc_stats.ast_tx_data_underrun++;
3936 	if (ts->ts_flags & HAL_TX_DELIM_UNDERRUN)
3937 		sc->sc_stats.ast_tx_delim_underrun++;
3938 
3939 	sr = ts->ts_shortretry;
3940 	lr = ts->ts_longretry;
3941 	sc->sc_stats.ast_tx_shortretry += sr;
3942 	sc->sc_stats.ast_tx_longretry += lr;
3943 
3944 }
3945 
3946 /*
3947  * The default completion. If fail is 1, this means
3948  * "please don't retry the frame, and just return -1 status
3949  * to the net80211 stack.
3950  */
3951 void
3952 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
3953 {
3954 	struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
3955 	int st;
3956 
3957 	if (fail == 1)
3958 		st = -1;
3959 	else
3960 		st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ?
3961 		    ts->ts_status : HAL_TXERR_XRETRY;
3962 
3963 #if 0
3964 	if (bf->bf_state.bfs_dobaw)
3965 		device_printf(sc->sc_dev,
3966 		    "%s: bf %p: seqno %d: dobaw should've been cleared!\n",
3967 		    __func__,
3968 		    bf,
3969 		    SEQNO(bf->bf_state.bfs_seqno));
3970 #endif
3971 	if (bf->bf_next != NULL)
3972 		device_printf(sc->sc_dev,
3973 		    "%s: bf %p: seqno %d: bf_next not NULL!\n",
3974 		    __func__,
3975 		    bf,
3976 		    SEQNO(bf->bf_state.bfs_seqno));
3977 
3978 	/*
3979 	 * Check if the node software queue is empty; if so
3980 	 * then clear the TIM.
3981 	 *
3982 	 * This needs to be done before the buffer is freed as
3983 	 * otherwise the node reference will have been released
3984 	 * and the node may not actually exist any longer.
3985 	 *
3986 	 * XXX I don't like this belonging here, but it's cleaner
3987 	 * to do it here right now then all the other places
3988 	 * where ath_tx_default_comp() is called.
3989 	 *
3990 	 * XXX TODO: during drain, ensure that the callback is
3991 	 * being called so we get a chance to update the TIM.
3992 	 */
3993 	if (bf->bf_node) {
3994 		ATH_TX_LOCK(sc);
3995 		ath_tx_update_tim(sc, bf->bf_node, 0);
3996 		ATH_TX_UNLOCK(sc);
3997 	}
3998 
3999 	/*
4000 	 * Do any tx complete callback.  Note this must
4001 	 * be done before releasing the node reference.
4002 	 * This will free the mbuf, release the net80211
4003 	 * node and recycle the ath_buf.
4004 	 */
4005 	ath_tx_freebuf(sc, bf, st);
4006 }
4007 
4008 /*
4009  * Update rate control with the given completion status.
4010  */
4011 void
4012 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni,
4013     struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen,
4014     int nframes, int nbad)
4015 {
4016 	struct ath_node *an;
4017 
4018 	/* Only for unicast frames */
4019 	if (ni == NULL)
4020 		return;
4021 
4022 	an = ATH_NODE(ni);
4023 	ATH_NODE_UNLOCK_ASSERT(an);
4024 
4025 	if ((ts->ts_status & HAL_TXERR_FILT) == 0) {
4026 		ATH_NODE_LOCK(an);
4027 		ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad);
4028 		ATH_NODE_UNLOCK(an);
4029 	}
4030 }
4031 
4032 /*
4033  * Process the completion of the given buffer.
4034  *
4035  * This calls the rate control update and then the buffer completion.
4036  * This will either free the buffer or requeue it.  In any case, the
4037  * bf pointer should be treated as invalid after this function is called.
4038  */
4039 void
4040 ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq,
4041     struct ath_tx_status *ts, struct ath_buf *bf)
4042 {
4043 	struct ieee80211_node *ni = bf->bf_node;
4044 	struct ath_node *an = NULL;
4045 
4046 	ATH_TX_UNLOCK_ASSERT(sc);
4047 	ATH_TXQ_UNLOCK_ASSERT(txq);
4048 
4049 	/* If unicast frame, update general statistics */
4050 	if (ni != NULL) {
4051 		an = ATH_NODE(ni);
4052 		/* update statistics */
4053 		ath_tx_update_stats(sc, ts, bf);
4054 	}
4055 
4056 	/*
4057 	 * Call the completion handler.
4058 	 * The completion handler is responsible for
4059 	 * calling the rate control code.
4060 	 *
4061 	 * Frames with no completion handler get the
4062 	 * rate control code called here.
4063 	 */
4064 	if (bf->bf_comp == NULL) {
4065 		if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
4066 		    (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) {
4067 			/*
4068 			 * XXX assume this isn't an aggregate
4069 			 * frame.
4070 			 */
4071 			ath_tx_update_ratectrl(sc, ni,
4072 			     bf->bf_state.bfs_rc, ts,
4073 			    bf->bf_state.bfs_pktlen, 1,
4074 			    (ts->ts_status == 0 ? 0 : 1));
4075 		}
4076 		ath_tx_default_comp(sc, bf, 0);
4077 	} else
4078 		bf->bf_comp(sc, bf, 0);
4079 }
4080 
4081 
4082 
4083 /*
4084  * Process completed xmit descriptors from the specified queue.
4085  * Kick the packet scheduler if needed. This can occur from this
4086  * particular task.
4087  */
4088 static int
4089 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched)
4090 {
4091 	struct ath_hal *ah = sc->sc_ah;
4092 	struct ath_buf *bf;
4093 	struct ath_desc *ds;
4094 	struct ath_tx_status *ts;
4095 	struct ieee80211_node *ni;
4096 #ifdef	IEEE80211_SUPPORT_SUPERG
4097 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4098 #endif	/* IEEE80211_SUPPORT_SUPERG */
4099 	int nacked;
4100 	HAL_STATUS status;
4101 
4102 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
4103 		__func__, txq->axq_qnum,
4104 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4105 		txq->axq_link);
4106 
4107 	ATH_KTR(sc, ATH_KTR_TXCOMP, 4,
4108 	    "ath_tx_processq: txq=%u head %p link %p depth %p",
4109 	    txq->axq_qnum,
4110 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4111 	    txq->axq_link,
4112 	    txq->axq_depth);
4113 
4114 	nacked = 0;
4115 	for (;;) {
4116 		ATH_TXQ_LOCK(txq);
4117 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
4118 		bf = TAILQ_FIRST(&txq->axq_q);
4119 		if (bf == NULL) {
4120 			ATH_TXQ_UNLOCK(txq);
4121 			break;
4122 		}
4123 		ds = bf->bf_lastds;	/* XXX must be setup correctly! */
4124 		ts = &bf->bf_status.ds_txstat;
4125 
4126 		status = ath_hal_txprocdesc(ah, ds, ts);
4127 #ifdef ATH_DEBUG
4128 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
4129 			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
4130 			    status == HAL_OK);
4131 		else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0))
4132 			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
4133 			    status == HAL_OK);
4134 #endif
4135 #ifdef	ATH_DEBUG_ALQ
4136 		if (if_ath_alq_checkdebug(&sc->sc_alq,
4137 		    ATH_ALQ_EDMA_TXSTATUS)) {
4138 			if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS,
4139 			sc->sc_tx_statuslen,
4140 			(char *) ds);
4141 		}
4142 #endif
4143 
4144 		if (status == HAL_EINPROGRESS) {
4145 			ATH_KTR(sc, ATH_KTR_TXCOMP, 3,
4146 			    "ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS",
4147 			    txq->axq_qnum, bf, ds);
4148 			ATH_TXQ_UNLOCK(txq);
4149 			break;
4150 		}
4151 		ATH_TXQ_REMOVE(txq, bf, bf_list);
4152 
4153 		/*
4154 		 * Sanity check.
4155 		 */
4156 		if (txq->axq_qnum != bf->bf_state.bfs_tx_queue) {
4157 			device_printf(sc->sc_dev,
4158 			    "%s: TXQ=%d: bf=%p, bfs_tx_queue=%d\n",
4159 			    __func__,
4160 			    txq->axq_qnum,
4161 			    bf,
4162 			    bf->bf_state.bfs_tx_queue);
4163 		}
4164 		if (txq->axq_qnum != bf->bf_last->bf_state.bfs_tx_queue) {
4165 			device_printf(sc->sc_dev,
4166 			    "%s: TXQ=%d: bf_last=%p, bfs_tx_queue=%d\n",
4167 			    __func__,
4168 			    txq->axq_qnum,
4169 			    bf->bf_last,
4170 			    bf->bf_last->bf_state.bfs_tx_queue);
4171 		}
4172 
4173 #if 0
4174 		if (txq->axq_depth > 0) {
4175 			/*
4176 			 * More frames follow.  Mark the buffer busy
4177 			 * so it's not re-used while the hardware may
4178 			 * still re-read the link field in the descriptor.
4179 			 *
4180 			 * Use the last buffer in an aggregate as that
4181 			 * is where the hardware may be - intermediate
4182 			 * descriptors won't be "busy".
4183 			 */
4184 			bf->bf_last->bf_flags |= ATH_BUF_BUSY;
4185 		} else
4186 			txq->axq_link = NULL;
4187 #else
4188 		bf->bf_last->bf_flags |= ATH_BUF_BUSY;
4189 #endif
4190 		if (bf->bf_state.bfs_aggr)
4191 			txq->axq_aggr_depth--;
4192 
4193 		ni = bf->bf_node;
4194 
4195 		ATH_KTR(sc, ATH_KTR_TXCOMP, 5,
4196 		    "ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x",
4197 		    txq->axq_qnum, bf, ds, ni, ts->ts_status);
4198 		/*
4199 		 * If unicast frame was ack'd update RSSI,
4200 		 * including the last rx time used to
4201 		 * workaround phantom bmiss interrupts.
4202 		 */
4203 		if (ni != NULL && ts->ts_status == 0 &&
4204 		    ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) {
4205 			nacked++;
4206 			sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
4207 			ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
4208 				ts->ts_rssi);
4209 		}
4210 		ATH_TXQ_UNLOCK(txq);
4211 
4212 		/*
4213 		 * Update statistics and call completion
4214 		 */
4215 		ath_tx_process_buf_completion(sc, txq, ts, bf);
4216 
4217 		/* XXX at this point, bf and ni may be totally invalid */
4218 	}
4219 #ifdef IEEE80211_SUPPORT_SUPERG
4220 	/*
4221 	 * Flush fast-frame staging queue when traffic slows.
4222 	 */
4223 	if (txq->axq_depth <= 1)
4224 		ieee80211_ff_flush(ic, txq->axq_ac);
4225 #endif
4226 
4227 	/* Kick the software TXQ scheduler */
4228 	if (dosched) {
4229 		ATH_TX_LOCK(sc);
4230 		ath_txq_sched(sc, txq);
4231 		ATH_TX_UNLOCK(sc);
4232 	}
4233 
4234 	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4235 	    "ath_tx_processq: txq=%u: done",
4236 	    txq->axq_qnum);
4237 
4238 	return nacked;
4239 }
4240 
4241 #define	TXQACTIVE(t, q)		( (t) & (1 << (q)))
4242 
4243 /*
4244  * Deferred processing of transmit interrupt; special-cased
4245  * for a single hardware transmit queue (e.g. 5210 and 5211).
4246  */
4247 static void
4248 ath_tx_proc_q0(void *arg, int npending)
4249 {
4250 	struct ath_softc *sc = arg;
4251 	struct ifnet *ifp = sc->sc_ifp;
4252 	uint32_t txqs;
4253 
4254 	ATH_PCU_LOCK(sc);
4255 	sc->sc_txproc_cnt++;
4256 	txqs = sc->sc_txq_active;
4257 	sc->sc_txq_active &= ~txqs;
4258 	ATH_PCU_UNLOCK(sc);
4259 
4260 	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4261 	    "ath_tx_proc_q0: txqs=0x%08x", txqs);
4262 
4263 	if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1))
4264 		/* XXX why is lastrx updated in tx code? */
4265 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4266 	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
4267 		ath_tx_processq(sc, sc->sc_cabq, 1);
4268 	IF_LOCK(&ifp->if_snd);
4269 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4270 	IF_UNLOCK(&ifp->if_snd);
4271 	sc->sc_wd_timer = 0;
4272 
4273 	if (sc->sc_softled)
4274 		ath_led_event(sc, sc->sc_txrix);
4275 
4276 	ATH_PCU_LOCK(sc);
4277 	sc->sc_txproc_cnt--;
4278 	ATH_PCU_UNLOCK(sc);
4279 
4280 	ath_tx_kick(sc);
4281 }
4282 
4283 /*
4284  * Deferred processing of transmit interrupt; special-cased
4285  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4286  */
4287 static void
4288 ath_tx_proc_q0123(void *arg, int npending)
4289 {
4290 	struct ath_softc *sc = arg;
4291 	struct ifnet *ifp = sc->sc_ifp;
4292 	int nacked;
4293 	uint32_t txqs;
4294 
4295 	ATH_PCU_LOCK(sc);
4296 	sc->sc_txproc_cnt++;
4297 	txqs = sc->sc_txq_active;
4298 	sc->sc_txq_active &= ~txqs;
4299 	ATH_PCU_UNLOCK(sc);
4300 
4301 	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4302 	    "ath_tx_proc_q0123: txqs=0x%08x", txqs);
4303 
4304 	/*
4305 	 * Process each active queue.
4306 	 */
4307 	nacked = 0;
4308 	if (TXQACTIVE(txqs, 0))
4309 		nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1);
4310 	if (TXQACTIVE(txqs, 1))
4311 		nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1);
4312 	if (TXQACTIVE(txqs, 2))
4313 		nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1);
4314 	if (TXQACTIVE(txqs, 3))
4315 		nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1);
4316 	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
4317 		ath_tx_processq(sc, sc->sc_cabq, 1);
4318 	if (nacked)
4319 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4320 
4321 	IF_LOCK(&ifp->if_snd);
4322 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4323 	IF_UNLOCK(&ifp->if_snd);
4324 	sc->sc_wd_timer = 0;
4325 
4326 	if (sc->sc_softled)
4327 		ath_led_event(sc, sc->sc_txrix);
4328 
4329 	ATH_PCU_LOCK(sc);
4330 	sc->sc_txproc_cnt--;
4331 	ATH_PCU_UNLOCK(sc);
4332 
4333 	ath_tx_kick(sc);
4334 }
4335 
4336 /*
4337  * Deferred processing of transmit interrupt.
4338  */
4339 static void
4340 ath_tx_proc(void *arg, int npending)
4341 {
4342 	struct ath_softc *sc = arg;
4343 	struct ifnet *ifp = sc->sc_ifp;
4344 	int i, nacked;
4345 	uint32_t txqs;
4346 
4347 	ATH_PCU_LOCK(sc);
4348 	sc->sc_txproc_cnt++;
4349 	txqs = sc->sc_txq_active;
4350 	sc->sc_txq_active &= ~txqs;
4351 	ATH_PCU_UNLOCK(sc);
4352 
4353 	ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs);
4354 
4355 	/*
4356 	 * Process each active queue.
4357 	 */
4358 	nacked = 0;
4359 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4360 		if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i))
4361 			nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1);
4362 	if (nacked)
4363 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4364 
4365 	/* XXX check this inside of IF_LOCK? */
4366 	IF_LOCK(&ifp->if_snd);
4367 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4368 	IF_UNLOCK(&ifp->if_snd);
4369 	sc->sc_wd_timer = 0;
4370 
4371 	if (sc->sc_softled)
4372 		ath_led_event(sc, sc->sc_txrix);
4373 
4374 	ATH_PCU_LOCK(sc);
4375 	sc->sc_txproc_cnt--;
4376 	ATH_PCU_UNLOCK(sc);
4377 
4378 	ath_tx_kick(sc);
4379 }
4380 #undef	TXQACTIVE
4381 
4382 /*
4383  * Deferred processing of TXQ rescheduling.
4384  */
4385 static void
4386 ath_txq_sched_tasklet(void *arg, int npending)
4387 {
4388 	struct ath_softc *sc = arg;
4389 	int i;
4390 
4391 	/* XXX is skipping ok? */
4392 	ATH_PCU_LOCK(sc);
4393 #if 0
4394 	if (sc->sc_inreset_cnt > 0) {
4395 		device_printf(sc->sc_dev,
4396 		    "%s: sc_inreset_cnt > 0; skipping\n", __func__);
4397 		ATH_PCU_UNLOCK(sc);
4398 		return;
4399 	}
4400 #endif
4401 	sc->sc_txproc_cnt++;
4402 	ATH_PCU_UNLOCK(sc);
4403 
4404 	ATH_TX_LOCK(sc);
4405 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
4406 		if (ATH_TXQ_SETUP(sc, i)) {
4407 			ath_txq_sched(sc, &sc->sc_txq[i]);
4408 		}
4409 	}
4410 	ATH_TX_UNLOCK(sc);
4411 
4412 	ATH_PCU_LOCK(sc);
4413 	sc->sc_txproc_cnt--;
4414 	ATH_PCU_UNLOCK(sc);
4415 }
4416 
4417 void
4418 ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf)
4419 {
4420 
4421 	ATH_TXBUF_LOCK_ASSERT(sc);
4422 
4423 	if (bf->bf_flags & ATH_BUF_MGMT)
4424 		TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list);
4425 	else {
4426 		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4427 		sc->sc_txbuf_cnt++;
4428 		if (sc->sc_txbuf_cnt > ath_txbuf) {
4429 			device_printf(sc->sc_dev,
4430 			    "%s: sc_txbuf_cnt > %d?\n",
4431 			    __func__,
4432 			    ath_txbuf);
4433 			sc->sc_txbuf_cnt = ath_txbuf;
4434 		}
4435 	}
4436 }
4437 
4438 void
4439 ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf)
4440 {
4441 
4442 	ATH_TXBUF_LOCK_ASSERT(sc);
4443 
4444 	if (bf->bf_flags & ATH_BUF_MGMT)
4445 		TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list);
4446 	else {
4447 		TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
4448 		sc->sc_txbuf_cnt++;
4449 		if (sc->sc_txbuf_cnt > ATH_TXBUF) {
4450 			device_printf(sc->sc_dev,
4451 			    "%s: sc_txbuf_cnt > %d?\n",
4452 			    __func__,
4453 			    ATH_TXBUF);
4454 			sc->sc_txbuf_cnt = ATH_TXBUF;
4455 		}
4456 	}
4457 }
4458 
4459 /*
4460  * Free the holding buffer if it exists
4461  */
4462 void
4463 ath_txq_freeholdingbuf(struct ath_softc *sc, struct ath_txq *txq)
4464 {
4465 	ATH_TXBUF_UNLOCK_ASSERT(sc);
4466 	ATH_TXQ_LOCK_ASSERT(txq);
4467 
4468 	if (txq->axq_holdingbf == NULL)
4469 		return;
4470 
4471 	txq->axq_holdingbf->bf_flags &= ~ATH_BUF_BUSY;
4472 
4473 	ATH_TXBUF_LOCK(sc);
4474 	ath_returnbuf_tail(sc, txq->axq_holdingbf);
4475 	ATH_TXBUF_UNLOCK(sc);
4476 
4477 	txq->axq_holdingbf = NULL;
4478 }
4479 
4480 /*
4481  * Add this buffer to the holding queue, freeing the previous
4482  * one if it exists.
4483  */
4484 static void
4485 ath_txq_addholdingbuf(struct ath_softc *sc, struct ath_buf *bf)
4486 {
4487 	struct ath_txq *txq;
4488 
4489 	txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue];
4490 
4491 	ATH_TXBUF_UNLOCK_ASSERT(sc);
4492 	ATH_TXQ_LOCK_ASSERT(txq);
4493 
4494 	/* XXX assert ATH_BUF_BUSY is set */
4495 
4496 	/* XXX assert the tx queue is under the max number */
4497 	if (bf->bf_state.bfs_tx_queue > HAL_NUM_TX_QUEUES) {
4498 		device_printf(sc->sc_dev, "%s: bf=%p: invalid tx queue (%d)\n",
4499 		    __func__,
4500 		    bf,
4501 		    bf->bf_state.bfs_tx_queue);
4502 		bf->bf_flags &= ~ATH_BUF_BUSY;
4503 		ath_returnbuf_tail(sc, bf);
4504 		return;
4505 	}
4506 	ath_txq_freeholdingbuf(sc, txq);
4507 	txq->axq_holdingbf = bf;
4508 }
4509 
4510 /*
4511  * Return a buffer to the pool and update the 'busy' flag on the
4512  * previous 'tail' entry.
4513  *
4514  * This _must_ only be called when the buffer is involved in a completed
4515  * TX. The logic is that if it was part of an active TX, the previous
4516  * buffer on the list is now not involved in a halted TX DMA queue, waiting
4517  * for restart (eg for TDMA.)
4518  *
4519  * The caller must free the mbuf and recycle the node reference.
4520  *
4521  * XXX This method of handling busy / holding buffers is insanely stupid.
4522  * It requires bf_state.bfs_tx_queue to be correctly assigned.  It would
4523  * be much nicer if buffers in the processq() methods would instead be
4524  * always completed there (pushed onto a txq or ath_bufhead) so we knew
4525  * exactly what hardware queue they came from in the first place.
4526  */
4527 void
4528 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf)
4529 {
4530 	struct ath_txq *txq;
4531 
4532 	txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue];
4533 
4534 	KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__));
4535 	KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__));
4536 
4537 	/*
4538 	 * If this buffer is busy, push it onto the holding queue.
4539 	 */
4540 	if (bf->bf_flags & ATH_BUF_BUSY) {
4541 		ATH_TXQ_LOCK(txq);
4542 		ath_txq_addholdingbuf(sc, bf);
4543 		ATH_TXQ_UNLOCK(txq);
4544 		return;
4545 	}
4546 
4547 	/*
4548 	 * Not a busy buffer, so free normally
4549 	 */
4550 	ATH_TXBUF_LOCK(sc);
4551 	ath_returnbuf_tail(sc, bf);
4552 	ATH_TXBUF_UNLOCK(sc);
4553 }
4554 
4555 /*
4556  * This is currently used by ath_tx_draintxq() and
4557  * ath_tx_tid_free_pkts().
4558  *
4559  * It recycles a single ath_buf.
4560  */
4561 void
4562 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status)
4563 {
4564 	struct ieee80211_node *ni = bf->bf_node;
4565 	struct mbuf *m0 = bf->bf_m;
4566 
4567 	/*
4568 	 * Make sure that we only sync/unload if there's an mbuf.
4569 	 * If not (eg we cloned a buffer), the unload will have already
4570 	 * occured.
4571 	 */
4572 	if (bf->bf_m != NULL) {
4573 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
4574 		    BUS_DMASYNC_POSTWRITE);
4575 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4576 	}
4577 
4578 	bf->bf_node = NULL;
4579 	bf->bf_m = NULL;
4580 
4581 	/* Free the buffer, it's not needed any longer */
4582 	ath_freebuf(sc, bf);
4583 
4584 	if (ni != NULL) {
4585 		/*
4586 		 * Do any callback and reclaim the node reference.
4587 		 */
4588 		if (m0->m_flags & M_TXCB)
4589 			ieee80211_process_callback(ni, m0, status);
4590 		ieee80211_free_node(ni);
4591 	}
4592 
4593 	/* Finally, we don't need this mbuf any longer */
4594 	m_freem(m0);
4595 }
4596 
4597 static struct ath_buf *
4598 ath_tx_draintxq_get_one(struct ath_softc *sc, struct ath_txq *txq)
4599 {
4600 	struct ath_buf *bf;
4601 
4602 	ATH_TXQ_LOCK_ASSERT(txq);
4603 
4604 	/*
4605 	 * Drain the FIFO queue first, then if it's
4606 	 * empty, move to the normal frame queue.
4607 	 */
4608 	bf = TAILQ_FIRST(&txq->fifo.axq_q);
4609 	if (bf != NULL) {
4610 		/*
4611 		 * Is it the last buffer in this set?
4612 		 * Decrement the FIFO counter.
4613 		 */
4614 		if (bf->bf_flags & ATH_BUF_FIFOEND) {
4615 			if (txq->axq_fifo_depth == 0) {
4616 				device_printf(sc->sc_dev,
4617 				    "%s: Q%d: fifo_depth=0, fifo.axq_depth=%d?\n",
4618 				    __func__,
4619 				    txq->axq_qnum,
4620 				    txq->fifo.axq_depth);
4621 			} else
4622 				txq->axq_fifo_depth--;
4623 		}
4624 		ATH_TXQ_REMOVE(&txq->fifo, bf, bf_list);
4625 		return (bf);
4626 	}
4627 
4628 	/*
4629 	 * Debugging!
4630 	 */
4631 	if (txq->axq_fifo_depth != 0 || txq->fifo.axq_depth != 0) {
4632 		device_printf(sc->sc_dev,
4633 		    "%s: Q%d: fifo_depth=%d, fifo.axq_depth=%d\n",
4634 		    __func__,
4635 		    txq->axq_qnum,
4636 		    txq->axq_fifo_depth,
4637 		    txq->fifo.axq_depth);
4638 	}
4639 
4640 	/*
4641 	 * Now drain the pending queue.
4642 	 */
4643 	bf = TAILQ_FIRST(&txq->axq_q);
4644 	if (bf == NULL) {
4645 		txq->axq_link = NULL;
4646 		return (NULL);
4647 	}
4648 	ATH_TXQ_REMOVE(txq, bf, bf_list);
4649 	return (bf);
4650 }
4651 
4652 void
4653 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
4654 {
4655 #ifdef ATH_DEBUG
4656 	struct ath_hal *ah = sc->sc_ah;
4657 #endif
4658 	struct ath_buf *bf;
4659 	u_int ix;
4660 
4661 	/*
4662 	 * NB: this assumes output has been stopped and
4663 	 *     we do not need to block ath_tx_proc
4664 	 */
4665 	for (ix = 0;; ix++) {
4666 		ATH_TXQ_LOCK(txq);
4667 		bf = ath_tx_draintxq_get_one(sc, txq);
4668 		if (bf == NULL) {
4669 			ATH_TXQ_UNLOCK(txq);
4670 			break;
4671 		}
4672 		if (bf->bf_state.bfs_aggr)
4673 			txq->axq_aggr_depth--;
4674 #ifdef ATH_DEBUG
4675 		if (sc->sc_debug & ATH_DEBUG_RESET) {
4676 			struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4677 			int status = 0;
4678 
4679 			/*
4680 			 * EDMA operation has a TX completion FIFO
4681 			 * separate from the TX descriptor, so this
4682 			 * method of checking the "completion" status
4683 			 * is wrong.
4684 			 */
4685 			if (! sc->sc_isedma) {
4686 				status = (ath_hal_txprocdesc(ah,
4687 				    bf->bf_lastds,
4688 				    &bf->bf_status.ds_txstat) == HAL_OK);
4689 			}
4690 			ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status);
4691 			ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *),
4692 			    bf->bf_m->m_len, 0, -1);
4693 		}
4694 #endif /* ATH_DEBUG */
4695 		/*
4696 		 * Since we're now doing magic in the completion
4697 		 * functions, we -must- call it for aggregation
4698 		 * destinations or BAW tracking will get upset.
4699 		 */
4700 		/*
4701 		 * Clear ATH_BUF_BUSY; the completion handler
4702 		 * will free the buffer.
4703 		 */
4704 		ATH_TXQ_UNLOCK(txq);
4705 		bf->bf_flags &= ~ATH_BUF_BUSY;
4706 		if (bf->bf_comp)
4707 			bf->bf_comp(sc, bf, 1);
4708 		else
4709 			ath_tx_default_comp(sc, bf, 1);
4710 	}
4711 
4712 	/*
4713 	 * Free the holding buffer if it exists
4714 	 */
4715 	ATH_TXQ_LOCK(txq);
4716 	ath_txq_freeholdingbuf(sc, txq);
4717 	ATH_TXQ_UNLOCK(txq);
4718 
4719 	/*
4720 	 * Drain software queued frames which are on
4721 	 * active TIDs.
4722 	 */
4723 	ath_tx_txq_drain(sc, txq);
4724 }
4725 
4726 static void
4727 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4728 {
4729 	struct ath_hal *ah = sc->sc_ah;
4730 
4731 	ATH_TXQ_LOCK_ASSERT(txq);
4732 
4733 	DPRINTF(sc, ATH_DEBUG_RESET,
4734 	    "%s: tx queue [%u] %p, active=%d, hwpending=%d, flags 0x%08x, "
4735 	    "link %p, holdingbf=%p\n",
4736 	    __func__,
4737 	    txq->axq_qnum,
4738 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4739 	    (int) (!! ath_hal_txqenabled(ah, txq->axq_qnum)),
4740 	    (int) ath_hal_numtxpending(ah, txq->axq_qnum),
4741 	    txq->axq_flags,
4742 	    txq->axq_link,
4743 	    txq->axq_holdingbf);
4744 
4745 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4746 	/* We've stopped TX DMA, so mark this as stopped. */
4747 	txq->axq_flags &= ~ATH_TXQ_PUTRUNNING;
4748 
4749 #ifdef	ATH_DEBUG
4750 	if ((sc->sc_debug & ATH_DEBUG_RESET)
4751 	    && (txq->axq_holdingbf != NULL)) {
4752 		ath_printtxbuf(sc, txq->axq_holdingbf, txq->axq_qnum, 0, 0);
4753 	}
4754 #endif
4755 }
4756 
4757 int
4758 ath_stoptxdma(struct ath_softc *sc)
4759 {
4760 	struct ath_hal *ah = sc->sc_ah;
4761 	int i;
4762 
4763 	/* XXX return value */
4764 	if (sc->sc_invalid)
4765 		return 0;
4766 
4767 	if (!sc->sc_invalid) {
4768 		/* don't touch the hardware if marked invalid */
4769 		DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4770 		    __func__, sc->sc_bhalq,
4771 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
4772 		    NULL);
4773 
4774 		/* stop the beacon queue */
4775 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4776 
4777 		/* Stop the data queues */
4778 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
4779 			if (ATH_TXQ_SETUP(sc, i)) {
4780 				ATH_TXQ_LOCK(&sc->sc_txq[i]);
4781 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
4782 				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
4783 			}
4784 		}
4785 	}
4786 
4787 	return 1;
4788 }
4789 
4790 #ifdef	ATH_DEBUG
4791 void
4792 ath_tx_dump(struct ath_softc *sc, struct ath_txq *txq)
4793 {
4794 	struct ath_hal *ah = sc->sc_ah;
4795 	struct ath_buf *bf;
4796 	int i = 0;
4797 
4798 	if (! (sc->sc_debug & ATH_DEBUG_RESET))
4799 		return;
4800 
4801 	device_printf(sc->sc_dev, "%s: Q%d: begin\n",
4802 	    __func__, txq->axq_qnum);
4803 	TAILQ_FOREACH(bf, &txq->axq_q, bf_list) {
4804 		ath_printtxbuf(sc, bf, txq->axq_qnum, i,
4805 			ath_hal_txprocdesc(ah, bf->bf_lastds,
4806 			    &bf->bf_status.ds_txstat) == HAL_OK);
4807 		i++;
4808 	}
4809 	device_printf(sc->sc_dev, "%s: Q%d: end\n",
4810 	    __func__, txq->axq_qnum);
4811 }
4812 #endif /* ATH_DEBUG */
4813 
4814 /*
4815  * Drain the transmit queues and reclaim resources.
4816  */
4817 void
4818 ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type)
4819 {
4820 	struct ath_hal *ah = sc->sc_ah;
4821 	struct ifnet *ifp = sc->sc_ifp;
4822 	int i;
4823 	struct ath_buf *bf_last;
4824 
4825 	(void) ath_stoptxdma(sc);
4826 
4827 	/*
4828 	 * Dump the queue contents
4829 	 */
4830 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
4831 		/*
4832 		 * XXX TODO: should we just handle the completed TX frames
4833 		 * here, whether or not the reset is a full one or not?
4834 		 */
4835 		if (ATH_TXQ_SETUP(sc, i)) {
4836 #ifdef	ATH_DEBUG
4837 			if (sc->sc_debug & ATH_DEBUG_RESET)
4838 				ath_tx_dump(sc, &sc->sc_txq[i]);
4839 #endif	/* ATH_DEBUG */
4840 			if (reset_type == ATH_RESET_NOLOSS) {
4841 				ath_tx_processq(sc, &sc->sc_txq[i], 0);
4842 				ATH_TXQ_LOCK(&sc->sc_txq[i]);
4843 				/*
4844 				 * Free the holding buffer; DMA is now
4845 				 * stopped.
4846 				 */
4847 				ath_txq_freeholdingbuf(sc, &sc->sc_txq[i]);
4848 				/*
4849 				 * Setup the link pointer to be the
4850 				 * _last_ buffer/descriptor in the list.
4851 				 * If there's nothing in the list, set it
4852 				 * to NULL.
4853 				 */
4854 				bf_last = ATH_TXQ_LAST(&sc->sc_txq[i],
4855 				    axq_q_s);
4856 				if (bf_last != NULL) {
4857 					ath_hal_gettxdesclinkptr(ah,
4858 					    bf_last->bf_lastds,
4859 					    &sc->sc_txq[i].axq_link);
4860 				} else {
4861 					sc->sc_txq[i].axq_link = NULL;
4862 				}
4863 				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
4864 			} else
4865 				ath_tx_draintxq(sc, &sc->sc_txq[i]);
4866 		}
4867 	}
4868 #ifdef ATH_DEBUG
4869 	if (sc->sc_debug & ATH_DEBUG_RESET) {
4870 		struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf);
4871 		if (bf != NULL && bf->bf_m != NULL) {
4872 			ath_printtxbuf(sc, bf, sc->sc_bhalq, 0,
4873 				ath_hal_txprocdesc(ah, bf->bf_lastds,
4874 				    &bf->bf_status.ds_txstat) == HAL_OK);
4875 			ieee80211_dump_pkt(ifp->if_l2com,
4876 			    mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len,
4877 			    0, -1);
4878 		}
4879 	}
4880 #endif /* ATH_DEBUG */
4881 	IF_LOCK(&ifp->if_snd);
4882 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4883 	IF_UNLOCK(&ifp->if_snd);
4884 	sc->sc_wd_timer = 0;
4885 }
4886 
4887 /*
4888  * Update internal state after a channel change.
4889  */
4890 static void
4891 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4892 {
4893 	enum ieee80211_phymode mode;
4894 
4895 	/*
4896 	 * Change channels and update the h/w rate map
4897 	 * if we're switching; e.g. 11a to 11b/g.
4898 	 */
4899 	mode = ieee80211_chan2mode(chan);
4900 	if (mode != sc->sc_curmode)
4901 		ath_setcurmode(sc, mode);
4902 	sc->sc_curchan = chan;
4903 }
4904 
4905 /*
4906  * Set/change channels.  If the channel is really being changed,
4907  * it's done by resetting the chip.  To accomplish this we must
4908  * first cleanup any pending DMA, then restart stuff after a la
4909  * ath_init.
4910  */
4911 static int
4912 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4913 {
4914 	struct ifnet *ifp = sc->sc_ifp;
4915 	struct ieee80211com *ic = ifp->if_l2com;
4916 	struct ath_hal *ah = sc->sc_ah;
4917 	int ret = 0;
4918 
4919 	/* Treat this as an interface reset */
4920 	ATH_PCU_UNLOCK_ASSERT(sc);
4921 	ATH_UNLOCK_ASSERT(sc);
4922 
4923 	/* (Try to) stop TX/RX from occuring */
4924 	taskqueue_block(sc->sc_tq);
4925 
4926 	ATH_PCU_LOCK(sc);
4927 
4928 	/* Stop new RX/TX/interrupt completion */
4929 	if (ath_reset_grablock(sc, 1) == 0) {
4930 		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
4931 		    __func__);
4932 	}
4933 
4934 	ath_hal_intrset(ah, 0);
4935 
4936 	/* Stop pending RX/TX completion */
4937 	ath_txrx_stop_locked(sc);
4938 
4939 	ATH_PCU_UNLOCK(sc);
4940 
4941 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n",
4942 	    __func__, ieee80211_chan2ieee(ic, chan),
4943 	    chan->ic_freq, chan->ic_flags);
4944 	if (chan != sc->sc_curchan) {
4945 		HAL_STATUS status;
4946 		/*
4947 		 * To switch channels clear any pending DMA operations;
4948 		 * wait long enough for the RX fifo to drain, reset the
4949 		 * hardware at the new frequency, and then re-enable
4950 		 * the relevant bits of the h/w.
4951 		 */
4952 #if 0
4953 		ath_hal_intrset(ah, 0);		/* disable interrupts */
4954 #endif
4955 		ath_stoprecv(sc, 1);		/* turn off frame recv */
4956 		/*
4957 		 * First, handle completed TX/RX frames.
4958 		 */
4959 		ath_rx_flush(sc);
4960 		ath_draintxq(sc, ATH_RESET_NOLOSS);
4961 		/*
4962 		 * Next, flush the non-scheduled frames.
4963 		 */
4964 		ath_draintxq(sc, ATH_RESET_FULL);	/* clear pending tx frames */
4965 
4966 		ath_update_chainmasks(sc, chan);
4967 		ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
4968 		    sc->sc_cur_rxchainmask);
4969 		if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) {
4970 			if_printf(ifp, "%s: unable to reset "
4971 			    "channel %u (%u MHz, flags 0x%x), hal status %u\n",
4972 			    __func__, ieee80211_chan2ieee(ic, chan),
4973 			    chan->ic_freq, chan->ic_flags, status);
4974 			ret = EIO;
4975 			goto finish;
4976 		}
4977 		sc->sc_diversity = ath_hal_getdiversity(ah);
4978 
4979 		/* Let DFS at it in case it's a DFS channel */
4980 		ath_dfs_radar_enable(sc, chan);
4981 
4982 		/* Let spectral at in case spectral is enabled */
4983 		ath_spectral_enable(sc, chan);
4984 
4985 		/*
4986 		 * Let bluetooth coexistence at in case it's needed for this
4987 		 * channel
4988 		 */
4989 		ath_btcoex_enable(sc, ic->ic_curchan);
4990 
4991 		/*
4992 		 * If we're doing TDMA, enforce the TXOP limitation for chips
4993 		 * that support it.
4994 		 */
4995 		if (sc->sc_hasenforcetxop && sc->sc_tdma)
4996 			ath_hal_setenforcetxop(sc->sc_ah, 1);
4997 		else
4998 			ath_hal_setenforcetxop(sc->sc_ah, 0);
4999 
5000 		/*
5001 		 * Re-enable rx framework.
5002 		 */
5003 		if (ath_startrecv(sc) != 0) {
5004 			if_printf(ifp, "%s: unable to restart recv logic\n",
5005 			    __func__);
5006 			ret = EIO;
5007 			goto finish;
5008 		}
5009 
5010 		/*
5011 		 * Change channels and update the h/w rate map
5012 		 * if we're switching; e.g. 11a to 11b/g.
5013 		 */
5014 		ath_chan_change(sc, chan);
5015 
5016 		/*
5017 		 * Reset clears the beacon timers; reset them
5018 		 * here if needed.
5019 		 */
5020 		if (sc->sc_beacons) {		/* restart beacons */
5021 #ifdef IEEE80211_SUPPORT_TDMA
5022 			if (sc->sc_tdma)
5023 				ath_tdma_config(sc, NULL);
5024 			else
5025 #endif
5026 			ath_beacon_config(sc, NULL);
5027 		}
5028 
5029 		/*
5030 		 * Re-enable interrupts.
5031 		 */
5032 #if 0
5033 		ath_hal_intrset(ah, sc->sc_imask);
5034 #endif
5035 	}
5036 
5037 finish:
5038 	ATH_PCU_LOCK(sc);
5039 	sc->sc_inreset_cnt--;
5040 	/* XXX only do this if sc_inreset_cnt == 0? */
5041 	ath_hal_intrset(ah, sc->sc_imask);
5042 	ATH_PCU_UNLOCK(sc);
5043 
5044 	IF_LOCK(&ifp->if_snd);
5045 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5046 	IF_UNLOCK(&ifp->if_snd);
5047 	ath_txrx_start(sc);
5048 	/* XXX ath_start? */
5049 
5050 	return ret;
5051 }
5052 
5053 /*
5054  * Periodically recalibrate the PHY to account
5055  * for temperature/environment changes.
5056  */
5057 static void
5058 ath_calibrate(void *arg)
5059 {
5060 	struct ath_softc *sc = arg;
5061 	struct ath_hal *ah = sc->sc_ah;
5062 	struct ifnet *ifp = sc->sc_ifp;
5063 	struct ieee80211com *ic = ifp->if_l2com;
5064 	HAL_BOOL longCal, isCalDone = AH_TRUE;
5065 	HAL_BOOL aniCal, shortCal = AH_FALSE;
5066 	int nextcal;
5067 
5068 	if (ic->ic_flags & IEEE80211_F_SCAN)	/* defer, off channel */
5069 		goto restart;
5070 	longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz);
5071 	aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000);
5072 	if (sc->sc_doresetcal)
5073 		shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000);
5074 
5075 	DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal);
5076 	if (aniCal) {
5077 		sc->sc_stats.ast_ani_cal++;
5078 		sc->sc_lastani = ticks;
5079 		ath_hal_ani_poll(ah, sc->sc_curchan);
5080 	}
5081 
5082 	if (longCal) {
5083 		sc->sc_stats.ast_per_cal++;
5084 		sc->sc_lastlongcal = ticks;
5085 		if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
5086 			/*
5087 			 * Rfgain is out of bounds, reset the chip
5088 			 * to load new gain values.
5089 			 */
5090 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5091 				"%s: rfgain change\n", __func__);
5092 			sc->sc_stats.ast_per_rfgain++;
5093 			sc->sc_resetcal = 0;
5094 			sc->sc_doresetcal = AH_TRUE;
5095 			taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
5096 			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
5097 			return;
5098 		}
5099 		/*
5100 		 * If this long cal is after an idle period, then
5101 		 * reset the data collection state so we start fresh.
5102 		 */
5103 		if (sc->sc_resetcal) {
5104 			(void) ath_hal_calreset(ah, sc->sc_curchan);
5105 			sc->sc_lastcalreset = ticks;
5106 			sc->sc_lastshortcal = ticks;
5107 			sc->sc_resetcal = 0;
5108 			sc->sc_doresetcal = AH_TRUE;
5109 		}
5110 	}
5111 
5112 	/* Only call if we're doing a short/long cal, not for ANI calibration */
5113 	if (shortCal || longCal) {
5114 		isCalDone = AH_FALSE;
5115 		if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) {
5116 			if (longCal) {
5117 				/*
5118 				 * Calibrate noise floor data again in case of change.
5119 				 */
5120 				ath_hal_process_noisefloor(ah);
5121 			}
5122 		} else {
5123 			DPRINTF(sc, ATH_DEBUG_ANY,
5124 				"%s: calibration of channel %u failed\n",
5125 				__func__, sc->sc_curchan->ic_freq);
5126 			sc->sc_stats.ast_per_calfail++;
5127 		}
5128 		if (shortCal)
5129 			sc->sc_lastshortcal = ticks;
5130 	}
5131 	if (!isCalDone) {
5132 restart:
5133 		/*
5134 		 * Use a shorter interval to potentially collect multiple
5135 		 * data samples required to complete calibration.  Once
5136 		 * we're told the work is done we drop back to a longer
5137 		 * interval between requests.  We're more aggressive doing
5138 		 * work when operating as an AP to improve operation right
5139 		 * after startup.
5140 		 */
5141 		sc->sc_lastshortcal = ticks;
5142 		nextcal = ath_shortcalinterval*hz/1000;
5143 		if (sc->sc_opmode != HAL_M_HOSTAP)
5144 			nextcal *= 10;
5145 		sc->sc_doresetcal = AH_TRUE;
5146 	} else {
5147 		/* nextcal should be the shortest time for next event */
5148 		nextcal = ath_longcalinterval*hz;
5149 		if (sc->sc_lastcalreset == 0)
5150 			sc->sc_lastcalreset = sc->sc_lastlongcal;
5151 		else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz)
5152 			sc->sc_resetcal = 1;	/* setup reset next trip */
5153 		sc->sc_doresetcal = AH_FALSE;
5154 	}
5155 	/* ANI calibration may occur more often than short/long/resetcal */
5156 	if (ath_anicalinterval > 0)
5157 		nextcal = MIN(nextcal, ath_anicalinterval*hz/1000);
5158 
5159 	if (nextcal != 0) {
5160 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n",
5161 		    __func__, nextcal, isCalDone ? "" : "!");
5162 		callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc);
5163 	} else {
5164 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n",
5165 		    __func__);
5166 		/* NB: don't rearm timer */
5167 	}
5168 }
5169 
5170 static void
5171 ath_scan_start(struct ieee80211com *ic)
5172 {
5173 	struct ifnet *ifp = ic->ic_ifp;
5174 	struct ath_softc *sc = ifp->if_softc;
5175 	struct ath_hal *ah = sc->sc_ah;
5176 	u_int32_t rfilt;
5177 
5178 	/* XXX calibration timer? */
5179 
5180 	ATH_LOCK(sc);
5181 	sc->sc_scanning = 1;
5182 	sc->sc_syncbeacon = 0;
5183 	rfilt = ath_calcrxfilter(sc);
5184 	ATH_UNLOCK(sc);
5185 
5186 	ATH_PCU_LOCK(sc);
5187 	ath_hal_setrxfilter(ah, rfilt);
5188 	ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0);
5189 	ATH_PCU_UNLOCK(sc);
5190 
5191 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
5192 		 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr));
5193 }
5194 
5195 static void
5196 ath_scan_end(struct ieee80211com *ic)
5197 {
5198 	struct ifnet *ifp = ic->ic_ifp;
5199 	struct ath_softc *sc = ifp->if_softc;
5200 	struct ath_hal *ah = sc->sc_ah;
5201 	u_int32_t rfilt;
5202 
5203 	ATH_LOCK(sc);
5204 	sc->sc_scanning = 0;
5205 	rfilt = ath_calcrxfilter(sc);
5206 	ATH_UNLOCK(sc);
5207 
5208 	ATH_PCU_LOCK(sc);
5209 	ath_hal_setrxfilter(ah, rfilt);
5210 	ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5211 
5212 	ath_hal_process_noisefloor(ah);
5213 	ATH_PCU_UNLOCK(sc);
5214 
5215 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5216 		 __func__, rfilt, ether_sprintf(sc->sc_curbssid),
5217 		 sc->sc_curaid);
5218 }
5219 
5220 #ifdef	ATH_ENABLE_11N
5221 /*
5222  * For now, just do a channel change.
5223  *
5224  * Later, we'll go through the hard slog of suspending tx/rx, changing rate
5225  * control state and resetting the hardware without dropping frames out
5226  * of the queue.
5227  *
5228  * The unfortunate trouble here is making absolutely sure that the
5229  * channel width change has propagated enough so the hardware
5230  * absolutely isn't handed bogus frames for it's current operating
5231  * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and
5232  * does occur in parallel, we need to make certain we've blocked
5233  * any further ongoing TX (and RX, that can cause raw TX)
5234  * before we do this.
5235  */
5236 static void
5237 ath_update_chw(struct ieee80211com *ic)
5238 {
5239 	struct ifnet *ifp = ic->ic_ifp;
5240 	struct ath_softc *sc = ifp->if_softc;
5241 
5242 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__);
5243 	ath_set_channel(ic);
5244 }
5245 #endif	/* ATH_ENABLE_11N */
5246 
5247 static void
5248 ath_set_channel(struct ieee80211com *ic)
5249 {
5250 	struct ifnet *ifp = ic->ic_ifp;
5251 	struct ath_softc *sc = ifp->if_softc;
5252 
5253 	(void) ath_chan_set(sc, ic->ic_curchan);
5254 	/*
5255 	 * If we are returning to our bss channel then mark state
5256 	 * so the next recv'd beacon's tsf will be used to sync the
5257 	 * beacon timers.  Note that since we only hear beacons in
5258 	 * sta/ibss mode this has no effect in other operating modes.
5259 	 */
5260 	ATH_LOCK(sc);
5261 	if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
5262 		sc->sc_syncbeacon = 1;
5263 	ATH_UNLOCK(sc);
5264 }
5265 
5266 /*
5267  * Walk the vap list and check if there any vap's in RUN state.
5268  */
5269 static int
5270 ath_isanyrunningvaps(struct ieee80211vap *this)
5271 {
5272 	struct ieee80211com *ic = this->iv_ic;
5273 	struct ieee80211vap *vap;
5274 
5275 	IEEE80211_LOCK_ASSERT(ic);
5276 
5277 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
5278 		if (vap != this && vap->iv_state >= IEEE80211_S_RUN)
5279 			return 1;
5280 	}
5281 	return 0;
5282 }
5283 
5284 static int
5285 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
5286 {
5287 	struct ieee80211com *ic = vap->iv_ic;
5288 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5289 	struct ath_vap *avp = ATH_VAP(vap);
5290 	struct ath_hal *ah = sc->sc_ah;
5291 	struct ieee80211_node *ni = NULL;
5292 	int i, error, stamode;
5293 	u_int32_t rfilt;
5294 	int csa_run_transition = 0;
5295 
5296 	static const HAL_LED_STATE leds[] = {
5297 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
5298 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
5299 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
5300 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
5301 	    HAL_LED_RUN, 	/* IEEE80211_S_CAC */
5302 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
5303 	    HAL_LED_RUN, 	/* IEEE80211_S_CSA */
5304 	    HAL_LED_RUN, 	/* IEEE80211_S_SLEEP */
5305 	};
5306 
5307 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
5308 		ieee80211_state_name[vap->iv_state],
5309 		ieee80211_state_name[nstate]);
5310 
5311 	/*
5312 	 * net80211 _should_ have the comlock asserted at this point.
5313 	 * There are some comments around the calls to vap->iv_newstate
5314 	 * which indicate that it (newstate) may end up dropping the
5315 	 * lock.  This and the subsequent lock assert check after newstate
5316 	 * are an attempt to catch these and figure out how/why.
5317 	 */
5318 	IEEE80211_LOCK_ASSERT(ic);
5319 
5320 	if (vap->iv_state == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN)
5321 		csa_run_transition = 1;
5322 
5323 	callout_drain(&sc->sc_cal_ch);
5324 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
5325 
5326 	if (nstate == IEEE80211_S_SCAN) {
5327 		/*
5328 		 * Scanning: turn off beacon miss and don't beacon.
5329 		 * Mark beacon state so when we reach RUN state we'll
5330 		 * [re]setup beacons.  Unblock the task q thread so
5331 		 * deferred interrupt processing is done.
5332 		 */
5333 		ath_hal_intrset(ah,
5334 		    sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
5335 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5336 		sc->sc_beacons = 0;
5337 		taskqueue_unblock(sc->sc_tq);
5338 	}
5339 
5340 	ni = ieee80211_ref_node(vap->iv_bss);
5341 	rfilt = ath_calcrxfilter(sc);
5342 	stamode = (vap->iv_opmode == IEEE80211_M_STA ||
5343 		   vap->iv_opmode == IEEE80211_M_AHDEMO ||
5344 		   vap->iv_opmode == IEEE80211_M_IBSS);
5345 	if (stamode && nstate == IEEE80211_S_RUN) {
5346 		sc->sc_curaid = ni->ni_associd;
5347 		IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
5348 		ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5349 	}
5350 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5351 	   __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid);
5352 	ath_hal_setrxfilter(ah, rfilt);
5353 
5354 	/* XXX is this to restore keycache on resume? */
5355 	if (vap->iv_opmode != IEEE80211_M_STA &&
5356 	    (vap->iv_flags & IEEE80211_F_PRIVACY)) {
5357 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
5358 			if (ath_hal_keyisvalid(ah, i))
5359 				ath_hal_keysetmac(ah, i, ni->ni_bssid);
5360 	}
5361 
5362 	/*
5363 	 * Invoke the parent method to do net80211 work.
5364 	 */
5365 	error = avp->av_newstate(vap, nstate, arg);
5366 	if (error != 0)
5367 		goto bad;
5368 
5369 	/*
5370 	 * See above: ensure av_newstate() doesn't drop the lock
5371 	 * on us.
5372 	 */
5373 	IEEE80211_LOCK_ASSERT(ic);
5374 
5375 	if (nstate == IEEE80211_S_RUN) {
5376 		/* NB: collect bss node again, it may have changed */
5377 		ieee80211_free_node(ni);
5378 		ni = ieee80211_ref_node(vap->iv_bss);
5379 
5380 		DPRINTF(sc, ATH_DEBUG_STATE,
5381 		    "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
5382 		    "capinfo 0x%04x chan %d\n", __func__,
5383 		    vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid),
5384 		    ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
5385 
5386 		switch (vap->iv_opmode) {
5387 #ifdef IEEE80211_SUPPORT_TDMA
5388 		case IEEE80211_M_AHDEMO:
5389 			if ((vap->iv_caps & IEEE80211_C_TDMA) == 0)
5390 				break;
5391 			/* fall thru... */
5392 #endif
5393 		case IEEE80211_M_HOSTAP:
5394 		case IEEE80211_M_IBSS:
5395 		case IEEE80211_M_MBSS:
5396 			/*
5397 			 * Allocate and setup the beacon frame.
5398 			 *
5399 			 * Stop any previous beacon DMA.  This may be
5400 			 * necessary, for example, when an ibss merge
5401 			 * causes reconfiguration; there will be a state
5402 			 * transition from RUN->RUN that means we may
5403 			 * be called with beacon transmission active.
5404 			 */
5405 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
5406 
5407 			error = ath_beacon_alloc(sc, ni);
5408 			if (error != 0)
5409 				goto bad;
5410 			/*
5411 			 * If joining an adhoc network defer beacon timer
5412 			 * configuration to the next beacon frame so we
5413 			 * have a current TSF to use.  Otherwise we're
5414 			 * starting an ibss/bss so there's no need to delay;
5415 			 * if this is the first vap moving to RUN state, then
5416 			 * beacon state needs to be [re]configured.
5417 			 */
5418 			if (vap->iv_opmode == IEEE80211_M_IBSS &&
5419 			    ni->ni_tstamp.tsf != 0) {
5420 				sc->sc_syncbeacon = 1;
5421 			} else if (!sc->sc_beacons) {
5422 #ifdef IEEE80211_SUPPORT_TDMA
5423 				if (vap->iv_caps & IEEE80211_C_TDMA)
5424 					ath_tdma_config(sc, vap);
5425 				else
5426 #endif
5427 					ath_beacon_config(sc, vap);
5428 				sc->sc_beacons = 1;
5429 			}
5430 			break;
5431 		case IEEE80211_M_STA:
5432 			/*
5433 			 * Defer beacon timer configuration to the next
5434 			 * beacon frame so we have a current TSF to use
5435 			 * (any TSF collected when scanning is likely old).
5436 			 * However if it's due to a CSA -> RUN transition,
5437 			 * force a beacon update so we pick up a lack of
5438 			 * beacons from an AP in CAC and thus force a
5439 			 * scan.
5440 			 *
5441 			 * And, there's also corner cases here where
5442 			 * after a scan, the AP may have disappeared.
5443 			 * In that case, we may not receive an actual
5444 			 * beacon to update the beacon timer and thus we
5445 			 * won't get notified of the missing beacons.
5446 			 */
5447 			sc->sc_syncbeacon = 1;
5448 #if 0
5449 			if (csa_run_transition)
5450 #endif
5451 				ath_beacon_config(sc, vap);
5452 
5453 			/*
5454 			 * PR: kern/175227
5455 			 *
5456 			 * Reconfigure beacons during reset; as otherwise
5457 			 * we won't get the beacon timers reprogrammed
5458 			 * after a reset and thus we won't pick up a
5459 			 * beacon miss interrupt.
5460 			 *
5461 			 * Hopefully we'll see a beacon before the BMISS
5462 			 * timer fires (too often), leading to a STA
5463 			 * disassociation.
5464 			 */
5465 			sc->sc_beacons = 1;
5466 			break;
5467 		case IEEE80211_M_MONITOR:
5468 			/*
5469 			 * Monitor mode vaps have only INIT->RUN and RUN->RUN
5470 			 * transitions so we must re-enable interrupts here to
5471 			 * handle the case of a single monitor mode vap.
5472 			 */
5473 			ath_hal_intrset(ah, sc->sc_imask);
5474 			break;
5475 		case IEEE80211_M_WDS:
5476 			break;
5477 		default:
5478 			break;
5479 		}
5480 		/*
5481 		 * Let the hal process statistics collected during a
5482 		 * scan so it can provide calibrated noise floor data.
5483 		 */
5484 		ath_hal_process_noisefloor(ah);
5485 		/*
5486 		 * Reset rssi stats; maybe not the best place...
5487 		 */
5488 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
5489 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
5490 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
5491 		/*
5492 		 * Finally, start any timers and the task q thread
5493 		 * (in case we didn't go through SCAN state).
5494 		 */
5495 		if (ath_longcalinterval != 0) {
5496 			/* start periodic recalibration timer */
5497 			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
5498 		} else {
5499 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5500 			    "%s: calibration disabled\n", __func__);
5501 		}
5502 		taskqueue_unblock(sc->sc_tq);
5503 	} else if (nstate == IEEE80211_S_INIT) {
5504 		/*
5505 		 * If there are no vaps left in RUN state then
5506 		 * shutdown host/driver operation:
5507 		 * o disable interrupts
5508 		 * o disable the task queue thread
5509 		 * o mark beacon processing as stopped
5510 		 */
5511 		if (!ath_isanyrunningvaps(vap)) {
5512 			sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5513 			/* disable interrupts  */
5514 			ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
5515 			taskqueue_block(sc->sc_tq);
5516 			sc->sc_beacons = 0;
5517 		}
5518 #ifdef IEEE80211_SUPPORT_TDMA
5519 		ath_hal_setcca(ah, AH_TRUE);
5520 #endif
5521 	}
5522 bad:
5523 	ieee80211_free_node(ni);
5524 	return error;
5525 }
5526 
5527 /*
5528  * Allocate a key cache slot to the station so we can
5529  * setup a mapping from key index to node. The key cache
5530  * slot is needed for managing antenna state and for
5531  * compression when stations do not use crypto.  We do
5532  * it uniliaterally here; if crypto is employed this slot
5533  * will be reassigned.
5534  */
5535 static void
5536 ath_setup_stationkey(struct ieee80211_node *ni)
5537 {
5538 	struct ieee80211vap *vap = ni->ni_vap;
5539 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
5540 	ieee80211_keyix keyix, rxkeyix;
5541 
5542 	/* XXX should take a locked ref to vap->iv_bss */
5543 	if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
5544 		/*
5545 		 * Key cache is full; we'll fall back to doing
5546 		 * the more expensive lookup in software.  Note
5547 		 * this also means no h/w compression.
5548 		 */
5549 		/* XXX msg+statistic */
5550 	} else {
5551 		/* XXX locking? */
5552 		ni->ni_ucastkey.wk_keyix = keyix;
5553 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
5554 		/* NB: must mark device key to get called back on delete */
5555 		ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY;
5556 		IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
5557 		/* NB: this will create a pass-thru key entry */
5558 		ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss);
5559 	}
5560 }
5561 
5562 /*
5563  * Setup driver-specific state for a newly associated node.
5564  * Note that we're called also on a re-associate, the isnew
5565  * param tells us if this is the first time or not.
5566  */
5567 static void
5568 ath_newassoc(struct ieee80211_node *ni, int isnew)
5569 {
5570 	struct ath_node *an = ATH_NODE(ni);
5571 	struct ieee80211vap *vap = ni->ni_vap;
5572 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
5573 	const struct ieee80211_txparam *tp = ni->ni_txparms;
5574 
5575 	an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate);
5576 	an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate);
5577 
5578 	ath_rate_newassoc(sc, an, isnew);
5579 
5580 	if (isnew &&
5581 	    (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
5582 	    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
5583 		ath_setup_stationkey(ni);
5584 
5585 	/*
5586 	 * If we're reassociating, make sure that any paused queues
5587 	 * get unpaused.
5588 	 *
5589 	 * Now, we may hvae frames in the hardware queue for this node.
5590 	 * So if we are reassociating and there are frames in the queue,
5591 	 * we need to go through the cleanup path to ensure that they're
5592 	 * marked as non-aggregate.
5593 	 */
5594 	if (! isnew) {
5595 		DPRINTF(sc, ATH_DEBUG_NODE,
5596 		    "%s: %6D: reassoc; is_powersave=%d\n",
5597 		    __func__,
5598 		    ni->ni_macaddr,
5599 		    ":",
5600 		    an->an_is_powersave);
5601 
5602 		/* XXX for now, we can't hold the lock across assoc */
5603 		ath_tx_node_reassoc(sc, an);
5604 
5605 		/* XXX for now, we can't hold the lock across wakeup */
5606 		if (an->an_is_powersave)
5607 			ath_tx_node_wakeup(sc, an);
5608 	}
5609 }
5610 
5611 static int
5612 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg,
5613 	int nchans, struct ieee80211_channel chans[])
5614 {
5615 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5616 	struct ath_hal *ah = sc->sc_ah;
5617 	HAL_STATUS status;
5618 
5619 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
5620 	    "%s: rd %u cc %u location %c%s\n",
5621 	    __func__, reg->regdomain, reg->country, reg->location,
5622 	    reg->ecm ? " ecm" : "");
5623 
5624 	status = ath_hal_set_channels(ah, chans, nchans,
5625 	    reg->country, reg->regdomain);
5626 	if (status != HAL_OK) {
5627 		DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n",
5628 		    __func__, status);
5629 		return EINVAL;		/* XXX */
5630 	}
5631 
5632 	return 0;
5633 }
5634 
5635 static void
5636 ath_getradiocaps(struct ieee80211com *ic,
5637 	int maxchans, int *nchans, struct ieee80211_channel chans[])
5638 {
5639 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5640 	struct ath_hal *ah = sc->sc_ah;
5641 
5642 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n",
5643 	    __func__, SKU_DEBUG, CTRY_DEFAULT);
5644 
5645 	/* XXX check return */
5646 	(void) ath_hal_getchannels(ah, chans, maxchans, nchans,
5647 	    HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE);
5648 
5649 }
5650 
5651 static int
5652 ath_getchannels(struct ath_softc *sc)
5653 {
5654 	struct ifnet *ifp = sc->sc_ifp;
5655 	struct ieee80211com *ic = ifp->if_l2com;
5656 	struct ath_hal *ah = sc->sc_ah;
5657 	HAL_STATUS status;
5658 
5659 	/*
5660 	 * Collect channel set based on EEPROM contents.
5661 	 */
5662 	status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX,
5663 	    &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE);
5664 	if (status != HAL_OK) {
5665 		if_printf(ifp, "%s: unable to collect channel list from hal, "
5666 		    "status %d\n", __func__, status);
5667 		return EINVAL;
5668 	}
5669 	(void) ath_hal_getregdomain(ah, &sc->sc_eerd);
5670 	ath_hal_getcountrycode(ah, &sc->sc_eecc);	/* NB: cannot fail */
5671 	/* XXX map Atheros sku's to net80211 SKU's */
5672 	/* XXX net80211 types too small */
5673 	ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd;
5674 	ic->ic_regdomain.country = (uint16_t) sc->sc_eecc;
5675 	ic->ic_regdomain.isocc[0] = ' ';	/* XXX don't know */
5676 	ic->ic_regdomain.isocc[1] = ' ';
5677 
5678 	ic->ic_regdomain.ecm = 1;
5679 	ic->ic_regdomain.location = 'I';
5680 
5681 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
5682 	    "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n",
5683 	    __func__, sc->sc_eerd, sc->sc_eecc,
5684 	    ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
5685 	    ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : "");
5686 	return 0;
5687 }
5688 
5689 static int
5690 ath_rate_setup(struct ath_softc *sc, u_int mode)
5691 {
5692 	struct ath_hal *ah = sc->sc_ah;
5693 	const HAL_RATE_TABLE *rt;
5694 
5695 	switch (mode) {
5696 	case IEEE80211_MODE_11A:
5697 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
5698 		break;
5699 	case IEEE80211_MODE_HALF:
5700 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
5701 		break;
5702 	case IEEE80211_MODE_QUARTER:
5703 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
5704 		break;
5705 	case IEEE80211_MODE_11B:
5706 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
5707 		break;
5708 	case IEEE80211_MODE_11G:
5709 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
5710 		break;
5711 	case IEEE80211_MODE_TURBO_A:
5712 		rt = ath_hal_getratetable(ah, HAL_MODE_108A);
5713 		break;
5714 	case IEEE80211_MODE_TURBO_G:
5715 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
5716 		break;
5717 	case IEEE80211_MODE_STURBO_A:
5718 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
5719 		break;
5720 	case IEEE80211_MODE_11NA:
5721 		rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
5722 		break;
5723 	case IEEE80211_MODE_11NG:
5724 		rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
5725 		break;
5726 	default:
5727 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
5728 			__func__, mode);
5729 		return 0;
5730 	}
5731 	sc->sc_rates[mode] = rt;
5732 	return (rt != NULL);
5733 }
5734 
5735 static void
5736 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
5737 {
5738 #define	N(a)	(sizeof(a)/sizeof(a[0]))
5739 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
5740 	static const struct {
5741 		u_int		rate;		/* tx/rx 802.11 rate */
5742 		u_int16_t	timeOn;		/* LED on time (ms) */
5743 		u_int16_t	timeOff;	/* LED off time (ms) */
5744 	} blinkrates[] = {
5745 		{ 108,  40,  10 },
5746 		{  96,  44,  11 },
5747 		{  72,  50,  13 },
5748 		{  48,  57,  14 },
5749 		{  36,  67,  16 },
5750 		{  24,  80,  20 },
5751 		{  22, 100,  25 },
5752 		{  18, 133,  34 },
5753 		{  12, 160,  40 },
5754 		{  10, 200,  50 },
5755 		{   6, 240,  58 },
5756 		{   4, 267,  66 },
5757 		{   2, 400, 100 },
5758 		{   0, 500, 130 },
5759 		/* XXX half/quarter rates */
5760 	};
5761 	const HAL_RATE_TABLE *rt;
5762 	int i, j;
5763 
5764 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
5765 	rt = sc->sc_rates[mode];
5766 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
5767 	for (i = 0; i < rt->rateCount; i++) {
5768 		uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
5769 		if (rt->info[i].phy != IEEE80211_T_HT)
5770 			sc->sc_rixmap[ieeerate] = i;
5771 		else
5772 			sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
5773 	}
5774 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
5775 	for (i = 0; i < N(sc->sc_hwmap); i++) {
5776 		if (i >= rt->rateCount) {
5777 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
5778 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
5779 			continue;
5780 		}
5781 		sc->sc_hwmap[i].ieeerate =
5782 			rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
5783 		if (rt->info[i].phy == IEEE80211_T_HT)
5784 			sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
5785 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
5786 		if (rt->info[i].shortPreamble ||
5787 		    rt->info[i].phy == IEEE80211_T_OFDM)
5788 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
5789 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags;
5790 		for (j = 0; j < N(blinkrates)-1; j++)
5791 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
5792 				break;
5793 		/* NB: this uses the last entry if the rate isn't found */
5794 		/* XXX beware of overlow */
5795 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
5796 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
5797 	}
5798 	sc->sc_currates = rt;
5799 	sc->sc_curmode = mode;
5800 	/*
5801 	 * All protection frames are transmited at 2Mb/s for
5802 	 * 11g, otherwise at 1Mb/s.
5803 	 */
5804 	if (mode == IEEE80211_MODE_11G)
5805 		sc->sc_protrix = ath_tx_findrix(sc, 2*2);
5806 	else
5807 		sc->sc_protrix = ath_tx_findrix(sc, 2*1);
5808 	/* NB: caller is responsible for resetting rate control state */
5809 #undef N
5810 }
5811 
5812 static void
5813 ath_watchdog(void *arg)
5814 {
5815 	struct ath_softc *sc = arg;
5816 	int do_reset = 0;
5817 
5818 	if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) {
5819 		struct ifnet *ifp = sc->sc_ifp;
5820 		uint32_t hangs;
5821 
5822 		if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) &&
5823 		    hangs != 0) {
5824 			if_printf(ifp, "%s hang detected (0x%x)\n",
5825 			    hangs & 0xff ? "bb" : "mac", hangs);
5826 		} else
5827 			if_printf(ifp, "device timeout\n");
5828 		do_reset = 1;
5829 		ifp->if_oerrors++;
5830 		sc->sc_stats.ast_watchdog++;
5831 	}
5832 
5833 	/*
5834 	 * We can't hold the lock across the ath_reset() call.
5835 	 *
5836 	 * And since this routine can't hold a lock and sleep,
5837 	 * do the reset deferred.
5838 	 */
5839 	if (do_reset) {
5840 		taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
5841 	}
5842 
5843 	callout_schedule(&sc->sc_wd_ch, hz);
5844 }
5845 
5846 /*
5847  * Fetch the rate control statistics for the given node.
5848  */
5849 static int
5850 ath_ioctl_ratestats(struct ath_softc *sc, struct ath_rateioctl *rs)
5851 {
5852 	struct ath_node *an;
5853 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
5854 	struct ieee80211_node *ni;
5855 	int error = 0;
5856 
5857 	/* Perform a lookup on the given node */
5858 	ni = ieee80211_find_node(&ic->ic_sta, rs->is_u.macaddr);
5859 	if (ni == NULL) {
5860 		error = EINVAL;
5861 		goto bad;
5862 	}
5863 
5864 	/* Lock the ath_node */
5865 	an = ATH_NODE(ni);
5866 	ATH_NODE_LOCK(an);
5867 
5868 	/* Fetch the rate control stats for this node */
5869 	error = ath_rate_fetch_node_stats(sc, an, rs);
5870 
5871 	/* No matter what happens here, just drop through */
5872 
5873 	/* Unlock the ath_node */
5874 	ATH_NODE_UNLOCK(an);
5875 
5876 	/* Unref the node */
5877 	ieee80211_node_decref(ni);
5878 
5879 bad:
5880 	return (error);
5881 }
5882 
5883 #ifdef ATH_DIAGAPI
5884 /*
5885  * Diagnostic interface to the HAL.  This is used by various
5886  * tools to do things like retrieve register contents for
5887  * debugging.  The mechanism is intentionally opaque so that
5888  * it can change frequently w/o concern for compatiblity.
5889  */
5890 static int
5891 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
5892 {
5893 	struct ath_hal *ah = sc->sc_ah;
5894 	u_int id = ad->ad_id & ATH_DIAG_ID;
5895 	void *indata = NULL;
5896 	void *outdata = NULL;
5897 	u_int32_t insize = ad->ad_in_size;
5898 	u_int32_t outsize = ad->ad_out_size;
5899 	int error = 0;
5900 
5901 	if (ad->ad_id & ATH_DIAG_IN) {
5902 		/*
5903 		 * Copy in data.
5904 		 */
5905 		indata = malloc(insize, M_TEMP, M_NOWAIT);
5906 		if (indata == NULL) {
5907 			error = ENOMEM;
5908 			goto bad;
5909 		}
5910 		error = copyin(ad->ad_in_data, indata, insize);
5911 		if (error)
5912 			goto bad;
5913 	}
5914 	if (ad->ad_id & ATH_DIAG_DYN) {
5915 		/*
5916 		 * Allocate a buffer for the results (otherwise the HAL
5917 		 * returns a pointer to a buffer where we can read the
5918 		 * results).  Note that we depend on the HAL leaving this
5919 		 * pointer for us to use below in reclaiming the buffer;
5920 		 * may want to be more defensive.
5921 		 */
5922 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
5923 		if (outdata == NULL) {
5924 			error = ENOMEM;
5925 			goto bad;
5926 		}
5927 	}
5928 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
5929 		if (outsize < ad->ad_out_size)
5930 			ad->ad_out_size = outsize;
5931 		if (outdata != NULL)
5932 			error = copyout(outdata, ad->ad_out_data,
5933 					ad->ad_out_size);
5934 	} else {
5935 		error = EINVAL;
5936 	}
5937 bad:
5938 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
5939 		free(indata, M_TEMP);
5940 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
5941 		free(outdata, M_TEMP);
5942 	return error;
5943 }
5944 #endif /* ATH_DIAGAPI */
5945 
5946 static int
5947 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
5948 {
5949 #define	IS_RUNNING(ifp) \
5950 	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
5951 	struct ath_softc *sc = ifp->if_softc;
5952 	struct ieee80211com *ic = ifp->if_l2com;
5953 	struct ifreq *ifr = (struct ifreq *)data;
5954 	const HAL_RATE_TABLE *rt;
5955 	int error = 0;
5956 
5957 	switch (cmd) {
5958 	case SIOCSIFFLAGS:
5959 		ATH_LOCK(sc);
5960 		if (IS_RUNNING(ifp)) {
5961 			/*
5962 			 * To avoid rescanning another access point,
5963 			 * do not call ath_init() here.  Instead,
5964 			 * only reflect promisc mode settings.
5965 			 */
5966 			ath_mode_init(sc);
5967 		} else if (ifp->if_flags & IFF_UP) {
5968 			/*
5969 			 * Beware of being called during attach/detach
5970 			 * to reset promiscuous mode.  In that case we
5971 			 * will still be marked UP but not RUNNING.
5972 			 * However trying to re-init the interface
5973 			 * is the wrong thing to do as we've already
5974 			 * torn down much of our state.  There's
5975 			 * probably a better way to deal with this.
5976 			 */
5977 			if (!sc->sc_invalid)
5978 				ath_init(sc);	/* XXX lose error */
5979 		} else {
5980 			ath_stop_locked(ifp);
5981 #ifdef notyet
5982 			/* XXX must wakeup in places like ath_vap_delete */
5983 			if (!sc->sc_invalid)
5984 				ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
5985 #endif
5986 		}
5987 		ATH_UNLOCK(sc);
5988 		break;
5989 	case SIOCGIFMEDIA:
5990 	case SIOCSIFMEDIA:
5991 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
5992 		break;
5993 	case SIOCGATHSTATS:
5994 		/* NB: embed these numbers to get a consistent view */
5995 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
5996 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
5997 		sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi);
5998 		sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi);
5999 #ifdef IEEE80211_SUPPORT_TDMA
6000 		sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap);
6001 		sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam);
6002 #endif
6003 		rt = sc->sc_currates;
6004 		sc->sc_stats.ast_tx_rate =
6005 		    rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC;
6006 		if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT)
6007 			sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS;
6008 		return copyout(&sc->sc_stats,
6009 		    ifr->ifr_data, sizeof (sc->sc_stats));
6010 	case SIOCGATHAGSTATS:
6011 		return copyout(&sc->sc_aggr_stats,
6012 		    ifr->ifr_data, sizeof (sc->sc_aggr_stats));
6013 	case SIOCZATHSTATS:
6014 		error = priv_check(curthread, PRIV_DRIVER);
6015 		if (error == 0) {
6016 			memset(&sc->sc_stats, 0, sizeof(sc->sc_stats));
6017 			memset(&sc->sc_aggr_stats, 0,
6018 			    sizeof(sc->sc_aggr_stats));
6019 			memset(&sc->sc_intr_stats, 0,
6020 			    sizeof(sc->sc_intr_stats));
6021 		}
6022 		break;
6023 #ifdef ATH_DIAGAPI
6024 	case SIOCGATHDIAG:
6025 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
6026 		break;
6027 	case SIOCGATHPHYERR:
6028 		error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr);
6029 		break;
6030 #endif
6031 	case SIOCGATHSPECTRAL:
6032 		error = ath_ioctl_spectral(sc,(struct ath_diag*) ifr);
6033 		break;
6034 	case SIOCGATHNODERATESTATS:
6035 		error = ath_ioctl_ratestats(sc, (struct ath_rateioctl *) ifr);
6036 		break;
6037 	case SIOCGIFADDR:
6038 		error = ether_ioctl(ifp, cmd, data);
6039 		break;
6040 	default:
6041 		error = EINVAL;
6042 		break;
6043 	}
6044 	return error;
6045 #undef IS_RUNNING
6046 }
6047 
6048 /*
6049  * Announce various information on device/driver attach.
6050  */
6051 static void
6052 ath_announce(struct ath_softc *sc)
6053 {
6054 	struct ifnet *ifp = sc->sc_ifp;
6055 	struct ath_hal *ah = sc->sc_ah;
6056 
6057 	if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n",
6058 		ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev,
6059 		ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
6060 	if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n",
6061 		ah->ah_analog2GhzRev, ah->ah_analog5GhzRev);
6062 	if (bootverbose) {
6063 		int i;
6064 		for (i = 0; i <= WME_AC_VO; i++) {
6065 			struct ath_txq *txq = sc->sc_ac2q[i];
6066 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
6067 				txq->axq_qnum, ieee80211_wme_acnames[i]);
6068 		}
6069 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
6070 			sc->sc_cabq->axq_qnum);
6071 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
6072 	}
6073 	if (ath_rxbuf != ATH_RXBUF)
6074 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
6075 	if (ath_txbuf != ATH_TXBUF)
6076 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
6077 	if (sc->sc_mcastkey && bootverbose)
6078 		if_printf(ifp, "using multicast key search\n");
6079 }
6080 
6081 static void
6082 ath_dfs_tasklet(void *p, int npending)
6083 {
6084 	struct ath_softc *sc = (struct ath_softc *) p;
6085 	struct ifnet *ifp = sc->sc_ifp;
6086 	struct ieee80211com *ic = ifp->if_l2com;
6087 
6088 	/*
6089 	 * If previous processing has found a radar event,
6090 	 * signal this to the net80211 layer to begin DFS
6091 	 * processing.
6092 	 */
6093 	if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) {
6094 		/* DFS event found, initiate channel change */
6095 		/*
6096 		 * XXX doesn't currently tell us whether the event
6097 		 * XXX was found in the primary or extension
6098 		 * XXX channel!
6099 		 */
6100 		IEEE80211_LOCK(ic);
6101 		ieee80211_dfs_notify_radar(ic, sc->sc_curchan);
6102 		IEEE80211_UNLOCK(ic);
6103 	}
6104 }
6105 
6106 /*
6107  * Enable/disable power save.  This must be called with
6108  * no TX driver locks currently held, so it should only
6109  * be called from the RX path (which doesn't hold any
6110  * TX driver locks.)
6111  */
6112 static void
6113 ath_node_powersave(struct ieee80211_node *ni, int enable)
6114 {
6115 #ifdef	ATH_SW_PSQ
6116 	struct ath_node *an = ATH_NODE(ni);
6117 	struct ieee80211com *ic = ni->ni_ic;
6118 	struct ath_softc *sc = ic->ic_ifp->if_softc;
6119 	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6120 
6121 	/* XXX and no TXQ locks should be held here */
6122 
6123 	DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: %6D: enable=%d\n",
6124 	    __func__,
6125 	    ni->ni_macaddr,
6126 	    ":",
6127 	    !! enable);
6128 
6129 	/* Suspend or resume software queue handling */
6130 	if (enable)
6131 		ath_tx_node_sleep(sc, an);
6132 	else
6133 		ath_tx_node_wakeup(sc, an);
6134 
6135 	/* Update net80211 state */
6136 	avp->av_node_ps(ni, enable);
6137 #else
6138 	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6139 
6140 	/* Update net80211 state */
6141 	avp->av_node_ps(ni, enable);
6142 #endif/* ATH_SW_PSQ */
6143 }
6144 
6145 /*
6146  * Notification from net80211 that the powersave queue state has
6147  * changed.
6148  *
6149  * Since the software queue also may have some frames:
6150  *
6151  * + if the node software queue has frames and the TID state
6152  *   is 0, we set the TIM;
6153  * + if the node and the stack are both empty, we clear the TIM bit.
6154  * + If the stack tries to set the bit, always set it.
6155  * + If the stack tries to clear the bit, only clear it if the
6156  *   software queue in question is also cleared.
6157  *
6158  * TODO: this is called during node teardown; so let's ensure this
6159  * is all correctly handled and that the TIM bit is cleared.
6160  * It may be that the node flush is called _AFTER_ the net80211
6161  * stack clears the TIM.
6162  *
6163  * Here is the racy part.  Since it's possible >1 concurrent,
6164  * overlapping TXes will appear complete with a TX completion in
6165  * another thread, it's possible that the concurrent TIM calls will
6166  * clash.  We can't hold the node lock here because setting the
6167  * TIM grabs the net80211 comlock and this may cause a LOR.
6168  * The solution is either to totally serialise _everything_ at
6169  * this point (ie, all TX, completion and any reset/flush go into
6170  * one taskqueue) or a new "ath TIM lock" needs to be created that
6171  * just wraps the driver state change and this call to avp->av_set_tim().
6172  *
6173  * The same race exists in the net80211 power save queue handling
6174  * as well.  Since multiple transmitting threads may queue frames
6175  * into the driver, as well as ps-poll and the driver transmitting
6176  * frames (and thus clearing the psq), it's quite possible that
6177  * a packet entering the PSQ and a ps-poll being handled will
6178  * race, causing the TIM to be cleared and not re-set.
6179  */
6180 static int
6181 ath_node_set_tim(struct ieee80211_node *ni, int enable)
6182 {
6183 #ifdef	ATH_SW_PSQ
6184 	struct ieee80211com *ic = ni->ni_ic;
6185 	struct ath_softc *sc = ic->ic_ifp->if_softc;
6186 	struct ath_node *an = ATH_NODE(ni);
6187 	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6188 	int changed = 0;
6189 
6190 	ATH_TX_LOCK(sc);
6191 	an->an_stack_psq = enable;
6192 
6193 	/*
6194 	 * This will get called for all operating modes,
6195 	 * even if avp->av_set_tim is unset.
6196 	 * It's currently set for hostap/ibss modes; but
6197 	 * the same infrastructure is used for both STA
6198 	 * and AP/IBSS node power save.
6199 	 */
6200 	if (avp->av_set_tim == NULL) {
6201 		ATH_TX_UNLOCK(sc);
6202 		return (0);
6203 	}
6204 
6205 	/*
6206 	 * If setting the bit, always set it here.
6207 	 * If clearing the bit, only clear it if the
6208 	 * software queue is also empty.
6209 	 *
6210 	 * If the node has left power save, just clear the TIM
6211 	 * bit regardless of the state of the power save queue.
6212 	 *
6213 	 * XXX TODO: although atomics are used, it's quite possible
6214 	 * that a race will occur between this and setting/clearing
6215 	 * in another thread.  TX completion will occur always in
6216 	 * one thread, however setting/clearing the TIM bit can come
6217 	 * from a variety of different process contexts!
6218 	 */
6219 	if (enable && an->an_tim_set == 1) {
6220 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6221 		    "%s: %6D: enable=%d, tim_set=1, ignoring\n",
6222 		    __func__,
6223 		    ni->ni_macaddr,
6224 		    ":",
6225 		    enable);
6226 		ATH_TX_UNLOCK(sc);
6227 	} else if (enable) {
6228 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6229 		    "%s: %6D: enable=%d, enabling TIM\n",
6230 		    __func__,
6231 		    ni->ni_macaddr,
6232 		    ":",
6233 		    enable);
6234 		an->an_tim_set = 1;
6235 		ATH_TX_UNLOCK(sc);
6236 		changed = avp->av_set_tim(ni, enable);
6237 	} else if (an->an_swq_depth == 0) {
6238 		/* disable */
6239 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6240 		    "%s: %6D: enable=%d, an_swq_depth == 0, disabling\n",
6241 		    __func__,
6242 		    ni->ni_macaddr,
6243 		    ":",
6244 		    enable);
6245 		an->an_tim_set = 0;
6246 		ATH_TX_UNLOCK(sc);
6247 		changed = avp->av_set_tim(ni, enable);
6248 	} else if (! an->an_is_powersave) {
6249 		/*
6250 		 * disable regardless; the node isn't in powersave now
6251 		 */
6252 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6253 		    "%s: %6D: enable=%d, an_pwrsave=0, disabling\n",
6254 		    __func__,
6255 		    ni->ni_macaddr,
6256 		    ":",
6257 		    enable);
6258 		an->an_tim_set = 0;
6259 		ATH_TX_UNLOCK(sc);
6260 		changed = avp->av_set_tim(ni, enable);
6261 	} else {
6262 		/*
6263 		 * psq disable, node is currently in powersave, node
6264 		 * software queue isn't empty, so don't clear the TIM bit
6265 		 * for now.
6266 		 */
6267 		ATH_TX_UNLOCK(sc);
6268 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6269 		    "%s: %6D: enable=%d, an_swq_depth > 0, ignoring\n",
6270 		    __func__,
6271 		    ni->ni_macaddr,
6272 		    ":",
6273 		    enable);
6274 		changed = 0;
6275 	}
6276 
6277 	return (changed);
6278 #else
6279 	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6280 
6281 	/*
6282 	 * Some operating modes don't set av_set_tim(), so don't
6283 	 * update it here.
6284 	 */
6285 	if (avp->av_set_tim == NULL)
6286 		return (0);
6287 
6288 	return (avp->av_set_tim(ni, enable));
6289 #endif /* ATH_SW_PSQ */
6290 }
6291 
6292 /*
6293  * Set or update the TIM from the software queue.
6294  *
6295  * Check the software queue depth before attempting to do lock
6296  * anything; that avoids trying to obtain the lock.  Then,
6297  * re-check afterwards to ensure nothing has changed in the
6298  * meantime.
6299  *
6300  * set:   This is designed to be called from the TX path, after
6301  *        a frame has been queued; to see if the swq > 0.
6302  *
6303  * clear: This is designed to be called from the buffer completion point
6304  *        (right now it's ath_tx_default_comp()) where the state of
6305  *        a software queue has changed.
6306  *
6307  * It makes sense to place it at buffer free / completion rather
6308  * than after each software queue operation, as there's no real
6309  * point in churning the TIM bit as the last frames in the software
6310  * queue are transmitted.  If they fail and we retry them, we'd
6311  * just be setting the TIM bit again anyway.
6312  */
6313 void
6314 ath_tx_update_tim(struct ath_softc *sc, struct ieee80211_node *ni,
6315      int enable)
6316 {
6317 #ifdef	ATH_SW_PSQ
6318 	struct ath_node *an;
6319 	struct ath_vap *avp;
6320 
6321 	/* Don't do this for broadcast/etc frames */
6322 	if (ni == NULL)
6323 		return;
6324 
6325 	an = ATH_NODE(ni);
6326 	avp = ATH_VAP(ni->ni_vap);
6327 
6328 	/*
6329 	 * And for operating modes without the TIM handler set, let's
6330 	 * just skip those.
6331 	 */
6332 	if (avp->av_set_tim == NULL)
6333 		return;
6334 
6335 	ATH_TX_LOCK_ASSERT(sc);
6336 
6337 	if (enable) {
6338 		if (an->an_is_powersave &&
6339 		    an->an_tim_set == 0 &&
6340 		    an->an_swq_depth != 0) {
6341 			DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6342 			    "%s: %6D: swq_depth>0, tim_set=0, set!\n",
6343 			    __func__,
6344 			    ni->ni_macaddr,
6345 			    ":");
6346 			an->an_tim_set = 1;
6347 			(void) avp->av_set_tim(ni, 1);
6348 		}
6349 	} else {
6350 		/*
6351 		 * Don't bother grabbing the lock unless the queue is empty.
6352 		 */
6353 		if (&an->an_swq_depth != 0)
6354 			return;
6355 
6356 		if (an->an_is_powersave &&
6357 		    an->an_stack_psq == 0 &&
6358 		    an->an_tim_set == 1 &&
6359 		    an->an_swq_depth == 0) {
6360 			DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6361 			    "%s: %6D: swq_depth=0, tim_set=1, psq_set=0,"
6362 			    " clear!\n",
6363 			    __func__,
6364 			    ni->ni_macaddr,
6365 			    ":");
6366 			an->an_tim_set = 0;
6367 			(void) avp->av_set_tim(ni, 0);
6368 		}
6369 	}
6370 #else
6371 	return;
6372 #endif	/* ATH_SW_PSQ */
6373 }
6374 
6375 /*
6376  * Received a ps-poll frame from net80211.
6377  *
6378  * Here we get a chance to serve out a software-queued frame ourselves
6379  * before we punt it to net80211 to transmit us one itself - either
6380  * because there's traffic in the net80211 psq, or a NULL frame to
6381  * indicate there's nothing else.
6382  */
6383 static void
6384 ath_node_recv_pspoll(struct ieee80211_node *ni, struct mbuf *m)
6385 {
6386 #ifdef	ATH_SW_PSQ
6387 	struct ath_node *an;
6388 	struct ath_vap *avp;
6389 	struct ieee80211com *ic = ni->ni_ic;
6390 	struct ath_softc *sc = ic->ic_ifp->if_softc;
6391 	int tid;
6392 
6393 	/* Just paranoia */
6394 	if (ni == NULL)
6395 		return;
6396 
6397 	/*
6398 	 * Unassociated (temporary node) station.
6399 	 */
6400 	if (ni->ni_associd == 0)
6401 		return;
6402 
6403 	/*
6404 	 * We do have an active node, so let's begin looking into it.
6405 	 */
6406 	an = ATH_NODE(ni);
6407 	avp = ATH_VAP(ni->ni_vap);
6408 
6409 	/*
6410 	 * For now, we just call the original ps-poll method.
6411 	 * Once we're ready to flip this on:
6412 	 *
6413 	 * + Set leak to 1, as no matter what we're going to have
6414 	 *   to send a frame;
6415 	 * + Check the software queue and if there's something in it,
6416 	 *   schedule the highest TID thas has traffic from this node.
6417 	 *   Then make sure we schedule the software scheduler to
6418 	 *   run so it picks up said frame.
6419 	 *
6420 	 * That way whatever happens, we'll at least send _a_ frame
6421 	 * to the given node.
6422 	 *
6423 	 * Again, yes, it's crappy QoS if the node has multiple
6424 	 * TIDs worth of traffic - but let's get it working first
6425 	 * before we optimise it.
6426 	 *
6427 	 * Also yes, there's definitely latency here - we're not
6428 	 * direct dispatching to the hardware in this path (and
6429 	 * we're likely being called from the packet receive path,
6430 	 * so going back into TX may be a little hairy!) but again
6431 	 * I'd like to get this working first before optimising
6432 	 * turn-around time.
6433 	 */
6434 
6435 	ATH_TX_LOCK(sc);
6436 
6437 	/*
6438 	 * Legacy - we're called and the node isn't asleep.
6439 	 * Immediately punt.
6440 	 */
6441 	if (! an->an_is_powersave) {
6442 		device_printf(sc->sc_dev,
6443 		    "%s: %6D: not in powersave?\n",
6444 		    __func__,
6445 		    ni->ni_macaddr,
6446 		    ":");
6447 		ATH_TX_UNLOCK(sc);
6448 		avp->av_recv_pspoll(ni, m);
6449 		return;
6450 	}
6451 
6452 	/*
6453 	 * We're in powersave.
6454 	 *
6455 	 * Leak a frame.
6456 	 */
6457 	an->an_leak_count = 1;
6458 
6459 	/*
6460 	 * Now, if there's no frames in the node, just punt to
6461 	 * recv_pspoll.
6462 	 *
6463 	 * Don't bother checking if the TIM bit is set, we really
6464 	 * only care if there are any frames here!
6465 	 */
6466 	if (an->an_swq_depth == 0) {
6467 		ATH_TX_UNLOCK(sc);
6468 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6469 		    "%s: %6D: SWQ empty; punting to net80211\n",
6470 		    __func__,
6471 		    ni->ni_macaddr,
6472 		    ":");
6473 		avp->av_recv_pspoll(ni, m);
6474 		return;
6475 	}
6476 
6477 	/*
6478 	 * Ok, let's schedule the highest TID that has traffic
6479 	 * and then schedule something.
6480 	 */
6481 	for (tid = IEEE80211_TID_SIZE - 1; tid >= 0; tid--) {
6482 		struct ath_tid *atid = &an->an_tid[tid];
6483 		/*
6484 		 * No frames? Skip.
6485 		 */
6486 		if (atid->axq_depth == 0)
6487 			continue;
6488 		ath_tx_tid_sched(sc, atid);
6489 		/*
6490 		 * XXX we could do a direct call to the TXQ
6491 		 * scheduler code here to optimise latency
6492 		 * at the expense of a REALLY deep callstack.
6493 		 */
6494 		ATH_TX_UNLOCK(sc);
6495 		taskqueue_enqueue(sc->sc_tq, &sc->sc_txqtask);
6496 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6497 		    "%s: %6D: leaking frame to TID %d\n",
6498 		    __func__,
6499 		    ni->ni_macaddr,
6500 		    ":",
6501 		    tid);
6502 		return;
6503 	}
6504 
6505 	ATH_TX_UNLOCK(sc);
6506 
6507 	/*
6508 	 * XXX nothing in the TIDs at this point? Eek.
6509 	 */
6510 	device_printf(sc->sc_dev, "%s: %6D: TIDs empty, but ath_node showed traffic?!\n",
6511 	    __func__,
6512 	    ni->ni_macaddr,
6513 	    ":");
6514 	avp->av_recv_pspoll(ni, m);
6515 #else
6516 	avp->av_recv_pspoll(ni, m);
6517 #endif	/* ATH_SW_PSQ */
6518 }
6519 
6520 MODULE_VERSION(if_ath, 1);
6521 MODULE_DEPEND(if_ath, wlan, 1, 1, 1);          /* 802.11 media layer */
6522 #if	defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ)
6523 MODULE_DEPEND(if_ath, alq, 1, 1, 1);
6524 #endif
6525