xref: /freebsd/sys/dev/bge/if_bge.c (revision 41840d75)
1 /*-
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 /*
38  * Broadcom BCM57xx(x)/BCM590x NetXtreme and NetLink family Ethernet driver
39  *
40  * The Broadcom BCM5700 is based on technology originally developed by
41  * Alteon Networks as part of the Tigon I and Tigon II Gigabit Ethernet
42  * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
43  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
44  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
45  * frames, highly configurable RX filtering, and 16 RX and TX queues
46  * (which, along with RX filter rules, can be used for QOS applications).
47  * Other features, such as TCP segmentation, may be available as part
48  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
49  * firmware images can be stored in hardware and need not be compiled
50  * into the driver.
51  *
52  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
53  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
54  *
55  * The BCM5701 is a single-chip solution incorporating both the BCM5700
56  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
57  * does not support external SSRAM.
58  *
59  * Broadcom also produces a variation of the BCM5700 under the "Altima"
60  * brand name, which is functionally similar but lacks PCI-X support.
61  *
62  * Without external SSRAM, you can only have at most 4 TX rings,
63  * and the use of the mini RX ring is disabled. This seems to imply
64  * that these features are simply not available on the BCM5701. As a
65  * result, this driver does not implement any support for the mini RX
66  * ring.
67  */
68 
69 #ifdef HAVE_KERNEL_OPTION_HEADERS
70 #include "opt_device_polling.h"
71 #endif
72 
73 #include <sys/param.h>
74 #include <sys/endian.h>
75 #include <sys/systm.h>
76 #include <sys/sockio.h>
77 #include <sys/mbuf.h>
78 #include <sys/malloc.h>
79 #include <sys/kernel.h>
80 #include <sys/module.h>
81 #include <sys/socket.h>
82 #include <sys/sysctl.h>
83 #include <sys/taskqueue.h>
84 
85 #include <net/if.h>
86 #include <net/if_arp.h>
87 #include <net/ethernet.h>
88 #include <net/if_dl.h>
89 #include <net/if_media.h>
90 
91 #include <net/bpf.h>
92 
93 #include <net/if_types.h>
94 #include <net/if_vlan_var.h>
95 
96 #include <netinet/in_systm.h>
97 #include <netinet/in.h>
98 #include <netinet/ip.h>
99 #include <netinet/tcp.h>
100 
101 #include <machine/bus.h>
102 #include <machine/resource.h>
103 #include <sys/bus.h>
104 #include <sys/rman.h>
105 
106 #include <dev/mii/mii.h>
107 #include <dev/mii/miivar.h>
108 #include "miidevs.h"
109 #include <dev/mii/brgphyreg.h>
110 
111 #ifdef __sparc64__
112 #include <dev/ofw/ofw_bus.h>
113 #include <dev/ofw/openfirm.h>
114 #include <machine/ofw_machdep.h>
115 #include <machine/ver.h>
116 #endif
117 
118 #include <dev/pci/pcireg.h>
119 #include <dev/pci/pcivar.h>
120 
121 #include <dev/bge/if_bgereg.h>
122 
123 #define	BGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP)
124 #define	ETHER_MIN_NOPAD		(ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
125 
126 MODULE_DEPEND(bge, pci, 1, 1, 1);
127 MODULE_DEPEND(bge, ether, 1, 1, 1);
128 MODULE_DEPEND(bge, miibus, 1, 1, 1);
129 
130 /* "device miibus" required.  See GENERIC if you get errors here. */
131 #include "miibus_if.h"
132 
133 /*
134  * Various supported device vendors/types and their names. Note: the
135  * spec seems to indicate that the hardware still has Alteon's vendor
136  * ID burned into it, though it will always be overriden by the vendor
137  * ID in the EEPROM. Just to be safe, we cover all possibilities.
138  */
139 static const struct bge_type {
140 	uint16_t	bge_vid;
141 	uint16_t	bge_did;
142 } bge_devs[] = {
143 	{ ALTEON_VENDORID,	ALTEON_DEVICEID_BCM5700 },
144 	{ ALTEON_VENDORID,	ALTEON_DEVICEID_BCM5701 },
145 
146 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC1000 },
147 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC1002 },
148 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC9100 },
149 
150 	{ APPLE_VENDORID,	APPLE_DEVICE_BCM5701 },
151 
152 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5700 },
153 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5701 },
154 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702 },
155 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702_ALT },
156 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702X },
157 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703 },
158 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703_ALT },
159 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703X },
160 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704C },
161 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704S },
162 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704S_ALT },
163 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705 },
164 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705F },
165 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705K },
166 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705M },
167 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705M_ALT },
168 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5714C },
169 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5714S },
170 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5715 },
171 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5715S },
172 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5717 },
173 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5718 },
174 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5719 },
175 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5720 },
176 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5721 },
177 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5722 },
178 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5723 },
179 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5725 },
180 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5727 },
181 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5750 },
182 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5750M },
183 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751 },
184 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751F },
185 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751M },
186 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5752 },
187 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5752M },
188 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753 },
189 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753F },
190 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753M },
191 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5754 },
192 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5754M },
193 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5755 },
194 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5755M },
195 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5756 },
196 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761 },
197 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761E },
198 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761S },
199 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761SE },
200 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5762 },
201 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5764 },
202 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5780 },
203 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5780S },
204 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5781 },
205 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5782 },
206 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5784 },
207 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5785F },
208 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5785G },
209 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5786 },
210 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787 },
211 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787F },
212 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787M },
213 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5788 },
214 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5789 },
215 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5901 },
216 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5901A2 },
217 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5903M },
218 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5906 },
219 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5906M },
220 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57760 },
221 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57761 },
222 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57762 },
223 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57765 },
224 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57766 },
225 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57780 },
226 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57781 },
227 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57785 },
228 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57788 },
229 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57790 },
230 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57791 },
231 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57795 },
232 
233 	{ SK_VENDORID,		SK_DEVICEID_ALTIMA },
234 
235 	{ TC_VENDORID,		TC_DEVICEID_3C996 },
236 
237 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PW008GE4 },
238 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PW008GE5 },
239 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PP250450 },
240 
241 	{ 0, 0 }
242 };
243 
244 static const struct bge_vendor {
245 	uint16_t	v_id;
246 	const char	*v_name;
247 } bge_vendors[] = {
248 	{ ALTEON_VENDORID,	"Alteon" },
249 	{ ALTIMA_VENDORID,	"Altima" },
250 	{ APPLE_VENDORID,	"Apple" },
251 	{ BCOM_VENDORID,	"Broadcom" },
252 	{ SK_VENDORID,		"SysKonnect" },
253 	{ TC_VENDORID,		"3Com" },
254 	{ FJTSU_VENDORID,	"Fujitsu" },
255 
256 	{ 0, NULL }
257 };
258 
259 static const struct bge_revision {
260 	uint32_t	br_chipid;
261 	const char	*br_name;
262 } bge_revisions[] = {
263 	{ BGE_CHIPID_BCM5700_A0,	"BCM5700 A0" },
264 	{ BGE_CHIPID_BCM5700_A1,	"BCM5700 A1" },
265 	{ BGE_CHIPID_BCM5700_B0,	"BCM5700 B0" },
266 	{ BGE_CHIPID_BCM5700_B1,	"BCM5700 B1" },
267 	{ BGE_CHIPID_BCM5700_B2,	"BCM5700 B2" },
268 	{ BGE_CHIPID_BCM5700_B3,	"BCM5700 B3" },
269 	{ BGE_CHIPID_BCM5700_ALTIMA,	"BCM5700 Altima" },
270 	{ BGE_CHIPID_BCM5700_C0,	"BCM5700 C0" },
271 	{ BGE_CHIPID_BCM5701_A0,	"BCM5701 A0" },
272 	{ BGE_CHIPID_BCM5701_B0,	"BCM5701 B0" },
273 	{ BGE_CHIPID_BCM5701_B2,	"BCM5701 B2" },
274 	{ BGE_CHIPID_BCM5701_B5,	"BCM5701 B5" },
275 	{ BGE_CHIPID_BCM5703_A0,	"BCM5703 A0" },
276 	{ BGE_CHIPID_BCM5703_A1,	"BCM5703 A1" },
277 	{ BGE_CHIPID_BCM5703_A2,	"BCM5703 A2" },
278 	{ BGE_CHIPID_BCM5703_A3,	"BCM5703 A3" },
279 	{ BGE_CHIPID_BCM5703_B0,	"BCM5703 B0" },
280 	{ BGE_CHIPID_BCM5704_A0,	"BCM5704 A0" },
281 	{ BGE_CHIPID_BCM5704_A1,	"BCM5704 A1" },
282 	{ BGE_CHIPID_BCM5704_A2,	"BCM5704 A2" },
283 	{ BGE_CHIPID_BCM5704_A3,	"BCM5704 A3" },
284 	{ BGE_CHIPID_BCM5704_B0,	"BCM5704 B0" },
285 	{ BGE_CHIPID_BCM5705_A0,	"BCM5705 A0" },
286 	{ BGE_CHIPID_BCM5705_A1,	"BCM5705 A1" },
287 	{ BGE_CHIPID_BCM5705_A2,	"BCM5705 A2" },
288 	{ BGE_CHIPID_BCM5705_A3,	"BCM5705 A3" },
289 	{ BGE_CHIPID_BCM5750_A0,	"BCM5750 A0" },
290 	{ BGE_CHIPID_BCM5750_A1,	"BCM5750 A1" },
291 	{ BGE_CHIPID_BCM5750_A3,	"BCM5750 A3" },
292 	{ BGE_CHIPID_BCM5750_B0,	"BCM5750 B0" },
293 	{ BGE_CHIPID_BCM5750_B1,	"BCM5750 B1" },
294 	{ BGE_CHIPID_BCM5750_C0,	"BCM5750 C0" },
295 	{ BGE_CHIPID_BCM5750_C1,	"BCM5750 C1" },
296 	{ BGE_CHIPID_BCM5750_C2,	"BCM5750 C2" },
297 	{ BGE_CHIPID_BCM5714_A0,	"BCM5714 A0" },
298 	{ BGE_CHIPID_BCM5752_A0,	"BCM5752 A0" },
299 	{ BGE_CHIPID_BCM5752_A1,	"BCM5752 A1" },
300 	{ BGE_CHIPID_BCM5752_A2,	"BCM5752 A2" },
301 	{ BGE_CHIPID_BCM5714_B0,	"BCM5714 B0" },
302 	{ BGE_CHIPID_BCM5714_B3,	"BCM5714 B3" },
303 	{ BGE_CHIPID_BCM5715_A0,	"BCM5715 A0" },
304 	{ BGE_CHIPID_BCM5715_A1,	"BCM5715 A1" },
305 	{ BGE_CHIPID_BCM5715_A3,	"BCM5715 A3" },
306 	{ BGE_CHIPID_BCM5717_A0,	"BCM5717 A0" },
307 	{ BGE_CHIPID_BCM5717_B0,	"BCM5717 B0" },
308 	{ BGE_CHIPID_BCM5719_A0,	"BCM5719 A0" },
309 	{ BGE_CHIPID_BCM5720_A0,	"BCM5720 A0" },
310 	{ BGE_CHIPID_BCM5755_A0,	"BCM5755 A0" },
311 	{ BGE_CHIPID_BCM5755_A1,	"BCM5755 A1" },
312 	{ BGE_CHIPID_BCM5755_A2,	"BCM5755 A2" },
313 	{ BGE_CHIPID_BCM5722_A0,	"BCM5722 A0" },
314 	{ BGE_CHIPID_BCM5761_A0,	"BCM5761 A0" },
315 	{ BGE_CHIPID_BCM5761_A1,	"BCM5761 A1" },
316 	{ BGE_CHIPID_BCM5762_A0,	"BCM5762 A0" },
317 	{ BGE_CHIPID_BCM5784_A0,	"BCM5784 A0" },
318 	{ BGE_CHIPID_BCM5784_A1,	"BCM5784 A1" },
319 	/* 5754 and 5787 share the same ASIC ID */
320 	{ BGE_CHIPID_BCM5787_A0,	"BCM5754/5787 A0" },
321 	{ BGE_CHIPID_BCM5787_A1,	"BCM5754/5787 A1" },
322 	{ BGE_CHIPID_BCM5787_A2,	"BCM5754/5787 A2" },
323 	{ BGE_CHIPID_BCM5906_A1,	"BCM5906 A1" },
324 	{ BGE_CHIPID_BCM5906_A2,	"BCM5906 A2" },
325 	{ BGE_CHIPID_BCM57765_A0,	"BCM57765 A0" },
326 	{ BGE_CHIPID_BCM57765_B0,	"BCM57765 B0" },
327 	{ BGE_CHIPID_BCM57780_A0,	"BCM57780 A0" },
328 	{ BGE_CHIPID_BCM57780_A1,	"BCM57780 A1" },
329 
330 	{ 0, NULL }
331 };
332 
333 /*
334  * Some defaults for major revisions, so that newer steppings
335  * that we don't know about have a shot at working.
336  */
337 static const struct bge_revision bge_majorrevs[] = {
338 	{ BGE_ASICREV_BCM5700,		"unknown BCM5700" },
339 	{ BGE_ASICREV_BCM5701,		"unknown BCM5701" },
340 	{ BGE_ASICREV_BCM5703,		"unknown BCM5703" },
341 	{ BGE_ASICREV_BCM5704,		"unknown BCM5704" },
342 	{ BGE_ASICREV_BCM5705,		"unknown BCM5705" },
343 	{ BGE_ASICREV_BCM5750,		"unknown BCM5750" },
344 	{ BGE_ASICREV_BCM5714_A0,	"unknown BCM5714" },
345 	{ BGE_ASICREV_BCM5752,		"unknown BCM5752" },
346 	{ BGE_ASICREV_BCM5780,		"unknown BCM5780" },
347 	{ BGE_ASICREV_BCM5714,		"unknown BCM5714" },
348 	{ BGE_ASICREV_BCM5755,		"unknown BCM5755" },
349 	{ BGE_ASICREV_BCM5761,		"unknown BCM5761" },
350 	{ BGE_ASICREV_BCM5784,		"unknown BCM5784" },
351 	{ BGE_ASICREV_BCM5785,		"unknown BCM5785" },
352 	/* 5754 and 5787 share the same ASIC ID */
353 	{ BGE_ASICREV_BCM5787,		"unknown BCM5754/5787" },
354 	{ BGE_ASICREV_BCM5906,		"unknown BCM5906" },
355 	{ BGE_ASICREV_BCM57765,		"unknown BCM57765" },
356 	{ BGE_ASICREV_BCM57766,		"unknown BCM57766" },
357 	{ BGE_ASICREV_BCM57780,		"unknown BCM57780" },
358 	{ BGE_ASICREV_BCM5717,		"unknown BCM5717" },
359 	{ BGE_ASICREV_BCM5719,		"unknown BCM5719" },
360 	{ BGE_ASICREV_BCM5720,		"unknown BCM5720" },
361 	{ BGE_ASICREV_BCM5762,		"unknown BCM5762" },
362 
363 	{ 0, NULL }
364 };
365 
366 #define	BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGE_FLAG_JUMBO)
367 #define	BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
368 #define	BGE_IS_5705_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5705_PLUS)
369 #define	BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
370 #define	BGE_IS_575X_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_575X_PLUS)
371 #define	BGE_IS_5755_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5755_PLUS)
372 #define	BGE_IS_5717_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5717_PLUS)
373 #define	BGE_IS_57765_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_57765_PLUS)
374 
375 static uint32_t bge_chipid(device_t);
376 static const struct bge_vendor * bge_lookup_vendor(uint16_t);
377 static const struct bge_revision * bge_lookup_rev(uint32_t);
378 
379 typedef int	(*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
380 
381 static int bge_probe(device_t);
382 static int bge_attach(device_t);
383 static int bge_detach(device_t);
384 static int bge_suspend(device_t);
385 static int bge_resume(device_t);
386 static void bge_release_resources(struct bge_softc *);
387 static void bge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
388 static int bge_dma_alloc(struct bge_softc *);
389 static void bge_dma_free(struct bge_softc *);
390 static int bge_dma_ring_alloc(struct bge_softc *, bus_size_t, bus_size_t,
391     bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *);
392 
393 static void bge_devinfo(struct bge_softc *);
394 static int bge_mbox_reorder(struct bge_softc *);
395 
396 static int bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]);
397 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
398 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
399 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
400 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
401 
402 static void bge_txeof(struct bge_softc *, uint16_t);
403 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
404 static int bge_rxeof(struct bge_softc *, uint16_t, int);
405 
406 static void bge_asf_driver_up (struct bge_softc *);
407 static void bge_tick(void *);
408 static void bge_stats_clear_regs(struct bge_softc *);
409 static void bge_stats_update(struct bge_softc *);
410 static void bge_stats_update_regs(struct bge_softc *);
411 static struct mbuf *bge_check_short_dma(struct mbuf *);
412 static struct mbuf *bge_setup_tso(struct bge_softc *, struct mbuf *,
413     uint16_t *, uint16_t *);
414 static int bge_encap(struct bge_softc *, struct mbuf **, uint32_t *);
415 
416 static void bge_intr(void *);
417 static int bge_msi_intr(void *);
418 static void bge_intr_task(void *, int);
419 static void bge_start_locked(struct ifnet *);
420 static void bge_start(struct ifnet *);
421 static int bge_ioctl(struct ifnet *, u_long, caddr_t);
422 static void bge_init_locked(struct bge_softc *);
423 static void bge_init(void *);
424 static void bge_stop_block(struct bge_softc *, bus_size_t, uint32_t);
425 static void bge_stop(struct bge_softc *);
426 static void bge_watchdog(struct bge_softc *);
427 static int bge_shutdown(device_t);
428 static int bge_ifmedia_upd_locked(struct ifnet *);
429 static int bge_ifmedia_upd(struct ifnet *);
430 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
431 
432 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
433 static int bge_read_nvram(struct bge_softc *, caddr_t, int, int);
434 
435 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
436 static int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
437 
438 static void bge_setpromisc(struct bge_softc *);
439 static void bge_setmulti(struct bge_softc *);
440 static void bge_setvlan(struct bge_softc *);
441 
442 static __inline void bge_rxreuse_std(struct bge_softc *, int);
443 static __inline void bge_rxreuse_jumbo(struct bge_softc *, int);
444 static int bge_newbuf_std(struct bge_softc *, int);
445 static int bge_newbuf_jumbo(struct bge_softc *, int);
446 static int bge_init_rx_ring_std(struct bge_softc *);
447 static void bge_free_rx_ring_std(struct bge_softc *);
448 static int bge_init_rx_ring_jumbo(struct bge_softc *);
449 static void bge_free_rx_ring_jumbo(struct bge_softc *);
450 static void bge_free_tx_ring(struct bge_softc *);
451 static int bge_init_tx_ring(struct bge_softc *);
452 
453 static int bge_chipinit(struct bge_softc *);
454 static int bge_blockinit(struct bge_softc *);
455 static uint32_t bge_dma_swap_options(struct bge_softc *);
456 
457 static int bge_has_eaddr(struct bge_softc *);
458 static uint32_t bge_readmem_ind(struct bge_softc *, int);
459 static void bge_writemem_ind(struct bge_softc *, int, int);
460 static void bge_writembx(struct bge_softc *, int, int);
461 #ifdef notdef
462 static uint32_t bge_readreg_ind(struct bge_softc *, int);
463 #endif
464 static void bge_writemem_direct(struct bge_softc *, int, int);
465 static void bge_writereg_ind(struct bge_softc *, int, int);
466 
467 static int bge_miibus_readreg(device_t, int, int);
468 static int bge_miibus_writereg(device_t, int, int, int);
469 static void bge_miibus_statchg(device_t);
470 #ifdef DEVICE_POLLING
471 static int bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
472 #endif
473 
474 #define	BGE_RESET_SHUTDOWN	0
475 #define	BGE_RESET_START		1
476 #define	BGE_RESET_SUSPEND	2
477 static void bge_sig_post_reset(struct bge_softc *, int);
478 static void bge_sig_legacy(struct bge_softc *, int);
479 static void bge_sig_pre_reset(struct bge_softc *, int);
480 static void bge_stop_fw(struct bge_softc *);
481 static int bge_reset(struct bge_softc *);
482 static void bge_link_upd(struct bge_softc *);
483 
484 static void bge_ape_lock_init(struct bge_softc *);
485 static void bge_ape_read_fw_ver(struct bge_softc *);
486 static int bge_ape_lock(struct bge_softc *, int);
487 static void bge_ape_unlock(struct bge_softc *, int);
488 static void bge_ape_send_event(struct bge_softc *, uint32_t);
489 static void bge_ape_driver_state_change(struct bge_softc *, int);
490 
491 /*
492  * The BGE_REGISTER_DEBUG option is only for low-level debugging.  It may
493  * leak information to untrusted users.  It is also known to cause alignment
494  * traps on certain architectures.
495  */
496 #ifdef BGE_REGISTER_DEBUG
497 static int bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
498 static int bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS);
499 static int bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS);
500 static int bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS);
501 #endif
502 static void bge_add_sysctls(struct bge_softc *);
503 static void bge_add_sysctl_stats_regs(struct bge_softc *,
504     struct sysctl_ctx_list *, struct sysctl_oid_list *);
505 static void bge_add_sysctl_stats(struct bge_softc *, struct sysctl_ctx_list *,
506     struct sysctl_oid_list *);
507 static int bge_sysctl_stats(SYSCTL_HANDLER_ARGS);
508 
509 static device_method_t bge_methods[] = {
510 	/* Device interface */
511 	DEVMETHOD(device_probe,		bge_probe),
512 	DEVMETHOD(device_attach,	bge_attach),
513 	DEVMETHOD(device_detach,	bge_detach),
514 	DEVMETHOD(device_shutdown,	bge_shutdown),
515 	DEVMETHOD(device_suspend,	bge_suspend),
516 	DEVMETHOD(device_resume,	bge_resume),
517 
518 	/* MII interface */
519 	DEVMETHOD(miibus_readreg,	bge_miibus_readreg),
520 	DEVMETHOD(miibus_writereg,	bge_miibus_writereg),
521 	DEVMETHOD(miibus_statchg,	bge_miibus_statchg),
522 
523 	DEVMETHOD_END
524 };
525 
526 static driver_t bge_driver = {
527 	"bge",
528 	bge_methods,
529 	sizeof(struct bge_softc)
530 };
531 
532 static devclass_t bge_devclass;
533 
534 DRIVER_MODULE(bge, pci, bge_driver, bge_devclass, 0, 0);
535 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
536 
537 static int bge_allow_asf = 1;
538 
539 TUNABLE_INT("hw.bge.allow_asf", &bge_allow_asf);
540 
541 static SYSCTL_NODE(_hw, OID_AUTO, bge, CTLFLAG_RD, 0, "BGE driver parameters");
542 SYSCTL_INT(_hw_bge, OID_AUTO, allow_asf, CTLFLAG_RD, &bge_allow_asf, 0,
543 	"Allow ASF mode if available");
544 
545 #define	SPARC64_BLADE_1500_MODEL	"SUNW,Sun-Blade-1500"
546 #define	SPARC64_BLADE_1500_PATH_BGE	"/pci@1f,700000/network@2"
547 #define	SPARC64_BLADE_2500_MODEL	"SUNW,Sun-Blade-2500"
548 #define	SPARC64_BLADE_2500_PATH_BGE	"/pci@1c,600000/network@3"
549 #define	SPARC64_OFW_SUBVENDOR		"subsystem-vendor-id"
550 
551 static int
552 bge_has_eaddr(struct bge_softc *sc)
553 {
554 #ifdef __sparc64__
555 	char buf[sizeof(SPARC64_BLADE_1500_PATH_BGE)];
556 	device_t dev;
557 	uint32_t subvendor;
558 
559 	dev = sc->bge_dev;
560 
561 	/*
562 	 * The on-board BGEs found in sun4u machines aren't fitted with
563 	 * an EEPROM which means that we have to obtain the MAC address
564 	 * via OFW and that some tests will always fail.  We distinguish
565 	 * such BGEs by the subvendor ID, which also has to be obtained
566 	 * from OFW instead of the PCI configuration space as the latter
567 	 * indicates Broadcom as the subvendor of the netboot interface.
568 	 * For early Blade 1500 and 2500 we even have to check the OFW
569 	 * device path as the subvendor ID always defaults to Broadcom
570 	 * there.
571 	 */
572 	if (OF_getprop(ofw_bus_get_node(dev), SPARC64_OFW_SUBVENDOR,
573 	    &subvendor, sizeof(subvendor)) == sizeof(subvendor) &&
574 	    (subvendor == FJTSU_VENDORID || subvendor == SUN_VENDORID))
575 		return (0);
576 	memset(buf, 0, sizeof(buf));
577 	if (OF_package_to_path(ofw_bus_get_node(dev), buf, sizeof(buf)) > 0) {
578 		if (strcmp(sparc64_model, SPARC64_BLADE_1500_MODEL) == 0 &&
579 		    strcmp(buf, SPARC64_BLADE_1500_PATH_BGE) == 0)
580 			return (0);
581 		if (strcmp(sparc64_model, SPARC64_BLADE_2500_MODEL) == 0 &&
582 		    strcmp(buf, SPARC64_BLADE_2500_PATH_BGE) == 0)
583 			return (0);
584 	}
585 #endif
586 	return (1);
587 }
588 
589 static uint32_t
590 bge_readmem_ind(struct bge_softc *sc, int off)
591 {
592 	device_t dev;
593 	uint32_t val;
594 
595 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
596 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
597 		return (0);
598 
599 	dev = sc->bge_dev;
600 
601 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
602 	val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
603 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
604 	return (val);
605 }
606 
607 static void
608 bge_writemem_ind(struct bge_softc *sc, int off, int val)
609 {
610 	device_t dev;
611 
612 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
613 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
614 		return;
615 
616 	dev = sc->bge_dev;
617 
618 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
619 	pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
620 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
621 }
622 
623 #ifdef notdef
624 static uint32_t
625 bge_readreg_ind(struct bge_softc *sc, int off)
626 {
627 	device_t dev;
628 
629 	dev = sc->bge_dev;
630 
631 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
632 	return (pci_read_config(dev, BGE_PCI_REG_DATA, 4));
633 }
634 #endif
635 
636 static void
637 bge_writereg_ind(struct bge_softc *sc, int off, int val)
638 {
639 	device_t dev;
640 
641 	dev = sc->bge_dev;
642 
643 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
644 	pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
645 }
646 
647 static void
648 bge_writemem_direct(struct bge_softc *sc, int off, int val)
649 {
650 	CSR_WRITE_4(sc, off, val);
651 }
652 
653 static void
654 bge_writembx(struct bge_softc *sc, int off, int val)
655 {
656 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
657 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
658 
659 	CSR_WRITE_4(sc, off, val);
660 	if ((sc->bge_flags & BGE_FLAG_MBOX_REORDER) != 0)
661 		CSR_READ_4(sc, off);
662 }
663 
664 /*
665  * Clear all stale locks and select the lock for this driver instance.
666  */
667 static void
668 bge_ape_lock_init(struct bge_softc *sc)
669 {
670 	uint32_t bit, regbase;
671 	int i;
672 
673 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
674 		regbase = BGE_APE_LOCK_GRANT;
675 	else
676 		regbase = BGE_APE_PER_LOCK_GRANT;
677 
678 	/* Clear any stale locks. */
679 	for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
680 		switch (i) {
681 		case BGE_APE_LOCK_PHY0:
682 		case BGE_APE_LOCK_PHY1:
683 		case BGE_APE_LOCK_PHY2:
684 		case BGE_APE_LOCK_PHY3:
685 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
686 			break;
687 		default:
688 			if (sc->bge_func_addr == 0)
689 				bit = BGE_APE_LOCK_GRANT_DRIVER0;
690 			else
691 				bit = (1 << sc->bge_func_addr);
692 		}
693 		APE_WRITE_4(sc, regbase + 4 * i, bit);
694 	}
695 
696 	/* Select the PHY lock based on the device's function number. */
697 	switch (sc->bge_func_addr) {
698 	case 0:
699 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
700 		break;
701 	case 1:
702 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
703 		break;
704 	case 2:
705 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
706 		break;
707 	case 3:
708 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
709 		break;
710 	default:
711 		device_printf(sc->bge_dev,
712 		    "PHY lock not supported on this function\n");
713 	}
714 }
715 
716 /*
717  * Check for APE firmware, set flags, and print version info.
718  */
719 static void
720 bge_ape_read_fw_ver(struct bge_softc *sc)
721 {
722 	const char *fwtype;
723 	uint32_t apedata, features;
724 
725 	/* Check for a valid APE signature in shared memory. */
726 	apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
727 	if (apedata != BGE_APE_SEG_SIG_MAGIC) {
728 		sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
729 		return;
730 	}
731 
732 	/* Check if APE firmware is running. */
733 	apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
734 	if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
735 		device_printf(sc->bge_dev, "APE signature found "
736 		    "but FW status not ready! 0x%08x\n", apedata);
737 		return;
738 	}
739 
740 	sc->bge_mfw_flags |= BGE_MFW_ON_APE;
741 
742 	/* Fetch the APE firwmare type and version. */
743 	apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
744 	features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
745 	if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
746 		sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
747 		fwtype = "NCSI";
748 	} else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
749 		sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
750 		fwtype = "DASH";
751 	} else
752 		fwtype = "UNKN";
753 
754 	/* Print the APE firmware version. */
755 	device_printf(sc->bge_dev, "APE FW version: %s v%d.%d.%d.%d\n",
756 	    fwtype,
757 	    (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
758 	    (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
759 	    (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
760 	    (apedata & BGE_APE_FW_VERSION_BLDMSK));
761 }
762 
763 static int
764 bge_ape_lock(struct bge_softc *sc, int locknum)
765 {
766 	uint32_t bit, gnt, req, status;
767 	int i, off;
768 
769 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
770 		return (0);
771 
772 	/* Lock request/grant registers have different bases. */
773 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761) {
774 		req = BGE_APE_LOCK_REQ;
775 		gnt = BGE_APE_LOCK_GRANT;
776 	} else {
777 		req = BGE_APE_PER_LOCK_REQ;
778 		gnt = BGE_APE_PER_LOCK_GRANT;
779 	}
780 
781 	off = 4 * locknum;
782 
783 	switch (locknum) {
784 	case BGE_APE_LOCK_GPIO:
785 		/* Lock required when using GPIO. */
786 		if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
787 			return (0);
788 		if (sc->bge_func_addr == 0)
789 			bit = BGE_APE_LOCK_REQ_DRIVER0;
790 		else
791 			bit = (1 << sc->bge_func_addr);
792 		break;
793 	case BGE_APE_LOCK_GRC:
794 		/* Lock required to reset the device. */
795 		if (sc->bge_func_addr == 0)
796 			bit = BGE_APE_LOCK_REQ_DRIVER0;
797 		else
798 			bit = (1 << sc->bge_func_addr);
799 		break;
800 	case BGE_APE_LOCK_MEM:
801 		/* Lock required when accessing certain APE memory. */
802 		if (sc->bge_func_addr == 0)
803 			bit = BGE_APE_LOCK_REQ_DRIVER0;
804 		else
805 			bit = (1 << sc->bge_func_addr);
806 		break;
807 	case BGE_APE_LOCK_PHY0:
808 	case BGE_APE_LOCK_PHY1:
809 	case BGE_APE_LOCK_PHY2:
810 	case BGE_APE_LOCK_PHY3:
811 		/* Lock required when accessing PHYs. */
812 		bit = BGE_APE_LOCK_REQ_DRIVER0;
813 		break;
814 	default:
815 		return (EINVAL);
816 	}
817 
818 	/* Request a lock. */
819 	APE_WRITE_4(sc, req + off, bit);
820 
821 	/* Wait up to 1 second to acquire lock. */
822 	for (i = 0; i < 20000; i++) {
823 		status = APE_READ_4(sc, gnt + off);
824 		if (status == bit)
825 			break;
826 		DELAY(50);
827 	}
828 
829 	/* Handle any errors. */
830 	if (status != bit) {
831 		device_printf(sc->bge_dev, "APE lock %d request failed! "
832 		    "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
833 		    locknum, req + off, bit & 0xFFFF, gnt + off,
834 		    status & 0xFFFF);
835 		/* Revoke the lock request. */
836 		APE_WRITE_4(sc, gnt + off, bit);
837 		return (EBUSY);
838 	}
839 
840 	return (0);
841 }
842 
843 static void
844 bge_ape_unlock(struct bge_softc *sc, int locknum)
845 {
846 	uint32_t bit, gnt;
847 	int off;
848 
849 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
850 		return;
851 
852 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
853 		gnt = BGE_APE_LOCK_GRANT;
854 	else
855 		gnt = BGE_APE_PER_LOCK_GRANT;
856 
857 	off = 4 * locknum;
858 
859 	switch (locknum) {
860 	case BGE_APE_LOCK_GPIO:
861 		if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
862 			return;
863 		if (sc->bge_func_addr == 0)
864 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
865 		else
866 			bit = (1 << sc->bge_func_addr);
867 		break;
868 	case BGE_APE_LOCK_GRC:
869 		if (sc->bge_func_addr == 0)
870 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
871 		else
872 			bit = (1 << sc->bge_func_addr);
873 		break;
874 	case BGE_APE_LOCK_MEM:
875 		if (sc->bge_func_addr == 0)
876 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
877 		else
878 			bit = (1 << sc->bge_func_addr);
879 		break;
880 	case BGE_APE_LOCK_PHY0:
881 	case BGE_APE_LOCK_PHY1:
882 	case BGE_APE_LOCK_PHY2:
883 	case BGE_APE_LOCK_PHY3:
884 		bit = BGE_APE_LOCK_GRANT_DRIVER0;
885 		break;
886 	default:
887 		return;
888 	}
889 
890 	APE_WRITE_4(sc, gnt + off, bit);
891 }
892 
893 /*
894  * Send an event to the APE firmware.
895  */
896 static void
897 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
898 {
899 	uint32_t apedata;
900 	int i;
901 
902 	/* NCSI does not support APE events. */
903 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
904 		return;
905 
906 	/* Wait up to 1ms for APE to service previous event. */
907 	for (i = 10; i > 0; i--) {
908 		if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
909 			break;
910 		apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
911 		if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
912 			APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
913 			    BGE_APE_EVENT_STATUS_EVENT_PENDING);
914 			bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
915 			APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
916 			break;
917 		}
918 		bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
919 		DELAY(100);
920 	}
921 	if (i == 0)
922 		device_printf(sc->bge_dev, "APE event 0x%08x send timed out\n",
923 		    event);
924 }
925 
926 static void
927 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
928 {
929 	uint32_t apedata, event;
930 
931 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
932 		return;
933 
934 	switch (kind) {
935 	case BGE_RESET_START:
936 		/* If this is the first load, clear the load counter. */
937 		apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
938 		if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
939 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
940 		else {
941 			apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
942 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
943 		}
944 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
945 		    BGE_APE_HOST_SEG_SIG_MAGIC);
946 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
947 		    BGE_APE_HOST_SEG_LEN_MAGIC);
948 
949 		/* Add some version info if bge(4) supports it. */
950 		APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
951 		    BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
952 		APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
953 		    BGE_APE_HOST_BEHAV_NO_PHYLOCK);
954 		APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
955 		    BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
956 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
957 		    BGE_APE_HOST_DRVR_STATE_START);
958 		event = BGE_APE_EVENT_STATUS_STATE_START;
959 		break;
960 	case BGE_RESET_SHUTDOWN:
961 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
962 		    BGE_APE_HOST_DRVR_STATE_UNLOAD);
963 		event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
964 		break;
965 	case BGE_RESET_SUSPEND:
966 		event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
967 		break;
968 	default:
969 		return;
970 	}
971 
972 	bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
973 	    BGE_APE_EVENT_STATUS_STATE_CHNGE);
974 }
975 
976 /*
977  * Map a single buffer address.
978  */
979 
980 static void
981 bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
982 {
983 	struct bge_dmamap_arg *ctx;
984 
985 	if (error)
986 		return;
987 
988 	KASSERT(nseg == 1, ("%s: %d segments returned!", __func__, nseg));
989 
990 	ctx = arg;
991 	ctx->bge_busaddr = segs->ds_addr;
992 }
993 
994 static uint8_t
995 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
996 {
997 	uint32_t access, byte = 0;
998 	int i;
999 
1000 	/* Lock. */
1001 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
1002 	for (i = 0; i < 8000; i++) {
1003 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
1004 			break;
1005 		DELAY(20);
1006 	}
1007 	if (i == 8000)
1008 		return (1);
1009 
1010 	/* Enable access. */
1011 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
1012 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
1013 
1014 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
1015 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
1016 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1017 		DELAY(10);
1018 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
1019 			DELAY(10);
1020 			break;
1021 		}
1022 	}
1023 
1024 	if (i == BGE_TIMEOUT * 10) {
1025 		if_printf(sc->bge_ifp, "nvram read timed out\n");
1026 		return (1);
1027 	}
1028 
1029 	/* Get result. */
1030 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
1031 
1032 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
1033 
1034 	/* Disable access. */
1035 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
1036 
1037 	/* Unlock. */
1038 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
1039 	CSR_READ_4(sc, BGE_NVRAM_SWARB);
1040 
1041 	return (0);
1042 }
1043 
1044 /*
1045  * Read a sequence of bytes from NVRAM.
1046  */
1047 static int
1048 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
1049 {
1050 	int err = 0, i;
1051 	uint8_t byte = 0;
1052 
1053 	if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
1054 		return (1);
1055 
1056 	for (i = 0; i < cnt; i++) {
1057 		err = bge_nvram_getbyte(sc, off + i, &byte);
1058 		if (err)
1059 			break;
1060 		*(dest + i) = byte;
1061 	}
1062 
1063 	return (err ? 1 : 0);
1064 }
1065 
1066 /*
1067  * Read a byte of data stored in the EEPROM at address 'addr.' The
1068  * BCM570x supports both the traditional bitbang interface and an
1069  * auto access interface for reading the EEPROM. We use the auto
1070  * access method.
1071  */
1072 static uint8_t
1073 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1074 {
1075 	int i;
1076 	uint32_t byte = 0;
1077 
1078 	/*
1079 	 * Enable use of auto EEPROM access so we can avoid
1080 	 * having to use the bitbang method.
1081 	 */
1082 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1083 
1084 	/* Reset the EEPROM, load the clock period. */
1085 	CSR_WRITE_4(sc, BGE_EE_ADDR,
1086 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1087 	DELAY(20);
1088 
1089 	/* Issue the read EEPROM command. */
1090 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1091 
1092 	/* Wait for completion */
1093 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
1094 		DELAY(10);
1095 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1096 			break;
1097 	}
1098 
1099 	if (i == BGE_TIMEOUT * 10) {
1100 		device_printf(sc->bge_dev, "EEPROM read timed out\n");
1101 		return (1);
1102 	}
1103 
1104 	/* Get result. */
1105 	byte = CSR_READ_4(sc, BGE_EE_DATA);
1106 
1107 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1108 
1109 	return (0);
1110 }
1111 
1112 /*
1113  * Read a sequence of bytes from the EEPROM.
1114  */
1115 static int
1116 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt)
1117 {
1118 	int i, error = 0;
1119 	uint8_t byte = 0;
1120 
1121 	for (i = 0; i < cnt; i++) {
1122 		error = bge_eeprom_getbyte(sc, off + i, &byte);
1123 		if (error)
1124 			break;
1125 		*(dest + i) = byte;
1126 	}
1127 
1128 	return (error ? 1 : 0);
1129 }
1130 
1131 static int
1132 bge_miibus_readreg(device_t dev, int phy, int reg)
1133 {
1134 	struct bge_softc *sc;
1135 	uint32_t val;
1136 	int i;
1137 
1138 	sc = device_get_softc(dev);
1139 
1140 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1141 		return (0);
1142 
1143 	/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
1144 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1145 		CSR_WRITE_4(sc, BGE_MI_MODE,
1146 		    sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
1147 		DELAY(80);
1148 	}
1149 
1150 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1151 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
1152 
1153 	/* Poll for the PHY register access to complete. */
1154 	for (i = 0; i < BGE_TIMEOUT; i++) {
1155 		DELAY(10);
1156 		val = CSR_READ_4(sc, BGE_MI_COMM);
1157 		if ((val & BGE_MICOMM_BUSY) == 0) {
1158 			DELAY(5);
1159 			val = CSR_READ_4(sc, BGE_MI_COMM);
1160 			break;
1161 		}
1162 	}
1163 
1164 	if (i == BGE_TIMEOUT) {
1165 		device_printf(sc->bge_dev,
1166 		    "PHY read timed out (phy %d, reg %d, val 0x%08x)\n",
1167 		    phy, reg, val);
1168 		val = 0;
1169 	}
1170 
1171 	/* Restore the autopoll bit if necessary. */
1172 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1173 		CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
1174 		DELAY(80);
1175 	}
1176 
1177 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1178 
1179 	if (val & BGE_MICOMM_READFAIL)
1180 		return (0);
1181 
1182 	return (val & 0xFFFF);
1183 }
1184 
1185 static int
1186 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
1187 {
1188 	struct bge_softc *sc;
1189 	int i;
1190 
1191 	sc = device_get_softc(dev);
1192 
1193 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
1194 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
1195 		return (0);
1196 
1197 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1198 		return (0);
1199 
1200 	/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
1201 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1202 		CSR_WRITE_4(sc, BGE_MI_MODE,
1203 		    sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
1204 		DELAY(80);
1205 	}
1206 
1207 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1208 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1209 
1210 	for (i = 0; i < BGE_TIMEOUT; i++) {
1211 		DELAY(10);
1212 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1213 			DELAY(5);
1214 			CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
1215 			break;
1216 		}
1217 	}
1218 
1219 	/* Restore the autopoll bit if necessary. */
1220 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1221 		CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
1222 		DELAY(80);
1223 	}
1224 
1225 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1226 
1227 	if (i == BGE_TIMEOUT)
1228 		device_printf(sc->bge_dev,
1229 		    "PHY write timed out (phy %d, reg %d, val 0x%04x)\n",
1230 		    phy, reg, val);
1231 
1232 	return (0);
1233 }
1234 
1235 static void
1236 bge_miibus_statchg(device_t dev)
1237 {
1238 	struct bge_softc *sc;
1239 	struct mii_data *mii;
1240 	uint32_t mac_mode, rx_mode, tx_mode;
1241 
1242 	sc = device_get_softc(dev);
1243 	if ((sc->bge_ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1244 		return;
1245 	mii = device_get_softc(sc->bge_miibus);
1246 
1247 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
1248 	    (IFM_ACTIVE | IFM_AVALID)) {
1249 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
1250 		case IFM_10_T:
1251 		case IFM_100_TX:
1252 			sc->bge_link = 1;
1253 			break;
1254 		case IFM_1000_T:
1255 		case IFM_1000_SX:
1256 		case IFM_2500_SX:
1257 			if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
1258 				sc->bge_link = 1;
1259 			else
1260 				sc->bge_link = 0;
1261 			break;
1262 		default:
1263 			sc->bge_link = 0;
1264 			break;
1265 		}
1266 	} else
1267 		sc->bge_link = 0;
1268 	if (sc->bge_link == 0)
1269 		return;
1270 
1271 	/*
1272 	 * APE firmware touches these registers to keep the MAC
1273 	 * connected to the outside world.  Try to keep the
1274 	 * accesses atomic.
1275 	 */
1276 
1277 	/* Set the port mode (MII/GMII) to match the link speed. */
1278 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1279 	    ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1280 	tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1281 	rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1282 
1283 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1284 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1285 		mac_mode |= BGE_PORTMODE_GMII;
1286 	else
1287 		mac_mode |= BGE_PORTMODE_MII;
1288 
1289 	/* Set MAC flow control behavior to match link flow control settings. */
1290 	tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1291 	rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1292 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1293 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1294 			tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1295 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1296 			rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1297 	} else
1298 		mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1299 
1300 	CSR_WRITE_4(sc, BGE_MAC_MODE, mac_mode);
1301 	DELAY(40);
1302 	CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1303 	CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1304 }
1305 
1306 /*
1307  * Intialize a standard receive ring descriptor.
1308  */
1309 static int
1310 bge_newbuf_std(struct bge_softc *sc, int i)
1311 {
1312 	struct mbuf *m;
1313 	struct bge_rx_bd *r;
1314 	bus_dma_segment_t segs[1];
1315 	bus_dmamap_t map;
1316 	int error, nsegs;
1317 
1318 	if (sc->bge_flags & BGE_FLAG_JUMBO_STD &&
1319 	    (sc->bge_ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
1320 	    ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN))) {
1321 		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
1322 		if (m == NULL)
1323 			return (ENOBUFS);
1324 		m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1325 	} else {
1326 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1327 		if (m == NULL)
1328 			return (ENOBUFS);
1329 		m->m_len = m->m_pkthdr.len = MCLBYTES;
1330 	}
1331 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
1332 		m_adj(m, ETHER_ALIGN);
1333 
1334 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_rx_mtag,
1335 	    sc->bge_cdata.bge_rx_std_sparemap, m, segs, &nsegs, 0);
1336 	if (error != 0) {
1337 		m_freem(m);
1338 		return (error);
1339 	}
1340 	if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1341 		bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1342 		    sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_POSTREAD);
1343 		bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1344 		    sc->bge_cdata.bge_rx_std_dmamap[i]);
1345 	}
1346 	map = sc->bge_cdata.bge_rx_std_dmamap[i];
1347 	sc->bge_cdata.bge_rx_std_dmamap[i] = sc->bge_cdata.bge_rx_std_sparemap;
1348 	sc->bge_cdata.bge_rx_std_sparemap = map;
1349 	sc->bge_cdata.bge_rx_std_chain[i] = m;
1350 	sc->bge_cdata.bge_rx_std_seglen[i] = segs[0].ds_len;
1351 	r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
1352 	r->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
1353 	r->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
1354 	r->bge_flags = BGE_RXBDFLAG_END;
1355 	r->bge_len = segs[0].ds_len;
1356 	r->bge_idx = i;
1357 
1358 	bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1359 	    sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_PREREAD);
1360 
1361 	return (0);
1362 }
1363 
1364 /*
1365  * Initialize a jumbo receive ring descriptor. This allocates
1366  * a jumbo buffer from the pool managed internally by the driver.
1367  */
1368 static int
1369 bge_newbuf_jumbo(struct bge_softc *sc, int i)
1370 {
1371 	bus_dma_segment_t segs[BGE_NSEG_JUMBO];
1372 	bus_dmamap_t map;
1373 	struct bge_extrx_bd *r;
1374 	struct mbuf *m;
1375 	int error, nsegs;
1376 
1377 	MGETHDR(m, M_NOWAIT, MT_DATA);
1378 	if (m == NULL)
1379 		return (ENOBUFS);
1380 
1381 	m_cljget(m, M_NOWAIT, MJUM9BYTES);
1382 	if (!(m->m_flags & M_EXT)) {
1383 		m_freem(m);
1384 		return (ENOBUFS);
1385 	}
1386 	m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1387 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
1388 		m_adj(m, ETHER_ALIGN);
1389 
1390 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag_jumbo,
1391 	    sc->bge_cdata.bge_rx_jumbo_sparemap, m, segs, &nsegs, 0);
1392 	if (error != 0) {
1393 		m_freem(m);
1394 		return (error);
1395 	}
1396 
1397 	if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1398 		bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1399 		    sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_POSTREAD);
1400 		bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1401 		    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1402 	}
1403 	map = sc->bge_cdata.bge_rx_jumbo_dmamap[i];
1404 	sc->bge_cdata.bge_rx_jumbo_dmamap[i] =
1405 	    sc->bge_cdata.bge_rx_jumbo_sparemap;
1406 	sc->bge_cdata.bge_rx_jumbo_sparemap = map;
1407 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m;
1408 	sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = 0;
1409 	sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = 0;
1410 	sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = 0;
1411 	sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = 0;
1412 
1413 	/*
1414 	 * Fill in the extended RX buffer descriptor.
1415 	 */
1416 	r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
1417 	r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
1418 	r->bge_idx = i;
1419 	r->bge_len3 = r->bge_len2 = r->bge_len1 = 0;
1420 	switch (nsegs) {
1421 	case 4:
1422 		r->bge_addr3.bge_addr_lo = BGE_ADDR_LO(segs[3].ds_addr);
1423 		r->bge_addr3.bge_addr_hi = BGE_ADDR_HI(segs[3].ds_addr);
1424 		r->bge_len3 = segs[3].ds_len;
1425 		sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = segs[3].ds_len;
1426 	case 3:
1427 		r->bge_addr2.bge_addr_lo = BGE_ADDR_LO(segs[2].ds_addr);
1428 		r->bge_addr2.bge_addr_hi = BGE_ADDR_HI(segs[2].ds_addr);
1429 		r->bge_len2 = segs[2].ds_len;
1430 		sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = segs[2].ds_len;
1431 	case 2:
1432 		r->bge_addr1.bge_addr_lo = BGE_ADDR_LO(segs[1].ds_addr);
1433 		r->bge_addr1.bge_addr_hi = BGE_ADDR_HI(segs[1].ds_addr);
1434 		r->bge_len1 = segs[1].ds_len;
1435 		sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = segs[1].ds_len;
1436 	case 1:
1437 		r->bge_addr0.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
1438 		r->bge_addr0.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
1439 		r->bge_len0 = segs[0].ds_len;
1440 		sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = segs[0].ds_len;
1441 		break;
1442 	default:
1443 		panic("%s: %d segments\n", __func__, nsegs);
1444 	}
1445 
1446 	bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1447 	    sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_PREREAD);
1448 
1449 	return (0);
1450 }
1451 
1452 static int
1453 bge_init_rx_ring_std(struct bge_softc *sc)
1454 {
1455 	int error, i;
1456 
1457 	bzero(sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ);
1458 	sc->bge_std = 0;
1459 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1460 		if ((error = bge_newbuf_std(sc, i)) != 0)
1461 			return (error);
1462 		BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
1463 	}
1464 
1465 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
1466 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
1467 
1468 	sc->bge_std = 0;
1469 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, BGE_STD_RX_RING_CNT - 1);
1470 
1471 	return (0);
1472 }
1473 
1474 static void
1475 bge_free_rx_ring_std(struct bge_softc *sc)
1476 {
1477 	int i;
1478 
1479 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1480 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1481 			bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1482 			    sc->bge_cdata.bge_rx_std_dmamap[i],
1483 			    BUS_DMASYNC_POSTREAD);
1484 			bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1485 			    sc->bge_cdata.bge_rx_std_dmamap[i]);
1486 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1487 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1488 		}
1489 		bzero((char *)&sc->bge_ldata.bge_rx_std_ring[i],
1490 		    sizeof(struct bge_rx_bd));
1491 	}
1492 }
1493 
1494 static int
1495 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1496 {
1497 	struct bge_rcb *rcb;
1498 	int error, i;
1499 
1500 	bzero(sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ);
1501 	sc->bge_jumbo = 0;
1502 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1503 		if ((error = bge_newbuf_jumbo(sc, i)) != 0)
1504 			return (error);
1505 		BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
1506 	}
1507 
1508 	bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1509 	    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
1510 
1511 	sc->bge_jumbo = 0;
1512 
1513 	/* Enable the jumbo receive producer ring. */
1514 	rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1515 	rcb->bge_maxlen_flags =
1516 	    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_USE_EXT_RX_BD);
1517 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1518 
1519 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, BGE_JUMBO_RX_RING_CNT - 1);
1520 
1521 	return (0);
1522 }
1523 
1524 static void
1525 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1526 {
1527 	int i;
1528 
1529 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1530 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1531 			bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1532 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i],
1533 			    BUS_DMASYNC_POSTREAD);
1534 			bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1535 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1536 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1537 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1538 		}
1539 		bzero((char *)&sc->bge_ldata.bge_rx_jumbo_ring[i],
1540 		    sizeof(struct bge_extrx_bd));
1541 	}
1542 }
1543 
1544 static void
1545 bge_free_tx_ring(struct bge_softc *sc)
1546 {
1547 	int i;
1548 
1549 	if (sc->bge_ldata.bge_tx_ring == NULL)
1550 		return;
1551 
1552 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
1553 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1554 			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
1555 			    sc->bge_cdata.bge_tx_dmamap[i],
1556 			    BUS_DMASYNC_POSTWRITE);
1557 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
1558 			    sc->bge_cdata.bge_tx_dmamap[i]);
1559 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
1560 			sc->bge_cdata.bge_tx_chain[i] = NULL;
1561 		}
1562 		bzero((char *)&sc->bge_ldata.bge_tx_ring[i],
1563 		    sizeof(struct bge_tx_bd));
1564 	}
1565 }
1566 
1567 static int
1568 bge_init_tx_ring(struct bge_softc *sc)
1569 {
1570 	sc->bge_txcnt = 0;
1571 	sc->bge_tx_saved_considx = 0;
1572 
1573 	bzero(sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ);
1574 	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
1575 	    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
1576 
1577 	/* Initialize transmit producer index for host-memory send ring. */
1578 	sc->bge_tx_prodidx = 0;
1579 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1580 
1581 	/* 5700 b2 errata */
1582 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1583 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1584 
1585 	/* NIC-memory send ring not used; initialize to zero. */
1586 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1587 	/* 5700 b2 errata */
1588 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1589 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1590 
1591 	return (0);
1592 }
1593 
1594 static void
1595 bge_setpromisc(struct bge_softc *sc)
1596 {
1597 	struct ifnet *ifp;
1598 
1599 	BGE_LOCK_ASSERT(sc);
1600 
1601 	ifp = sc->bge_ifp;
1602 
1603 	/* Enable or disable promiscuous mode as needed. */
1604 	if (ifp->if_flags & IFF_PROMISC)
1605 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1606 	else
1607 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1608 }
1609 
1610 static void
1611 bge_setmulti(struct bge_softc *sc)
1612 {
1613 	struct ifnet *ifp;
1614 	struct ifmultiaddr *ifma;
1615 	uint32_t hashes[4] = { 0, 0, 0, 0 };
1616 	int h, i;
1617 
1618 	BGE_LOCK_ASSERT(sc);
1619 
1620 	ifp = sc->bge_ifp;
1621 
1622 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1623 		for (i = 0; i < 4; i++)
1624 			CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1625 		return;
1626 	}
1627 
1628 	/* First, zot all the existing filters. */
1629 	for (i = 0; i < 4; i++)
1630 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1631 
1632 	/* Now program new ones. */
1633 	if_maddr_rlock(ifp);
1634 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1635 		if (ifma->ifma_addr->sa_family != AF_LINK)
1636 			continue;
1637 		h = ether_crc32_le(LLADDR((struct sockaddr_dl *)
1638 		    ifma->ifma_addr), ETHER_ADDR_LEN) & 0x7F;
1639 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1640 	}
1641 	if_maddr_runlock(ifp);
1642 
1643 	for (i = 0; i < 4; i++)
1644 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1645 }
1646 
1647 static void
1648 bge_setvlan(struct bge_softc *sc)
1649 {
1650 	struct ifnet *ifp;
1651 
1652 	BGE_LOCK_ASSERT(sc);
1653 
1654 	ifp = sc->bge_ifp;
1655 
1656 	/* Enable or disable VLAN tag stripping as needed. */
1657 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
1658 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1659 	else
1660 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1661 }
1662 
1663 static void
1664 bge_sig_pre_reset(struct bge_softc *sc, int type)
1665 {
1666 
1667 	/*
1668 	 * Some chips don't like this so only do this if ASF is enabled
1669 	 */
1670 	if (sc->bge_asf_mode)
1671 		bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
1672 
1673 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1674 		switch (type) {
1675 		case BGE_RESET_START:
1676 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1677 			    BGE_FW_DRV_STATE_START);
1678 			break;
1679 		case BGE_RESET_SHUTDOWN:
1680 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1681 			    BGE_FW_DRV_STATE_UNLOAD);
1682 			break;
1683 		case BGE_RESET_SUSPEND:
1684 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1685 			    BGE_FW_DRV_STATE_SUSPEND);
1686 			break;
1687 		}
1688 	}
1689 
1690 	if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
1691 		bge_ape_driver_state_change(sc, type);
1692 }
1693 
1694 static void
1695 bge_sig_post_reset(struct bge_softc *sc, int type)
1696 {
1697 
1698 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1699 		switch (type) {
1700 		case BGE_RESET_START:
1701 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1702 			    BGE_FW_DRV_STATE_START_DONE);
1703 			/* START DONE */
1704 			break;
1705 		case BGE_RESET_SHUTDOWN:
1706 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1707 			    BGE_FW_DRV_STATE_UNLOAD_DONE);
1708 			break;
1709 		}
1710 	}
1711 	if (type == BGE_RESET_SHUTDOWN)
1712 		bge_ape_driver_state_change(sc, type);
1713 }
1714 
1715 static void
1716 bge_sig_legacy(struct bge_softc *sc, int type)
1717 {
1718 
1719 	if (sc->bge_asf_mode) {
1720 		switch (type) {
1721 		case BGE_RESET_START:
1722 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1723 			    BGE_FW_DRV_STATE_START);
1724 			break;
1725 		case BGE_RESET_SHUTDOWN:
1726 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1727 			    BGE_FW_DRV_STATE_UNLOAD);
1728 			break;
1729 		}
1730 	}
1731 }
1732 
1733 static void
1734 bge_stop_fw(struct bge_softc *sc)
1735 {
1736 	int i;
1737 
1738 	if (sc->bge_asf_mode) {
1739 		bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
1740 		CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
1741 		    CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
1742 
1743 		for (i = 0; i < 100; i++ ) {
1744 			if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
1745 			    BGE_RX_CPU_DRV_EVENT))
1746 				break;
1747 			DELAY(10);
1748 		}
1749 	}
1750 }
1751 
1752 static uint32_t
1753 bge_dma_swap_options(struct bge_softc *sc)
1754 {
1755 	uint32_t dma_options;
1756 
1757 	dma_options = BGE_MODECTL_WORDSWAP_NONFRAME |
1758 	    BGE_MODECTL_BYTESWAP_DATA | BGE_MODECTL_WORDSWAP_DATA;
1759 #if BYTE_ORDER == BIG_ENDIAN
1760 	dma_options |= BGE_MODECTL_BYTESWAP_NONFRAME;
1761 #endif
1762 	return (dma_options);
1763 }
1764 
1765 /*
1766  * Do endian, PCI and DMA initialization.
1767  */
1768 static int
1769 bge_chipinit(struct bge_softc *sc)
1770 {
1771 	uint32_t dma_rw_ctl, misc_ctl, mode_ctl;
1772 	uint16_t val;
1773 	int i;
1774 
1775 	/* Set endianness before we access any non-PCI registers. */
1776 	misc_ctl = BGE_INIT;
1777 	if (sc->bge_flags & BGE_FLAG_TAGGED_STATUS)
1778 		misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
1779 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, misc_ctl, 4);
1780 
1781 	/*
1782 	 * Clear the MAC statistics block in the NIC's
1783 	 * internal memory.
1784 	 */
1785 	for (i = BGE_STATS_BLOCK;
1786 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1787 		BGE_MEMWIN_WRITE(sc, i, 0);
1788 
1789 	for (i = BGE_STATUS_BLOCK;
1790 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1791 		BGE_MEMWIN_WRITE(sc, i, 0);
1792 
1793 	if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) {
1794 		/*
1795 		 *  Fix data corruption caused by non-qword write with WB.
1796 		 *  Fix master abort in PCI mode.
1797 		 *  Fix PCI latency timer.
1798 		 */
1799 		val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2);
1800 		val |= (1 << 10) | (1 << 12) | (1 << 13);
1801 		pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2);
1802 	}
1803 
1804 	if (sc->bge_asicrev == BGE_ASICREV_BCM57765 ||
1805 	    sc->bge_asicrev == BGE_ASICREV_BCM57766) {
1806 		/*
1807 		 * For the 57766 and non Ax versions of 57765, bootcode
1808 		 * needs to setup the PCIE Fast Training Sequence (FTS)
1809 		 * value to prevent transmit hangs.
1810 		 */
1811 		if (sc->bge_chiprev != BGE_CHIPREV_57765_AX) {
1812 			CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
1813 			    CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL) |
1814 			    BGE_CPMU_PADRNG_CTL_RDIV2);
1815 		}
1816 	}
1817 
1818 	/*
1819 	 * Set up the PCI DMA control register.
1820 	 */
1821 	dma_rw_ctl = BGE_PCIDMARWCTL_RD_CMD_SHIFT(6) |
1822 	    BGE_PCIDMARWCTL_WR_CMD_SHIFT(7);
1823 	if (sc->bge_flags & BGE_FLAG_PCIE) {
1824 		if (sc->bge_mps >= 256)
1825 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1826 		else
1827 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1828 	} else if (sc->bge_flags & BGE_FLAG_PCIX) {
1829 		if (BGE_IS_5714_FAMILY(sc)) {
1830 			/* 256 bytes for read and write. */
1831 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
1832 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
1833 			dma_rw_ctl |= (sc->bge_asicrev == BGE_ASICREV_BCM5780) ?
1834 			    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL :
1835 			    BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1836 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
1837 			/*
1838 			 * In the BCM5703, the DMA read watermark should
1839 			 * be set to less than or equal to the maximum
1840 			 * memory read byte count of the PCI-X command
1841 			 * register.
1842 			 */
1843 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
1844 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1845 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1846 			/* 1536 bytes for read, 384 bytes for write. */
1847 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1848 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1849 		} else {
1850 			/* 384 bytes for read and write. */
1851 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
1852 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
1853 			    0x0F;
1854 		}
1855 		if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1856 		    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1857 			uint32_t tmp;
1858 
1859 			/* Set ONE_DMA_AT_ONCE for hardware workaround. */
1860 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
1861 			if (tmp == 6 || tmp == 7)
1862 				dma_rw_ctl |=
1863 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1864 
1865 			/* Set PCI-X DMA write workaround. */
1866 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1867 		}
1868 	} else {
1869 		/* Conventional PCI bus: 256 bytes for read and write. */
1870 		dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1871 		    BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1872 
1873 		if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1874 		    sc->bge_asicrev != BGE_ASICREV_BCM5750)
1875 			dma_rw_ctl |= 0x0F;
1876 	}
1877 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1878 	    sc->bge_asicrev == BGE_ASICREV_BCM5701)
1879 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1880 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
1881 	if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1882 	    sc->bge_asicrev == BGE_ASICREV_BCM5704)
1883 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1884 	if (BGE_IS_5717_PLUS(sc)) {
1885 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
1886 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
1887 			dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
1888 		/*
1889 		 * Enable HW workaround for controllers that misinterpret
1890 		 * a status tag update and leave interrupts permanently
1891 		 * disabled.
1892 		 */
1893 		if (!BGE_IS_57765_PLUS(sc) &&
1894 		    sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
1895 		    sc->bge_asicrev != BGE_ASICREV_BCM5762)
1896 			dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
1897 	}
1898 	pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1899 
1900 	/*
1901 	 * Set up general mode register.
1902 	 */
1903 	mode_ctl = bge_dma_swap_options(sc);
1904 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
1905 	    sc->bge_asicrev == BGE_ASICREV_BCM5762) {
1906 		/* Retain Host-2-BMC settings written by APE firmware. */
1907 		mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
1908 		    (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
1909 		    BGE_MODECTL_WORDSWAP_B2HRX_DATA |
1910 		    BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
1911 	}
1912 	mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
1913 	    BGE_MODECTL_TX_NO_PHDR_CSUM;
1914 
1915 	/*
1916 	 * BCM5701 B5 have a bug causing data corruption when using
1917 	 * 64-bit DMA reads, which can be terminated early and then
1918 	 * completed later as 32-bit accesses, in combination with
1919 	 * certain bridges.
1920 	 */
1921 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1922 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1923 		mode_ctl |= BGE_MODECTL_FORCE_PCI32;
1924 
1925 	/*
1926 	 * Tell the firmware the driver is running
1927 	 */
1928 	if (sc->bge_asf_mode & ASF_STACKUP)
1929 		mode_ctl |= BGE_MODECTL_STACKUP;
1930 
1931 	CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
1932 
1933 	/*
1934 	 * Disable memory write invalidate.  Apparently it is not supported
1935 	 * properly by these devices.  Also ensure that INTx isn't disabled,
1936 	 * as these chips need it even when using MSI.
1937 	 */
1938 	PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD,
1939 	    PCIM_CMD_INTxDIS | PCIM_CMD_MWIEN, 4);
1940 
1941 	/* Set the timer prescaler (always 66 MHz). */
1942 	CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
1943 
1944 	/* XXX: The Linux tg3 driver does this at the start of brgphy_reset. */
1945 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1946 		DELAY(40);	/* XXX */
1947 
1948 		/* Put PHY into ready state */
1949 		BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1950 		CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1951 		DELAY(40);
1952 	}
1953 
1954 	return (0);
1955 }
1956 
1957 static int
1958 bge_blockinit(struct bge_softc *sc)
1959 {
1960 	struct bge_rcb *rcb;
1961 	bus_size_t vrcb;
1962 	bge_hostaddr taddr;
1963 	uint32_t dmactl, rdmareg, val;
1964 	int i, limit;
1965 
1966 	/*
1967 	 * Initialize the memory window pointer register so that
1968 	 * we can access the first 32K of internal NIC RAM. This will
1969 	 * allow us to set up the TX send ring RCBs and the RX return
1970 	 * ring RCBs, plus other things which live in NIC memory.
1971 	 */
1972 	CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1973 
1974 	/* Note: the BCM5704 has a smaller mbuf space than other chips. */
1975 
1976 	if (!(BGE_IS_5705_PLUS(sc))) {
1977 		/* Configure mbuf memory pool */
1978 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1979 		if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1980 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1981 		else
1982 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1983 
1984 		/* Configure DMA resource pool */
1985 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1986 		    BGE_DMA_DESCRIPTORS);
1987 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1988 	}
1989 
1990 	/* Configure mbuf pool watermarks */
1991 	if (BGE_IS_5717_PLUS(sc)) {
1992 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1993 		if (sc->bge_ifp->if_mtu > ETHERMTU) {
1994 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
1995 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
1996 		} else {
1997 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
1998 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
1999 		}
2000 	} else if (!BGE_IS_5705_PLUS(sc)) {
2001 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
2002 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
2003 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2004 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2005 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2006 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
2007 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
2008 	} else {
2009 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2010 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2011 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2012 	}
2013 
2014 	/* Configure DMA resource watermarks */
2015 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2016 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2017 
2018 	/* Enable buffer manager */
2019 	val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN;
2020 	/*
2021 	 * Change the arbitration algorithm of TXMBUF read request to
2022 	 * round-robin instead of priority based for BCM5719.  When
2023 	 * TXFIFO is almost empty, RDMA will hold its request until
2024 	 * TXFIFO is not almost empty.
2025 	 */
2026 	if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
2027 		val |= BGE_BMANMODE_NO_TX_UNDERRUN;
2028 	CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
2029 
2030 	/* Poll for buffer manager start indication */
2031 	for (i = 0; i < BGE_TIMEOUT; i++) {
2032 		DELAY(10);
2033 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2034 			break;
2035 	}
2036 
2037 	if (i == BGE_TIMEOUT) {
2038 		device_printf(sc->bge_dev, "buffer manager failed to start\n");
2039 		return (ENXIO);
2040 	}
2041 
2042 	/* Enable flow-through queues */
2043 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2044 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2045 
2046 	/* Wait until queue initialization is complete */
2047 	for (i = 0; i < BGE_TIMEOUT; i++) {
2048 		DELAY(10);
2049 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2050 			break;
2051 	}
2052 
2053 	if (i == BGE_TIMEOUT) {
2054 		device_printf(sc->bge_dev, "flow-through queue init failed\n");
2055 		return (ENXIO);
2056 	}
2057 
2058 	/*
2059 	 * Summary of rings supported by the controller:
2060 	 *
2061 	 * Standard Receive Producer Ring
2062 	 * - This ring is used to feed receive buffers for "standard"
2063 	 *   sized frames (typically 1536 bytes) to the controller.
2064 	 *
2065 	 * Jumbo Receive Producer Ring
2066 	 * - This ring is used to feed receive buffers for jumbo sized
2067 	 *   frames (i.e. anything bigger than the "standard" frames)
2068 	 *   to the controller.
2069 	 *
2070 	 * Mini Receive Producer Ring
2071 	 * - This ring is used to feed receive buffers for "mini"
2072 	 *   sized frames to the controller.
2073 	 * - This feature required external memory for the controller
2074 	 *   but was never used in a production system.  Should always
2075 	 *   be disabled.
2076 	 *
2077 	 * Receive Return Ring
2078 	 * - After the controller has placed an incoming frame into a
2079 	 *   receive buffer that buffer is moved into a receive return
2080 	 *   ring.  The driver is then responsible to passing the
2081 	 *   buffer up to the stack.  Many versions of the controller
2082 	 *   support multiple RR rings.
2083 	 *
2084 	 * Send Ring
2085 	 * - This ring is used for outgoing frames.  Many versions of
2086 	 *   the controller support multiple send rings.
2087 	 */
2088 
2089 	/* Initialize the standard receive producer ring control block. */
2090 	rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
2091 	rcb->bge_hostaddr.bge_addr_lo =
2092 	    BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
2093 	rcb->bge_hostaddr.bge_addr_hi =
2094 	    BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
2095 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
2096 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD);
2097 	if (BGE_IS_5717_PLUS(sc)) {
2098 		/*
2099 		 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
2100 		 * Bits 15-2 : Maximum RX frame size
2101 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring ENabled
2102 		 * Bit 0     : Reserved
2103 		 */
2104 		rcb->bge_maxlen_flags =
2105 		    BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2106 	} else if (BGE_IS_5705_PLUS(sc)) {
2107 		/*
2108 		 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
2109 		 * Bits 15-2 : Reserved (should be 0)
2110 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
2111 		 * Bit 0     : Reserved
2112 		 */
2113 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2114 	} else {
2115 		/*
2116 		 * Ring size is always XXX entries
2117 		 * Bits 31-16: Maximum RX frame size
2118 		 * Bits 15-2 : Reserved (should be 0)
2119 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
2120 		 * Bit 0     : Reserved
2121 		 */
2122 		rcb->bge_maxlen_flags =
2123 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2124 	}
2125 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2126 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2127 	    sc->bge_asicrev == BGE_ASICREV_BCM5720)
2128 		rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2129 	else
2130 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2131 	/* Write the standard receive producer ring control block. */
2132 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2133 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2134 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2135 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2136 
2137 	/* Reset the standard receive producer ring producer index. */
2138 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2139 
2140 	/*
2141 	 * Initialize the jumbo RX producer ring control
2142 	 * block.  We set the 'ring disabled' bit in the
2143 	 * flags field until we're actually ready to start
2144 	 * using this ring (i.e. once we set the MTU
2145 	 * high enough to require it).
2146 	 */
2147 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
2148 		rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
2149 		/* Get the jumbo receive producer ring RCB parameters. */
2150 		rcb->bge_hostaddr.bge_addr_lo =
2151 		    BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
2152 		rcb->bge_hostaddr.bge_addr_hi =
2153 		    BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
2154 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2155 		    sc->bge_cdata.bge_rx_jumbo_ring_map,
2156 		    BUS_DMASYNC_PREREAD);
2157 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2158 		    BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
2159 		if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2160 		    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2161 		    sc->bge_asicrev == BGE_ASICREV_BCM5720)
2162 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2163 		else
2164 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2165 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2166 		    rcb->bge_hostaddr.bge_addr_hi);
2167 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2168 		    rcb->bge_hostaddr.bge_addr_lo);
2169 		/* Program the jumbo receive producer ring RCB parameters. */
2170 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2171 		    rcb->bge_maxlen_flags);
2172 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2173 		/* Reset the jumbo receive producer ring producer index. */
2174 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2175 	}
2176 
2177 	/* Disable the mini receive producer ring RCB. */
2178 	if (BGE_IS_5700_FAMILY(sc)) {
2179 		rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
2180 		rcb->bge_maxlen_flags =
2181 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
2182 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2183 		    rcb->bge_maxlen_flags);
2184 		/* Reset the mini receive producer ring producer index. */
2185 		bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2186 	}
2187 
2188 	/* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2189 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2190 		if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2191 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2192 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2193 			CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2194 			    (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2195 	}
2196 	/*
2197 	 * The BD ring replenish thresholds control how often the
2198 	 * hardware fetches new BD's from the producer rings in host
2199 	 * memory.  Setting the value too low on a busy system can
2200 	 * starve the hardware and recue the throughpout.
2201 	 *
2202 	 * Set the BD ring replentish thresholds. The recommended
2203 	 * values are 1/8th the number of descriptors allocated to
2204 	 * each ring.
2205 	 * XXX The 5754 requires a lower threshold, so it might be a
2206 	 * requirement of all 575x family chips.  The Linux driver sets
2207 	 * the lower threshold for all 5705 family chips as well, but there
2208 	 * are reports that it might not need to be so strict.
2209 	 *
2210 	 * XXX Linux does some extra fiddling here for the 5906 parts as
2211 	 * well.
2212 	 */
2213 	if (BGE_IS_5705_PLUS(sc))
2214 		val = 8;
2215 	else
2216 		val = BGE_STD_RX_RING_CNT / 8;
2217 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
2218 	if (BGE_IS_JUMBO_CAPABLE(sc))
2219 		CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH,
2220 		    BGE_JUMBO_RX_RING_CNT/8);
2221 	if (BGE_IS_5717_PLUS(sc)) {
2222 		CSR_WRITE_4(sc, BGE_STD_REPLENISH_LWM, 32);
2223 		CSR_WRITE_4(sc, BGE_JMB_REPLENISH_LWM, 16);
2224 	}
2225 
2226 	/*
2227 	 * Disable all send rings by setting the 'ring disabled' bit
2228 	 * in the flags field of all the TX send ring control blocks,
2229 	 * located in NIC memory.
2230 	 */
2231 	if (!BGE_IS_5705_PLUS(sc))
2232 		/* 5700 to 5704 had 16 send rings. */
2233 		limit = BGE_TX_RINGS_EXTSSRAM_MAX;
2234 	else if (BGE_IS_57765_PLUS(sc) ||
2235 	    sc->bge_asicrev == BGE_ASICREV_BCM5762)
2236 		limit = 2;
2237 	else if (BGE_IS_5717_PLUS(sc))
2238 		limit = 4;
2239 	else
2240 		limit = 1;
2241 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2242 	for (i = 0; i < limit; i++) {
2243 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2244 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2245 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2246 		vrcb += sizeof(struct bge_rcb);
2247 	}
2248 
2249 	/* Configure send ring RCB 0 (we use only the first ring) */
2250 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2251 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
2252 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2253 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2254 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2255 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2256 	    sc->bge_asicrev == BGE_ASICREV_BCM5720)
2257 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, BGE_SEND_RING_5717);
2258 	else
2259 		RCB_WRITE_4(sc, vrcb, bge_nicaddr,
2260 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2261 	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2262 	    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2263 
2264 	/*
2265 	 * Disable all receive return rings by setting the
2266 	 * 'ring diabled' bit in the flags field of all the receive
2267 	 * return ring control blocks, located in NIC memory.
2268 	 */
2269 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2270 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2271 	    sc->bge_asicrev == BGE_ASICREV_BCM5720) {
2272 		/* Should be 17, use 16 until we get an SRAM map. */
2273 		limit = 16;
2274 	} else if (!BGE_IS_5705_PLUS(sc))
2275 		limit = BGE_RX_RINGS_MAX;
2276 	else if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2277 	    sc->bge_asicrev == BGE_ASICREV_BCM5762 ||
2278 	    BGE_IS_57765_PLUS(sc))
2279 		limit = 4;
2280 	else
2281 		limit = 1;
2282 	/* Disable all receive return rings. */
2283 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2284 	for (i = 0; i < limit; i++) {
2285 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
2286 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
2287 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2288 		    BGE_RCB_FLAG_RING_DISABLED);
2289 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2290 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2291 		    (i * (sizeof(uint64_t))), 0);
2292 		vrcb += sizeof(struct bge_rcb);
2293 	}
2294 
2295 	/*
2296 	 * Set up receive return ring 0.  Note that the NIC address
2297 	 * for RX return rings is 0x0.  The return rings live entirely
2298 	 * within the host, so the nicaddr field in the RCB isn't used.
2299 	 */
2300 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2301 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
2302 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2303 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2304 	RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2305 	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2306 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2307 
2308 	/* Set random backoff seed for TX */
2309 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2310 	    (IF_LLADDR(sc->bge_ifp)[0] + IF_LLADDR(sc->bge_ifp)[1] +
2311 	    IF_LLADDR(sc->bge_ifp)[2] + IF_LLADDR(sc->bge_ifp)[3] +
2312 	    IF_LLADDR(sc->bge_ifp)[4] + IF_LLADDR(sc->bge_ifp)[5]) &
2313 	    BGE_TX_BACKOFF_SEED_MASK);
2314 
2315 	/* Set inter-packet gap */
2316 	val = 0x2620;
2317 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
2318 	    sc->bge_asicrev == BGE_ASICREV_BCM5762)
2319 		val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2320 		    (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2321 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2322 
2323 	/*
2324 	 * Specify which ring to use for packets that don't match
2325 	 * any RX rules.
2326 	 */
2327 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2328 
2329 	/*
2330 	 * Configure number of RX lists. One interrupt distribution
2331 	 * list, sixteen active lists, one bad frames class.
2332 	 */
2333 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2334 
2335 	/* Inialize RX list placement stats mask. */
2336 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2337 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2338 
2339 	/* Disable host coalescing until we get it set up */
2340 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2341 
2342 	/* Poll to make sure it's shut down. */
2343 	for (i = 0; i < BGE_TIMEOUT; i++) {
2344 		DELAY(10);
2345 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2346 			break;
2347 	}
2348 
2349 	if (i == BGE_TIMEOUT) {
2350 		device_printf(sc->bge_dev,
2351 		    "host coalescing engine failed to idle\n");
2352 		return (ENXIO);
2353 	}
2354 
2355 	/* Set up host coalescing defaults */
2356 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2357 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2358 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2359 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2360 	if (!(BGE_IS_5705_PLUS(sc))) {
2361 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2362 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2363 	}
2364 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1);
2365 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1);
2366 
2367 	/* Set up address of statistics block */
2368 	if (!(BGE_IS_5705_PLUS(sc))) {
2369 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
2370 		    BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
2371 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
2372 		    BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
2373 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2374 		CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2375 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2376 	}
2377 
2378 	/* Set up address of status block */
2379 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
2380 	    BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
2381 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
2382 	    BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
2383 
2384 	/* Set up status block size. */
2385 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2386 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2387 		val = BGE_STATBLKSZ_FULL;
2388 		bzero(sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ);
2389 	} else {
2390 		val = BGE_STATBLKSZ_32BYTE;
2391 		bzero(sc->bge_ldata.bge_status_block, 32);
2392 	}
2393 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
2394 	    sc->bge_cdata.bge_status_map,
2395 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2396 
2397 	/* Turn on host coalescing state machine */
2398 	CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2399 
2400 	/* Turn on RX BD completion state machine and enable attentions */
2401 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
2402 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2403 
2404 	/* Turn on RX list placement state machine */
2405 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2406 
2407 	/* Turn on RX list selector state machine. */
2408 	if (!(BGE_IS_5705_PLUS(sc)))
2409 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2410 
2411 	/* Turn on DMA, clear stats. */
2412 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2413 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2414 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2415 	    BGE_MACMODE_FRMHDR_DMA_ENB;
2416 
2417 	if (sc->bge_flags & BGE_FLAG_TBI)
2418 		val |= BGE_PORTMODE_TBI;
2419 	else if (sc->bge_flags & BGE_FLAG_MII_SERDES)
2420 		val |= BGE_PORTMODE_GMII;
2421 	else
2422 		val |= BGE_PORTMODE_MII;
2423 
2424 	/* Allow APE to send/receive frames. */
2425 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
2426 		val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
2427 
2428 	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
2429 	DELAY(40);
2430 
2431 	/* Set misc. local control, enable interrupts on attentions */
2432 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
2433 
2434 #ifdef notdef
2435 	/* Assert GPIO pins for PHY reset */
2436 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0 |
2437 	    BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUT2);
2438 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0 |
2439 	    BGE_MLC_MISCIO_OUTEN1 | BGE_MLC_MISCIO_OUTEN2);
2440 #endif
2441 
2442 	/* Turn on DMA completion state machine */
2443 	if (!(BGE_IS_5705_PLUS(sc)))
2444 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2445 
2446 	val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
2447 
2448 	/* Enable host coalescing bug fix. */
2449 	if (BGE_IS_5755_PLUS(sc))
2450 		val |= BGE_WDMAMODE_STATUS_TAG_FIX;
2451 
2452 	/* Request larger DMA burst size to get better performance. */
2453 	if (sc->bge_asicrev == BGE_ASICREV_BCM5785)
2454 		val |= BGE_WDMAMODE_BURST_ALL_DATA;
2455 
2456 	/* Turn on write DMA state machine */
2457 	CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
2458 	DELAY(40);
2459 
2460 	/* Turn on read DMA state machine */
2461 	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2462 
2463 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717)
2464 		val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
2465 
2466 	if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2467 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2468 	    sc->bge_asicrev == BGE_ASICREV_BCM57780)
2469 		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2470 		    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2471 		    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2472 	if (sc->bge_flags & BGE_FLAG_PCIE)
2473 		val |= BGE_RDMAMODE_FIFO_LONG_BURST;
2474 	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
2475 		val |= BGE_RDMAMODE_TSO4_ENABLE;
2476 		if (sc->bge_flags & BGE_FLAG_TSO3 ||
2477 		    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2478 		    sc->bge_asicrev == BGE_ASICREV_BCM57780)
2479 			val |= BGE_RDMAMODE_TSO6_ENABLE;
2480 	}
2481 
2482 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
2483 	    sc->bge_asicrev == BGE_ASICREV_BCM5762) {
2484 		val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
2485 			BGE_RDMAMODE_H2BNC_VLAN_DET;
2486 		/*
2487 		 * Allow multiple outstanding read requests from
2488 		 * non-LSO read DMA engine.
2489 		 */
2490 		val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
2491 	}
2492 
2493 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2494 	    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2495 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2496 	    sc->bge_asicrev == BGE_ASICREV_BCM57780 ||
2497 	    BGE_IS_5717_PLUS(sc) || BGE_IS_57765_PLUS(sc)) {
2498 		if (sc->bge_asicrev == BGE_ASICREV_BCM5762)
2499 			rdmareg = BGE_RDMA_RSRVCTRL_REG2;
2500 		else
2501 			rdmareg = BGE_RDMA_RSRVCTRL;
2502 		dmactl = CSR_READ_4(sc, rdmareg);
2503 		/*
2504 		 * Adjust tx margin to prevent TX data corruption and
2505 		 * fix internal FIFO overflow.
2506 		 */
2507 		if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2508 		    sc->bge_asicrev == BGE_ASICREV_BCM5762) {
2509 			dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
2510 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
2511 			    BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
2512 			dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
2513 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
2514 			    BGE_RDMA_RSRVCTRL_TXMRGN_320B;
2515 		}
2516 		/*
2517 		 * Enable fix for read DMA FIFO overruns.
2518 		 * The fix is to limit the number of RX BDs
2519 		 * the hardware would fetch at a fime.
2520 		 */
2521 		CSR_WRITE_4(sc, rdmareg, dmactl |
2522 		    BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
2523 	}
2524 
2525 	if (sc->bge_asicrev == BGE_ASICREV_BCM5719) {
2526 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2527 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2528 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2529 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2530 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5720) {
2531 		/*
2532 		 * Allow 4KB burst length reads for non-LSO frames.
2533 		 * Enable 512B burst length reads for buffer descriptors.
2534 		 */
2535 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2536 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2537 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
2538 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2539 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5762) {
2540 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2,
2541 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2) |
2542 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2543 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2544 	}
2545 
2546 	CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
2547 	DELAY(40);
2548 
2549 	if (sc->bge_flags & BGE_FLAG_RDMA_BUG) {
2550 		for (i = 0; i < BGE_NUM_RDMA_CHANNELS / 2; i++) {
2551 			val = CSR_READ_4(sc, BGE_RDMA_LENGTH + i * 4);
2552 			if ((val & 0xFFFF) > BGE_FRAMELEN)
2553 				break;
2554 			if (((val >> 16) & 0xFFFF) > BGE_FRAMELEN)
2555 				break;
2556 		}
2557 		if (i != BGE_NUM_RDMA_CHANNELS / 2) {
2558 			val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
2559 			if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
2560 				val |= BGE_RDMA_TX_LENGTH_WA_5719;
2561 			else
2562 				val |= BGE_RDMA_TX_LENGTH_WA_5720;
2563 			CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
2564 		}
2565 	}
2566 
2567 	/* Turn on RX data completion state machine */
2568 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2569 
2570 	/* Turn on RX BD initiator state machine */
2571 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2572 
2573 	/* Turn on RX data and RX BD initiator state machine */
2574 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2575 
2576 	/* Turn on Mbuf cluster free state machine */
2577 	if (!(BGE_IS_5705_PLUS(sc)))
2578 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2579 
2580 	/* Turn on send BD completion state machine */
2581 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2582 
2583 	/* Turn on send data completion state machine */
2584 	val = BGE_SDCMODE_ENABLE;
2585 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
2586 		val |= BGE_SDCMODE_CDELAY;
2587 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
2588 
2589 	/* Turn on send data initiator state machine */
2590 	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3))
2591 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
2592 		    BGE_SDIMODE_HW_LSO_PRE_DMA);
2593 	else
2594 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2595 
2596 	/* Turn on send BD initiator state machine */
2597 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2598 
2599 	/* Turn on send BD selector state machine */
2600 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2601 
2602 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
2603 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
2604 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
2605 
2606 	/* ack/clear link change events */
2607 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2608 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2609 	    BGE_MACSTAT_LINK_CHANGED);
2610 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
2611 
2612 	/*
2613 	 * Enable attention when the link has changed state for
2614 	 * devices that use auto polling.
2615 	 */
2616 	if (sc->bge_flags & BGE_FLAG_TBI) {
2617 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
2618 	} else {
2619 		if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
2620 			CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
2621 			DELAY(80);
2622 		}
2623 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2624 		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2)
2625 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2626 			    BGE_EVTENB_MI_INTERRUPT);
2627 	}
2628 
2629 	/*
2630 	 * Clear any pending link state attention.
2631 	 * Otherwise some link state change events may be lost until attention
2632 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
2633 	 * It's not necessary on newer BCM chips - perhaps enabling link
2634 	 * state change attentions implies clearing pending attention.
2635 	 */
2636 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2637 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2638 	    BGE_MACSTAT_LINK_CHANGED);
2639 
2640 	/* Enable link state change attentions. */
2641 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
2642 
2643 	return (0);
2644 }
2645 
2646 static const struct bge_revision *
2647 bge_lookup_rev(uint32_t chipid)
2648 {
2649 	const struct bge_revision *br;
2650 
2651 	for (br = bge_revisions; br->br_name != NULL; br++) {
2652 		if (br->br_chipid == chipid)
2653 			return (br);
2654 	}
2655 
2656 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
2657 		if (br->br_chipid == BGE_ASICREV(chipid))
2658 			return (br);
2659 	}
2660 
2661 	return (NULL);
2662 }
2663 
2664 static const struct bge_vendor *
2665 bge_lookup_vendor(uint16_t vid)
2666 {
2667 	const struct bge_vendor *v;
2668 
2669 	for (v = bge_vendors; v->v_name != NULL; v++)
2670 		if (v->v_id == vid)
2671 			return (v);
2672 
2673 	return (NULL);
2674 }
2675 
2676 static uint32_t
2677 bge_chipid(device_t dev)
2678 {
2679 	uint32_t id;
2680 
2681 	id = pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
2682 	    BGE_PCIMISCCTL_ASICREV_SHIFT;
2683 	if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
2684 		/*
2685 		 * Find the ASCI revision.  Different chips use different
2686 		 * registers.
2687 		 */
2688 		switch (pci_get_device(dev)) {
2689 		case BCOM_DEVICEID_BCM5717:
2690 		case BCOM_DEVICEID_BCM5718:
2691 		case BCOM_DEVICEID_BCM5719:
2692 		case BCOM_DEVICEID_BCM5720:
2693 		case BCOM_DEVICEID_BCM5725:
2694 		case BCOM_DEVICEID_BCM5727:
2695 		case BCOM_DEVICEID_BCM5762:
2696 			id = pci_read_config(dev,
2697 			    BGE_PCI_GEN2_PRODID_ASICREV, 4);
2698 			break;
2699 		case BCOM_DEVICEID_BCM57761:
2700 		case BCOM_DEVICEID_BCM57762:
2701 		case BCOM_DEVICEID_BCM57765:
2702 		case BCOM_DEVICEID_BCM57766:
2703 		case BCOM_DEVICEID_BCM57781:
2704 		case BCOM_DEVICEID_BCM57785:
2705 		case BCOM_DEVICEID_BCM57791:
2706 		case BCOM_DEVICEID_BCM57795:
2707 			id = pci_read_config(dev,
2708 			    BGE_PCI_GEN15_PRODID_ASICREV, 4);
2709 			break;
2710 		default:
2711 			id = pci_read_config(dev, BGE_PCI_PRODID_ASICREV, 4);
2712 		}
2713 	}
2714 	return (id);
2715 }
2716 
2717 /*
2718  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2719  * against our list and return its name if we find a match.
2720  *
2721  * Note that since the Broadcom controller contains VPD support, we
2722  * try to get the device name string from the controller itself instead
2723  * of the compiled-in string. It guarantees we'll always announce the
2724  * right product name. We fall back to the compiled-in string when
2725  * VPD is unavailable or corrupt.
2726  */
2727 static int
2728 bge_probe(device_t dev)
2729 {
2730 	char buf[96];
2731 	char model[64];
2732 	const struct bge_revision *br;
2733 	const char *pname;
2734 	struct bge_softc *sc;
2735 	const struct bge_type *t = bge_devs;
2736 	const struct bge_vendor *v;
2737 	uint32_t id;
2738 	uint16_t did, vid;
2739 
2740 	sc = device_get_softc(dev);
2741 	sc->bge_dev = dev;
2742 	vid = pci_get_vendor(dev);
2743 	did = pci_get_device(dev);
2744 	while(t->bge_vid != 0) {
2745 		if ((vid == t->bge_vid) && (did == t->bge_did)) {
2746 			id = bge_chipid(dev);
2747 			br = bge_lookup_rev(id);
2748 			if (bge_has_eaddr(sc) &&
2749 			    pci_get_vpd_ident(dev, &pname) == 0)
2750 				snprintf(model, sizeof(model), "%s", pname);
2751 			else {
2752 				v = bge_lookup_vendor(vid);
2753 				snprintf(model, sizeof(model), "%s %s",
2754 				    v != NULL ? v->v_name : "Unknown",
2755 				    br != NULL ? br->br_name :
2756 				    "NetXtreme/NetLink Ethernet Controller");
2757 			}
2758 			snprintf(buf, sizeof(buf), "%s, %sASIC rev. %#08x",
2759 			    model, br != NULL ? "" : "unknown ", id);
2760 			device_set_desc_copy(dev, buf);
2761 			return (BUS_PROBE_DEFAULT);
2762 		}
2763 		t++;
2764 	}
2765 
2766 	return (ENXIO);
2767 }
2768 
2769 static void
2770 bge_dma_free(struct bge_softc *sc)
2771 {
2772 	int i;
2773 
2774 	/* Destroy DMA maps for RX buffers. */
2775 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
2776 		if (sc->bge_cdata.bge_rx_std_dmamap[i])
2777 			bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2778 			    sc->bge_cdata.bge_rx_std_dmamap[i]);
2779 	}
2780 	if (sc->bge_cdata.bge_rx_std_sparemap)
2781 		bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2782 		    sc->bge_cdata.bge_rx_std_sparemap);
2783 
2784 	/* Destroy DMA maps for jumbo RX buffers. */
2785 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
2786 		if (sc->bge_cdata.bge_rx_jumbo_dmamap[i])
2787 			bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2788 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
2789 	}
2790 	if (sc->bge_cdata.bge_rx_jumbo_sparemap)
2791 		bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2792 		    sc->bge_cdata.bge_rx_jumbo_sparemap);
2793 
2794 	/* Destroy DMA maps for TX buffers. */
2795 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
2796 		if (sc->bge_cdata.bge_tx_dmamap[i])
2797 			bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
2798 			    sc->bge_cdata.bge_tx_dmamap[i]);
2799 	}
2800 
2801 	if (sc->bge_cdata.bge_rx_mtag)
2802 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
2803 	if (sc->bge_cdata.bge_mtag_jumbo)
2804 		bus_dma_tag_destroy(sc->bge_cdata.bge_mtag_jumbo);
2805 	if (sc->bge_cdata.bge_tx_mtag)
2806 		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
2807 
2808 	/* Destroy standard RX ring. */
2809 	if (sc->bge_cdata.bge_rx_std_ring_map)
2810 		bus_dmamap_unload(sc->bge_cdata.bge_rx_std_ring_tag,
2811 		    sc->bge_cdata.bge_rx_std_ring_map);
2812 	if (sc->bge_cdata.bge_rx_std_ring_map && sc->bge_ldata.bge_rx_std_ring)
2813 		bus_dmamem_free(sc->bge_cdata.bge_rx_std_ring_tag,
2814 		    sc->bge_ldata.bge_rx_std_ring,
2815 		    sc->bge_cdata.bge_rx_std_ring_map);
2816 
2817 	if (sc->bge_cdata.bge_rx_std_ring_tag)
2818 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_std_ring_tag);
2819 
2820 	/* Destroy jumbo RX ring. */
2821 	if (sc->bge_cdata.bge_rx_jumbo_ring_map)
2822 		bus_dmamap_unload(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2823 		    sc->bge_cdata.bge_rx_jumbo_ring_map);
2824 
2825 	if (sc->bge_cdata.bge_rx_jumbo_ring_map &&
2826 	    sc->bge_ldata.bge_rx_jumbo_ring)
2827 		bus_dmamem_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2828 		    sc->bge_ldata.bge_rx_jumbo_ring,
2829 		    sc->bge_cdata.bge_rx_jumbo_ring_map);
2830 
2831 	if (sc->bge_cdata.bge_rx_jumbo_ring_tag)
2832 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag);
2833 
2834 	/* Destroy RX return ring. */
2835 	if (sc->bge_cdata.bge_rx_return_ring_map)
2836 		bus_dmamap_unload(sc->bge_cdata.bge_rx_return_ring_tag,
2837 		    sc->bge_cdata.bge_rx_return_ring_map);
2838 
2839 	if (sc->bge_cdata.bge_rx_return_ring_map &&
2840 	    sc->bge_ldata.bge_rx_return_ring)
2841 		bus_dmamem_free(sc->bge_cdata.bge_rx_return_ring_tag,
2842 		    sc->bge_ldata.bge_rx_return_ring,
2843 		    sc->bge_cdata.bge_rx_return_ring_map);
2844 
2845 	if (sc->bge_cdata.bge_rx_return_ring_tag)
2846 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_return_ring_tag);
2847 
2848 	/* Destroy TX ring. */
2849 	if (sc->bge_cdata.bge_tx_ring_map)
2850 		bus_dmamap_unload(sc->bge_cdata.bge_tx_ring_tag,
2851 		    sc->bge_cdata.bge_tx_ring_map);
2852 
2853 	if (sc->bge_cdata.bge_tx_ring_map && sc->bge_ldata.bge_tx_ring)
2854 		bus_dmamem_free(sc->bge_cdata.bge_tx_ring_tag,
2855 		    sc->bge_ldata.bge_tx_ring,
2856 		    sc->bge_cdata.bge_tx_ring_map);
2857 
2858 	if (sc->bge_cdata.bge_tx_ring_tag)
2859 		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_ring_tag);
2860 
2861 	/* Destroy status block. */
2862 	if (sc->bge_cdata.bge_status_map)
2863 		bus_dmamap_unload(sc->bge_cdata.bge_status_tag,
2864 		    sc->bge_cdata.bge_status_map);
2865 
2866 	if (sc->bge_cdata.bge_status_map && sc->bge_ldata.bge_status_block)
2867 		bus_dmamem_free(sc->bge_cdata.bge_status_tag,
2868 		    sc->bge_ldata.bge_status_block,
2869 		    sc->bge_cdata.bge_status_map);
2870 
2871 	if (sc->bge_cdata.bge_status_tag)
2872 		bus_dma_tag_destroy(sc->bge_cdata.bge_status_tag);
2873 
2874 	/* Destroy statistics block. */
2875 	if (sc->bge_cdata.bge_stats_map)
2876 		bus_dmamap_unload(sc->bge_cdata.bge_stats_tag,
2877 		    sc->bge_cdata.bge_stats_map);
2878 
2879 	if (sc->bge_cdata.bge_stats_map && sc->bge_ldata.bge_stats)
2880 		bus_dmamem_free(sc->bge_cdata.bge_stats_tag,
2881 		    sc->bge_ldata.bge_stats,
2882 		    sc->bge_cdata.bge_stats_map);
2883 
2884 	if (sc->bge_cdata.bge_stats_tag)
2885 		bus_dma_tag_destroy(sc->bge_cdata.bge_stats_tag);
2886 
2887 	if (sc->bge_cdata.bge_buffer_tag)
2888 		bus_dma_tag_destroy(sc->bge_cdata.bge_buffer_tag);
2889 
2890 	/* Destroy the parent tag. */
2891 	if (sc->bge_cdata.bge_parent_tag)
2892 		bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
2893 }
2894 
2895 static int
2896 bge_dma_ring_alloc(struct bge_softc *sc, bus_size_t alignment,
2897     bus_size_t maxsize, bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map,
2898     bus_addr_t *paddr, const char *msg)
2899 {
2900 	struct bge_dmamap_arg ctx;
2901 	int error;
2902 
2903 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2904 	    alignment, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2905 	    NULL, maxsize, 1, maxsize, 0, NULL, NULL, tag);
2906 	if (error != 0) {
2907 		device_printf(sc->bge_dev,
2908 		    "could not create %s dma tag\n", msg);
2909 		return (ENOMEM);
2910 	}
2911 	/* Allocate DMA'able memory for ring. */
2912 	error = bus_dmamem_alloc(*tag, (void **)ring,
2913 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map);
2914 	if (error != 0) {
2915 		device_printf(sc->bge_dev,
2916 		    "could not allocate DMA'able memory for %s\n", msg);
2917 		return (ENOMEM);
2918 	}
2919 	/* Load the address of the ring. */
2920 	ctx.bge_busaddr = 0;
2921 	error = bus_dmamap_load(*tag, *map, *ring, maxsize, bge_dma_map_addr,
2922 	    &ctx, BUS_DMA_NOWAIT);
2923 	if (error != 0) {
2924 		device_printf(sc->bge_dev,
2925 		    "could not load DMA'able memory for %s\n", msg);
2926 		return (ENOMEM);
2927 	}
2928 	*paddr = ctx.bge_busaddr;
2929 	return (0);
2930 }
2931 
2932 static int
2933 bge_dma_alloc(struct bge_softc *sc)
2934 {
2935 	bus_addr_t lowaddr;
2936 	bus_size_t rxmaxsegsz, sbsz, txsegsz, txmaxsegsz;
2937 	int i, error;
2938 
2939 	lowaddr = BUS_SPACE_MAXADDR;
2940 	if ((sc->bge_flags & BGE_FLAG_40BIT_BUG) != 0)
2941 		lowaddr = BGE_DMA_MAXADDR;
2942 	/*
2943 	 * Allocate the parent bus DMA tag appropriate for PCI.
2944 	 */
2945 	error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev),
2946 	    1, 0, lowaddr, BUS_SPACE_MAXADDR, NULL,
2947 	    NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
2948 	    0, NULL, NULL, &sc->bge_cdata.bge_parent_tag);
2949 	if (error != 0) {
2950 		device_printf(sc->bge_dev,
2951 		    "could not allocate parent dma tag\n");
2952 		return (ENOMEM);
2953 	}
2954 
2955 	/* Create tag for standard RX ring. */
2956 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STD_RX_RING_SZ,
2957 	    &sc->bge_cdata.bge_rx_std_ring_tag,
2958 	    (uint8_t **)&sc->bge_ldata.bge_rx_std_ring,
2959 	    &sc->bge_cdata.bge_rx_std_ring_map,
2960 	    &sc->bge_ldata.bge_rx_std_ring_paddr, "RX ring");
2961 	if (error)
2962 		return (error);
2963 
2964 	/* Create tag for RX return ring. */
2965 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_RX_RTN_RING_SZ(sc),
2966 	    &sc->bge_cdata.bge_rx_return_ring_tag,
2967 	    (uint8_t **)&sc->bge_ldata.bge_rx_return_ring,
2968 	    &sc->bge_cdata.bge_rx_return_ring_map,
2969 	    &sc->bge_ldata.bge_rx_return_ring_paddr, "RX return ring");
2970 	if (error)
2971 		return (error);
2972 
2973 	/* Create tag for TX ring. */
2974 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_TX_RING_SZ,
2975 	    &sc->bge_cdata.bge_tx_ring_tag,
2976 	    (uint8_t **)&sc->bge_ldata.bge_tx_ring,
2977 	    &sc->bge_cdata.bge_tx_ring_map,
2978 	    &sc->bge_ldata.bge_tx_ring_paddr, "TX ring");
2979 	if (error)
2980 		return (error);
2981 
2982 	/*
2983 	 * Create tag for status block.
2984 	 * Because we only use single Tx/Rx/Rx return ring, use
2985 	 * minimum status block size except BCM5700 AX/BX which
2986 	 * seems to want to see full status block size regardless
2987 	 * of configured number of ring.
2988 	 */
2989 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2990 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
2991 		sbsz = BGE_STATUS_BLK_SZ;
2992 	else
2993 		sbsz = 32;
2994 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, sbsz,
2995 	    &sc->bge_cdata.bge_status_tag,
2996 	    (uint8_t **)&sc->bge_ldata.bge_status_block,
2997 	    &sc->bge_cdata.bge_status_map,
2998 	    &sc->bge_ldata.bge_status_block_paddr, "status block");
2999 	if (error)
3000 		return (error);
3001 
3002 	/* Create tag for statistics block. */
3003 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STATS_SZ,
3004 	    &sc->bge_cdata.bge_stats_tag,
3005 	    (uint8_t **)&sc->bge_ldata.bge_stats,
3006 	    &sc->bge_cdata.bge_stats_map,
3007 	    &sc->bge_ldata.bge_stats_paddr, "statistics block");
3008 	if (error)
3009 		return (error);
3010 
3011 	/* Create tag for jumbo RX ring. */
3012 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
3013 		error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_JUMBO_RX_RING_SZ,
3014 		    &sc->bge_cdata.bge_rx_jumbo_ring_tag,
3015 		    (uint8_t **)&sc->bge_ldata.bge_rx_jumbo_ring,
3016 		    &sc->bge_cdata.bge_rx_jumbo_ring_map,
3017 		    &sc->bge_ldata.bge_rx_jumbo_ring_paddr, "jumbo RX ring");
3018 		if (error)
3019 			return (error);
3020 	}
3021 
3022 	/* Create parent tag for buffers. */
3023 	if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0) {
3024 		/*
3025 		 * XXX
3026 		 * watchdog timeout issue was observed on BCM5704 which
3027 		 * lives behind PCI-X bridge(e.g AMD 8131 PCI-X bridge).
3028 		 * Both limiting DMA address space to 32bits and flushing
3029 		 * mailbox write seem to address the issue.
3030 		 */
3031 		if (sc->bge_pcixcap != 0)
3032 			lowaddr = BUS_SPACE_MAXADDR_32BIT;
3033 	}
3034 	error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev), 1, 0, lowaddr,
3035 	    BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0,
3036 	    BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
3037 	    &sc->bge_cdata.bge_buffer_tag);
3038 	if (error != 0) {
3039 		device_printf(sc->bge_dev,
3040 		    "could not allocate buffer dma tag\n");
3041 		return (ENOMEM);
3042 	}
3043 	/* Create tag for Tx mbufs. */
3044 	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
3045 		txsegsz = BGE_TSOSEG_SZ;
3046 		txmaxsegsz = 65535 + sizeof(struct ether_vlan_header);
3047 	} else {
3048 		txsegsz = MCLBYTES;
3049 		txmaxsegsz = MCLBYTES * BGE_NSEG_NEW;
3050 	}
3051 	error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1,
3052 	    0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
3053 	    txmaxsegsz, BGE_NSEG_NEW, txsegsz, 0, NULL, NULL,
3054 	    &sc->bge_cdata.bge_tx_mtag);
3055 
3056 	if (error) {
3057 		device_printf(sc->bge_dev, "could not allocate TX dma tag\n");
3058 		return (ENOMEM);
3059 	}
3060 
3061 	/* Create tag for Rx mbufs. */
3062 	if (sc->bge_flags & BGE_FLAG_JUMBO_STD)
3063 		rxmaxsegsz = MJUM9BYTES;
3064 	else
3065 		rxmaxsegsz = MCLBYTES;
3066 	error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1, 0,
3067 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, rxmaxsegsz, 1,
3068 	    rxmaxsegsz, 0, NULL, NULL, &sc->bge_cdata.bge_rx_mtag);
3069 
3070 	if (error) {
3071 		device_printf(sc->bge_dev, "could not allocate RX dma tag\n");
3072 		return (ENOMEM);
3073 	}
3074 
3075 	/* Create DMA maps for RX buffers. */
3076 	error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
3077 	    &sc->bge_cdata.bge_rx_std_sparemap);
3078 	if (error) {
3079 		device_printf(sc->bge_dev,
3080 		    "can't create spare DMA map for RX\n");
3081 		return (ENOMEM);
3082 	}
3083 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
3084 		error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
3085 			    &sc->bge_cdata.bge_rx_std_dmamap[i]);
3086 		if (error) {
3087 			device_printf(sc->bge_dev,
3088 			    "can't create DMA map for RX\n");
3089 			return (ENOMEM);
3090 		}
3091 	}
3092 
3093 	/* Create DMA maps for TX buffers. */
3094 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
3095 		error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag, 0,
3096 			    &sc->bge_cdata.bge_tx_dmamap[i]);
3097 		if (error) {
3098 			device_printf(sc->bge_dev,
3099 			    "can't create DMA map for TX\n");
3100 			return (ENOMEM);
3101 		}
3102 	}
3103 
3104 	/* Create tags for jumbo RX buffers. */
3105 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
3106 		error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag,
3107 		    1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
3108 		    NULL, MJUM9BYTES, BGE_NSEG_JUMBO, PAGE_SIZE,
3109 		    0, NULL, NULL, &sc->bge_cdata.bge_mtag_jumbo);
3110 		if (error) {
3111 			device_printf(sc->bge_dev,
3112 			    "could not allocate jumbo dma tag\n");
3113 			return (ENOMEM);
3114 		}
3115 		/* Create DMA maps for jumbo RX buffers. */
3116 		error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
3117 		    0, &sc->bge_cdata.bge_rx_jumbo_sparemap);
3118 		if (error) {
3119 			device_printf(sc->bge_dev,
3120 			    "can't create spare DMA map for jumbo RX\n");
3121 			return (ENOMEM);
3122 		}
3123 		for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
3124 			error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
3125 				    0, &sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
3126 			if (error) {
3127 				device_printf(sc->bge_dev,
3128 				    "can't create DMA map for jumbo RX\n");
3129 				return (ENOMEM);
3130 			}
3131 		}
3132 	}
3133 
3134 	return (0);
3135 }
3136 
3137 /*
3138  * Return true if this device has more than one port.
3139  */
3140 static int
3141 bge_has_multiple_ports(struct bge_softc *sc)
3142 {
3143 	device_t dev = sc->bge_dev;
3144 	u_int b, d, f, fscan, s;
3145 
3146 	d = pci_get_domain(dev);
3147 	b = pci_get_bus(dev);
3148 	s = pci_get_slot(dev);
3149 	f = pci_get_function(dev);
3150 	for (fscan = 0; fscan <= PCI_FUNCMAX; fscan++)
3151 		if (fscan != f && pci_find_dbsf(d, b, s, fscan) != NULL)
3152 			return (1);
3153 	return (0);
3154 }
3155 
3156 /*
3157  * Return true if MSI can be used with this device.
3158  */
3159 static int
3160 bge_can_use_msi(struct bge_softc *sc)
3161 {
3162 	int can_use_msi = 0;
3163 
3164 	if (sc->bge_msi == 0)
3165 		return (0);
3166 
3167 	/* Disable MSI for polling(4). */
3168 #ifdef DEVICE_POLLING
3169 	return (0);
3170 #endif
3171 	switch (sc->bge_asicrev) {
3172 	case BGE_ASICREV_BCM5714_A0:
3173 	case BGE_ASICREV_BCM5714:
3174 		/*
3175 		 * Apparently, MSI doesn't work when these chips are
3176 		 * configured in single-port mode.
3177 		 */
3178 		if (bge_has_multiple_ports(sc))
3179 			can_use_msi = 1;
3180 		break;
3181 	case BGE_ASICREV_BCM5750:
3182 		if (sc->bge_chiprev != BGE_CHIPREV_5750_AX &&
3183 		    sc->bge_chiprev != BGE_CHIPREV_5750_BX)
3184 			can_use_msi = 1;
3185 		break;
3186 	default:
3187 		if (BGE_IS_575X_PLUS(sc))
3188 			can_use_msi = 1;
3189 	}
3190 	return (can_use_msi);
3191 }
3192 
3193 static int
3194 bge_mbox_reorder(struct bge_softc *sc)
3195 {
3196 	/* Lists of PCI bridges that are known to reorder mailbox writes. */
3197 	static const struct mbox_reorder {
3198 		const uint16_t vendor;
3199 		const uint16_t device;
3200 		const char *desc;
3201 	} mbox_reorder_lists[] = {
3202 		{ 0x1022, 0x7450, "AMD-8131 PCI-X Bridge" },
3203 	};
3204 	devclass_t pci, pcib;
3205 	device_t bus, dev;
3206 	int i;
3207 
3208 	pci = devclass_find("pci");
3209 	pcib = devclass_find("pcib");
3210 	dev = sc->bge_dev;
3211 	bus = device_get_parent(dev);
3212 	for (;;) {
3213 		dev = device_get_parent(bus);
3214 		bus = device_get_parent(dev);
3215 		if (device_get_devclass(dev) != pcib)
3216 			break;
3217 		for (i = 0; i < nitems(mbox_reorder_lists); i++) {
3218 			if (pci_get_vendor(dev) ==
3219 			    mbox_reorder_lists[i].vendor &&
3220 			    pci_get_device(dev) ==
3221 			    mbox_reorder_lists[i].device) {
3222 				device_printf(sc->bge_dev,
3223 				    "enabling MBOX workaround for %s\n",
3224 				    mbox_reorder_lists[i].desc);
3225 				return (1);
3226 			}
3227 		}
3228 		if (device_get_devclass(bus) != pci)
3229 			break;
3230 	}
3231 	return (0);
3232 }
3233 
3234 static void
3235 bge_devinfo(struct bge_softc *sc)
3236 {
3237 	uint32_t cfg, clk;
3238 
3239 	device_printf(sc->bge_dev,
3240 	    "CHIP ID 0x%08x; ASIC REV 0x%02x; CHIP REV 0x%02x; ",
3241 	    sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev);
3242 	if (sc->bge_flags & BGE_FLAG_PCIE)
3243 		printf("PCI-E\n");
3244 	else if (sc->bge_flags & BGE_FLAG_PCIX) {
3245 		printf("PCI-X ");
3246 		cfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
3247 		if (cfg == BGE_MISCCFG_BOARD_ID_5704CIOBE)
3248 			clk = 133;
3249 		else {
3250 			clk = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
3251 			switch (clk) {
3252 			case 0:
3253 				clk = 33;
3254 				break;
3255 			case 2:
3256 				clk = 50;
3257 				break;
3258 			case 4:
3259 				clk = 66;
3260 				break;
3261 			case 6:
3262 				clk = 100;
3263 				break;
3264 			case 7:
3265 				clk = 133;
3266 				break;
3267 			}
3268 		}
3269 		printf("%u MHz\n", clk);
3270 	} else {
3271 		if (sc->bge_pcixcap != 0)
3272 			printf("PCI on PCI-X ");
3273 		else
3274 			printf("PCI ");
3275 		cfg = pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4);
3276 		if (cfg & BGE_PCISTATE_PCI_BUSSPEED)
3277 			clk = 66;
3278 		else
3279 			clk = 33;
3280 		if (cfg & BGE_PCISTATE_32BIT_BUS)
3281 			printf("%u MHz; 32bit\n", clk);
3282 		else
3283 			printf("%u MHz; 64bit\n", clk);
3284 	}
3285 }
3286 
3287 static int
3288 bge_attach(device_t dev)
3289 {
3290 	struct ifnet *ifp;
3291 	struct bge_softc *sc;
3292 	uint32_t hwcfg = 0, misccfg, pcistate;
3293 	u_char eaddr[ETHER_ADDR_LEN];
3294 	int capmask, error, msicount, reg, rid, trys;
3295 
3296 	sc = device_get_softc(dev);
3297 	sc->bge_dev = dev;
3298 
3299 	BGE_LOCK_INIT(sc, device_get_nameunit(dev));
3300 	TASK_INIT(&sc->bge_intr_task, 0, bge_intr_task, sc);
3301 	callout_init_mtx(&sc->bge_stat_ch, &sc->bge_mtx, 0);
3302 
3303 	/*
3304 	 * Map control/status registers.
3305 	 */
3306 	pci_enable_busmaster(dev);
3307 
3308 	rid = PCIR_BAR(0);
3309 	sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
3310 	    RF_ACTIVE);
3311 
3312 	if (sc->bge_res == NULL) {
3313 		device_printf (sc->bge_dev, "couldn't map BAR0 memory\n");
3314 		error = ENXIO;
3315 		goto fail;
3316 	}
3317 
3318 	/* Save various chip information. */
3319 	sc->bge_func_addr = pci_get_function(dev);
3320 	sc->bge_chipid = bge_chipid(dev);
3321 	sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
3322 	sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
3323 
3324 	/* Set default PHY address. */
3325 	sc->bge_phy_addr = 1;
3326 	 /*
3327 	  * PHY address mapping for various devices.
3328 	  *
3329 	  *          | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
3330 	  * ---------+-------+-------+-------+-------+
3331 	  * BCM57XX  |   1   |   X   |   X   |   X   |
3332 	  * BCM5704  |   1   |   X   |   1   |   X   |
3333 	  * BCM5717  |   1   |   8   |   2   |   9   |
3334 	  * BCM5719  |   1   |   8   |   2   |   9   |
3335 	  * BCM5720  |   1   |   8   |   2   |   9   |
3336 	  *
3337 	  *          | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
3338 	  * ---------+-------+-------+-------+-------+
3339 	  * BCM57XX  |   X   |   X   |   X   |   X   |
3340 	  * BCM5704  |   X   |   X   |   X   |   X   |
3341 	  * BCM5717  |   X   |   X   |   X   |   X   |
3342 	  * BCM5719  |   3   |   10  |   4   |   11  |
3343 	  * BCM5720  |   X   |   X   |   X   |   X   |
3344 	  *
3345 	  * Other addresses may respond but they are not
3346 	  * IEEE compliant PHYs and should be ignored.
3347 	  */
3348 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
3349 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3350 	    sc->bge_asicrev == BGE_ASICREV_BCM5720) {
3351 		if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
3352 			if (CSR_READ_4(sc, BGE_SGDIG_STS) &
3353 			    BGE_SGDIGSTS_IS_SERDES)
3354 				sc->bge_phy_addr = sc->bge_func_addr + 8;
3355 			else
3356 				sc->bge_phy_addr = sc->bge_func_addr + 1;
3357 		} else {
3358 			if (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
3359 			    BGE_CPMU_PHY_STRAP_IS_SERDES)
3360 				sc->bge_phy_addr = sc->bge_func_addr + 8;
3361 			else
3362 				sc->bge_phy_addr = sc->bge_func_addr + 1;
3363 		}
3364 	}
3365 
3366 	if (bge_has_eaddr(sc))
3367 		sc->bge_flags |= BGE_FLAG_EADDR;
3368 
3369 	/* Save chipset family. */
3370 	switch (sc->bge_asicrev) {
3371 	case BGE_ASICREV_BCM5762:
3372 	case BGE_ASICREV_BCM57765:
3373 	case BGE_ASICREV_BCM57766:
3374 		sc->bge_flags |= BGE_FLAG_57765_PLUS;
3375 		/* FALLTHROUGH */
3376 	case BGE_ASICREV_BCM5717:
3377 	case BGE_ASICREV_BCM5719:
3378 	case BGE_ASICREV_BCM5720:
3379 		sc->bge_flags |= BGE_FLAG_5717_PLUS | BGE_FLAG_5755_PLUS |
3380 		    BGE_FLAG_575X_PLUS | BGE_FLAG_5705_PLUS | BGE_FLAG_JUMBO |
3381 		    BGE_FLAG_JUMBO_FRAME;
3382 		if (sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3383 		    sc->bge_asicrev == BGE_ASICREV_BCM5720) {
3384 			/*
3385 			 * Enable work around for DMA engine miscalculation
3386 			 * of TXMBUF available space.
3387 			 */
3388 			sc->bge_flags |= BGE_FLAG_RDMA_BUG;
3389 			if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
3390 			    sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3391 				/* Jumbo frame on BCM5719 A0 does not work. */
3392 				sc->bge_flags &= ~BGE_FLAG_JUMBO;
3393 			}
3394 		}
3395 		break;
3396 	case BGE_ASICREV_BCM5755:
3397 	case BGE_ASICREV_BCM5761:
3398 	case BGE_ASICREV_BCM5784:
3399 	case BGE_ASICREV_BCM5785:
3400 	case BGE_ASICREV_BCM5787:
3401 	case BGE_ASICREV_BCM57780:
3402 		sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS |
3403 		    BGE_FLAG_5705_PLUS;
3404 		break;
3405 	case BGE_ASICREV_BCM5700:
3406 	case BGE_ASICREV_BCM5701:
3407 	case BGE_ASICREV_BCM5703:
3408 	case BGE_ASICREV_BCM5704:
3409 		sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
3410 		break;
3411 	case BGE_ASICREV_BCM5714_A0:
3412 	case BGE_ASICREV_BCM5780:
3413 	case BGE_ASICREV_BCM5714:
3414 		sc->bge_flags |= BGE_FLAG_5714_FAMILY | BGE_FLAG_JUMBO_STD;
3415 		/* FALLTHROUGH */
3416 	case BGE_ASICREV_BCM5750:
3417 	case BGE_ASICREV_BCM5752:
3418 	case BGE_ASICREV_BCM5906:
3419 		sc->bge_flags |= BGE_FLAG_575X_PLUS;
3420 		/* FALLTHROUGH */
3421 	case BGE_ASICREV_BCM5705:
3422 		sc->bge_flags |= BGE_FLAG_5705_PLUS;
3423 		break;
3424 	}
3425 
3426 	/* Identify chips with APE processor. */
3427 	switch (sc->bge_asicrev) {
3428 	case BGE_ASICREV_BCM5717:
3429 	case BGE_ASICREV_BCM5719:
3430 	case BGE_ASICREV_BCM5720:
3431 	case BGE_ASICREV_BCM5761:
3432 	case BGE_ASICREV_BCM5762:
3433 		sc->bge_flags |= BGE_FLAG_APE;
3434 		break;
3435 	}
3436 
3437 	/* Chips with APE need BAR2 access for APE registers/memory. */
3438 	if ((sc->bge_flags & BGE_FLAG_APE) != 0) {
3439 		rid = PCIR_BAR(2);
3440 		sc->bge_res2 = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
3441 		    RF_ACTIVE);
3442 		if (sc->bge_res2 == NULL) {
3443 			device_printf (sc->bge_dev,
3444 			    "couldn't map BAR2 memory\n");
3445 			error = ENXIO;
3446 			goto fail;
3447 		}
3448 
3449 		/* Enable APE register/memory access by host driver. */
3450 		pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
3451 		pcistate |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3452 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3453 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3454 		pci_write_config(dev, BGE_PCI_PCISTATE, pcistate, 4);
3455 
3456 		bge_ape_lock_init(sc);
3457 		bge_ape_read_fw_ver(sc);
3458 	}
3459 
3460 	/* Add SYSCTLs, requires the chipset family to be set. */
3461 	bge_add_sysctls(sc);
3462 
3463 	/* Identify the chips that use an CPMU. */
3464 	if (BGE_IS_5717_PLUS(sc) ||
3465 	    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
3466 	    sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
3467 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
3468 	    sc->bge_asicrev == BGE_ASICREV_BCM57780)
3469 		sc->bge_flags |= BGE_FLAG_CPMU_PRESENT;
3470 	if ((sc->bge_flags & BGE_FLAG_CPMU_PRESENT) != 0)
3471 		sc->bge_mi_mode = BGE_MIMODE_500KHZ_CONST;
3472 	else
3473 		sc->bge_mi_mode = BGE_MIMODE_BASE;
3474 	/* Enable auto polling for BCM570[0-5]. */
3475 	if (BGE_IS_5700_FAMILY(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5705)
3476 		sc->bge_mi_mode |= BGE_MIMODE_AUTOPOLL;
3477 
3478 	/*
3479 	 * All Broadcom controllers have 4GB boundary DMA bug.
3480 	 * Whenever an address crosses a multiple of the 4GB boundary
3481 	 * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
3482 	 * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
3483 	 * state machine will lockup and cause the device to hang.
3484 	 */
3485 	sc->bge_flags |= BGE_FLAG_4G_BNDRY_BUG;
3486 
3487 	/* BCM5755 or higher and BCM5906 have short DMA bug. */
3488 	if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
3489 		sc->bge_flags |= BGE_FLAG_SHORT_DMA_BUG;
3490 
3491 	/*
3492 	 * BCM5719 cannot handle DMA requests for DMA segments that
3493 	 * have larger than 4KB in size.  However the maximum DMA
3494 	 * segment size created in DMA tag is 4KB for TSO, so we
3495 	 * wouldn't encounter the issue here.
3496 	 */
3497 	if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
3498 		sc->bge_flags |= BGE_FLAG_4K_RDMA_BUG;
3499 
3500 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
3501 	if (sc->bge_asicrev == BGE_ASICREV_BCM5705) {
3502 		if (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3503 		    misccfg == BGE_MISCCFG_BOARD_ID_5788M)
3504 			sc->bge_flags |= BGE_FLAG_5788;
3505 	}
3506 
3507 	capmask = BMSR_DEFCAPMASK;
3508 	if ((sc->bge_asicrev == BGE_ASICREV_BCM5703 &&
3509 	    (misccfg == 0x4000 || misccfg == 0x8000)) ||
3510 	    (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
3511 	    pci_get_vendor(dev) == BCOM_VENDORID &&
3512 	    (pci_get_device(dev) == BCOM_DEVICEID_BCM5901 ||
3513 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5901A2 ||
3514 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5705F)) ||
3515 	    (pci_get_vendor(dev) == BCOM_VENDORID &&
3516 	    (pci_get_device(dev) == BCOM_DEVICEID_BCM5751F ||
3517 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5753F ||
3518 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5787F)) ||
3519 	    pci_get_device(dev) == BCOM_DEVICEID_BCM57790 ||
3520 	    pci_get_device(dev) == BCOM_DEVICEID_BCM57791 ||
3521 	    pci_get_device(dev) == BCOM_DEVICEID_BCM57795 ||
3522 	    sc->bge_asicrev == BGE_ASICREV_BCM5906) {
3523 		/* These chips are 10/100 only. */
3524 		capmask &= ~BMSR_EXTSTAT;
3525 		sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3526 	}
3527 
3528 	/*
3529 	 * Some controllers seem to require a special firmware to use
3530 	 * TSO. But the firmware is not available to FreeBSD and Linux
3531 	 * claims that the TSO performed by the firmware is slower than
3532 	 * hardware based TSO. Moreover the firmware based TSO has one
3533 	 * known bug which can't handle TSO if Ethernet header + IP/TCP
3534 	 * header is greater than 80 bytes. A workaround for the TSO
3535 	 * bug exist but it seems it's too expensive than not using
3536 	 * TSO at all. Some hardwares also have the TSO bug so limit
3537 	 * the TSO to the controllers that are not affected TSO issues
3538 	 * (e.g. 5755 or higher).
3539 	 */
3540 	if (BGE_IS_5717_PLUS(sc)) {
3541 		/* BCM5717 requires different TSO configuration. */
3542 		sc->bge_flags |= BGE_FLAG_TSO3;
3543 		if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
3544 		    sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3545 			/* TSO on BCM5719 A0 does not work. */
3546 			sc->bge_flags &= ~BGE_FLAG_TSO3;
3547 		}
3548 	} else if (BGE_IS_5755_PLUS(sc)) {
3549 		/*
3550 		 * BCM5754 and BCM5787 shares the same ASIC id so
3551 		 * explicit device id check is required.
3552 		 * Due to unknown reason TSO does not work on BCM5755M.
3553 		 */
3554 		if (pci_get_device(dev) != BCOM_DEVICEID_BCM5754 &&
3555 		    pci_get_device(dev) != BCOM_DEVICEID_BCM5754M &&
3556 		    pci_get_device(dev) != BCOM_DEVICEID_BCM5755M)
3557 			sc->bge_flags |= BGE_FLAG_TSO;
3558 	}
3559 
3560 	/*
3561 	 * Check if this is a PCI-X or PCI Express device.
3562 	 */
3563 	if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
3564 		/*
3565 		 * Found a PCI Express capabilities register, this
3566 		 * must be a PCI Express device.
3567 		 */
3568 		sc->bge_flags |= BGE_FLAG_PCIE;
3569 		sc->bge_expcap = reg;
3570 		/* Extract supported maximum payload size. */
3571 		sc->bge_mps = pci_read_config(dev, sc->bge_expcap +
3572 		    PCIER_DEVICE_CAP, 2);
3573 		sc->bge_mps = 128 << (sc->bge_mps & PCIEM_CAP_MAX_PAYLOAD);
3574 		if (sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3575 		    sc->bge_asicrev == BGE_ASICREV_BCM5720)
3576 			sc->bge_expmrq = 2048;
3577 		else
3578 			sc->bge_expmrq = 4096;
3579 		pci_set_max_read_req(dev, sc->bge_expmrq);
3580 	} else {
3581 		/*
3582 		 * Check if the device is in PCI-X Mode.
3583 		 * (This bit is not valid on PCI Express controllers.)
3584 		 */
3585 		if (pci_find_cap(dev, PCIY_PCIX, &reg) == 0)
3586 			sc->bge_pcixcap = reg;
3587 		if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
3588 		    BGE_PCISTATE_PCI_BUSMODE) == 0)
3589 			sc->bge_flags |= BGE_FLAG_PCIX;
3590 	}
3591 
3592 	/*
3593 	 * The 40bit DMA bug applies to the 5714/5715 controllers and is
3594 	 * not actually a MAC controller bug but an issue with the embedded
3595 	 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
3596 	 */
3597 	if (BGE_IS_5714_FAMILY(sc) && (sc->bge_flags & BGE_FLAG_PCIX))
3598 		sc->bge_flags |= BGE_FLAG_40BIT_BUG;
3599 	/*
3600 	 * Some PCI-X bridges are known to trigger write reordering to
3601 	 * the mailbox registers. Typical phenomena is watchdog timeouts
3602 	 * caused by out-of-order TX completions.  Enable workaround for
3603 	 * PCI-X devices that live behind these bridges.
3604 	 * Note, PCI-X controllers can run in PCI mode so we can't use
3605 	 * BGE_FLAG_PCIX flag to detect PCI-X controllers.
3606 	 */
3607 	if (sc->bge_pcixcap != 0 && bge_mbox_reorder(sc) != 0)
3608 		sc->bge_flags |= BGE_FLAG_MBOX_REORDER;
3609 	/*
3610 	 * Allocate the interrupt, using MSI if possible.  These devices
3611 	 * support 8 MSI messages, but only the first one is used in
3612 	 * normal operation.
3613 	 */
3614 	rid = 0;
3615 	if (pci_find_cap(sc->bge_dev, PCIY_MSI, &reg) == 0) {
3616 		sc->bge_msicap = reg;
3617 		if (bge_can_use_msi(sc)) {
3618 			msicount = pci_msi_count(dev);
3619 			if (msicount > 1)
3620 				msicount = 1;
3621 		} else
3622 			msicount = 0;
3623 		if (msicount == 1 && pci_alloc_msi(dev, &msicount) == 0) {
3624 			rid = 1;
3625 			sc->bge_flags |= BGE_FLAG_MSI;
3626 		}
3627 	}
3628 
3629 	/*
3630 	 * All controllers except BCM5700 supports tagged status but
3631 	 * we use tagged status only for MSI case on BCM5717. Otherwise
3632 	 * MSI on BCM5717 does not work.
3633 	 */
3634 #ifndef DEVICE_POLLING
3635 	if (sc->bge_flags & BGE_FLAG_MSI && BGE_IS_5717_PLUS(sc))
3636 		sc->bge_flags |= BGE_FLAG_TAGGED_STATUS;
3637 #endif
3638 
3639 	sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
3640 	    RF_SHAREABLE | RF_ACTIVE);
3641 
3642 	if (sc->bge_irq == NULL) {
3643 		device_printf(sc->bge_dev, "couldn't map interrupt\n");
3644 		error = ENXIO;
3645 		goto fail;
3646 	}
3647 
3648 	bge_devinfo(sc);
3649 
3650 	sc->bge_asf_mode = 0;
3651 	/* No ASF if APE present. */
3652 	if ((sc->bge_flags & BGE_FLAG_APE) == 0) {
3653 		if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3654 		    BGE_SRAM_DATA_SIG_MAGIC)) {
3655 			if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3656 			    BGE_HWCFG_ASF) {
3657 				sc->bge_asf_mode |= ASF_ENABLE;
3658 				sc->bge_asf_mode |= ASF_STACKUP;
3659 				if (BGE_IS_575X_PLUS(sc))
3660 					sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3661 			}
3662 		}
3663 	}
3664 
3665 	bge_stop_fw(sc);
3666 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
3667 	if (bge_reset(sc)) {
3668 		device_printf(sc->bge_dev, "chip reset failed\n");
3669 		error = ENXIO;
3670 		goto fail;
3671 	}
3672 
3673 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
3674 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
3675 
3676 	if (bge_chipinit(sc)) {
3677 		device_printf(sc->bge_dev, "chip initialization failed\n");
3678 		error = ENXIO;
3679 		goto fail;
3680 	}
3681 
3682 	error = bge_get_eaddr(sc, eaddr);
3683 	if (error) {
3684 		device_printf(sc->bge_dev,
3685 		    "failed to read station address\n");
3686 		error = ENXIO;
3687 		goto fail;
3688 	}
3689 
3690 	/* 5705 limits RX return ring to 512 entries. */
3691 	if (BGE_IS_5717_PLUS(sc))
3692 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3693 	else if (BGE_IS_5705_PLUS(sc))
3694 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3695 	else
3696 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3697 
3698 	if (bge_dma_alloc(sc)) {
3699 		device_printf(sc->bge_dev,
3700 		    "failed to allocate DMA resources\n");
3701 		error = ENXIO;
3702 		goto fail;
3703 	}
3704 
3705 	/* Set default tuneable values. */
3706 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3707 	sc->bge_rx_coal_ticks = 150;
3708 	sc->bge_tx_coal_ticks = 150;
3709 	sc->bge_rx_max_coal_bds = 10;
3710 	sc->bge_tx_max_coal_bds = 10;
3711 
3712 	/* Initialize checksum features to use. */
3713 	sc->bge_csum_features = BGE_CSUM_FEATURES;
3714 	if (sc->bge_forced_udpcsum != 0)
3715 		sc->bge_csum_features |= CSUM_UDP;
3716 
3717 	/* Set up ifnet structure */
3718 	ifp = sc->bge_ifp = if_alloc(IFT_ETHER);
3719 	if (ifp == NULL) {
3720 		device_printf(sc->bge_dev, "failed to if_alloc()\n");
3721 		error = ENXIO;
3722 		goto fail;
3723 	}
3724 	ifp->if_softc = sc;
3725 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
3726 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
3727 	ifp->if_ioctl = bge_ioctl;
3728 	ifp->if_start = bge_start;
3729 	ifp->if_init = bge_init;
3730 	ifp->if_snd.ifq_drv_maxlen = BGE_TX_RING_CNT - 1;
3731 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
3732 	IFQ_SET_READY(&ifp->if_snd);
3733 	ifp->if_hwassist = sc->bge_csum_features;
3734 	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING |
3735 	    IFCAP_VLAN_MTU;
3736 	if ((sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) != 0) {
3737 		ifp->if_hwassist |= CSUM_TSO;
3738 		ifp->if_capabilities |= IFCAP_TSO4 | IFCAP_VLAN_HWTSO;
3739 	}
3740 #ifdef IFCAP_VLAN_HWCSUM
3741 	ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
3742 #endif
3743 	ifp->if_capenable = ifp->if_capabilities;
3744 #ifdef DEVICE_POLLING
3745 	ifp->if_capabilities |= IFCAP_POLLING;
3746 #endif
3747 
3748 	/*
3749 	 * 5700 B0 chips do not support checksumming correctly due
3750 	 * to hardware bugs.
3751 	 */
3752 	if (sc->bge_chipid == BGE_CHIPID_BCM5700_B0) {
3753 		ifp->if_capabilities &= ~IFCAP_HWCSUM;
3754 		ifp->if_capenable &= ~IFCAP_HWCSUM;
3755 		ifp->if_hwassist = 0;
3756 	}
3757 
3758 	/*
3759 	 * Figure out what sort of media we have by checking the
3760 	 * hardware config word in the first 32k of NIC internal memory,
3761 	 * or fall back to examining the EEPROM if necessary.
3762 	 * Note: on some BCM5700 cards, this value appears to be unset.
3763 	 * If that's the case, we have to rely on identifying the NIC
3764 	 * by its PCI subsystem ID, as we do below for the SysKonnect
3765 	 * SK-9D41.
3766 	 */
3767 	if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == BGE_SRAM_DATA_SIG_MAGIC)
3768 		hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3769 	else if ((sc->bge_flags & BGE_FLAG_EADDR) &&
3770 	    (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
3771 		if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
3772 		    sizeof(hwcfg))) {
3773 			device_printf(sc->bge_dev, "failed to read EEPROM\n");
3774 			error = ENXIO;
3775 			goto fail;
3776 		}
3777 		hwcfg = ntohl(hwcfg);
3778 	}
3779 
3780 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
3781 	if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) ==
3782 	    SK_SUBSYSID_9D41 || (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3783 		if (BGE_IS_5705_PLUS(sc)) {
3784 			sc->bge_flags |= BGE_FLAG_MII_SERDES;
3785 			sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3786 		} else
3787 			sc->bge_flags |= BGE_FLAG_TBI;
3788 	}
3789 
3790 	/* Set various PHY bug flags. */
3791 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3792 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3793 		sc->bge_phy_flags |= BGE_PHY_CRC_BUG;
3794 	if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
3795 	    sc->bge_chiprev == BGE_CHIPREV_5704_AX)
3796 		sc->bge_phy_flags |= BGE_PHY_ADC_BUG;
3797 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3798 		sc->bge_phy_flags |= BGE_PHY_5704_A0_BUG;
3799 	if (pci_get_subvendor(dev) == DELL_VENDORID)
3800 		sc->bge_phy_flags |= BGE_PHY_NO_3LED;
3801 	if ((BGE_IS_5705_PLUS(sc)) &&
3802 	    sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
3803 	    sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
3804 	    sc->bge_asicrev != BGE_ASICREV_BCM57780 &&
3805 	    !BGE_IS_5717_PLUS(sc)) {
3806 		if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
3807 		    sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
3808 		    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
3809 		    sc->bge_asicrev == BGE_ASICREV_BCM5787) {
3810 			if (pci_get_device(dev) != BCOM_DEVICEID_BCM5722 &&
3811 			    pci_get_device(dev) != BCOM_DEVICEID_BCM5756)
3812 				sc->bge_phy_flags |= BGE_PHY_JITTER_BUG;
3813 			if (pci_get_device(dev) == BCOM_DEVICEID_BCM5755M)
3814 				sc->bge_phy_flags |= BGE_PHY_ADJUST_TRIM;
3815 		} else
3816 			sc->bge_phy_flags |= BGE_PHY_BER_BUG;
3817 	}
3818 
3819 	/*
3820 	 * Don't enable Ethernet@WireSpeed for the 5700 or the
3821 	 * 5705 A0 and A1 chips.
3822 	 */
3823 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
3824 	    (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
3825 	    (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3826 	    sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
3827 		sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3828 
3829 	if (sc->bge_flags & BGE_FLAG_TBI) {
3830 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3831 		    bge_ifmedia_sts);
3832 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL);
3833 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX | IFM_FDX,
3834 		    0, NULL);
3835 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3836 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3837 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3838 	} else {
3839 		/*
3840 		 * Do transceiver setup and tell the firmware the
3841 		 * driver is down so we can try to get access the
3842 		 * probe if ASF is running.  Retry a couple of times
3843 		 * if we get a conflict with the ASF firmware accessing
3844 		 * the PHY.
3845 		 */
3846 		trys = 0;
3847 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3848 again:
3849 		bge_asf_driver_up(sc);
3850 
3851 		error = mii_attach(dev, &sc->bge_miibus, ifp, bge_ifmedia_upd,
3852 		    bge_ifmedia_sts, capmask, sc->bge_phy_addr, MII_OFFSET_ANY,
3853 		    MIIF_DOPAUSE);
3854 		if (error != 0) {
3855 			if (trys++ < 4) {
3856 				device_printf(sc->bge_dev, "Try again\n");
3857 				bge_miibus_writereg(sc->bge_dev,
3858 				    sc->bge_phy_addr, MII_BMCR, BMCR_RESET);
3859 				goto again;
3860 			}
3861 			device_printf(sc->bge_dev, "attaching PHYs failed\n");
3862 			goto fail;
3863 		}
3864 
3865 		/*
3866 		 * Now tell the firmware we are going up after probing the PHY
3867 		 */
3868 		if (sc->bge_asf_mode & ASF_STACKUP)
3869 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3870 	}
3871 
3872 	/*
3873 	 * When using the BCM5701 in PCI-X mode, data corruption has
3874 	 * been observed in the first few bytes of some received packets.
3875 	 * Aligning the packet buffer in memory eliminates the corruption.
3876 	 * Unfortunately, this misaligns the packet payloads.  On platforms
3877 	 * which do not support unaligned accesses, we will realign the
3878 	 * payloads by copying the received packets.
3879 	 */
3880 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
3881 	    sc->bge_flags & BGE_FLAG_PCIX)
3882                 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
3883 
3884 	/*
3885 	 * Call MI attach routine.
3886 	 */
3887 	ether_ifattach(ifp, eaddr);
3888 
3889 	/* Tell upper layer we support long frames. */
3890 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
3891 
3892 	/*
3893 	 * Hookup IRQ last.
3894 	 */
3895 	if (BGE_IS_5755_PLUS(sc) && sc->bge_flags & BGE_FLAG_MSI) {
3896 		/* Take advantage of single-shot MSI. */
3897 		CSR_WRITE_4(sc, BGE_MSI_MODE, CSR_READ_4(sc, BGE_MSI_MODE) &
3898 		    ~BGE_MSIMODE_ONE_SHOT_DISABLE);
3899 		sc->bge_tq = taskqueue_create_fast("bge_taskq", M_WAITOK,
3900 		    taskqueue_thread_enqueue, &sc->bge_tq);
3901 		if (sc->bge_tq == NULL) {
3902 			device_printf(dev, "could not create taskqueue.\n");
3903 			ether_ifdetach(ifp);
3904 			error = ENOMEM;
3905 			goto fail;
3906 		}
3907 		error = taskqueue_start_threads(&sc->bge_tq, 1, PI_NET,
3908 		    "%s taskq", device_get_nameunit(sc->bge_dev));
3909 		if (error != 0) {
3910 			device_printf(dev, "could not start threads.\n");
3911 			ether_ifdetach(ifp);
3912 			goto fail;
3913 		}
3914 		error = bus_setup_intr(dev, sc->bge_irq,
3915 		    INTR_TYPE_NET | INTR_MPSAFE, bge_msi_intr, NULL, sc,
3916 		    &sc->bge_intrhand);
3917 	} else
3918 		error = bus_setup_intr(dev, sc->bge_irq,
3919 		    INTR_TYPE_NET | INTR_MPSAFE, NULL, bge_intr, sc,
3920 		    &sc->bge_intrhand);
3921 
3922 	if (error) {
3923 		ether_ifdetach(ifp);
3924 		device_printf(sc->bge_dev, "couldn't set up irq\n");
3925 	}
3926 
3927 fail:
3928 	if (error)
3929 		bge_detach(dev);
3930 	return (error);
3931 }
3932 
3933 static int
3934 bge_detach(device_t dev)
3935 {
3936 	struct bge_softc *sc;
3937 	struct ifnet *ifp;
3938 
3939 	sc = device_get_softc(dev);
3940 	ifp = sc->bge_ifp;
3941 
3942 #ifdef DEVICE_POLLING
3943 	if (ifp->if_capenable & IFCAP_POLLING)
3944 		ether_poll_deregister(ifp);
3945 #endif
3946 
3947 	if (device_is_attached(dev)) {
3948 		ether_ifdetach(ifp);
3949 		BGE_LOCK(sc);
3950 		bge_stop(sc);
3951 		BGE_UNLOCK(sc);
3952 		callout_drain(&sc->bge_stat_ch);
3953 	}
3954 
3955 	if (sc->bge_tq)
3956 		taskqueue_drain(sc->bge_tq, &sc->bge_intr_task);
3957 
3958 	if (sc->bge_flags & BGE_FLAG_TBI)
3959 		ifmedia_removeall(&sc->bge_ifmedia);
3960 	else if (sc->bge_miibus != NULL) {
3961 		bus_generic_detach(dev);
3962 		device_delete_child(dev, sc->bge_miibus);
3963 	}
3964 
3965 	bge_release_resources(sc);
3966 
3967 	return (0);
3968 }
3969 
3970 static void
3971 bge_release_resources(struct bge_softc *sc)
3972 {
3973 	device_t dev;
3974 
3975 	dev = sc->bge_dev;
3976 
3977 	if (sc->bge_tq != NULL)
3978 		taskqueue_free(sc->bge_tq);
3979 
3980 	if (sc->bge_intrhand != NULL)
3981 		bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
3982 
3983 	if (sc->bge_irq != NULL)
3984 		bus_release_resource(dev, SYS_RES_IRQ,
3985 		    sc->bge_flags & BGE_FLAG_MSI ? 1 : 0, sc->bge_irq);
3986 
3987 	if (sc->bge_flags & BGE_FLAG_MSI)
3988 		pci_release_msi(dev);
3989 
3990 	if (sc->bge_res != NULL)
3991 		bus_release_resource(dev, SYS_RES_MEMORY,
3992 		    PCIR_BAR(0), sc->bge_res);
3993 
3994 	if (sc->bge_res2 != NULL)
3995 		bus_release_resource(dev, SYS_RES_MEMORY,
3996 		    PCIR_BAR(2), sc->bge_res2);
3997 
3998 	if (sc->bge_ifp != NULL)
3999 		if_free(sc->bge_ifp);
4000 
4001 	bge_dma_free(sc);
4002 
4003 	if (mtx_initialized(&sc->bge_mtx))	/* XXX */
4004 		BGE_LOCK_DESTROY(sc);
4005 }
4006 
4007 static int
4008 bge_reset(struct bge_softc *sc)
4009 {
4010 	device_t dev;
4011 	uint32_t cachesize, command, mac_mode, mac_mode_mask, reset, val;
4012 	void (*write_op)(struct bge_softc *, int, int);
4013 	uint16_t devctl;
4014 	int i;
4015 
4016 	dev = sc->bge_dev;
4017 
4018 	mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
4019 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4020 		mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
4021 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
4022 
4023 	if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
4024 	    (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
4025 		if (sc->bge_flags & BGE_FLAG_PCIE)
4026 			write_op = bge_writemem_direct;
4027 		else
4028 			write_op = bge_writemem_ind;
4029 	} else
4030 		write_op = bge_writereg_ind;
4031 
4032 	if (sc->bge_asicrev != BGE_ASICREV_BCM5700 &&
4033 	    sc->bge_asicrev != BGE_ASICREV_BCM5701) {
4034 		CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
4035 		for (i = 0; i < 8000; i++) {
4036 			if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
4037 			    BGE_NVRAMSWARB_GNT1)
4038 				break;
4039 			DELAY(20);
4040 		}
4041 		if (i == 8000) {
4042 			if (bootverbose)
4043 				device_printf(dev, "NVRAM lock timedout!\n");
4044 		}
4045 	}
4046 	/* Take APE lock when performing reset. */
4047 	bge_ape_lock(sc, BGE_APE_LOCK_GRC);
4048 
4049 	/* Save some important PCI state. */
4050 	cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
4051 	command = pci_read_config(dev, BGE_PCI_CMD, 4);
4052 
4053 	pci_write_config(dev, BGE_PCI_MISC_CTL,
4054 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4055 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
4056 
4057 	/* Disable fastboot on controllers that support it. */
4058 	if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
4059 	    BGE_IS_5755_PLUS(sc)) {
4060 		if (bootverbose)
4061 			device_printf(dev, "Disabling fastboot\n");
4062 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
4063 	}
4064 
4065 	/*
4066 	 * Write the magic number to SRAM at offset 0xB50.
4067 	 * When firmware finishes its initialization it will
4068 	 * write ~BGE_SRAM_FW_MB_MAGIC to the same location.
4069 	 */
4070 	bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
4071 
4072 	reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
4073 
4074 	/* XXX: Broadcom Linux driver. */
4075 	if (sc->bge_flags & BGE_FLAG_PCIE) {
4076 		if (sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
4077 		    (sc->bge_flags & BGE_FLAG_5717_PLUS) == 0) {
4078 			if (CSR_READ_4(sc, 0x7E2C) == 0x60)	/* PCIE 1.0 */
4079 				CSR_WRITE_4(sc, 0x7E2C, 0x20);
4080 		}
4081 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
4082 			/* Prevent PCIE link training during global reset */
4083 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
4084 			reset |= 1 << 29;
4085 		}
4086 	}
4087 
4088 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
4089 		val = CSR_READ_4(sc, BGE_VCPU_STATUS);
4090 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
4091 		    val | BGE_VCPU_STATUS_DRV_RESET);
4092 		val = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
4093 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
4094 		    val & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
4095 	}
4096 
4097 	/*
4098 	 * Set GPHY Power Down Override to leave GPHY
4099 	 * powered up in D0 uninitialized.
4100 	 */
4101 	if (BGE_IS_5705_PLUS(sc) &&
4102 	    (sc->bge_flags & BGE_FLAG_CPMU_PRESENT) == 0)
4103 		reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
4104 
4105 	/* Issue global reset */
4106 	write_op(sc, BGE_MISC_CFG, reset);
4107 
4108 	if (sc->bge_flags & BGE_FLAG_PCIE)
4109 		DELAY(100 * 1000);
4110 	else
4111 		DELAY(1000);
4112 
4113 	/* XXX: Broadcom Linux driver. */
4114 	if (sc->bge_flags & BGE_FLAG_PCIE) {
4115 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
4116 			DELAY(500000); /* wait for link training to complete */
4117 			val = pci_read_config(dev, 0xC4, 4);
4118 			pci_write_config(dev, 0xC4, val | (1 << 15), 4);
4119 		}
4120 		devctl = pci_read_config(dev,
4121 		    sc->bge_expcap + PCIER_DEVICE_CTL, 2);
4122 		/* Clear enable no snoop and disable relaxed ordering. */
4123 		devctl &= ~(PCIEM_CTL_RELAXED_ORD_ENABLE |
4124 		    PCIEM_CTL_NOSNOOP_ENABLE);
4125 		pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_CTL,
4126 		    devctl, 2);
4127 		pci_set_max_read_req(dev, sc->bge_expmrq);
4128 		/* Clear error status. */
4129 		pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_STA,
4130 		    PCIEM_STA_CORRECTABLE_ERROR |
4131 		    PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR |
4132 		    PCIEM_STA_UNSUPPORTED_REQ, 2);
4133 	}
4134 
4135 	/* Reset some of the PCI state that got zapped by reset. */
4136 	pci_write_config(dev, BGE_PCI_MISC_CTL,
4137 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4138 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
4139 	val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
4140 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
4141 	    (sc->bge_flags & BGE_FLAG_PCIX) != 0)
4142 		val |= BGE_PCISTATE_RETRY_SAME_DMA;
4143 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4144 		val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
4145 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
4146 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
4147 	pci_write_config(dev, BGE_PCI_PCISTATE, val, 4);
4148 	pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
4149 	pci_write_config(dev, BGE_PCI_CMD, command, 4);
4150 	/*
4151 	 * Disable PCI-X relaxed ordering to ensure status block update
4152 	 * comes first then packet buffer DMA. Otherwise driver may
4153 	 * read stale status block.
4154 	 */
4155 	if (sc->bge_flags & BGE_FLAG_PCIX) {
4156 		devctl = pci_read_config(dev,
4157 		    sc->bge_pcixcap + PCIXR_COMMAND, 2);
4158 		devctl &= ~PCIXM_COMMAND_ERO;
4159 		if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
4160 			devctl &= ~PCIXM_COMMAND_MAX_READ;
4161 			devctl |= PCIXM_COMMAND_MAX_READ_2048;
4162 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
4163 			devctl &= ~(PCIXM_COMMAND_MAX_SPLITS |
4164 			    PCIXM_COMMAND_MAX_READ);
4165 			devctl |= PCIXM_COMMAND_MAX_READ_2048;
4166 		}
4167 		pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND,
4168 		    devctl, 2);
4169 	}
4170 	/* Re-enable MSI, if necessary, and enable the memory arbiter. */
4171 	if (BGE_IS_5714_FAMILY(sc)) {
4172 		/* This chip disables MSI on reset. */
4173 		if (sc->bge_flags & BGE_FLAG_MSI) {
4174 			val = pci_read_config(dev,
4175 			    sc->bge_msicap + PCIR_MSI_CTRL, 2);
4176 			pci_write_config(dev,
4177 			    sc->bge_msicap + PCIR_MSI_CTRL,
4178 			    val | PCIM_MSICTRL_MSI_ENABLE, 2);
4179 			val = CSR_READ_4(sc, BGE_MSI_MODE);
4180 			CSR_WRITE_4(sc, BGE_MSI_MODE,
4181 			    val | BGE_MSIMODE_ENABLE);
4182 		}
4183 		val = CSR_READ_4(sc, BGE_MARB_MODE);
4184 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
4185 	} else
4186 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4187 
4188 	/* Fix up byte swapping. */
4189 	CSR_WRITE_4(sc, BGE_MODE_CTL, bge_dma_swap_options(sc));
4190 
4191 	val = CSR_READ_4(sc, BGE_MAC_MODE);
4192 	val = (val & ~mac_mode_mask) | mac_mode;
4193 	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
4194 	DELAY(40);
4195 
4196 	bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
4197 
4198 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
4199 		for (i = 0; i < BGE_TIMEOUT; i++) {
4200 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
4201 			if (val & BGE_VCPU_STATUS_INIT_DONE)
4202 				break;
4203 			DELAY(100);
4204 		}
4205 		if (i == BGE_TIMEOUT) {
4206 			device_printf(dev, "reset timed out\n");
4207 			return (1);
4208 		}
4209 	} else {
4210 		/*
4211 		 * Poll until we see the 1's complement of the magic number.
4212 		 * This indicates that the firmware initialization is complete.
4213 		 * We expect this to fail if no chip containing the Ethernet
4214 		 * address is fitted though.
4215 		 */
4216 		for (i = 0; i < BGE_TIMEOUT; i++) {
4217 			DELAY(10);
4218 			val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
4219 			if (val == ~BGE_SRAM_FW_MB_MAGIC)
4220 				break;
4221 		}
4222 
4223 		if ((sc->bge_flags & BGE_FLAG_EADDR) && i == BGE_TIMEOUT)
4224 			device_printf(dev,
4225 			    "firmware handshake timed out, found 0x%08x\n",
4226 			    val);
4227 		/* BCM57765 A0 needs additional time before accessing. */
4228 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
4229 			DELAY(10 * 1000);	/* XXX */
4230 	}
4231 
4232 	/*
4233 	 * The 5704 in TBI mode apparently needs some special
4234 	 * adjustment to insure the SERDES drive level is set
4235 	 * to 1.2V.
4236 	 */
4237 	if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
4238 	    sc->bge_flags & BGE_FLAG_TBI) {
4239 		val = CSR_READ_4(sc, BGE_SERDES_CFG);
4240 		val = (val & ~0xFFF) | 0x880;
4241 		CSR_WRITE_4(sc, BGE_SERDES_CFG, val);
4242 	}
4243 
4244 	/* XXX: Broadcom Linux driver. */
4245 	if (sc->bge_flags & BGE_FLAG_PCIE &&
4246 	    !BGE_IS_5717_PLUS(sc) &&
4247 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
4248 	    sc->bge_asicrev != BGE_ASICREV_BCM5785) {
4249 		/* Enable Data FIFO protection. */
4250 		val = CSR_READ_4(sc, 0x7C00);
4251 		CSR_WRITE_4(sc, 0x7C00, val | (1 << 25));
4252 	}
4253 
4254 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720)
4255 		BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4256 		    CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4257 
4258 	return (0);
4259 }
4260 
4261 static __inline void
4262 bge_rxreuse_std(struct bge_softc *sc, int i)
4263 {
4264 	struct bge_rx_bd *r;
4265 
4266 	r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
4267 	r->bge_flags = BGE_RXBDFLAG_END;
4268 	r->bge_len = sc->bge_cdata.bge_rx_std_seglen[i];
4269 	r->bge_idx = i;
4270 	BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4271 }
4272 
4273 static __inline void
4274 bge_rxreuse_jumbo(struct bge_softc *sc, int i)
4275 {
4276 	struct bge_extrx_bd *r;
4277 
4278 	r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
4279 	r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
4280 	r->bge_len0 = sc->bge_cdata.bge_rx_jumbo_seglen[i][0];
4281 	r->bge_len1 = sc->bge_cdata.bge_rx_jumbo_seglen[i][1];
4282 	r->bge_len2 = sc->bge_cdata.bge_rx_jumbo_seglen[i][2];
4283 	r->bge_len3 = sc->bge_cdata.bge_rx_jumbo_seglen[i][3];
4284 	r->bge_idx = i;
4285 	BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4286 }
4287 
4288 /*
4289  * Frame reception handling. This is called if there's a frame
4290  * on the receive return list.
4291  *
4292  * Note: we have to be able to handle two possibilities here:
4293  * 1) the frame is from the jumbo receive ring
4294  * 2) the frame is from the standard receive ring
4295  */
4296 
4297 static int
4298 bge_rxeof(struct bge_softc *sc, uint16_t rx_prod, int holdlck)
4299 {
4300 	struct ifnet *ifp;
4301 	int rx_npkts = 0, stdcnt = 0, jumbocnt = 0;
4302 	uint16_t rx_cons;
4303 
4304 	rx_cons = sc->bge_rx_saved_considx;
4305 
4306 	/* Nothing to do. */
4307 	if (rx_cons == rx_prod)
4308 		return (rx_npkts);
4309 
4310 	ifp = sc->bge_ifp;
4311 
4312 	bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
4313 	    sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_POSTREAD);
4314 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
4315 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_POSTWRITE);
4316 	if (BGE_IS_JUMBO_CAPABLE(sc) &&
4317 	    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN >
4318 	    (MCLBYTES - ETHER_ALIGN))
4319 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
4320 		    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE);
4321 
4322 	while (rx_cons != rx_prod) {
4323 		struct bge_rx_bd	*cur_rx;
4324 		uint32_t		rxidx;
4325 		struct mbuf		*m = NULL;
4326 		uint16_t		vlan_tag = 0;
4327 		int			have_tag = 0;
4328 
4329 #ifdef DEVICE_POLLING
4330 		if (ifp->if_capenable & IFCAP_POLLING) {
4331 			if (sc->rxcycles <= 0)
4332 				break;
4333 			sc->rxcycles--;
4334 		}
4335 #endif
4336 
4337 		cur_rx = &sc->bge_ldata.bge_rx_return_ring[rx_cons];
4338 
4339 		rxidx = cur_rx->bge_idx;
4340 		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4341 
4342 		if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING &&
4343 		    cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
4344 			have_tag = 1;
4345 			vlan_tag = cur_rx->bge_vlan_tag;
4346 		}
4347 
4348 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4349 			jumbocnt++;
4350 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4351 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4352 				bge_rxreuse_jumbo(sc, rxidx);
4353 				continue;
4354 			}
4355 			if (bge_newbuf_jumbo(sc, rxidx) != 0) {
4356 				bge_rxreuse_jumbo(sc, rxidx);
4357 				ifp->if_iqdrops++;
4358 				continue;
4359 			}
4360 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4361 		} else {
4362 			stdcnt++;
4363 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4364 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4365 				bge_rxreuse_std(sc, rxidx);
4366 				continue;
4367 			}
4368 			if (bge_newbuf_std(sc, rxidx) != 0) {
4369 				bge_rxreuse_std(sc, rxidx);
4370 				ifp->if_iqdrops++;
4371 				continue;
4372 			}
4373 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4374 		}
4375 
4376 		ifp->if_ipackets++;
4377 #ifndef __NO_STRICT_ALIGNMENT
4378 		/*
4379 		 * For architectures with strict alignment we must make sure
4380 		 * the payload is aligned.
4381 		 */
4382 		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
4383 			bcopy(m->m_data, m->m_data + ETHER_ALIGN,
4384 			    cur_rx->bge_len);
4385 			m->m_data += ETHER_ALIGN;
4386 		}
4387 #endif
4388 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4389 		m->m_pkthdr.rcvif = ifp;
4390 
4391 		if (ifp->if_capenable & IFCAP_RXCSUM)
4392 			bge_rxcsum(sc, cur_rx, m);
4393 
4394 		/*
4395 		 * If we received a packet with a vlan tag,
4396 		 * attach that information to the packet.
4397 		 */
4398 		if (have_tag) {
4399 			m->m_pkthdr.ether_vtag = vlan_tag;
4400 			m->m_flags |= M_VLANTAG;
4401 		}
4402 
4403 		if (holdlck != 0) {
4404 			BGE_UNLOCK(sc);
4405 			(*ifp->if_input)(ifp, m);
4406 			BGE_LOCK(sc);
4407 		} else
4408 			(*ifp->if_input)(ifp, m);
4409 		rx_npkts++;
4410 
4411 		if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
4412 			return (rx_npkts);
4413 	}
4414 
4415 	bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
4416 	    sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_PREREAD);
4417 	if (stdcnt > 0)
4418 		bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
4419 		    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
4420 
4421 	if (jumbocnt > 0)
4422 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
4423 		    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
4424 
4425 	sc->bge_rx_saved_considx = rx_cons;
4426 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4427 	if (stdcnt)
4428 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, (sc->bge_std +
4429 		    BGE_STD_RX_RING_CNT - 1) % BGE_STD_RX_RING_CNT);
4430 	if (jumbocnt)
4431 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, (sc->bge_jumbo +
4432 		    BGE_JUMBO_RX_RING_CNT - 1) % BGE_JUMBO_RX_RING_CNT);
4433 #ifdef notyet
4434 	/*
4435 	 * This register wraps very quickly under heavy packet drops.
4436 	 * If you need correct statistics, you can enable this check.
4437 	 */
4438 	if (BGE_IS_5705_PLUS(sc))
4439 		ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4440 #endif
4441 	return (rx_npkts);
4442 }
4443 
4444 static void
4445 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
4446 {
4447 
4448 	if (BGE_IS_5717_PLUS(sc)) {
4449 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
4450 			if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
4451 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
4452 				if ((cur_rx->bge_error_flag &
4453 				    BGE_RXERRFLAG_IP_CSUM_NOK) == 0)
4454 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
4455 			}
4456 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
4457 				m->m_pkthdr.csum_data =
4458 				    cur_rx->bge_tcp_udp_csum;
4459 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
4460 				    CSUM_PSEUDO_HDR;
4461 			}
4462 		}
4463 	} else {
4464 		if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
4465 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
4466 			if ((cur_rx->bge_ip_csum ^ 0xFFFF) == 0)
4467 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
4468 		}
4469 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4470 		    m->m_pkthdr.len >= ETHER_MIN_NOPAD) {
4471 			m->m_pkthdr.csum_data =
4472 			    cur_rx->bge_tcp_udp_csum;
4473 			m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
4474 			    CSUM_PSEUDO_HDR;
4475 		}
4476 	}
4477 }
4478 
4479 static void
4480 bge_txeof(struct bge_softc *sc, uint16_t tx_cons)
4481 {
4482 	struct bge_tx_bd *cur_tx;
4483 	struct ifnet *ifp;
4484 
4485 	BGE_LOCK_ASSERT(sc);
4486 
4487 	/* Nothing to do. */
4488 	if (sc->bge_tx_saved_considx == tx_cons)
4489 		return;
4490 
4491 	ifp = sc->bge_ifp;
4492 
4493 	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
4494 	    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_POSTWRITE);
4495 	/*
4496 	 * Go through our tx ring and free mbufs for those
4497 	 * frames that have been sent.
4498 	 */
4499 	while (sc->bge_tx_saved_considx != tx_cons) {
4500 		uint32_t		idx;
4501 
4502 		idx = sc->bge_tx_saved_considx;
4503 		cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
4504 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4505 			ifp->if_opackets++;
4506 		if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
4507 			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
4508 			    sc->bge_cdata.bge_tx_dmamap[idx],
4509 			    BUS_DMASYNC_POSTWRITE);
4510 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
4511 			    sc->bge_cdata.bge_tx_dmamap[idx]);
4512 			m_freem(sc->bge_cdata.bge_tx_chain[idx]);
4513 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
4514 		}
4515 		sc->bge_txcnt--;
4516 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4517 	}
4518 
4519 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4520 	if (sc->bge_txcnt == 0)
4521 		sc->bge_timer = 0;
4522 }
4523 
4524 #ifdef DEVICE_POLLING
4525 static int
4526 bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
4527 {
4528 	struct bge_softc *sc = ifp->if_softc;
4529 	uint16_t rx_prod, tx_cons;
4530 	uint32_t statusword;
4531 	int rx_npkts = 0;
4532 
4533 	BGE_LOCK(sc);
4534 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
4535 		BGE_UNLOCK(sc);
4536 		return (rx_npkts);
4537 	}
4538 
4539 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4540 	    sc->bge_cdata.bge_status_map,
4541 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4542 	/* Fetch updates from the status block. */
4543 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4544 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4545 
4546 	statusword = sc->bge_ldata.bge_status_block->bge_status;
4547 	/* Clear the status so the next pass only sees the changes. */
4548 	sc->bge_ldata.bge_status_block->bge_status = 0;
4549 
4550 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4551 	    sc->bge_cdata.bge_status_map,
4552 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4553 
4554 	/* Note link event. It will be processed by POLL_AND_CHECK_STATUS. */
4555 	if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED)
4556 		sc->bge_link_evt++;
4557 
4558 	if (cmd == POLL_AND_CHECK_STATUS)
4559 		if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
4560 		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
4561 		    sc->bge_link_evt || (sc->bge_flags & BGE_FLAG_TBI))
4562 			bge_link_upd(sc);
4563 
4564 	sc->rxcycles = count;
4565 	rx_npkts = bge_rxeof(sc, rx_prod, 1);
4566 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
4567 		BGE_UNLOCK(sc);
4568 		return (rx_npkts);
4569 	}
4570 	bge_txeof(sc, tx_cons);
4571 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
4572 		bge_start_locked(ifp);
4573 
4574 	BGE_UNLOCK(sc);
4575 	return (rx_npkts);
4576 }
4577 #endif /* DEVICE_POLLING */
4578 
4579 static int
4580 bge_msi_intr(void *arg)
4581 {
4582 	struct bge_softc *sc;
4583 
4584 	sc = (struct bge_softc *)arg;
4585 	/*
4586 	 * This interrupt is not shared and controller already
4587 	 * disabled further interrupt.
4588 	 */
4589 	taskqueue_enqueue(sc->bge_tq, &sc->bge_intr_task);
4590 	return (FILTER_HANDLED);
4591 }
4592 
4593 static void
4594 bge_intr_task(void *arg, int pending)
4595 {
4596 	struct bge_softc *sc;
4597 	struct ifnet *ifp;
4598 	uint32_t status, status_tag;
4599 	uint16_t rx_prod, tx_cons;
4600 
4601 	sc = (struct bge_softc *)arg;
4602 	ifp = sc->bge_ifp;
4603 
4604 	BGE_LOCK(sc);
4605 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
4606 		BGE_UNLOCK(sc);
4607 		return;
4608 	}
4609 
4610 	/* Get updated status block. */
4611 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4612 	    sc->bge_cdata.bge_status_map,
4613 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4614 
4615 	/* Save producer/consumer indices. */
4616 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4617 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4618 	status = sc->bge_ldata.bge_status_block->bge_status;
4619 	status_tag = sc->bge_ldata.bge_status_block->bge_status_tag << 24;
4620 	/* Dirty the status flag. */
4621 	sc->bge_ldata.bge_status_block->bge_status = 0;
4622 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4623 	    sc->bge_cdata.bge_status_map,
4624 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4625 	if ((sc->bge_flags & BGE_FLAG_TAGGED_STATUS) == 0)
4626 		status_tag = 0;
4627 
4628 	if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) != 0)
4629 		bge_link_upd(sc);
4630 
4631 	/* Let controller work. */
4632 	bge_writembx(sc, BGE_MBX_IRQ0_LO, status_tag);
4633 
4634 	if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
4635 	    sc->bge_rx_saved_considx != rx_prod) {
4636 		/* Check RX return ring producer/consumer. */
4637 		BGE_UNLOCK(sc);
4638 		bge_rxeof(sc, rx_prod, 0);
4639 		BGE_LOCK(sc);
4640 	}
4641 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4642 		/* Check TX ring producer/consumer. */
4643 		bge_txeof(sc, tx_cons);
4644 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
4645 			bge_start_locked(ifp);
4646 	}
4647 	BGE_UNLOCK(sc);
4648 }
4649 
4650 static void
4651 bge_intr(void *xsc)
4652 {
4653 	struct bge_softc *sc;
4654 	struct ifnet *ifp;
4655 	uint32_t statusword;
4656 	uint16_t rx_prod, tx_cons;
4657 
4658 	sc = xsc;
4659 
4660 	BGE_LOCK(sc);
4661 
4662 	ifp = sc->bge_ifp;
4663 
4664 #ifdef DEVICE_POLLING
4665 	if (ifp->if_capenable & IFCAP_POLLING) {
4666 		BGE_UNLOCK(sc);
4667 		return;
4668 	}
4669 #endif
4670 
4671 	/*
4672 	 * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
4673 	 * disable interrupts by writing nonzero like we used to, since with
4674 	 * our current organization this just gives complications and
4675 	 * pessimizations for re-enabling interrupts.  We used to have races
4676 	 * instead of the necessary complications.  Disabling interrupts
4677 	 * would just reduce the chance of a status update while we are
4678 	 * running (by switching to the interrupt-mode coalescence
4679 	 * parameters), but this chance is already very low so it is more
4680 	 * efficient to get another interrupt than prevent it.
4681 	 *
4682 	 * We do the ack first to ensure another interrupt if there is a
4683 	 * status update after the ack.  We don't check for the status
4684 	 * changing later because it is more efficient to get another
4685 	 * interrupt than prevent it, not quite as above (not checking is
4686 	 * a smaller optimization than not toggling the interrupt enable,
4687 	 * since checking doesn't involve PCI accesses and toggling require
4688 	 * the status check).  So toggling would probably be a pessimization
4689 	 * even with MSI.  It would only be needed for using a task queue.
4690 	 */
4691 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
4692 
4693 	/*
4694 	 * Do the mandatory PCI flush as well as get the link status.
4695 	 */
4696 	statusword = CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_LINK_CHANGED;
4697 
4698 	/* Make sure the descriptor ring indexes are coherent. */
4699 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4700 	    sc->bge_cdata.bge_status_map,
4701 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4702 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4703 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4704 	sc->bge_ldata.bge_status_block->bge_status = 0;
4705 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4706 	    sc->bge_cdata.bge_status_map,
4707 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4708 
4709 	if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
4710 	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
4711 	    statusword || sc->bge_link_evt)
4712 		bge_link_upd(sc);
4713 
4714 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4715 		/* Check RX return ring producer/consumer. */
4716 		bge_rxeof(sc, rx_prod, 1);
4717 	}
4718 
4719 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4720 		/* Check TX ring producer/consumer. */
4721 		bge_txeof(sc, tx_cons);
4722 	}
4723 
4724 	if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
4725 	    !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
4726 		bge_start_locked(ifp);
4727 
4728 	BGE_UNLOCK(sc);
4729 }
4730 
4731 static void
4732 bge_asf_driver_up(struct bge_softc *sc)
4733 {
4734 	if (sc->bge_asf_mode & ASF_STACKUP) {
4735 		/* Send ASF heartbeat aprox. every 2s */
4736 		if (sc->bge_asf_count)
4737 			sc->bge_asf_count --;
4738 		else {
4739 			sc->bge_asf_count = 2;
4740 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4741 			    BGE_FW_CMD_DRV_ALIVE);
4742 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4743 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4744 			    BGE_FW_HB_TIMEOUT_SEC);
4745 			CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
4746 			    CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4747 			    BGE_RX_CPU_DRV_EVENT);
4748 		}
4749 	}
4750 }
4751 
4752 static void
4753 bge_tick(void *xsc)
4754 {
4755 	struct bge_softc *sc = xsc;
4756 	struct mii_data *mii = NULL;
4757 
4758 	BGE_LOCK_ASSERT(sc);
4759 
4760 	/* Synchronize with possible callout reset/stop. */
4761 	if (callout_pending(&sc->bge_stat_ch) ||
4762 	    !callout_active(&sc->bge_stat_ch))
4763 		return;
4764 
4765 	if (BGE_IS_5705_PLUS(sc))
4766 		bge_stats_update_regs(sc);
4767 	else
4768 		bge_stats_update(sc);
4769 
4770 	/* XXX Add APE heartbeat check here? */
4771 
4772 	if ((sc->bge_flags & BGE_FLAG_TBI) == 0) {
4773 		mii = device_get_softc(sc->bge_miibus);
4774 		/*
4775 		 * Do not touch PHY if we have link up. This could break
4776 		 * IPMI/ASF mode or produce extra input errors
4777 		 * (extra errors was reported for bcm5701 & bcm5704).
4778 		 */
4779 		if (!sc->bge_link)
4780 			mii_tick(mii);
4781 	} else {
4782 		/*
4783 		 * Since in TBI mode auto-polling can't be used we should poll
4784 		 * link status manually. Here we register pending link event
4785 		 * and trigger interrupt.
4786 		 */
4787 #ifdef DEVICE_POLLING
4788 		/* In polling mode we poll link state in bge_poll(). */
4789 		if (!(sc->bge_ifp->if_capenable & IFCAP_POLLING))
4790 #endif
4791 		{
4792 		sc->bge_link_evt++;
4793 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
4794 		    sc->bge_flags & BGE_FLAG_5788)
4795 			BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4796 		else
4797 			BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
4798 		}
4799 	}
4800 
4801 	bge_asf_driver_up(sc);
4802 	bge_watchdog(sc);
4803 
4804 	callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
4805 }
4806 
4807 static void
4808 bge_stats_update_regs(struct bge_softc *sc)
4809 {
4810 	struct ifnet *ifp;
4811 	struct bge_mac_stats *stats;
4812 	uint32_t val;
4813 
4814 	ifp = sc->bge_ifp;
4815 	stats = &sc->bge_mac_stats;
4816 
4817 	stats->ifHCOutOctets +=
4818 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
4819 	stats->etherStatsCollisions +=
4820 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
4821 	stats->outXonSent +=
4822 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
4823 	stats->outXoffSent +=
4824 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
4825 	stats->dot3StatsInternalMacTransmitErrors +=
4826 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
4827 	stats->dot3StatsSingleCollisionFrames +=
4828 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
4829 	stats->dot3StatsMultipleCollisionFrames +=
4830 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
4831 	stats->dot3StatsDeferredTransmissions +=
4832 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
4833 	stats->dot3StatsExcessiveCollisions +=
4834 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
4835 	stats->dot3StatsLateCollisions +=
4836 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
4837 	stats->ifHCOutUcastPkts +=
4838 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
4839 	stats->ifHCOutMulticastPkts +=
4840 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
4841 	stats->ifHCOutBroadcastPkts +=
4842 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
4843 
4844 	stats->ifHCInOctets +=
4845 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
4846 	stats->etherStatsFragments +=
4847 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
4848 	stats->ifHCInUcastPkts +=
4849 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
4850 	stats->ifHCInMulticastPkts +=
4851 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
4852 	stats->ifHCInBroadcastPkts +=
4853 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
4854 	stats->dot3StatsFCSErrors +=
4855 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
4856 	stats->dot3StatsAlignmentErrors +=
4857 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
4858 	stats->xonPauseFramesReceived +=
4859 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
4860 	stats->xoffPauseFramesReceived +=
4861 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
4862 	stats->macControlFramesReceived +=
4863 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
4864 	stats->xoffStateEntered +=
4865 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
4866 	stats->dot3StatsFramesTooLong +=
4867 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
4868 	stats->etherStatsJabbers +=
4869 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
4870 	stats->etherStatsUndersizePkts +=
4871 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
4872 
4873 	stats->FramesDroppedDueToFilters +=
4874 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
4875 	stats->DmaWriteQueueFull +=
4876 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
4877 	stats->DmaWriteHighPriQueueFull +=
4878 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
4879 	stats->NoMoreRxBDs +=
4880 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4881 	/*
4882 	 * XXX
4883 	 * Unlike other controllers, BGE_RXLP_LOCSTAT_IFIN_DROPS
4884 	 * counter of BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0
4885 	 * includes number of unwanted multicast frames.  This comes
4886 	 * from silicon bug and known workaround to get rough(not
4887 	 * exact) counter is to enable interrupt on MBUF low water
4888 	 * attention.  This can be accomplished by setting
4889 	 * BGE_HCCMODE_ATTN bit of BGE_HCC_MODE,
4890 	 * BGE_BMANMODE_LOMBUF_ATTN bit of BGE_BMAN_MODE and
4891 	 * BGE_MODECTL_FLOWCTL_ATTN_INTR bit of BGE_MODE_CTL.
4892 	 * However that change would generate more interrupts and
4893 	 * there are still possibilities of losing multiple frames
4894 	 * during BGE_MODECTL_FLOWCTL_ATTN_INTR interrupt handling.
4895 	 * Given that the workaround still would not get correct
4896 	 * counter I don't think it's worth to implement it.  So
4897 	 * ignore reading the counter on controllers that have the
4898 	 * silicon bug.
4899 	 */
4900 	if (sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
4901 	    sc->bge_chipid != BGE_CHIPID_BCM5719_A0 &&
4902 	    sc->bge_chipid != BGE_CHIPID_BCM5720_A0)
4903 		stats->InputDiscards +=
4904 		    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4905 	stats->InputErrors +=
4906 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4907 	stats->RecvThresholdHit +=
4908 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
4909 
4910 	ifp->if_collisions = (u_long)stats->etherStatsCollisions;
4911 	ifp->if_ierrors = (u_long)(stats->NoMoreRxBDs + stats->InputDiscards +
4912 	    stats->InputErrors);
4913 
4914 	if (sc->bge_flags & BGE_FLAG_RDMA_BUG) {
4915 		/*
4916 		 * If controller transmitted more than BGE_NUM_RDMA_CHANNELS
4917 		 * frames, it's safe to disable workaround for DMA engine's
4918 		 * miscalculation of TXMBUF space.
4919 		 */
4920 		if (stats->ifHCOutUcastPkts + stats->ifHCOutMulticastPkts +
4921 		    stats->ifHCOutBroadcastPkts > BGE_NUM_RDMA_CHANNELS) {
4922 			val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
4923 			if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
4924 				val &= ~BGE_RDMA_TX_LENGTH_WA_5719;
4925 			else
4926 				val &= ~BGE_RDMA_TX_LENGTH_WA_5720;
4927 			CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
4928 			sc->bge_flags &= ~BGE_FLAG_RDMA_BUG;
4929 		}
4930 	}
4931 }
4932 
4933 static void
4934 bge_stats_clear_regs(struct bge_softc *sc)
4935 {
4936 
4937 	CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
4938 	CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
4939 	CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
4940 	CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
4941 	CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
4942 	CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
4943 	CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
4944 	CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
4945 	CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
4946 	CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
4947 	CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
4948 	CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
4949 	CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
4950 
4951 	CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
4952 	CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
4953 	CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
4954 	CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
4955 	CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
4956 	CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
4957 	CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
4958 	CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
4959 	CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
4960 	CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
4961 	CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
4962 	CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
4963 	CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
4964 	CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
4965 
4966 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
4967 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
4968 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
4969 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4970 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4971 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4972 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
4973 }
4974 
4975 static void
4976 bge_stats_update(struct bge_softc *sc)
4977 {
4978 	struct ifnet *ifp;
4979 	bus_size_t stats;
4980 	uint32_t cnt;	/* current register value */
4981 
4982 	ifp = sc->bge_ifp;
4983 
4984 	stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4985 
4986 #define	READ_STAT(sc, stats, stat) \
4987 	CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4988 
4989 	cnt = READ_STAT(sc, stats, txstats.etherStatsCollisions.bge_addr_lo);
4990 	ifp->if_collisions += (uint32_t)(cnt - sc->bge_tx_collisions);
4991 	sc->bge_tx_collisions = cnt;
4992 
4993 	cnt = READ_STAT(sc, stats, nicNoMoreRxBDs.bge_addr_lo);
4994 	ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_nobds);
4995 	sc->bge_rx_nobds = cnt;
4996 	cnt = READ_STAT(sc, stats, ifInErrors.bge_addr_lo);
4997 	ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_inerrs);
4998 	sc->bge_rx_inerrs = cnt;
4999 	cnt = READ_STAT(sc, stats, ifInDiscards.bge_addr_lo);
5000 	ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_discards);
5001 	sc->bge_rx_discards = cnt;
5002 
5003 	cnt = READ_STAT(sc, stats, txstats.ifOutDiscards.bge_addr_lo);
5004 	ifp->if_oerrors += (uint32_t)(cnt - sc->bge_tx_discards);
5005 	sc->bge_tx_discards = cnt;
5006 
5007 #undef	READ_STAT
5008 }
5009 
5010 /*
5011  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
5012  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
5013  * but when such padded frames employ the bge IP/TCP checksum offload,
5014  * the hardware checksum assist gives incorrect results (possibly
5015  * from incorporating its own padding into the UDP/TCP checksum; who knows).
5016  * If we pad such runts with zeros, the onboard checksum comes out correct.
5017  */
5018 static __inline int
5019 bge_cksum_pad(struct mbuf *m)
5020 {
5021 	int padlen = ETHER_MIN_NOPAD - m->m_pkthdr.len;
5022 	struct mbuf *last;
5023 
5024 	/* If there's only the packet-header and we can pad there, use it. */
5025 	if (m->m_pkthdr.len == m->m_len && M_WRITABLE(m) &&
5026 	    M_TRAILINGSPACE(m) >= padlen) {
5027 		last = m;
5028 	} else {
5029 		/*
5030 		 * Walk packet chain to find last mbuf. We will either
5031 		 * pad there, or append a new mbuf and pad it.
5032 		 */
5033 		for (last = m; last->m_next != NULL; last = last->m_next);
5034 		if (!(M_WRITABLE(last) && M_TRAILINGSPACE(last) >= padlen)) {
5035 			/* Allocate new empty mbuf, pad it. Compact later. */
5036 			struct mbuf *n;
5037 
5038 			MGET(n, M_NOWAIT, MT_DATA);
5039 			if (n == NULL)
5040 				return (ENOBUFS);
5041 			n->m_len = 0;
5042 			last->m_next = n;
5043 			last = n;
5044 		}
5045 	}
5046 
5047 	/* Now zero the pad area, to avoid the bge cksum-assist bug. */
5048 	memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
5049 	last->m_len += padlen;
5050 	m->m_pkthdr.len += padlen;
5051 
5052 	return (0);
5053 }
5054 
5055 static struct mbuf *
5056 bge_check_short_dma(struct mbuf *m)
5057 {
5058 	struct mbuf *n;
5059 	int found;
5060 
5061 	/*
5062 	 * If device receive two back-to-back send BDs with less than
5063 	 * or equal to 8 total bytes then the device may hang.  The two
5064 	 * back-to-back send BDs must in the same frame for this failure
5065 	 * to occur.  Scan mbuf chains and see whether two back-to-back
5066 	 * send BDs are there. If this is the case, allocate new mbuf
5067 	 * and copy the frame to workaround the silicon bug.
5068 	 */
5069 	for (n = m, found = 0; n != NULL; n = n->m_next) {
5070 		if (n->m_len < 8) {
5071 			found++;
5072 			if (found > 1)
5073 				break;
5074 			continue;
5075 		}
5076 		found = 0;
5077 	}
5078 
5079 	if (found > 1) {
5080 		n = m_defrag(m, M_NOWAIT);
5081 		if (n == NULL)
5082 			m_freem(m);
5083 	} else
5084 		n = m;
5085 	return (n);
5086 }
5087 
5088 static struct mbuf *
5089 bge_setup_tso(struct bge_softc *sc, struct mbuf *m, uint16_t *mss,
5090     uint16_t *flags)
5091 {
5092 	struct ip *ip;
5093 	struct tcphdr *tcp;
5094 	struct mbuf *n;
5095 	uint16_t hlen;
5096 	uint32_t poff;
5097 
5098 	if (M_WRITABLE(m) == 0) {
5099 		/* Get a writable copy. */
5100 		n = m_dup(m, M_NOWAIT);
5101 		m_freem(m);
5102 		if (n == NULL)
5103 			return (NULL);
5104 		m = n;
5105 	}
5106 	m = m_pullup(m, sizeof(struct ether_header) + sizeof(struct ip));
5107 	if (m == NULL)
5108 		return (NULL);
5109 	ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
5110 	poff = sizeof(struct ether_header) + (ip->ip_hl << 2);
5111 	m = m_pullup(m, poff + sizeof(struct tcphdr));
5112 	if (m == NULL)
5113 		return (NULL);
5114 	tcp = (struct tcphdr *)(mtod(m, char *) + poff);
5115 	m = m_pullup(m, poff + (tcp->th_off << 2));
5116 	if (m == NULL)
5117 		return (NULL);
5118 	/*
5119 	 * It seems controller doesn't modify IP length and TCP pseudo
5120 	 * checksum. These checksum computed by upper stack should be 0.
5121 	 */
5122 	*mss = m->m_pkthdr.tso_segsz;
5123 	ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
5124 	ip->ip_sum = 0;
5125 	ip->ip_len = htons(*mss + (ip->ip_hl << 2) + (tcp->th_off << 2));
5126 	/* Clear pseudo checksum computed by TCP stack. */
5127 	tcp = (struct tcphdr *)(mtod(m, char *) + poff);
5128 	tcp->th_sum = 0;
5129 	/*
5130 	 * Broadcom controllers uses different descriptor format for
5131 	 * TSO depending on ASIC revision. Due to TSO-capable firmware
5132 	 * license issue and lower performance of firmware based TSO
5133 	 * we only support hardware based TSO.
5134 	 */
5135 	/* Calculate header length, incl. TCP/IP options, in 32 bit units. */
5136 	hlen = ((ip->ip_hl << 2) + (tcp->th_off << 2)) >> 2;
5137 	if (sc->bge_flags & BGE_FLAG_TSO3) {
5138 		/*
5139 		 * For BCM5717 and newer controllers, hardware based TSO
5140 		 * uses the 14 lower bits of the bge_mss field to store the
5141 		 * MSS and the upper 2 bits to store the lowest 2 bits of
5142 		 * the IP/TCP header length.  The upper 6 bits of the header
5143 		 * length are stored in the bge_flags[14:10,4] field.  Jumbo
5144 		 * frames are supported.
5145 		 */
5146 		*mss |= ((hlen & 0x3) << 14);
5147 		*flags |= ((hlen & 0xF8) << 7) | ((hlen & 0x4) << 2);
5148 	} else {
5149 		/*
5150 		 * For BCM5755 and newer controllers, hardware based TSO uses
5151 		 * the lower 11	bits to store the MSS and the upper 5 bits to
5152 		 * store the IP/TCP header length. Jumbo frames are not
5153 		 * supported.
5154 		 */
5155 		*mss |= (hlen << 11);
5156 	}
5157 	return (m);
5158 }
5159 
5160 /*
5161  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
5162  * pointers to descriptors.
5163  */
5164 static int
5165 bge_encap(struct bge_softc *sc, struct mbuf **m_head, uint32_t *txidx)
5166 {
5167 	bus_dma_segment_t	segs[BGE_NSEG_NEW];
5168 	bus_dmamap_t		map;
5169 	struct bge_tx_bd	*d;
5170 	struct mbuf		*m = *m_head;
5171 	uint32_t		idx = *txidx;
5172 	uint16_t		csum_flags, mss, vlan_tag;
5173 	int			nsegs, i, error;
5174 
5175 	csum_flags = 0;
5176 	mss = 0;
5177 	vlan_tag = 0;
5178 	if ((sc->bge_flags & BGE_FLAG_SHORT_DMA_BUG) != 0 &&
5179 	    m->m_next != NULL) {
5180 		*m_head = bge_check_short_dma(m);
5181 		if (*m_head == NULL)
5182 			return (ENOBUFS);
5183 		m = *m_head;
5184 	}
5185 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
5186 		*m_head = m = bge_setup_tso(sc, m, &mss, &csum_flags);
5187 		if (*m_head == NULL)
5188 			return (ENOBUFS);
5189 		csum_flags |= BGE_TXBDFLAG_CPU_PRE_DMA |
5190 		    BGE_TXBDFLAG_CPU_POST_DMA;
5191 	} else if ((m->m_pkthdr.csum_flags & sc->bge_csum_features) != 0) {
5192 		if (m->m_pkthdr.csum_flags & CSUM_IP)
5193 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
5194 		if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) {
5195 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
5196 			if (m->m_pkthdr.len < ETHER_MIN_NOPAD &&
5197 			    (error = bge_cksum_pad(m)) != 0) {
5198 				m_freem(m);
5199 				*m_head = NULL;
5200 				return (error);
5201 			}
5202 		}
5203 	}
5204 
5205 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0) {
5206 		if (sc->bge_flags & BGE_FLAG_JUMBO_FRAME &&
5207 		    m->m_pkthdr.len > ETHER_MAX_LEN)
5208 			csum_flags |= BGE_TXBDFLAG_JUMBO_FRAME;
5209 		if (sc->bge_forced_collapse > 0 &&
5210 		    (sc->bge_flags & BGE_FLAG_PCIE) != 0 && m->m_next != NULL) {
5211 			/*
5212 			 * Forcedly collapse mbuf chains to overcome hardware
5213 			 * limitation which only support a single outstanding
5214 			 * DMA read operation.
5215 			 */
5216 			if (sc->bge_forced_collapse == 1)
5217 				m = m_defrag(m, M_NOWAIT);
5218 			else
5219 				m = m_collapse(m, M_NOWAIT,
5220 				    sc->bge_forced_collapse);
5221 			if (m == NULL)
5222 				m = *m_head;
5223 			*m_head = m;
5224 		}
5225 	}
5226 
5227 	map = sc->bge_cdata.bge_tx_dmamap[idx];
5228 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map, m, segs,
5229 	    &nsegs, BUS_DMA_NOWAIT);
5230 	if (error == EFBIG) {
5231 		m = m_collapse(m, M_NOWAIT, BGE_NSEG_NEW);
5232 		if (m == NULL) {
5233 			m_freem(*m_head);
5234 			*m_head = NULL;
5235 			return (ENOBUFS);
5236 		}
5237 		*m_head = m;
5238 		error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map,
5239 		    m, segs, &nsegs, BUS_DMA_NOWAIT);
5240 		if (error) {
5241 			m_freem(m);
5242 			*m_head = NULL;
5243 			return (error);
5244 		}
5245 	} else if (error != 0)
5246 		return (error);
5247 
5248 	/* Check if we have enough free send BDs. */
5249 	if (sc->bge_txcnt + nsegs >= BGE_TX_RING_CNT) {
5250 		bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map);
5251 		return (ENOBUFS);
5252 	}
5253 
5254 	bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE);
5255 
5256 	if (m->m_flags & M_VLANTAG) {
5257 		csum_flags |= BGE_TXBDFLAG_VLAN_TAG;
5258 		vlan_tag = m->m_pkthdr.ether_vtag;
5259 	}
5260 
5261 	if (sc->bge_asicrev == BGE_ASICREV_BCM5762 &&
5262 	    (m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
5263 		/*
5264 		 * 5725 family of devices corrupts TSO packets when TSO DMA
5265 		 * buffers cross into regions which are within MSS bytes of
5266 		 * a 4GB boundary.  If we encounter the condition, drop the
5267 		 * packet.
5268 		 */
5269 		for (i = 0; ; i++) {
5270 			d = &sc->bge_ldata.bge_tx_ring[idx];
5271 			d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
5272 			d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
5273 			d->bge_len = segs[i].ds_len;
5274 			if (d->bge_addr.bge_addr_lo + segs[i].ds_len + mss <
5275 			    d->bge_addr.bge_addr_lo)
5276 				break;
5277 			d->bge_flags = csum_flags;
5278 			d->bge_vlan_tag = vlan_tag;
5279 			d->bge_mss = mss;
5280 			if (i == nsegs - 1)
5281 				break;
5282 			BGE_INC(idx, BGE_TX_RING_CNT);
5283 		}
5284 		if (i != nsegs - 1) {
5285 			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map,
5286 			    BUS_DMASYNC_POSTWRITE);
5287 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map);
5288 			m_freem(*m_head);
5289 			*m_head = NULL;
5290 			return (EIO);
5291 		}
5292 	} else {
5293 		for (i = 0; ; i++) {
5294 			d = &sc->bge_ldata.bge_tx_ring[idx];
5295 			d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
5296 			d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
5297 			d->bge_len = segs[i].ds_len;
5298 			d->bge_flags = csum_flags;
5299 			d->bge_vlan_tag = vlan_tag;
5300 			d->bge_mss = mss;
5301 			if (i == nsegs - 1)
5302 				break;
5303 			BGE_INC(idx, BGE_TX_RING_CNT);
5304 		}
5305 	}
5306 
5307 	/* Mark the last segment as end of packet... */
5308 	d->bge_flags |= BGE_TXBDFLAG_END;
5309 
5310 	/*
5311 	 * Insure that the map for this transmission
5312 	 * is placed at the array index of the last descriptor
5313 	 * in this chain.
5314 	 */
5315 	sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
5316 	sc->bge_cdata.bge_tx_dmamap[idx] = map;
5317 	sc->bge_cdata.bge_tx_chain[idx] = m;
5318 	sc->bge_txcnt += nsegs;
5319 
5320 	BGE_INC(idx, BGE_TX_RING_CNT);
5321 	*txidx = idx;
5322 
5323 	return (0);
5324 }
5325 
5326 /*
5327  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5328  * to the mbuf data regions directly in the transmit descriptors.
5329  */
5330 static void
5331 bge_start_locked(struct ifnet *ifp)
5332 {
5333 	struct bge_softc *sc;
5334 	struct mbuf *m_head;
5335 	uint32_t prodidx;
5336 	int count;
5337 
5338 	sc = ifp->if_softc;
5339 	BGE_LOCK_ASSERT(sc);
5340 
5341 	if (!sc->bge_link ||
5342 	    (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
5343 	    IFF_DRV_RUNNING)
5344 		return;
5345 
5346 	prodidx = sc->bge_tx_prodidx;
5347 
5348 	for (count = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd);) {
5349 		if (sc->bge_txcnt > BGE_TX_RING_CNT - 16) {
5350 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
5351 			break;
5352 		}
5353 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
5354 		if (m_head == NULL)
5355 			break;
5356 
5357 		/*
5358 		 * Pack the data into the transmit ring. If we
5359 		 * don't have room, set the OACTIVE flag and wait
5360 		 * for the NIC to drain the ring.
5361 		 */
5362 		if (bge_encap(sc, &m_head, &prodidx)) {
5363 			if (m_head == NULL)
5364 				break;
5365 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
5366 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
5367 			break;
5368 		}
5369 		++count;
5370 
5371 		/*
5372 		 * If there's a BPF listener, bounce a copy of this frame
5373 		 * to him.
5374 		 */
5375 #ifdef ETHER_BPF_MTAP
5376 		ETHER_BPF_MTAP(ifp, m_head);
5377 #else
5378 		BPF_MTAP(ifp, m_head);
5379 #endif
5380 	}
5381 
5382 	if (count > 0) {
5383 		bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
5384 		    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
5385 		/* Transmit. */
5386 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5387 		/* 5700 b2 errata */
5388 		if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
5389 			bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5390 
5391 		sc->bge_tx_prodidx = prodidx;
5392 
5393 		/*
5394 		 * Set a timeout in case the chip goes out to lunch.
5395 		 */
5396 		sc->bge_timer = BGE_TX_TIMEOUT;
5397 	}
5398 }
5399 
5400 /*
5401  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5402  * to the mbuf data regions directly in the transmit descriptors.
5403  */
5404 static void
5405 bge_start(struct ifnet *ifp)
5406 {
5407 	struct bge_softc *sc;
5408 
5409 	sc = ifp->if_softc;
5410 	BGE_LOCK(sc);
5411 	bge_start_locked(ifp);
5412 	BGE_UNLOCK(sc);
5413 }
5414 
5415 static void
5416 bge_init_locked(struct bge_softc *sc)
5417 {
5418 	struct ifnet *ifp;
5419 	uint16_t *m;
5420 	uint32_t mode;
5421 
5422 	BGE_LOCK_ASSERT(sc);
5423 
5424 	ifp = sc->bge_ifp;
5425 
5426 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
5427 		return;
5428 
5429 	/* Cancel pending I/O and flush buffers. */
5430 	bge_stop(sc);
5431 
5432 	bge_stop_fw(sc);
5433 	bge_sig_pre_reset(sc, BGE_RESET_START);
5434 	bge_reset(sc);
5435 	bge_sig_legacy(sc, BGE_RESET_START);
5436 	bge_sig_post_reset(sc, BGE_RESET_START);
5437 
5438 	bge_chipinit(sc);
5439 
5440 	/*
5441 	 * Init the various state machines, ring
5442 	 * control blocks and firmware.
5443 	 */
5444 	if (bge_blockinit(sc)) {
5445 		device_printf(sc->bge_dev, "initialization failure\n");
5446 		return;
5447 	}
5448 
5449 	ifp = sc->bge_ifp;
5450 
5451 	/* Specify MTU. */
5452 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
5453 	    ETHER_HDR_LEN + ETHER_CRC_LEN +
5454 	    (ifp->if_capenable & IFCAP_VLAN_MTU ? ETHER_VLAN_ENCAP_LEN : 0));
5455 
5456 	/* Load our MAC address. */
5457 	m = (uint16_t *)IF_LLADDR(sc->bge_ifp);
5458 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5459 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
5460 
5461 	/* Program promiscuous mode. */
5462 	bge_setpromisc(sc);
5463 
5464 	/* Program multicast filter. */
5465 	bge_setmulti(sc);
5466 
5467 	/* Program VLAN tag stripping. */
5468 	bge_setvlan(sc);
5469 
5470 	/* Override UDP checksum offloading. */
5471 	if (sc->bge_forced_udpcsum == 0)
5472 		sc->bge_csum_features &= ~CSUM_UDP;
5473 	else
5474 		sc->bge_csum_features |= CSUM_UDP;
5475 	if (ifp->if_capabilities & IFCAP_TXCSUM &&
5476 	    ifp->if_capenable & IFCAP_TXCSUM) {
5477 		ifp->if_hwassist &= ~(BGE_CSUM_FEATURES | CSUM_UDP);
5478 		ifp->if_hwassist |= sc->bge_csum_features;
5479 	}
5480 
5481 	/* Init RX ring. */
5482 	if (bge_init_rx_ring_std(sc) != 0) {
5483 		device_printf(sc->bge_dev, "no memory for std Rx buffers.\n");
5484 		bge_stop(sc);
5485 		return;
5486 	}
5487 
5488 	/*
5489 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5490 	 * memory to insure that the chip has in fact read the first
5491 	 * entry of the ring.
5492 	 */
5493 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5494 		uint32_t		v, i;
5495 		for (i = 0; i < 10; i++) {
5496 			DELAY(20);
5497 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5498 			if (v == (MCLBYTES - ETHER_ALIGN))
5499 				break;
5500 		}
5501 		if (i == 10)
5502 			device_printf (sc->bge_dev,
5503 			    "5705 A0 chip failed to load RX ring\n");
5504 	}
5505 
5506 	/* Init jumbo RX ring. */
5507 	if (BGE_IS_JUMBO_CAPABLE(sc) &&
5508 	    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN >
5509 	    (MCLBYTES - ETHER_ALIGN)) {
5510 		if (bge_init_rx_ring_jumbo(sc) != 0) {
5511 			device_printf(sc->bge_dev,
5512 			    "no memory for jumbo Rx buffers.\n");
5513 			bge_stop(sc);
5514 			return;
5515 		}
5516 	}
5517 
5518 	/* Init our RX return ring index. */
5519 	sc->bge_rx_saved_considx = 0;
5520 
5521 	/* Init our RX/TX stat counters. */
5522 	sc->bge_rx_discards = sc->bge_tx_discards = sc->bge_tx_collisions = 0;
5523 
5524 	/* Init TX ring. */
5525 	bge_init_tx_ring(sc);
5526 
5527 	/* Enable TX MAC state machine lockup fix. */
5528 	mode = CSR_READ_4(sc, BGE_TX_MODE);
5529 	if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
5530 		mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5531 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
5532 	    sc->bge_asicrev == BGE_ASICREV_BCM5762) {
5533 		mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5534 		mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5535 		    (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5536 	}
5537 	/* Turn on transmitter. */
5538 	CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5539 	DELAY(100);
5540 
5541 	/* Turn on receiver. */
5542 	mode = CSR_READ_4(sc, BGE_RX_MODE);
5543 	if (BGE_IS_5755_PLUS(sc))
5544 		mode |= BGE_RXMODE_IPV6_ENABLE;
5545 	CSR_WRITE_4(sc,BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5546 	DELAY(10);
5547 
5548 	/*
5549 	 * Set the number of good frames to receive after RX MBUF
5550 	 * Low Watermark has been reached. After the RX MAC receives
5551 	 * this number of frames, it will drop subsequent incoming
5552 	 * frames until the MBUF High Watermark is reached.
5553 	 */
5554 	if (BGE_IS_57765_PLUS(sc))
5555 		CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 1);
5556 	else
5557 		CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
5558 
5559 	/* Clear MAC statistics. */
5560 	if (BGE_IS_5705_PLUS(sc))
5561 		bge_stats_clear_regs(sc);
5562 
5563 	/* Tell firmware we're alive. */
5564 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5565 
5566 #ifdef DEVICE_POLLING
5567 	/* Disable interrupts if we are polling. */
5568 	if (ifp->if_capenable & IFCAP_POLLING) {
5569 		BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
5570 		    BGE_PCIMISCCTL_MASK_PCI_INTR);
5571 		bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5572 	} else
5573 #endif
5574 
5575 	/* Enable host interrupts. */
5576 	{
5577 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5578 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5579 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
5580 	}
5581 
5582 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
5583 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5584 
5585 	bge_ifmedia_upd_locked(ifp);
5586 
5587 	callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
5588 }
5589 
5590 static void
5591 bge_init(void *xsc)
5592 {
5593 	struct bge_softc *sc = xsc;
5594 
5595 	BGE_LOCK(sc);
5596 	bge_init_locked(sc);
5597 	BGE_UNLOCK(sc);
5598 }
5599 
5600 /*
5601  * Set media options.
5602  */
5603 static int
5604 bge_ifmedia_upd(struct ifnet *ifp)
5605 {
5606 	struct bge_softc *sc = ifp->if_softc;
5607 	int res;
5608 
5609 	BGE_LOCK(sc);
5610 	res = bge_ifmedia_upd_locked(ifp);
5611 	BGE_UNLOCK(sc);
5612 
5613 	return (res);
5614 }
5615 
5616 static int
5617 bge_ifmedia_upd_locked(struct ifnet *ifp)
5618 {
5619 	struct bge_softc *sc = ifp->if_softc;
5620 	struct mii_data *mii;
5621 	struct mii_softc *miisc;
5622 	struct ifmedia *ifm;
5623 
5624 	BGE_LOCK_ASSERT(sc);
5625 
5626 	ifm = &sc->bge_ifmedia;
5627 
5628 	/* If this is a 1000baseX NIC, enable the TBI port. */
5629 	if (sc->bge_flags & BGE_FLAG_TBI) {
5630 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5631 			return (EINVAL);
5632 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
5633 		case IFM_AUTO:
5634 			/*
5635 			 * The BCM5704 ASIC appears to have a special
5636 			 * mechanism for programming the autoneg
5637 			 * advertisement registers in TBI mode.
5638 			 */
5639 			if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
5640 				uint32_t sgdig;
5641 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5642 				if (sgdig & BGE_SGDIGSTS_DONE) {
5643 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5644 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5645 					sgdig |= BGE_SGDIGCFG_AUTO |
5646 					    BGE_SGDIGCFG_PAUSE_CAP |
5647 					    BGE_SGDIGCFG_ASYM_PAUSE;
5648 					CSR_WRITE_4(sc, BGE_SGDIG_CFG,
5649 					    sgdig | BGE_SGDIGCFG_SEND);
5650 					DELAY(5);
5651 					CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
5652 				}
5653 			}
5654 			break;
5655 		case IFM_1000_SX:
5656 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
5657 				BGE_CLRBIT(sc, BGE_MAC_MODE,
5658 				    BGE_MACMODE_HALF_DUPLEX);
5659 			} else {
5660 				BGE_SETBIT(sc, BGE_MAC_MODE,
5661 				    BGE_MACMODE_HALF_DUPLEX);
5662 			}
5663 			DELAY(40);
5664 			break;
5665 		default:
5666 			return (EINVAL);
5667 		}
5668 		return (0);
5669 	}
5670 
5671 	sc->bge_link_evt++;
5672 	mii = device_get_softc(sc->bge_miibus);
5673 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
5674 		PHY_RESET(miisc);
5675 	mii_mediachg(mii);
5676 
5677 	/*
5678 	 * Force an interrupt so that we will call bge_link_upd
5679 	 * if needed and clear any pending link state attention.
5680 	 * Without this we are not getting any further interrupts
5681 	 * for link state changes and thus will not UP the link and
5682 	 * not be able to send in bge_start_locked. The only
5683 	 * way to get things working was to receive a packet and
5684 	 * get an RX intr.
5685 	 * bge_tick should help for fiber cards and we might not
5686 	 * need to do this here if BGE_FLAG_TBI is set but as
5687 	 * we poll for fiber anyway it should not harm.
5688 	 */
5689 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
5690 	    sc->bge_flags & BGE_FLAG_5788)
5691 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5692 	else
5693 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5694 
5695 	return (0);
5696 }
5697 
5698 /*
5699  * Report current media status.
5700  */
5701 static void
5702 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
5703 {
5704 	struct bge_softc *sc = ifp->if_softc;
5705 	struct mii_data *mii;
5706 
5707 	BGE_LOCK(sc);
5708 
5709 	if ((ifp->if_flags & IFF_UP) == 0) {
5710 		BGE_UNLOCK(sc);
5711 		return;
5712 	}
5713 	if (sc->bge_flags & BGE_FLAG_TBI) {
5714 		ifmr->ifm_status = IFM_AVALID;
5715 		ifmr->ifm_active = IFM_ETHER;
5716 		if (CSR_READ_4(sc, BGE_MAC_STS) &
5717 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
5718 			ifmr->ifm_status |= IFM_ACTIVE;
5719 		else {
5720 			ifmr->ifm_active |= IFM_NONE;
5721 			BGE_UNLOCK(sc);
5722 			return;
5723 		}
5724 		ifmr->ifm_active |= IFM_1000_SX;
5725 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5726 			ifmr->ifm_active |= IFM_HDX;
5727 		else
5728 			ifmr->ifm_active |= IFM_FDX;
5729 		BGE_UNLOCK(sc);
5730 		return;
5731 	}
5732 
5733 	mii = device_get_softc(sc->bge_miibus);
5734 	mii_pollstat(mii);
5735 	ifmr->ifm_active = mii->mii_media_active;
5736 	ifmr->ifm_status = mii->mii_media_status;
5737 
5738 	BGE_UNLOCK(sc);
5739 }
5740 
5741 static int
5742 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
5743 {
5744 	struct bge_softc *sc = ifp->if_softc;
5745 	struct ifreq *ifr = (struct ifreq *) data;
5746 	struct mii_data *mii;
5747 	int flags, mask, error = 0;
5748 
5749 	switch (command) {
5750 	case SIOCSIFMTU:
5751 		if (BGE_IS_JUMBO_CAPABLE(sc) ||
5752 		    (sc->bge_flags & BGE_FLAG_JUMBO_STD)) {
5753 			if (ifr->ifr_mtu < ETHERMIN ||
5754 			    ifr->ifr_mtu > BGE_JUMBO_MTU) {
5755 				error = EINVAL;
5756 				break;
5757 			}
5758 		} else if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU) {
5759 			error = EINVAL;
5760 			break;
5761 		}
5762 		BGE_LOCK(sc);
5763 		if (ifp->if_mtu != ifr->ifr_mtu) {
5764 			ifp->if_mtu = ifr->ifr_mtu;
5765 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5766 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
5767 				bge_init_locked(sc);
5768 			}
5769 		}
5770 		BGE_UNLOCK(sc);
5771 		break;
5772 	case SIOCSIFFLAGS:
5773 		BGE_LOCK(sc);
5774 		if (ifp->if_flags & IFF_UP) {
5775 			/*
5776 			 * If only the state of the PROMISC flag changed,
5777 			 * then just use the 'set promisc mode' command
5778 			 * instead of reinitializing the entire NIC. Doing
5779 			 * a full re-init means reloading the firmware and
5780 			 * waiting for it to start up, which may take a
5781 			 * second or two.  Similarly for ALLMULTI.
5782 			 */
5783 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5784 				flags = ifp->if_flags ^ sc->bge_if_flags;
5785 				if (flags & IFF_PROMISC)
5786 					bge_setpromisc(sc);
5787 				if (flags & IFF_ALLMULTI)
5788 					bge_setmulti(sc);
5789 			} else
5790 				bge_init_locked(sc);
5791 		} else {
5792 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5793 				bge_stop(sc);
5794 			}
5795 		}
5796 		sc->bge_if_flags = ifp->if_flags;
5797 		BGE_UNLOCK(sc);
5798 		error = 0;
5799 		break;
5800 	case SIOCADDMULTI:
5801 	case SIOCDELMULTI:
5802 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5803 			BGE_LOCK(sc);
5804 			bge_setmulti(sc);
5805 			BGE_UNLOCK(sc);
5806 			error = 0;
5807 		}
5808 		break;
5809 	case SIOCSIFMEDIA:
5810 	case SIOCGIFMEDIA:
5811 		if (sc->bge_flags & BGE_FLAG_TBI) {
5812 			error = ifmedia_ioctl(ifp, ifr,
5813 			    &sc->bge_ifmedia, command);
5814 		} else {
5815 			mii = device_get_softc(sc->bge_miibus);
5816 			error = ifmedia_ioctl(ifp, ifr,
5817 			    &mii->mii_media, command);
5818 		}
5819 		break;
5820 	case SIOCSIFCAP:
5821 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
5822 #ifdef DEVICE_POLLING
5823 		if (mask & IFCAP_POLLING) {
5824 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
5825 				error = ether_poll_register(bge_poll, ifp);
5826 				if (error)
5827 					return (error);
5828 				BGE_LOCK(sc);
5829 				BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
5830 				    BGE_PCIMISCCTL_MASK_PCI_INTR);
5831 				bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5832 				ifp->if_capenable |= IFCAP_POLLING;
5833 				BGE_UNLOCK(sc);
5834 			} else {
5835 				error = ether_poll_deregister(ifp);
5836 				/* Enable interrupt even in error case */
5837 				BGE_LOCK(sc);
5838 				BGE_CLRBIT(sc, BGE_PCI_MISC_CTL,
5839 				    BGE_PCIMISCCTL_MASK_PCI_INTR);
5840 				bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
5841 				ifp->if_capenable &= ~IFCAP_POLLING;
5842 				BGE_UNLOCK(sc);
5843 			}
5844 		}
5845 #endif
5846 		if ((mask & IFCAP_TXCSUM) != 0 &&
5847 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
5848 			ifp->if_capenable ^= IFCAP_TXCSUM;
5849 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
5850 				ifp->if_hwassist |= sc->bge_csum_features;
5851 			else
5852 				ifp->if_hwassist &= ~sc->bge_csum_features;
5853 		}
5854 
5855 		if ((mask & IFCAP_RXCSUM) != 0 &&
5856 		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
5857 			ifp->if_capenable ^= IFCAP_RXCSUM;
5858 
5859 		if ((mask & IFCAP_TSO4) != 0 &&
5860 		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
5861 			ifp->if_capenable ^= IFCAP_TSO4;
5862 			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
5863 				ifp->if_hwassist |= CSUM_TSO;
5864 			else
5865 				ifp->if_hwassist &= ~CSUM_TSO;
5866 		}
5867 
5868 		if (mask & IFCAP_VLAN_MTU) {
5869 			ifp->if_capenable ^= IFCAP_VLAN_MTU;
5870 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
5871 			bge_init(sc);
5872 		}
5873 
5874 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
5875 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
5876 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
5877 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
5878 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
5879 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
5880 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
5881 				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
5882 			BGE_LOCK(sc);
5883 			bge_setvlan(sc);
5884 			BGE_UNLOCK(sc);
5885 		}
5886 #ifdef VLAN_CAPABILITIES
5887 		VLAN_CAPABILITIES(ifp);
5888 #endif
5889 		break;
5890 	default:
5891 		error = ether_ioctl(ifp, command, data);
5892 		break;
5893 	}
5894 
5895 	return (error);
5896 }
5897 
5898 static void
5899 bge_watchdog(struct bge_softc *sc)
5900 {
5901 	struct ifnet *ifp;
5902 	uint32_t status;
5903 
5904 	BGE_LOCK_ASSERT(sc);
5905 
5906 	if (sc->bge_timer == 0 || --sc->bge_timer)
5907 		return;
5908 
5909 	/* If pause frames are active then don't reset the hardware. */
5910 	if ((CSR_READ_4(sc, BGE_RX_MODE) & BGE_RXMODE_FLOWCTL_ENABLE) != 0) {
5911 		status = CSR_READ_4(sc, BGE_RX_STS);
5912 		if ((status & BGE_RXSTAT_REMOTE_XOFFED) != 0) {
5913 			/*
5914 			 * If link partner has us in XOFF state then wait for
5915 			 * the condition to clear.
5916 			 */
5917 			CSR_WRITE_4(sc, BGE_RX_STS, status);
5918 			sc->bge_timer = BGE_TX_TIMEOUT;
5919 			return;
5920 		} else if ((status & BGE_RXSTAT_RCVD_XOFF) != 0 &&
5921 		    (status & BGE_RXSTAT_RCVD_XON) != 0) {
5922 			/*
5923 			 * If link partner has us in XOFF state then wait for
5924 			 * the condition to clear.
5925 			 */
5926 			CSR_WRITE_4(sc, BGE_RX_STS, status);
5927 			sc->bge_timer = BGE_TX_TIMEOUT;
5928 			return;
5929 		}
5930 		/*
5931 		 * Any other condition is unexpected and the controller
5932 		 * should be reset.
5933 		 */
5934 	}
5935 
5936 	ifp = sc->bge_ifp;
5937 
5938 	if_printf(ifp, "watchdog timeout -- resetting\n");
5939 
5940 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
5941 	bge_init_locked(sc);
5942 
5943 	ifp->if_oerrors++;
5944 }
5945 
5946 static void
5947 bge_stop_block(struct bge_softc *sc, bus_size_t reg, uint32_t bit)
5948 {
5949 	int i;
5950 
5951 	BGE_CLRBIT(sc, reg, bit);
5952 
5953 	for (i = 0; i < BGE_TIMEOUT; i++) {
5954 		if ((CSR_READ_4(sc, reg) & bit) == 0)
5955 			return;
5956 		DELAY(100);
5957         }
5958 }
5959 
5960 /*
5961  * Stop the adapter and free any mbufs allocated to the
5962  * RX and TX lists.
5963  */
5964 static void
5965 bge_stop(struct bge_softc *sc)
5966 {
5967 	struct ifnet *ifp;
5968 
5969 	BGE_LOCK_ASSERT(sc);
5970 
5971 	ifp = sc->bge_ifp;
5972 
5973 	callout_stop(&sc->bge_stat_ch);
5974 
5975 	/* Disable host interrupts. */
5976 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5977 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5978 
5979 	/*
5980 	 * Tell firmware we're shutting down.
5981 	 */
5982 	bge_stop_fw(sc);
5983 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
5984 
5985 	/*
5986 	 * Disable all of the receiver blocks.
5987 	 */
5988 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
5989 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
5990 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
5991 	if (BGE_IS_5700_FAMILY(sc))
5992 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
5993 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
5994 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
5995 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
5996 
5997 	/*
5998 	 * Disable all of the transmit blocks.
5999 	 */
6000 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
6001 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
6002 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
6003 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
6004 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
6005 	if (BGE_IS_5700_FAMILY(sc))
6006 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
6007 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
6008 
6009 	/*
6010 	 * Shut down all of the memory managers and related
6011 	 * state machines.
6012 	 */
6013 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
6014 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
6015 	if (BGE_IS_5700_FAMILY(sc))
6016 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
6017 
6018 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
6019 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
6020 	if (!(BGE_IS_5705_PLUS(sc))) {
6021 		BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
6022 		BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
6023 	}
6024 	/* Update MAC statistics. */
6025 	if (BGE_IS_5705_PLUS(sc))
6026 		bge_stats_update_regs(sc);
6027 
6028 	bge_reset(sc);
6029 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
6030 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
6031 
6032 	/*
6033 	 * Keep the ASF firmware running if up.
6034 	 */
6035 	if (sc->bge_asf_mode & ASF_STACKUP)
6036 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6037 	else
6038 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6039 
6040 	/* Free the RX lists. */
6041 	bge_free_rx_ring_std(sc);
6042 
6043 	/* Free jumbo RX list. */
6044 	if (BGE_IS_JUMBO_CAPABLE(sc))
6045 		bge_free_rx_ring_jumbo(sc);
6046 
6047 	/* Free TX buffers. */
6048 	bge_free_tx_ring(sc);
6049 
6050 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
6051 
6052 	/* Clear MAC's link state (PHY may still have link UP). */
6053 	if (bootverbose && sc->bge_link)
6054 		if_printf(sc->bge_ifp, "link DOWN\n");
6055 	sc->bge_link = 0;
6056 
6057 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
6058 }
6059 
6060 /*
6061  * Stop all chip I/O so that the kernel's probe routines don't
6062  * get confused by errant DMAs when rebooting.
6063  */
6064 static int
6065 bge_shutdown(device_t dev)
6066 {
6067 	struct bge_softc *sc;
6068 
6069 	sc = device_get_softc(dev);
6070 	BGE_LOCK(sc);
6071 	bge_stop(sc);
6072 	BGE_UNLOCK(sc);
6073 
6074 	return (0);
6075 }
6076 
6077 static int
6078 bge_suspend(device_t dev)
6079 {
6080 	struct bge_softc *sc;
6081 
6082 	sc = device_get_softc(dev);
6083 	BGE_LOCK(sc);
6084 	bge_stop(sc);
6085 	BGE_UNLOCK(sc);
6086 
6087 	return (0);
6088 }
6089 
6090 static int
6091 bge_resume(device_t dev)
6092 {
6093 	struct bge_softc *sc;
6094 	struct ifnet *ifp;
6095 
6096 	sc = device_get_softc(dev);
6097 	BGE_LOCK(sc);
6098 	ifp = sc->bge_ifp;
6099 	if (ifp->if_flags & IFF_UP) {
6100 		bge_init_locked(sc);
6101 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
6102 			bge_start_locked(ifp);
6103 	}
6104 	BGE_UNLOCK(sc);
6105 
6106 	return (0);
6107 }
6108 
6109 static void
6110 bge_link_upd(struct bge_softc *sc)
6111 {
6112 	struct mii_data *mii;
6113 	uint32_t link, status;
6114 
6115 	BGE_LOCK_ASSERT(sc);
6116 
6117 	/* Clear 'pending link event' flag. */
6118 	sc->bge_link_evt = 0;
6119 
6120 	/*
6121 	 * Process link state changes.
6122 	 * Grrr. The link status word in the status block does
6123 	 * not work correctly on the BCM5700 rev AX and BX chips,
6124 	 * according to all available information. Hence, we have
6125 	 * to enable MII interrupts in order to properly obtain
6126 	 * async link changes. Unfortunately, this also means that
6127 	 * we have to read the MAC status register to detect link
6128 	 * changes, thereby adding an additional register access to
6129 	 * the interrupt handler.
6130 	 *
6131 	 * XXX: perhaps link state detection procedure used for
6132 	 * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
6133 	 */
6134 
6135 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
6136 	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
6137 		status = CSR_READ_4(sc, BGE_MAC_STS);
6138 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
6139 			mii = device_get_softc(sc->bge_miibus);
6140 			mii_pollstat(mii);
6141 			if (!sc->bge_link &&
6142 			    mii->mii_media_status & IFM_ACTIVE &&
6143 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
6144 				sc->bge_link++;
6145 				if (bootverbose)
6146 					if_printf(sc->bge_ifp, "link UP\n");
6147 			} else if (sc->bge_link &&
6148 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
6149 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
6150 				sc->bge_link = 0;
6151 				if (bootverbose)
6152 					if_printf(sc->bge_ifp, "link DOWN\n");
6153 			}
6154 
6155 			/* Clear the interrupt. */
6156 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
6157 			    BGE_EVTENB_MI_INTERRUPT);
6158 			bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
6159 			    BRGPHY_MII_ISR);
6160 			bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
6161 			    BRGPHY_MII_IMR, BRGPHY_INTRS);
6162 		}
6163 		return;
6164 	}
6165 
6166 	if (sc->bge_flags & BGE_FLAG_TBI) {
6167 		status = CSR_READ_4(sc, BGE_MAC_STS);
6168 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
6169 			if (!sc->bge_link) {
6170 				sc->bge_link++;
6171 				if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
6172 					BGE_CLRBIT(sc, BGE_MAC_MODE,
6173 					    BGE_MACMODE_TBI_SEND_CFGS);
6174 					DELAY(40);
6175 				}
6176 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
6177 				if (bootverbose)
6178 					if_printf(sc->bge_ifp, "link UP\n");
6179 				if_link_state_change(sc->bge_ifp,
6180 				    LINK_STATE_UP);
6181 			}
6182 		} else if (sc->bge_link) {
6183 			sc->bge_link = 0;
6184 			if (bootverbose)
6185 				if_printf(sc->bge_ifp, "link DOWN\n");
6186 			if_link_state_change(sc->bge_ifp, LINK_STATE_DOWN);
6187 		}
6188 	} else if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
6189 		/*
6190 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED bit
6191 		 * in status word always set. Workaround this bug by reading
6192 		 * PHY link status directly.
6193 		 */
6194 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK) ? 1 : 0;
6195 
6196 		if (link != sc->bge_link ||
6197 		    sc->bge_asicrev == BGE_ASICREV_BCM5700) {
6198 			mii = device_get_softc(sc->bge_miibus);
6199 			mii_pollstat(mii);
6200 			if (!sc->bge_link &&
6201 			    mii->mii_media_status & IFM_ACTIVE &&
6202 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
6203 				sc->bge_link++;
6204 				if (bootverbose)
6205 					if_printf(sc->bge_ifp, "link UP\n");
6206 			} else if (sc->bge_link &&
6207 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
6208 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
6209 				sc->bge_link = 0;
6210 				if (bootverbose)
6211 					if_printf(sc->bge_ifp, "link DOWN\n");
6212 			}
6213 		}
6214 	} else {
6215 		/*
6216 		 * For controllers that call mii_tick, we have to poll
6217 		 * link status.
6218 		 */
6219 		mii = device_get_softc(sc->bge_miibus);
6220 		mii_pollstat(mii);
6221 		bge_miibus_statchg(sc->bge_dev);
6222 	}
6223 
6224 	/* Disable MAC attention when link is up. */
6225 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
6226 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
6227 	    BGE_MACSTAT_LINK_CHANGED);
6228 }
6229 
6230 static void
6231 bge_add_sysctls(struct bge_softc *sc)
6232 {
6233 	struct sysctl_ctx_list *ctx;
6234 	struct sysctl_oid_list *children;
6235 	char tn[32];
6236 	int unit;
6237 
6238 	ctx = device_get_sysctl_ctx(sc->bge_dev);
6239 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bge_dev));
6240 
6241 #ifdef BGE_REGISTER_DEBUG
6242 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "debug_info",
6243 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_debug_info, "I",
6244 	    "Debug Information");
6245 
6246 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reg_read",
6247 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_reg_read, "I",
6248 	    "MAC Register Read");
6249 
6250 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ape_read",
6251 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_ape_read, "I",
6252 	    "APE Register Read");
6253 
6254 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mem_read",
6255 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_mem_read, "I",
6256 	    "Memory Read");
6257 
6258 #endif
6259 
6260 	unit = device_get_unit(sc->bge_dev);
6261 	/*
6262 	 * A common design characteristic for many Broadcom client controllers
6263 	 * is that they only support a single outstanding DMA read operation
6264 	 * on the PCIe bus. This means that it will take twice as long to fetch
6265 	 * a TX frame that is split into header and payload buffers as it does
6266 	 * to fetch a single, contiguous TX frame (2 reads vs. 1 read). For
6267 	 * these controllers, coalescing buffers to reduce the number of memory
6268 	 * reads is effective way to get maximum performance(about 940Mbps).
6269 	 * Without collapsing TX buffers the maximum TCP bulk transfer
6270 	 * performance is about 850Mbps. However forcing coalescing mbufs
6271 	 * consumes a lot of CPU cycles, so leave it off by default.
6272 	 */
6273 	sc->bge_forced_collapse = 0;
6274 	snprintf(tn, sizeof(tn), "dev.bge.%d.forced_collapse", unit);
6275 	TUNABLE_INT_FETCH(tn, &sc->bge_forced_collapse);
6276 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_collapse",
6277 	    CTLFLAG_RW, &sc->bge_forced_collapse, 0,
6278 	    "Number of fragmented TX buffers of a frame allowed before "
6279 	    "forced collapsing");
6280 
6281 	sc->bge_msi = 1;
6282 	snprintf(tn, sizeof(tn), "dev.bge.%d.msi", unit);
6283 	TUNABLE_INT_FETCH(tn, &sc->bge_msi);
6284 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "msi",
6285 	    CTLFLAG_RD, &sc->bge_msi, 0, "Enable MSI");
6286 
6287 	/*
6288 	 * It seems all Broadcom controllers have a bug that can generate UDP
6289 	 * datagrams with checksum value 0 when TX UDP checksum offloading is
6290 	 * enabled.  Generating UDP checksum value 0 is RFC 768 violation.
6291 	 * Even though the probability of generating such UDP datagrams is
6292 	 * low, I don't want to see FreeBSD boxes to inject such datagrams
6293 	 * into network so disable UDP checksum offloading by default.  Users
6294 	 * still override this behavior by setting a sysctl variable,
6295 	 * dev.bge.0.forced_udpcsum.
6296 	 */
6297 	sc->bge_forced_udpcsum = 0;
6298 	snprintf(tn, sizeof(tn), "dev.bge.%d.bge_forced_udpcsum", unit);
6299 	TUNABLE_INT_FETCH(tn, &sc->bge_forced_udpcsum);
6300 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_udpcsum",
6301 	    CTLFLAG_RW, &sc->bge_forced_udpcsum, 0,
6302 	    "Enable UDP checksum offloading even if controller can "
6303 	    "generate UDP checksum value 0");
6304 
6305 	if (BGE_IS_5705_PLUS(sc))
6306 		bge_add_sysctl_stats_regs(sc, ctx, children);
6307 	else
6308 		bge_add_sysctl_stats(sc, ctx, children);
6309 }
6310 
6311 #define BGE_SYSCTL_STAT(sc, ctx, desc, parent, node, oid) \
6312 	SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, oid, CTLTYPE_UINT|CTLFLAG_RD, \
6313 	    sc, offsetof(struct bge_stats, node), bge_sysctl_stats, "IU", \
6314 	    desc)
6315 
6316 static void
6317 bge_add_sysctl_stats(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
6318     struct sysctl_oid_list *parent)
6319 {
6320 	struct sysctl_oid *tree;
6321 	struct sysctl_oid_list *children, *schildren;
6322 
6323 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
6324 	    NULL, "BGE Statistics");
6325 	schildren = children = SYSCTL_CHILDREN(tree);
6326 	BGE_SYSCTL_STAT(sc, ctx, "Frames Dropped Due To Filters",
6327 	    children, COSFramesDroppedDueToFilters,
6328 	    "FramesDroppedDueToFilters");
6329 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write Queue Full",
6330 	    children, nicDmaWriteQueueFull, "DmaWriteQueueFull");
6331 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write High Priority Queue Full",
6332 	    children, nicDmaWriteHighPriQueueFull, "DmaWriteHighPriQueueFull");
6333 	BGE_SYSCTL_STAT(sc, ctx, "NIC No More RX Buffer Descriptors",
6334 	    children, nicNoMoreRxBDs, "NoMoreRxBDs");
6335 	BGE_SYSCTL_STAT(sc, ctx, "Discarded Input Frames",
6336 	    children, ifInDiscards, "InputDiscards");
6337 	BGE_SYSCTL_STAT(sc, ctx, "Input Errors",
6338 	    children, ifInErrors, "InputErrors");
6339 	BGE_SYSCTL_STAT(sc, ctx, "NIC Recv Threshold Hit",
6340 	    children, nicRecvThresholdHit, "RecvThresholdHit");
6341 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read Queue Full",
6342 	    children, nicDmaReadQueueFull, "DmaReadQueueFull");
6343 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read High Priority Queue Full",
6344 	    children, nicDmaReadHighPriQueueFull, "DmaReadHighPriQueueFull");
6345 	BGE_SYSCTL_STAT(sc, ctx, "NIC Send Data Complete Queue Full",
6346 	    children, nicSendDataCompQueueFull, "SendDataCompQueueFull");
6347 	BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Set Send Producer Index",
6348 	    children, nicRingSetSendProdIndex, "RingSetSendProdIndex");
6349 	BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Status Update",
6350 	    children, nicRingStatusUpdate, "RingStatusUpdate");
6351 	BGE_SYSCTL_STAT(sc, ctx, "NIC Interrupts",
6352 	    children, nicInterrupts, "Interrupts");
6353 	BGE_SYSCTL_STAT(sc, ctx, "NIC Avoided Interrupts",
6354 	    children, nicAvoidedInterrupts, "AvoidedInterrupts");
6355 	BGE_SYSCTL_STAT(sc, ctx, "NIC Send Threshold Hit",
6356 	    children, nicSendThresholdHit, "SendThresholdHit");
6357 
6358 	tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "rx", CTLFLAG_RD,
6359 	    NULL, "BGE RX Statistics");
6360 	children = SYSCTL_CHILDREN(tree);
6361 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Octets",
6362 	    children, rxstats.ifHCInOctets, "ifHCInOctets");
6363 	BGE_SYSCTL_STAT(sc, ctx, "Fragments",
6364 	    children, rxstats.etherStatsFragments, "Fragments");
6365 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Unicast Packets",
6366 	    children, rxstats.ifHCInUcastPkts, "UnicastPkts");
6367 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Multicast Packets",
6368 	    children, rxstats.ifHCInMulticastPkts, "MulticastPkts");
6369 	BGE_SYSCTL_STAT(sc, ctx, "FCS Errors",
6370 	    children, rxstats.dot3StatsFCSErrors, "FCSErrors");
6371 	BGE_SYSCTL_STAT(sc, ctx, "Alignment Errors",
6372 	    children, rxstats.dot3StatsAlignmentErrors, "AlignmentErrors");
6373 	BGE_SYSCTL_STAT(sc, ctx, "XON Pause Frames Received",
6374 	    children, rxstats.xonPauseFramesReceived, "xonPauseFramesReceived");
6375 	BGE_SYSCTL_STAT(sc, ctx, "XOFF Pause Frames Received",
6376 	    children, rxstats.xoffPauseFramesReceived,
6377 	    "xoffPauseFramesReceived");
6378 	BGE_SYSCTL_STAT(sc, ctx, "MAC Control Frames Received",
6379 	    children, rxstats.macControlFramesReceived,
6380 	    "ControlFramesReceived");
6381 	BGE_SYSCTL_STAT(sc, ctx, "XOFF State Entered",
6382 	    children, rxstats.xoffStateEntered, "xoffStateEntered");
6383 	BGE_SYSCTL_STAT(sc, ctx, "Frames Too Long",
6384 	    children, rxstats.dot3StatsFramesTooLong, "FramesTooLong");
6385 	BGE_SYSCTL_STAT(sc, ctx, "Jabbers",
6386 	    children, rxstats.etherStatsJabbers, "Jabbers");
6387 	BGE_SYSCTL_STAT(sc, ctx, "Undersized Packets",
6388 	    children, rxstats.etherStatsUndersizePkts, "UndersizePkts");
6389 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Range Length Errors",
6390 	    children, rxstats.inRangeLengthError, "inRangeLengthError");
6391 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Range Length Errors",
6392 	    children, rxstats.outRangeLengthError, "outRangeLengthError");
6393 
6394 	tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "tx", CTLFLAG_RD,
6395 	    NULL, "BGE TX Statistics");
6396 	children = SYSCTL_CHILDREN(tree);
6397 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Octets",
6398 	    children, txstats.ifHCOutOctets, "ifHCOutOctets");
6399 	BGE_SYSCTL_STAT(sc, ctx, "TX Collisions",
6400 	    children, txstats.etherStatsCollisions, "Collisions");
6401 	BGE_SYSCTL_STAT(sc, ctx, "XON Sent",
6402 	    children, txstats.outXonSent, "XonSent");
6403 	BGE_SYSCTL_STAT(sc, ctx, "XOFF Sent",
6404 	    children, txstats.outXoffSent, "XoffSent");
6405 	BGE_SYSCTL_STAT(sc, ctx, "Flow Control Done",
6406 	    children, txstats.flowControlDone, "flowControlDone");
6407 	BGE_SYSCTL_STAT(sc, ctx, "Internal MAC TX errors",
6408 	    children, txstats.dot3StatsInternalMacTransmitErrors,
6409 	    "InternalMacTransmitErrors");
6410 	BGE_SYSCTL_STAT(sc, ctx, "Single Collision Frames",
6411 	    children, txstats.dot3StatsSingleCollisionFrames,
6412 	    "SingleCollisionFrames");
6413 	BGE_SYSCTL_STAT(sc, ctx, "Multiple Collision Frames",
6414 	    children, txstats.dot3StatsMultipleCollisionFrames,
6415 	    "MultipleCollisionFrames");
6416 	BGE_SYSCTL_STAT(sc, ctx, "Deferred Transmissions",
6417 	    children, txstats.dot3StatsDeferredTransmissions,
6418 	    "DeferredTransmissions");
6419 	BGE_SYSCTL_STAT(sc, ctx, "Excessive Collisions",
6420 	    children, txstats.dot3StatsExcessiveCollisions,
6421 	    "ExcessiveCollisions");
6422 	BGE_SYSCTL_STAT(sc, ctx, "Late Collisions",
6423 	    children, txstats.dot3StatsLateCollisions,
6424 	    "LateCollisions");
6425 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Unicast Packets",
6426 	    children, txstats.ifHCOutUcastPkts, "UnicastPkts");
6427 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Multicast Packets",
6428 	    children, txstats.ifHCOutMulticastPkts, "MulticastPkts");
6429 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Broadcast Packets",
6430 	    children, txstats.ifHCOutBroadcastPkts, "BroadcastPkts");
6431 	BGE_SYSCTL_STAT(sc, ctx, "Carrier Sense Errors",
6432 	    children, txstats.dot3StatsCarrierSenseErrors,
6433 	    "CarrierSenseErrors");
6434 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Discards",
6435 	    children, txstats.ifOutDiscards, "Discards");
6436 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Errors",
6437 	    children, txstats.ifOutErrors, "Errors");
6438 }
6439 
6440 #undef BGE_SYSCTL_STAT
6441 
6442 #define	BGE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
6443 	    SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
6444 
6445 static void
6446 bge_add_sysctl_stats_regs(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
6447     struct sysctl_oid_list *parent)
6448 {
6449 	struct sysctl_oid *tree;
6450 	struct sysctl_oid_list *child, *schild;
6451 	struct bge_mac_stats *stats;
6452 
6453 	stats = &sc->bge_mac_stats;
6454 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
6455 	    NULL, "BGE Statistics");
6456 	schild = child = SYSCTL_CHILDREN(tree);
6457 	BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesDroppedDueToFilters",
6458 	    &stats->FramesDroppedDueToFilters, "Frames Dropped Due to Filters");
6459 	BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteQueueFull",
6460 	    &stats->DmaWriteQueueFull, "NIC DMA Write Queue Full");
6461 	BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteHighPriQueueFull",
6462 	    &stats->DmaWriteHighPriQueueFull,
6463 	    "NIC DMA Write High Priority Queue Full");
6464 	BGE_SYSCTL_STAT_ADD64(ctx, child, "NoMoreRxBDs",
6465 	    &stats->NoMoreRxBDs, "NIC No More RX Buffer Descriptors");
6466 	BGE_SYSCTL_STAT_ADD64(ctx, child, "InputDiscards",
6467 	    &stats->InputDiscards, "Discarded Input Frames");
6468 	BGE_SYSCTL_STAT_ADD64(ctx, child, "InputErrors",
6469 	    &stats->InputErrors, "Input Errors");
6470 	BGE_SYSCTL_STAT_ADD64(ctx, child, "RecvThresholdHit",
6471 	    &stats->RecvThresholdHit, "NIC Recv Threshold Hit");
6472 
6473 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx", CTLFLAG_RD,
6474 	    NULL, "BGE RX Statistics");
6475 	child = SYSCTL_CHILDREN(tree);
6476 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCInOctets",
6477 	    &stats->ifHCInOctets, "Inbound Octets");
6478 	BGE_SYSCTL_STAT_ADD64(ctx, child, "Fragments",
6479 	    &stats->etherStatsFragments, "Fragments");
6480 	BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
6481 	    &stats->ifHCInUcastPkts, "Inbound Unicast Packets");
6482 	BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
6483 	    &stats->ifHCInMulticastPkts, "Inbound Multicast Packets");
6484 	BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
6485 	    &stats->ifHCInBroadcastPkts, "Inbound Broadcast Packets");
6486 	BGE_SYSCTL_STAT_ADD64(ctx, child, "FCSErrors",
6487 	    &stats->dot3StatsFCSErrors, "FCS Errors");
6488 	BGE_SYSCTL_STAT_ADD64(ctx, child, "AlignmentErrors",
6489 	    &stats->dot3StatsAlignmentErrors, "Alignment Errors");
6490 	BGE_SYSCTL_STAT_ADD64(ctx, child, "xonPauseFramesReceived",
6491 	    &stats->xonPauseFramesReceived, "XON Pause Frames Received");
6492 	BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffPauseFramesReceived",
6493 	    &stats->xoffPauseFramesReceived, "XOFF Pause Frames Received");
6494 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ControlFramesReceived",
6495 	    &stats->macControlFramesReceived, "MAC Control Frames Received");
6496 	BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffStateEntered",
6497 	    &stats->xoffStateEntered, "XOFF State Entered");
6498 	BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesTooLong",
6499 	    &stats->dot3StatsFramesTooLong, "Frames Too Long");
6500 	BGE_SYSCTL_STAT_ADD64(ctx, child, "Jabbers",
6501 	    &stats->etherStatsJabbers, "Jabbers");
6502 	BGE_SYSCTL_STAT_ADD64(ctx, child, "UndersizePkts",
6503 	    &stats->etherStatsUndersizePkts, "Undersized Packets");
6504 
6505 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx", CTLFLAG_RD,
6506 	    NULL, "BGE TX Statistics");
6507 	child = SYSCTL_CHILDREN(tree);
6508 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCOutOctets",
6509 	    &stats->ifHCOutOctets, "Outbound Octets");
6510 	BGE_SYSCTL_STAT_ADD64(ctx, child, "Collisions",
6511 	    &stats->etherStatsCollisions, "TX Collisions");
6512 	BGE_SYSCTL_STAT_ADD64(ctx, child, "XonSent",
6513 	    &stats->outXonSent, "XON Sent");
6514 	BGE_SYSCTL_STAT_ADD64(ctx, child, "XoffSent",
6515 	    &stats->outXoffSent, "XOFF Sent");
6516 	BGE_SYSCTL_STAT_ADD64(ctx, child, "InternalMacTransmitErrors",
6517 	    &stats->dot3StatsInternalMacTransmitErrors,
6518 	    "Internal MAC TX Errors");
6519 	BGE_SYSCTL_STAT_ADD64(ctx, child, "SingleCollisionFrames",
6520 	    &stats->dot3StatsSingleCollisionFrames, "Single Collision Frames");
6521 	BGE_SYSCTL_STAT_ADD64(ctx, child, "MultipleCollisionFrames",
6522 	    &stats->dot3StatsMultipleCollisionFrames,
6523 	    "Multiple Collision Frames");
6524 	BGE_SYSCTL_STAT_ADD64(ctx, child, "DeferredTransmissions",
6525 	    &stats->dot3StatsDeferredTransmissions, "Deferred Transmissions");
6526 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ExcessiveCollisions",
6527 	    &stats->dot3StatsExcessiveCollisions, "Excessive Collisions");
6528 	BGE_SYSCTL_STAT_ADD64(ctx, child, "LateCollisions",
6529 	    &stats->dot3StatsLateCollisions, "Late Collisions");
6530 	BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
6531 	    &stats->ifHCOutUcastPkts, "Outbound Unicast Packets");
6532 	BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
6533 	    &stats->ifHCOutMulticastPkts, "Outbound Multicast Packets");
6534 	BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
6535 	    &stats->ifHCOutBroadcastPkts, "Outbound Broadcast Packets");
6536 }
6537 
6538 #undef	BGE_SYSCTL_STAT_ADD64
6539 
6540 static int
6541 bge_sysctl_stats(SYSCTL_HANDLER_ARGS)
6542 {
6543 	struct bge_softc *sc;
6544 	uint32_t result;
6545 	int offset;
6546 
6547 	sc = (struct bge_softc *)arg1;
6548 	offset = arg2;
6549 	result = CSR_READ_4(sc, BGE_MEMWIN_START + BGE_STATS_BLOCK + offset +
6550 	    offsetof(bge_hostaddr, bge_addr_lo));
6551 	return (sysctl_handle_int(oidp, &result, 0, req));
6552 }
6553 
6554 #ifdef BGE_REGISTER_DEBUG
6555 static int
6556 bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
6557 {
6558 	struct bge_softc *sc;
6559 	uint16_t *sbdata;
6560 	int error, result, sbsz;
6561 	int i, j;
6562 
6563 	result = -1;
6564 	error = sysctl_handle_int(oidp, &result, 0, req);
6565 	if (error || (req->newptr == NULL))
6566 		return (error);
6567 
6568 	if (result == 1) {
6569 		sc = (struct bge_softc *)arg1;
6570 
6571 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
6572 		    sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
6573 			sbsz = BGE_STATUS_BLK_SZ;
6574 		else
6575 			sbsz = 32;
6576 		sbdata = (uint16_t *)sc->bge_ldata.bge_status_block;
6577 		printf("Status Block:\n");
6578 		BGE_LOCK(sc);
6579 		bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
6580 		    sc->bge_cdata.bge_status_map,
6581 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
6582 		for (i = 0x0; i < sbsz / sizeof(uint16_t); ) {
6583 			printf("%06x:", i);
6584 			for (j = 0; j < 8; j++)
6585 				printf(" %04x", sbdata[i++]);
6586 			printf("\n");
6587 		}
6588 
6589 		printf("Registers:\n");
6590 		for (i = 0x800; i < 0xA00; ) {
6591 			printf("%06x:", i);
6592 			for (j = 0; j < 8; j++) {
6593 				printf(" %08x", CSR_READ_4(sc, i));
6594 				i += 4;
6595 			}
6596 			printf("\n");
6597 		}
6598 		BGE_UNLOCK(sc);
6599 
6600 		printf("Hardware Flags:\n");
6601 		if (BGE_IS_5717_PLUS(sc))
6602 			printf(" - 5717 Plus\n");
6603 		if (BGE_IS_5755_PLUS(sc))
6604 			printf(" - 5755 Plus\n");
6605 		if (BGE_IS_575X_PLUS(sc))
6606 			printf(" - 575X Plus\n");
6607 		if (BGE_IS_5705_PLUS(sc))
6608 			printf(" - 5705 Plus\n");
6609 		if (BGE_IS_5714_FAMILY(sc))
6610 			printf(" - 5714 Family\n");
6611 		if (BGE_IS_5700_FAMILY(sc))
6612 			printf(" - 5700 Family\n");
6613 		if (sc->bge_flags & BGE_FLAG_JUMBO)
6614 			printf(" - Supports Jumbo Frames\n");
6615 		if (sc->bge_flags & BGE_FLAG_PCIX)
6616 			printf(" - PCI-X Bus\n");
6617 		if (sc->bge_flags & BGE_FLAG_PCIE)
6618 			printf(" - PCI Express Bus\n");
6619 		if (sc->bge_phy_flags & BGE_PHY_NO_3LED)
6620 			printf(" - No 3 LEDs\n");
6621 		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG)
6622 			printf(" - RX Alignment Bug\n");
6623 	}
6624 
6625 	return (error);
6626 }
6627 
6628 static int
6629 bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
6630 {
6631 	struct bge_softc *sc;
6632 	int error;
6633 	uint16_t result;
6634 	uint32_t val;
6635 
6636 	result = -1;
6637 	error = sysctl_handle_int(oidp, &result, 0, req);
6638 	if (error || (req->newptr == NULL))
6639 		return (error);
6640 
6641 	if (result < 0x8000) {
6642 		sc = (struct bge_softc *)arg1;
6643 		val = CSR_READ_4(sc, result);
6644 		printf("reg 0x%06X = 0x%08X\n", result, val);
6645 	}
6646 
6647 	return (error);
6648 }
6649 
6650 static int
6651 bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS)
6652 {
6653 	struct bge_softc *sc;
6654 	int error;
6655 	uint16_t result;
6656 	uint32_t val;
6657 
6658 	result = -1;
6659 	error = sysctl_handle_int(oidp, &result, 0, req);
6660 	if (error || (req->newptr == NULL))
6661 		return (error);
6662 
6663 	if (result < 0x8000) {
6664 		sc = (struct bge_softc *)arg1;
6665 		val = APE_READ_4(sc, result);
6666 		printf("reg 0x%06X = 0x%08X\n", result, val);
6667 	}
6668 
6669 	return (error);
6670 }
6671 
6672 static int
6673 bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS)
6674 {
6675 	struct bge_softc *sc;
6676 	int error;
6677 	uint16_t result;
6678 	uint32_t val;
6679 
6680 	result = -1;
6681 	error = sysctl_handle_int(oidp, &result, 0, req);
6682 	if (error || (req->newptr == NULL))
6683 		return (error);
6684 
6685 	if (result < 0x8000) {
6686 		sc = (struct bge_softc *)arg1;
6687 		val = bge_readmem_ind(sc, result);
6688 		printf("mem 0x%06X = 0x%08X\n", result, val);
6689 	}
6690 
6691 	return (error);
6692 }
6693 #endif
6694 
6695 static int
6696 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
6697 {
6698 
6699 	if (sc->bge_flags & BGE_FLAG_EADDR)
6700 		return (1);
6701 
6702 #ifdef __sparc64__
6703 	OF_getetheraddr(sc->bge_dev, ether_addr);
6704 	return (0);
6705 #endif
6706 	return (1);
6707 }
6708 
6709 static int
6710 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
6711 {
6712 	uint32_t mac_addr;
6713 
6714 	mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
6715 	if ((mac_addr >> 16) == 0x484b) {
6716 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
6717 		ether_addr[1] = (uint8_t)mac_addr;
6718 		mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
6719 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
6720 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
6721 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
6722 		ether_addr[5] = (uint8_t)mac_addr;
6723 		return (0);
6724 	}
6725 	return (1);
6726 }
6727 
6728 static int
6729 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
6730 {
6731 	int mac_offset = BGE_EE_MAC_OFFSET;
6732 
6733 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
6734 		mac_offset = BGE_EE_MAC_OFFSET_5906;
6735 
6736 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
6737 	    ETHER_ADDR_LEN));
6738 }
6739 
6740 static int
6741 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
6742 {
6743 
6744 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
6745 		return (1);
6746 
6747 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
6748 	   ETHER_ADDR_LEN));
6749 }
6750 
6751 static int
6752 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
6753 {
6754 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
6755 		/* NOTE: Order is critical */
6756 		bge_get_eaddr_fw,
6757 		bge_get_eaddr_mem,
6758 		bge_get_eaddr_nvram,
6759 		bge_get_eaddr_eeprom,
6760 		NULL
6761 	};
6762 	const bge_eaddr_fcn_t *func;
6763 
6764 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
6765 		if ((*func)(sc, eaddr) == 0)
6766 			break;
6767 	}
6768 	return (*func == NULL ? ENXIO : 0);
6769 }
6770