xref: /freebsd/sys/dev/cesa/cesa.c (revision 535af610)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (C) 2009-2011 Semihalf.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /*
30  * CESA SRAM Memory Map:
31  *
32  * +------------------------+ <= sc->sc_sram_base_va + CESA_SRAM_SIZE
33  * |                        |
34  * |          DATA          |
35  * |                        |
36  * +------------------------+ <= sc->sc_sram_base_va + CESA_DATA(0)
37  * |  struct cesa_sa_data   |
38  * +------------------------+
39  * |  struct cesa_sa_hdesc  |
40  * +------------------------+ <= sc->sc_sram_base_va
41  */
42 
43 #include <sys/cdefs.h>
44 __FBSDID("$FreeBSD$");
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/bus.h>
49 #include <sys/endian.h>
50 #include <sys/kernel.h>
51 #include <sys/lock.h>
52 #include <sys/mbuf.h>
53 #include <sys/module.h>
54 #include <sys/mutex.h>
55 #include <sys/rman.h>
56 
57 #include <machine/bus.h>
58 #include <machine/intr.h>
59 #include <machine/resource.h>
60 #include <machine/fdt.h>
61 
62 #include <dev/fdt/simplebus.h>
63 #include <dev/fdt/fdt_common.h>
64 #include <dev/ofw/ofw_bus.h>
65 #include <dev/ofw/ofw_bus_subr.h>
66 
67 #include <crypto/sha1.h>
68 #include <crypto/sha2/sha256.h>
69 #include <crypto/rijndael/rijndael.h>
70 #include <opencrypto/cryptodev.h>
71 #include <opencrypto/xform.h>
72 #include "cryptodev_if.h"
73 
74 #include <arm/mv/mvreg.h>
75 #include <arm/mv/mvvar.h>
76 #include "cesa.h"
77 
78 static int	cesa_probe(device_t);
79 static int	cesa_attach(device_t);
80 static int	cesa_attach_late(device_t);
81 static int	cesa_detach(device_t);
82 static void	cesa_intr(void *);
83 static int	cesa_probesession(device_t,
84     const struct crypto_session_params *);
85 static int	cesa_newsession(device_t, crypto_session_t,
86     const struct crypto_session_params *);
87 static int	cesa_process(device_t, struct cryptop *, int);
88 
89 static struct resource_spec cesa_res_spec[] = {
90 	{ SYS_RES_MEMORY, 0, RF_ACTIVE },
91 	{ SYS_RES_MEMORY, 1, RF_ACTIVE },
92 	{ SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
93 	{ -1, 0 }
94 };
95 
96 static device_method_t cesa_methods[] = {
97 	/* Device interface */
98 	DEVMETHOD(device_probe,		cesa_probe),
99 	DEVMETHOD(device_attach,	cesa_attach),
100 	DEVMETHOD(device_detach,	cesa_detach),
101 
102 	/* Crypto device methods */
103 	DEVMETHOD(cryptodev_probesession, cesa_probesession),
104 	DEVMETHOD(cryptodev_newsession,	cesa_newsession),
105 	DEVMETHOD(cryptodev_process,	cesa_process),
106 
107 	DEVMETHOD_END
108 };
109 
110 static driver_t cesa_driver = {
111 	"cesa",
112 	cesa_methods,
113 	sizeof (struct cesa_softc)
114 };
115 
116 DRIVER_MODULE(cesa, simplebus, cesa_driver, 0, 0);
117 MODULE_DEPEND(cesa, crypto, 1, 1, 1);
118 
119 static void
120 cesa_dump_cshd(struct cesa_softc *sc, struct cesa_sa_hdesc *cshd)
121 {
122 #ifdef DEBUG
123 	device_t dev;
124 
125 	dev = sc->sc_dev;
126 	device_printf(dev, "CESA SA Hardware Descriptor:\n");
127 	device_printf(dev, "\t\tconfig: 0x%08X\n", cshd->cshd_config);
128 	device_printf(dev, "\t\te_src:  0x%08X\n", cshd->cshd_enc_src);
129 	device_printf(dev, "\t\te_dst:  0x%08X\n", cshd->cshd_enc_dst);
130 	device_printf(dev, "\t\te_dlen: 0x%08X\n", cshd->cshd_enc_dlen);
131 	device_printf(dev, "\t\te_key:  0x%08X\n", cshd->cshd_enc_key);
132 	device_printf(dev, "\t\te_iv_1: 0x%08X\n", cshd->cshd_enc_iv);
133 	device_printf(dev, "\t\te_iv_2: 0x%08X\n", cshd->cshd_enc_iv_buf);
134 	device_printf(dev, "\t\tm_src:  0x%08X\n", cshd->cshd_mac_src);
135 	device_printf(dev, "\t\tm_dst:  0x%08X\n", cshd->cshd_mac_dst);
136 	device_printf(dev, "\t\tm_dlen: 0x%08X\n", cshd->cshd_mac_dlen);
137 	device_printf(dev, "\t\tm_tlen: 0x%08X\n", cshd->cshd_mac_total_dlen);
138 	device_printf(dev, "\t\tm_iv_i: 0x%08X\n", cshd->cshd_mac_iv_in);
139 	device_printf(dev, "\t\tm_iv_o: 0x%08X\n", cshd->cshd_mac_iv_out);
140 #endif
141 }
142 
143 static void
144 cesa_alloc_dma_mem_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
145 {
146 	struct cesa_dma_mem *cdm;
147 
148 	if (error)
149 		return;
150 
151 	KASSERT(nseg == 1, ("Got wrong number of DMA segments, should be 1."));
152 	cdm = arg;
153 	cdm->cdm_paddr = segs->ds_addr;
154 }
155 
156 static int
157 cesa_alloc_dma_mem(struct cesa_softc *sc, struct cesa_dma_mem *cdm,
158     bus_size_t size)
159 {
160 	int error;
161 
162 	KASSERT(cdm->cdm_vaddr == NULL,
163 	    ("%s(): DMA memory descriptor in use.", __func__));
164 
165 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
166 	    PAGE_SIZE, 0,			/* alignment, boundary */
167 	    BUS_SPACE_MAXADDR_32BIT,		/* lowaddr */
168 	    BUS_SPACE_MAXADDR,			/* highaddr */
169 	    NULL, NULL,				/* filtfunc, filtfuncarg */
170 	    size, 1,				/* maxsize, nsegments */
171 	    size, 0,				/* maxsegsz, flags */
172 	    NULL, NULL,				/* lockfunc, lockfuncarg */
173 	    &cdm->cdm_tag);			/* dmat */
174 	if (error) {
175 		device_printf(sc->sc_dev, "failed to allocate busdma tag, error"
176 		    " %i!\n", error);
177 
178 		goto err1;
179 	}
180 
181 	error = bus_dmamem_alloc(cdm->cdm_tag, &cdm->cdm_vaddr,
182 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &cdm->cdm_map);
183 	if (error) {
184 		device_printf(sc->sc_dev, "failed to allocate DMA safe"
185 		    " memory, error %i!\n", error);
186 
187 		goto err2;
188 	}
189 
190 	error = bus_dmamap_load(cdm->cdm_tag, cdm->cdm_map, cdm->cdm_vaddr,
191 	    size, cesa_alloc_dma_mem_cb, cdm, BUS_DMA_NOWAIT);
192 	if (error) {
193 		device_printf(sc->sc_dev, "cannot get address of the DMA"
194 		    " memory, error %i\n", error);
195 
196 		goto err3;
197 	}
198 
199 	return (0);
200 err3:
201 	bus_dmamem_free(cdm->cdm_tag, cdm->cdm_vaddr, cdm->cdm_map);
202 err2:
203 	bus_dma_tag_destroy(cdm->cdm_tag);
204 err1:
205 	cdm->cdm_vaddr = NULL;
206 	return (error);
207 }
208 
209 static void
210 cesa_free_dma_mem(struct cesa_dma_mem *cdm)
211 {
212 
213 	bus_dmamap_unload(cdm->cdm_tag, cdm->cdm_map);
214 	bus_dmamem_free(cdm->cdm_tag, cdm->cdm_vaddr, cdm->cdm_map);
215 	bus_dma_tag_destroy(cdm->cdm_tag);
216 	cdm->cdm_vaddr = NULL;
217 }
218 
219 static void
220 cesa_sync_dma_mem(struct cesa_dma_mem *cdm, bus_dmasync_op_t op)
221 {
222 
223 	/* Sync only if dma memory is valid */
224         if (cdm->cdm_vaddr != NULL)
225 		bus_dmamap_sync(cdm->cdm_tag, cdm->cdm_map, op);
226 }
227 
228 static void
229 cesa_sync_desc(struct cesa_softc *sc, bus_dmasync_op_t op)
230 {
231 
232 	cesa_sync_dma_mem(&sc->sc_tdesc_cdm, op);
233 	cesa_sync_dma_mem(&sc->sc_sdesc_cdm, op);
234 	cesa_sync_dma_mem(&sc->sc_requests_cdm, op);
235 }
236 
237 static struct cesa_request *
238 cesa_alloc_request(struct cesa_softc *sc)
239 {
240 	struct cesa_request *cr;
241 
242 	CESA_GENERIC_ALLOC_LOCKED(sc, cr, requests);
243 	if (!cr)
244 		return (NULL);
245 
246 	STAILQ_INIT(&cr->cr_tdesc);
247 	STAILQ_INIT(&cr->cr_sdesc);
248 
249 	return (cr);
250 }
251 
252 static void
253 cesa_free_request(struct cesa_softc *sc, struct cesa_request *cr)
254 {
255 
256 	/* Free TDMA descriptors assigned to this request */
257 	CESA_LOCK(sc, tdesc);
258 	STAILQ_CONCAT(&sc->sc_free_tdesc, &cr->cr_tdesc);
259 	CESA_UNLOCK(sc, tdesc);
260 
261 	/* Free SA descriptors assigned to this request */
262 	CESA_LOCK(sc, sdesc);
263 	STAILQ_CONCAT(&sc->sc_free_sdesc, &cr->cr_sdesc);
264 	CESA_UNLOCK(sc, sdesc);
265 
266 	/* Unload DMA memory associated with request */
267 	if (cr->cr_dmap_loaded) {
268 		bus_dmamap_unload(sc->sc_data_dtag, cr->cr_dmap);
269 		cr->cr_dmap_loaded = 0;
270 	}
271 
272 	CESA_GENERIC_FREE_LOCKED(sc, cr, requests);
273 }
274 
275 static void
276 cesa_enqueue_request(struct cesa_softc *sc, struct cesa_request *cr)
277 {
278 
279 	CESA_LOCK(sc, requests);
280 	STAILQ_INSERT_TAIL(&sc->sc_ready_requests, cr, cr_stq);
281 	CESA_UNLOCK(sc, requests);
282 }
283 
284 static struct cesa_tdma_desc *
285 cesa_alloc_tdesc(struct cesa_softc *sc)
286 {
287 	struct cesa_tdma_desc *ctd;
288 
289 	CESA_GENERIC_ALLOC_LOCKED(sc, ctd, tdesc);
290 
291 	if (!ctd)
292 		device_printf(sc->sc_dev, "TDMA descriptors pool exhaused. "
293 		    "Consider increasing CESA_TDMA_DESCRIPTORS.\n");
294 
295 	return (ctd);
296 }
297 
298 static struct cesa_sa_desc *
299 cesa_alloc_sdesc(struct cesa_softc *sc, struct cesa_request *cr)
300 {
301 	struct cesa_sa_desc *csd;
302 
303 	CESA_GENERIC_ALLOC_LOCKED(sc, csd, sdesc);
304 	if (!csd) {
305 		device_printf(sc->sc_dev, "SA descriptors pool exhaused. "
306 		    "Consider increasing CESA_SA_DESCRIPTORS.\n");
307 		return (NULL);
308 	}
309 
310 	STAILQ_INSERT_TAIL(&cr->cr_sdesc, csd, csd_stq);
311 
312 	/* Fill-in SA descriptor with default values */
313 	csd->csd_cshd->cshd_enc_key = CESA_SA_DATA(csd_key);
314 	csd->csd_cshd->cshd_enc_iv = CESA_SA_DATA(csd_iv);
315 	csd->csd_cshd->cshd_enc_iv_buf = CESA_SA_DATA(csd_iv);
316 	csd->csd_cshd->cshd_enc_src = 0;
317 	csd->csd_cshd->cshd_enc_dst = 0;
318 	csd->csd_cshd->cshd_enc_dlen = 0;
319 	csd->csd_cshd->cshd_mac_dst = CESA_SA_DATA(csd_hash);
320 	csd->csd_cshd->cshd_mac_iv_in = CESA_SA_DATA(csd_hiv_in);
321 	csd->csd_cshd->cshd_mac_iv_out = CESA_SA_DATA(csd_hiv_out);
322 	csd->csd_cshd->cshd_mac_src = 0;
323 	csd->csd_cshd->cshd_mac_dlen = 0;
324 
325 	return (csd);
326 }
327 
328 static struct cesa_tdma_desc *
329 cesa_tdma_copy(struct cesa_softc *sc, bus_addr_t dst, bus_addr_t src,
330     bus_size_t size)
331 {
332 	struct cesa_tdma_desc *ctd;
333 
334 	ctd = cesa_alloc_tdesc(sc);
335 	if (!ctd)
336 		return (NULL);
337 
338 	ctd->ctd_cthd->cthd_dst = dst;
339 	ctd->ctd_cthd->cthd_src = src;
340 	ctd->ctd_cthd->cthd_byte_count = size;
341 
342 	/* Handle special control packet */
343 	if (size != 0)
344 		ctd->ctd_cthd->cthd_flags = CESA_CTHD_OWNED;
345 	else
346 		ctd->ctd_cthd->cthd_flags = 0;
347 
348 	return (ctd);
349 }
350 
351 static struct cesa_tdma_desc *
352 cesa_tdma_copyin_sa_data(struct cesa_softc *sc, struct cesa_request *cr)
353 {
354 
355 	return (cesa_tdma_copy(sc, sc->sc_sram_base_pa +
356 	    sizeof(struct cesa_sa_hdesc), cr->cr_csd_paddr,
357 	    sizeof(struct cesa_sa_data)));
358 }
359 
360 static struct cesa_tdma_desc *
361 cesa_tdma_copyout_sa_data(struct cesa_softc *sc, struct cesa_request *cr)
362 {
363 
364 	return (cesa_tdma_copy(sc, cr->cr_csd_paddr, sc->sc_sram_base_pa +
365 	    sizeof(struct cesa_sa_hdesc), sizeof(struct cesa_sa_data)));
366 }
367 
368 static struct cesa_tdma_desc *
369 cesa_tdma_copy_sdesc(struct cesa_softc *sc, struct cesa_sa_desc *csd)
370 {
371 
372 	return (cesa_tdma_copy(sc, sc->sc_sram_base_pa, csd->csd_cshd_paddr,
373 	    sizeof(struct cesa_sa_hdesc)));
374 }
375 
376 static void
377 cesa_append_tdesc(struct cesa_request *cr, struct cesa_tdma_desc *ctd)
378 {
379 	struct cesa_tdma_desc *ctd_prev;
380 
381 	if (!STAILQ_EMPTY(&cr->cr_tdesc)) {
382 		ctd_prev = STAILQ_LAST(&cr->cr_tdesc, cesa_tdma_desc, ctd_stq);
383 		ctd_prev->ctd_cthd->cthd_next = ctd->ctd_cthd_paddr;
384 	}
385 
386 	ctd->ctd_cthd->cthd_next = 0;
387 	STAILQ_INSERT_TAIL(&cr->cr_tdesc, ctd, ctd_stq);
388 }
389 
390 static int
391 cesa_append_packet(struct cesa_softc *sc, struct cesa_request *cr,
392     struct cesa_packet *cp, struct cesa_sa_desc *csd)
393 {
394 	struct cesa_tdma_desc *ctd, *tmp;
395 
396 	/* Copy SA descriptor for this packet */
397 	ctd = cesa_tdma_copy_sdesc(sc, csd);
398 	if (!ctd)
399 		return (ENOMEM);
400 
401 	cesa_append_tdesc(cr, ctd);
402 
403 	/* Copy data to be processed */
404 	STAILQ_FOREACH_SAFE(ctd, &cp->cp_copyin, ctd_stq, tmp)
405 		cesa_append_tdesc(cr, ctd);
406 	STAILQ_INIT(&cp->cp_copyin);
407 
408 	/* Insert control descriptor */
409 	ctd = cesa_tdma_copy(sc, 0, 0, 0);
410 	if (!ctd)
411 		return (ENOMEM);
412 
413 	cesa_append_tdesc(cr, ctd);
414 
415 	/* Copy back results */
416 	STAILQ_FOREACH_SAFE(ctd, &cp->cp_copyout, ctd_stq, tmp)
417 		cesa_append_tdesc(cr, ctd);
418 	STAILQ_INIT(&cp->cp_copyout);
419 
420 	return (0);
421 }
422 
423 static void
424 cesa_set_mkey(struct cesa_session *cs, int alg, const uint8_t *mkey, int mklen)
425 {
426 	union authctx auth_ctx;
427 	uint32_t *hout;
428 	uint32_t *hin;
429 	int i;
430 
431 	hin = (uint32_t *)cs->cs_hiv_in;
432 	hout = (uint32_t *)cs->cs_hiv_out;
433 
434 	switch (alg) {
435 	case CRYPTO_SHA1_HMAC:
436 		hmac_init_ipad(&auth_hash_hmac_sha1, mkey, mklen, &auth_ctx);
437 		memcpy(hin, auth_ctx.sha1ctx.h.b32,
438 		    sizeof(auth_ctx.sha1ctx.h.b32));
439 		hmac_init_opad(&auth_hash_hmac_sha1, mkey, mklen, &auth_ctx);
440 		memcpy(hout, auth_ctx.sha1ctx.h.b32,
441 		    sizeof(auth_ctx.sha1ctx.h.b32));
442 		break;
443 	case CRYPTO_SHA2_256_HMAC:
444 		hmac_init_ipad(&auth_hash_hmac_sha2_256, mkey, mklen,
445 		    &auth_ctx);
446 		memcpy(hin, auth_ctx.sha256ctx.state,
447 		    sizeof(auth_ctx.sha256ctx.state));
448 		hmac_init_opad(&auth_hash_hmac_sha2_256, mkey, mklen,
449 		    &auth_ctx);
450 		memcpy(hout, auth_ctx.sha256ctx.state,
451 		    sizeof(auth_ctx.sha256ctx.state));
452 		break;
453 	default:
454 		panic("shouldn't get here");
455 	}
456 
457 	for (i = 0; i < CESA_MAX_HASH_LEN / sizeof(uint32_t); i++) {
458 		hin[i] = htobe32(hin[i]);
459 		hout[i] = htobe32(hout[i]);
460 	}
461 	explicit_bzero(&auth_ctx, sizeof(auth_ctx));
462 }
463 
464 static int
465 cesa_prep_aes_key(struct cesa_session *cs,
466     const struct crypto_session_params *csp)
467 {
468 	uint32_t ek[4 * (RIJNDAEL_MAXNR + 1)];
469 	uint32_t *dkey;
470 	int i;
471 
472 	rijndaelKeySetupEnc(ek, cs->cs_key, csp->csp_cipher_klen * 8);
473 
474 	cs->cs_config &= ~CESA_CSH_AES_KLEN_MASK;
475 	dkey = (uint32_t *)cs->cs_aes_dkey;
476 
477 	switch (csp->csp_cipher_klen) {
478 	case 16:
479 		cs->cs_config |= CESA_CSH_AES_KLEN_128;
480 		for (i = 0; i < 4; i++)
481 			*dkey++ = htobe32(ek[4 * 10 + i]);
482 		break;
483 	case 24:
484 		cs->cs_config |= CESA_CSH_AES_KLEN_192;
485 		for (i = 0; i < 4; i++)
486 			*dkey++ = htobe32(ek[4 * 12 + i]);
487 		for (i = 0; i < 2; i++)
488 			*dkey++ = htobe32(ek[4 * 11 + 2 + i]);
489 		break;
490 	case 32:
491 		cs->cs_config |= CESA_CSH_AES_KLEN_256;
492 		for (i = 0; i < 4; i++)
493 			*dkey++ = htobe32(ek[4 * 14 + i]);
494 		for (i = 0; i < 4; i++)
495 			*dkey++ = htobe32(ek[4 * 13 + i]);
496 		break;
497 	default:
498 		return (EINVAL);
499 	}
500 
501 	return (0);
502 }
503 
504 static void
505 cesa_start_packet(struct cesa_packet *cp, unsigned int size)
506 {
507 
508 	cp->cp_size = size;
509 	cp->cp_offset = 0;
510 	STAILQ_INIT(&cp->cp_copyin);
511 	STAILQ_INIT(&cp->cp_copyout);
512 }
513 
514 static int
515 cesa_fill_packet(struct cesa_softc *sc, struct cesa_packet *cp,
516     bus_dma_segment_t *seg)
517 {
518 	struct cesa_tdma_desc *ctd;
519 	unsigned int bsize;
520 
521 	/* Calculate size of block copy */
522 	bsize = MIN(seg->ds_len, cp->cp_size - cp->cp_offset);
523 
524 	if (bsize > 0) {
525 		ctd = cesa_tdma_copy(sc, sc->sc_sram_base_pa +
526 		    CESA_DATA(cp->cp_offset), seg->ds_addr, bsize);
527 		if (!ctd)
528 			return (-ENOMEM);
529 
530 		STAILQ_INSERT_TAIL(&cp->cp_copyin, ctd, ctd_stq);
531 
532 		ctd = cesa_tdma_copy(sc, seg->ds_addr, sc->sc_sram_base_pa +
533 		    CESA_DATA(cp->cp_offset), bsize);
534 		if (!ctd)
535 			return (-ENOMEM);
536 
537 		STAILQ_INSERT_TAIL(&cp->cp_copyout, ctd, ctd_stq);
538 
539 		seg->ds_len -= bsize;
540 		seg->ds_addr += bsize;
541 		cp->cp_offset += bsize;
542 	}
543 
544 	return (bsize);
545 }
546 
547 static void
548 cesa_create_chain_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
549 {
550 	unsigned int mpsize, fragmented;
551 	unsigned int mlen, mskip, tmlen;
552 	struct cesa_chain_info *cci;
553 	unsigned int elen, eskip;
554 	unsigned int skip, len;
555 	struct cesa_sa_desc *csd;
556 	struct cesa_request *cr;
557 	struct cryptop *crp;
558 	struct cesa_softc *sc;
559 	struct cesa_packet cp;
560 	bus_dma_segment_t seg;
561 	uint32_t config;
562 	int size;
563 
564 	cci = arg;
565 	sc = cci->cci_sc;
566 	cr = cci->cci_cr;
567 	crp = cr->cr_crp;
568 
569 	if (error) {
570 		cci->cci_error = error;
571 		return;
572 	}
573 
574 	/*
575 	 * Only do a combined op if the AAD is adjacent to the payload
576 	 * and the AAD length is a multiple of the IV length.  The
577 	 * checks against 'config' are to avoid recursing when the
578 	 * logic below invokes separate operations.
579 	 */
580 	config = cci->cci_config;
581 	if (((config & CESA_CSHD_OP_MASK) == CESA_CSHD_MAC_AND_ENC ||
582 	    (config & CESA_CSHD_OP_MASK) == CESA_CSHD_ENC_AND_MAC) &&
583 	    crp->crp_aad_length != 0 &&
584 	    (crp->crp_aad_length & (cr->cr_cs->cs_ivlen - 1)) != 0) {
585 		/*
586 		 * Data alignment in the request does not meet CESA requiremnts
587 		 * for combined encryption/decryption and hashing. We have to
588 		 * split the request to separate operations and process them
589 		 * one by one.
590 		 */
591 		if ((config & CESA_CSHD_OP_MASK) == CESA_CSHD_MAC_AND_ENC) {
592 			config &= ~CESA_CSHD_OP_MASK;
593 
594 			cci->cci_config = config | CESA_CSHD_MAC;
595 			cesa_create_chain_cb(cci, segs, nseg, 0);
596 
597 			cci->cci_config = config | CESA_CSHD_ENC;
598 			cesa_create_chain_cb(cci, segs, nseg, 0);
599 		} else {
600 			config &= ~CESA_CSHD_OP_MASK;
601 
602 			cci->cci_config = config | CESA_CSHD_ENC;
603 			cesa_create_chain_cb(cci, segs, nseg, 0);
604 
605 			cci->cci_config = config | CESA_CSHD_MAC;
606 			cesa_create_chain_cb(cci, segs, nseg, 0);
607 		}
608 
609 		return;
610 	}
611 
612 	mskip = mlen = eskip = elen = 0;
613 
614 	if (crp->crp_aad_length == 0) {
615 		skip = crp->crp_payload_start;
616 		len = crp->crp_payload_length;
617 		switch (config & CESA_CSHD_OP_MASK) {
618 		case CESA_CSHD_ENC:
619 			eskip = skip;
620 			elen = len;
621 			break;
622 		case CESA_CSHD_MAC:
623 			mskip = skip;
624 			mlen = len;
625 			break;
626 		default:
627 			eskip = skip;
628 			elen = len;
629 			mskip = skip;
630 			mlen = len;
631 			break;
632 		}
633 	} else {
634 		/*
635 		 * For an encryption-only separate request, only
636 		 * process the payload.  For combined requests and
637 		 * hash-only requests, process the entire region.
638 		 */
639 		switch (config & CESA_CSHD_OP_MASK) {
640 		case CESA_CSHD_ENC:
641 			skip = crp->crp_payload_start;
642 			len = crp->crp_payload_length;
643 			eskip = skip;
644 			elen = len;
645 			break;
646 		case CESA_CSHD_MAC:
647 			skip = crp->crp_aad_start;
648 			len = crp->crp_aad_length + crp->crp_payload_length;
649 			mskip = skip;
650 			mlen = len;
651 			break;
652 		default:
653 			skip = crp->crp_aad_start;
654 			len = crp->crp_aad_length + crp->crp_payload_length;
655 			mskip = skip;
656 			mlen = len;
657 			eskip = crp->crp_payload_start;
658 			elen = crp->crp_payload_length;
659 			break;
660 		}
661 	}
662 
663 	tmlen = mlen;
664 	fragmented = 0;
665 	mpsize = CESA_MAX_PACKET_SIZE;
666 	mpsize &= ~((cr->cr_cs->cs_ivlen - 1) | (cr->cr_cs->cs_mblen - 1));
667 
668 	/* Start first packet in chain */
669 	cesa_start_packet(&cp, MIN(mpsize, len));
670 
671 	while (nseg-- && len > 0) {
672 		seg = *(segs++);
673 
674 		/*
675 		 * Skip data in buffer on which neither ENC nor MAC operation
676 		 * is requested.
677 		 */
678 		if (skip > 0) {
679 			size = MIN(skip, seg.ds_len);
680 			skip -= size;
681 
682 			seg.ds_addr += size;
683 			seg.ds_len -= size;
684 
685 			if (eskip > 0)
686 				eskip -= size;
687 
688 			if (mskip > 0)
689 				mskip -= size;
690 
691 			if (seg.ds_len == 0)
692 				continue;
693 		}
694 
695 		while (1) {
696 			/*
697 			 * Fill in current packet with data. Break if there is
698 			 * no more data in current DMA segment or an error
699 			 * occurred.
700 			 */
701 			size = cesa_fill_packet(sc, &cp, &seg);
702 			if (size <= 0) {
703 				error = -size;
704 				break;
705 			}
706 
707 			len -= size;
708 
709 			/* If packet is full, append it to the chain */
710 			if (cp.cp_size == cp.cp_offset) {
711 				csd = cesa_alloc_sdesc(sc, cr);
712 				if (!csd) {
713 					error = ENOMEM;
714 					break;
715 				}
716 
717 				/* Create SA descriptor for this packet */
718 				csd->csd_cshd->cshd_config = cci->cci_config;
719 				csd->csd_cshd->cshd_mac_total_dlen = tmlen;
720 
721 				/*
722 				 * Enable fragmentation if request will not fit
723 				 * into one packet.
724 				 */
725 				if (len > 0) {
726 					if (!fragmented) {
727 						fragmented = 1;
728 						csd->csd_cshd->cshd_config |=
729 						    CESA_CSHD_FRAG_FIRST;
730 					} else
731 						csd->csd_cshd->cshd_config |=
732 						    CESA_CSHD_FRAG_MIDDLE;
733 				} else if (fragmented)
734 					csd->csd_cshd->cshd_config |=
735 					    CESA_CSHD_FRAG_LAST;
736 
737 				if (eskip < cp.cp_size && elen > 0) {
738 					csd->csd_cshd->cshd_enc_src =
739 					    CESA_DATA(eskip);
740 					csd->csd_cshd->cshd_enc_dst =
741 					    CESA_DATA(eskip);
742 					csd->csd_cshd->cshd_enc_dlen =
743 					    MIN(elen, cp.cp_size - eskip);
744 				}
745 
746 				if (mskip < cp.cp_size && mlen > 0) {
747 					csd->csd_cshd->cshd_mac_src =
748 					    CESA_DATA(mskip);
749 					csd->csd_cshd->cshd_mac_dlen =
750 					    MIN(mlen, cp.cp_size - mskip);
751 				}
752 
753 				elen -= csd->csd_cshd->cshd_enc_dlen;
754 				eskip -= MIN(eskip, cp.cp_size);
755 				mlen -= csd->csd_cshd->cshd_mac_dlen;
756 				mskip -= MIN(mskip, cp.cp_size);
757 
758 				cesa_dump_cshd(sc, csd->csd_cshd);
759 
760 				/* Append packet to the request */
761 				error = cesa_append_packet(sc, cr, &cp, csd);
762 				if (error)
763 					break;
764 
765 				/* Start a new packet, as current is full */
766 				cesa_start_packet(&cp, MIN(mpsize, len));
767 			}
768 		}
769 
770 		if (error)
771 			break;
772 	}
773 
774 	if (error) {
775 		/*
776 		 * Move all allocated resources to the request. They will be
777 		 * freed later.
778 		 */
779 		STAILQ_CONCAT(&cr->cr_tdesc, &cp.cp_copyin);
780 		STAILQ_CONCAT(&cr->cr_tdesc, &cp.cp_copyout);
781 		cci->cci_error = error;
782 	}
783 }
784 
785 static int
786 cesa_create_chain(struct cesa_softc *sc,
787     const struct crypto_session_params *csp, struct cesa_request *cr)
788 {
789 	struct cesa_chain_info cci;
790 	struct cesa_tdma_desc *ctd;
791 	uint32_t config;
792 	int error;
793 
794 	error = 0;
795 	CESA_LOCK_ASSERT(sc, sessions);
796 
797 	/* Create request metadata */
798 	if (csp->csp_cipher_klen != 0) {
799 		if (csp->csp_cipher_alg == CRYPTO_AES_CBC &&
800 		    !CRYPTO_OP_IS_ENCRYPT(cr->cr_crp->crp_op))
801 			memcpy(cr->cr_csd->csd_key, cr->cr_cs->cs_aes_dkey,
802 			    csp->csp_cipher_klen);
803 		else
804 			memcpy(cr->cr_csd->csd_key, cr->cr_cs->cs_key,
805 			    csp->csp_cipher_klen);
806 	}
807 
808 	if (csp->csp_auth_klen != 0) {
809 		memcpy(cr->cr_csd->csd_hiv_in, cr->cr_cs->cs_hiv_in,
810 		    CESA_MAX_HASH_LEN);
811 		memcpy(cr->cr_csd->csd_hiv_out, cr->cr_cs->cs_hiv_out,
812 		    CESA_MAX_HASH_LEN);
813 	}
814 
815 	ctd = cesa_tdma_copyin_sa_data(sc, cr);
816 	if (!ctd)
817 		return (ENOMEM);
818 
819 	cesa_append_tdesc(cr, ctd);
820 
821 	/* Prepare SA configuration */
822 	config = cr->cr_cs->cs_config;
823 
824 	if (csp->csp_cipher_alg != 0 &&
825 	    !CRYPTO_OP_IS_ENCRYPT(cr->cr_crp->crp_op))
826 		config |= CESA_CSHD_DECRYPT;
827 	switch (csp->csp_mode) {
828 	case CSP_MODE_CIPHER:
829 		config |= CESA_CSHD_ENC;
830 		break;
831 	case CSP_MODE_DIGEST:
832 		config |= CESA_CSHD_MAC;
833 		break;
834 	case CSP_MODE_ETA:
835 		config |= (config & CESA_CSHD_DECRYPT) ? CESA_CSHD_MAC_AND_ENC :
836 		    CESA_CSHD_ENC_AND_MAC;
837 		break;
838 	}
839 
840 	/* Create data packets */
841 	cci.cci_sc = sc;
842 	cci.cci_cr = cr;
843 	cci.cci_config = config;
844 	cci.cci_error = 0;
845 
846 	error = bus_dmamap_load_crp(sc->sc_data_dtag, cr->cr_dmap, cr->cr_crp,
847 	    cesa_create_chain_cb, &cci, BUS_DMA_NOWAIT);
848 
849 	if (!error)
850 		cr->cr_dmap_loaded = 1;
851 
852 	if (cci.cci_error)
853 		error = cci.cci_error;
854 
855 	if (error)
856 		return (error);
857 
858 	/* Read back request metadata */
859 	ctd = cesa_tdma_copyout_sa_data(sc, cr);
860 	if (!ctd)
861 		return (ENOMEM);
862 
863 	cesa_append_tdesc(cr, ctd);
864 
865 	return (0);
866 }
867 
868 static void
869 cesa_execute(struct cesa_softc *sc)
870 {
871 	struct cesa_tdma_desc *prev_ctd, *ctd;
872 	struct cesa_request *prev_cr, *cr;
873 
874 	CESA_LOCK(sc, requests);
875 
876 	/*
877 	 * If ready list is empty, there is nothing to execute. If queued list
878 	 * is not empty, the hardware is busy and we cannot start another
879 	 * execution.
880 	 */
881 	if (STAILQ_EMPTY(&sc->sc_ready_requests) ||
882 	    !STAILQ_EMPTY(&sc->sc_queued_requests)) {
883 		CESA_UNLOCK(sc, requests);
884 		return;
885 	}
886 
887 	/* Move all ready requests to queued list */
888 	STAILQ_CONCAT(&sc->sc_queued_requests, &sc->sc_ready_requests);
889 	STAILQ_INIT(&sc->sc_ready_requests);
890 
891 	/* Create one execution chain from all requests on the list */
892 	if (STAILQ_FIRST(&sc->sc_queued_requests) !=
893 	    STAILQ_LAST(&sc->sc_queued_requests, cesa_request, cr_stq)) {
894 		prev_cr = NULL;
895 		cesa_sync_dma_mem(&sc->sc_tdesc_cdm, BUS_DMASYNC_POSTREAD |
896 		    BUS_DMASYNC_POSTWRITE);
897 
898 		STAILQ_FOREACH(cr, &sc->sc_queued_requests, cr_stq) {
899 			if (prev_cr) {
900 				ctd = STAILQ_FIRST(&cr->cr_tdesc);
901 				prev_ctd = STAILQ_LAST(&prev_cr->cr_tdesc,
902 				    cesa_tdma_desc, ctd_stq);
903 
904 				prev_ctd->ctd_cthd->cthd_next =
905 				    ctd->ctd_cthd_paddr;
906 			}
907 
908 			prev_cr = cr;
909 		}
910 
911 		cesa_sync_dma_mem(&sc->sc_tdesc_cdm, BUS_DMASYNC_PREREAD |
912 		    BUS_DMASYNC_PREWRITE);
913 	}
914 
915 	/* Start chain execution in hardware */
916 	cr = STAILQ_FIRST(&sc->sc_queued_requests);
917 	ctd = STAILQ_FIRST(&cr->cr_tdesc);
918 
919 	CESA_TDMA_WRITE(sc, CESA_TDMA_ND, ctd->ctd_cthd_paddr);
920 
921 	if (sc->sc_soc_id == MV_DEV_88F6828 ||
922 	    sc->sc_soc_id == MV_DEV_88F6820 ||
923 	    sc->sc_soc_id == MV_DEV_88F6810)
924 		CESA_REG_WRITE(sc, CESA_SA_CMD, CESA_SA_CMD_ACTVATE | CESA_SA_CMD_SHA2);
925 	else
926 		CESA_REG_WRITE(sc, CESA_SA_CMD, CESA_SA_CMD_ACTVATE);
927 
928 	CESA_UNLOCK(sc, requests);
929 }
930 
931 static int
932 cesa_setup_sram(struct cesa_softc *sc)
933 {
934 	phandle_t sram_node;
935 	ihandle_t sram_ihandle;
936 	pcell_t sram_handle, sram_reg[2];
937 	void *sram_va;
938 	int rv;
939 
940 	rv = OF_getencprop(ofw_bus_get_node(sc->sc_dev), "sram-handle",
941 	    (void *)&sram_handle, sizeof(sram_handle));
942 	if (rv <= 0)
943 		return (rv);
944 
945 	sram_ihandle = (ihandle_t)sram_handle;
946 	sram_node = OF_instance_to_package(sram_ihandle);
947 
948 	rv = OF_getencprop(sram_node, "reg", (void *)sram_reg, sizeof(sram_reg));
949 	if (rv <= 0)
950 		return (rv);
951 
952 	sc->sc_sram_base_pa = sram_reg[0];
953 	/* Store SRAM size to be able to unmap in detach() */
954 	sc->sc_sram_size = sram_reg[1];
955 
956 	if (sc->sc_soc_id != MV_DEV_88F6828 &&
957 	    sc->sc_soc_id != MV_DEV_88F6820 &&
958 	    sc->sc_soc_id != MV_DEV_88F6810)
959 		return (0);
960 
961 	/* SRAM memory was not mapped in platform_sram_devmap(), map it now */
962 	sram_va = pmap_mapdev(sc->sc_sram_base_pa, sc->sc_sram_size);
963 	if (sram_va == NULL)
964 		return (ENOMEM);
965 	sc->sc_sram_base_va = sram_va;
966 
967 	return (0);
968 }
969 
970 /*
971  * Function: device_from_node
972  * This function returns appropriate device_t to phandle_t
973  * Parameters:
974  * root - device where you want to start search
975  *     if you provide NULL here, function will take
976  *     "root0" device as root.
977  * node - we are checking every device_t to be
978  *     appropriate with this.
979  */
980 static device_t
981 device_from_node(device_t root, phandle_t node)
982 {
983 	device_t *children, retval;
984 	int nkid, i;
985 
986 	/* Nothing matches no node */
987 	if (node == -1)
988 		return (NULL);
989 
990 	if (root == NULL)
991 		/* Get root of device tree */
992 		if ((root = device_lookup_by_name("root0")) == NULL)
993 			return (NULL);
994 
995 	if (device_get_children(root, &children, &nkid) != 0)
996 		return (NULL);
997 
998 	retval = NULL;
999 	for (i = 0; i < nkid; i++) {
1000 		/* Check if device and node matches */
1001 		if (OFW_BUS_GET_NODE(root, children[i]) == node) {
1002 			retval = children[i];
1003 			break;
1004 		}
1005 		/* or go deeper */
1006 		if ((retval = device_from_node(children[i], node)) != NULL)
1007 			break;
1008 	}
1009 	free(children, M_TEMP);
1010 
1011 	return (retval);
1012 }
1013 
1014 static int
1015 cesa_setup_sram_armada(struct cesa_softc *sc)
1016 {
1017 	phandle_t sram_node;
1018 	ihandle_t sram_ihandle;
1019 	pcell_t sram_handle[2];
1020 	void *sram_va;
1021 	int rv, j;
1022 	struct resource_list rl;
1023 	struct resource_list_entry *rle;
1024 	struct simplebus_softc *ssc;
1025 	device_t sdev;
1026 
1027 	/* Get refs to SRAMS from CESA node */
1028 	rv = OF_getencprop(ofw_bus_get_node(sc->sc_dev), "marvell,crypto-srams",
1029 	    (void *)sram_handle, sizeof(sram_handle));
1030 	if (rv <= 0)
1031 		return (rv);
1032 
1033 	if (sc->sc_cesa_engine_id >= 2)
1034 		return (ENXIO);
1035 
1036 	/* Get SRAM node on the basis of sc_cesa_engine_id */
1037 	sram_ihandle = (ihandle_t)sram_handle[sc->sc_cesa_engine_id];
1038 	sram_node = OF_instance_to_package(sram_ihandle);
1039 
1040 	/* Get device_t of simplebus (sram_node parent) */
1041 	sdev = device_from_node(NULL, OF_parent(sram_node));
1042 	if (!sdev)
1043 		return (ENXIO);
1044 
1045 	ssc = device_get_softc(sdev);
1046 
1047 	resource_list_init(&rl);
1048 	/* Parse reg property to resource list */
1049 	ofw_bus_reg_to_rl(sdev, sram_node, ssc->acells,
1050 	    ssc->scells, &rl);
1051 
1052 	/* We expect only one resource */
1053 	rle = resource_list_find(&rl, SYS_RES_MEMORY, 0);
1054 	if (rle == NULL)
1055 		return (ENXIO);
1056 
1057 	/* Remap through ranges property */
1058 	for (j = 0; j < ssc->nranges; j++) {
1059 		if (rle->start >= ssc->ranges[j].bus &&
1060 		    rle->end < ssc->ranges[j].bus + ssc->ranges[j].size) {
1061 			rle->start -= ssc->ranges[j].bus;
1062 			rle->start += ssc->ranges[j].host;
1063 			rle->end -= ssc->ranges[j].bus;
1064 			rle->end += ssc->ranges[j].host;
1065 		}
1066 	}
1067 
1068 	sc->sc_sram_base_pa = rle->start;
1069 	sc->sc_sram_size = rle->count;
1070 
1071 	/* SRAM memory was not mapped in platform_sram_devmap(), map it now */
1072 	sram_va = pmap_mapdev(sc->sc_sram_base_pa, sc->sc_sram_size);
1073 	if (sram_va == NULL)
1074 		return (ENOMEM);
1075 	sc->sc_sram_base_va = sram_va;
1076 
1077 	return (0);
1078 }
1079 
1080 struct ofw_compat_data cesa_devices[] = {
1081 	{ "mrvl,cesa", (uintptr_t)true },
1082 	{ "marvell,armada-38x-crypto", (uintptr_t)true },
1083 	{ NULL, 0 }
1084 };
1085 
1086 static int
1087 cesa_probe(device_t dev)
1088 {
1089 
1090 	if (!ofw_bus_status_okay(dev))
1091 		return (ENXIO);
1092 
1093 	if (!ofw_bus_search_compatible(dev, cesa_devices)->ocd_data)
1094 		return (ENXIO);
1095 
1096 	device_set_desc(dev, "Marvell Cryptographic Engine and Security "
1097 	    "Accelerator");
1098 
1099 	return (BUS_PROBE_DEFAULT);
1100 }
1101 
1102 static int
1103 cesa_attach(device_t dev)
1104 {
1105 	static int engine_idx = 0;
1106 	struct simplebus_devinfo *ndi;
1107 	struct resource_list *rl;
1108 	struct cesa_softc *sc;
1109 
1110 	if (!ofw_bus_is_compatible(dev, "marvell,armada-38x-crypto"))
1111 		return (cesa_attach_late(dev));
1112 
1113 	/*
1114 	 * Get simplebus_devinfo which contains
1115 	 * resource list filled with adresses and
1116 	 * interrupts read form FDT.
1117 	 * Let's correct it by splitting resources
1118 	 * for each engine.
1119 	 */
1120 	if ((ndi = device_get_ivars(dev)) == NULL)
1121 		return (ENXIO);
1122 
1123 	rl = &ndi->rl;
1124 
1125 	switch (engine_idx) {
1126 		case 0:
1127 			/* Update regs values */
1128 			resource_list_add(rl, SYS_RES_MEMORY, 0, CESA0_TDMA_ADDR,
1129 			    CESA0_TDMA_ADDR + CESA_TDMA_SIZE - 1, CESA_TDMA_SIZE);
1130 			resource_list_add(rl, SYS_RES_MEMORY, 1, CESA0_CESA_ADDR,
1131 			    CESA0_CESA_ADDR + CESA_CESA_SIZE - 1, CESA_CESA_SIZE);
1132 
1133 			/* Remove unused interrupt */
1134 			resource_list_delete(rl, SYS_RES_IRQ, 1);
1135 			break;
1136 
1137 		case 1:
1138 			/* Update regs values */
1139 			resource_list_add(rl, SYS_RES_MEMORY, 0, CESA1_TDMA_ADDR,
1140 			    CESA1_TDMA_ADDR + CESA_TDMA_SIZE - 1, CESA_TDMA_SIZE);
1141 			resource_list_add(rl, SYS_RES_MEMORY, 1, CESA1_CESA_ADDR,
1142 			    CESA1_CESA_ADDR + CESA_CESA_SIZE - 1, CESA_CESA_SIZE);
1143 
1144 			/* Remove unused interrupt */
1145 			resource_list_delete(rl, SYS_RES_IRQ, 0);
1146 			resource_list_find(rl, SYS_RES_IRQ, 1)->rid = 0;
1147 			break;
1148 
1149 		default:
1150 			device_printf(dev, "Bad cesa engine_idx\n");
1151 			return (ENXIO);
1152 	}
1153 
1154 	sc = device_get_softc(dev);
1155 	sc->sc_cesa_engine_id = engine_idx;
1156 
1157 	/*
1158 	 * Call simplebus_add_device only once.
1159 	 * It will create second cesa driver instance
1160 	 * with the same FDT node as first instance.
1161 	 * When second driver reach this function,
1162 	 * it will be configured to use second cesa engine
1163 	 */
1164 	if (engine_idx == 0)
1165 		simplebus_add_device(device_get_parent(dev), ofw_bus_get_node(dev),
1166 		    0, "cesa", 1, NULL);
1167 
1168 	engine_idx++;
1169 
1170 	return (cesa_attach_late(dev));
1171 }
1172 
1173 static int
1174 cesa_attach_late(device_t dev)
1175 {
1176 	struct cesa_softc *sc;
1177 	uint32_t d, r, val;
1178 	int error;
1179 	int i;
1180 
1181 	sc = device_get_softc(dev);
1182 	sc->sc_blocked = 0;
1183 	sc->sc_error = 0;
1184 	sc->sc_dev = dev;
1185 
1186 	soc_id(&d, &r);
1187 
1188 	switch (d) {
1189 	case MV_DEV_88F6281:
1190 	case MV_DEV_88F6282:
1191 		/* Check if CESA peripheral device has power turned on */
1192 		if (soc_power_ctrl_get(CPU_PM_CTRL_CRYPTO) ==
1193 		    CPU_PM_CTRL_CRYPTO) {
1194 			device_printf(dev, "not powered on\n");
1195 			return (ENXIO);
1196 		}
1197 		sc->sc_tperr = 0;
1198 		break;
1199 	case MV_DEV_88F6828:
1200 	case MV_DEV_88F6820:
1201 	case MV_DEV_88F6810:
1202 		sc->sc_tperr = 0;
1203 		break;
1204 	case MV_DEV_MV78100:
1205 	case MV_DEV_MV78100_Z0:
1206 		/* Check if CESA peripheral device has power turned on */
1207 		if (soc_power_ctrl_get(CPU_PM_CTRL_CRYPTO) !=
1208 		    CPU_PM_CTRL_CRYPTO) {
1209 			device_printf(dev, "not powered on\n");
1210 			return (ENXIO);
1211 		}
1212 		sc->sc_tperr = CESA_ICR_TPERR;
1213 		break;
1214 	default:
1215 		return (ENXIO);
1216 	}
1217 
1218 	sc->sc_soc_id = d;
1219 
1220 	/* Initialize mutexes */
1221 	mtx_init(&sc->sc_sc_lock, device_get_nameunit(dev),
1222 	    "CESA Shared Data", MTX_DEF);
1223 	mtx_init(&sc->sc_tdesc_lock, device_get_nameunit(dev),
1224 	    "CESA TDMA Descriptors Pool", MTX_DEF);
1225 	mtx_init(&sc->sc_sdesc_lock, device_get_nameunit(dev),
1226 	    "CESA SA Descriptors Pool", MTX_DEF);
1227 	mtx_init(&sc->sc_requests_lock, device_get_nameunit(dev),
1228 	    "CESA Requests Pool", MTX_DEF);
1229 	mtx_init(&sc->sc_sessions_lock, device_get_nameunit(dev),
1230 	    "CESA Sessions Pool", MTX_DEF);
1231 
1232 	/* Allocate I/O and IRQ resources */
1233 	error = bus_alloc_resources(dev, cesa_res_spec, sc->sc_res);
1234 	if (error) {
1235 		device_printf(dev, "could not allocate resources\n");
1236 		goto err0;
1237 	}
1238 
1239 	/* Acquire SRAM base address */
1240 	if (!ofw_bus_is_compatible(dev, "marvell,armada-38x-crypto"))
1241 		error = cesa_setup_sram(sc);
1242 	else
1243 		error = cesa_setup_sram_armada(sc);
1244 
1245 	if (error) {
1246 		device_printf(dev, "could not setup SRAM\n");
1247 		goto err1;
1248 	}
1249 
1250 	/* Setup interrupt handler */
1251 	error = bus_setup_intr(dev, sc->sc_res[RES_CESA_IRQ], INTR_TYPE_NET |
1252 	    INTR_MPSAFE, NULL, cesa_intr, sc, &(sc->sc_icookie));
1253 	if (error) {
1254 		device_printf(dev, "could not setup engine completion irq\n");
1255 		goto err2;
1256 	}
1257 
1258 	/* Create DMA tag for processed data */
1259 	error = bus_dma_tag_create(bus_get_dma_tag(dev),	/* parent */
1260 	    1, 0,				/* alignment, boundary */
1261 	    BUS_SPACE_MAXADDR_32BIT,		/* lowaddr */
1262 	    BUS_SPACE_MAXADDR,			/* highaddr */
1263 	    NULL, NULL,				/* filtfunc, filtfuncarg */
1264 	    CESA_MAX_REQUEST_SIZE,		/* maxsize */
1265 	    CESA_MAX_FRAGMENTS,			/* nsegments */
1266 	    CESA_MAX_REQUEST_SIZE, 0,		/* maxsegsz, flags */
1267 	    NULL, NULL,				/* lockfunc, lockfuncarg */
1268 	    &sc->sc_data_dtag);			/* dmat */
1269 	if (error)
1270 		goto err3;
1271 
1272 	/* Initialize data structures: TDMA Descriptors Pool */
1273 	error = cesa_alloc_dma_mem(sc, &sc->sc_tdesc_cdm,
1274 	    CESA_TDMA_DESCRIPTORS * sizeof(struct cesa_tdma_hdesc));
1275 	if (error)
1276 		goto err4;
1277 
1278 	STAILQ_INIT(&sc->sc_free_tdesc);
1279 	for (i = 0; i < CESA_TDMA_DESCRIPTORS; i++) {
1280 		sc->sc_tdesc[i].ctd_cthd =
1281 		    (struct cesa_tdma_hdesc *)(sc->sc_tdesc_cdm.cdm_vaddr) + i;
1282 		sc->sc_tdesc[i].ctd_cthd_paddr = sc->sc_tdesc_cdm.cdm_paddr +
1283 		    (i * sizeof(struct cesa_tdma_hdesc));
1284 		STAILQ_INSERT_TAIL(&sc->sc_free_tdesc, &sc->sc_tdesc[i],
1285 		    ctd_stq);
1286 	}
1287 
1288 	/* Initialize data structures: SA Descriptors Pool */
1289 	error = cesa_alloc_dma_mem(sc, &sc->sc_sdesc_cdm,
1290 	    CESA_SA_DESCRIPTORS * sizeof(struct cesa_sa_hdesc));
1291 	if (error)
1292 		goto err5;
1293 
1294 	STAILQ_INIT(&sc->sc_free_sdesc);
1295 	for (i = 0; i < CESA_SA_DESCRIPTORS; i++) {
1296 		sc->sc_sdesc[i].csd_cshd =
1297 		    (struct cesa_sa_hdesc *)(sc->sc_sdesc_cdm.cdm_vaddr) + i;
1298 		sc->sc_sdesc[i].csd_cshd_paddr = sc->sc_sdesc_cdm.cdm_paddr +
1299 		    (i * sizeof(struct cesa_sa_hdesc));
1300 		STAILQ_INSERT_TAIL(&sc->sc_free_sdesc, &sc->sc_sdesc[i],
1301 		    csd_stq);
1302 	}
1303 
1304 	/* Initialize data structures: Requests Pool */
1305 	error = cesa_alloc_dma_mem(sc, &sc->sc_requests_cdm,
1306 	    CESA_REQUESTS * sizeof(struct cesa_sa_data));
1307 	if (error)
1308 		goto err6;
1309 
1310 	STAILQ_INIT(&sc->sc_free_requests);
1311 	STAILQ_INIT(&sc->sc_ready_requests);
1312 	STAILQ_INIT(&sc->sc_queued_requests);
1313 	for (i = 0; i < CESA_REQUESTS; i++) {
1314 		sc->sc_requests[i].cr_csd =
1315 		    (struct cesa_sa_data *)(sc->sc_requests_cdm.cdm_vaddr) + i;
1316 		sc->sc_requests[i].cr_csd_paddr =
1317 		    sc->sc_requests_cdm.cdm_paddr +
1318 		    (i * sizeof(struct cesa_sa_data));
1319 
1320 		/* Preallocate DMA maps */
1321 		error = bus_dmamap_create(sc->sc_data_dtag, 0,
1322 		    &sc->sc_requests[i].cr_dmap);
1323 		if (error && i > 0) {
1324 			i--;
1325 			do {
1326 				bus_dmamap_destroy(sc->sc_data_dtag,
1327 				    sc->sc_requests[i].cr_dmap);
1328 			} while (i--);
1329 
1330 			goto err7;
1331 		}
1332 
1333 		STAILQ_INSERT_TAIL(&sc->sc_free_requests, &sc->sc_requests[i],
1334 		    cr_stq);
1335 	}
1336 
1337 	/*
1338 	 * Initialize TDMA:
1339 	 * - Burst limit: 128 bytes,
1340 	 * - Outstanding reads enabled,
1341 	 * - No byte-swap.
1342 	 */
1343 	val = CESA_TDMA_CR_DBL128 | CESA_TDMA_CR_SBL128 |
1344 	    CESA_TDMA_CR_ORDEN | CESA_TDMA_CR_NBS | CESA_TDMA_CR_ENABLE;
1345 
1346 	if (sc->sc_soc_id == MV_DEV_88F6828 ||
1347 	    sc->sc_soc_id == MV_DEV_88F6820 ||
1348 	    sc->sc_soc_id == MV_DEV_88F6810)
1349 		val |= CESA_TDMA_NUM_OUTSTAND;
1350 
1351 	CESA_TDMA_WRITE(sc, CESA_TDMA_CR, val);
1352 
1353 	/*
1354 	 * Initialize SA:
1355 	 * - SA descriptor is present at beginning of CESA SRAM,
1356 	 * - Multi-packet chain mode,
1357 	 * - Cooperation with TDMA enabled.
1358 	 */
1359 	CESA_REG_WRITE(sc, CESA_SA_DPR, 0);
1360 	CESA_REG_WRITE(sc, CESA_SA_CR, CESA_SA_CR_ACTIVATE_TDMA |
1361 	    CESA_SA_CR_WAIT_FOR_TDMA | CESA_SA_CR_MULTI_MODE);
1362 
1363 	/* Unmask interrupts */
1364 	CESA_REG_WRITE(sc, CESA_ICR, 0);
1365 	CESA_REG_WRITE(sc, CESA_ICM, CESA_ICM_ACCTDMA | sc->sc_tperr);
1366 	CESA_TDMA_WRITE(sc, CESA_TDMA_ECR, 0);
1367 	CESA_TDMA_WRITE(sc, CESA_TDMA_EMR, CESA_TDMA_EMR_MISS |
1368 	    CESA_TDMA_EMR_DOUBLE_HIT | CESA_TDMA_EMR_BOTH_HIT |
1369 	    CESA_TDMA_EMR_DATA_ERROR);
1370 
1371 	/* Register in OCF */
1372 	sc->sc_cid = crypto_get_driverid(dev, sizeof(struct cesa_session),
1373 	    CRYPTOCAP_F_HARDWARE);
1374 	if (sc->sc_cid < 0) {
1375 		device_printf(dev, "could not get crypto driver id\n");
1376 		goto err8;
1377 	}
1378 
1379 	return (0);
1380 err8:
1381 	for (i = 0; i < CESA_REQUESTS; i++)
1382 		bus_dmamap_destroy(sc->sc_data_dtag,
1383 		    sc->sc_requests[i].cr_dmap);
1384 err7:
1385 	cesa_free_dma_mem(&sc->sc_requests_cdm);
1386 err6:
1387 	cesa_free_dma_mem(&sc->sc_sdesc_cdm);
1388 err5:
1389 	cesa_free_dma_mem(&sc->sc_tdesc_cdm);
1390 err4:
1391 	bus_dma_tag_destroy(sc->sc_data_dtag);
1392 err3:
1393 	bus_teardown_intr(dev, sc->sc_res[RES_CESA_IRQ], sc->sc_icookie);
1394 err2:
1395 	if (sc->sc_soc_id == MV_DEV_88F6828 ||
1396 	    sc->sc_soc_id == MV_DEV_88F6820 ||
1397 	    sc->sc_soc_id == MV_DEV_88F6810)
1398 		pmap_unmapdev(sc->sc_sram_base_va, sc->sc_sram_size);
1399 err1:
1400 	bus_release_resources(dev, cesa_res_spec, sc->sc_res);
1401 err0:
1402 	mtx_destroy(&sc->sc_sessions_lock);
1403 	mtx_destroy(&sc->sc_requests_lock);
1404 	mtx_destroy(&sc->sc_sdesc_lock);
1405 	mtx_destroy(&sc->sc_tdesc_lock);
1406 	mtx_destroy(&sc->sc_sc_lock);
1407 	return (ENXIO);
1408 }
1409 
1410 static int
1411 cesa_detach(device_t dev)
1412 {
1413 	struct cesa_softc *sc;
1414 	int i;
1415 
1416 	sc = device_get_softc(dev);
1417 
1418 	/* TODO: Wait for queued requests completion before shutdown. */
1419 
1420 	/* Mask interrupts */
1421 	CESA_REG_WRITE(sc, CESA_ICM, 0);
1422 	CESA_TDMA_WRITE(sc, CESA_TDMA_EMR, 0);
1423 
1424 	/* Unregister from OCF */
1425 	crypto_unregister_all(sc->sc_cid);
1426 
1427 	/* Free DMA Maps */
1428 	for (i = 0; i < CESA_REQUESTS; i++)
1429 		bus_dmamap_destroy(sc->sc_data_dtag,
1430 		    sc->sc_requests[i].cr_dmap);
1431 
1432 	/* Free DMA Memory */
1433 	cesa_free_dma_mem(&sc->sc_requests_cdm);
1434 	cesa_free_dma_mem(&sc->sc_sdesc_cdm);
1435 	cesa_free_dma_mem(&sc->sc_tdesc_cdm);
1436 
1437 	/* Free DMA Tag */
1438 	bus_dma_tag_destroy(sc->sc_data_dtag);
1439 
1440 	/* Stop interrupt */
1441 	bus_teardown_intr(dev, sc->sc_res[RES_CESA_IRQ], sc->sc_icookie);
1442 
1443 	/* Relase I/O and IRQ resources */
1444 	bus_release_resources(dev, cesa_res_spec, sc->sc_res);
1445 
1446 	/* Unmap SRAM memory */
1447 	if (sc->sc_soc_id == MV_DEV_88F6828 ||
1448 	    sc->sc_soc_id == MV_DEV_88F6820 ||
1449 	    sc->sc_soc_id == MV_DEV_88F6810)
1450 		pmap_unmapdev(sc->sc_sram_base_va, sc->sc_sram_size);
1451 
1452 	/* Destroy mutexes */
1453 	mtx_destroy(&sc->sc_sessions_lock);
1454 	mtx_destroy(&sc->sc_requests_lock);
1455 	mtx_destroy(&sc->sc_sdesc_lock);
1456 	mtx_destroy(&sc->sc_tdesc_lock);
1457 	mtx_destroy(&sc->sc_sc_lock);
1458 
1459 	return (0);
1460 }
1461 
1462 static void
1463 cesa_intr(void *arg)
1464 {
1465 	STAILQ_HEAD(, cesa_request) requests;
1466 	struct cesa_request *cr, *tmp;
1467 	struct cesa_softc *sc;
1468 	uint32_t ecr, icr;
1469 	uint8_t hash[HASH_MAX_LEN];
1470 	int blocked;
1471 
1472 	sc = arg;
1473 
1474 	/* Ack interrupt */
1475 	ecr = CESA_TDMA_READ(sc, CESA_TDMA_ECR);
1476 	CESA_TDMA_WRITE(sc, CESA_TDMA_ECR, 0);
1477 	icr = CESA_REG_READ(sc, CESA_ICR);
1478 	CESA_REG_WRITE(sc, CESA_ICR, 0);
1479 
1480 	/* Check for TDMA errors */
1481 	if (ecr & CESA_TDMA_ECR_MISS) {
1482 		device_printf(sc->sc_dev, "TDMA Miss error detected!\n");
1483 		sc->sc_error = EIO;
1484 	}
1485 
1486 	if (ecr & CESA_TDMA_ECR_DOUBLE_HIT) {
1487 		device_printf(sc->sc_dev, "TDMA Double Hit error detected!\n");
1488 		sc->sc_error = EIO;
1489 	}
1490 
1491 	if (ecr & CESA_TDMA_ECR_BOTH_HIT) {
1492 		device_printf(sc->sc_dev, "TDMA Both Hit error detected!\n");
1493 		sc->sc_error = EIO;
1494 	}
1495 
1496 	if (ecr & CESA_TDMA_ECR_DATA_ERROR) {
1497 		device_printf(sc->sc_dev, "TDMA Data error detected!\n");
1498 		sc->sc_error = EIO;
1499 	}
1500 
1501 	/* Check for CESA errors */
1502 	if (icr & sc->sc_tperr) {
1503 		device_printf(sc->sc_dev, "CESA SRAM Parity error detected!\n");
1504 		sc->sc_error = EIO;
1505 	}
1506 
1507 	/* If there is nothing more to do, return */
1508 	if ((icr & CESA_ICR_ACCTDMA) == 0)
1509 		return;
1510 
1511 	/* Get all finished requests */
1512 	CESA_LOCK(sc, requests);
1513 	STAILQ_INIT(&requests);
1514 	STAILQ_CONCAT(&requests, &sc->sc_queued_requests);
1515 	STAILQ_INIT(&sc->sc_queued_requests);
1516 	CESA_UNLOCK(sc, requests);
1517 
1518 	/* Execute all ready requests */
1519 	cesa_execute(sc);
1520 
1521 	/* Process completed requests */
1522 	cesa_sync_dma_mem(&sc->sc_requests_cdm, BUS_DMASYNC_POSTREAD |
1523 	    BUS_DMASYNC_POSTWRITE);
1524 
1525 	STAILQ_FOREACH_SAFE(cr, &requests, cr_stq, tmp) {
1526 		bus_dmamap_sync(sc->sc_data_dtag, cr->cr_dmap,
1527 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1528 
1529 		cr->cr_crp->crp_etype = sc->sc_error;
1530 		if (cr->cr_cs->cs_hlen != 0 && cr->cr_crp->crp_etype == 0) {
1531 			if (cr->cr_crp->crp_op & CRYPTO_OP_VERIFY_DIGEST) {
1532 				crypto_copydata(cr->cr_crp,
1533 				    cr->cr_crp->crp_digest_start,
1534 				    cr->cr_cs->cs_hlen, hash);
1535 				if (timingsafe_bcmp(hash, cr->cr_csd->csd_hash,
1536 				    cr->cr_cs->cs_hlen) != 0)
1537 					cr->cr_crp->crp_etype = EBADMSG;
1538 			} else
1539 				crypto_copyback(cr->cr_crp,
1540 				    cr->cr_crp->crp_digest_start,
1541 				    cr->cr_cs->cs_hlen, cr->cr_csd->csd_hash);
1542 		}
1543 		crypto_done(cr->cr_crp);
1544 		cesa_free_request(sc, cr);
1545 	}
1546 
1547 	cesa_sync_dma_mem(&sc->sc_requests_cdm, BUS_DMASYNC_PREREAD |
1548 	    BUS_DMASYNC_PREWRITE);
1549 
1550 	sc->sc_error = 0;
1551 
1552 	/* Unblock driver if it ran out of resources */
1553 	CESA_LOCK(sc, sc);
1554 	blocked = sc->sc_blocked;
1555 	sc->sc_blocked = 0;
1556 	CESA_UNLOCK(sc, sc);
1557 
1558 	if (blocked)
1559 		crypto_unblock(sc->sc_cid, blocked);
1560 }
1561 
1562 static bool
1563 cesa_cipher_supported(const struct crypto_session_params *csp)
1564 {
1565 
1566 	switch (csp->csp_cipher_alg) {
1567 	case CRYPTO_AES_CBC:
1568 		if (csp->csp_ivlen != AES_BLOCK_LEN)
1569 			return (false);
1570 		break;
1571 	default:
1572 		return (false);
1573 	}
1574 
1575 	if (csp->csp_cipher_klen > CESA_MAX_KEY_LEN)
1576 		return (false);
1577 
1578 	return (true);
1579 }
1580 
1581 static bool
1582 cesa_auth_supported(struct cesa_softc *sc,
1583     const struct crypto_session_params *csp)
1584 {
1585 
1586 	switch (csp->csp_auth_alg) {
1587 	case CRYPTO_SHA2_256_HMAC:
1588 		if (!(sc->sc_soc_id == MV_DEV_88F6828 ||
1589 		    sc->sc_soc_id == MV_DEV_88F6820 ||
1590 		    sc->sc_soc_id == MV_DEV_88F6810))
1591 			return (false);
1592 		/* FALLTHROUGH */
1593 	case CRYPTO_SHA1:
1594 	case CRYPTO_SHA1_HMAC:
1595 		break;
1596 	default:
1597 		return (false);
1598 	}
1599 
1600 	if (csp->csp_auth_klen > CESA_MAX_MKEY_LEN)
1601 		return (false);
1602 
1603 	return (true);
1604 }
1605 
1606 static int
1607 cesa_probesession(device_t dev, const struct crypto_session_params *csp)
1608 {
1609 	struct cesa_softc *sc;
1610 
1611 	sc = device_get_softc(dev);
1612 	if (csp->csp_flags != 0)
1613 		return (EINVAL);
1614 	switch (csp->csp_mode) {
1615 	case CSP_MODE_DIGEST:
1616 		if (!cesa_auth_supported(sc, csp))
1617 			return (EINVAL);
1618 		break;
1619 	case CSP_MODE_CIPHER:
1620 		if (!cesa_cipher_supported(csp))
1621 			return (EINVAL);
1622 		break;
1623 	case CSP_MODE_ETA:
1624 		if (!cesa_auth_supported(sc, csp) ||
1625 		    !cesa_cipher_supported(csp))
1626 			return (EINVAL);
1627 		break;
1628 	default:
1629 		return (EINVAL);
1630 	}
1631 	return (CRYPTODEV_PROBE_HARDWARE);
1632 }
1633 
1634 static int
1635 cesa_newsession(device_t dev, crypto_session_t cses,
1636     const struct crypto_session_params *csp)
1637 {
1638 	struct cesa_session *cs;
1639 	int error;
1640 
1641 	error = 0;
1642 
1643 	/* Allocate session */
1644 	cs = crypto_get_driver_session(cses);
1645 
1646 	/* Prepare CESA configuration */
1647 	cs->cs_config = 0;
1648 	cs->cs_ivlen = 1;
1649 	cs->cs_mblen = 1;
1650 
1651 	switch (csp->csp_cipher_alg) {
1652 	case CRYPTO_AES_CBC:
1653 		cs->cs_config |= CESA_CSHD_AES | CESA_CSHD_CBC;
1654 		cs->cs_ivlen = AES_BLOCK_LEN;
1655 		break;
1656 	}
1657 
1658 	switch (csp->csp_auth_alg) {
1659 	case CRYPTO_SHA1:
1660 		cs->cs_mblen = 1;
1661 		cs->cs_hlen = (csp->csp_auth_mlen == 0) ? SHA1_HASH_LEN :
1662 		    csp->csp_auth_mlen;
1663 		cs->cs_config |= CESA_CSHD_SHA1;
1664 		break;
1665 	case CRYPTO_SHA1_HMAC:
1666 		cs->cs_mblen = SHA1_BLOCK_LEN;
1667 		cs->cs_hlen = (csp->csp_auth_mlen == 0) ? SHA1_HASH_LEN :
1668 		    csp->csp_auth_mlen;
1669 		cs->cs_config |= CESA_CSHD_SHA1_HMAC;
1670 		if (cs->cs_hlen == CESA_HMAC_TRUNC_LEN)
1671 			cs->cs_config |= CESA_CSHD_96_BIT_HMAC;
1672 		break;
1673 	case CRYPTO_SHA2_256_HMAC:
1674 		cs->cs_mblen = SHA2_256_BLOCK_LEN;
1675 		cs->cs_hlen = (csp->csp_auth_mlen == 0) ? SHA2_256_HASH_LEN :
1676 		    csp->csp_auth_mlen;
1677 		cs->cs_config |= CESA_CSHD_SHA2_256_HMAC;
1678 		break;
1679 	}
1680 
1681 	/* Save cipher key */
1682 	if (csp->csp_cipher_key != NULL) {
1683 		memcpy(cs->cs_key, csp->csp_cipher_key,
1684 		    csp->csp_cipher_klen);
1685 		if (csp->csp_cipher_alg == CRYPTO_AES_CBC)
1686 			error = cesa_prep_aes_key(cs, csp);
1687 	}
1688 
1689 	/* Save digest key */
1690 	if (csp->csp_auth_key != NULL)
1691 		cesa_set_mkey(cs, csp->csp_auth_alg, csp->csp_auth_key,
1692 		    csp->csp_auth_klen);
1693 
1694 	return (error);
1695 }
1696 
1697 static int
1698 cesa_process(device_t dev, struct cryptop *crp, int hint)
1699 {
1700 	const struct crypto_session_params *csp;
1701 	struct cesa_request *cr;
1702 	struct cesa_session *cs;
1703 	struct cesa_softc *sc;
1704 	int error;
1705 
1706 	sc = device_get_softc(dev);
1707 	error = 0;
1708 
1709 	cs = crypto_get_driver_session(crp->crp_session);
1710 	csp = crypto_get_params(crp->crp_session);
1711 
1712 	/* Check and parse input */
1713 	if (crypto_buffer_len(&crp->crp_buf) > CESA_MAX_REQUEST_SIZE) {
1714 		crp->crp_etype = E2BIG;
1715 		crypto_done(crp);
1716 		return (0);
1717 	}
1718 
1719 	/*
1720 	 * For requests with AAD, only requests where the AAD is
1721 	 * immediately adjacent to the payload are supported.
1722 	 */
1723 	if (crp->crp_aad_length != 0 &&
1724 	    (crp->crp_aad_start + crp->crp_aad_length) !=
1725 	    crp->crp_payload_start) {
1726 		crp->crp_etype = EINVAL;
1727 		crypto_done(crp);
1728 		return (0);
1729 	}
1730 
1731 	/*
1732 	 * Get request descriptor. Block driver if there is no free
1733 	 * descriptors in pool.
1734 	 */
1735 	cr = cesa_alloc_request(sc);
1736 	if (!cr) {
1737 		CESA_LOCK(sc, sc);
1738 		sc->sc_blocked = CRYPTO_SYMQ;
1739 		CESA_UNLOCK(sc, sc);
1740 		return (ERESTART);
1741 	}
1742 
1743 	/* Prepare request */
1744 	cr->cr_crp = crp;
1745 	cr->cr_cs = cs;
1746 
1747 	CESA_LOCK(sc, sessions);
1748 	cesa_sync_desc(sc, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1749 
1750 	if (csp->csp_cipher_alg != 0)
1751 		crypto_read_iv(crp, cr->cr_csd->csd_iv);
1752 
1753 	if (crp->crp_cipher_key != NULL) {
1754 		memcpy(cs->cs_key, crp->crp_cipher_key,
1755 		    csp->csp_cipher_klen);
1756 		if (csp->csp_cipher_alg == CRYPTO_AES_CBC)
1757 			error = cesa_prep_aes_key(cs, csp);
1758 	}
1759 
1760 	if (!error && crp->crp_auth_key != NULL)
1761 		cesa_set_mkey(cs, csp->csp_auth_alg, crp->crp_auth_key,
1762 		    csp->csp_auth_klen);
1763 
1764 	/* Convert request to chain of TDMA and SA descriptors */
1765 	if (!error)
1766 		error = cesa_create_chain(sc, csp, cr);
1767 
1768 	cesa_sync_desc(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1769 	CESA_UNLOCK(sc, sessions);
1770 
1771 	if (error) {
1772 		cesa_free_request(sc, cr);
1773 		crp->crp_etype = error;
1774 		crypto_done(crp);
1775 		return (0);
1776 	}
1777 
1778 	bus_dmamap_sync(sc->sc_data_dtag, cr->cr_dmap, BUS_DMASYNC_PREREAD |
1779 	    BUS_DMASYNC_PREWRITE);
1780 
1781 	/* Enqueue request to execution */
1782 	cesa_enqueue_request(sc, cr);
1783 
1784 	/* Start execution, if we have no more requests in queue */
1785 	if ((hint & CRYPTO_HINT_MORE) == 0)
1786 		cesa_execute(sc);
1787 
1788 	return (0);
1789 }
1790