xref: /freebsd/sys/dev/dc/if_dc.c (revision f374ba41)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1997, 1998, 1999
5  *	Bill Paul <wpaul@ee.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 /*
39  * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
40  * series chips and several workalikes including the following:
41  *
42  * Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com)
43  * Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
44  * Lite-On 82c168/82c169 PNIC (www.litecom.com)
45  * ASIX Electronics AX88140A (www.asix.com.tw)
46  * ASIX Electronics AX88141 (www.asix.com.tw)
47  * ADMtek AL981 (www.admtek.com.tw)
48  * ADMtek AN983 (www.admtek.com.tw)
49  * ADMtek CardBus AN985 (www.admtek.com.tw)
50  * Netgear FA511 (www.netgear.com) Appears to be rebadged ADMTek CardBus AN985
51  * Davicom DM9100, DM9102, DM9102A (www.davicom8.com)
52  * Accton EN1217 (www.accton.com)
53  * Xircom X3201 (www.xircom.com)
54  * Abocom FE2500
55  * Conexant LANfinity (www.conexant.com)
56  * 3Com OfficeConnect 10/100B 3CSOHO100B (www.3com.com)
57  *
58  * Datasheets for the 21143 are available at developer.intel.com.
59  * Datasheets for the clone parts can be found at their respective sites.
60  * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
61  * The PNIC II is essentially a Macronix 98715A chip; the only difference
62  * worth noting is that its multicast hash table is only 128 bits wide
63  * instead of 512.
64  *
65  * Written by Bill Paul <wpaul@ee.columbia.edu>
66  * Electrical Engineering Department
67  * Columbia University, New York City
68  */
69 /*
70  * The Intel 21143 is the successor to the DEC 21140. It is basically
71  * the same as the 21140 but with a few new features. The 21143 supports
72  * three kinds of media attachments:
73  *
74  * o MII port, for 10Mbps and 100Mbps support and NWAY
75  *   autonegotiation provided by an external PHY.
76  * o SYM port, for symbol mode 100Mbps support.
77  * o 10baseT port.
78  * o AUI/BNC port.
79  *
80  * The 100Mbps SYM port and 10baseT port can be used together in
81  * combination with the internal NWAY support to create a 10/100
82  * autosensing configuration.
83  *
84  * Note that not all tulip workalikes are handled in this driver: we only
85  * deal with those which are relatively well behaved. The Winbond is
86  * handled separately due to its different register offsets and the
87  * special handling needed for its various bugs. The PNIC is handled
88  * here, but I'm not thrilled about it.
89  *
90  * All of the workalike chips use some form of MII transceiver support
91  * with the exception of the Macronix chips, which also have a SYM port.
92  * The ASIX AX88140A is also documented to have a SYM port, but all
93  * the cards I've seen use an MII transceiver, probably because the
94  * AX88140A doesn't support internal NWAY.
95  */
96 
97 #ifdef HAVE_KERNEL_OPTION_HEADERS
98 #include "opt_device_polling.h"
99 #endif
100 
101 #include <sys/param.h>
102 #include <sys/endian.h>
103 #include <sys/systm.h>
104 #include <sys/sockio.h>
105 #include <sys/mbuf.h>
106 #include <sys/malloc.h>
107 #include <sys/kernel.h>
108 #include <sys/module.h>
109 #include <sys/socket.h>
110 
111 #include <net/if.h>
112 #include <net/if_var.h>
113 #include <net/if_arp.h>
114 #include <net/ethernet.h>
115 #include <net/if_dl.h>
116 #include <net/if_media.h>
117 #include <net/if_types.h>
118 #include <net/if_vlan_var.h>
119 
120 #include <net/bpf.h>
121 
122 #include <machine/bus.h>
123 #include <machine/resource.h>
124 #include <sys/bus.h>
125 #include <sys/rman.h>
126 
127 #include <dev/mii/mii.h>
128 #include <dev/mii/mii_bitbang.h>
129 #include <dev/mii/miivar.h>
130 
131 #include <dev/pci/pcireg.h>
132 #include <dev/pci/pcivar.h>
133 
134 #define	DC_USEIOSPACE
135 
136 #include <dev/dc/if_dcreg.h>
137 
138 MODULE_DEPEND(dc, pci, 1, 1, 1);
139 MODULE_DEPEND(dc, ether, 1, 1, 1);
140 MODULE_DEPEND(dc, miibus, 1, 1, 1);
141 
142 /*
143  * "device miibus" is required in kernel config.  See GENERIC if you get
144  * errors here.
145  */
146 #include "miibus_if.h"
147 
148 /*
149  * Various supported device vendors/types and their names.
150  */
151 static const struct dc_type dc_devs[] = {
152 	{ DC_DEVID(DC_VENDORID_DEC, DC_DEVICEID_21143), 0,
153 		"Intel 21143 10/100BaseTX" },
154 	{ DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009), 0,
155 		"Davicom DM9009 10/100BaseTX" },
156 	{ DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100), 0,
157 		"Davicom DM9100 10/100BaseTX" },
158 	{ DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102), DC_REVISION_DM9102A,
159 		"Davicom DM9102A 10/100BaseTX" },
160 	{ DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102), 0,
161 		"Davicom DM9102 10/100BaseTX" },
162 	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AL981), 0,
163 		"ADMtek AL981 10/100BaseTX" },
164 	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN983), 0,
165 		"ADMtek AN983 10/100BaseTX" },
166 	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN985), 0,
167 		"ADMtek AN985 CardBus 10/100BaseTX or clone" },
168 	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511), 0,
169 		"ADMtek ADM9511 10/100BaseTX" },
170 	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513), 0,
171 		"ADMtek ADM9513 10/100BaseTX" },
172 	{ DC_DEVID(DC_VENDORID_ASIX, DC_DEVICEID_AX88140A), DC_REVISION_88141,
173 		"ASIX AX88141 10/100BaseTX" },
174 	{ DC_DEVID(DC_VENDORID_ASIX, DC_DEVICEID_AX88140A), 0,
175 		"ASIX AX88140A 10/100BaseTX" },
176 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98713), DC_REVISION_98713A,
177 		"Macronix 98713A 10/100BaseTX" },
178 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98713), 0,
179 		"Macronix 98713 10/100BaseTX" },
180 	{ DC_DEVID(DC_VENDORID_CP, DC_DEVICEID_98713_CP), DC_REVISION_98713A,
181 		"Compex RL100-TX 10/100BaseTX" },
182 	{ DC_DEVID(DC_VENDORID_CP, DC_DEVICEID_98713_CP), 0,
183 		"Compex RL100-TX 10/100BaseTX" },
184 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5), DC_REVISION_98725,
185 		"Macronix 98725 10/100BaseTX" },
186 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5), DC_REVISION_98715AEC_C,
187 		"Macronix 98715AEC-C 10/100BaseTX" },
188 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5), 0,
189 		"Macronix 98715/98715A 10/100BaseTX" },
190 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98727), 0,
191 		"Macronix 98727/98732 10/100BaseTX" },
192 	{ DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C115), 0,
193 		"LC82C115 PNIC II 10/100BaseTX" },
194 	{ DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168), DC_REVISION_82C169,
195 		"82c169 PNIC 10/100BaseTX" },
196 	{ DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168), 0,
197 		"82c168 PNIC 10/100BaseTX" },
198 	{ DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN1217), 0,
199 		"Accton EN1217 10/100BaseTX" },
200 	{ DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN2242), 0,
201 		"Accton EN2242 MiniPCI 10/100BaseTX" },
202 	{ DC_DEVID(DC_VENDORID_XIRCOM, DC_DEVICEID_X3201), 0,
203 		"Xircom X3201 10/100BaseTX" },
204 	{ DC_DEVID(DC_VENDORID_DLINK, DC_DEVICEID_DRP32TXD), 0,
205 		"Neteasy DRP-32TXD Cardbus 10/100" },
206 	{ DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500), 0,
207 		"Abocom FE2500 10/100BaseTX" },
208 	{ DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500MX), 0,
209 		"Abocom FE2500MX 10/100BaseTX" },
210 	{ DC_DEVID(DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112), 0,
211 		"Conexant LANfinity MiniPCI 10/100BaseTX" },
212 	{ DC_DEVID(DC_VENDORID_HAWKING, DC_DEVICEID_HAWKING_PN672TX), 0,
213 		"Hawking CB102 CardBus 10/100" },
214 	{ DC_DEVID(DC_VENDORID_PLANEX, DC_DEVICEID_FNW3602T), 0,
215 		"PlaneX FNW-3602-T CardBus 10/100" },
216 	{ DC_DEVID(DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB), 0,
217 		"3Com OfficeConnect 10/100B" },
218 	{ DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN120), 0,
219 		"Microsoft MN-120 CardBus 10/100" },
220 	{ DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130), 0,
221 		"Microsoft MN-130 10/100" },
222 	{ DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB08), 0,
223 		"Linksys PCMPC200 CardBus 10/100" },
224 	{ DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB09), 0,
225 		"Linksys PCMPC200 CardBus 10/100" },
226 	{ DC_DEVID(DC_VENDORID_ULI, DC_DEVICEID_M5261), 0,
227 		"ULi M5261 FastEthernet" },
228 	{ DC_DEVID(DC_VENDORID_ULI, DC_DEVICEID_M5263), 0,
229 		"ULi M5263 FastEthernet" },
230 	{ 0, 0, NULL }
231 };
232 
233 static int dc_probe(device_t);
234 static int dc_attach(device_t);
235 static int dc_detach(device_t);
236 static int dc_suspend(device_t);
237 static int dc_resume(device_t);
238 static const struct dc_type *dc_devtype(device_t);
239 static void dc_discard_rxbuf(struct dc_softc *, int);
240 static int dc_newbuf(struct dc_softc *, int);
241 static int dc_encap(struct dc_softc *, struct mbuf **);
242 static void dc_pnic_rx_bug_war(struct dc_softc *, int);
243 static int dc_rx_resync(struct dc_softc *);
244 static int dc_rxeof(struct dc_softc *);
245 static void dc_txeof(struct dc_softc *);
246 static void dc_tick(void *);
247 static void dc_tx_underrun(struct dc_softc *);
248 static void dc_intr(void *);
249 static void dc_start(if_t);
250 static void dc_start_locked(if_t);
251 static int dc_ioctl(if_t, u_long, caddr_t);
252 static void dc_init(void *);
253 static void dc_init_locked(struct dc_softc *);
254 static void dc_stop(struct dc_softc *);
255 static void dc_watchdog(void *);
256 static int dc_shutdown(device_t);
257 static int dc_ifmedia_upd(if_t);
258 static int dc_ifmedia_upd_locked(struct dc_softc *);
259 static void dc_ifmedia_sts(if_t, struct ifmediareq *);
260 
261 static int dc_dma_alloc(struct dc_softc *);
262 static void dc_dma_free(struct dc_softc *);
263 static void dc_dma_map_addr(void *, bus_dma_segment_t *, int, int);
264 
265 static void dc_delay(struct dc_softc *);
266 static void dc_eeprom_idle(struct dc_softc *);
267 static void dc_eeprom_putbyte(struct dc_softc *, int);
268 static void dc_eeprom_getword(struct dc_softc *, int, uint16_t *);
269 static void dc_eeprom_getword_pnic(struct dc_softc *, int, uint16_t *);
270 static void dc_eeprom_getword_xircom(struct dc_softc *, int, uint16_t *);
271 static void dc_eeprom_width(struct dc_softc *);
272 static void dc_read_eeprom(struct dc_softc *, caddr_t, int, int, int);
273 
274 static int dc_miibus_readreg(device_t, int, int);
275 static int dc_miibus_writereg(device_t, int, int, int);
276 static void dc_miibus_statchg(device_t);
277 static void dc_miibus_mediainit(device_t);
278 
279 static void dc_setcfg(struct dc_softc *, int);
280 static void dc_netcfg_wait(struct dc_softc *);
281 static uint32_t dc_mchash_le(struct dc_softc *, const uint8_t *);
282 static uint32_t dc_mchash_be(const uint8_t *);
283 static void dc_setfilt_21143(struct dc_softc *);
284 static void dc_setfilt_asix(struct dc_softc *);
285 static void dc_setfilt_admtek(struct dc_softc *);
286 static void dc_setfilt_uli(struct dc_softc *);
287 static void dc_setfilt_xircom(struct dc_softc *);
288 
289 static void dc_setfilt(struct dc_softc *);
290 
291 static void dc_reset(struct dc_softc *);
292 static int dc_list_rx_init(struct dc_softc *);
293 static int dc_list_tx_init(struct dc_softc *);
294 
295 static int dc_read_srom(struct dc_softc *, int);
296 static int dc_parse_21143_srom(struct dc_softc *);
297 static int dc_decode_leaf_sia(struct dc_softc *, struct dc_eblock_sia *);
298 static int dc_decode_leaf_mii(struct dc_softc *, struct dc_eblock_mii *);
299 static int dc_decode_leaf_sym(struct dc_softc *, struct dc_eblock_sym *);
300 static void dc_apply_fixup(struct dc_softc *, int);
301 static int dc_check_multiport(struct dc_softc *);
302 
303 /*
304  * MII bit-bang glue
305  */
306 static uint32_t dc_mii_bitbang_read(device_t);
307 static void dc_mii_bitbang_write(device_t, uint32_t);
308 
309 static const struct mii_bitbang_ops dc_mii_bitbang_ops = {
310 	dc_mii_bitbang_read,
311 	dc_mii_bitbang_write,
312 	{
313 		DC_SIO_MII_DATAOUT,	/* MII_BIT_MDO */
314 		DC_SIO_MII_DATAIN,	/* MII_BIT_MDI */
315 		DC_SIO_MII_CLK,		/* MII_BIT_MDC */
316 		0,			/* MII_BIT_DIR_HOST_PHY */
317 		DC_SIO_MII_DIR,		/* MII_BIT_DIR_PHY_HOST */
318 	}
319 };
320 
321 #ifdef DC_USEIOSPACE
322 #define	DC_RES			SYS_RES_IOPORT
323 #define	DC_RID			DC_PCI_CFBIO
324 #else
325 #define	DC_RES			SYS_RES_MEMORY
326 #define	DC_RID			DC_PCI_CFBMA
327 #endif
328 
329 static device_method_t dc_methods[] = {
330 	/* Device interface */
331 	DEVMETHOD(device_probe,		dc_probe),
332 	DEVMETHOD(device_attach,	dc_attach),
333 	DEVMETHOD(device_detach,	dc_detach),
334 	DEVMETHOD(device_suspend,	dc_suspend),
335 	DEVMETHOD(device_resume,	dc_resume),
336 	DEVMETHOD(device_shutdown,	dc_shutdown),
337 
338 	/* MII interface */
339 	DEVMETHOD(miibus_readreg,	dc_miibus_readreg),
340 	DEVMETHOD(miibus_writereg,	dc_miibus_writereg),
341 	DEVMETHOD(miibus_statchg,	dc_miibus_statchg),
342 	DEVMETHOD(miibus_mediainit,	dc_miibus_mediainit),
343 
344 	DEVMETHOD_END
345 };
346 
347 static driver_t dc_driver = {
348 	"dc",
349 	dc_methods,
350 	sizeof(struct dc_softc)
351 };
352 
353 DRIVER_MODULE_ORDERED(dc, pci, dc_driver, NULL, NULL, SI_ORDER_ANY);
354 MODULE_PNP_INFO("W32:vendor/device;U8:revision;D:#", pci, dc, dc_devs,
355     nitems(dc_devs) - 1);
356 DRIVER_MODULE(miibus, dc, miibus_driver, NULL, NULL);
357 
358 #define	DC_SETBIT(sc, reg, x)				\
359 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
360 
361 #define	DC_CLRBIT(sc, reg, x)				\
362 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
363 
364 #define	SIO_SET(x)	DC_SETBIT(sc, DC_SIO, (x))
365 #define	SIO_CLR(x)	DC_CLRBIT(sc, DC_SIO, (x))
366 
367 static void
368 dc_delay(struct dc_softc *sc)
369 {
370 	int idx;
371 
372 	for (idx = (300 / 33) + 1; idx > 0; idx--)
373 		CSR_READ_4(sc, DC_BUSCTL);
374 }
375 
376 static void
377 dc_eeprom_width(struct dc_softc *sc)
378 {
379 	int i;
380 
381 	/* Force EEPROM to idle state. */
382 	dc_eeprom_idle(sc);
383 
384 	/* Enter EEPROM access mode. */
385 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
386 	dc_delay(sc);
387 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
388 	dc_delay(sc);
389 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
390 	dc_delay(sc);
391 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
392 	dc_delay(sc);
393 
394 	for (i = 3; i--;) {
395 		if (6 & (1 << i))
396 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
397 		else
398 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
399 		dc_delay(sc);
400 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
401 		dc_delay(sc);
402 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
403 		dc_delay(sc);
404 	}
405 
406 	for (i = 1; i <= 12; i++) {
407 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
408 		dc_delay(sc);
409 		if (!(CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)) {
410 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
411 			dc_delay(sc);
412 			break;
413 		}
414 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
415 		dc_delay(sc);
416 	}
417 
418 	/* Turn off EEPROM access mode. */
419 	dc_eeprom_idle(sc);
420 
421 	if (i < 4 || i > 12)
422 		sc->dc_romwidth = 6;
423 	else
424 		sc->dc_romwidth = i;
425 
426 	/* Enter EEPROM access mode. */
427 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
428 	dc_delay(sc);
429 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
430 	dc_delay(sc);
431 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
432 	dc_delay(sc);
433 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
434 	dc_delay(sc);
435 
436 	/* Turn off EEPROM access mode. */
437 	dc_eeprom_idle(sc);
438 }
439 
440 static void
441 dc_eeprom_idle(struct dc_softc *sc)
442 {
443 	int i;
444 
445 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
446 	dc_delay(sc);
447 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
448 	dc_delay(sc);
449 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
450 	dc_delay(sc);
451 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
452 	dc_delay(sc);
453 
454 	for (i = 0; i < 25; i++) {
455 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
456 		dc_delay(sc);
457 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
458 		dc_delay(sc);
459 	}
460 
461 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
462 	dc_delay(sc);
463 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
464 	dc_delay(sc);
465 	CSR_WRITE_4(sc, DC_SIO, 0x00000000);
466 }
467 
468 /*
469  * Send a read command and address to the EEPROM, check for ACK.
470  */
471 static void
472 dc_eeprom_putbyte(struct dc_softc *sc, int addr)
473 {
474 	int d, i;
475 
476 	d = DC_EECMD_READ >> 6;
477 	for (i = 3; i--; ) {
478 		if (d & (1 << i))
479 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
480 		else
481 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
482 		dc_delay(sc);
483 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
484 		dc_delay(sc);
485 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
486 		dc_delay(sc);
487 	}
488 
489 	/*
490 	 * Feed in each bit and strobe the clock.
491 	 */
492 	for (i = sc->dc_romwidth; i--;) {
493 		if (addr & (1 << i)) {
494 			SIO_SET(DC_SIO_EE_DATAIN);
495 		} else {
496 			SIO_CLR(DC_SIO_EE_DATAIN);
497 		}
498 		dc_delay(sc);
499 		SIO_SET(DC_SIO_EE_CLK);
500 		dc_delay(sc);
501 		SIO_CLR(DC_SIO_EE_CLK);
502 		dc_delay(sc);
503 	}
504 }
505 
506 /*
507  * Read a word of data stored in the EEPROM at address 'addr.'
508  * The PNIC 82c168/82c169 has its own non-standard way to read
509  * the EEPROM.
510  */
511 static void
512 dc_eeprom_getword_pnic(struct dc_softc *sc, int addr, uint16_t *dest)
513 {
514 	int i;
515 	uint32_t r;
516 
517 	CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ | addr);
518 
519 	for (i = 0; i < DC_TIMEOUT; i++) {
520 		DELAY(1);
521 		r = CSR_READ_4(sc, DC_SIO);
522 		if (!(r & DC_PN_SIOCTL_BUSY)) {
523 			*dest = (uint16_t)(r & 0xFFFF);
524 			return;
525 		}
526 	}
527 }
528 
529 /*
530  * Read a word of data stored in the EEPROM at address 'addr.'
531  * The Xircom X3201 has its own non-standard way to read
532  * the EEPROM, too.
533  */
534 static void
535 dc_eeprom_getword_xircom(struct dc_softc *sc, int addr, uint16_t *dest)
536 {
537 
538 	SIO_SET(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
539 
540 	addr *= 2;
541 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
542 	*dest = (uint16_t)CSR_READ_4(sc, DC_SIO) & 0xff;
543 	addr += 1;
544 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
545 	*dest |= ((uint16_t)CSR_READ_4(sc, DC_SIO) & 0xff) << 8;
546 
547 	SIO_CLR(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
548 }
549 
550 /*
551  * Read a word of data stored in the EEPROM at address 'addr.'
552  */
553 static void
554 dc_eeprom_getword(struct dc_softc *sc, int addr, uint16_t *dest)
555 {
556 	int i;
557 	uint16_t word = 0;
558 
559 	/* Force EEPROM to idle state. */
560 	dc_eeprom_idle(sc);
561 
562 	/* Enter EEPROM access mode. */
563 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
564 	dc_delay(sc);
565 	DC_SETBIT(sc, DC_SIO,  DC_SIO_ROMCTL_READ);
566 	dc_delay(sc);
567 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
568 	dc_delay(sc);
569 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
570 	dc_delay(sc);
571 
572 	/*
573 	 * Send address of word we want to read.
574 	 */
575 	dc_eeprom_putbyte(sc, addr);
576 
577 	/*
578 	 * Start reading bits from EEPROM.
579 	 */
580 	for (i = 0x8000; i; i >>= 1) {
581 		SIO_SET(DC_SIO_EE_CLK);
582 		dc_delay(sc);
583 		if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
584 			word |= i;
585 		dc_delay(sc);
586 		SIO_CLR(DC_SIO_EE_CLK);
587 		dc_delay(sc);
588 	}
589 
590 	/* Turn off EEPROM access mode. */
591 	dc_eeprom_idle(sc);
592 
593 	*dest = word;
594 }
595 
596 /*
597  * Read a sequence of words from the EEPROM.
598  */
599 static void
600 dc_read_eeprom(struct dc_softc *sc, caddr_t dest, int off, int cnt, int be)
601 {
602 	int i;
603 	uint16_t word = 0, *ptr;
604 
605 	for (i = 0; i < cnt; i++) {
606 		if (DC_IS_PNIC(sc))
607 			dc_eeprom_getword_pnic(sc, off + i, &word);
608 		else if (DC_IS_XIRCOM(sc))
609 			dc_eeprom_getword_xircom(sc, off + i, &word);
610 		else
611 			dc_eeprom_getword(sc, off + i, &word);
612 		ptr = (uint16_t *)(dest + (i * 2));
613 		if (be)
614 			*ptr = be16toh(word);
615 		else
616 			*ptr = le16toh(word);
617 	}
618 }
619 
620 /*
621  * Write the MII serial port for the MII bit-bang module.
622  */
623 static void
624 dc_mii_bitbang_write(device_t dev, uint32_t val)
625 {
626 	struct dc_softc *sc;
627 
628 	sc = device_get_softc(dev);
629 
630 	CSR_WRITE_4(sc, DC_SIO, val);
631 	CSR_BARRIER_4(sc, DC_SIO,
632 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
633 }
634 
635 /*
636  * Read the MII serial port for the MII bit-bang module.
637  */
638 static uint32_t
639 dc_mii_bitbang_read(device_t dev)
640 {
641 	struct dc_softc *sc;
642 	uint32_t val;
643 
644 	sc = device_get_softc(dev);
645 
646 	val = CSR_READ_4(sc, DC_SIO);
647 	CSR_BARRIER_4(sc, DC_SIO,
648 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
649 
650 	return (val);
651 }
652 
653 static int
654 dc_miibus_readreg(device_t dev, int phy, int reg)
655 {
656 	struct dc_softc *sc;
657 	int i, rval, phy_reg = 0;
658 
659 	sc = device_get_softc(dev);
660 
661 	if (sc->dc_pmode != DC_PMODE_MII) {
662 		if (phy == (MII_NPHY - 1)) {
663 			switch (reg) {
664 			case MII_BMSR:
665 			/*
666 			 * Fake something to make the probe
667 			 * code think there's a PHY here.
668 			 */
669 				return (BMSR_MEDIAMASK);
670 			case MII_PHYIDR1:
671 				if (DC_IS_PNIC(sc))
672 					return (DC_VENDORID_LO);
673 				return (DC_VENDORID_DEC);
674 			case MII_PHYIDR2:
675 				if (DC_IS_PNIC(sc))
676 					return (DC_DEVICEID_82C168);
677 				return (DC_DEVICEID_21143);
678 			default:
679 				return (0);
680 			}
681 		} else
682 			return (0);
683 	}
684 
685 	if (DC_IS_PNIC(sc)) {
686 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
687 		    (phy << 23) | (reg << 18));
688 		for (i = 0; i < DC_TIMEOUT; i++) {
689 			DELAY(1);
690 			rval = CSR_READ_4(sc, DC_PN_MII);
691 			if (!(rval & DC_PN_MII_BUSY)) {
692 				rval &= 0xFFFF;
693 				return (rval == 0xFFFF ? 0 : rval);
694 			}
695 		}
696 		return (0);
697 	}
698 
699 	if (sc->dc_type == DC_TYPE_ULI_M5263) {
700 		CSR_WRITE_4(sc, DC_ROM,
701 		    ((phy << DC_ULI_PHY_ADDR_SHIFT) & DC_ULI_PHY_ADDR_MASK) |
702 		    ((reg << DC_ULI_PHY_REG_SHIFT) & DC_ULI_PHY_REG_MASK) |
703 		    DC_ULI_PHY_OP_READ);
704 		for (i = 0; i < DC_TIMEOUT; i++) {
705 			DELAY(1);
706 			rval = CSR_READ_4(sc, DC_ROM);
707 			if ((rval & DC_ULI_PHY_OP_DONE) != 0) {
708 				return (rval & DC_ULI_PHY_DATA_MASK);
709 			}
710 		}
711 		if (i == DC_TIMEOUT)
712 			device_printf(dev, "phy read timed out\n");
713 		return (0);
714 	}
715 
716 	if (DC_IS_COMET(sc)) {
717 		switch (reg) {
718 		case MII_BMCR:
719 			phy_reg = DC_AL_BMCR;
720 			break;
721 		case MII_BMSR:
722 			phy_reg = DC_AL_BMSR;
723 			break;
724 		case MII_PHYIDR1:
725 			phy_reg = DC_AL_VENID;
726 			break;
727 		case MII_PHYIDR2:
728 			phy_reg = DC_AL_DEVID;
729 			break;
730 		case MII_ANAR:
731 			phy_reg = DC_AL_ANAR;
732 			break;
733 		case MII_ANLPAR:
734 			phy_reg = DC_AL_LPAR;
735 			break;
736 		case MII_ANER:
737 			phy_reg = DC_AL_ANER;
738 			break;
739 		default:
740 			device_printf(dev, "phy_read: bad phy register %x\n",
741 			    reg);
742 			return (0);
743 		}
744 
745 		rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
746 		if (rval == 0xFFFF)
747 			return (0);
748 		return (rval);
749 	}
750 
751 	if (sc->dc_type == DC_TYPE_98713) {
752 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
753 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
754 	}
755 	rval = mii_bitbang_readreg(dev, &dc_mii_bitbang_ops, phy, reg);
756 	if (sc->dc_type == DC_TYPE_98713)
757 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
758 
759 	return (rval);
760 }
761 
762 static int
763 dc_miibus_writereg(device_t dev, int phy, int reg, int data)
764 {
765 	struct dc_softc *sc;
766 	int i, phy_reg = 0;
767 
768 	sc = device_get_softc(dev);
769 
770 	if (DC_IS_PNIC(sc)) {
771 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
772 		    (phy << 23) | (reg << 10) | data);
773 		for (i = 0; i < DC_TIMEOUT; i++) {
774 			if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
775 				break;
776 		}
777 		return (0);
778 	}
779 
780 	if (sc->dc_type == DC_TYPE_ULI_M5263) {
781 		CSR_WRITE_4(sc, DC_ROM,
782 		    ((phy << DC_ULI_PHY_ADDR_SHIFT) & DC_ULI_PHY_ADDR_MASK) |
783 		    ((reg << DC_ULI_PHY_REG_SHIFT) & DC_ULI_PHY_REG_MASK) |
784 		    ((data << DC_ULI_PHY_DATA_SHIFT) & DC_ULI_PHY_DATA_MASK) |
785 		    DC_ULI_PHY_OP_WRITE);
786 		DELAY(1);
787 		return (0);
788 	}
789 
790 	if (DC_IS_COMET(sc)) {
791 		switch (reg) {
792 		case MII_BMCR:
793 			phy_reg = DC_AL_BMCR;
794 			break;
795 		case MII_BMSR:
796 			phy_reg = DC_AL_BMSR;
797 			break;
798 		case MII_PHYIDR1:
799 			phy_reg = DC_AL_VENID;
800 			break;
801 		case MII_PHYIDR2:
802 			phy_reg = DC_AL_DEVID;
803 			break;
804 		case MII_ANAR:
805 			phy_reg = DC_AL_ANAR;
806 			break;
807 		case MII_ANLPAR:
808 			phy_reg = DC_AL_LPAR;
809 			break;
810 		case MII_ANER:
811 			phy_reg = DC_AL_ANER;
812 			break;
813 		default:
814 			device_printf(dev, "phy_write: bad phy register %x\n",
815 			    reg);
816 			return (0);
817 			break;
818 		}
819 
820 		CSR_WRITE_4(sc, phy_reg, data);
821 		return (0);
822 	}
823 
824 	if (sc->dc_type == DC_TYPE_98713) {
825 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
826 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
827 	}
828 	mii_bitbang_writereg(dev, &dc_mii_bitbang_ops, phy, reg, data);
829 	if (sc->dc_type == DC_TYPE_98713)
830 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
831 
832 	return (0);
833 }
834 
835 static void
836 dc_miibus_statchg(device_t dev)
837 {
838 	struct dc_softc *sc;
839 	if_t ifp;
840 	struct mii_data *mii;
841 	struct ifmedia *ifm;
842 
843 	sc = device_get_softc(dev);
844 
845 	mii = device_get_softc(sc->dc_miibus);
846 	ifp = sc->dc_ifp;
847 	if (mii == NULL || ifp == NULL ||
848 	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
849 		return;
850 
851 	ifm = &mii->mii_media;
852 	if (DC_IS_DAVICOM(sc) && IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
853 		dc_setcfg(sc, ifm->ifm_media);
854 		return;
855 	} else if (!DC_IS_ADMTEK(sc))
856 		dc_setcfg(sc, mii->mii_media_active);
857 
858 	sc->dc_link = 0;
859 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
860 	    (IFM_ACTIVE | IFM_AVALID)) {
861 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
862 		case IFM_10_T:
863 		case IFM_100_TX:
864 			sc->dc_link = 1;
865 			break;
866 		}
867 	}
868 }
869 
870 /*
871  * Special support for DM9102A cards with HomePNA PHYs. Note:
872  * with the Davicom DM9102A/DM9801 eval board that I have, it seems
873  * to be impossible to talk to the management interface of the DM9801
874  * PHY (its MDIO pin is not connected to anything). Consequently,
875  * the driver has to just 'know' about the additional mode and deal
876  * with it itself. *sigh*
877  */
878 static void
879 dc_miibus_mediainit(device_t dev)
880 {
881 	struct dc_softc *sc;
882 	struct mii_data *mii;
883 	struct ifmedia *ifm;
884 	int rev;
885 
886 	rev = pci_get_revid(dev);
887 
888 	sc = device_get_softc(dev);
889 	mii = device_get_softc(sc->dc_miibus);
890 	ifm = &mii->mii_media;
891 
892 	if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A)
893 		ifmedia_add(ifm, IFM_ETHER | IFM_HPNA_1, 0, NULL);
894 }
895 
896 #define	DC_BITS_512	9
897 #define	DC_BITS_128	7
898 #define	DC_BITS_64	6
899 
900 static uint32_t
901 dc_mchash_le(struct dc_softc *sc, const uint8_t *addr)
902 {
903 	uint32_t crc;
904 
905 	/* Compute CRC for the address value. */
906 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
907 
908 	/*
909 	 * The hash table on the PNIC II and the MX98715AEC-C/D/E
910 	 * chips is only 128 bits wide.
911 	 */
912 	if (sc->dc_flags & DC_128BIT_HASH)
913 		return (crc & ((1 << DC_BITS_128) - 1));
914 
915 	/* The hash table on the MX98715BEC is only 64 bits wide. */
916 	if (sc->dc_flags & DC_64BIT_HASH)
917 		return (crc & ((1 << DC_BITS_64) - 1));
918 
919 	/* Xircom's hash filtering table is different (read: weird) */
920 	/* Xircom uses the LEAST significant bits */
921 	if (DC_IS_XIRCOM(sc)) {
922 		if ((crc & 0x180) == 0x180)
923 			return ((crc & 0x0F) + (crc & 0x70) * 3 + (14 << 4));
924 		else
925 			return ((crc & 0x1F) + ((crc >> 1) & 0xF0) * 3 +
926 			    (12 << 4));
927 	}
928 
929 	return (crc & ((1 << DC_BITS_512) - 1));
930 }
931 
932 /*
933  * Calculate CRC of a multicast group address, return the lower 6 bits.
934  */
935 static uint32_t
936 dc_mchash_be(const uint8_t *addr)
937 {
938 	uint32_t crc;
939 
940 	/* Compute CRC for the address value. */
941 	crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
942 
943 	/* Return the filter bit position. */
944 	return ((crc >> 26) & 0x0000003F);
945 }
946 
947 /*
948  * 21143-style RX filter setup routine. Filter programming is done by
949  * downloading a special setup frame into the TX engine. 21143, Macronix,
950  * PNIC, PNIC II and Davicom chips are programmed this way.
951  *
952  * We always program the chip using 'hash perfect' mode, i.e. one perfect
953  * address (our node address) and a 512-bit hash filter for multicast
954  * frames. We also sneak the broadcast address into the hash filter since
955  * we need that too.
956  */
957 static u_int
958 dc_hash_maddr_21143(void *arg, struct sockaddr_dl *sdl, u_int cnt)
959 {
960 	struct dc_softc *sc = arg;
961 	uint32_t h;
962 
963 	h = dc_mchash_le(sc, LLADDR(sdl));
964 	sc->dc_cdata.dc_sbuf[h >> 4] |= htole32(1 << (h & 0xF));
965 
966 	return (1);
967 }
968 
969 static void
970 dc_setfilt_21143(struct dc_softc *sc)
971 {
972 	uint16_t eaddr[(ETHER_ADDR_LEN+1)/2];
973 	struct dc_desc *sframe;
974 	uint32_t h, *sp;
975 	if_t ifp;
976 	int i;
977 
978 	ifp = sc->dc_ifp;
979 
980 	i = sc->dc_cdata.dc_tx_prod;
981 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
982 	sc->dc_cdata.dc_tx_cnt++;
983 	sframe = &sc->dc_ldata.dc_tx_list[i];
984 	sp = sc->dc_cdata.dc_sbuf;
985 	bzero(sp, DC_SFRAME_LEN);
986 
987 	sframe->dc_data = htole32(DC_ADDR_LO(sc->dc_saddr));
988 	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
989 	    DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
990 
991 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
992 
993 	/* If we want promiscuous mode, set the allframes bit. */
994 	if (if_getflags(ifp) & IFF_PROMISC)
995 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
996 	else
997 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
998 
999 	if (if_getflags(ifp) & IFF_ALLMULTI)
1000 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1001 	else
1002 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1003 
1004 	if_foreach_llmaddr(ifp, dc_hash_maddr_21143, sp);
1005 
1006 	if (if_getflags(ifp) & IFF_BROADCAST) {
1007 		h = dc_mchash_le(sc, if_getbroadcastaddr(ifp));
1008 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1009 	}
1010 
1011 	/* Set our MAC address. */
1012 	bcopy(if_getlladdr(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1013 	sp[39] = DC_SP_MAC(eaddr[0]);
1014 	sp[40] = DC_SP_MAC(eaddr[1]);
1015 	sp[41] = DC_SP_MAC(eaddr[2]);
1016 
1017 	sframe->dc_status = htole32(DC_TXSTAT_OWN);
1018 	bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap, BUS_DMASYNC_PREREAD |
1019 	    BUS_DMASYNC_PREWRITE);
1020 	bus_dmamap_sync(sc->dc_stag, sc->dc_smap, BUS_DMASYNC_PREWRITE);
1021 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1022 
1023 	/*
1024 	 * The PNIC takes an exceedingly long time to process its
1025 	 * setup frame; wait 10ms after posting the setup frame
1026 	 * before proceeding, just so it has time to swallow its
1027 	 * medicine.
1028 	 */
1029 	DELAY(10000);
1030 
1031 	sc->dc_wdog_timer = 5;
1032 }
1033 
1034 static u_int
1035 dc_hash_maddr_admtek_be(void *arg, struct sockaddr_dl *sdl, u_int cnt)
1036 {
1037 	uint32_t *hashes = arg;
1038 	int h = 0;
1039 
1040 	h = dc_mchash_be(LLADDR(sdl));
1041 	if (h < 32)
1042 		hashes[0] |= (1 << h);
1043 	else
1044 		hashes[1] |= (1 << (h - 32));
1045 
1046 	return (1);
1047 }
1048 
1049 struct dc_hash_maddr_admtek_le_ctx {
1050 	struct dc_softc *sc;
1051 	uint32_t hashes[2];
1052 };
1053 
1054 static u_int
1055 dc_hash_maddr_admtek_le(void *arg, struct sockaddr_dl *sdl, u_int cnt)
1056 {
1057 	struct dc_hash_maddr_admtek_le_ctx *ctx = arg;
1058 	int h = 0;
1059 
1060 	h = dc_mchash_le(ctx->sc, LLADDR(sdl));
1061 	if (h < 32)
1062 		ctx->hashes[0] |= (1 << h);
1063 	else
1064 		ctx->hashes[1] |= (1 << (h - 32));
1065 
1066 	return (1);
1067 }
1068 
1069 static void
1070 dc_setfilt_admtek(struct dc_softc *sc)
1071 {
1072 	uint8_t eaddr[ETHER_ADDR_LEN];
1073 	if_t ifp;
1074 	struct dc_hash_maddr_admtek_le_ctx ctx = { sc, { 0, 0 }};
1075 
1076 	ifp = sc->dc_ifp;
1077 
1078 	/* Init our MAC address. */
1079 	bcopy(if_getlladdr(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1080 	CSR_WRITE_4(sc, DC_AL_PAR0, eaddr[3] << 24 | eaddr[2] << 16 |
1081 	    eaddr[1] << 8 | eaddr[0]);
1082 	CSR_WRITE_4(sc, DC_AL_PAR1, eaddr[5] << 8 | eaddr[4]);
1083 
1084 	/* If we want promiscuous mode, set the allframes bit. */
1085 	if (if_getflags(ifp) & IFF_PROMISC)
1086 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1087 	else
1088 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1089 
1090 	if (if_getflags(ifp) & IFF_ALLMULTI)
1091 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1092 	else
1093 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1094 
1095 	/* First, zot all the existing hash bits. */
1096 	CSR_WRITE_4(sc, DC_AL_MAR0, 0);
1097 	CSR_WRITE_4(sc, DC_AL_MAR1, 0);
1098 
1099 	/*
1100 	 * If we're already in promisc or allmulti mode, we
1101 	 * don't have to bother programming the multicast filter.
1102 	 */
1103 	if (if_getflags(ifp) & (IFF_PROMISC | IFF_ALLMULTI))
1104 		return;
1105 
1106 	/* Now program new ones. */
1107 	if (DC_IS_CENTAUR(sc))
1108 		if_foreach_llmaddr(ifp, dc_hash_maddr_admtek_le, &ctx);
1109 	else
1110 		if_foreach_llmaddr(ifp, dc_hash_maddr_admtek_be, &ctx.hashes);
1111 
1112 	CSR_WRITE_4(sc, DC_AL_MAR0, ctx.hashes[0]);
1113 	CSR_WRITE_4(sc, DC_AL_MAR1, ctx.hashes[1]);
1114 }
1115 
1116 static void
1117 dc_setfilt_asix(struct dc_softc *sc)
1118 {
1119 	uint32_t eaddr[(ETHER_ADDR_LEN+3)/4];
1120 	if_t ifp;
1121 	uint32_t hashes[2] = { 0, 0 };
1122 
1123 	ifp = sc->dc_ifp;
1124 
1125 	/* Init our MAC address. */
1126 	bcopy(if_getlladdr(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1127 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
1128 	CSR_WRITE_4(sc, DC_AX_FILTDATA, eaddr[0]);
1129 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
1130 	CSR_WRITE_4(sc, DC_AX_FILTDATA, eaddr[1]);
1131 
1132 	/* If we want promiscuous mode, set the allframes bit. */
1133 	if (if_getflags(ifp) & IFF_PROMISC)
1134 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1135 	else
1136 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1137 
1138 	if (if_getflags(ifp) & IFF_ALLMULTI)
1139 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1140 	else
1141 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1142 
1143 	/*
1144 	 * The ASIX chip has a special bit to enable reception
1145 	 * of broadcast frames.
1146 	 */
1147 	if (if_getflags(ifp) & IFF_BROADCAST)
1148 		DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1149 	else
1150 		DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1151 
1152 	/* first, zot all the existing hash bits */
1153 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1154 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1155 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1156 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1157 
1158 	/*
1159 	 * If we're already in promisc or allmulti mode, we
1160 	 * don't have to bother programming the multicast filter.
1161 	 */
1162 	if (if_getflags(ifp) & (IFF_PROMISC | IFF_ALLMULTI))
1163 		return;
1164 
1165 	/* now program new ones */
1166 	if_foreach_llmaddr(ifp, dc_hash_maddr_admtek_be, hashes);
1167 
1168 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1169 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
1170 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1171 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
1172 }
1173 
1174 static u_int
1175 dc_hash_maddr_uli(void *arg, struct sockaddr_dl *sdl, u_int mcnt)
1176 {
1177 	uint32_t **sp = arg;
1178 	uint8_t *ma;
1179 
1180 	if (mcnt == DC_ULI_FILTER_NPERF)
1181 		return (0);
1182 	ma = LLADDR(sdl);
1183 	*(*sp)++ = DC_SP_MAC(ma[1] << 8 | ma[0]);
1184 	*(*sp)++ = DC_SP_MAC(ma[3] << 8 | ma[2]);
1185 	*(*sp)++ = DC_SP_MAC(ma[5] << 8 | ma[4]);
1186 
1187 	return (1);
1188 }
1189 
1190 static void
1191 dc_setfilt_uli(struct dc_softc *sc)
1192 {
1193 	uint8_t eaddr[ETHER_ADDR_LEN];
1194 	if_t ifp;
1195 	struct dc_desc *sframe;
1196 	uint32_t filter, *sp;
1197 	int i, mcnt;
1198 
1199 	ifp = sc->dc_ifp;
1200 
1201 	i = sc->dc_cdata.dc_tx_prod;
1202 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1203 	sc->dc_cdata.dc_tx_cnt++;
1204 	sframe = &sc->dc_ldata.dc_tx_list[i];
1205 	sp = sc->dc_cdata.dc_sbuf;
1206 	bzero(sp, DC_SFRAME_LEN);
1207 
1208 	sframe->dc_data = htole32(DC_ADDR_LO(sc->dc_saddr));
1209 	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
1210 	    DC_TXCTL_TLINK | DC_FILTER_PERFECT | DC_TXCTL_FINT);
1211 
1212 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
1213 
1214 	/* Set station address. */
1215 	bcopy(if_getlladdr(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1216 	*sp++ = DC_SP_MAC(eaddr[1] << 8 | eaddr[0]);
1217 	*sp++ = DC_SP_MAC(eaddr[3] << 8 | eaddr[2]);
1218 	*sp++ = DC_SP_MAC(eaddr[5] << 8 | eaddr[4]);
1219 
1220 	/* Set broadcast address. */
1221 	*sp++ = DC_SP_MAC(0xFFFF);
1222 	*sp++ = DC_SP_MAC(0xFFFF);
1223 	*sp++ = DC_SP_MAC(0xFFFF);
1224 
1225 	/* Extract current filter configuration. */
1226 	filter = CSR_READ_4(sc, DC_NETCFG);
1227 	filter &= ~(DC_NETCFG_RX_PROMISC | DC_NETCFG_RX_ALLMULTI);
1228 
1229 	/* Now build perfect filters. */
1230 	mcnt = if_foreach_llmaddr(ifp, dc_hash_maddr_uli, &sp);
1231 
1232 	if (mcnt == DC_ULI_FILTER_NPERF)
1233 		filter |= DC_NETCFG_RX_ALLMULTI;
1234 	else
1235 		for (; mcnt < DC_ULI_FILTER_NPERF; mcnt++) {
1236 			*sp++ = DC_SP_MAC(0xFFFF);
1237 			*sp++ = DC_SP_MAC(0xFFFF);
1238 			*sp++ = DC_SP_MAC(0xFFFF);
1239 		}
1240 
1241 	if (filter & (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON))
1242 		CSR_WRITE_4(sc, DC_NETCFG,
1243 		    filter & ~(DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1244 	if (if_getflags(ifp) & IFF_PROMISC)
1245 		filter |= DC_NETCFG_RX_PROMISC | DC_NETCFG_RX_ALLMULTI;
1246 	if (if_getflags(ifp) & IFF_ALLMULTI)
1247 		filter |= DC_NETCFG_RX_ALLMULTI;
1248 	CSR_WRITE_4(sc, DC_NETCFG,
1249 	    filter & ~(DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1250 	if (filter & (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON))
1251 		CSR_WRITE_4(sc, DC_NETCFG, filter);
1252 
1253 	sframe->dc_status = htole32(DC_TXSTAT_OWN);
1254 	bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap, BUS_DMASYNC_PREREAD |
1255 	    BUS_DMASYNC_PREWRITE);
1256 	bus_dmamap_sync(sc->dc_stag, sc->dc_smap, BUS_DMASYNC_PREWRITE);
1257 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1258 
1259 	/*
1260 	 * Wait some time...
1261 	 */
1262 	DELAY(1000);
1263 
1264 	sc->dc_wdog_timer = 5;
1265 }
1266 
1267 static u_int
1268 dc_hash_maddr_xircom(void *arg, struct sockaddr_dl *sdl, u_int cnt)
1269 {
1270 	struct dc_softc *sc = arg;
1271 	uint32_t h;
1272 
1273 	h = dc_mchash_le(sc, LLADDR(sdl));
1274 	sc->dc_cdata.dc_sbuf[h >> 4] |= htole32(1 << (h & 0xF));
1275 	return (1);
1276 }
1277 
1278 static void
1279 dc_setfilt_xircom(struct dc_softc *sc)
1280 {
1281 	uint16_t eaddr[(ETHER_ADDR_LEN+1)/2];
1282 	if_t ifp;
1283 	struct dc_desc *sframe;
1284 	uint32_t h, *sp;
1285 	int i;
1286 
1287 	ifp = sc->dc_ifp;
1288 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1289 
1290 	i = sc->dc_cdata.dc_tx_prod;
1291 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1292 	sc->dc_cdata.dc_tx_cnt++;
1293 	sframe = &sc->dc_ldata.dc_tx_list[i];
1294 	sp = sc->dc_cdata.dc_sbuf;
1295 	bzero(sp, DC_SFRAME_LEN);
1296 
1297 	sframe->dc_data = htole32(DC_ADDR_LO(sc->dc_saddr));
1298 	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
1299 	    DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
1300 
1301 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
1302 
1303 	/* If we want promiscuous mode, set the allframes bit. */
1304 	if (if_getflags(ifp) & IFF_PROMISC)
1305 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1306 	else
1307 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1308 
1309 	if (if_getflags(ifp) & IFF_ALLMULTI)
1310 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1311 	else
1312 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1313 
1314 	if_foreach_llmaddr(ifp, dc_hash_maddr_xircom, &sp);
1315 
1316 	if (if_getflags(ifp) & IFF_BROADCAST) {
1317 		h = dc_mchash_le(sc, if_getbroadcastaddr(ifp));
1318 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1319 	}
1320 
1321 	/* Set our MAC address. */
1322 	bcopy(if_getlladdr(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1323 	sp[0] = DC_SP_MAC(eaddr[0]);
1324 	sp[1] = DC_SP_MAC(eaddr[1]);
1325 	sp[2] = DC_SP_MAC(eaddr[2]);
1326 
1327 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
1328 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
1329 	sframe->dc_status = htole32(DC_TXSTAT_OWN);
1330 	bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap, BUS_DMASYNC_PREREAD |
1331 	    BUS_DMASYNC_PREWRITE);
1332 	bus_dmamap_sync(sc->dc_stag, sc->dc_smap, BUS_DMASYNC_PREWRITE);
1333 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1334 
1335 	/*
1336 	 * Wait some time...
1337 	 */
1338 	DELAY(1000);
1339 
1340 	sc->dc_wdog_timer = 5;
1341 }
1342 
1343 static void
1344 dc_setfilt(struct dc_softc *sc)
1345 {
1346 
1347 	if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
1348 	    DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc) || DC_IS_CONEXANT(sc))
1349 		dc_setfilt_21143(sc);
1350 
1351 	if (DC_IS_ASIX(sc))
1352 		dc_setfilt_asix(sc);
1353 
1354 	if (DC_IS_ADMTEK(sc))
1355 		dc_setfilt_admtek(sc);
1356 
1357 	if (DC_IS_ULI(sc))
1358 		dc_setfilt_uli(sc);
1359 
1360 	if (DC_IS_XIRCOM(sc))
1361 		dc_setfilt_xircom(sc);
1362 }
1363 
1364 static void
1365 dc_netcfg_wait(struct dc_softc *sc)
1366 {
1367 	uint32_t isr;
1368 	int i;
1369 
1370 	for (i = 0; i < DC_TIMEOUT; i++) {
1371 		isr = CSR_READ_4(sc, DC_ISR);
1372 		if (isr & DC_ISR_TX_IDLE &&
1373 		    ((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
1374 		    (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT))
1375 			break;
1376 		DELAY(10);
1377 	}
1378 	if (i == DC_TIMEOUT && bus_child_present(sc->dc_dev)) {
1379 		if (!(isr & DC_ISR_TX_IDLE) && !DC_IS_ASIX(sc))
1380 			device_printf(sc->dc_dev,
1381 			    "%s: failed to force tx to idle state\n", __func__);
1382 		if (!((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
1383 		    (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT) &&
1384 		    !DC_HAS_BROKEN_RXSTATE(sc))
1385 			device_printf(sc->dc_dev,
1386 			    "%s: failed to force rx to idle state\n", __func__);
1387 	}
1388 }
1389 
1390 /*
1391  * In order to fiddle with the 'full-duplex' and '100Mbps' bits in
1392  * the netconfig register, we first have to put the transmit and/or
1393  * receive logic in the idle state.
1394  */
1395 static void
1396 dc_setcfg(struct dc_softc *sc, int media)
1397 {
1398 	int restart = 0, watchdogreg;
1399 
1400 	if (IFM_SUBTYPE(media) == IFM_NONE)
1401 		return;
1402 
1403 	if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON)) {
1404 		restart = 1;
1405 		DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1406 		dc_netcfg_wait(sc);
1407 	}
1408 
1409 	if (IFM_SUBTYPE(media) == IFM_100_TX) {
1410 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1411 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1412 		if (sc->dc_pmode == DC_PMODE_MII) {
1413 			if (DC_IS_INTEL(sc)) {
1414 			/* There's a write enable bit here that reads as 1. */
1415 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1416 				watchdogreg &= ~DC_WDOG_CTLWREN;
1417 				watchdogreg |= DC_WDOG_JABBERDIS;
1418 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1419 			} else {
1420 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1421 			}
1422 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1423 			    DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
1424 			if (sc->dc_type == DC_TYPE_98713)
1425 				DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1426 				    DC_NETCFG_SCRAMBLER));
1427 			if (!DC_IS_DAVICOM(sc))
1428 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1429 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1430 		} else {
1431 			if (DC_IS_PNIC(sc)) {
1432 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
1433 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1434 				DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1435 			}
1436 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1437 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1438 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1439 		}
1440 	}
1441 
1442 	if (IFM_SUBTYPE(media) == IFM_10_T) {
1443 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1444 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1445 		if (sc->dc_pmode == DC_PMODE_MII) {
1446 			/* There's a write enable bit here that reads as 1. */
1447 			if (DC_IS_INTEL(sc)) {
1448 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1449 				watchdogreg &= ~DC_WDOG_CTLWREN;
1450 				watchdogreg |= DC_WDOG_JABBERDIS;
1451 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1452 			} else {
1453 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1454 			}
1455 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1456 			    DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
1457 			if (sc->dc_type == DC_TYPE_98713)
1458 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1459 			if (!DC_IS_DAVICOM(sc))
1460 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1461 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1462 		} else {
1463 			if (DC_IS_PNIC(sc)) {
1464 				DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
1465 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1466 				DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1467 			}
1468 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1469 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1470 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1471 			if (DC_IS_INTEL(sc)) {
1472 				DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET);
1473 				DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1474 				if ((media & IFM_GMASK) == IFM_FDX)
1475 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D);
1476 				else
1477 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F);
1478 				DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1479 				DC_CLRBIT(sc, DC_10BTCTRL,
1480 				    DC_TCTL_AUTONEGENBL);
1481 				DELAY(20000);
1482 			}
1483 		}
1484 	}
1485 
1486 	/*
1487 	 * If this is a Davicom DM9102A card with a DM9801 HomePNA
1488 	 * PHY and we want HomePNA mode, set the portsel bit to turn
1489 	 * on the external MII port.
1490 	 */
1491 	if (DC_IS_DAVICOM(sc)) {
1492 		if (IFM_SUBTYPE(media) == IFM_HPNA_1) {
1493 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1494 			sc->dc_link = 1;
1495 		} else {
1496 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1497 		}
1498 	}
1499 
1500 	if ((media & IFM_GMASK) == IFM_FDX) {
1501 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1502 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1503 			DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1504 	} else {
1505 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1506 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1507 			DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1508 	}
1509 
1510 	if (restart)
1511 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON | DC_NETCFG_RX_ON);
1512 }
1513 
1514 static void
1515 dc_reset(struct dc_softc *sc)
1516 {
1517 	int i;
1518 
1519 	DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1520 
1521 	for (i = 0; i < DC_TIMEOUT; i++) {
1522 		DELAY(10);
1523 		if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
1524 			break;
1525 	}
1526 
1527 	if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_CONEXANT(sc) ||
1528 	    DC_IS_XIRCOM(sc) || DC_IS_INTEL(sc) || DC_IS_ULI(sc)) {
1529 		DELAY(10000);
1530 		DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1531 		i = 0;
1532 	}
1533 
1534 	if (i == DC_TIMEOUT)
1535 		device_printf(sc->dc_dev, "reset never completed!\n");
1536 
1537 	/* Wait a little while for the chip to get its brains in order. */
1538 	DELAY(1000);
1539 
1540 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
1541 	CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
1542 	CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
1543 
1544 	/*
1545 	 * Bring the SIA out of reset. In some cases, it looks
1546 	 * like failing to unreset the SIA soon enough gets it
1547 	 * into a state where it will never come out of reset
1548 	 * until we reset the whole chip again.
1549 	 */
1550 	if (DC_IS_INTEL(sc)) {
1551 		DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1552 		CSR_WRITE_4(sc, DC_10BTCTRL, 0xFFFFFFFF);
1553 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
1554 	}
1555 }
1556 
1557 static const struct dc_type *
1558 dc_devtype(device_t dev)
1559 {
1560 	const struct dc_type *t;
1561 	uint32_t devid;
1562 	uint8_t rev;
1563 
1564 	t = dc_devs;
1565 	devid = pci_get_devid(dev);
1566 	rev = pci_get_revid(dev);
1567 
1568 	while (t->dc_name != NULL) {
1569 		if (devid == t->dc_devid && rev >= t->dc_minrev)
1570 			return (t);
1571 		t++;
1572 	}
1573 
1574 	return (NULL);
1575 }
1576 
1577 /*
1578  * Probe for a 21143 or clone chip. Check the PCI vendor and device
1579  * IDs against our list and return a device name if we find a match.
1580  * We do a little bit of extra work to identify the exact type of
1581  * chip. The MX98713 and MX98713A have the same PCI vendor/device ID,
1582  * but different revision IDs. The same is true for 98715/98715A
1583  * chips and the 98725, as well as the ASIX and ADMtek chips. In some
1584  * cases, the exact chip revision affects driver behavior.
1585  */
1586 static int
1587 dc_probe(device_t dev)
1588 {
1589 	const struct dc_type *t;
1590 
1591 	t = dc_devtype(dev);
1592 
1593 	if (t != NULL) {
1594 		device_set_desc(dev, t->dc_name);
1595 		return (BUS_PROBE_DEFAULT);
1596 	}
1597 
1598 	return (ENXIO);
1599 }
1600 
1601 static void
1602 dc_apply_fixup(struct dc_softc *sc, int media)
1603 {
1604 	struct dc_mediainfo *m;
1605 	uint8_t *p;
1606 	int i;
1607 	uint32_t reg;
1608 
1609 	m = sc->dc_mi;
1610 
1611 	while (m != NULL) {
1612 		if (m->dc_media == media)
1613 			break;
1614 		m = m->dc_next;
1615 	}
1616 
1617 	if (m == NULL)
1618 		return;
1619 
1620 	for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) {
1621 		reg = (p[0] | (p[1] << 8)) << 16;
1622 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1623 	}
1624 
1625 	for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) {
1626 		reg = (p[0] | (p[1] << 8)) << 16;
1627 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1628 	}
1629 }
1630 
1631 static int
1632 dc_decode_leaf_sia(struct dc_softc *sc, struct dc_eblock_sia *l)
1633 {
1634 	struct dc_mediainfo *m;
1635 
1636 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1637 	if (m == NULL) {
1638 		device_printf(sc->dc_dev, "Could not allocate mediainfo\n");
1639 		return (ENOMEM);
1640 	}
1641 	switch (l->dc_sia_code & ~DC_SIA_CODE_EXT) {
1642 	case DC_SIA_CODE_10BT:
1643 		m->dc_media = IFM_10_T;
1644 		break;
1645 	case DC_SIA_CODE_10BT_FDX:
1646 		m->dc_media = IFM_10_T | IFM_FDX;
1647 		break;
1648 	case DC_SIA_CODE_10B2:
1649 		m->dc_media = IFM_10_2;
1650 		break;
1651 	case DC_SIA_CODE_10B5:
1652 		m->dc_media = IFM_10_5;
1653 		break;
1654 	default:
1655 		break;
1656 	}
1657 
1658 	/*
1659 	 * We need to ignore CSR13, CSR14, CSR15 for SIA mode.
1660 	 * Things apparently already work for cards that do
1661 	 * supply Media Specific Data.
1662 	 */
1663 	if (l->dc_sia_code & DC_SIA_CODE_EXT) {
1664 		m->dc_gp_len = 2;
1665 		m->dc_gp_ptr =
1666 		(uint8_t *)&l->dc_un.dc_sia_ext.dc_sia_gpio_ctl;
1667 	} else {
1668 		m->dc_gp_len = 2;
1669 		m->dc_gp_ptr =
1670 		(uint8_t *)&l->dc_un.dc_sia_noext.dc_sia_gpio_ctl;
1671 	}
1672 
1673 	m->dc_next = sc->dc_mi;
1674 	sc->dc_mi = m;
1675 
1676 	sc->dc_pmode = DC_PMODE_SIA;
1677 	return (0);
1678 }
1679 
1680 static int
1681 dc_decode_leaf_sym(struct dc_softc *sc, struct dc_eblock_sym *l)
1682 {
1683 	struct dc_mediainfo *m;
1684 
1685 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1686 	if (m == NULL) {
1687 		device_printf(sc->dc_dev, "Could not allocate mediainfo\n");
1688 		return (ENOMEM);
1689 	}
1690 	if (l->dc_sym_code == DC_SYM_CODE_100BT)
1691 		m->dc_media = IFM_100_TX;
1692 
1693 	if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX)
1694 		m->dc_media = IFM_100_TX | IFM_FDX;
1695 
1696 	m->dc_gp_len = 2;
1697 	m->dc_gp_ptr = (uint8_t *)&l->dc_sym_gpio_ctl;
1698 
1699 	m->dc_next = sc->dc_mi;
1700 	sc->dc_mi = m;
1701 
1702 	sc->dc_pmode = DC_PMODE_SYM;
1703 	return (0);
1704 }
1705 
1706 static int
1707 dc_decode_leaf_mii(struct dc_softc *sc, struct dc_eblock_mii *l)
1708 {
1709 	struct dc_mediainfo *m;
1710 	uint8_t *p;
1711 
1712 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1713 	if (m == NULL) {
1714 		device_printf(sc->dc_dev, "Could not allocate mediainfo\n");
1715 		return (ENOMEM);
1716 	}
1717 	/* We abuse IFM_AUTO to represent MII. */
1718 	m->dc_media = IFM_AUTO;
1719 	m->dc_gp_len = l->dc_gpr_len;
1720 
1721 	p = (uint8_t *)l;
1722 	p += sizeof(struct dc_eblock_mii);
1723 	m->dc_gp_ptr = p;
1724 	p += 2 * l->dc_gpr_len;
1725 	m->dc_reset_len = *p;
1726 	p++;
1727 	m->dc_reset_ptr = p;
1728 
1729 	m->dc_next = sc->dc_mi;
1730 	sc->dc_mi = m;
1731 	return (0);
1732 }
1733 
1734 static int
1735 dc_read_srom(struct dc_softc *sc, int bits)
1736 {
1737 	int size;
1738 
1739 	size = DC_ROM_SIZE(bits);
1740 	sc->dc_srom = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
1741 	if (sc->dc_srom == NULL) {
1742 		device_printf(sc->dc_dev, "Could not allocate SROM buffer\n");
1743 		return (ENOMEM);
1744 	}
1745 	dc_read_eeprom(sc, (caddr_t)sc->dc_srom, 0, (size / 2), 0);
1746 	return (0);
1747 }
1748 
1749 static int
1750 dc_parse_21143_srom(struct dc_softc *sc)
1751 {
1752 	struct dc_leaf_hdr *lhdr;
1753 	struct dc_eblock_hdr *hdr;
1754 	int error, have_mii, i, loff;
1755 	char *ptr;
1756 
1757 	have_mii = 0;
1758 	loff = sc->dc_srom[27];
1759 	lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]);
1760 
1761 	ptr = (char *)lhdr;
1762 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1763 	/*
1764 	 * Look if we got a MII media block.
1765 	 */
1766 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1767 		hdr = (struct dc_eblock_hdr *)ptr;
1768 		if (hdr->dc_type == DC_EBLOCK_MII)
1769 		    have_mii++;
1770 
1771 		ptr += (hdr->dc_len & 0x7F);
1772 		ptr++;
1773 	}
1774 
1775 	/*
1776 	 * Do the same thing again. Only use SIA and SYM media
1777 	 * blocks if no MII media block is available.
1778 	 */
1779 	ptr = (char *)lhdr;
1780 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1781 	error = 0;
1782 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1783 		hdr = (struct dc_eblock_hdr *)ptr;
1784 		switch (hdr->dc_type) {
1785 		case DC_EBLOCK_MII:
1786 			error = dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr);
1787 			break;
1788 		case DC_EBLOCK_SIA:
1789 			if (! have_mii)
1790 				error = dc_decode_leaf_sia(sc,
1791 				    (struct dc_eblock_sia *)hdr);
1792 			break;
1793 		case DC_EBLOCK_SYM:
1794 			if (! have_mii)
1795 				error = dc_decode_leaf_sym(sc,
1796 				    (struct dc_eblock_sym *)hdr);
1797 			break;
1798 		default:
1799 			/* Don't care. Yet. */
1800 			break;
1801 		}
1802 		ptr += (hdr->dc_len & 0x7F);
1803 		ptr++;
1804 	}
1805 	return (error);
1806 }
1807 
1808 static void
1809 dc_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1810 {
1811 	bus_addr_t *paddr;
1812 
1813 	KASSERT(nseg == 1,
1814 	    ("%s: wrong number of segments (%d)", __func__, nseg));
1815 	paddr = arg;
1816 	*paddr = segs->ds_addr;
1817 }
1818 
1819 static int
1820 dc_dma_alloc(struct dc_softc *sc)
1821 {
1822 	int error, i;
1823 
1824 	error = bus_dma_tag_create(bus_get_dma_tag(sc->dc_dev), 1, 0,
1825 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1826 	    BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0,
1827 	    NULL, NULL, &sc->dc_ptag);
1828 	if (error) {
1829 		device_printf(sc->dc_dev,
1830 		    "failed to allocate parent DMA tag\n");
1831 		goto fail;
1832 	}
1833 
1834 	/* Allocate a busdma tag and DMA safe memory for TX/RX descriptors. */
1835 	error = bus_dma_tag_create(sc->dc_ptag, DC_LIST_ALIGN, 0,
1836 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, DC_RX_LIST_SZ, 1,
1837 	    DC_RX_LIST_SZ, 0, NULL, NULL, &sc->dc_rx_ltag);
1838 	if (error) {
1839 		device_printf(sc->dc_dev, "failed to create RX list DMA tag\n");
1840 		goto fail;
1841 	}
1842 
1843 	error = bus_dma_tag_create(sc->dc_ptag, DC_LIST_ALIGN, 0,
1844 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, DC_TX_LIST_SZ, 1,
1845 	    DC_TX_LIST_SZ, 0, NULL, NULL, &sc->dc_tx_ltag);
1846 	if (error) {
1847 		device_printf(sc->dc_dev, "failed to create TX list DMA tag\n");
1848 		goto fail;
1849 	}
1850 
1851 	/* RX descriptor list. */
1852 	error = bus_dmamem_alloc(sc->dc_rx_ltag,
1853 	    (void **)&sc->dc_ldata.dc_rx_list, BUS_DMA_NOWAIT |
1854 	    BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->dc_rx_lmap);
1855 	if (error) {
1856 		device_printf(sc->dc_dev,
1857 		    "failed to allocate DMA'able memory for RX list\n");
1858 		goto fail;
1859 	}
1860 	error = bus_dmamap_load(sc->dc_rx_ltag, sc->dc_rx_lmap,
1861 	    sc->dc_ldata.dc_rx_list, DC_RX_LIST_SZ, dc_dma_map_addr,
1862 	    &sc->dc_ldata.dc_rx_list_paddr, BUS_DMA_NOWAIT);
1863 	if (error) {
1864 		device_printf(sc->dc_dev,
1865 		    "failed to load DMA'able memory for RX list\n");
1866 		goto fail;
1867 	}
1868 	/* TX descriptor list. */
1869 	error = bus_dmamem_alloc(sc->dc_tx_ltag,
1870 	    (void **)&sc->dc_ldata.dc_tx_list, BUS_DMA_NOWAIT |
1871 	    BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->dc_tx_lmap);
1872 	if (error) {
1873 		device_printf(sc->dc_dev,
1874 		    "failed to allocate DMA'able memory for TX list\n");
1875 		goto fail;
1876 	}
1877 	error = bus_dmamap_load(sc->dc_tx_ltag, sc->dc_tx_lmap,
1878 	    sc->dc_ldata.dc_tx_list, DC_TX_LIST_SZ, dc_dma_map_addr,
1879 	    &sc->dc_ldata.dc_tx_list_paddr, BUS_DMA_NOWAIT);
1880 	if (error) {
1881 		device_printf(sc->dc_dev,
1882 		    "cannot load DMA'able memory for TX list\n");
1883 		goto fail;
1884 	}
1885 
1886 	/*
1887 	 * Allocate a busdma tag and DMA safe memory for the multicast
1888 	 * setup frame.
1889 	 */
1890 	error = bus_dma_tag_create(sc->dc_ptag, DC_LIST_ALIGN, 0,
1891 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1892 	    DC_SFRAME_LEN + DC_MIN_FRAMELEN, 1, DC_SFRAME_LEN + DC_MIN_FRAMELEN,
1893 	    0, NULL, NULL, &sc->dc_stag);
1894 	if (error) {
1895 		device_printf(sc->dc_dev,
1896 		    "failed to create DMA tag for setup frame\n");
1897 		goto fail;
1898 	}
1899 	error = bus_dmamem_alloc(sc->dc_stag, (void **)&sc->dc_cdata.dc_sbuf,
1900 	    BUS_DMA_NOWAIT, &sc->dc_smap);
1901 	if (error) {
1902 		device_printf(sc->dc_dev,
1903 		    "failed to allocate DMA'able memory for setup frame\n");
1904 		goto fail;
1905 	}
1906 	error = bus_dmamap_load(sc->dc_stag, sc->dc_smap, sc->dc_cdata.dc_sbuf,
1907 	    DC_SFRAME_LEN, dc_dma_map_addr, &sc->dc_saddr, BUS_DMA_NOWAIT);
1908 	if (error) {
1909 		device_printf(sc->dc_dev,
1910 		    "cannot load DMA'able memory for setup frame\n");
1911 		goto fail;
1912 	}
1913 
1914 	/* Allocate a busdma tag for RX mbufs. */
1915 	error = bus_dma_tag_create(sc->dc_ptag, DC_RXBUF_ALIGN, 0,
1916 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1917 	    MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &sc->dc_rx_mtag);
1918 	if (error) {
1919 		device_printf(sc->dc_dev, "failed to create RX mbuf tag\n");
1920 		goto fail;
1921 	}
1922 
1923 	/* Allocate a busdma tag for TX mbufs. */
1924 	error = bus_dma_tag_create(sc->dc_ptag, 1, 0,
1925 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1926 	    MCLBYTES * DC_MAXFRAGS, DC_MAXFRAGS, MCLBYTES,
1927 	    0, NULL, NULL, &sc->dc_tx_mtag);
1928 	if (error) {
1929 		device_printf(sc->dc_dev, "failed to create TX mbuf tag\n");
1930 		goto fail;
1931 	}
1932 
1933 	/* Create the TX/RX busdma maps. */
1934 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
1935 		error = bus_dmamap_create(sc->dc_tx_mtag, 0,
1936 		    &sc->dc_cdata.dc_tx_map[i]);
1937 		if (error) {
1938 			device_printf(sc->dc_dev,
1939 			    "failed to create TX mbuf dmamap\n");
1940 			goto fail;
1941 		}
1942 	}
1943 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
1944 		error = bus_dmamap_create(sc->dc_rx_mtag, 0,
1945 		    &sc->dc_cdata.dc_rx_map[i]);
1946 		if (error) {
1947 			device_printf(sc->dc_dev,
1948 			    "failed to create RX mbuf dmamap\n");
1949 			goto fail;
1950 		}
1951 	}
1952 	error = bus_dmamap_create(sc->dc_rx_mtag, 0, &sc->dc_sparemap);
1953 	if (error) {
1954 		device_printf(sc->dc_dev,
1955 		    "failed to create spare RX mbuf dmamap\n");
1956 		goto fail;
1957 	}
1958 
1959 fail:
1960 	return (error);
1961 }
1962 
1963 static void
1964 dc_dma_free(struct dc_softc *sc)
1965 {
1966 	int i;
1967 
1968 	/* RX buffers. */
1969 	if (sc->dc_rx_mtag != NULL) {
1970 		for (i = 0; i < DC_RX_LIST_CNT; i++) {
1971 			if (sc->dc_cdata.dc_rx_map[i] != NULL)
1972 				bus_dmamap_destroy(sc->dc_rx_mtag,
1973 				    sc->dc_cdata.dc_rx_map[i]);
1974 		}
1975 		if (sc->dc_sparemap != NULL)
1976 			bus_dmamap_destroy(sc->dc_rx_mtag, sc->dc_sparemap);
1977 		bus_dma_tag_destroy(sc->dc_rx_mtag);
1978 	}
1979 
1980 	/* TX buffers. */
1981 	if (sc->dc_rx_mtag != NULL) {
1982 		for (i = 0; i < DC_TX_LIST_CNT; i++) {
1983 			if (sc->dc_cdata.dc_tx_map[i] != NULL)
1984 				bus_dmamap_destroy(sc->dc_tx_mtag,
1985 				    sc->dc_cdata.dc_tx_map[i]);
1986 		}
1987 		bus_dma_tag_destroy(sc->dc_tx_mtag);
1988 	}
1989 
1990 	/* RX descriptor list. */
1991 	if (sc->dc_rx_ltag) {
1992 		if (sc->dc_ldata.dc_rx_list_paddr != 0)
1993 			bus_dmamap_unload(sc->dc_rx_ltag, sc->dc_rx_lmap);
1994 		if (sc->dc_ldata.dc_rx_list != NULL)
1995 			bus_dmamem_free(sc->dc_rx_ltag, sc->dc_ldata.dc_rx_list,
1996 			    sc->dc_rx_lmap);
1997 		bus_dma_tag_destroy(sc->dc_rx_ltag);
1998 	}
1999 
2000 	/* TX descriptor list. */
2001 	if (sc->dc_tx_ltag) {
2002 		if (sc->dc_ldata.dc_tx_list_paddr != 0)
2003 			bus_dmamap_unload(sc->dc_tx_ltag, sc->dc_tx_lmap);
2004 		if (sc->dc_ldata.dc_tx_list != NULL)
2005 			bus_dmamem_free(sc->dc_tx_ltag, sc->dc_ldata.dc_tx_list,
2006 			    sc->dc_tx_lmap);
2007 		bus_dma_tag_destroy(sc->dc_tx_ltag);
2008 	}
2009 
2010 	/* multicast setup frame. */
2011 	if (sc->dc_stag) {
2012 		if (sc->dc_saddr != 0)
2013 			bus_dmamap_unload(sc->dc_stag, sc->dc_smap);
2014 		if (sc->dc_cdata.dc_sbuf != NULL)
2015 			bus_dmamem_free(sc->dc_stag, sc->dc_cdata.dc_sbuf,
2016 			    sc->dc_smap);
2017 		bus_dma_tag_destroy(sc->dc_stag);
2018 	}
2019 }
2020 
2021 /*
2022  * Attach the interface. Allocate softc structures, do ifmedia
2023  * setup and ethernet/BPF attach.
2024  */
2025 static int
2026 dc_attach(device_t dev)
2027 {
2028 	uint32_t eaddr[(ETHER_ADDR_LEN+3)/4];
2029 	uint32_t command;
2030 	struct dc_softc *sc;
2031 	if_t ifp;
2032 	struct dc_mediainfo *m;
2033 	uint32_t reg, revision;
2034 	uint16_t *srom;
2035 	int error, mac_offset, n, phy, rid, tmp;
2036 	uint8_t *mac;
2037 
2038 	sc = device_get_softc(dev);
2039 	sc->dc_dev = dev;
2040 
2041 	mtx_init(&sc->dc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
2042 	    MTX_DEF);
2043 
2044 	/*
2045 	 * Map control/status registers.
2046 	 */
2047 	pci_enable_busmaster(dev);
2048 
2049 	rid = DC_RID;
2050 	sc->dc_res = bus_alloc_resource_any(dev, DC_RES, &rid, RF_ACTIVE);
2051 
2052 	if (sc->dc_res == NULL) {
2053 		device_printf(dev, "couldn't map ports/memory\n");
2054 		error = ENXIO;
2055 		goto fail;
2056 	}
2057 
2058 	sc->dc_btag = rman_get_bustag(sc->dc_res);
2059 	sc->dc_bhandle = rman_get_bushandle(sc->dc_res);
2060 
2061 	/* Allocate interrupt. */
2062 	rid = 0;
2063 	sc->dc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
2064 	    RF_SHAREABLE | RF_ACTIVE);
2065 
2066 	if (sc->dc_irq == NULL) {
2067 		device_printf(dev, "couldn't map interrupt\n");
2068 		error = ENXIO;
2069 		goto fail;
2070 	}
2071 
2072 	/* Need this info to decide on a chip type. */
2073 	sc->dc_info = dc_devtype(dev);
2074 	revision = pci_get_revid(dev);
2075 
2076 	error = 0;
2077 	/* Get the eeprom width, but PNIC and XIRCOM have diff eeprom */
2078 	if (sc->dc_info->dc_devid !=
2079 	    DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168) &&
2080 	    sc->dc_info->dc_devid !=
2081 	    DC_DEVID(DC_VENDORID_XIRCOM, DC_DEVICEID_X3201))
2082 		dc_eeprom_width(sc);
2083 
2084 	switch (sc->dc_info->dc_devid) {
2085 	case DC_DEVID(DC_VENDORID_DEC, DC_DEVICEID_21143):
2086 		sc->dc_type = DC_TYPE_21143;
2087 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
2088 		sc->dc_flags |= DC_REDUCED_MII_POLL;
2089 		/* Save EEPROM contents so we can parse them later. */
2090 		error = dc_read_srom(sc, sc->dc_romwidth);
2091 		if (error != 0)
2092 			goto fail;
2093 		break;
2094 	case DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009):
2095 	case DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100):
2096 	case DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102):
2097 		sc->dc_type = DC_TYPE_DM9102;
2098 		sc->dc_flags |= DC_TX_COALESCE | DC_TX_INTR_ALWAYS;
2099 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_TX_STORENFWD;
2100 		sc->dc_flags |= DC_TX_ALIGN;
2101 		sc->dc_pmode = DC_PMODE_MII;
2102 
2103 		/* Increase the latency timer value. */
2104 		pci_write_config(dev, PCIR_LATTIMER, 0x80, 1);
2105 		break;
2106 	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AL981):
2107 		sc->dc_type = DC_TYPE_AL981;
2108 		sc->dc_flags |= DC_TX_USE_TX_INTR;
2109 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
2110 		sc->dc_pmode = DC_PMODE_MII;
2111 		error = dc_read_srom(sc, sc->dc_romwidth);
2112 		if (error != 0)
2113 			goto fail;
2114 		break;
2115 	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN983):
2116 	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN985):
2117 	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511):
2118 	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513):
2119 	case DC_DEVID(DC_VENDORID_DLINK, DC_DEVICEID_DRP32TXD):
2120 	case DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500):
2121 	case DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500MX):
2122 	case DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN2242):
2123 	case DC_DEVID(DC_VENDORID_HAWKING, DC_DEVICEID_HAWKING_PN672TX):
2124 	case DC_DEVID(DC_VENDORID_PLANEX, DC_DEVICEID_FNW3602T):
2125 	case DC_DEVID(DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB):
2126 	case DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN120):
2127 	case DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130):
2128 	case DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB08):
2129 	case DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB09):
2130 		sc->dc_type = DC_TYPE_AN983;
2131 		sc->dc_flags |= DC_64BIT_HASH;
2132 		sc->dc_flags |= DC_TX_USE_TX_INTR;
2133 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
2134 		sc->dc_pmode = DC_PMODE_MII;
2135 		/* Don't read SROM for - auto-loaded on reset */
2136 		break;
2137 	case DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98713):
2138 	case DC_DEVID(DC_VENDORID_CP, DC_DEVICEID_98713_CP):
2139 		if (revision < DC_REVISION_98713A) {
2140 			sc->dc_type = DC_TYPE_98713;
2141 		}
2142 		if (revision >= DC_REVISION_98713A) {
2143 			sc->dc_type = DC_TYPE_98713A;
2144 			sc->dc_flags |= DC_21143_NWAY;
2145 		}
2146 		sc->dc_flags |= DC_REDUCED_MII_POLL;
2147 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
2148 		break;
2149 	case DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5):
2150 	case DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN1217):
2151 		/*
2152 		 * Macronix MX98715AEC-C/D/E parts have only a
2153 		 * 128-bit hash table. We need to deal with these
2154 		 * in the same manner as the PNIC II so that we
2155 		 * get the right number of bits out of the
2156 		 * CRC routine.
2157 		 */
2158 		if (revision >= DC_REVISION_98715AEC_C &&
2159 		    revision < DC_REVISION_98725)
2160 			sc->dc_flags |= DC_128BIT_HASH;
2161 		sc->dc_type = DC_TYPE_987x5;
2162 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
2163 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
2164 		break;
2165 	case DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98727):
2166 		sc->dc_type = DC_TYPE_987x5;
2167 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
2168 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
2169 		break;
2170 	case DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C115):
2171 		sc->dc_type = DC_TYPE_PNICII;
2172 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR | DC_128BIT_HASH;
2173 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
2174 		break;
2175 	case DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168):
2176 		sc->dc_type = DC_TYPE_PNIC;
2177 		sc->dc_flags |= DC_TX_STORENFWD | DC_TX_INTR_ALWAYS;
2178 		sc->dc_flags |= DC_PNIC_RX_BUG_WAR;
2179 		sc->dc_pnic_rx_buf = malloc(DC_RXLEN * 5, M_DEVBUF, M_NOWAIT);
2180 		if (sc->dc_pnic_rx_buf == NULL) {
2181 			device_printf(sc->dc_dev,
2182 			    "Could not allocate PNIC RX buffer\n");
2183 			error = ENOMEM;
2184 			goto fail;
2185 		}
2186 		if (revision < DC_REVISION_82C169)
2187 			sc->dc_pmode = DC_PMODE_SYM;
2188 		break;
2189 	case DC_DEVID(DC_VENDORID_ASIX, DC_DEVICEID_AX88140A):
2190 		sc->dc_type = DC_TYPE_ASIX;
2191 		sc->dc_flags |= DC_TX_USE_TX_INTR | DC_TX_INTR_FIRSTFRAG;
2192 		sc->dc_flags |= DC_REDUCED_MII_POLL;
2193 		sc->dc_pmode = DC_PMODE_MII;
2194 		break;
2195 	case DC_DEVID(DC_VENDORID_XIRCOM, DC_DEVICEID_X3201):
2196 		sc->dc_type = DC_TYPE_XIRCOM;
2197 		sc->dc_flags |= DC_TX_INTR_ALWAYS | DC_TX_COALESCE |
2198 				DC_TX_ALIGN;
2199 		/*
2200 		 * We don't actually need to coalesce, but we're doing
2201 		 * it to obtain a double word aligned buffer.
2202 		 * The DC_TX_COALESCE flag is required.
2203 		 */
2204 		sc->dc_pmode = DC_PMODE_MII;
2205 		break;
2206 	case DC_DEVID(DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112):
2207 		sc->dc_type = DC_TYPE_CONEXANT;
2208 		sc->dc_flags |= DC_TX_INTR_ALWAYS;
2209 		sc->dc_flags |= DC_REDUCED_MII_POLL;
2210 		sc->dc_pmode = DC_PMODE_MII;
2211 		error = dc_read_srom(sc, sc->dc_romwidth);
2212 		if (error != 0)
2213 			goto fail;
2214 		break;
2215 	case DC_DEVID(DC_VENDORID_ULI, DC_DEVICEID_M5261):
2216 	case DC_DEVID(DC_VENDORID_ULI, DC_DEVICEID_M5263):
2217 		if (sc->dc_info->dc_devid ==
2218 		    DC_DEVID(DC_VENDORID_ULI, DC_DEVICEID_M5261))
2219 			sc->dc_type = DC_TYPE_ULI_M5261;
2220 		else
2221 			sc->dc_type = DC_TYPE_ULI_M5263;
2222 		/* TX buffers should be aligned on 4 byte boundary. */
2223 		sc->dc_flags |= DC_TX_INTR_ALWAYS | DC_TX_COALESCE |
2224 		    DC_TX_ALIGN;
2225 		sc->dc_pmode = DC_PMODE_MII;
2226 		error = dc_read_srom(sc, sc->dc_romwidth);
2227 		if (error != 0)
2228 			goto fail;
2229 		break;
2230 	default:
2231 		device_printf(dev, "unknown device: %x\n",
2232 		    sc->dc_info->dc_devid);
2233 		break;
2234 	}
2235 
2236 	/* Save the cache line size. */
2237 	if (DC_IS_DAVICOM(sc))
2238 		sc->dc_cachesize = 0;
2239 	else
2240 		sc->dc_cachesize = pci_get_cachelnsz(dev);
2241 
2242 	/* Reset the adapter. */
2243 	dc_reset(sc);
2244 
2245 	/* Take 21143 out of snooze mode */
2246 	if (DC_IS_INTEL(sc) || DC_IS_XIRCOM(sc)) {
2247 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
2248 		command &= ~(DC_CFDD_SNOOZE_MODE | DC_CFDD_SLEEP_MODE);
2249 		pci_write_config(dev, DC_PCI_CFDD, command, 4);
2250 	}
2251 
2252 	/*
2253 	 * Try to learn something about the supported media.
2254 	 * We know that ASIX and ADMtek and Davicom devices
2255 	 * will *always* be using MII media, so that's a no-brainer.
2256 	 * The tricky ones are the Macronix/PNIC II and the
2257 	 * Intel 21143.
2258 	 */
2259 	if (DC_IS_INTEL(sc)) {
2260 		error = dc_parse_21143_srom(sc);
2261 		if (error != 0)
2262 			goto fail;
2263 	} else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
2264 		if (sc->dc_type == DC_TYPE_98713)
2265 			sc->dc_pmode = DC_PMODE_MII;
2266 		else
2267 			sc->dc_pmode = DC_PMODE_SYM;
2268 	} else if (!sc->dc_pmode)
2269 		sc->dc_pmode = DC_PMODE_MII;
2270 
2271 	/*
2272 	 * Get station address from the EEPROM.
2273 	 */
2274 	switch(sc->dc_type) {
2275 	case DC_TYPE_98713:
2276 	case DC_TYPE_98713A:
2277 	case DC_TYPE_987x5:
2278 	case DC_TYPE_PNICII:
2279 		dc_read_eeprom(sc, (caddr_t)&mac_offset,
2280 		    (DC_EE_NODEADDR_OFFSET / 2), 1, 0);
2281 		dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0);
2282 		break;
2283 	case DC_TYPE_PNIC:
2284 		dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1);
2285 		break;
2286 	case DC_TYPE_DM9102:
2287 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2288 		break;
2289 	case DC_TYPE_21143:
2290 	case DC_TYPE_ASIX:
2291 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2292 		break;
2293 	case DC_TYPE_AL981:
2294 	case DC_TYPE_AN983:
2295 		reg = CSR_READ_4(sc, DC_AL_PAR0);
2296 		mac = (uint8_t *)&eaddr[0];
2297 		mac[0] = (reg >> 0) & 0xff;
2298 		mac[1] = (reg >> 8) & 0xff;
2299 		mac[2] = (reg >> 16) & 0xff;
2300 		mac[3] = (reg >> 24) & 0xff;
2301 		reg = CSR_READ_4(sc, DC_AL_PAR1);
2302 		mac[4] = (reg >> 0) & 0xff;
2303 		mac[5] = (reg >> 8) & 0xff;
2304 		break;
2305 	case DC_TYPE_CONEXANT:
2306 		bcopy(sc->dc_srom + DC_CONEXANT_EE_NODEADDR, &eaddr,
2307 		    ETHER_ADDR_LEN);
2308 		break;
2309 	case DC_TYPE_XIRCOM:
2310 		/* The MAC comes from the CIS. */
2311 		mac = pci_get_ether(dev);
2312 		if (!mac) {
2313 			device_printf(dev, "No station address in CIS!\n");
2314 			error = ENXIO;
2315 			goto fail;
2316 		}
2317 		bcopy(mac, eaddr, ETHER_ADDR_LEN);
2318 		break;
2319 	case DC_TYPE_ULI_M5261:
2320 	case DC_TYPE_ULI_M5263:
2321 		srom = (uint16_t *)sc->dc_srom;
2322 		if (srom == NULL || *srom == 0xFFFF || *srom == 0) {
2323 			/*
2324 			 * No valid SROM present, read station address
2325 			 * from ID Table.
2326 			 */
2327 			device_printf(dev,
2328 			    "Reading station address from ID Table.\n");
2329 			CSR_WRITE_4(sc, DC_BUSCTL, 0x10000);
2330 			CSR_WRITE_4(sc, DC_SIARESET, 0x01C0);
2331 			CSR_WRITE_4(sc, DC_10BTCTRL, 0x0000);
2332 			CSR_WRITE_4(sc, DC_10BTCTRL, 0x0010);
2333 			CSR_WRITE_4(sc, DC_10BTCTRL, 0x0000);
2334 			CSR_WRITE_4(sc, DC_SIARESET, 0x0000);
2335 			CSR_WRITE_4(sc, DC_SIARESET, 0x01B0);
2336 			mac = (uint8_t *)eaddr;
2337 			for (n = 0; n < ETHER_ADDR_LEN; n++)
2338 				mac[n] = (uint8_t)CSR_READ_4(sc, DC_10BTCTRL);
2339 			CSR_WRITE_4(sc, DC_SIARESET, 0x0000);
2340 			CSR_WRITE_4(sc, DC_BUSCTL, 0x0000);
2341 			DELAY(10);
2342 		} else
2343 			dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3,
2344 			    0);
2345 		break;
2346 	default:
2347 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2348 		break;
2349 	}
2350 
2351 	bcopy(eaddr, sc->dc_eaddr, sizeof(eaddr));
2352 	/*
2353 	 * If we still have invalid station address, see whether we can
2354 	 * find station address for chip 0.  Some multi-port controllers
2355 	 * just store station address for chip 0 if they have a shared
2356 	 * SROM.
2357 	 */
2358 	if ((sc->dc_eaddr[0] == 0 && (sc->dc_eaddr[1] & ~0xffff) == 0) ||
2359 	    (sc->dc_eaddr[0] == 0xffffffff &&
2360 	    (sc->dc_eaddr[1] & 0xffff) == 0xffff)) {
2361 		error = dc_check_multiport(sc);
2362 		if (error == 0) {
2363 			bcopy(sc->dc_eaddr, eaddr, sizeof(eaddr));
2364 			/* Extract media information. */
2365 			if (DC_IS_INTEL(sc) && sc->dc_srom != NULL) {
2366 				while (sc->dc_mi != NULL) {
2367 					m = sc->dc_mi->dc_next;
2368 					free(sc->dc_mi, M_DEVBUF);
2369 					sc->dc_mi = m;
2370 				}
2371 				error = dc_parse_21143_srom(sc);
2372 				if (error != 0)
2373 					goto fail;
2374 			}
2375 		} else if (error == ENOMEM)
2376 			goto fail;
2377 		else
2378 			error = 0;
2379 	}
2380 
2381 	if ((error = dc_dma_alloc(sc)) != 0)
2382 		goto fail;
2383 
2384 	ifp = sc->dc_ifp = if_alloc(IFT_ETHER);
2385 	if (ifp == NULL) {
2386 		device_printf(dev, "can not if_alloc()\n");
2387 		error = ENOSPC;
2388 		goto fail;
2389 	}
2390 	if_setsoftc(ifp, sc);
2391 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2392 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
2393 	if_setioctlfn(ifp, dc_ioctl);
2394 	if_setstartfn(ifp, dc_start);
2395 	if_setinitfn(ifp, dc_init);
2396 	if_setsendqlen(ifp, DC_TX_LIST_CNT - 1);
2397 	if_setsendqready(ifp);
2398 
2399 	/*
2400 	 * Do MII setup. If this is a 21143, check for a PHY on the
2401 	 * MII bus after applying any necessary fixups to twiddle the
2402 	 * GPIO bits. If we don't end up finding a PHY, restore the
2403 	 * old selection (SIA only or SIA/SYM) and attach the dcphy
2404 	 * driver instead.
2405 	 */
2406 	tmp = 0;
2407 	if (DC_IS_INTEL(sc)) {
2408 		dc_apply_fixup(sc, IFM_AUTO);
2409 		tmp = sc->dc_pmode;
2410 		sc->dc_pmode = DC_PMODE_MII;
2411 	}
2412 
2413 	/*
2414 	 * Setup General Purpose port mode and data so the tulip can talk
2415 	 * to the MII.  This needs to be done before mii_attach so that
2416 	 * we can actually see them.
2417 	 */
2418 	if (DC_IS_XIRCOM(sc)) {
2419 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
2420 		    DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2421 		DELAY(10);
2422 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
2423 		    DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2424 		DELAY(10);
2425 	}
2426 
2427 	phy = MII_PHY_ANY;
2428 	/*
2429 	 * Note: both the AL981 and AN983 have internal PHYs, however the
2430 	 * AL981 provides direct access to the PHY registers while the AN983
2431 	 * uses a serial MII interface. The AN983's MII interface is also
2432 	 * buggy in that you can read from any MII address (0 to 31), but
2433 	 * only address 1 behaves normally. To deal with both cases, we
2434 	 * pretend that the PHY is at MII address 1.
2435 	 */
2436 	if (DC_IS_ADMTEK(sc))
2437 		phy = DC_ADMTEK_PHYADDR;
2438 
2439 	/*
2440 	 * Note: the ukphy probes of the RS7112 report a PHY at MII address
2441 	 * 0 (possibly HomePNA?) and 1 (ethernet) so we only respond to the
2442 	 * correct one.
2443 	 */
2444 	if (DC_IS_CONEXANT(sc))
2445 		phy = DC_CONEXANT_PHYADDR;
2446 
2447 	error = mii_attach(dev, &sc->dc_miibus, ifp, dc_ifmedia_upd,
2448 	    dc_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
2449 
2450 	if (error && DC_IS_INTEL(sc)) {
2451 		sc->dc_pmode = tmp;
2452 		if (sc->dc_pmode != DC_PMODE_SIA)
2453 			sc->dc_pmode = DC_PMODE_SYM;
2454 		sc->dc_flags |= DC_21143_NWAY;
2455 		/*
2456 		 * For non-MII cards, we need to have the 21143
2457 		 * drive the LEDs. Except there are some systems
2458 		 * like the NEC VersaPro NoteBook PC which have no
2459 		 * LEDs, and twiddling these bits has adverse effects
2460 		 * on them. (I.e. you suddenly can't get a link.)
2461 		 */
2462 		if (!(pci_get_subvendor(dev) == 0x1033 &&
2463 		    pci_get_subdevice(dev) == 0x8028))
2464 			sc->dc_flags |= DC_TULIP_LEDS;
2465 		error = mii_attach(dev, &sc->dc_miibus, ifp, dc_ifmedia_upd,
2466 		    dc_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY,
2467 		    MII_OFFSET_ANY, 0);
2468 	}
2469 
2470 	if (error) {
2471 		device_printf(dev, "attaching PHYs failed\n");
2472 		goto fail;
2473 	}
2474 
2475 	if (DC_IS_ADMTEK(sc)) {
2476 		/*
2477 		 * Set automatic TX underrun recovery for the ADMtek chips
2478 		 */
2479 		DC_SETBIT(sc, DC_AL_CR, DC_AL_CR_ATUR);
2480 	}
2481 
2482 	/*
2483 	 * Tell the upper layer(s) we support long frames.
2484 	 */
2485 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
2486 	if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU, 0);
2487 	if_setcapenable(ifp, if_getcapabilities(ifp));
2488 #ifdef DEVICE_POLLING
2489 	if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0);
2490 #endif
2491 
2492 	callout_init_mtx(&sc->dc_stat_ch, &sc->dc_mtx, 0);
2493 	callout_init_mtx(&sc->dc_wdog_ch, &sc->dc_mtx, 0);
2494 
2495 	/*
2496 	 * Call MI attach routine.
2497 	 */
2498 	ether_ifattach(ifp, (caddr_t)eaddr);
2499 
2500 	/* Hook interrupt last to avoid having to lock softc */
2501 	error = bus_setup_intr(dev, sc->dc_irq, INTR_TYPE_NET | INTR_MPSAFE,
2502 	    NULL, dc_intr, sc, &sc->dc_intrhand);
2503 
2504 	if (error) {
2505 		device_printf(dev, "couldn't set up irq\n");
2506 		ether_ifdetach(ifp);
2507 		goto fail;
2508 	}
2509 
2510 fail:
2511 	if (error)
2512 		dc_detach(dev);
2513 	return (error);
2514 }
2515 
2516 /*
2517  * Shutdown hardware and free up resources. This can be called any
2518  * time after the mutex has been initialized. It is called in both
2519  * the error case in attach and the normal detach case so it needs
2520  * to be careful about only freeing resources that have actually been
2521  * allocated.
2522  */
2523 static int
2524 dc_detach(device_t dev)
2525 {
2526 	struct dc_softc *sc;
2527 	if_t ifp;
2528 	struct dc_mediainfo *m;
2529 
2530 	sc = device_get_softc(dev);
2531 	KASSERT(mtx_initialized(&sc->dc_mtx), ("dc mutex not initialized"));
2532 
2533 	ifp = sc->dc_ifp;
2534 
2535 #ifdef DEVICE_POLLING
2536 	if (ifp != NULL && if_getcapenable(ifp) & IFCAP_POLLING)
2537 		ether_poll_deregister(ifp);
2538 #endif
2539 
2540 	/* These should only be active if attach succeeded */
2541 	if (device_is_attached(dev)) {
2542 		DC_LOCK(sc);
2543 		dc_stop(sc);
2544 		DC_UNLOCK(sc);
2545 		callout_drain(&sc->dc_stat_ch);
2546 		callout_drain(&sc->dc_wdog_ch);
2547 		ether_ifdetach(ifp);
2548 	}
2549 	if (sc->dc_miibus)
2550 		device_delete_child(dev, sc->dc_miibus);
2551 	bus_generic_detach(dev);
2552 
2553 	if (sc->dc_intrhand)
2554 		bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
2555 	if (sc->dc_irq)
2556 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
2557 	if (sc->dc_res)
2558 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2559 
2560 	if (ifp != NULL)
2561 		if_free(ifp);
2562 
2563 	dc_dma_free(sc);
2564 
2565 	free(sc->dc_pnic_rx_buf, M_DEVBUF);
2566 
2567 	while (sc->dc_mi != NULL) {
2568 		m = sc->dc_mi->dc_next;
2569 		free(sc->dc_mi, M_DEVBUF);
2570 		sc->dc_mi = m;
2571 	}
2572 	free(sc->dc_srom, M_DEVBUF);
2573 
2574 	mtx_destroy(&sc->dc_mtx);
2575 
2576 	return (0);
2577 }
2578 
2579 /*
2580  * Initialize the transmit descriptors.
2581  */
2582 static int
2583 dc_list_tx_init(struct dc_softc *sc)
2584 {
2585 	struct dc_chain_data *cd;
2586 	struct dc_list_data *ld;
2587 	int i, nexti;
2588 
2589 	cd = &sc->dc_cdata;
2590 	ld = &sc->dc_ldata;
2591 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2592 		if (i == DC_TX_LIST_CNT - 1)
2593 			nexti = 0;
2594 		else
2595 			nexti = i + 1;
2596 		ld->dc_tx_list[i].dc_status = 0;
2597 		ld->dc_tx_list[i].dc_ctl = 0;
2598 		ld->dc_tx_list[i].dc_data = 0;
2599 		ld->dc_tx_list[i].dc_next = htole32(DC_TXDESC(sc, nexti));
2600 		cd->dc_tx_chain[i] = NULL;
2601 	}
2602 
2603 	cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
2604 	cd->dc_tx_pkts = 0;
2605 	bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap,
2606 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2607 	return (0);
2608 }
2609 
2610 /*
2611  * Initialize the RX descriptors and allocate mbufs for them. Note that
2612  * we arrange the descriptors in a closed ring, so that the last descriptor
2613  * points back to the first.
2614  */
2615 static int
2616 dc_list_rx_init(struct dc_softc *sc)
2617 {
2618 	struct dc_chain_data *cd;
2619 	struct dc_list_data *ld;
2620 	int i, nexti;
2621 
2622 	cd = &sc->dc_cdata;
2623 	ld = &sc->dc_ldata;
2624 
2625 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2626 		if (dc_newbuf(sc, i) != 0)
2627 			return (ENOBUFS);
2628 		if (i == DC_RX_LIST_CNT - 1)
2629 			nexti = 0;
2630 		else
2631 			nexti = i + 1;
2632 		ld->dc_rx_list[i].dc_next = htole32(DC_RXDESC(sc, nexti));
2633 	}
2634 
2635 	cd->dc_rx_prod = 0;
2636 	bus_dmamap_sync(sc->dc_rx_ltag, sc->dc_rx_lmap,
2637 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2638 	return (0);
2639 }
2640 
2641 /*
2642  * Initialize an RX descriptor and attach an MBUF cluster.
2643  */
2644 static int
2645 dc_newbuf(struct dc_softc *sc, int i)
2646 {
2647 	struct mbuf *m;
2648 	bus_dmamap_t map;
2649 	bus_dma_segment_t segs[1];
2650 	int error, nseg;
2651 
2652 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2653 	if (m == NULL)
2654 		return (ENOBUFS);
2655 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2656 	m_adj(m, sizeof(u_int64_t));
2657 
2658 	/*
2659 	 * If this is a PNIC chip, zero the buffer. This is part
2660 	 * of the workaround for the receive bug in the 82c168 and
2661 	 * 82c169 chips.
2662 	 */
2663 	if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
2664 		bzero(mtod(m, char *), m->m_len);
2665 
2666 	error = bus_dmamap_load_mbuf_sg(sc->dc_rx_mtag, sc->dc_sparemap,
2667 	    m, segs, &nseg, 0);
2668 	if (error) {
2669 		m_freem(m);
2670 		return (error);
2671 	}
2672 	KASSERT(nseg == 1, ("%s: wrong number of segments (%d)", __func__,
2673 	    nseg));
2674 	if (sc->dc_cdata.dc_rx_chain[i] != NULL)
2675 		bus_dmamap_unload(sc->dc_rx_mtag, sc->dc_cdata.dc_rx_map[i]);
2676 
2677 	map = sc->dc_cdata.dc_rx_map[i];
2678 	sc->dc_cdata.dc_rx_map[i] = sc->dc_sparemap;
2679 	sc->dc_sparemap = map;
2680 	sc->dc_cdata.dc_rx_chain[i] = m;
2681 	bus_dmamap_sync(sc->dc_rx_mtag, sc->dc_cdata.dc_rx_map[i],
2682 	    BUS_DMASYNC_PREREAD);
2683 
2684 	sc->dc_ldata.dc_rx_list[i].dc_ctl = htole32(DC_RXCTL_RLINK | DC_RXLEN);
2685 	sc->dc_ldata.dc_rx_list[i].dc_data =
2686 	    htole32(DC_ADDR_LO(segs[0].ds_addr));
2687 	sc->dc_ldata.dc_rx_list[i].dc_status = htole32(DC_RXSTAT_OWN);
2688 	bus_dmamap_sync(sc->dc_rx_ltag, sc->dc_rx_lmap,
2689 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2690 	return (0);
2691 }
2692 
2693 /*
2694  * Grrrrr.
2695  * The PNIC chip has a terrible bug in it that manifests itself during
2696  * periods of heavy activity. The exact mode of failure if difficult to
2697  * pinpoint: sometimes it only happens in promiscuous mode, sometimes it
2698  * will happen on slow machines. The bug is that sometimes instead of
2699  * uploading one complete frame during reception, it uploads what looks
2700  * like the entire contents of its FIFO memory. The frame we want is at
2701  * the end of the whole mess, but we never know exactly how much data has
2702  * been uploaded, so salvaging the frame is hard.
2703  *
2704  * There is only one way to do it reliably, and it's disgusting.
2705  * Here's what we know:
2706  *
2707  * - We know there will always be somewhere between one and three extra
2708  *   descriptors uploaded.
2709  *
2710  * - We know the desired received frame will always be at the end of the
2711  *   total data upload.
2712  *
2713  * - We know the size of the desired received frame because it will be
2714  *   provided in the length field of the status word in the last descriptor.
2715  *
2716  * Here's what we do:
2717  *
2718  * - When we allocate buffers for the receive ring, we bzero() them.
2719  *   This means that we know that the buffer contents should be all
2720  *   zeros, except for data uploaded by the chip.
2721  *
2722  * - We also force the PNIC chip to upload frames that include the
2723  *   ethernet CRC at the end.
2724  *
2725  * - We gather all of the bogus frame data into a single buffer.
2726  *
2727  * - We then position a pointer at the end of this buffer and scan
2728  *   backwards until we encounter the first non-zero byte of data.
2729  *   This is the end of the received frame. We know we will encounter
2730  *   some data at the end of the frame because the CRC will always be
2731  *   there, so even if the sender transmits a packet of all zeros,
2732  *   we won't be fooled.
2733  *
2734  * - We know the size of the actual received frame, so we subtract
2735  *   that value from the current pointer location. This brings us
2736  *   to the start of the actual received packet.
2737  *
2738  * - We copy this into an mbuf and pass it on, along with the actual
2739  *   frame length.
2740  *
2741  * The performance hit is tremendous, but it beats dropping frames all
2742  * the time.
2743  */
2744 
2745 #define	DC_WHOLEFRAME	(DC_RXSTAT_FIRSTFRAG | DC_RXSTAT_LASTFRAG)
2746 static void
2747 dc_pnic_rx_bug_war(struct dc_softc *sc, int idx)
2748 {
2749 	struct dc_desc *cur_rx;
2750 	struct dc_desc *c = NULL;
2751 	struct mbuf *m = NULL;
2752 	unsigned char *ptr;
2753 	int i, total_len;
2754 	uint32_t rxstat = 0;
2755 
2756 	i = sc->dc_pnic_rx_bug_save;
2757 	cur_rx = &sc->dc_ldata.dc_rx_list[idx];
2758 	ptr = sc->dc_pnic_rx_buf;
2759 	bzero(ptr, DC_RXLEN * 5);
2760 
2761 	/* Copy all the bytes from the bogus buffers. */
2762 	while (1) {
2763 		c = &sc->dc_ldata.dc_rx_list[i];
2764 		rxstat = le32toh(c->dc_status);
2765 		m = sc->dc_cdata.dc_rx_chain[i];
2766 		bcopy(mtod(m, char *), ptr, DC_RXLEN);
2767 		ptr += DC_RXLEN;
2768 		/* If this is the last buffer, break out. */
2769 		if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
2770 			break;
2771 		dc_discard_rxbuf(sc, i);
2772 		DC_INC(i, DC_RX_LIST_CNT);
2773 	}
2774 
2775 	/* Find the length of the actual receive frame. */
2776 	total_len = DC_RXBYTES(rxstat);
2777 
2778 	/* Scan backwards until we hit a non-zero byte. */
2779 	while (*ptr == 0x00)
2780 		ptr--;
2781 
2782 	/* Round off. */
2783 	if ((uintptr_t)(ptr) & 0x3)
2784 		ptr -= 1;
2785 
2786 	/* Now find the start of the frame. */
2787 	ptr -= total_len;
2788 	if (ptr < sc->dc_pnic_rx_buf)
2789 		ptr = sc->dc_pnic_rx_buf;
2790 
2791 	/*
2792 	 * Now copy the salvaged frame to the last mbuf and fake up
2793 	 * the status word to make it look like a successful
2794 	 * frame reception.
2795 	 */
2796 	bcopy(ptr, mtod(m, char *), total_len);
2797 	cur_rx->dc_status = htole32(rxstat | DC_RXSTAT_FIRSTFRAG);
2798 }
2799 
2800 /*
2801  * This routine searches the RX ring for dirty descriptors in the
2802  * event that the rxeof routine falls out of sync with the chip's
2803  * current descriptor pointer. This may happen sometimes as a result
2804  * of a "no RX buffer available" condition that happens when the chip
2805  * consumes all of the RX buffers before the driver has a chance to
2806  * process the RX ring. This routine may need to be called more than
2807  * once to bring the driver back in sync with the chip, however we
2808  * should still be getting RX DONE interrupts to drive the search
2809  * for new packets in the RX ring, so we should catch up eventually.
2810  */
2811 static int
2812 dc_rx_resync(struct dc_softc *sc)
2813 {
2814 	struct dc_desc *cur_rx;
2815 	int i, pos;
2816 
2817 	pos = sc->dc_cdata.dc_rx_prod;
2818 
2819 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2820 		cur_rx = &sc->dc_ldata.dc_rx_list[pos];
2821 		if (!(le32toh(cur_rx->dc_status) & DC_RXSTAT_OWN))
2822 			break;
2823 		DC_INC(pos, DC_RX_LIST_CNT);
2824 	}
2825 
2826 	/* If the ring really is empty, then just return. */
2827 	if (i == DC_RX_LIST_CNT)
2828 		return (0);
2829 
2830 	/* We've fallen behing the chip: catch it. */
2831 	sc->dc_cdata.dc_rx_prod = pos;
2832 
2833 	return (EAGAIN);
2834 }
2835 
2836 static void
2837 dc_discard_rxbuf(struct dc_softc *sc, int i)
2838 {
2839 	struct mbuf *m;
2840 
2841 	if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
2842 		m = sc->dc_cdata.dc_rx_chain[i];
2843 		bzero(mtod(m, char *), m->m_len);
2844 	}
2845 
2846 	sc->dc_ldata.dc_rx_list[i].dc_ctl = htole32(DC_RXCTL_RLINK | DC_RXLEN);
2847 	sc->dc_ldata.dc_rx_list[i].dc_status = htole32(DC_RXSTAT_OWN);
2848 	bus_dmamap_sync(sc->dc_rx_ltag, sc->dc_rx_lmap, BUS_DMASYNC_PREREAD |
2849 	    BUS_DMASYNC_PREWRITE);
2850 }
2851 
2852 /*
2853  * A frame has been uploaded: pass the resulting mbuf chain up to
2854  * the higher level protocols.
2855  */
2856 static int
2857 dc_rxeof(struct dc_softc *sc)
2858 {
2859 	struct mbuf *m;
2860 	if_t ifp;
2861 	struct dc_desc *cur_rx;
2862 	int i, total_len, rx_npkts;
2863 	uint32_t rxstat;
2864 
2865 	DC_LOCK_ASSERT(sc);
2866 
2867 	ifp = sc->dc_ifp;
2868 	rx_npkts = 0;
2869 
2870 	bus_dmamap_sync(sc->dc_rx_ltag, sc->dc_rx_lmap, BUS_DMASYNC_POSTREAD |
2871 	    BUS_DMASYNC_POSTWRITE);
2872 	for (i = sc->dc_cdata.dc_rx_prod;
2873 	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0;
2874 	    DC_INC(i, DC_RX_LIST_CNT)) {
2875 #ifdef DEVICE_POLLING
2876 		if (if_getcapenable(ifp) & IFCAP_POLLING) {
2877 			if (sc->rxcycles <= 0)
2878 				break;
2879 			sc->rxcycles--;
2880 		}
2881 #endif
2882 		cur_rx = &sc->dc_ldata.dc_rx_list[i];
2883 		rxstat = le32toh(cur_rx->dc_status);
2884 		if ((rxstat & DC_RXSTAT_OWN) != 0)
2885 			break;
2886 		m = sc->dc_cdata.dc_rx_chain[i];
2887 		bus_dmamap_sync(sc->dc_rx_mtag, sc->dc_cdata.dc_rx_map[i],
2888 		    BUS_DMASYNC_POSTREAD);
2889 		total_len = DC_RXBYTES(rxstat);
2890 		rx_npkts++;
2891 
2892 		if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
2893 			if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
2894 				if (rxstat & DC_RXSTAT_FIRSTFRAG)
2895 					sc->dc_pnic_rx_bug_save = i;
2896 				if ((rxstat & DC_RXSTAT_LASTFRAG) == 0)
2897 					continue;
2898 				dc_pnic_rx_bug_war(sc, i);
2899 				rxstat = le32toh(cur_rx->dc_status);
2900 				total_len = DC_RXBYTES(rxstat);
2901 			}
2902 		}
2903 
2904 		/*
2905 		 * If an error occurs, update stats, clear the
2906 		 * status word and leave the mbuf cluster in place:
2907 		 * it should simply get re-used next time this descriptor
2908 		 * comes up in the ring.  However, don't report long
2909 		 * frames as errors since they could be vlans.
2910 		 */
2911 		if ((rxstat & DC_RXSTAT_RXERR)) {
2912 			if (!(rxstat & DC_RXSTAT_GIANT) ||
2913 			    (rxstat & (DC_RXSTAT_CRCERR | DC_RXSTAT_DRIBBLE |
2914 				       DC_RXSTAT_MIIERE | DC_RXSTAT_COLLSEEN |
2915 				       DC_RXSTAT_RUNT   | DC_RXSTAT_DE))) {
2916 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2917 				if (rxstat & DC_RXSTAT_COLLSEEN)
2918 					if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
2919 				dc_discard_rxbuf(sc, i);
2920 				if (rxstat & DC_RXSTAT_CRCERR)
2921 					continue;
2922 				else {
2923 					if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2924 					dc_init_locked(sc);
2925 					return (rx_npkts);
2926 				}
2927 			}
2928 		}
2929 
2930 		/* No errors; receive the packet. */
2931 		total_len -= ETHER_CRC_LEN;
2932 #ifdef __NO_STRICT_ALIGNMENT
2933 		/*
2934 		 * On architectures without alignment problems we try to
2935 		 * allocate a new buffer for the receive ring, and pass up
2936 		 * the one where the packet is already, saving the expensive
2937 		 * copy done in m_devget().
2938 		 * If we are on an architecture with alignment problems, or
2939 		 * if the allocation fails, then use m_devget and leave the
2940 		 * existing buffer in the receive ring.
2941 		 */
2942 		if (dc_newbuf(sc, i) != 0) {
2943 			dc_discard_rxbuf(sc, i);
2944 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2945 			continue;
2946 		}
2947 		m->m_pkthdr.rcvif = ifp;
2948 		m->m_pkthdr.len = m->m_len = total_len;
2949 #else
2950 		{
2951 			struct mbuf *m0;
2952 
2953 			m0 = m_devget(mtod(m, char *), total_len,
2954 				ETHER_ALIGN, ifp, NULL);
2955 			dc_discard_rxbuf(sc, i);
2956 			if (m0 == NULL) {
2957 				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2958 				continue;
2959 			}
2960 			m = m0;
2961 		}
2962 #endif
2963 
2964 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2965 		DC_UNLOCK(sc);
2966 		if_input(ifp, m);
2967 		DC_LOCK(sc);
2968 	}
2969 
2970 	sc->dc_cdata.dc_rx_prod = i;
2971 	return (rx_npkts);
2972 }
2973 
2974 /*
2975  * A frame was downloaded to the chip. It's safe for us to clean up
2976  * the list buffers.
2977  */
2978 static void
2979 dc_txeof(struct dc_softc *sc)
2980 {
2981 	struct dc_desc *cur_tx;
2982 	if_t ifp;
2983 	int idx, setup;
2984 	uint32_t ctl, txstat;
2985 
2986 	if (sc->dc_cdata.dc_tx_cnt == 0)
2987 		return;
2988 
2989 	ifp = sc->dc_ifp;
2990 
2991 	/*
2992 	 * Go through our tx list and free mbufs for those
2993 	 * frames that have been transmitted.
2994 	 */
2995 	bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap, BUS_DMASYNC_POSTREAD |
2996 	    BUS_DMASYNC_POSTWRITE);
2997 	setup = 0;
2998 	for (idx = sc->dc_cdata.dc_tx_cons; idx != sc->dc_cdata.dc_tx_prod;
2999 	    DC_INC(idx, DC_TX_LIST_CNT), sc->dc_cdata.dc_tx_cnt--) {
3000 		cur_tx = &sc->dc_ldata.dc_tx_list[idx];
3001 		txstat = le32toh(cur_tx->dc_status);
3002 		ctl = le32toh(cur_tx->dc_ctl);
3003 
3004 		if (txstat & DC_TXSTAT_OWN)
3005 			break;
3006 
3007 		if (sc->dc_cdata.dc_tx_chain[idx] == NULL)
3008 			continue;
3009 
3010 		if (ctl & DC_TXCTL_SETUP) {
3011 			cur_tx->dc_ctl = htole32(ctl & ~DC_TXCTL_SETUP);
3012 			setup++;
3013 			bus_dmamap_sync(sc->dc_stag, sc->dc_smap,
3014 			    BUS_DMASYNC_POSTWRITE);
3015 			/*
3016 			 * Yes, the PNIC is so brain damaged
3017 			 * that it will sometimes generate a TX
3018 			 * underrun error while DMAing the RX
3019 			 * filter setup frame. If we detect this,
3020 			 * we have to send the setup frame again,
3021 			 * or else the filter won't be programmed
3022 			 * correctly.
3023 			 */
3024 			if (DC_IS_PNIC(sc)) {
3025 				if (txstat & DC_TXSTAT_ERRSUM)
3026 					dc_setfilt(sc);
3027 			}
3028 			sc->dc_cdata.dc_tx_chain[idx] = NULL;
3029 			continue;
3030 		}
3031 
3032 		if (DC_IS_XIRCOM(sc) || DC_IS_CONEXANT(sc)) {
3033 			/*
3034 			 * XXX: Why does my Xircom taunt me so?
3035 			 * For some reason it likes setting the CARRLOST flag
3036 			 * even when the carrier is there. wtf?!?
3037 			 * Who knows, but Conexant chips have the
3038 			 * same problem. Maybe they took lessons
3039 			 * from Xircom.
3040 			 */
3041 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
3042 			    sc->dc_pmode == DC_PMODE_MII &&
3043 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
3044 			    DC_TXSTAT_NOCARRIER)))
3045 				txstat &= ~DC_TXSTAT_ERRSUM;
3046 		} else {
3047 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
3048 			    sc->dc_pmode == DC_PMODE_MII &&
3049 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
3050 			    DC_TXSTAT_NOCARRIER | DC_TXSTAT_CARRLOST)))
3051 				txstat &= ~DC_TXSTAT_ERRSUM;
3052 		}
3053 
3054 		if (txstat & DC_TXSTAT_ERRSUM) {
3055 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3056 			if (txstat & DC_TXSTAT_EXCESSCOLL)
3057 				if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
3058 			if (txstat & DC_TXSTAT_LATECOLL)
3059 				if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
3060 			if (!(txstat & DC_TXSTAT_UNDERRUN)) {
3061 				if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
3062 				dc_init_locked(sc);
3063 				return;
3064 			}
3065 		} else
3066 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
3067 		if_inc_counter(ifp, IFCOUNTER_COLLISIONS, (txstat & DC_TXSTAT_COLLCNT) >> 3);
3068 
3069 		bus_dmamap_sync(sc->dc_tx_mtag, sc->dc_cdata.dc_tx_map[idx],
3070 		    BUS_DMASYNC_POSTWRITE);
3071 		bus_dmamap_unload(sc->dc_tx_mtag, sc->dc_cdata.dc_tx_map[idx]);
3072 		m_freem(sc->dc_cdata.dc_tx_chain[idx]);
3073 		sc->dc_cdata.dc_tx_chain[idx] = NULL;
3074 	}
3075 	sc->dc_cdata.dc_tx_cons = idx;
3076 
3077 	if (sc->dc_cdata.dc_tx_cnt <= DC_TX_LIST_CNT - DC_TX_LIST_RSVD) {
3078 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
3079 		if (sc->dc_cdata.dc_tx_cnt == 0)
3080 			sc->dc_wdog_timer = 0;
3081 	}
3082 	if (setup > 0)
3083 		bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap,
3084 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3085 }
3086 
3087 static void
3088 dc_tick(void *xsc)
3089 {
3090 	struct dc_softc *sc;
3091 	struct mii_data *mii;
3092 	if_t ifp;
3093 	uint32_t r;
3094 
3095 	sc = xsc;
3096 	DC_LOCK_ASSERT(sc);
3097 	ifp = sc->dc_ifp;
3098 	mii = device_get_softc(sc->dc_miibus);
3099 
3100 	/*
3101 	 * Reclaim transmitted frames for controllers that do
3102 	 * not generate TX completion interrupt for every frame.
3103 	 */
3104 	if (sc->dc_flags & DC_TX_USE_TX_INTR)
3105 		dc_txeof(sc);
3106 
3107 	if (sc->dc_flags & DC_REDUCED_MII_POLL) {
3108 		if (sc->dc_flags & DC_21143_NWAY) {
3109 			r = CSR_READ_4(sc, DC_10BTSTAT);
3110 			if (IFM_SUBTYPE(mii->mii_media_active) ==
3111 			    IFM_100_TX && (r & DC_TSTAT_LS100)) {
3112 				sc->dc_link = 0;
3113 				mii_mediachg(mii);
3114 			}
3115 			if (IFM_SUBTYPE(mii->mii_media_active) ==
3116 			    IFM_10_T && (r & DC_TSTAT_LS10)) {
3117 				sc->dc_link = 0;
3118 				mii_mediachg(mii);
3119 			}
3120 			if (sc->dc_link == 0)
3121 				mii_tick(mii);
3122 		} else {
3123 			/*
3124 			 * For NICs which never report DC_RXSTATE_WAIT, we
3125 			 * have to bite the bullet...
3126 			 */
3127 			if ((DC_HAS_BROKEN_RXSTATE(sc) || (CSR_READ_4(sc,
3128 			    DC_ISR) & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT) &&
3129 			    sc->dc_cdata.dc_tx_cnt == 0)
3130 				mii_tick(mii);
3131 		}
3132 	} else
3133 		mii_tick(mii);
3134 
3135 	/*
3136 	 * When the init routine completes, we expect to be able to send
3137 	 * packets right away, and in fact the network code will send a
3138 	 * gratuitous ARP the moment the init routine marks the interface
3139 	 * as running. However, even though the MAC may have been initialized,
3140 	 * there may be a delay of a few seconds before the PHY completes
3141 	 * autonegotiation and the link is brought up. Any transmissions
3142 	 * made during that delay will be lost. Dealing with this is tricky:
3143 	 * we can't just pause in the init routine while waiting for the
3144 	 * PHY to come ready since that would bring the whole system to
3145 	 * a screeching halt for several seconds.
3146 	 *
3147 	 * What we do here is prevent the TX start routine from sending
3148 	 * any packets until a link has been established. After the
3149 	 * interface has been initialized, the tick routine will poll
3150 	 * the state of the PHY until the IFM_ACTIVE flag is set. Until
3151 	 * that time, packets will stay in the send queue, and once the
3152 	 * link comes up, they will be flushed out to the wire.
3153 	 */
3154 	if (sc->dc_link != 0 && !if_sendq_empty(ifp))
3155 		dc_start_locked(ifp);
3156 
3157 	if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link)
3158 		callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
3159 	else
3160 		callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
3161 }
3162 
3163 /*
3164  * A transmit underrun has occurred.  Back off the transmit threshold,
3165  * or switch to store and forward mode if we have to.
3166  */
3167 static void
3168 dc_tx_underrun(struct dc_softc *sc)
3169 {
3170 	uint32_t netcfg, isr;
3171 	int i, reinit;
3172 
3173 	reinit = 0;
3174 	netcfg = CSR_READ_4(sc, DC_NETCFG);
3175 	device_printf(sc->dc_dev, "TX underrun -- ");
3176 	if ((sc->dc_flags & DC_TX_STORENFWD) == 0) {
3177 		if (sc->dc_txthresh + DC_TXTHRESH_INC > DC_TXTHRESH_MAX) {
3178 			printf("using store and forward mode\n");
3179 			netcfg |= DC_NETCFG_STORENFWD;
3180 		} else {
3181 			printf("increasing TX threshold\n");
3182 			sc->dc_txthresh += DC_TXTHRESH_INC;
3183 			netcfg &= ~DC_NETCFG_TX_THRESH;
3184 			netcfg |= sc->dc_txthresh;
3185 		}
3186 
3187 		if (DC_IS_INTEL(sc)) {
3188 			/*
3189 			 * The real 21143 requires that the transmitter be idle
3190 			 * in order to change the transmit threshold or store
3191 			 * and forward state.
3192 			 */
3193 			CSR_WRITE_4(sc, DC_NETCFG, netcfg & ~DC_NETCFG_TX_ON);
3194 
3195 			for (i = 0; i < DC_TIMEOUT; i++) {
3196 				isr = CSR_READ_4(sc, DC_ISR);
3197 				if (isr & DC_ISR_TX_IDLE)
3198 					break;
3199 				DELAY(10);
3200 			}
3201 			if (i == DC_TIMEOUT) {
3202 				device_printf(sc->dc_dev,
3203 				    "%s: failed to force tx to idle state\n",
3204 				    __func__);
3205 				reinit++;
3206 			}
3207 		}
3208 	} else {
3209 		printf("resetting\n");
3210 		reinit++;
3211 	}
3212 
3213 	if (reinit == 0) {
3214 		CSR_WRITE_4(sc, DC_NETCFG, netcfg);
3215 		if (DC_IS_INTEL(sc))
3216 			CSR_WRITE_4(sc, DC_NETCFG, netcfg | DC_NETCFG_TX_ON);
3217 	} else {
3218 		if_setdrvflagbits(sc->dc_ifp, 0, IFF_DRV_RUNNING);
3219 		dc_init_locked(sc);
3220 	}
3221 }
3222 
3223 #ifdef DEVICE_POLLING
3224 static poll_handler_t dc_poll;
3225 
3226 static int
3227 dc_poll(if_t ifp, enum poll_cmd cmd, int count)
3228 {
3229 	struct dc_softc *sc = if_getsoftc(ifp);
3230 	int rx_npkts = 0;
3231 
3232 	DC_LOCK(sc);
3233 
3234 	if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
3235 		DC_UNLOCK(sc);
3236 		return (rx_npkts);
3237 	}
3238 
3239 	sc->rxcycles = count;
3240 	rx_npkts = dc_rxeof(sc);
3241 	dc_txeof(sc);
3242 	if (!if_sendq_empty(ifp) &&
3243 	    !(if_getdrvflags(ifp) & IFF_DRV_OACTIVE))
3244 		dc_start_locked(ifp);
3245 
3246 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
3247 		uint32_t	status;
3248 
3249 		status = CSR_READ_4(sc, DC_ISR);
3250 		status &= (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF |
3251 			DC_ISR_TX_NOBUF | DC_ISR_TX_IDLE | DC_ISR_TX_UNDERRUN |
3252 			DC_ISR_BUS_ERR);
3253 		if (!status) {
3254 			DC_UNLOCK(sc);
3255 			return (rx_npkts);
3256 		}
3257 		/* ack what we have */
3258 		CSR_WRITE_4(sc, DC_ISR, status);
3259 
3260 		if (status & (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF)) {
3261 			uint32_t r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
3262 			if_inc_counter(ifp, IFCOUNTER_IERRORS, (r & 0xffff) + ((r >> 17) & 0x7ff));
3263 
3264 			if (dc_rx_resync(sc))
3265 				dc_rxeof(sc);
3266 		}
3267 		/* restart transmit unit if necessary */
3268 		if (status & DC_ISR_TX_IDLE && sc->dc_cdata.dc_tx_cnt)
3269 			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3270 
3271 		if (status & DC_ISR_TX_UNDERRUN)
3272 			dc_tx_underrun(sc);
3273 
3274 		if (status & DC_ISR_BUS_ERR) {
3275 			if_printf(ifp, "%s: bus error\n", __func__);
3276 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
3277 			dc_init_locked(sc);
3278 		}
3279 	}
3280 	DC_UNLOCK(sc);
3281 	return (rx_npkts);
3282 }
3283 #endif /* DEVICE_POLLING */
3284 
3285 static void
3286 dc_intr(void *arg)
3287 {
3288 	struct dc_softc *sc;
3289 	if_t ifp;
3290 	uint32_t r, status;
3291 	int n;
3292 
3293 	sc = arg;
3294 
3295 	if (sc->suspended)
3296 		return;
3297 
3298 	DC_LOCK(sc);
3299 	status = CSR_READ_4(sc, DC_ISR);
3300 	if (status == 0xFFFFFFFF || (status & DC_INTRS) == 0) {
3301 		DC_UNLOCK(sc);
3302 		return;
3303 	}
3304 	ifp = sc->dc_ifp;
3305 #ifdef DEVICE_POLLING
3306 	if (if_getcapenable(ifp) & IFCAP_POLLING) {
3307 		DC_UNLOCK(sc);
3308 		return;
3309 	}
3310 #endif
3311 	/* Disable interrupts. */
3312 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3313 
3314 	for (n = 16; n > 0; n--) {
3315 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
3316 			break;
3317 		/* Ack interrupts. */
3318 		CSR_WRITE_4(sc, DC_ISR, status);
3319 
3320 		if (status & DC_ISR_RX_OK) {
3321 			if (dc_rxeof(sc) == 0) {
3322 				while (dc_rx_resync(sc))
3323 					dc_rxeof(sc);
3324 			}
3325 		}
3326 
3327 		if (status & (DC_ISR_TX_OK | DC_ISR_TX_NOBUF))
3328 			dc_txeof(sc);
3329 
3330 		if (status & DC_ISR_TX_IDLE) {
3331 			dc_txeof(sc);
3332 			if (sc->dc_cdata.dc_tx_cnt) {
3333 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3334 				CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3335 			}
3336 		}
3337 
3338 		if (status & DC_ISR_TX_UNDERRUN)
3339 			dc_tx_underrun(sc);
3340 
3341 		if ((status & DC_ISR_RX_WATDOGTIMEO)
3342 		    || (status & DC_ISR_RX_NOBUF)) {
3343 			r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
3344 			if_inc_counter(ifp, IFCOUNTER_IERRORS, (r & 0xffff) + ((r >> 17) & 0x7ff));
3345 			if (dc_rxeof(sc) == 0) {
3346 				while (dc_rx_resync(sc))
3347 					dc_rxeof(sc);
3348 			}
3349 		}
3350 
3351 		if (!if_sendq_empty(ifp))
3352 			dc_start_locked(ifp);
3353 
3354 		if (status & DC_ISR_BUS_ERR) {
3355 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
3356 			dc_init_locked(sc);
3357 			DC_UNLOCK(sc);
3358 			return;
3359 		}
3360 		status = CSR_READ_4(sc, DC_ISR);
3361 		if (status == 0xFFFFFFFF || (status & DC_INTRS) == 0)
3362 			break;
3363 	}
3364 
3365 	/* Re-enable interrupts. */
3366 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
3367 		CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3368 
3369 	DC_UNLOCK(sc);
3370 }
3371 
3372 /*
3373  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
3374  * pointers to the fragment pointers.
3375  */
3376 static int
3377 dc_encap(struct dc_softc *sc, struct mbuf **m_head)
3378 {
3379 	bus_dma_segment_t segs[DC_MAXFRAGS];
3380 	bus_dmamap_t map;
3381 	struct dc_desc *f;
3382 	struct mbuf *m;
3383 	int cur, defragged, error, first, frag, i, idx, nseg;
3384 
3385 	m = NULL;
3386 	defragged = 0;
3387 	if (sc->dc_flags & DC_TX_COALESCE &&
3388 	    ((*m_head)->m_next != NULL || sc->dc_flags & DC_TX_ALIGN)) {
3389 		m = m_defrag(*m_head, M_NOWAIT);
3390 		defragged = 1;
3391 	} else {
3392 		/*
3393 		 * Count the number of frags in this chain to see if we
3394 		 * need to m_collapse.  Since the descriptor list is shared
3395 		 * by all packets, we'll m_collapse long chains so that they
3396 		 * do not use up the entire list, even if they would fit.
3397 		 */
3398 		i = 0;
3399 		for (m = *m_head; m != NULL; m = m->m_next)
3400 			i++;
3401 		if (i > DC_TX_LIST_CNT / 4 ||
3402 		    DC_TX_LIST_CNT - i + sc->dc_cdata.dc_tx_cnt <=
3403 		    DC_TX_LIST_RSVD) {
3404 			m = m_collapse(*m_head, M_NOWAIT, DC_MAXFRAGS);
3405 			defragged = 1;
3406 		}
3407 	}
3408 	if (defragged != 0) {
3409 		if (m == NULL) {
3410 			m_freem(*m_head);
3411 			*m_head = NULL;
3412 			return (ENOBUFS);
3413 		}
3414 		*m_head = m;
3415 	}
3416 
3417 	idx = sc->dc_cdata.dc_tx_prod;
3418 	error = bus_dmamap_load_mbuf_sg(sc->dc_tx_mtag,
3419 	    sc->dc_cdata.dc_tx_map[idx], *m_head, segs, &nseg, 0);
3420 	if (error == EFBIG) {
3421 		if (defragged != 0 || (m = m_collapse(*m_head, M_NOWAIT,
3422 		    DC_MAXFRAGS)) == NULL) {
3423 			m_freem(*m_head);
3424 			*m_head = NULL;
3425 			return (defragged != 0 ? error : ENOBUFS);
3426 		}
3427 		*m_head = m;
3428 		error = bus_dmamap_load_mbuf_sg(sc->dc_tx_mtag,
3429 		    sc->dc_cdata.dc_tx_map[idx], *m_head, segs, &nseg, 0);
3430 		if (error != 0) {
3431 			m_freem(*m_head);
3432 			*m_head = NULL;
3433 			return (error);
3434 		}
3435 	} else if (error != 0)
3436 		return (error);
3437 	KASSERT(nseg <= DC_MAXFRAGS,
3438 	    ("%s: wrong number of segments (%d)", __func__, nseg));
3439 	if (nseg == 0) {
3440 		m_freem(*m_head);
3441 		*m_head = NULL;
3442 		return (EIO);
3443 	}
3444 
3445 	/* Check descriptor overruns. */
3446 	if (sc->dc_cdata.dc_tx_cnt + nseg > DC_TX_LIST_CNT - DC_TX_LIST_RSVD) {
3447 		bus_dmamap_unload(sc->dc_tx_mtag, sc->dc_cdata.dc_tx_map[idx]);
3448 		return (ENOBUFS);
3449 	}
3450 	bus_dmamap_sync(sc->dc_tx_mtag, sc->dc_cdata.dc_tx_map[idx],
3451 	    BUS_DMASYNC_PREWRITE);
3452 
3453 	first = cur = frag = sc->dc_cdata.dc_tx_prod;
3454 	for (i = 0; i < nseg; i++) {
3455 		if ((sc->dc_flags & DC_TX_ADMTEK_WAR) &&
3456 		    (frag == (DC_TX_LIST_CNT - 1)) &&
3457 		    (first != sc->dc_cdata.dc_tx_first)) {
3458 			bus_dmamap_unload(sc->dc_tx_mtag,
3459 			    sc->dc_cdata.dc_tx_map[first]);
3460 			m_freem(*m_head);
3461 			*m_head = NULL;
3462 			return (ENOBUFS);
3463 		}
3464 
3465 		f = &sc->dc_ldata.dc_tx_list[frag];
3466 		f->dc_ctl = htole32(DC_TXCTL_TLINK | segs[i].ds_len);
3467 		if (i == 0) {
3468 			f->dc_status = 0;
3469 			f->dc_ctl |= htole32(DC_TXCTL_FIRSTFRAG);
3470 		} else
3471 			f->dc_status = htole32(DC_TXSTAT_OWN);
3472 		f->dc_data = htole32(DC_ADDR_LO(segs[i].ds_addr));
3473 		cur = frag;
3474 		DC_INC(frag, DC_TX_LIST_CNT);
3475 	}
3476 
3477 	sc->dc_cdata.dc_tx_prod = frag;
3478 	sc->dc_cdata.dc_tx_cnt += nseg;
3479 	sc->dc_cdata.dc_tx_chain[cur] = *m_head;
3480 	sc->dc_ldata.dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_LASTFRAG);
3481 	if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
3482 		sc->dc_ldata.dc_tx_list[first].dc_ctl |=
3483 		    htole32(DC_TXCTL_FINT);
3484 	if (sc->dc_flags & DC_TX_INTR_ALWAYS)
3485 		sc->dc_ldata.dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
3486 	if (sc->dc_flags & DC_TX_USE_TX_INTR &&
3487 	    ++sc->dc_cdata.dc_tx_pkts >= 8) {
3488 		sc->dc_cdata.dc_tx_pkts = 0;
3489 		sc->dc_ldata.dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
3490 	}
3491 	sc->dc_ldata.dc_tx_list[first].dc_status = htole32(DC_TXSTAT_OWN);
3492 
3493 	bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap,
3494 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3495 
3496 	/*
3497 	 * Swap the last and the first dmamaps to ensure the map for
3498 	 * this transmission is placed at the last descriptor.
3499 	 */
3500 	map = sc->dc_cdata.dc_tx_map[cur];
3501 	sc->dc_cdata.dc_tx_map[cur] = sc->dc_cdata.dc_tx_map[first];
3502 	sc->dc_cdata.dc_tx_map[first] = map;
3503 
3504 	return (0);
3505 }
3506 
3507 static void
3508 dc_start(if_t ifp)
3509 {
3510 	struct dc_softc *sc;
3511 
3512 	sc = if_getsoftc(ifp);
3513 	DC_LOCK(sc);
3514 	dc_start_locked(ifp);
3515 	DC_UNLOCK(sc);
3516 }
3517 
3518 /*
3519  * Main transmit routine
3520  * To avoid having to do mbuf copies, we put pointers to the mbuf data
3521  * regions directly in the transmit lists.  We also save a copy of the
3522  * pointers since the transmit list fragment pointers are physical
3523  * addresses.
3524  */
3525 static void
3526 dc_start_locked(if_t ifp)
3527 {
3528 	struct dc_softc *sc;
3529 	struct mbuf *m_head;
3530 	int queued;
3531 
3532 	sc = if_getsoftc(ifp);
3533 
3534 	DC_LOCK_ASSERT(sc);
3535 
3536 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
3537 	    IFF_DRV_RUNNING || sc->dc_link == 0)
3538 		return;
3539 
3540 	sc->dc_cdata.dc_tx_first = sc->dc_cdata.dc_tx_prod;
3541 
3542 	for (queued = 0; !if_sendq_empty(ifp); ) {
3543 		/*
3544 		 * If there's no way we can send any packets, return now.
3545 		 */
3546 		if (sc->dc_cdata.dc_tx_cnt > DC_TX_LIST_CNT - DC_TX_LIST_RSVD) {
3547 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
3548 			break;
3549 		}
3550 		m_head = if_dequeue(ifp);
3551 		if (m_head == NULL)
3552 			break;
3553 
3554 		if (dc_encap(sc, &m_head)) {
3555 			if (m_head == NULL)
3556 				break;
3557 			if_sendq_prepend(ifp, m_head);
3558 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
3559 			break;
3560 		}
3561 
3562 		queued++;
3563 		/*
3564 		 * If there's a BPF listener, bounce a copy of this frame
3565 		 * to him.
3566 		 */
3567 		BPF_MTAP(ifp, m_head);
3568 	}
3569 
3570 	if (queued > 0) {
3571 		/* Transmit */
3572 		if (!(sc->dc_flags & DC_TX_POLL))
3573 			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3574 
3575 		/*
3576 		 * Set a timeout in case the chip goes out to lunch.
3577 		 */
3578 		sc->dc_wdog_timer = 5;
3579 	}
3580 }
3581 
3582 static void
3583 dc_init(void *xsc)
3584 {
3585 	struct dc_softc *sc = xsc;
3586 
3587 	DC_LOCK(sc);
3588 	dc_init_locked(sc);
3589 	DC_UNLOCK(sc);
3590 }
3591 
3592 static void
3593 dc_init_locked(struct dc_softc *sc)
3594 {
3595 	if_t ifp = sc->dc_ifp;
3596 	struct mii_data *mii;
3597 	struct ifmedia *ifm;
3598 
3599 	DC_LOCK_ASSERT(sc);
3600 
3601 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
3602 		return;
3603 
3604 	mii = device_get_softc(sc->dc_miibus);
3605 
3606 	/*
3607 	 * Cancel pending I/O and free all RX/TX buffers.
3608 	 */
3609 	dc_stop(sc);
3610 	dc_reset(sc);
3611 	if (DC_IS_INTEL(sc)) {
3612 		ifm = &mii->mii_media;
3613 		dc_apply_fixup(sc, ifm->ifm_media);
3614 	}
3615 
3616 	/*
3617 	 * Set cache alignment and burst length.
3618 	 */
3619 	if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc) || DC_IS_ULI(sc))
3620 		CSR_WRITE_4(sc, DC_BUSCTL, 0);
3621 	else
3622 		CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME | DC_BUSCTL_MRLE);
3623 	/*
3624 	 * Evenly share the bus between receive and transmit process.
3625 	 */
3626 	if (DC_IS_INTEL(sc))
3627 		DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_ARBITRATION);
3628 	if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
3629 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
3630 	} else {
3631 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
3632 	}
3633 	if (sc->dc_flags & DC_TX_POLL)
3634 		DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
3635 	switch(sc->dc_cachesize) {
3636 	case 32:
3637 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
3638 		break;
3639 	case 16:
3640 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
3641 		break;
3642 	case 8:
3643 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
3644 		break;
3645 	case 0:
3646 	default:
3647 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
3648 		break;
3649 	}
3650 
3651 	if (sc->dc_flags & DC_TX_STORENFWD)
3652 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3653 	else {
3654 		if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
3655 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3656 		} else {
3657 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3658 			DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
3659 		}
3660 	}
3661 
3662 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
3663 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
3664 
3665 	if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
3666 		/*
3667 		 * The app notes for the 98713 and 98715A say that
3668 		 * in order to have the chips operate properly, a magic
3669 		 * number must be written to CSR16. Macronix does not
3670 		 * document the meaning of these bits so there's no way
3671 		 * to know exactly what they do. The 98713 has a magic
3672 		 * number all its own; the rest all use a different one.
3673 		 */
3674 		DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
3675 		if (sc->dc_type == DC_TYPE_98713)
3676 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
3677 		else
3678 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
3679 	}
3680 
3681 	if (DC_IS_XIRCOM(sc)) {
3682 		/*
3683 		 * setup General Purpose Port mode and data so the tulip
3684 		 * can talk to the MII.
3685 		 */
3686 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
3687 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3688 		DELAY(10);
3689 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
3690 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3691 		DELAY(10);
3692 	}
3693 
3694 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
3695 	DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_MIN);
3696 
3697 	/* Init circular RX list. */
3698 	if (dc_list_rx_init(sc) == ENOBUFS) {
3699 		device_printf(sc->dc_dev,
3700 		    "initialization failed: no memory for rx buffers\n");
3701 		dc_stop(sc);
3702 		return;
3703 	}
3704 
3705 	/*
3706 	 * Init TX descriptors.
3707 	 */
3708 	dc_list_tx_init(sc);
3709 
3710 	/*
3711 	 * Load the address of the RX list.
3712 	 */
3713 	CSR_WRITE_4(sc, DC_RXADDR, DC_RXDESC(sc, 0));
3714 	CSR_WRITE_4(sc, DC_TXADDR, DC_TXDESC(sc, 0));
3715 
3716 	/*
3717 	 * Enable interrupts.
3718 	 */
3719 #ifdef DEVICE_POLLING
3720 	/*
3721 	 * ... but only if we are not polling, and make sure they are off in
3722 	 * the case of polling. Some cards (e.g. fxp) turn interrupts on
3723 	 * after a reset.
3724 	 */
3725 	if (if_getcapenable(ifp) & IFCAP_POLLING)
3726 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3727 	else
3728 #endif
3729 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3730 	CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
3731 
3732 	/* Initialize TX jabber and RX watchdog timer. */
3733 	if (DC_IS_ULI(sc))
3734 		CSR_WRITE_4(sc, DC_WATCHDOG, DC_WDOG_JABBERCLK |
3735 		    DC_WDOG_HOSTUNJAB);
3736 
3737 	/* Enable transmitter. */
3738 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3739 
3740 	/*
3741 	 * If this is an Intel 21143 and we're not using the
3742 	 * MII port, program the LED control pins so we get
3743 	 * link and activity indications.
3744 	 */
3745 	if (sc->dc_flags & DC_TULIP_LEDS) {
3746 		CSR_WRITE_4(sc, DC_WATCHDOG,
3747 		    DC_WDOG_CTLWREN | DC_WDOG_LINK | DC_WDOG_ACTIVITY);
3748 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
3749 	}
3750 
3751 	/*
3752 	 * Load the RX/multicast filter. We do this sort of late
3753 	 * because the filter programming scheme on the 21143 and
3754 	 * some clones requires DMAing a setup frame via the TX
3755 	 * engine, and we need the transmitter enabled for that.
3756 	 */
3757 	dc_setfilt(sc);
3758 
3759 	/* Enable receiver. */
3760 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
3761 	CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
3762 
3763 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
3764 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
3765 
3766 	dc_ifmedia_upd_locked(sc);
3767 
3768 	/* Clear missed frames and overflow counter. */
3769 	CSR_READ_4(sc, DC_FRAMESDISCARDED);
3770 
3771 	/* Don't start the ticker if this is a homePNA link. */
3772 	if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_HPNA_1)
3773 		sc->dc_link = 1;
3774 	else {
3775 		if (sc->dc_flags & DC_21143_NWAY)
3776 			callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
3777 		else
3778 			callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
3779 	}
3780 
3781 	sc->dc_wdog_timer = 0;
3782 	callout_reset(&sc->dc_wdog_ch, hz, dc_watchdog, sc);
3783 }
3784 
3785 /*
3786  * Set media options.
3787  */
3788 static int
3789 dc_ifmedia_upd(if_t ifp)
3790 {
3791 	struct dc_softc *sc;
3792 	int error;
3793 
3794 	sc = if_getsoftc(ifp);
3795 	DC_LOCK(sc);
3796 	error = dc_ifmedia_upd_locked(sc);
3797 	DC_UNLOCK(sc);
3798 	return (error);
3799 }
3800 
3801 static int
3802 dc_ifmedia_upd_locked(struct dc_softc *sc)
3803 {
3804 	struct mii_data *mii;
3805 	struct ifmedia *ifm;
3806 	int error;
3807 
3808 	DC_LOCK_ASSERT(sc);
3809 
3810 	sc->dc_link = 0;
3811 	mii = device_get_softc(sc->dc_miibus);
3812 	error = mii_mediachg(mii);
3813 	if (error == 0) {
3814 		ifm = &mii->mii_media;
3815 		if (DC_IS_INTEL(sc))
3816 			dc_setcfg(sc, ifm->ifm_media);
3817 		else if (DC_IS_DAVICOM(sc) &&
3818 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1)
3819 			dc_setcfg(sc, ifm->ifm_media);
3820 	}
3821 
3822 	return (error);
3823 }
3824 
3825 /*
3826  * Report current media status.
3827  */
3828 static void
3829 dc_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
3830 {
3831 	struct dc_softc *sc;
3832 	struct mii_data *mii;
3833 	struct ifmedia *ifm;
3834 
3835 	sc = if_getsoftc(ifp);
3836 	mii = device_get_softc(sc->dc_miibus);
3837 	DC_LOCK(sc);
3838 	mii_pollstat(mii);
3839 	ifm = &mii->mii_media;
3840 	if (DC_IS_DAVICOM(sc)) {
3841 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
3842 			ifmr->ifm_active = ifm->ifm_media;
3843 			ifmr->ifm_status = 0;
3844 			DC_UNLOCK(sc);
3845 			return;
3846 		}
3847 	}
3848 	ifmr->ifm_active = mii->mii_media_active;
3849 	ifmr->ifm_status = mii->mii_media_status;
3850 	DC_UNLOCK(sc);
3851 }
3852 
3853 static int
3854 dc_ioctl(if_t ifp, u_long command, caddr_t data)
3855 {
3856 	struct dc_softc *sc = if_getsoftc(ifp);
3857 	struct ifreq *ifr = (struct ifreq *)data;
3858 	struct mii_data *mii;
3859 	int error = 0;
3860 
3861 	switch (command) {
3862 	case SIOCSIFFLAGS:
3863 		DC_LOCK(sc);
3864 		if (if_getflags(ifp) & IFF_UP) {
3865 			int need_setfilt = (if_getflags(ifp) ^ sc->dc_if_flags) &
3866 				(IFF_PROMISC | IFF_ALLMULTI);
3867 
3868 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
3869 				if (need_setfilt)
3870 					dc_setfilt(sc);
3871 			} else {
3872 				if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
3873 				dc_init_locked(sc);
3874 			}
3875 		} else {
3876 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
3877 				dc_stop(sc);
3878 		}
3879 		sc->dc_if_flags = if_getflags(ifp);
3880 		DC_UNLOCK(sc);
3881 		break;
3882 	case SIOCADDMULTI:
3883 	case SIOCDELMULTI:
3884 		DC_LOCK(sc);
3885 		if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
3886 			dc_setfilt(sc);
3887 		DC_UNLOCK(sc);
3888 		break;
3889 	case SIOCGIFMEDIA:
3890 	case SIOCSIFMEDIA:
3891 		mii = device_get_softc(sc->dc_miibus);
3892 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
3893 		break;
3894 	case SIOCSIFCAP:
3895 #ifdef DEVICE_POLLING
3896 		if (ifr->ifr_reqcap & IFCAP_POLLING &&
3897 		    !(if_getcapenable(ifp) & IFCAP_POLLING)) {
3898 			error = ether_poll_register(dc_poll, ifp);
3899 			if (error)
3900 				return(error);
3901 			DC_LOCK(sc);
3902 			/* Disable interrupts */
3903 			CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3904 			if_setcapenablebit(ifp, IFCAP_POLLING, 0);
3905 			DC_UNLOCK(sc);
3906 			return (error);
3907 		}
3908 		if (!(ifr->ifr_reqcap & IFCAP_POLLING) &&
3909 		    if_getcapenable(ifp) & IFCAP_POLLING) {
3910 			error = ether_poll_deregister(ifp);
3911 			/* Enable interrupts. */
3912 			DC_LOCK(sc);
3913 			CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3914 			if_setcapenablebit(ifp, 0, IFCAP_POLLING);
3915 			DC_UNLOCK(sc);
3916 			return (error);
3917 		}
3918 #endif /* DEVICE_POLLING */
3919 		break;
3920 	default:
3921 		error = ether_ioctl(ifp, command, data);
3922 		break;
3923 	}
3924 
3925 	return (error);
3926 }
3927 
3928 static void
3929 dc_watchdog(void *xsc)
3930 {
3931 	struct dc_softc *sc = xsc;
3932 	if_t ifp;
3933 
3934 	DC_LOCK_ASSERT(sc);
3935 
3936 	if (sc->dc_wdog_timer == 0 || --sc->dc_wdog_timer != 0) {
3937 		callout_reset(&sc->dc_wdog_ch, hz, dc_watchdog, sc);
3938 		return;
3939 	}
3940 
3941 	ifp = sc->dc_ifp;
3942 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3943 	device_printf(sc->dc_dev, "watchdog timeout\n");
3944 
3945 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
3946 	dc_init_locked(sc);
3947 
3948 	if (!if_sendq_empty(ifp))
3949 		dc_start_locked(ifp);
3950 }
3951 
3952 /*
3953  * Stop the adapter and free any mbufs allocated to the
3954  * RX and TX lists.
3955  */
3956 static void
3957 dc_stop(struct dc_softc *sc)
3958 {
3959 	if_t ifp;
3960 	struct dc_list_data *ld;
3961 	struct dc_chain_data *cd;
3962 	int i;
3963 	uint32_t ctl, netcfg;
3964 
3965 	DC_LOCK_ASSERT(sc);
3966 
3967 	ifp = sc->dc_ifp;
3968 	ld = &sc->dc_ldata;
3969 	cd = &sc->dc_cdata;
3970 
3971 	callout_stop(&sc->dc_stat_ch);
3972 	callout_stop(&sc->dc_wdog_ch);
3973 	sc->dc_wdog_timer = 0;
3974 	sc->dc_link = 0;
3975 
3976 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
3977 
3978 	netcfg = CSR_READ_4(sc, DC_NETCFG);
3979 	if (netcfg & (DC_NETCFG_RX_ON | DC_NETCFG_TX_ON))
3980 		CSR_WRITE_4(sc, DC_NETCFG,
3981 		   netcfg & ~(DC_NETCFG_RX_ON | DC_NETCFG_TX_ON));
3982 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3983 	/* Wait the completion of TX/RX SM. */
3984 	if (netcfg & (DC_NETCFG_RX_ON | DC_NETCFG_TX_ON))
3985 		dc_netcfg_wait(sc);
3986 
3987 	CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
3988 	CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
3989 
3990 	/*
3991 	 * Free data in the RX lists.
3992 	 */
3993 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
3994 		if (cd->dc_rx_chain[i] != NULL) {
3995 			bus_dmamap_sync(sc->dc_rx_mtag,
3996 			    cd->dc_rx_map[i], BUS_DMASYNC_POSTREAD);
3997 			bus_dmamap_unload(sc->dc_rx_mtag,
3998 			    cd->dc_rx_map[i]);
3999 			m_freem(cd->dc_rx_chain[i]);
4000 			cd->dc_rx_chain[i] = NULL;
4001 		}
4002 	}
4003 	bzero(ld->dc_rx_list, DC_RX_LIST_SZ);
4004 	bus_dmamap_sync(sc->dc_rx_ltag, sc->dc_rx_lmap,
4005 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4006 
4007 	/*
4008 	 * Free the TX list buffers.
4009 	 */
4010 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
4011 		if (cd->dc_tx_chain[i] != NULL) {
4012 			ctl = le32toh(ld->dc_tx_list[i].dc_ctl);
4013 			if (ctl & DC_TXCTL_SETUP) {
4014 				bus_dmamap_sync(sc->dc_stag, sc->dc_smap,
4015 				    BUS_DMASYNC_POSTWRITE);
4016 			} else {
4017 				bus_dmamap_sync(sc->dc_tx_mtag,
4018 				    cd->dc_tx_map[i], BUS_DMASYNC_POSTWRITE);
4019 				bus_dmamap_unload(sc->dc_tx_mtag,
4020 				    cd->dc_tx_map[i]);
4021 				m_freem(cd->dc_tx_chain[i]);
4022 			}
4023 			cd->dc_tx_chain[i] = NULL;
4024 		}
4025 	}
4026 	bzero(ld->dc_tx_list, DC_TX_LIST_SZ);
4027 	bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap,
4028 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4029 }
4030 
4031 /*
4032  * Device suspend routine.  Stop the interface and save some PCI
4033  * settings in case the BIOS doesn't restore them properly on
4034  * resume.
4035  */
4036 static int
4037 dc_suspend(device_t dev)
4038 {
4039 	struct dc_softc *sc;
4040 
4041 	sc = device_get_softc(dev);
4042 	DC_LOCK(sc);
4043 	dc_stop(sc);
4044 	sc->suspended = 1;
4045 	DC_UNLOCK(sc);
4046 
4047 	return (0);
4048 }
4049 
4050 /*
4051  * Device resume routine.  Restore some PCI settings in case the BIOS
4052  * doesn't, re-enable busmastering, and restart the interface if
4053  * appropriate.
4054  */
4055 static int
4056 dc_resume(device_t dev)
4057 {
4058 	struct dc_softc *sc;
4059 	if_t ifp;
4060 
4061 	sc = device_get_softc(dev);
4062 	ifp = sc->dc_ifp;
4063 
4064 	/* reinitialize interface if necessary */
4065 	DC_LOCK(sc);
4066 	if (if_getflags(ifp) & IFF_UP)
4067 		dc_init_locked(sc);
4068 
4069 	sc->suspended = 0;
4070 	DC_UNLOCK(sc);
4071 
4072 	return (0);
4073 }
4074 
4075 /*
4076  * Stop all chip I/O so that the kernel's probe routines don't
4077  * get confused by errant DMAs when rebooting.
4078  */
4079 static int
4080 dc_shutdown(device_t dev)
4081 {
4082 	struct dc_softc *sc;
4083 
4084 	sc = device_get_softc(dev);
4085 
4086 	DC_LOCK(sc);
4087 	dc_stop(sc);
4088 	DC_UNLOCK(sc);
4089 
4090 	return (0);
4091 }
4092 
4093 static int
4094 dc_check_multiport(struct dc_softc *sc)
4095 {
4096 	struct dc_softc *dsc;
4097 	devclass_t dc;
4098 	device_t child;
4099 	uint8_t *eaddr;
4100 	int unit;
4101 
4102 	dc = devclass_find("dc");
4103 	for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
4104 		child = devclass_get_device(dc, unit);
4105 		if (child == NULL)
4106 			continue;
4107 		if (child == sc->dc_dev)
4108 			continue;
4109 		if (device_get_parent(child) != device_get_parent(sc->dc_dev))
4110 			continue;
4111 		if (unit > device_get_unit(sc->dc_dev))
4112 			continue;
4113 		if (device_is_attached(child) == 0)
4114 			continue;
4115 		dsc = device_get_softc(child);
4116 		device_printf(sc->dc_dev,
4117 		    "Using station address of %s as base\n",
4118 		    device_get_nameunit(child));
4119 		bcopy(dsc->dc_eaddr, sc->dc_eaddr, ETHER_ADDR_LEN);
4120 		eaddr = (uint8_t *)sc->dc_eaddr;
4121 		eaddr[5]++;
4122 		/* Prepare SROM to parse again. */
4123 		if (DC_IS_INTEL(sc) && dsc->dc_srom != NULL &&
4124 		    sc->dc_romwidth != 0) {
4125 			free(sc->dc_srom, M_DEVBUF);
4126 			sc->dc_romwidth = dsc->dc_romwidth;
4127 			sc->dc_srom = malloc(DC_ROM_SIZE(sc->dc_romwidth),
4128 			    M_DEVBUF, M_NOWAIT);
4129 			if (sc->dc_srom == NULL) {
4130 				device_printf(sc->dc_dev,
4131 				    "Could not allocate SROM buffer\n");
4132 				return (ENOMEM);
4133 			}
4134 			bcopy(dsc->dc_srom, sc->dc_srom,
4135 			    DC_ROM_SIZE(sc->dc_romwidth));
4136 		}
4137 		return (0);
4138 	}
4139 	return (ENOENT);
4140 }
4141