xref: /freebsd/sys/dev/ice/ice_osdep.c (revision 1f474190)
1 /* SPDX-License-Identifier: BSD-3-Clause */
2 /*  Copyright (c) 2020, Intel Corporation
3  *  All rights reserved.
4  *
5  *  Redistribution and use in source and binary forms, with or without
6  *  modification, are permitted provided that the following conditions are met:
7  *
8  *   1. Redistributions of source code must retain the above copyright notice,
9  *      this list of conditions and the following disclaimer.
10  *
11  *   2. Redistributions in binary form must reproduce the above copyright
12  *      notice, this list of conditions and the following disclaimer in the
13  *      documentation and/or other materials provided with the distribution.
14  *
15  *   3. Neither the name of the Intel Corporation nor the names of its
16  *      contributors may be used to endorse or promote products derived from
17  *      this software without specific prior written permission.
18  *
19  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20  *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
23  *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  *  POSSIBILITY OF SUCH DAMAGE.
30  */
31 /*$FreeBSD$*/
32 
33 /**
34  * @file ice_osdep.c
35  * @brief Functions used to implement OS compatibility layer
36  *
37  * Contains functions used by ice_osdep.h to implement the OS compatibility
38  * layer used by some of the hardware files. Specifically, it is for the bits
39  * of OS compatibility which don't make sense as macros or inline functions.
40  */
41 
42 #include "ice_common.h"
43 #include "ice_iflib.h"
44 #include <machine/stdarg.h>
45 #include <sys/time.h>
46 
47 /**
48  * @var M_ICE_OSDEP
49  * @brief OS compatibility layer allocation type
50  *
51  * malloc(9) allocation type used by the OS compatibility layer for
52  * distinguishing allocations by this layer from those of the rest of the
53  * driver.
54  */
55 MALLOC_DEFINE(M_ICE_OSDEP, "ice-osdep", "Intel(R) 100Gb Network Driver osdep allocations");
56 
57 /**
58  * @var ice_lock_count
59  * @brief Global count of # of ice_lock mutexes initialized
60  *
61  * A global count of the total number of times that ice_init_lock has been
62  * called. This is used to generate unique lock names for each ice_lock, to
63  * aid in witness lock checking.
64  */
65 u16 ice_lock_count = 0;
66 
67 static void ice_dmamap_cb(void *arg, bus_dma_segment_t * segs, int __unused nseg, int error);
68 
69 /**
70  * ice_hw_to_dev - Given a hw private struct, find the associated device_t
71  * @hw: the hardware private structure
72  *
73  * Given a hw structure pointer, lookup the softc and extract the device
74  * pointer. Assumes that hw is embedded within the ice_softc, instead of being
75  * allocated separately, so that __containerof math will work.
76  *
77  * This can't be defined in ice_osdep.h as it depends on the complete
78  * definition of struct ice_softc. That can't be easily included in
79  * ice_osdep.h without creating circular header dependencies.
80  */
81 device_t
82 ice_hw_to_dev(struct ice_hw *hw) {
83 	struct ice_softc *sc = __containerof(hw, struct ice_softc, hw);
84 
85 	return sc->dev;
86 }
87 
88 /**
89  * ice_debug - Log a debug message if the type is enabled
90  * @hw: device private hardware structure
91  * @mask: the debug message type
92  * @fmt: printf format specifier
93  *
94  * Check if hw->debug_mask has enabled the given message type. If so, log the
95  * message to the console using vprintf. Mimic the output of device_printf by
96  * using device_print_prettyname().
97  */
98 void
99 ice_debug(struct ice_hw *hw, uint64_t mask, char *fmt, ...)
100 {
101 	device_t dev = ice_hw_to_dev(hw);
102 	va_list args;
103 
104 	if (!(mask & hw->debug_mask))
105 		return;
106 
107 	device_print_prettyname(dev);
108 	va_start(args, fmt);
109 	vprintf(fmt, args);
110 	va_end(args);
111 }
112 
113 /**
114  * ice_debug_array - Format and print an array of values to the console
115  * @hw: private hardware structure
116  * @mask: the debug message type
117  * @rowsize: preferred number of rows to use
118  * @groupsize: preferred size in bytes to print each chunk
119  * @buf: the array buffer to print
120  * @len: size of the array buffer
121  *
122  * Format the given array as a series of uint8_t values with hexadecimal
123  * notation and log the contents to the console log.
124  *
125  * TODO: Currently only supports a group size of 1, due to the way hexdump is
126  * implemented.
127  */
128 void
129 ice_debug_array(struct ice_hw *hw, uint64_t mask, uint32_t rowsize,
130 		uint32_t __unused groupsize, uint8_t *buf, size_t len)
131 {
132 	device_t dev = ice_hw_to_dev(hw);
133 	char prettyname[20];
134 
135 	if (!(mask & hw->debug_mask))
136 		return;
137 
138 	/* Format the device header to a string */
139 	snprintf(prettyname, sizeof(prettyname), "%s: ", device_get_nameunit(dev));
140 
141 	/* Make sure the row-size isn't too large */
142 	if (rowsize > 0xFF)
143 		rowsize = 0xFF;
144 
145 	hexdump(buf, len, prettyname, HD_OMIT_CHARS | rowsize);
146 }
147 
148 /**
149  * rd32 - Read a 32bit hardware register value
150  * @hw: the private hardware structure
151  * @reg: register address to read
152  *
153  * Read the specified 32bit register value from BAR0 and return its contents.
154  */
155 uint32_t
156 rd32(struct ice_hw *hw, uint32_t reg)
157 {
158 	struct ice_softc *sc = __containerof(hw, struct ice_softc, hw);
159 
160 	return bus_space_read_4(sc->bar0.tag, sc->bar0.handle, reg);
161 }
162 
163 /**
164  * rd64 - Read a 64bit hardware register value
165  * @hw: the private hardware structure
166  * @reg: register address to read
167  *
168  * Read the specified 64bit register value from BAR0 and return its contents.
169  *
170  * @pre For 32-bit builds, assumes that the 64bit register read can be
171  * safely broken up into two 32-bit register reads.
172  */
173 uint64_t
174 rd64(struct ice_hw *hw, uint32_t reg)
175 {
176 	struct ice_softc *sc = __containerof(hw, struct ice_softc, hw);
177 	uint64_t data;
178 
179 #ifdef __amd64__
180 	data = bus_space_read_8(sc->bar0.tag, sc->bar0.handle, reg);
181 #else
182 	/*
183 	 * bus_space_read_8 isn't supported on 32bit platforms, so we fall
184 	 * back to using two bus_space_read_4 calls.
185 	 */
186 	data = bus_space_read_4(sc->bar0.tag, sc->bar0.handle, reg);
187 	data |= ((uint64_t)bus_space_read_4(sc->bar0.tag, sc->bar0.handle, reg + 4)) << 32;
188 #endif
189 
190 	return data;
191 }
192 
193 /**
194  * wr32 - Write a 32bit hardware register
195  * @hw: the private hardware structure
196  * @reg: the register address to write to
197  * @val: the 32bit value to write
198  *
199  * Write the specified 32bit value to a register address in BAR0.
200  */
201 void
202 wr32(struct ice_hw *hw, uint32_t reg, uint32_t val)
203 {
204 	struct ice_softc *sc = __containerof(hw, struct ice_softc, hw);
205 
206 	bus_space_write_4(sc->bar0.tag, sc->bar0.handle, reg, val);
207 }
208 
209 /**
210  * wr64 - Write a 64bit hardware register
211  * @hw: the private hardware structure
212  * @reg: the register address to write to
213  * @val: the 64bit value to write
214  *
215  * Write the specified 64bit value to a register address in BAR0.
216  *
217  * @pre For 32-bit builds, assumes that the 64bit register write can be safely
218  * broken up into two 32-bit register writes.
219  */
220 void
221 wr64(struct ice_hw *hw, uint32_t reg, uint64_t val)
222 {
223 	struct ice_softc *sc = __containerof(hw, struct ice_softc, hw);
224 
225 #ifdef __amd64__
226 	bus_space_write_8(sc->bar0.tag, sc->bar0.handle, reg, val);
227 #else
228 	uint32_t lo_val, hi_val;
229 
230 	/*
231 	 * bus_space_write_8 isn't supported on 32bit platforms, so we fall
232 	 * back to using two bus_space_write_4 calls.
233 	 */
234 	lo_val = (uint32_t)val;
235 	hi_val = (uint32_t)(val >> 32);
236 	bus_space_write_4(sc->bar0.tag, sc->bar0.handle, reg, lo_val);
237 	bus_space_write_4(sc->bar0.tag, sc->bar0.handle, reg + 4, hi_val);
238 #endif
239 }
240 
241 /**
242  * ice_usec_delay - Delay for the specified number of microseconds
243  * @time: microseconds to delay
244  * @sleep: if true, sleep where possible
245  *
246  * If sleep is true, and if the current thread is allowed to sleep, pause so
247  * that another thread can execute. Otherwise, use DELAY to spin the thread
248  * instead.
249  */
250 void
251 ice_usec_delay(uint32_t time, bool sleep)
252 {
253 	if (sleep && THREAD_CAN_SLEEP())
254 		pause("ice_usec_delay", USEC_2_TICKS(time));
255 	else
256 		DELAY(time);
257 }
258 
259 /**
260  * ice_msec_delay - Delay for the specified number of milliseconds
261  * @time: milliseconds to delay
262  * @sleep: if true, sleep where possible
263  *
264  * If sleep is true, and if the current thread is allowed to sleep, pause so
265  * that another thread can execute. Otherwise, use DELAY to spin the thread
266  * instead.
267  */
268 void
269 ice_msec_delay(uint32_t time, bool sleep)
270 {
271 	if (sleep && THREAD_CAN_SLEEP())
272 		pause("ice_msec_delay", MSEC_2_TICKS(time));
273 	else
274 		DELAY(time * 1000);
275 }
276 
277 /**
278  * ice_msec_pause - pause (sleep) the thread for a time in milliseconds
279  * @time: milliseconds to sleep
280  *
281  * Wrapper for ice_msec_delay with sleep set to true.
282  */
283 void
284 ice_msec_pause(uint32_t time)
285 {
286 	ice_msec_delay(time, true);
287 }
288 
289 /**
290  * ice_msec_spin - Spin the thread for a time in milliseconds
291  * @time: milliseconds to delay
292  *
293  * Wrapper for ice_msec_delay with sleep sent to false.
294  */
295 void
296 ice_msec_spin(uint32_t time)
297 {
298 	ice_msec_delay(time, false);
299 }
300 
301 /********************************************************************
302  * Manage DMA'able memory.
303  *******************************************************************/
304 
305 /**
306  * ice_dmamap_cb - Callback function DMA maps
307  * @arg: pointer to return the segment address
308  * @segs: the segments array
309  * @nseg: number of segments in the array
310  * @error: error code
311  *
312  * Callback used by the bus DMA code to obtain the segment address.
313  */
314 static void
315 ice_dmamap_cb(void *arg, bus_dma_segment_t * segs, int __unused nseg, int error)
316 {
317 	if (error)
318 		return;
319 	*(bus_addr_t *) arg = segs->ds_addr;
320 	return;
321 }
322 
323 /**
324  * ice_alloc_dma_mem - Request OS to allocate DMA memory
325  * @hw: private hardware structure
326  * @mem: structure defining the DMA memory request
327  * @size: the allocation size
328  *
329  * Allocates some memory for DMA use. Use the FreeBSD bus DMA interface to
330  * track this memory using a bus DMA tag and map.
331  *
332  * Returns a pointer to the DMA memory address.
333  */
334 void *
335 ice_alloc_dma_mem(struct ice_hw *hw, struct ice_dma_mem *mem, u64 size)
336 {
337 	device_t dev = ice_hw_to_dev(hw);
338 	int err;
339 
340 	err = bus_dma_tag_create(bus_get_dma_tag(dev),	/* parent */
341 				 1, 0,			/* alignment, boundary */
342 				 BUS_SPACE_MAXADDR,	/* lowaddr */
343 				 BUS_SPACE_MAXADDR,	/* highaddr */
344 				 NULL, NULL,		/* filtfunc, filtfuncarg */
345 				 size,			/* maxsize */
346 				 1,			/* nsegments */
347 				 size,			/* maxsegsz */
348 				 BUS_DMA_ALLOCNOW,	/* flags */
349 				 NULL,			/* lockfunc */
350 				 NULL,			/* lockfuncarg */
351 				 &mem->tag);
352 	if (err != 0) {
353 		device_printf(dev,
354 		    "ice_alloc_dma: bus_dma_tag_create failed, "
355 		    "error %s\n", ice_err_str(err));
356 		goto fail_0;
357 	}
358 	err = bus_dmamem_alloc(mem->tag, (void **)&mem->va,
359 			     BUS_DMA_NOWAIT | BUS_DMA_ZERO, &mem->map);
360 	if (err != 0) {
361 		device_printf(dev,
362 		    "ice_alloc_dma: bus_dmamem_alloc failed, "
363 		    "error %s\n", ice_err_str(err));
364 		goto fail_1;
365 	}
366 	err = bus_dmamap_load(mem->tag, mem->map, mem->va,
367 			    size,
368 			    ice_dmamap_cb,
369 			    &mem->pa,
370 			    BUS_DMA_NOWAIT);
371 	if (err != 0) {
372 		device_printf(dev,
373 		    "ice_alloc_dma: bus_dmamap_load failed, "
374 		    "error %s\n", ice_err_str(err));
375 		goto fail_2;
376 	}
377 	mem->size = size;
378 	bus_dmamap_sync(mem->tag, mem->map,
379 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
380 	return (mem->va);
381 fail_2:
382 	bus_dmamem_free(mem->tag, mem->va, mem->map);
383 fail_1:
384 	bus_dma_tag_destroy(mem->tag);
385 fail_0:
386 	mem->map = NULL;
387 	mem->tag = NULL;
388 	return (NULL);
389 }
390 
391 /**
392  * ice_free_dma_mem - Free DMA memory allocated by ice_alloc_dma_mem
393  * @hw: the hardware private structure
394  * @mem: DMA memory to free
395  *
396  * Release the bus DMA tag and map, and free the DMA memory associated with
397  * it.
398  */
399 void
400 ice_free_dma_mem(struct ice_hw __unused *hw, struct ice_dma_mem *mem)
401 {
402 	bus_dmamap_sync(mem->tag, mem->map,
403 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
404 	bus_dmamap_unload(mem->tag, mem->map);
405 	bus_dmamem_free(mem->tag, mem->va, mem->map);
406 	bus_dma_tag_destroy(mem->tag);
407 	mem->map = NULL;
408 	mem->tag = NULL;
409 }
410