xref: /freebsd/sys/dev/ice/ice_switch.c (revision 069ac184)
1 /* SPDX-License-Identifier: BSD-3-Clause */
2 /*  Copyright (c) 2023, Intel Corporation
3  *  All rights reserved.
4  *
5  *  Redistribution and use in source and binary forms, with or without
6  *  modification, are permitted provided that the following conditions are met:
7  *
8  *   1. Redistributions of source code must retain the above copyright notice,
9  *      this list of conditions and the following disclaimer.
10  *
11  *   2. Redistributions in binary form must reproduce the above copyright
12  *      notice, this list of conditions and the following disclaimer in the
13  *      documentation and/or other materials provided with the distribution.
14  *
15  *   3. Neither the name of the Intel Corporation nor the names of its
16  *      contributors may be used to endorse or promote products derived from
17  *      this software without specific prior written permission.
18  *
19  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20  *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
23  *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  *  POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include "ice_common.h"
33 #include "ice_switch.h"
34 #include "ice_flex_type.h"
35 #include "ice_flow.h"
36 
37 #define ICE_ETH_DA_OFFSET		0
38 #define ICE_ETH_ETHTYPE_OFFSET		12
39 #define ICE_ETH_VLAN_TCI_OFFSET		14
40 #define ICE_MAX_VLAN_ID			0xFFF
41 #define ICE_IPV6_ETHER_ID		0x86DD
42 #define ICE_PPP_IPV6_PROTO_ID		0x0057
43 #define ICE_ETH_P_8021Q			0x8100
44 
45 /* Dummy ethernet header needed in the ice_sw_rule_*
46  * struct to configure any switch filter rules.
47  * {DA (6 bytes), SA(6 bytes),
48  * Ether type (2 bytes for header without VLAN tag) OR
49  * VLAN tag (4 bytes for header with VLAN tag) }
50  *
51  * Word on Hardcoded values
52  * byte 0 = 0x2: to identify it as locally administered DA MAC
53  * byte 6 = 0x2: to identify it as locally administered SA MAC
54  * byte 12 = 0x81 & byte 13 = 0x00:
55  *	In case of VLAN filter first two bytes defines ether type (0x8100)
56  *	and remaining two bytes are placeholder for programming a given VLAN ID
57  *	In case of Ether type filter it is treated as header without VLAN tag
58  *	and byte 12 and 13 is used to program a given Ether type instead
59  */
60 static const u8 dummy_eth_header[DUMMY_ETH_HDR_LEN] = { 0x2, 0, 0, 0, 0, 0,
61 							0x2, 0, 0, 0, 0, 0,
62 							0x81, 0, 0, 0};
63 
64 static bool
65 ice_vsi_uses_fltr(struct ice_fltr_mgmt_list_entry *fm_entry, u16 vsi_handle);
66 
67 /**
68  * ice_init_def_sw_recp - initialize the recipe book keeping tables
69  * @hw: pointer to the HW struct
70  * @recp_list: pointer to sw recipe list
71  *
72  * Allocate memory for the entire recipe table and initialize the structures/
73  * entries corresponding to basic recipes.
74  */
75 enum ice_status
76 ice_init_def_sw_recp(struct ice_hw *hw, struct ice_sw_recipe **recp_list)
77 {
78 	struct ice_sw_recipe *recps;
79 	u8 i;
80 
81 	recps = (struct ice_sw_recipe *)
82 		ice_calloc(hw, ICE_MAX_NUM_RECIPES, sizeof(*recps));
83 	if (!recps)
84 		return ICE_ERR_NO_MEMORY;
85 
86 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
87 		recps[i].root_rid = i;
88 		INIT_LIST_HEAD(&recps[i].filt_rules);
89 		INIT_LIST_HEAD(&recps[i].filt_replay_rules);
90 		INIT_LIST_HEAD(&recps[i].rg_list);
91 		ice_init_lock(&recps[i].filt_rule_lock);
92 	}
93 
94 	*recp_list = recps;
95 
96 	return ICE_SUCCESS;
97 }
98 
99 /**
100  * ice_aq_get_sw_cfg - get switch configuration
101  * @hw: pointer to the hardware structure
102  * @buf: pointer to the result buffer
103  * @buf_size: length of the buffer available for response
104  * @req_desc: pointer to requested descriptor
105  * @num_elems: pointer to number of elements
106  * @cd: pointer to command details structure or NULL
107  *
108  * Get switch configuration (0x0200) to be placed in buf.
109  * This admin command returns information such as initial VSI/port number
110  * and switch ID it belongs to.
111  *
112  * NOTE: *req_desc is both an input/output parameter.
113  * The caller of this function first calls this function with *request_desc set
114  * to 0. If the response from f/w has *req_desc set to 0, all the switch
115  * configuration information has been returned; if non-zero (meaning not all
116  * the information was returned), the caller should call this function again
117  * with *req_desc set to the previous value returned by f/w to get the
118  * next block of switch configuration information.
119  *
120  * *num_elems is output only parameter. This reflects the number of elements
121  * in response buffer. The caller of this function to use *num_elems while
122  * parsing the response buffer.
123  */
124 static enum ice_status
125 ice_aq_get_sw_cfg(struct ice_hw *hw, struct ice_aqc_get_sw_cfg_resp_elem *buf,
126 		  u16 buf_size, u16 *req_desc, u16 *num_elems,
127 		  struct ice_sq_cd *cd)
128 {
129 	struct ice_aqc_get_sw_cfg *cmd;
130 	struct ice_aq_desc desc;
131 	enum ice_status status;
132 
133 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sw_cfg);
134 	cmd = &desc.params.get_sw_conf;
135 	cmd->element = CPU_TO_LE16(*req_desc);
136 
137 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
138 	if (!status) {
139 		*req_desc = LE16_TO_CPU(cmd->element);
140 		*num_elems = LE16_TO_CPU(cmd->num_elems);
141 	}
142 
143 	return status;
144 }
145 
146 /**
147  * ice_alloc_rss_global_lut - allocate a RSS global LUT
148  * @hw: pointer to the HW struct
149  * @shared_res: true to allocate as a shared resource and false to allocate as a dedicated resource
150  * @global_lut_id: output parameter for the RSS global LUT's ID
151  */
152 enum ice_status ice_alloc_rss_global_lut(struct ice_hw *hw, bool shared_res, u16 *global_lut_id)
153 {
154 	struct ice_aqc_alloc_free_res_elem *sw_buf;
155 	enum ice_status status;
156 	u16 buf_len;
157 
158 	buf_len = ice_struct_size(sw_buf, elem, 1);
159 	sw_buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
160 	if (!sw_buf)
161 		return ICE_ERR_NO_MEMORY;
162 
163 	sw_buf->num_elems = CPU_TO_LE16(1);
164 	sw_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_GLOBAL_RSS_HASH |
165 				       (shared_res ? ICE_AQC_RES_TYPE_FLAG_SHARED :
166 				       ICE_AQC_RES_TYPE_FLAG_DEDICATED));
167 
168 	status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len, ice_aqc_opc_alloc_res, NULL);
169 	if (status) {
170 		ice_debug(hw, ICE_DBG_RES, "Failed to allocate %s RSS global LUT, status %d\n",
171 			  shared_res ? "shared" : "dedicated", status);
172 		goto ice_alloc_global_lut_exit;
173 	}
174 
175 	*global_lut_id = LE16_TO_CPU(sw_buf->elem[0].e.sw_resp);
176 
177 ice_alloc_global_lut_exit:
178 	ice_free(hw, sw_buf);
179 	return status;
180 }
181 
182 /**
183  * ice_free_rss_global_lut - free a RSS global LUT
184  * @hw: pointer to the HW struct
185  * @global_lut_id: ID of the RSS global LUT to free
186  */
187 enum ice_status ice_free_rss_global_lut(struct ice_hw *hw, u16 global_lut_id)
188 {
189 	struct ice_aqc_alloc_free_res_elem *sw_buf;
190 	u16 buf_len, num_elems = 1;
191 	enum ice_status status;
192 
193 	buf_len = ice_struct_size(sw_buf, elem, num_elems);
194 	sw_buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
195 	if (!sw_buf)
196 		return ICE_ERR_NO_MEMORY;
197 
198 	sw_buf->num_elems = CPU_TO_LE16(num_elems);
199 	sw_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_GLOBAL_RSS_HASH);
200 	sw_buf->elem[0].e.sw_resp = CPU_TO_LE16(global_lut_id);
201 
202 	status = ice_aq_alloc_free_res(hw, num_elems, sw_buf, buf_len, ice_aqc_opc_free_res, NULL);
203 	if (status)
204 		ice_debug(hw, ICE_DBG_RES, "Failed to free RSS global LUT %d, status %d\n",
205 			  global_lut_id, status);
206 
207 	ice_free(hw, sw_buf);
208 	return status;
209 }
210 
211 /**
212  * ice_alloc_sw - allocate resources specific to switch
213  * @hw: pointer to the HW struct
214  * @ena_stats: true to turn on VEB stats
215  * @shared_res: true for shared resource, false for dedicated resource
216  * @sw_id: switch ID returned
217  * @counter_id: VEB counter ID returned
218  *
219  * allocates switch resources (SWID and VEB counter) (0x0208)
220  */
221 enum ice_status
222 ice_alloc_sw(struct ice_hw *hw, bool ena_stats, bool shared_res, u16 *sw_id,
223 	     u16 *counter_id)
224 {
225 	struct ice_aqc_alloc_free_res_elem *sw_buf;
226 	struct ice_aqc_res_elem *sw_ele;
227 	enum ice_status status;
228 	u16 buf_len;
229 
230 	buf_len = ice_struct_size(sw_buf, elem, 1);
231 	sw_buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
232 	if (!sw_buf)
233 		return ICE_ERR_NO_MEMORY;
234 
235 	/* Prepare buffer for switch ID.
236 	 * The number of resource entries in buffer is passed as 1 since only a
237 	 * single switch/VEB instance is allocated, and hence a single sw_id
238 	 * is requested.
239 	 */
240 	sw_buf->num_elems = CPU_TO_LE16(1);
241 	sw_buf->res_type =
242 		CPU_TO_LE16(ICE_AQC_RES_TYPE_SWID |
243 			    (shared_res ? ICE_AQC_RES_TYPE_FLAG_SHARED :
244 			    ICE_AQC_RES_TYPE_FLAG_DEDICATED));
245 
246 	status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len,
247 				       ice_aqc_opc_alloc_res, NULL);
248 
249 	if (status)
250 		goto ice_alloc_sw_exit;
251 
252 	sw_ele = &sw_buf->elem[0];
253 	*sw_id = LE16_TO_CPU(sw_ele->e.sw_resp);
254 
255 	if (ena_stats) {
256 		/* Prepare buffer for VEB Counter */
257 		enum ice_adminq_opc opc = ice_aqc_opc_alloc_res;
258 		struct ice_aqc_alloc_free_res_elem *counter_buf;
259 		struct ice_aqc_res_elem *counter_ele;
260 
261 		counter_buf = (struct ice_aqc_alloc_free_res_elem *)
262 				ice_malloc(hw, buf_len);
263 		if (!counter_buf) {
264 			status = ICE_ERR_NO_MEMORY;
265 			goto ice_alloc_sw_exit;
266 		}
267 
268 		/* The number of resource entries in buffer is passed as 1 since
269 		 * only a single switch/VEB instance is allocated, and hence a
270 		 * single VEB counter is requested.
271 		 */
272 		counter_buf->num_elems = CPU_TO_LE16(1);
273 		counter_buf->res_type =
274 			CPU_TO_LE16(ICE_AQC_RES_TYPE_VEB_COUNTER |
275 				    ICE_AQC_RES_TYPE_FLAG_DEDICATED);
276 		status = ice_aq_alloc_free_res(hw, 1, counter_buf, buf_len,
277 					       opc, NULL);
278 
279 		if (status) {
280 			ice_free(hw, counter_buf);
281 			goto ice_alloc_sw_exit;
282 		}
283 		counter_ele = &counter_buf->elem[0];
284 		*counter_id = LE16_TO_CPU(counter_ele->e.sw_resp);
285 		ice_free(hw, counter_buf);
286 	}
287 
288 ice_alloc_sw_exit:
289 	ice_free(hw, sw_buf);
290 	return status;
291 }
292 
293 /**
294  * ice_free_sw - free resources specific to switch
295  * @hw: pointer to the HW struct
296  * @sw_id: switch ID returned
297  * @counter_id: VEB counter ID returned
298  *
299  * free switch resources (SWID and VEB counter) (0x0209)
300  *
301  * NOTE: This function frees multiple resources. It continues
302  * releasing other resources even after it encounters error.
303  * The error code returned is the last error it encountered.
304  */
305 enum ice_status ice_free_sw(struct ice_hw *hw, u16 sw_id, u16 counter_id)
306 {
307 	struct ice_aqc_alloc_free_res_elem *sw_buf, *counter_buf;
308 	enum ice_status status, ret_status;
309 	u16 buf_len;
310 
311 	buf_len = ice_struct_size(sw_buf, elem, 1);
312 	sw_buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
313 	if (!sw_buf)
314 		return ICE_ERR_NO_MEMORY;
315 
316 	/* Prepare buffer to free for switch ID res.
317 	 * The number of resource entries in buffer is passed as 1 since only a
318 	 * single switch/VEB instance is freed, and hence a single sw_id
319 	 * is released.
320 	 */
321 	sw_buf->num_elems = CPU_TO_LE16(1);
322 	sw_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_SWID);
323 	sw_buf->elem[0].e.sw_resp = CPU_TO_LE16(sw_id);
324 
325 	ret_status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len,
326 					   ice_aqc_opc_free_res, NULL);
327 
328 	if (ret_status)
329 		ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
330 
331 	/* Prepare buffer to free for VEB Counter resource */
332 	counter_buf = (struct ice_aqc_alloc_free_res_elem *)
333 			ice_malloc(hw, buf_len);
334 	if (!counter_buf) {
335 		ice_free(hw, sw_buf);
336 		return ICE_ERR_NO_MEMORY;
337 	}
338 
339 	/* The number of resource entries in buffer is passed as 1 since only a
340 	 * single switch/VEB instance is freed, and hence a single VEB counter
341 	 * is released
342 	 */
343 	counter_buf->num_elems = CPU_TO_LE16(1);
344 	counter_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_VEB_COUNTER);
345 	counter_buf->elem[0].e.sw_resp = CPU_TO_LE16(counter_id);
346 
347 	status = ice_aq_alloc_free_res(hw, 1, counter_buf, buf_len,
348 				       ice_aqc_opc_free_res, NULL);
349 	if (status) {
350 		ice_debug(hw, ICE_DBG_SW, "VEB counter resource could not be freed\n");
351 		ret_status = status;
352 	}
353 
354 	ice_free(hw, counter_buf);
355 	ice_free(hw, sw_buf);
356 	return ret_status;
357 }
358 
359 /**
360  * ice_aq_add_vsi
361  * @hw: pointer to the HW struct
362  * @vsi_ctx: pointer to a VSI context struct
363  * @cd: pointer to command details structure or NULL
364  *
365  * Add a VSI context to the hardware (0x0210)
366  */
367 enum ice_status
368 ice_aq_add_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
369 	       struct ice_sq_cd *cd)
370 {
371 	struct ice_aqc_add_update_free_vsi_resp *res;
372 	struct ice_aqc_add_get_update_free_vsi *cmd;
373 	struct ice_aq_desc desc;
374 	enum ice_status status;
375 
376 	cmd = &desc.params.vsi_cmd;
377 	res = &desc.params.add_update_free_vsi_res;
378 
379 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_vsi);
380 
381 	if (!vsi_ctx->alloc_from_pool)
382 		cmd->vsi_num = CPU_TO_LE16(vsi_ctx->vsi_num |
383 					   ICE_AQ_VSI_IS_VALID);
384 	cmd->vf_id = vsi_ctx->vf_num;
385 
386 	cmd->vsi_flags = CPU_TO_LE16(vsi_ctx->flags);
387 
388 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
389 
390 	status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
391 				 sizeof(vsi_ctx->info), cd);
392 
393 	if (!status) {
394 		vsi_ctx->vsi_num = LE16_TO_CPU(res->vsi_num) & ICE_AQ_VSI_NUM_M;
395 		vsi_ctx->vsis_allocd = LE16_TO_CPU(res->vsi_used);
396 		vsi_ctx->vsis_unallocated = LE16_TO_CPU(res->vsi_free);
397 	}
398 
399 	return status;
400 }
401 
402 /**
403  * ice_aq_free_vsi
404  * @hw: pointer to the HW struct
405  * @vsi_ctx: pointer to a VSI context struct
406  * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources
407  * @cd: pointer to command details structure or NULL
408  *
409  * Free VSI context info from hardware (0x0213)
410  */
411 enum ice_status
412 ice_aq_free_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
413 		bool keep_vsi_alloc, struct ice_sq_cd *cd)
414 {
415 	struct ice_aqc_add_update_free_vsi_resp *resp;
416 	struct ice_aqc_add_get_update_free_vsi *cmd;
417 	struct ice_aq_desc desc;
418 	enum ice_status status;
419 
420 	cmd = &desc.params.vsi_cmd;
421 	resp = &desc.params.add_update_free_vsi_res;
422 
423 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_free_vsi);
424 
425 	cmd->vsi_num = CPU_TO_LE16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
426 	if (keep_vsi_alloc)
427 		cmd->cmd_flags = CPU_TO_LE16(ICE_AQ_VSI_KEEP_ALLOC);
428 
429 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
430 	if (!status) {
431 		vsi_ctx->vsis_allocd = LE16_TO_CPU(resp->vsi_used);
432 		vsi_ctx->vsis_unallocated = LE16_TO_CPU(resp->vsi_free);
433 	}
434 
435 	return status;
436 }
437 
438 /**
439  * ice_aq_update_vsi
440  * @hw: pointer to the HW struct
441  * @vsi_ctx: pointer to a VSI context struct
442  * @cd: pointer to command details structure or NULL
443  *
444  * Update VSI context in the hardware (0x0211)
445  */
446 enum ice_status
447 ice_aq_update_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
448 		  struct ice_sq_cd *cd)
449 {
450 	struct ice_aqc_add_update_free_vsi_resp *resp;
451 	struct ice_aqc_add_get_update_free_vsi *cmd;
452 	struct ice_aq_desc desc;
453 	enum ice_status status;
454 
455 	cmd = &desc.params.vsi_cmd;
456 	resp = &desc.params.add_update_free_vsi_res;
457 
458 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_vsi);
459 
460 	cmd->vsi_num = CPU_TO_LE16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
461 
462 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
463 
464 	status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
465 				 sizeof(vsi_ctx->info), cd);
466 
467 	if (!status) {
468 		vsi_ctx->vsis_allocd = LE16_TO_CPU(resp->vsi_used);
469 		vsi_ctx->vsis_unallocated = LE16_TO_CPU(resp->vsi_free);
470 	}
471 
472 	return status;
473 }
474 
475 /**
476  * ice_is_vsi_valid - check whether the VSI is valid or not
477  * @hw: pointer to the HW struct
478  * @vsi_handle: VSI handle
479  *
480  * check whether the VSI is valid or not
481  */
482 bool ice_is_vsi_valid(struct ice_hw *hw, u16 vsi_handle)
483 {
484 	return vsi_handle < ICE_MAX_VSI && hw->vsi_ctx[vsi_handle];
485 }
486 
487 /**
488  * ice_get_hw_vsi_num - return the HW VSI number
489  * @hw: pointer to the HW struct
490  * @vsi_handle: VSI handle
491  *
492  * return the HW VSI number
493  * Caution: call this function only if VSI is valid (ice_is_vsi_valid)
494  */
495 u16 ice_get_hw_vsi_num(struct ice_hw *hw, u16 vsi_handle)
496 {
497 	return hw->vsi_ctx[vsi_handle]->vsi_num;
498 }
499 
500 /**
501  * ice_get_vsi_ctx - return the VSI context entry for a given VSI handle
502  * @hw: pointer to the HW struct
503  * @vsi_handle: VSI handle
504  *
505  * return the VSI context entry for a given VSI handle
506  */
507 struct ice_vsi_ctx *ice_get_vsi_ctx(struct ice_hw *hw, u16 vsi_handle)
508 {
509 	return (vsi_handle >= ICE_MAX_VSI) ? NULL : hw->vsi_ctx[vsi_handle];
510 }
511 
512 /**
513  * ice_save_vsi_ctx - save the VSI context for a given VSI handle
514  * @hw: pointer to the HW struct
515  * @vsi_handle: VSI handle
516  * @vsi: VSI context pointer
517  *
518  * save the VSI context entry for a given VSI handle
519  */
520 static void
521 ice_save_vsi_ctx(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi)
522 {
523 	hw->vsi_ctx[vsi_handle] = vsi;
524 }
525 
526 /**
527  * ice_clear_vsi_q_ctx - clear VSI queue contexts for all TCs
528  * @hw: pointer to the HW struct
529  * @vsi_handle: VSI handle
530  */
531 static void ice_clear_vsi_q_ctx(struct ice_hw *hw, u16 vsi_handle)
532 {
533 	struct ice_vsi_ctx *vsi;
534 	u8 i;
535 
536 	vsi = ice_get_vsi_ctx(hw, vsi_handle);
537 	if (!vsi)
538 		return;
539 	ice_for_each_traffic_class(i) {
540 		if (vsi->lan_q_ctx[i]) {
541 			ice_free(hw, vsi->lan_q_ctx[i]);
542 			vsi->lan_q_ctx[i] = NULL;
543 		}
544 		if (vsi->rdma_q_ctx[i]) {
545 			ice_free(hw, vsi->rdma_q_ctx[i]);
546 			vsi->rdma_q_ctx[i] = NULL;
547 		}
548 	}
549 }
550 
551 /**
552  * ice_clear_vsi_ctx - clear the VSI context entry
553  * @hw: pointer to the HW struct
554  * @vsi_handle: VSI handle
555  *
556  * clear the VSI context entry
557  */
558 static void ice_clear_vsi_ctx(struct ice_hw *hw, u16 vsi_handle)
559 {
560 	struct ice_vsi_ctx *vsi;
561 
562 	vsi = ice_get_vsi_ctx(hw, vsi_handle);
563 	if (vsi) {
564 		ice_clear_vsi_q_ctx(hw, vsi_handle);
565 		ice_free(hw, vsi);
566 		hw->vsi_ctx[vsi_handle] = NULL;
567 	}
568 }
569 
570 /**
571  * ice_clear_all_vsi_ctx - clear all the VSI context entries
572  * @hw: pointer to the HW struct
573  */
574 void ice_clear_all_vsi_ctx(struct ice_hw *hw)
575 {
576 	u16 i;
577 
578 	for (i = 0; i < ICE_MAX_VSI; i++)
579 		ice_clear_vsi_ctx(hw, i);
580 }
581 
582 /**
583  * ice_add_vsi - add VSI context to the hardware and VSI handle list
584  * @hw: pointer to the HW struct
585  * @vsi_handle: unique VSI handle provided by drivers
586  * @vsi_ctx: pointer to a VSI context struct
587  * @cd: pointer to command details structure or NULL
588  *
589  * Add a VSI context to the hardware also add it into the VSI handle list.
590  * If this function gets called after reset for existing VSIs then update
591  * with the new HW VSI number in the corresponding VSI handle list entry.
592  */
593 enum ice_status
594 ice_add_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
595 	    struct ice_sq_cd *cd)
596 {
597 	struct ice_vsi_ctx *tmp_vsi_ctx;
598 	enum ice_status status;
599 
600 	if (vsi_handle >= ICE_MAX_VSI)
601 		return ICE_ERR_PARAM;
602 	status = ice_aq_add_vsi(hw, vsi_ctx, cd);
603 	if (status)
604 		return status;
605 	tmp_vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
606 	if (!tmp_vsi_ctx) {
607 		/* Create a new VSI context */
608 		tmp_vsi_ctx = (struct ice_vsi_ctx *)
609 			ice_malloc(hw, sizeof(*tmp_vsi_ctx));
610 		if (!tmp_vsi_ctx) {
611 			ice_aq_free_vsi(hw, vsi_ctx, false, cd);
612 			return ICE_ERR_NO_MEMORY;
613 		}
614 		*tmp_vsi_ctx = *vsi_ctx;
615 
616 		ice_save_vsi_ctx(hw, vsi_handle, tmp_vsi_ctx);
617 	} else {
618 		/* update with new HW VSI num */
619 		tmp_vsi_ctx->vsi_num = vsi_ctx->vsi_num;
620 	}
621 
622 	return ICE_SUCCESS;
623 }
624 
625 /**
626  * ice_free_vsi- free VSI context from hardware and VSI handle list
627  * @hw: pointer to the HW struct
628  * @vsi_handle: unique VSI handle
629  * @vsi_ctx: pointer to a VSI context struct
630  * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources
631  * @cd: pointer to command details structure or NULL
632  *
633  * Free VSI context info from hardware as well as from VSI handle list
634  */
635 enum ice_status
636 ice_free_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
637 	     bool keep_vsi_alloc, struct ice_sq_cd *cd)
638 {
639 	enum ice_status status;
640 
641 	if (!ice_is_vsi_valid(hw, vsi_handle))
642 		return ICE_ERR_PARAM;
643 	vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
644 	status = ice_aq_free_vsi(hw, vsi_ctx, keep_vsi_alloc, cd);
645 	if (!status)
646 		ice_clear_vsi_ctx(hw, vsi_handle);
647 	return status;
648 }
649 
650 /**
651  * ice_update_vsi
652  * @hw: pointer to the HW struct
653  * @vsi_handle: unique VSI handle
654  * @vsi_ctx: pointer to a VSI context struct
655  * @cd: pointer to command details structure or NULL
656  *
657  * Update VSI context in the hardware
658  */
659 enum ice_status
660 ice_update_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
661 	       struct ice_sq_cd *cd)
662 {
663 	if (!ice_is_vsi_valid(hw, vsi_handle))
664 		return ICE_ERR_PARAM;
665 	vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
666 	return ice_aq_update_vsi(hw, vsi_ctx, cd);
667 }
668 
669 /**
670  * ice_cfg_iwarp_fltr - enable/disable iWARP filtering on VSI
671  * @hw: pointer to HW struct
672  * @vsi_handle: VSI SW index
673  * @enable: boolean for enable/disable
674  */
675 enum ice_status
676 ice_cfg_iwarp_fltr(struct ice_hw *hw, u16 vsi_handle, bool enable)
677 {
678 	struct ice_vsi_ctx *ctx, *cached_ctx;
679 	enum ice_status status;
680 
681 	cached_ctx = ice_get_vsi_ctx(hw, vsi_handle);
682 	if (!cached_ctx)
683 		return ICE_ERR_DOES_NOT_EXIST;
684 
685 	ctx = (struct ice_vsi_ctx *)ice_calloc(hw, 1, sizeof(*ctx));
686 	if (!ctx)
687 		return ICE_ERR_NO_MEMORY;
688 
689 	ctx->info.q_opt_rss = cached_ctx->info.q_opt_rss;
690 	ctx->info.q_opt_tc = cached_ctx->info.q_opt_tc;
691 	ctx->info.q_opt_flags = cached_ctx->info.q_opt_flags;
692 
693 	ctx->info.valid_sections = CPU_TO_LE16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
694 
695 	if (enable)
696 		ctx->info.q_opt_flags |= ICE_AQ_VSI_Q_OPT_PE_FLTR_EN;
697 	else
698 		ctx->info.q_opt_flags &= ~ICE_AQ_VSI_Q_OPT_PE_FLTR_EN;
699 
700 	status = ice_update_vsi(hw, vsi_handle, ctx, NULL);
701 	if (!status) {
702 		cached_ctx->info.q_opt_flags = ctx->info.q_opt_flags;
703 		cached_ctx->info.valid_sections |= ctx->info.valid_sections;
704 	}
705 
706 	ice_free(hw, ctx);
707 	return status;
708 }
709 
710 /**
711  * ice_aq_get_vsi_params
712  * @hw: pointer to the HW struct
713  * @vsi_ctx: pointer to a VSI context struct
714  * @cd: pointer to command details structure or NULL
715  *
716  * Get VSI context info from hardware (0x0212)
717  */
718 enum ice_status
719 ice_aq_get_vsi_params(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
720 		      struct ice_sq_cd *cd)
721 {
722 	struct ice_aqc_add_get_update_free_vsi *cmd;
723 	struct ice_aqc_get_vsi_resp *resp;
724 	struct ice_aq_desc desc;
725 	enum ice_status status;
726 
727 	cmd = &desc.params.vsi_cmd;
728 	resp = &desc.params.get_vsi_resp;
729 
730 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_vsi_params);
731 
732 	cmd->vsi_num = CPU_TO_LE16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
733 
734 	status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
735 				 sizeof(vsi_ctx->info), cd);
736 	if (!status) {
737 		vsi_ctx->vsi_num = LE16_TO_CPU(resp->vsi_num) &
738 					ICE_AQ_VSI_NUM_M;
739 		vsi_ctx->vf_num = resp->vf_id;
740 		vsi_ctx->vsis_allocd = LE16_TO_CPU(resp->vsi_used);
741 		vsi_ctx->vsis_unallocated = LE16_TO_CPU(resp->vsi_free);
742 	}
743 
744 	return status;
745 }
746 
747 /**
748  * ice_aq_add_update_mir_rule - add/update a mirror rule
749  * @hw: pointer to the HW struct
750  * @rule_type: Rule Type
751  * @dest_vsi: VSI number to which packets will be mirrored
752  * @count: length of the list
753  * @mr_buf: buffer for list of mirrored VSI numbers
754  * @cd: pointer to command details structure or NULL
755  * @rule_id: Rule ID
756  *
757  * Add/Update Mirror Rule (0x260).
758  */
759 enum ice_status
760 ice_aq_add_update_mir_rule(struct ice_hw *hw, u16 rule_type, u16 dest_vsi,
761 			   u16 count, struct ice_mir_rule_buf *mr_buf,
762 			   struct ice_sq_cd *cd, u16 *rule_id)
763 {
764 	struct ice_aqc_add_update_mir_rule *cmd;
765 	struct ice_aq_desc desc;
766 	enum ice_status status;
767 	__le16 *mr_list = NULL;
768 	u16 buf_size = 0;
769 
770 	switch (rule_type) {
771 	case ICE_AQC_RULE_TYPE_VPORT_INGRESS:
772 	case ICE_AQC_RULE_TYPE_VPORT_EGRESS:
773 		/* Make sure count and mr_buf are set for these rule_types */
774 		if (!(count && mr_buf))
775 			return ICE_ERR_PARAM;
776 
777 		buf_size = count * sizeof(__le16);
778 		mr_list = (_FORCE_ __le16 *)ice_malloc(hw, buf_size);
779 		if (!mr_list)
780 			return ICE_ERR_NO_MEMORY;
781 		break;
782 	case ICE_AQC_RULE_TYPE_PPORT_INGRESS:
783 	case ICE_AQC_RULE_TYPE_PPORT_EGRESS:
784 		/* Make sure count and mr_buf are not set for these
785 		 * rule_types
786 		 */
787 		if (count || mr_buf)
788 			return ICE_ERR_PARAM;
789 		break;
790 	default:
791 		ice_debug(hw, ICE_DBG_SW, "Error due to unsupported rule_type %u\n", rule_type);
792 		return ICE_ERR_OUT_OF_RANGE;
793 	}
794 
795 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_update_mir_rule);
796 
797 	/* Pre-process 'mr_buf' items for add/update of virtual port
798 	 * ingress/egress mirroring (but not physical port ingress/egress
799 	 * mirroring)
800 	 */
801 	if (mr_buf) {
802 		int i;
803 
804 		for (i = 0; i < count; i++) {
805 			u16 id;
806 
807 			id = mr_buf[i].vsi_idx & ICE_AQC_RULE_MIRRORED_VSI_M;
808 
809 			/* Validate specified VSI number, make sure it is less
810 			 * than ICE_MAX_VSI, if not return with error.
811 			 */
812 			if (id >= ICE_MAX_VSI) {
813 				ice_debug(hw, ICE_DBG_SW, "Error VSI index (%u) out-of-range\n",
814 					  id);
815 				ice_free(hw, mr_list);
816 				return ICE_ERR_OUT_OF_RANGE;
817 			}
818 
819 			/* add VSI to mirror rule */
820 			if (mr_buf[i].add)
821 				mr_list[i] =
822 					CPU_TO_LE16(id | ICE_AQC_RULE_ACT_M);
823 			else /* remove VSI from mirror rule */
824 				mr_list[i] = CPU_TO_LE16(id);
825 		}
826 
827 		desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
828 	}
829 
830 	cmd = &desc.params.add_update_rule;
831 	if ((*rule_id) != ICE_INVAL_MIRROR_RULE_ID)
832 		cmd->rule_id = CPU_TO_LE16(((*rule_id) & ICE_AQC_RULE_ID_M) |
833 					   ICE_AQC_RULE_ID_VALID_M);
834 	cmd->rule_type = CPU_TO_LE16(rule_type & ICE_AQC_RULE_TYPE_M);
835 	cmd->num_entries = CPU_TO_LE16(count);
836 	cmd->dest = CPU_TO_LE16(dest_vsi);
837 
838 	status = ice_aq_send_cmd(hw, &desc, mr_list, buf_size, cd);
839 	if (!status)
840 		*rule_id = LE16_TO_CPU(cmd->rule_id) & ICE_AQC_RULE_ID_M;
841 
842 	ice_free(hw, mr_list);
843 
844 	return status;
845 }
846 
847 /**
848  * ice_aq_delete_mir_rule - delete a mirror rule
849  * @hw: pointer to the HW struct
850  * @rule_id: Mirror rule ID (to be deleted)
851  * @keep_allocd: if set, the VSI stays part of the PF allocated res,
852  *		 otherwise it is returned to the shared pool
853  * @cd: pointer to command details structure or NULL
854  *
855  * Delete Mirror Rule (0x261).
856  */
857 enum ice_status
858 ice_aq_delete_mir_rule(struct ice_hw *hw, u16 rule_id, bool keep_allocd,
859 		       struct ice_sq_cd *cd)
860 {
861 	struct ice_aqc_delete_mir_rule *cmd;
862 	struct ice_aq_desc desc;
863 
864 	/* rule_id should be in the range 0...63 */
865 	if (rule_id >= ICE_MAX_NUM_MIRROR_RULES)
866 		return ICE_ERR_OUT_OF_RANGE;
867 
868 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_del_mir_rule);
869 
870 	cmd = &desc.params.del_rule;
871 	rule_id |= ICE_AQC_RULE_ID_VALID_M;
872 	cmd->rule_id = CPU_TO_LE16(rule_id);
873 
874 	if (keep_allocd)
875 		cmd->flags = CPU_TO_LE16(ICE_AQC_FLAG_KEEP_ALLOCD_M);
876 
877 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
878 }
879 
880 /**
881  * ice_aq_alloc_free_vsi_list
882  * @hw: pointer to the HW struct
883  * @vsi_list_id: VSI list ID returned or used for lookup
884  * @lkup_type: switch rule filter lookup type
885  * @opc: switch rules population command type - pass in the command opcode
886  *
887  * allocates or free a VSI list resource
888  */
889 static enum ice_status
890 ice_aq_alloc_free_vsi_list(struct ice_hw *hw, u16 *vsi_list_id,
891 			   enum ice_sw_lkup_type lkup_type,
892 			   enum ice_adminq_opc opc)
893 {
894 	struct ice_aqc_alloc_free_res_elem *sw_buf;
895 	struct ice_aqc_res_elem *vsi_ele;
896 	enum ice_status status;
897 	u16 buf_len;
898 
899 	buf_len = ice_struct_size(sw_buf, elem, 1);
900 	sw_buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
901 	if (!sw_buf)
902 		return ICE_ERR_NO_MEMORY;
903 	sw_buf->num_elems = CPU_TO_LE16(1);
904 
905 	if (lkup_type == ICE_SW_LKUP_MAC ||
906 	    lkup_type == ICE_SW_LKUP_MAC_VLAN ||
907 	    lkup_type == ICE_SW_LKUP_ETHERTYPE ||
908 	    lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
909 	    lkup_type == ICE_SW_LKUP_PROMISC ||
910 	    lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
911 	    lkup_type == ICE_SW_LKUP_DFLT ||
912 	    lkup_type == ICE_SW_LKUP_LAST) {
913 		sw_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_VSI_LIST_REP);
914 	} else if (lkup_type == ICE_SW_LKUP_VLAN) {
915 		sw_buf->res_type =
916 			CPU_TO_LE16(ICE_AQC_RES_TYPE_VSI_LIST_PRUNE);
917 	} else {
918 		status = ICE_ERR_PARAM;
919 		goto ice_aq_alloc_free_vsi_list_exit;
920 	}
921 
922 	if (opc == ice_aqc_opc_free_res)
923 		sw_buf->elem[0].e.sw_resp = CPU_TO_LE16(*vsi_list_id);
924 
925 	status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len, opc, NULL);
926 	if (status)
927 		goto ice_aq_alloc_free_vsi_list_exit;
928 
929 	if (opc == ice_aqc_opc_alloc_res) {
930 		vsi_ele = &sw_buf->elem[0];
931 		*vsi_list_id = LE16_TO_CPU(vsi_ele->e.sw_resp);
932 	}
933 
934 ice_aq_alloc_free_vsi_list_exit:
935 	ice_free(hw, sw_buf);
936 	return status;
937 }
938 
939 /**
940  * ice_aq_set_storm_ctrl - Sets storm control configuration
941  * @hw: pointer to the HW struct
942  * @bcast_thresh: represents the upper threshold for broadcast storm control
943  * @mcast_thresh: represents the upper threshold for multicast storm control
944  * @ctl_bitmask: storm control knobs
945  *
946  * Sets the storm control configuration (0x0280)
947  */
948 enum ice_status
949 ice_aq_set_storm_ctrl(struct ice_hw *hw, u32 bcast_thresh, u32 mcast_thresh,
950 		      u32 ctl_bitmask)
951 {
952 	struct ice_aqc_storm_cfg *cmd;
953 	struct ice_aq_desc desc;
954 
955 	cmd = &desc.params.storm_conf;
956 
957 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_storm_cfg);
958 
959 	cmd->bcast_thresh_size = CPU_TO_LE32(bcast_thresh & ICE_AQ_THRESHOLD_M);
960 	cmd->mcast_thresh_size = CPU_TO_LE32(mcast_thresh & ICE_AQ_THRESHOLD_M);
961 	cmd->storm_ctrl_ctrl = CPU_TO_LE32(ctl_bitmask);
962 
963 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
964 }
965 
966 /**
967  * ice_aq_get_storm_ctrl - gets storm control configuration
968  * @hw: pointer to the HW struct
969  * @bcast_thresh: represents the upper threshold for broadcast storm control
970  * @mcast_thresh: represents the upper threshold for multicast storm control
971  * @ctl_bitmask: storm control knobs
972  *
973  * Gets the storm control configuration (0x0281)
974  */
975 enum ice_status
976 ice_aq_get_storm_ctrl(struct ice_hw *hw, u32 *bcast_thresh, u32 *mcast_thresh,
977 		      u32 *ctl_bitmask)
978 {
979 	enum ice_status status;
980 	struct ice_aq_desc desc;
981 
982 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_storm_cfg);
983 
984 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
985 	if (!status) {
986 		struct ice_aqc_storm_cfg *resp = &desc.params.storm_conf;
987 
988 		if (bcast_thresh)
989 			*bcast_thresh = LE32_TO_CPU(resp->bcast_thresh_size) &
990 				ICE_AQ_THRESHOLD_M;
991 		if (mcast_thresh)
992 			*mcast_thresh = LE32_TO_CPU(resp->mcast_thresh_size) &
993 				ICE_AQ_THRESHOLD_M;
994 		if (ctl_bitmask)
995 			*ctl_bitmask = LE32_TO_CPU(resp->storm_ctrl_ctrl);
996 	}
997 
998 	return status;
999 }
1000 
1001 /**
1002  * ice_aq_sw_rules - add/update/remove switch rules
1003  * @hw: pointer to the HW struct
1004  * @rule_list: pointer to switch rule population list
1005  * @rule_list_sz: total size of the rule list in bytes
1006  * @num_rules: number of switch rules in the rule_list
1007  * @opc: switch rules population command type - pass in the command opcode
1008  * @cd: pointer to command details structure or NULL
1009  *
1010  * Add(0x02a0)/Update(0x02a1)/Remove(0x02a2) switch rules commands to firmware
1011  */
1012 enum ice_status
1013 ice_aq_sw_rules(struct ice_hw *hw, void *rule_list, u16 rule_list_sz,
1014 		u8 num_rules, enum ice_adminq_opc opc, struct ice_sq_cd *cd)
1015 {
1016 	struct ice_aq_desc desc;
1017 	enum ice_status status;
1018 
1019 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1020 
1021 	if (opc != ice_aqc_opc_add_sw_rules &&
1022 	    opc != ice_aqc_opc_update_sw_rules &&
1023 	    opc != ice_aqc_opc_remove_sw_rules)
1024 		return ICE_ERR_PARAM;
1025 
1026 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
1027 
1028 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
1029 	desc.params.sw_rules.num_rules_fltr_entry_index =
1030 		CPU_TO_LE16(num_rules);
1031 	status = ice_aq_send_cmd(hw, &desc, rule_list, rule_list_sz, cd);
1032 	if (opc != ice_aqc_opc_add_sw_rules &&
1033 	    hw->adminq.sq_last_status == ICE_AQ_RC_ENOENT)
1034 		status = ICE_ERR_DOES_NOT_EXIST;
1035 
1036 	return status;
1037 }
1038 
1039 /* ice_init_port_info - Initialize port_info with switch configuration data
1040  * @pi: pointer to port_info
1041  * @vsi_port_num: VSI number or port number
1042  * @type: Type of switch element (port or VSI)
1043  * @swid: switch ID of the switch the element is attached to
1044  * @pf_vf_num: PF or VF number
1045  * @is_vf: true if the element is a VF, false otherwise
1046  */
1047 static void
1048 ice_init_port_info(struct ice_port_info *pi, u16 vsi_port_num, u8 type,
1049 		   u16 swid, u16 pf_vf_num, bool is_vf)
1050 {
1051 	switch (type) {
1052 	case ICE_AQC_GET_SW_CONF_RESP_PHYS_PORT:
1053 		pi->lport = (u8)(vsi_port_num & ICE_LPORT_MASK);
1054 		pi->sw_id = swid;
1055 		pi->pf_vf_num = pf_vf_num;
1056 		pi->is_vf = is_vf;
1057 		break;
1058 	default:
1059 		ice_debug(pi->hw, ICE_DBG_SW, "incorrect VSI/port type received\n");
1060 		break;
1061 	}
1062 }
1063 
1064 /* ice_get_initial_sw_cfg - Get initial port and default VSI data
1065  * @hw: pointer to the hardware structure
1066  */
1067 enum ice_status ice_get_initial_sw_cfg(struct ice_hw *hw)
1068 {
1069 	struct ice_aqc_get_sw_cfg_resp_elem *rbuf;
1070 	enum ice_status status;
1071 	u8 num_total_ports;
1072 	u16 req_desc = 0;
1073 	u16 num_elems;
1074 	u8 j = 0;
1075 	u16 i;
1076 
1077 	num_total_ports = 1;
1078 
1079 	rbuf = (struct ice_aqc_get_sw_cfg_resp_elem *)
1080 		ice_malloc(hw, ICE_SW_CFG_MAX_BUF_LEN);
1081 
1082 	if (!rbuf)
1083 		return ICE_ERR_NO_MEMORY;
1084 
1085 	/* Multiple calls to ice_aq_get_sw_cfg may be required
1086 	 * to get all the switch configuration information. The need
1087 	 * for additional calls is indicated by ice_aq_get_sw_cfg
1088 	 * writing a non-zero value in req_desc
1089 	 */
1090 	do {
1091 		struct ice_aqc_get_sw_cfg_resp_elem *ele;
1092 
1093 		status = ice_aq_get_sw_cfg(hw, rbuf, ICE_SW_CFG_MAX_BUF_LEN,
1094 					   &req_desc, &num_elems, NULL);
1095 
1096 		if (status)
1097 			break;
1098 
1099 		for (i = 0, ele = rbuf; i < num_elems; i++, ele++) {
1100 			u16 pf_vf_num, swid, vsi_port_num;
1101 			bool is_vf = false;
1102 			u8 res_type;
1103 
1104 			vsi_port_num = LE16_TO_CPU(ele->vsi_port_num) &
1105 				ICE_AQC_GET_SW_CONF_RESP_VSI_PORT_NUM_M;
1106 
1107 			pf_vf_num = LE16_TO_CPU(ele->pf_vf_num) &
1108 				ICE_AQC_GET_SW_CONF_RESP_FUNC_NUM_M;
1109 
1110 			swid = LE16_TO_CPU(ele->swid);
1111 
1112 			if (LE16_TO_CPU(ele->pf_vf_num) &
1113 			    ICE_AQC_GET_SW_CONF_RESP_IS_VF)
1114 				is_vf = true;
1115 
1116 			res_type = (u8)(LE16_TO_CPU(ele->vsi_port_num) >>
1117 					ICE_AQC_GET_SW_CONF_RESP_TYPE_S);
1118 
1119 			switch (res_type) {
1120 			case ICE_AQC_GET_SW_CONF_RESP_PHYS_PORT:
1121 			case ICE_AQC_GET_SW_CONF_RESP_VIRT_PORT:
1122 				if (j == num_total_ports) {
1123 					ice_debug(hw, ICE_DBG_SW, "more ports than expected\n");
1124 					status = ICE_ERR_CFG;
1125 					goto out;
1126 				}
1127 				ice_init_port_info(hw->port_info,
1128 						   vsi_port_num, res_type, swid,
1129 						   pf_vf_num, is_vf);
1130 				j++;
1131 				break;
1132 			default:
1133 				break;
1134 			}
1135 		}
1136 	} while (req_desc && !status);
1137 
1138 out:
1139 	ice_free(hw, rbuf);
1140 	return status;
1141 }
1142 
1143 /**
1144  * ice_fill_sw_info - Helper function to populate lb_en and lan_en
1145  * @hw: pointer to the hardware structure
1146  * @fi: filter info structure to fill/update
1147  *
1148  * This helper function populates the lb_en and lan_en elements of the provided
1149  * ice_fltr_info struct using the switch's type and characteristics of the
1150  * switch rule being configured.
1151  */
1152 static void ice_fill_sw_info(struct ice_hw *hw, struct ice_fltr_info *fi)
1153 {
1154 	fi->lb_en = false;
1155 	fi->lan_en = false;
1156 	if ((fi->flag & ICE_FLTR_TX) &&
1157 	    (fi->fltr_act == ICE_FWD_TO_VSI ||
1158 	     fi->fltr_act == ICE_FWD_TO_VSI_LIST ||
1159 	     fi->fltr_act == ICE_FWD_TO_Q ||
1160 	     fi->fltr_act == ICE_FWD_TO_QGRP)) {
1161 		/* Setting LB for prune actions will result in replicated
1162 		 * packets to the internal switch that will be dropped.
1163 		 */
1164 		if (fi->lkup_type != ICE_SW_LKUP_VLAN)
1165 			fi->lb_en = true;
1166 
1167 		/* Set lan_en to TRUE if
1168 		 * 1. The switch is a VEB AND
1169 		 * 2
1170 		 * 2.1 The lookup is a directional lookup like ethertype,
1171 		 * promiscuous, ethertype-MAC, promiscuous-VLAN
1172 		 * and default-port OR
1173 		 * 2.2 The lookup is VLAN, OR
1174 		 * 2.3 The lookup is MAC with mcast or bcast addr for MAC, OR
1175 		 * 2.4 The lookup is MAC_VLAN with mcast or bcast addr for MAC.
1176 		 *
1177 		 * OR
1178 		 *
1179 		 * The switch is a VEPA.
1180 		 *
1181 		 * In all other cases, the LAN enable has to be set to false.
1182 		 */
1183 		if (hw->evb_veb) {
1184 			if (fi->lkup_type == ICE_SW_LKUP_ETHERTYPE ||
1185 			    fi->lkup_type == ICE_SW_LKUP_PROMISC ||
1186 			    fi->lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
1187 			    fi->lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
1188 			    fi->lkup_type == ICE_SW_LKUP_DFLT ||
1189 			    fi->lkup_type == ICE_SW_LKUP_VLAN ||
1190 			    (fi->lkup_type == ICE_SW_LKUP_MAC &&
1191 			     !IS_UNICAST_ETHER_ADDR(fi->l_data.mac.mac_addr)) ||
1192 			    (fi->lkup_type == ICE_SW_LKUP_MAC_VLAN &&
1193 			     !IS_UNICAST_ETHER_ADDR(fi->l_data.mac.mac_addr)))
1194 				fi->lan_en = true;
1195 		} else {
1196 			fi->lan_en = true;
1197 		}
1198 	}
1199 }
1200 
1201 /**
1202  * ice_fill_sw_rule - Helper function to fill switch rule structure
1203  * @hw: pointer to the hardware structure
1204  * @f_info: entry containing packet forwarding information
1205  * @s_rule: switch rule structure to be filled in based on mac_entry
1206  * @opc: switch rules population command type - pass in the command opcode
1207  */
1208 static void
1209 ice_fill_sw_rule(struct ice_hw *hw, struct ice_fltr_info *f_info,
1210 		 struct ice_sw_rule_lkup_rx_tx *s_rule,
1211 		 enum ice_adminq_opc opc)
1212 {
1213 	u16 vlan_id = ICE_MAX_VLAN_ID + 1;
1214 	u16 vlan_tpid = ICE_ETH_P_8021Q;
1215 	void *daddr = NULL;
1216 	u16 eth_hdr_sz;
1217 	u8 *eth_hdr;
1218 	u32 act = 0;
1219 	__be16 *off;
1220 	u8 q_rgn;
1221 
1222 	if (opc == ice_aqc_opc_remove_sw_rules) {
1223 		s_rule->act = 0;
1224 		s_rule->index = CPU_TO_LE16(f_info->fltr_rule_id);
1225 		s_rule->hdr_len = 0;
1226 		return;
1227 	}
1228 
1229 	eth_hdr_sz = sizeof(dummy_eth_header);
1230 	eth_hdr = s_rule->hdr_data;
1231 
1232 	/* initialize the ether header with a dummy header */
1233 	ice_memcpy(eth_hdr, dummy_eth_header, eth_hdr_sz, ICE_NONDMA_TO_NONDMA);
1234 	ice_fill_sw_info(hw, f_info);
1235 
1236 	switch (f_info->fltr_act) {
1237 	case ICE_FWD_TO_VSI:
1238 		act |= (f_info->fwd_id.hw_vsi_id << ICE_SINGLE_ACT_VSI_ID_S) &
1239 			ICE_SINGLE_ACT_VSI_ID_M;
1240 		if (f_info->lkup_type != ICE_SW_LKUP_VLAN)
1241 			act |= ICE_SINGLE_ACT_VSI_FORWARDING |
1242 				ICE_SINGLE_ACT_VALID_BIT;
1243 		break;
1244 	case ICE_FWD_TO_VSI_LIST:
1245 		act |= ICE_SINGLE_ACT_VSI_LIST;
1246 		act |= (f_info->fwd_id.vsi_list_id <<
1247 			ICE_SINGLE_ACT_VSI_LIST_ID_S) &
1248 			ICE_SINGLE_ACT_VSI_LIST_ID_M;
1249 		if (f_info->lkup_type != ICE_SW_LKUP_VLAN)
1250 			act |= ICE_SINGLE_ACT_VSI_FORWARDING |
1251 				ICE_SINGLE_ACT_VALID_BIT;
1252 		break;
1253 	case ICE_FWD_TO_Q:
1254 		act |= ICE_SINGLE_ACT_TO_Q;
1255 		act |= (f_info->fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) &
1256 			ICE_SINGLE_ACT_Q_INDEX_M;
1257 		break;
1258 	case ICE_DROP_PACKET:
1259 		act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP |
1260 			ICE_SINGLE_ACT_VALID_BIT;
1261 		break;
1262 	case ICE_FWD_TO_QGRP:
1263 		q_rgn = f_info->qgrp_size > 0 ?
1264 			(u8)ice_ilog2(f_info->qgrp_size) : 0;
1265 		act |= ICE_SINGLE_ACT_TO_Q;
1266 		act |= (f_info->fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) &
1267 			ICE_SINGLE_ACT_Q_INDEX_M;
1268 		act |= (q_rgn << ICE_SINGLE_ACT_Q_REGION_S) &
1269 			ICE_SINGLE_ACT_Q_REGION_M;
1270 		break;
1271 	default:
1272 		return;
1273 	}
1274 
1275 	if (f_info->lb_en)
1276 		act |= ICE_SINGLE_ACT_LB_ENABLE;
1277 	if (f_info->lan_en)
1278 		act |= ICE_SINGLE_ACT_LAN_ENABLE;
1279 
1280 	switch (f_info->lkup_type) {
1281 	case ICE_SW_LKUP_MAC:
1282 		daddr = f_info->l_data.mac.mac_addr;
1283 		break;
1284 	case ICE_SW_LKUP_VLAN:
1285 		vlan_id = f_info->l_data.vlan.vlan_id;
1286 		if (f_info->l_data.vlan.tpid_valid)
1287 			vlan_tpid = f_info->l_data.vlan.tpid;
1288 		if (f_info->fltr_act == ICE_FWD_TO_VSI ||
1289 		    f_info->fltr_act == ICE_FWD_TO_VSI_LIST) {
1290 			act |= ICE_SINGLE_ACT_PRUNE;
1291 			act |= ICE_SINGLE_ACT_EGRESS | ICE_SINGLE_ACT_INGRESS;
1292 		}
1293 		break;
1294 	case ICE_SW_LKUP_ETHERTYPE_MAC:
1295 		daddr = f_info->l_data.ethertype_mac.mac_addr;
1296 		/* fall-through */
1297 	case ICE_SW_LKUP_ETHERTYPE:
1298 		off = (_FORCE_ __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET);
1299 		*off = CPU_TO_BE16(f_info->l_data.ethertype_mac.ethertype);
1300 		break;
1301 	case ICE_SW_LKUP_MAC_VLAN:
1302 		daddr = f_info->l_data.mac_vlan.mac_addr;
1303 		vlan_id = f_info->l_data.mac_vlan.vlan_id;
1304 		break;
1305 	case ICE_SW_LKUP_PROMISC_VLAN:
1306 		vlan_id = f_info->l_data.mac_vlan.vlan_id;
1307 		/* fall-through */
1308 	case ICE_SW_LKUP_PROMISC:
1309 		daddr = f_info->l_data.mac_vlan.mac_addr;
1310 		break;
1311 	default:
1312 		break;
1313 	}
1314 
1315 	s_rule->hdr.type = (f_info->flag & ICE_FLTR_RX) ?
1316 		CPU_TO_LE16(ICE_AQC_SW_RULES_T_LKUP_RX) :
1317 		CPU_TO_LE16(ICE_AQC_SW_RULES_T_LKUP_TX);
1318 
1319 	/* Recipe set depending on lookup type */
1320 	s_rule->recipe_id = CPU_TO_LE16(f_info->lkup_type);
1321 	s_rule->src = CPU_TO_LE16(f_info->src);
1322 	s_rule->act = CPU_TO_LE32(act);
1323 
1324 	if (daddr)
1325 		ice_memcpy(eth_hdr + ICE_ETH_DA_OFFSET, daddr, ETH_ALEN,
1326 			   ICE_NONDMA_TO_NONDMA);
1327 
1328 	if (!(vlan_id > ICE_MAX_VLAN_ID)) {
1329 		off = (_FORCE_ __be16 *)(eth_hdr + ICE_ETH_VLAN_TCI_OFFSET);
1330 		*off = CPU_TO_BE16(vlan_id);
1331 		off = (_FORCE_ __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET);
1332 		*off = CPU_TO_BE16(vlan_tpid);
1333 	}
1334 
1335 	/* Create the switch rule with the final dummy Ethernet header */
1336 	if (opc != ice_aqc_opc_update_sw_rules)
1337 		s_rule->hdr_len = CPU_TO_LE16(eth_hdr_sz);
1338 }
1339 
1340 /**
1341  * ice_add_marker_act
1342  * @hw: pointer to the hardware structure
1343  * @m_ent: the management entry for which sw marker needs to be added
1344  * @sw_marker: sw marker to tag the Rx descriptor with
1345  * @l_id: large action resource ID
1346  *
1347  * Create a large action to hold software marker and update the switch rule
1348  * entry pointed by m_ent with newly created large action
1349  */
1350 static enum ice_status
1351 ice_add_marker_act(struct ice_hw *hw, struct ice_fltr_mgmt_list_entry *m_ent,
1352 		   u16 sw_marker, u16 l_id)
1353 {
1354 	struct ice_sw_rule_lkup_rx_tx *rx_tx;
1355 	struct ice_sw_rule_lg_act *lg_act;
1356 	/* For software marker we need 3 large actions
1357 	 * 1. FWD action: FWD TO VSI or VSI LIST
1358 	 * 2. GENERIC VALUE action to hold the profile ID
1359 	 * 3. GENERIC VALUE action to hold the software marker ID
1360 	 */
1361 	const u16 num_lg_acts = 3;
1362 	enum ice_status status;
1363 	u16 lg_act_size;
1364 	u16 rules_size;
1365 	u32 act;
1366 	u16 id;
1367 
1368 	if (m_ent->fltr_info.lkup_type != ICE_SW_LKUP_MAC)
1369 		return ICE_ERR_PARAM;
1370 
1371 	/* Create two back-to-back switch rules and submit them to the HW using
1372 	 * one memory buffer:
1373 	 *    1. Large Action
1374 	 *    2. Look up Tx Rx
1375 	 */
1376 	lg_act_size = (u16)ice_struct_size(lg_act, act, num_lg_acts);
1377 	rules_size = lg_act_size +
1378 		     ice_struct_size(rx_tx, hdr_data, DUMMY_ETH_HDR_LEN);
1379 	lg_act = (struct ice_sw_rule_lg_act *)ice_malloc(hw, rules_size);
1380 	if (!lg_act)
1381 		return ICE_ERR_NO_MEMORY;
1382 
1383 	rx_tx = (struct ice_sw_rule_lkup_rx_tx *)((u8 *)lg_act + lg_act_size);
1384 
1385 	/* Fill in the first switch rule i.e. large action */
1386 	lg_act->hdr.type = CPU_TO_LE16(ICE_AQC_SW_RULES_T_LG_ACT);
1387 	lg_act->index = CPU_TO_LE16(l_id);
1388 	lg_act->size = CPU_TO_LE16(num_lg_acts);
1389 
1390 	/* First action VSI forwarding or VSI list forwarding depending on how
1391 	 * many VSIs
1392 	 */
1393 	id = (m_ent->vsi_count > 1) ? m_ent->fltr_info.fwd_id.vsi_list_id :
1394 		m_ent->fltr_info.fwd_id.hw_vsi_id;
1395 
1396 	act = ICE_LG_ACT_VSI_FORWARDING | ICE_LG_ACT_VALID_BIT;
1397 	act |= (id << ICE_LG_ACT_VSI_LIST_ID_S) & ICE_LG_ACT_VSI_LIST_ID_M;
1398 	if (m_ent->vsi_count > 1)
1399 		act |= ICE_LG_ACT_VSI_LIST;
1400 	lg_act->act[0] = CPU_TO_LE32(act);
1401 
1402 	/* Second action descriptor type */
1403 	act = ICE_LG_ACT_GENERIC;
1404 
1405 	act |= (1 << ICE_LG_ACT_GENERIC_VALUE_S) & ICE_LG_ACT_GENERIC_VALUE_M;
1406 	lg_act->act[1] = CPU_TO_LE32(act);
1407 
1408 	act = (ICE_LG_ACT_GENERIC_OFF_RX_DESC_PROF_IDX <<
1409 	       ICE_LG_ACT_GENERIC_OFFSET_S) & ICE_LG_ACT_GENERIC_OFFSET_M;
1410 
1411 	/* Third action Marker value */
1412 	act |= ICE_LG_ACT_GENERIC;
1413 	act |= (sw_marker << ICE_LG_ACT_GENERIC_VALUE_S) &
1414 		ICE_LG_ACT_GENERIC_VALUE_M;
1415 
1416 	lg_act->act[2] = CPU_TO_LE32(act);
1417 
1418 	/* call the fill switch rule to fill the lookup Tx Rx structure */
1419 	ice_fill_sw_rule(hw, &m_ent->fltr_info, rx_tx,
1420 			 ice_aqc_opc_update_sw_rules);
1421 
1422 	/* Update the action to point to the large action ID */
1423 	rx_tx->act = CPU_TO_LE32(ICE_SINGLE_ACT_PTR |
1424 				 ((l_id << ICE_SINGLE_ACT_PTR_VAL_S) &
1425 				  ICE_SINGLE_ACT_PTR_VAL_M));
1426 
1427 	/* Use the filter rule ID of the previously created rule with single
1428 	 * act. Once the update happens, hardware will treat this as large
1429 	 * action
1430 	 */
1431 	rx_tx->index = CPU_TO_LE16(m_ent->fltr_info.fltr_rule_id);
1432 
1433 	status = ice_aq_sw_rules(hw, lg_act, rules_size, 2,
1434 				 ice_aqc_opc_update_sw_rules, NULL);
1435 	if (!status) {
1436 		m_ent->lg_act_idx = l_id;
1437 		m_ent->sw_marker_id = sw_marker;
1438 	}
1439 
1440 	ice_free(hw, lg_act);
1441 	return status;
1442 }
1443 
1444 /**
1445  * ice_add_counter_act - add/update filter rule with counter action
1446  * @hw: pointer to the hardware structure
1447  * @m_ent: the management entry for which counter needs to be added
1448  * @counter_id: VLAN counter ID returned as part of allocate resource
1449  * @l_id: large action resource ID
1450  */
1451 static enum ice_status
1452 ice_add_counter_act(struct ice_hw *hw, struct ice_fltr_mgmt_list_entry *m_ent,
1453 		    u16 counter_id, u16 l_id)
1454 {
1455 	struct ice_sw_rule_lkup_rx_tx *rx_tx;
1456 	struct ice_sw_rule_lg_act *lg_act;
1457 	enum ice_status status;
1458 	/* 2 actions will be added while adding a large action counter */
1459 	const int num_acts = 2;
1460 	u16 lg_act_size;
1461 	u16 rules_size;
1462 	u16 f_rule_id;
1463 	u32 act;
1464 	u16 id;
1465 
1466 	if (m_ent->fltr_info.lkup_type != ICE_SW_LKUP_MAC)
1467 		return ICE_ERR_PARAM;
1468 
1469 	/* Create two back-to-back switch rules and submit them to the HW using
1470 	 * one memory buffer:
1471 	 * 1. Large Action
1472 	 * 2. Look up Tx Rx
1473 	 */
1474 	lg_act_size = (u16)ice_struct_size(lg_act, act, num_acts);
1475 	rules_size = lg_act_size +
1476 		     ice_struct_size(rx_tx, hdr_data, DUMMY_ETH_HDR_LEN);
1477 	lg_act = (struct ice_sw_rule_lg_act *)ice_malloc(hw, rules_size);
1478 	if (!lg_act)
1479 		return ICE_ERR_NO_MEMORY;
1480 
1481 	rx_tx = (struct ice_sw_rule_lkup_rx_tx *)((u8 *)lg_act +
1482 						      lg_act_size);
1483 
1484 	/* Fill in the first switch rule i.e. large action */
1485 	lg_act->hdr.type = CPU_TO_LE16(ICE_AQC_SW_RULES_T_LG_ACT);
1486 	lg_act->index = CPU_TO_LE16(l_id);
1487 	lg_act->size = CPU_TO_LE16(num_acts);
1488 
1489 	/* First action VSI forwarding or VSI list forwarding depending on how
1490 	 * many VSIs
1491 	 */
1492 	id = (m_ent->vsi_count > 1) ?  m_ent->fltr_info.fwd_id.vsi_list_id :
1493 		m_ent->fltr_info.fwd_id.hw_vsi_id;
1494 
1495 	act = ICE_LG_ACT_VSI_FORWARDING | ICE_LG_ACT_VALID_BIT;
1496 	act |= (id << ICE_LG_ACT_VSI_LIST_ID_S) &
1497 		ICE_LG_ACT_VSI_LIST_ID_M;
1498 	if (m_ent->vsi_count > 1)
1499 		act |= ICE_LG_ACT_VSI_LIST;
1500 	lg_act->act[0] = CPU_TO_LE32(act);
1501 
1502 	/* Second action counter ID */
1503 	act = ICE_LG_ACT_STAT_COUNT;
1504 	act |= (counter_id << ICE_LG_ACT_STAT_COUNT_S) &
1505 		ICE_LG_ACT_STAT_COUNT_M;
1506 	lg_act->act[1] = CPU_TO_LE32(act);
1507 
1508 	/* call the fill switch rule to fill the lookup Tx Rx structure */
1509 	ice_fill_sw_rule(hw, &m_ent->fltr_info, rx_tx,
1510 			 ice_aqc_opc_update_sw_rules);
1511 
1512 	act = ICE_SINGLE_ACT_PTR;
1513 	act |= (l_id << ICE_SINGLE_ACT_PTR_VAL_S) & ICE_SINGLE_ACT_PTR_VAL_M;
1514 	rx_tx->act = CPU_TO_LE32(act);
1515 
1516 	/* Use the filter rule ID of the previously created rule with single
1517 	 * act. Once the update happens, hardware will treat this as large
1518 	 * action
1519 	 */
1520 	f_rule_id = m_ent->fltr_info.fltr_rule_id;
1521 	rx_tx->index = CPU_TO_LE16(f_rule_id);
1522 
1523 	status = ice_aq_sw_rules(hw, lg_act, rules_size, 2,
1524 				 ice_aqc_opc_update_sw_rules, NULL);
1525 	if (!status) {
1526 		m_ent->lg_act_idx = l_id;
1527 		m_ent->counter_index = (u8)counter_id;
1528 	}
1529 
1530 	ice_free(hw, lg_act);
1531 	return status;
1532 }
1533 
1534 /**
1535  * ice_create_vsi_list_map
1536  * @hw: pointer to the hardware structure
1537  * @vsi_handle_arr: array of VSI handles to set in the VSI mapping
1538  * @num_vsi: number of VSI handles in the array
1539  * @vsi_list_id: VSI list ID generated as part of allocate resource
1540  *
1541  * Helper function to create a new entry of VSI list ID to VSI mapping
1542  * using the given VSI list ID
1543  */
1544 static struct ice_vsi_list_map_info *
1545 ice_create_vsi_list_map(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
1546 			u16 vsi_list_id)
1547 {
1548 	struct ice_switch_info *sw = hw->switch_info;
1549 	struct ice_vsi_list_map_info *v_map;
1550 	int i;
1551 
1552 	v_map = (struct ice_vsi_list_map_info *)ice_malloc(hw, sizeof(*v_map));
1553 	if (!v_map)
1554 		return NULL;
1555 
1556 	v_map->vsi_list_id = vsi_list_id;
1557 	v_map->ref_cnt = 1;
1558 	for (i = 0; i < num_vsi; i++)
1559 		ice_set_bit(vsi_handle_arr[i], v_map->vsi_map);
1560 
1561 	LIST_ADD(&v_map->list_entry, &sw->vsi_list_map_head);
1562 	return v_map;
1563 }
1564 
1565 /**
1566  * ice_update_vsi_list_rule
1567  * @hw: pointer to the hardware structure
1568  * @vsi_handle_arr: array of VSI handles to form a VSI list
1569  * @num_vsi: number of VSI handles in the array
1570  * @vsi_list_id: VSI list ID generated as part of allocate resource
1571  * @remove: Boolean value to indicate if this is a remove action
1572  * @opc: switch rules population command type - pass in the command opcode
1573  * @lkup_type: lookup type of the filter
1574  *
1575  * Call AQ command to add a new switch rule or update existing switch rule
1576  * using the given VSI list ID
1577  */
1578 static enum ice_status
1579 ice_update_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
1580 			 u16 vsi_list_id, bool remove, enum ice_adminq_opc opc,
1581 			 enum ice_sw_lkup_type lkup_type)
1582 {
1583 	struct ice_sw_rule_vsi_list *s_rule;
1584 	enum ice_status status;
1585 	u16 s_rule_size;
1586 	u16 rule_type;
1587 	int i;
1588 
1589 	if (!num_vsi)
1590 		return ICE_ERR_PARAM;
1591 
1592 	if (lkup_type == ICE_SW_LKUP_MAC ||
1593 	    lkup_type == ICE_SW_LKUP_MAC_VLAN ||
1594 	    lkup_type == ICE_SW_LKUP_ETHERTYPE ||
1595 	    lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
1596 	    lkup_type == ICE_SW_LKUP_PROMISC ||
1597 	    lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
1598 	    lkup_type == ICE_SW_LKUP_DFLT ||
1599 	    lkup_type == ICE_SW_LKUP_LAST)
1600 		rule_type = remove ? ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR :
1601 			ICE_AQC_SW_RULES_T_VSI_LIST_SET;
1602 	else if (lkup_type == ICE_SW_LKUP_VLAN)
1603 		rule_type = remove ? ICE_AQC_SW_RULES_T_PRUNE_LIST_CLEAR :
1604 			ICE_AQC_SW_RULES_T_PRUNE_LIST_SET;
1605 	else
1606 		return ICE_ERR_PARAM;
1607 
1608 	s_rule_size = (u16)ice_struct_size(s_rule, vsi, num_vsi);
1609 	s_rule = (struct ice_sw_rule_vsi_list *)ice_malloc(hw, s_rule_size);
1610 	if (!s_rule)
1611 		return ICE_ERR_NO_MEMORY;
1612 	for (i = 0; i < num_vsi; i++) {
1613 		if (!ice_is_vsi_valid(hw, vsi_handle_arr[i])) {
1614 			status = ICE_ERR_PARAM;
1615 			goto exit;
1616 		}
1617 		/* AQ call requires hw_vsi_id(s) */
1618 		s_rule->vsi[i] =
1619 			CPU_TO_LE16(ice_get_hw_vsi_num(hw, vsi_handle_arr[i]));
1620 	}
1621 
1622 	s_rule->hdr.type = CPU_TO_LE16(rule_type);
1623 	s_rule->number_vsi = CPU_TO_LE16(num_vsi);
1624 	s_rule->index = CPU_TO_LE16(vsi_list_id);
1625 
1626 	status = ice_aq_sw_rules(hw, s_rule, s_rule_size, 1, opc, NULL);
1627 
1628 exit:
1629 	ice_free(hw, s_rule);
1630 	return status;
1631 }
1632 
1633 /**
1634  * ice_create_vsi_list_rule - Creates and populates a VSI list rule
1635  * @hw: pointer to the HW struct
1636  * @vsi_handle_arr: array of VSI handles to form a VSI list
1637  * @num_vsi: number of VSI handles in the array
1638  * @vsi_list_id: stores the ID of the VSI list to be created
1639  * @lkup_type: switch rule filter's lookup type
1640  */
1641 static enum ice_status
1642 ice_create_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
1643 			 u16 *vsi_list_id, enum ice_sw_lkup_type lkup_type)
1644 {
1645 	enum ice_status status;
1646 
1647 	status = ice_aq_alloc_free_vsi_list(hw, vsi_list_id, lkup_type,
1648 					    ice_aqc_opc_alloc_res);
1649 	if (status)
1650 		return status;
1651 
1652 	/* Update the newly created VSI list to include the specified VSIs */
1653 	return ice_update_vsi_list_rule(hw, vsi_handle_arr, num_vsi,
1654 					*vsi_list_id, false,
1655 					ice_aqc_opc_add_sw_rules, lkup_type);
1656 }
1657 
1658 /**
1659  * ice_create_pkt_fwd_rule
1660  * @hw: pointer to the hardware structure
1661  * @recp_list: corresponding filter management list
1662  * @f_entry: entry containing packet forwarding information
1663  *
1664  * Create switch rule with given filter information and add an entry
1665  * to the corresponding filter management list to track this switch rule
1666  * and VSI mapping
1667  */
1668 static enum ice_status
1669 ice_create_pkt_fwd_rule(struct ice_hw *hw, struct ice_sw_recipe *recp_list,
1670 			struct ice_fltr_list_entry *f_entry)
1671 {
1672 	struct ice_fltr_mgmt_list_entry *fm_entry;
1673 	struct ice_sw_rule_lkup_rx_tx *s_rule;
1674 	enum ice_status status;
1675 
1676 	s_rule = (struct ice_sw_rule_lkup_rx_tx *)
1677 		ice_malloc(hw, ice_struct_size(s_rule, hdr_data,
1678 					       DUMMY_ETH_HDR_LEN));
1679 	if (!s_rule)
1680 		return ICE_ERR_NO_MEMORY;
1681 	fm_entry = (struct ice_fltr_mgmt_list_entry *)
1682 		   ice_malloc(hw, sizeof(*fm_entry));
1683 	if (!fm_entry) {
1684 		status = ICE_ERR_NO_MEMORY;
1685 		goto ice_create_pkt_fwd_rule_exit;
1686 	}
1687 
1688 	fm_entry->fltr_info = f_entry->fltr_info;
1689 
1690 	/* Initialize all the fields for the management entry */
1691 	fm_entry->vsi_count = 1;
1692 	fm_entry->lg_act_idx = ICE_INVAL_LG_ACT_INDEX;
1693 	fm_entry->sw_marker_id = ICE_INVAL_SW_MARKER_ID;
1694 	fm_entry->counter_index = ICE_INVAL_COUNTER_ID;
1695 
1696 	ice_fill_sw_rule(hw, &fm_entry->fltr_info, s_rule,
1697 			 ice_aqc_opc_add_sw_rules);
1698 
1699 	status = ice_aq_sw_rules(hw, s_rule,
1700 				 ice_struct_size(s_rule, hdr_data,
1701 						 DUMMY_ETH_HDR_LEN),
1702 				 1, ice_aqc_opc_add_sw_rules, NULL);
1703 	if (status) {
1704 		ice_free(hw, fm_entry);
1705 		goto ice_create_pkt_fwd_rule_exit;
1706 	}
1707 
1708 	f_entry->fltr_info.fltr_rule_id = LE16_TO_CPU(s_rule->index);
1709 	fm_entry->fltr_info.fltr_rule_id = LE16_TO_CPU(s_rule->index);
1710 
1711 	/* The book keeping entries will get removed when base driver
1712 	 * calls remove filter AQ command
1713 	 */
1714 	LIST_ADD(&fm_entry->list_entry, &recp_list->filt_rules);
1715 
1716 ice_create_pkt_fwd_rule_exit:
1717 	ice_free(hw, s_rule);
1718 	return status;
1719 }
1720 
1721 /**
1722  * ice_update_pkt_fwd_rule
1723  * @hw: pointer to the hardware structure
1724  * @f_info: filter information for switch rule
1725  *
1726  * Call AQ command to update a previously created switch rule with a
1727  * VSI list ID
1728  */
1729 static enum ice_status
1730 ice_update_pkt_fwd_rule(struct ice_hw *hw, struct ice_fltr_info *f_info)
1731 {
1732 	struct ice_sw_rule_lkup_rx_tx *s_rule;
1733 	enum ice_status status;
1734 
1735 	s_rule = (struct ice_sw_rule_lkup_rx_tx *)
1736 		ice_malloc(hw, ice_struct_size(s_rule, hdr_data,
1737 					       DUMMY_ETH_HDR_LEN));
1738 	if (!s_rule)
1739 		return ICE_ERR_NO_MEMORY;
1740 
1741 	ice_fill_sw_rule(hw, f_info, s_rule, ice_aqc_opc_update_sw_rules);
1742 
1743 	s_rule->index = CPU_TO_LE16(f_info->fltr_rule_id);
1744 
1745 	/* Update switch rule with new rule set to forward VSI list */
1746 	status = ice_aq_sw_rules(hw, s_rule,
1747 				 ice_struct_size(s_rule, hdr_data,
1748 						 DUMMY_ETH_HDR_LEN),
1749 				 1, ice_aqc_opc_update_sw_rules, NULL);
1750 
1751 	ice_free(hw, s_rule);
1752 	return status;
1753 }
1754 
1755 /**
1756  * ice_update_sw_rule_bridge_mode
1757  * @hw: pointer to the HW struct
1758  *
1759  * Updates unicast switch filter rules based on VEB/VEPA mode
1760  */
1761 enum ice_status ice_update_sw_rule_bridge_mode(struct ice_hw *hw)
1762 {
1763 	struct ice_fltr_mgmt_list_entry *fm_entry;
1764 	enum ice_status status = ICE_SUCCESS;
1765 	struct ice_switch_info *sw = NULL;
1766 	struct LIST_HEAD_TYPE *rule_head;
1767 	struct ice_lock *rule_lock; /* Lock to protect filter rule list */
1768 	sw = hw->switch_info;
1769 
1770 	rule_lock = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock;
1771 	rule_head = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rules;
1772 
1773 	ice_acquire_lock(rule_lock);
1774 	LIST_FOR_EACH_ENTRY(fm_entry, rule_head, ice_fltr_mgmt_list_entry,
1775 			    list_entry) {
1776 		struct ice_fltr_info *fi = &fm_entry->fltr_info;
1777 		u8 *addr = fi->l_data.mac.mac_addr;
1778 
1779 		/* Update unicast Tx rules to reflect the selected
1780 		 * VEB/VEPA mode
1781 		 */
1782 		if ((fi->flag & ICE_FLTR_TX) && IS_UNICAST_ETHER_ADDR(addr) &&
1783 		    (fi->fltr_act == ICE_FWD_TO_VSI ||
1784 		     fi->fltr_act == ICE_FWD_TO_VSI_LIST ||
1785 		     fi->fltr_act == ICE_FWD_TO_Q ||
1786 		     fi->fltr_act == ICE_FWD_TO_QGRP)) {
1787 			status = ice_update_pkt_fwd_rule(hw, fi);
1788 			if (status)
1789 				break;
1790 		}
1791 	}
1792 
1793 	ice_release_lock(rule_lock);
1794 
1795 	return status;
1796 }
1797 
1798 /**
1799  * ice_add_update_vsi_list
1800  * @hw: pointer to the hardware structure
1801  * @m_entry: pointer to current filter management list entry
1802  * @cur_fltr: filter information from the book keeping entry
1803  * @new_fltr: filter information with the new VSI to be added
1804  *
1805  * Call AQ command to add or update previously created VSI list with new VSI.
1806  *
1807  * Helper function to do book keeping associated with adding filter information
1808  * The algorithm to do the book keeping is described below :
1809  * When a VSI needs to subscribe to a given filter (MAC/VLAN/Ethtype etc.)
1810  *	if only one VSI has been added till now
1811  *		Allocate a new VSI list and add two VSIs
1812  *		to this list using switch rule command
1813  *		Update the previously created switch rule with the
1814  *		newly created VSI list ID
1815  *	if a VSI list was previously created
1816  *		Add the new VSI to the previously created VSI list set
1817  *		using the update switch rule command
1818  */
1819 static enum ice_status
1820 ice_add_update_vsi_list(struct ice_hw *hw,
1821 			struct ice_fltr_mgmt_list_entry *m_entry,
1822 			struct ice_fltr_info *cur_fltr,
1823 			struct ice_fltr_info *new_fltr)
1824 {
1825 	enum ice_status status = ICE_SUCCESS;
1826 	u16 vsi_list_id = 0;
1827 	if ((cur_fltr->fltr_act == ICE_FWD_TO_Q ||
1828 	     cur_fltr->fltr_act == ICE_FWD_TO_QGRP))
1829 		return ICE_ERR_NOT_IMPL;
1830 
1831 	if ((new_fltr->fltr_act == ICE_FWD_TO_Q ||
1832 	     new_fltr->fltr_act == ICE_FWD_TO_QGRP) &&
1833 	    (cur_fltr->fltr_act == ICE_FWD_TO_VSI ||
1834 	     cur_fltr->fltr_act == ICE_FWD_TO_VSI_LIST))
1835 		return ICE_ERR_NOT_IMPL;
1836 
1837 	if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) {
1838 		/* Only one entry existed in the mapping and it was not already
1839 		 * a part of a VSI list. So, create a VSI list with the old and
1840 		 * new VSIs.
1841 		 */
1842 		struct ice_fltr_info tmp_fltr;
1843 		u16 vsi_handle_arr[2];
1844 
1845 		/* A rule already exists with the new VSI being added */
1846 		if (cur_fltr->fwd_id.hw_vsi_id == new_fltr->fwd_id.hw_vsi_id)
1847 			return ICE_ERR_ALREADY_EXISTS;
1848 
1849 		vsi_handle_arr[0] = cur_fltr->vsi_handle;
1850 		vsi_handle_arr[1] = new_fltr->vsi_handle;
1851 		status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
1852 						  &vsi_list_id,
1853 						  new_fltr->lkup_type);
1854 		if (status)
1855 			return status;
1856 
1857 		tmp_fltr = *new_fltr;
1858 		tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id;
1859 		tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
1860 		tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
1861 		/* Update the previous switch rule of "MAC forward to VSI" to
1862 		 * "MAC fwd to VSI list"
1863 		 */
1864 		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
1865 		if (status)
1866 			return status;
1867 
1868 		cur_fltr->fwd_id.vsi_list_id = vsi_list_id;
1869 		cur_fltr->fltr_act = ICE_FWD_TO_VSI_LIST;
1870 		m_entry->vsi_list_info =
1871 			ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
1872 						vsi_list_id);
1873 
1874 		if (!m_entry->vsi_list_info)
1875 			return ICE_ERR_NO_MEMORY;
1876 
1877 		/* If this entry was large action then the large action needs
1878 		 * to be updated to point to FWD to VSI list
1879 		 */
1880 		if (m_entry->sw_marker_id != ICE_INVAL_SW_MARKER_ID)
1881 			status =
1882 			    ice_add_marker_act(hw, m_entry,
1883 					       m_entry->sw_marker_id,
1884 					       m_entry->lg_act_idx);
1885 	} else {
1886 		u16 vsi_handle = new_fltr->vsi_handle;
1887 		enum ice_adminq_opc opcode;
1888 
1889 		if (!m_entry->vsi_list_info)
1890 			return ICE_ERR_CFG;
1891 
1892 		/* A rule already exists with the new VSI being added */
1893 		if (ice_is_bit_set(m_entry->vsi_list_info->vsi_map, vsi_handle))
1894 			return ICE_SUCCESS;
1895 
1896 		/* Update the previously created VSI list set with
1897 		 * the new VSI ID passed in
1898 		 */
1899 		vsi_list_id = cur_fltr->fwd_id.vsi_list_id;
1900 		opcode = ice_aqc_opc_update_sw_rules;
1901 
1902 		status = ice_update_vsi_list_rule(hw, &vsi_handle, 1,
1903 						  vsi_list_id, false, opcode,
1904 						  new_fltr->lkup_type);
1905 		/* update VSI list mapping info with new VSI ID */
1906 		if (!status)
1907 			ice_set_bit(vsi_handle,
1908 				    m_entry->vsi_list_info->vsi_map);
1909 	}
1910 	if (!status)
1911 		m_entry->vsi_count++;
1912 	return status;
1913 }
1914 
1915 /**
1916  * ice_find_rule_entry - Search a rule entry
1917  * @list_head: head of rule list
1918  * @f_info: rule information
1919  *
1920  * Helper function to search for a given rule entry
1921  * Returns pointer to entry storing the rule if found
1922  */
1923 static struct ice_fltr_mgmt_list_entry *
1924 ice_find_rule_entry(struct LIST_HEAD_TYPE *list_head,
1925 		    struct ice_fltr_info *f_info)
1926 {
1927 	struct ice_fltr_mgmt_list_entry *list_itr, *ret = NULL;
1928 
1929 	LIST_FOR_EACH_ENTRY(list_itr, list_head, ice_fltr_mgmt_list_entry,
1930 			    list_entry) {
1931 		if (!memcmp(&f_info->l_data, &list_itr->fltr_info.l_data,
1932 			    sizeof(f_info->l_data)) &&
1933 		    f_info->flag == list_itr->fltr_info.flag) {
1934 			ret = list_itr;
1935 			break;
1936 		}
1937 	}
1938 	return ret;
1939 }
1940 
1941 /**
1942  * ice_find_vsi_list_entry - Search VSI list map with VSI count 1
1943  * @recp_list: VSI lists needs to be searched
1944  * @vsi_handle: VSI handle to be found in VSI list
1945  * @vsi_list_id: VSI list ID found containing vsi_handle
1946  *
1947  * Helper function to search a VSI list with single entry containing given VSI
1948  * handle element. This can be extended further to search VSI list with more
1949  * than 1 vsi_count. Returns pointer to VSI list entry if found.
1950  */
1951 struct ice_vsi_list_map_info *
1952 ice_find_vsi_list_entry(struct ice_sw_recipe *recp_list, u16 vsi_handle,
1953 			u16 *vsi_list_id)
1954 {
1955 	struct ice_vsi_list_map_info *map_info = NULL;
1956 	struct LIST_HEAD_TYPE *list_head;
1957 
1958 	list_head = &recp_list->filt_rules;
1959 	if (recp_list->adv_rule) {
1960 		struct ice_adv_fltr_mgmt_list_entry *list_itr;
1961 
1962 		LIST_FOR_EACH_ENTRY(list_itr, list_head,
1963 				    ice_adv_fltr_mgmt_list_entry,
1964 				    list_entry) {
1965 			if (list_itr->vsi_list_info) {
1966 				map_info = list_itr->vsi_list_info;
1967 				if (ice_is_bit_set(map_info->vsi_map,
1968 						   vsi_handle)) {
1969 					*vsi_list_id = map_info->vsi_list_id;
1970 					return map_info;
1971 				}
1972 			}
1973 		}
1974 	} else {
1975 		struct ice_fltr_mgmt_list_entry *list_itr;
1976 
1977 		LIST_FOR_EACH_ENTRY(list_itr, list_head,
1978 				    ice_fltr_mgmt_list_entry,
1979 				    list_entry) {
1980 			if (list_itr->vsi_count == 1 &&
1981 			    list_itr->vsi_list_info) {
1982 				map_info = list_itr->vsi_list_info;
1983 				if (ice_is_bit_set(map_info->vsi_map,
1984 						   vsi_handle)) {
1985 					*vsi_list_id = map_info->vsi_list_id;
1986 					return map_info;
1987 				}
1988 			}
1989 		}
1990 	}
1991 	return NULL;
1992 }
1993 
1994 /**
1995  * ice_add_rule_internal - add rule for a given lookup type
1996  * @hw: pointer to the hardware structure
1997  * @recp_list: recipe list for which rule has to be added
1998  * @lport: logic port number on which function add rule
1999  * @f_entry: structure containing MAC forwarding information
2000  *
2001  * Adds or updates the rule lists for a given recipe
2002  */
2003 static enum ice_status
2004 ice_add_rule_internal(struct ice_hw *hw, struct ice_sw_recipe *recp_list,
2005 		      u8 lport, struct ice_fltr_list_entry *f_entry)
2006 {
2007 	struct ice_fltr_info *new_fltr, *cur_fltr;
2008 	struct ice_fltr_mgmt_list_entry *m_entry;
2009 	struct ice_lock *rule_lock; /* Lock to protect filter rule list */
2010 	enum ice_status status = ICE_SUCCESS;
2011 
2012 	if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
2013 		return ICE_ERR_PARAM;
2014 
2015 	/* Load the hw_vsi_id only if the fwd action is fwd to VSI */
2016 	if (f_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI)
2017 		f_entry->fltr_info.fwd_id.hw_vsi_id =
2018 			ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
2019 
2020 	rule_lock = &recp_list->filt_rule_lock;
2021 
2022 	ice_acquire_lock(rule_lock);
2023 	new_fltr = &f_entry->fltr_info;
2024 	if (new_fltr->flag & ICE_FLTR_RX)
2025 		new_fltr->src = lport;
2026 	else if (new_fltr->flag & ICE_FLTR_TX)
2027 		new_fltr->src =
2028 			ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
2029 
2030 	m_entry = ice_find_rule_entry(&recp_list->filt_rules, new_fltr);
2031 	if (!m_entry) {
2032 		status = ice_create_pkt_fwd_rule(hw, recp_list, f_entry);
2033 		goto exit_add_rule_internal;
2034 	}
2035 
2036 	cur_fltr = &m_entry->fltr_info;
2037 	status = ice_add_update_vsi_list(hw, m_entry, cur_fltr, new_fltr);
2038 
2039 exit_add_rule_internal:
2040 	ice_release_lock(rule_lock);
2041 	return status;
2042 }
2043 
2044 /**
2045  * ice_remove_vsi_list_rule
2046  * @hw: pointer to the hardware structure
2047  * @vsi_list_id: VSI list ID generated as part of allocate resource
2048  * @lkup_type: switch rule filter lookup type
2049  *
2050  * The VSI list should be emptied before this function is called to remove the
2051  * VSI list.
2052  */
2053 static enum ice_status
2054 ice_remove_vsi_list_rule(struct ice_hw *hw, u16 vsi_list_id,
2055 			 enum ice_sw_lkup_type lkup_type)
2056 {
2057 	/* Free the vsi_list resource that we allocated. It is assumed that the
2058 	 * list is empty at this point.
2059 	 */
2060 	return ice_aq_alloc_free_vsi_list(hw, &vsi_list_id, lkup_type,
2061 					    ice_aqc_opc_free_res);
2062 }
2063 
2064 /**
2065  * ice_rem_update_vsi_list
2066  * @hw: pointer to the hardware structure
2067  * @vsi_handle: VSI handle of the VSI to remove
2068  * @fm_list: filter management entry for which the VSI list management needs to
2069  *           be done
2070  */
2071 static enum ice_status
2072 ice_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle,
2073 			struct ice_fltr_mgmt_list_entry *fm_list)
2074 {
2075 	enum ice_sw_lkup_type lkup_type;
2076 	enum ice_status status = ICE_SUCCESS;
2077 	u16 vsi_list_id;
2078 
2079 	if (fm_list->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST ||
2080 	    fm_list->vsi_count == 0)
2081 		return ICE_ERR_PARAM;
2082 
2083 	/* A rule with the VSI being removed does not exist */
2084 	if (!ice_is_bit_set(fm_list->vsi_list_info->vsi_map, vsi_handle))
2085 		return ICE_ERR_DOES_NOT_EXIST;
2086 
2087 	lkup_type = fm_list->fltr_info.lkup_type;
2088 	vsi_list_id = fm_list->fltr_info.fwd_id.vsi_list_id;
2089 	status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true,
2090 					  ice_aqc_opc_update_sw_rules,
2091 					  lkup_type);
2092 	if (status)
2093 		return status;
2094 
2095 	fm_list->vsi_count--;
2096 	ice_clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map);
2097 
2098 	if (fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) {
2099 		struct ice_fltr_info tmp_fltr_info = fm_list->fltr_info;
2100 		struct ice_vsi_list_map_info *vsi_list_info =
2101 			fm_list->vsi_list_info;
2102 		u16 rem_vsi_handle;
2103 
2104 		rem_vsi_handle = ice_find_first_bit(vsi_list_info->vsi_map,
2105 						    ICE_MAX_VSI);
2106 		if (!ice_is_vsi_valid(hw, rem_vsi_handle))
2107 			return ICE_ERR_OUT_OF_RANGE;
2108 
2109 		/* Make sure VSI list is empty before removing it below */
2110 		status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1,
2111 						  vsi_list_id, true,
2112 						  ice_aqc_opc_update_sw_rules,
2113 						  lkup_type);
2114 		if (status)
2115 			return status;
2116 
2117 		tmp_fltr_info.fltr_act = ICE_FWD_TO_VSI;
2118 		tmp_fltr_info.fwd_id.hw_vsi_id =
2119 			ice_get_hw_vsi_num(hw, rem_vsi_handle);
2120 		tmp_fltr_info.vsi_handle = rem_vsi_handle;
2121 		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr_info);
2122 		if (status) {
2123 			ice_debug(hw, ICE_DBG_SW, "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n",
2124 				  tmp_fltr_info.fwd_id.hw_vsi_id, status);
2125 			return status;
2126 		}
2127 
2128 		fm_list->fltr_info = tmp_fltr_info;
2129 	}
2130 
2131 	if ((fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) ||
2132 	    (fm_list->vsi_count == 0 && lkup_type == ICE_SW_LKUP_VLAN)) {
2133 		struct ice_vsi_list_map_info *vsi_list_info =
2134 			fm_list->vsi_list_info;
2135 
2136 		/* Remove the VSI list since it is no longer used */
2137 		status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type);
2138 		if (status) {
2139 			ice_debug(hw, ICE_DBG_SW, "Failed to remove VSI list %d, error %d\n",
2140 				  vsi_list_id, status);
2141 			return status;
2142 		}
2143 
2144 		LIST_DEL(&vsi_list_info->list_entry);
2145 		ice_free(hw, vsi_list_info);
2146 		fm_list->vsi_list_info = NULL;
2147 	}
2148 
2149 	return status;
2150 }
2151 
2152 /**
2153  * ice_remove_rule_internal - Remove a filter rule of a given type
2154  * @hw: pointer to the hardware structure
2155  * @recp_list: recipe list for which the rule needs to removed
2156  * @f_entry: rule entry containing filter information
2157  */
2158 static enum ice_status
2159 ice_remove_rule_internal(struct ice_hw *hw, struct ice_sw_recipe *recp_list,
2160 			 struct ice_fltr_list_entry *f_entry)
2161 {
2162 	struct ice_fltr_mgmt_list_entry *list_elem;
2163 	struct ice_lock *rule_lock; /* Lock to protect filter rule list */
2164 	enum ice_status status = ICE_SUCCESS;
2165 	bool remove_rule = false;
2166 	u16 vsi_handle;
2167 
2168 	if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
2169 		return ICE_ERR_PARAM;
2170 	f_entry->fltr_info.fwd_id.hw_vsi_id =
2171 		ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
2172 
2173 	rule_lock = &recp_list->filt_rule_lock;
2174 	ice_acquire_lock(rule_lock);
2175 	list_elem = ice_find_rule_entry(&recp_list->filt_rules,
2176 					&f_entry->fltr_info);
2177 	if (!list_elem) {
2178 		status = ICE_ERR_DOES_NOT_EXIST;
2179 		goto exit;
2180 	}
2181 
2182 	if (list_elem->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST) {
2183 		remove_rule = true;
2184 	} else if (!list_elem->vsi_list_info) {
2185 		status = ICE_ERR_DOES_NOT_EXIST;
2186 		goto exit;
2187 	} else if (list_elem->vsi_list_info->ref_cnt > 1) {
2188 		/* a ref_cnt > 1 indicates that the vsi_list is being
2189 		 * shared by multiple rules. Decrement the ref_cnt and
2190 		 * remove this rule, but do not modify the list, as it
2191 		 * is in-use by other rules.
2192 		 */
2193 		list_elem->vsi_list_info->ref_cnt--;
2194 		remove_rule = true;
2195 	} else {
2196 		/* a ref_cnt of 1 indicates the vsi_list is only used
2197 		 * by one rule. However, the original removal request is only
2198 		 * for a single VSI. Update the vsi_list first, and only
2199 		 * remove the rule if there are no further VSIs in this list.
2200 		 */
2201 		vsi_handle = f_entry->fltr_info.vsi_handle;
2202 		status = ice_rem_update_vsi_list(hw, vsi_handle, list_elem);
2203 		if (status)
2204 			goto exit;
2205 		/* if VSI count goes to zero after updating the VSI list */
2206 		if (list_elem->vsi_count == 0)
2207 			remove_rule = true;
2208 	}
2209 
2210 	if (remove_rule) {
2211 		/* Remove the lookup rule */
2212 		struct ice_sw_rule_lkup_rx_tx *s_rule;
2213 
2214 		s_rule = (struct ice_sw_rule_lkup_rx_tx *)
2215 			ice_malloc(hw, ice_struct_size(s_rule, hdr_data, 0));
2216 		if (!s_rule) {
2217 			status = ICE_ERR_NO_MEMORY;
2218 			goto exit;
2219 		}
2220 
2221 		ice_fill_sw_rule(hw, &list_elem->fltr_info, s_rule,
2222 				 ice_aqc_opc_remove_sw_rules);
2223 
2224 		status = ice_aq_sw_rules(hw, s_rule,
2225 					 ice_struct_size(s_rule, hdr_data, 0),
2226 					 1, ice_aqc_opc_remove_sw_rules, NULL);
2227 
2228 		/* Remove a book keeping from the list */
2229 		ice_free(hw, s_rule);
2230 
2231 		if (status)
2232 			goto exit;
2233 
2234 		LIST_DEL(&list_elem->list_entry);
2235 		ice_free(hw, list_elem);
2236 	}
2237 exit:
2238 	ice_release_lock(rule_lock);
2239 	return status;
2240 }
2241 
2242 /**
2243  * ice_aq_get_res_alloc - get allocated resources
2244  * @hw: pointer to the HW struct
2245  * @num_entries: pointer to u16 to store the number of resource entries returned
2246  * @buf: pointer to buffer
2247  * @buf_size: size of buf
2248  * @cd: pointer to command details structure or NULL
2249  *
2250  * The caller-supplied buffer must be large enough to store the resource
2251  * information for all resource types. Each resource type is an
2252  * ice_aqc_get_res_resp_elem structure.
2253  */
2254 enum ice_status
2255 ice_aq_get_res_alloc(struct ice_hw *hw, u16 *num_entries,
2256 		     struct ice_aqc_get_res_resp_elem *buf, u16 buf_size,
2257 		     struct ice_sq_cd *cd)
2258 {
2259 	struct ice_aqc_get_res_alloc *resp;
2260 	enum ice_status status;
2261 	struct ice_aq_desc desc;
2262 
2263 	if (!buf)
2264 		return ICE_ERR_BAD_PTR;
2265 
2266 	if (buf_size < ICE_AQ_GET_RES_ALLOC_BUF_LEN)
2267 		return ICE_ERR_INVAL_SIZE;
2268 
2269 	resp = &desc.params.get_res;
2270 
2271 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_res_alloc);
2272 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2273 
2274 	if (!status && num_entries)
2275 		*num_entries = LE16_TO_CPU(resp->resp_elem_num);
2276 
2277 	return status;
2278 }
2279 
2280 /**
2281  * ice_aq_get_res_descs - get allocated resource descriptors
2282  * @hw: pointer to the hardware structure
2283  * @num_entries: number of resource entries in buffer
2284  * @buf: structure to hold response data buffer
2285  * @buf_size: size of buffer
2286  * @res_type: resource type
2287  * @res_shared: is resource shared
2288  * @desc_id: input - first desc ID to start; output - next desc ID
2289  * @cd: pointer to command details structure or NULL
2290  */
2291 enum ice_status
2292 ice_aq_get_res_descs(struct ice_hw *hw, u16 num_entries,
2293 		     struct ice_aqc_res_elem *buf, u16 buf_size, u16 res_type,
2294 		     bool res_shared, u16 *desc_id, struct ice_sq_cd *cd)
2295 {
2296 	struct ice_aqc_get_allocd_res_desc *cmd;
2297 	struct ice_aq_desc desc;
2298 	enum ice_status status;
2299 
2300 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
2301 
2302 	cmd = &desc.params.get_res_desc;
2303 
2304 	if (!buf)
2305 		return ICE_ERR_PARAM;
2306 
2307 	if (buf_size != (num_entries * sizeof(*buf)))
2308 		return ICE_ERR_PARAM;
2309 
2310 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_allocd_res_desc);
2311 
2312 	cmd->ops.cmd.res = CPU_TO_LE16(((res_type << ICE_AQC_RES_TYPE_S) &
2313 					 ICE_AQC_RES_TYPE_M) | (res_shared ?
2314 					ICE_AQC_RES_TYPE_FLAG_SHARED : 0));
2315 	cmd->ops.cmd.first_desc = CPU_TO_LE16(*desc_id);
2316 
2317 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2318 	if (!status)
2319 		*desc_id = LE16_TO_CPU(cmd->ops.resp.next_desc);
2320 
2321 	return status;
2322 }
2323 
2324 /**
2325  * ice_add_mac_rule - Add a MAC address based filter rule
2326  * @hw: pointer to the hardware structure
2327  * @m_list: list of MAC addresses and forwarding information
2328  * @sw: pointer to switch info struct for which function add rule
2329  * @lport: logic port number on which function add rule
2330  *
2331  * IMPORTANT: When the umac_shared flag is set to false and m_list has
2332  * multiple unicast addresses, the function assumes that all the
2333  * addresses are unique in a given add_mac call. It doesn't
2334  * check for duplicates in this case, removing duplicates from a given
2335  * list should be taken care of in the caller of this function.
2336  */
2337 static enum ice_status
2338 ice_add_mac_rule(struct ice_hw *hw, struct LIST_HEAD_TYPE *m_list,
2339 		 struct ice_switch_info *sw, u8 lport)
2340 {
2341 	struct ice_sw_recipe *recp_list = &sw->recp_list[ICE_SW_LKUP_MAC];
2342 	struct ice_sw_rule_lkup_rx_tx *s_rule, *r_iter;
2343 	struct ice_fltr_list_entry *m_list_itr;
2344 	struct LIST_HEAD_TYPE *rule_head;
2345 	u16 total_elem_left, s_rule_size;
2346 	struct ice_lock *rule_lock; /* Lock to protect filter rule list */
2347 	enum ice_status status = ICE_SUCCESS;
2348 	u16 num_unicast = 0;
2349 	u8 elem_sent;
2350 
2351 	s_rule = NULL;
2352 	rule_lock = &recp_list->filt_rule_lock;
2353 	rule_head = &recp_list->filt_rules;
2354 
2355 	LIST_FOR_EACH_ENTRY(m_list_itr, m_list, ice_fltr_list_entry,
2356 			    list_entry) {
2357 		u8 *add = &m_list_itr->fltr_info.l_data.mac.mac_addr[0];
2358 		u16 vsi_handle;
2359 		u16 hw_vsi_id;
2360 
2361 		m_list_itr->fltr_info.flag = ICE_FLTR_TX;
2362 		vsi_handle = m_list_itr->fltr_info.vsi_handle;
2363 		if (!ice_is_vsi_valid(hw, vsi_handle))
2364 			return ICE_ERR_PARAM;
2365 		hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
2366 		if (m_list_itr->fltr_info.fltr_act == ICE_FWD_TO_VSI)
2367 			m_list_itr->fltr_info.fwd_id.hw_vsi_id = hw_vsi_id;
2368 		/* update the src in case it is VSI num */
2369 		if (m_list_itr->fltr_info.src_id != ICE_SRC_ID_VSI)
2370 			return ICE_ERR_PARAM;
2371 		m_list_itr->fltr_info.src = hw_vsi_id;
2372 		if (m_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_MAC ||
2373 		    IS_ZERO_ETHER_ADDR(add))
2374 			return ICE_ERR_PARAM;
2375 		if (IS_UNICAST_ETHER_ADDR(add) && !hw->umac_shared) {
2376 			/* Don't overwrite the unicast address */
2377 			ice_acquire_lock(rule_lock);
2378 			if (ice_find_rule_entry(rule_head,
2379 						&m_list_itr->fltr_info)) {
2380 				ice_release_lock(rule_lock);
2381 				continue;
2382 			}
2383 			ice_release_lock(rule_lock);
2384 			num_unicast++;
2385 		} else if (IS_MULTICAST_ETHER_ADDR(add) ||
2386 			   (IS_UNICAST_ETHER_ADDR(add) && hw->umac_shared)) {
2387 			m_list_itr->status =
2388 				ice_add_rule_internal(hw, recp_list, lport,
2389 						      m_list_itr);
2390 			if (m_list_itr->status)
2391 				return m_list_itr->status;
2392 		}
2393 	}
2394 
2395 	ice_acquire_lock(rule_lock);
2396 	/* Exit if no suitable entries were found for adding bulk switch rule */
2397 	if (!num_unicast) {
2398 		status = ICE_SUCCESS;
2399 		goto ice_add_mac_exit;
2400 	}
2401 
2402 	/* Allocate switch rule buffer for the bulk update for unicast */
2403 	s_rule_size = ice_struct_size(s_rule, hdr_data, DUMMY_ETH_HDR_LEN);
2404 	s_rule = (struct ice_sw_rule_lkup_rx_tx *)
2405 		ice_calloc(hw, num_unicast, s_rule_size);
2406 	if (!s_rule) {
2407 		status = ICE_ERR_NO_MEMORY;
2408 		goto ice_add_mac_exit;
2409 	}
2410 
2411 	r_iter = s_rule;
2412 	LIST_FOR_EACH_ENTRY(m_list_itr, m_list, ice_fltr_list_entry,
2413 			    list_entry) {
2414 		struct ice_fltr_info *f_info = &m_list_itr->fltr_info;
2415 		u8 *mac_addr = &f_info->l_data.mac.mac_addr[0];
2416 
2417 		if (IS_UNICAST_ETHER_ADDR(mac_addr)) {
2418 			ice_fill_sw_rule(hw, &m_list_itr->fltr_info, r_iter,
2419 					 ice_aqc_opc_add_sw_rules);
2420 			r_iter = (struct ice_sw_rule_lkup_rx_tx *)
2421 				((u8 *)r_iter + s_rule_size);
2422 		}
2423 	}
2424 
2425 	/* Call AQ bulk switch rule update for all unicast addresses */
2426 	r_iter = s_rule;
2427 	/* Call AQ switch rule in AQ_MAX chunk */
2428 	for (total_elem_left = num_unicast; total_elem_left > 0;
2429 	     total_elem_left -= elem_sent) {
2430 		struct ice_sw_rule_lkup_rx_tx *entry = r_iter;
2431 
2432 		elem_sent = MIN_T(u8, total_elem_left,
2433 				  (ICE_AQ_MAX_BUF_LEN / s_rule_size));
2434 		status = ice_aq_sw_rules(hw, entry, elem_sent * s_rule_size,
2435 					 elem_sent, ice_aqc_opc_add_sw_rules,
2436 					 NULL);
2437 		if (status)
2438 			goto ice_add_mac_exit;
2439 		r_iter = (struct ice_sw_rule_lkup_rx_tx *)
2440 			((u8 *)r_iter + (elem_sent * s_rule_size));
2441 	}
2442 
2443 	/* Fill up rule ID based on the value returned from FW */
2444 	r_iter = s_rule;
2445 	LIST_FOR_EACH_ENTRY(m_list_itr, m_list, ice_fltr_list_entry,
2446 			    list_entry) {
2447 		struct ice_fltr_info *f_info = &m_list_itr->fltr_info;
2448 		u8 *mac_addr = &f_info->l_data.mac.mac_addr[0];
2449 		struct ice_fltr_mgmt_list_entry *fm_entry;
2450 
2451 		if (IS_UNICAST_ETHER_ADDR(mac_addr)) {
2452 			f_info->fltr_rule_id =
2453 				LE16_TO_CPU(r_iter->index);
2454 			f_info->fltr_act = ICE_FWD_TO_VSI;
2455 			/* Create an entry to track this MAC address */
2456 			fm_entry = (struct ice_fltr_mgmt_list_entry *)
2457 				ice_malloc(hw, sizeof(*fm_entry));
2458 			if (!fm_entry) {
2459 				status = ICE_ERR_NO_MEMORY;
2460 				goto ice_add_mac_exit;
2461 			}
2462 			fm_entry->fltr_info = *f_info;
2463 			fm_entry->vsi_count = 1;
2464 			/* The book keeping entries will get removed when
2465 			 * base driver calls remove filter AQ command
2466 			 */
2467 
2468 			LIST_ADD(&fm_entry->list_entry, rule_head);
2469 			r_iter = (struct ice_sw_rule_lkup_rx_tx *)
2470 				((u8 *)r_iter + s_rule_size);
2471 		}
2472 	}
2473 
2474 ice_add_mac_exit:
2475 	ice_release_lock(rule_lock);
2476 	if (s_rule)
2477 		ice_free(hw, s_rule);
2478 	return status;
2479 }
2480 
2481 /**
2482  * ice_add_mac - Add a MAC address based filter rule
2483  * @hw: pointer to the hardware structure
2484  * @m_list: list of MAC addresses and forwarding information
2485  *
2486  * Function add MAC rule for logical port from HW struct
2487  */
2488 enum ice_status ice_add_mac(struct ice_hw *hw, struct LIST_HEAD_TYPE *m_list)
2489 {
2490 	if (!m_list || !hw)
2491 		return ICE_ERR_PARAM;
2492 
2493 	return ice_add_mac_rule(hw, m_list, hw->switch_info,
2494 				hw->port_info->lport);
2495 }
2496 
2497 /**
2498  * ice_add_vlan_internal - Add one VLAN based filter rule
2499  * @hw: pointer to the hardware structure
2500  * @recp_list: recipe list for which rule has to be added
2501  * @f_entry: filter entry containing one VLAN information
2502  */
2503 static enum ice_status
2504 ice_add_vlan_internal(struct ice_hw *hw, struct ice_sw_recipe *recp_list,
2505 		      struct ice_fltr_list_entry *f_entry)
2506 {
2507 	struct ice_fltr_mgmt_list_entry *v_list_itr;
2508 	struct ice_fltr_info *new_fltr, *cur_fltr;
2509 	enum ice_sw_lkup_type lkup_type;
2510 	u16 vsi_list_id = 0, vsi_handle;
2511 	struct ice_lock *rule_lock; /* Lock to protect filter rule list */
2512 	enum ice_status status = ICE_SUCCESS;
2513 
2514 	if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
2515 		return ICE_ERR_PARAM;
2516 
2517 	f_entry->fltr_info.fwd_id.hw_vsi_id =
2518 		ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
2519 	new_fltr = &f_entry->fltr_info;
2520 
2521 	/* VLAN ID should only be 12 bits */
2522 	if (new_fltr->l_data.vlan.vlan_id > ICE_MAX_VLAN_ID)
2523 		return ICE_ERR_PARAM;
2524 
2525 	if (new_fltr->src_id != ICE_SRC_ID_VSI)
2526 		return ICE_ERR_PARAM;
2527 
2528 	new_fltr->src = new_fltr->fwd_id.hw_vsi_id;
2529 	lkup_type = new_fltr->lkup_type;
2530 	vsi_handle = new_fltr->vsi_handle;
2531 	rule_lock = &recp_list->filt_rule_lock;
2532 	ice_acquire_lock(rule_lock);
2533 	v_list_itr = ice_find_rule_entry(&recp_list->filt_rules, new_fltr);
2534 	if (!v_list_itr) {
2535 		struct ice_vsi_list_map_info *map_info = NULL;
2536 
2537 		if (new_fltr->fltr_act == ICE_FWD_TO_VSI) {
2538 			/* All VLAN pruning rules use a VSI list. Check if
2539 			 * there is already a VSI list containing VSI that we
2540 			 * want to add. If found, use the same vsi_list_id for
2541 			 * this new VLAN rule or else create a new list.
2542 			 */
2543 			map_info = ice_find_vsi_list_entry(recp_list,
2544 							   vsi_handle,
2545 							   &vsi_list_id);
2546 			if (!map_info) {
2547 				status = ice_create_vsi_list_rule(hw,
2548 								  &vsi_handle,
2549 								  1,
2550 								  &vsi_list_id,
2551 								  lkup_type);
2552 				if (status)
2553 					goto exit;
2554 			}
2555 			/* Convert the action to forwarding to a VSI list. */
2556 			new_fltr->fltr_act = ICE_FWD_TO_VSI_LIST;
2557 			new_fltr->fwd_id.vsi_list_id = vsi_list_id;
2558 		}
2559 
2560 		status = ice_create_pkt_fwd_rule(hw, recp_list, f_entry);
2561 		if (!status) {
2562 			v_list_itr = ice_find_rule_entry(&recp_list->filt_rules,
2563 							 new_fltr);
2564 			if (!v_list_itr) {
2565 				status = ICE_ERR_DOES_NOT_EXIST;
2566 				goto exit;
2567 			}
2568 			/* reuse VSI list for new rule and increment ref_cnt */
2569 			if (map_info) {
2570 				v_list_itr->vsi_list_info = map_info;
2571 				map_info->ref_cnt++;
2572 			} else {
2573 				v_list_itr->vsi_list_info =
2574 					ice_create_vsi_list_map(hw, &vsi_handle,
2575 								1, vsi_list_id);
2576 			}
2577 		}
2578 	} else if (v_list_itr->vsi_list_info->ref_cnt == 1) {
2579 		/* Update existing VSI list to add new VSI ID only if it used
2580 		 * by one VLAN rule.
2581 		 */
2582 		cur_fltr = &v_list_itr->fltr_info;
2583 		status = ice_add_update_vsi_list(hw, v_list_itr, cur_fltr,
2584 						 new_fltr);
2585 	} else {
2586 		/* If VLAN rule exists and VSI list being used by this rule is
2587 		 * referenced by more than 1 VLAN rule. Then create a new VSI
2588 		 * list appending previous VSI with new VSI and update existing
2589 		 * VLAN rule to point to new VSI list ID
2590 		 */
2591 		struct ice_fltr_info tmp_fltr;
2592 		u16 vsi_handle_arr[2];
2593 		u16 cur_handle;
2594 
2595 		/* Current implementation only supports reusing VSI list with
2596 		 * one VSI count. We should never hit below condition
2597 		 */
2598 		if (v_list_itr->vsi_count > 1 &&
2599 		    v_list_itr->vsi_list_info->ref_cnt > 1) {
2600 			ice_debug(hw, ICE_DBG_SW, "Invalid configuration: Optimization to reuse VSI list with more than one VSI is not being done yet\n");
2601 			status = ICE_ERR_CFG;
2602 			goto exit;
2603 		}
2604 
2605 		cur_handle =
2606 			ice_find_first_bit(v_list_itr->vsi_list_info->vsi_map,
2607 					   ICE_MAX_VSI);
2608 
2609 		/* A rule already exists with the new VSI being added */
2610 		if (cur_handle == vsi_handle) {
2611 			status = ICE_ERR_ALREADY_EXISTS;
2612 			goto exit;
2613 		}
2614 
2615 		vsi_handle_arr[0] = cur_handle;
2616 		vsi_handle_arr[1] = vsi_handle;
2617 		status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
2618 						  &vsi_list_id, lkup_type);
2619 		if (status)
2620 			goto exit;
2621 
2622 		tmp_fltr = v_list_itr->fltr_info;
2623 		tmp_fltr.fltr_rule_id = v_list_itr->fltr_info.fltr_rule_id;
2624 		tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
2625 		tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
2626 		/* Update the previous switch rule to a new VSI list which
2627 		 * includes current VSI that is requested
2628 		 */
2629 		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
2630 		if (status)
2631 			goto exit;
2632 
2633 		/* before overriding VSI list map info. decrement ref_cnt of
2634 		 * previous VSI list
2635 		 */
2636 		v_list_itr->vsi_list_info->ref_cnt--;
2637 
2638 		/* now update to newly created list */
2639 		v_list_itr->fltr_info.fwd_id.vsi_list_id = vsi_list_id;
2640 		v_list_itr->vsi_list_info =
2641 			ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
2642 						vsi_list_id);
2643 		v_list_itr->vsi_count++;
2644 	}
2645 
2646 exit:
2647 	ice_release_lock(rule_lock);
2648 	return status;
2649 }
2650 
2651 /**
2652  * ice_add_vlan_rule - Add VLAN based filter rule
2653  * @hw: pointer to the hardware structure
2654  * @v_list: list of VLAN entries and forwarding information
2655  * @sw: pointer to switch info struct for which function add rule
2656  */
2657 static enum ice_status
2658 ice_add_vlan_rule(struct ice_hw *hw, struct LIST_HEAD_TYPE *v_list,
2659 		  struct ice_switch_info *sw)
2660 {
2661 	struct ice_fltr_list_entry *v_list_itr;
2662 	struct ice_sw_recipe *recp_list;
2663 
2664 	recp_list = &sw->recp_list[ICE_SW_LKUP_VLAN];
2665 	LIST_FOR_EACH_ENTRY(v_list_itr, v_list, ice_fltr_list_entry,
2666 			    list_entry) {
2667 		if (v_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_VLAN)
2668 			return ICE_ERR_PARAM;
2669 		v_list_itr->fltr_info.flag = ICE_FLTR_TX;
2670 		v_list_itr->status = ice_add_vlan_internal(hw, recp_list,
2671 							   v_list_itr);
2672 		if (v_list_itr->status)
2673 			return v_list_itr->status;
2674 	}
2675 	return ICE_SUCCESS;
2676 }
2677 
2678 /**
2679  * ice_add_vlan - Add a VLAN based filter rule
2680  * @hw: pointer to the hardware structure
2681  * @v_list: list of VLAN and forwarding information
2682  *
2683  * Function add VLAN rule for logical port from HW struct
2684  */
2685 enum ice_status ice_add_vlan(struct ice_hw *hw, struct LIST_HEAD_TYPE *v_list)
2686 {
2687 	if (!v_list || !hw)
2688 		return ICE_ERR_PARAM;
2689 
2690 	return ice_add_vlan_rule(hw, v_list, hw->switch_info);
2691 }
2692 
2693 /**
2694  * ice_add_eth_mac_rule - Add ethertype and MAC based filter rule
2695  * @hw: pointer to the hardware structure
2696  * @em_list: list of ether type MAC filter, MAC is optional
2697  * @sw: pointer to switch info struct for which function add rule
2698  * @lport: logic port number on which function add rule
2699  *
2700  * This function requires the caller to populate the entries in
2701  * the filter list with the necessary fields (including flags to
2702  * indicate Tx or Rx rules).
2703  */
2704 static enum ice_status
2705 ice_add_eth_mac_rule(struct ice_hw *hw, struct LIST_HEAD_TYPE *em_list,
2706 		     struct ice_switch_info *sw, u8 lport)
2707 {
2708 	struct ice_fltr_list_entry *em_list_itr;
2709 
2710 	LIST_FOR_EACH_ENTRY(em_list_itr, em_list, ice_fltr_list_entry,
2711 			    list_entry) {
2712 		struct ice_sw_recipe *recp_list;
2713 		enum ice_sw_lkup_type l_type;
2714 
2715 		l_type = em_list_itr->fltr_info.lkup_type;
2716 		recp_list = &sw->recp_list[l_type];
2717 
2718 		if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC &&
2719 		    l_type != ICE_SW_LKUP_ETHERTYPE)
2720 			return ICE_ERR_PARAM;
2721 
2722 		em_list_itr->status = ice_add_rule_internal(hw, recp_list,
2723 							    lport,
2724 							    em_list_itr);
2725 		if (em_list_itr->status)
2726 			return em_list_itr->status;
2727 	}
2728 	return ICE_SUCCESS;
2729 }
2730 
2731 /**
2732  * ice_add_eth_mac - Add a ethertype based filter rule
2733  * @hw: pointer to the hardware structure
2734  * @em_list: list of ethertype and forwarding information
2735  *
2736  * Function add ethertype rule for logical port from HW struct
2737  */
2738 enum ice_status
2739 ice_add_eth_mac(struct ice_hw *hw, struct LIST_HEAD_TYPE *em_list)
2740 {
2741 	if (!em_list || !hw)
2742 		return ICE_ERR_PARAM;
2743 
2744 	return ice_add_eth_mac_rule(hw, em_list, hw->switch_info,
2745 				    hw->port_info->lport);
2746 }
2747 
2748 /**
2749  * ice_remove_eth_mac_rule - Remove an ethertype (or MAC) based filter rule
2750  * @hw: pointer to the hardware structure
2751  * @em_list: list of ethertype or ethertype MAC entries
2752  * @sw: pointer to switch info struct for which function add rule
2753  */
2754 static enum ice_status
2755 ice_remove_eth_mac_rule(struct ice_hw *hw, struct LIST_HEAD_TYPE *em_list,
2756 			struct ice_switch_info *sw)
2757 {
2758 	struct ice_fltr_list_entry *em_list_itr, *tmp;
2759 
2760 	LIST_FOR_EACH_ENTRY_SAFE(em_list_itr, tmp, em_list, ice_fltr_list_entry,
2761 				 list_entry) {
2762 		struct ice_sw_recipe *recp_list;
2763 		enum ice_sw_lkup_type l_type;
2764 
2765 		l_type = em_list_itr->fltr_info.lkup_type;
2766 
2767 		if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC &&
2768 		    l_type != ICE_SW_LKUP_ETHERTYPE)
2769 			return ICE_ERR_PARAM;
2770 
2771 		recp_list = &sw->recp_list[l_type];
2772 		em_list_itr->status = ice_remove_rule_internal(hw, recp_list,
2773 							       em_list_itr);
2774 		if (em_list_itr->status)
2775 			return em_list_itr->status;
2776 	}
2777 	return ICE_SUCCESS;
2778 }
2779 
2780 /**
2781  * ice_remove_eth_mac - remove a ethertype based filter rule
2782  * @hw: pointer to the hardware structure
2783  * @em_list: list of ethertype and forwarding information
2784  *
2785  */
2786 enum ice_status
2787 ice_remove_eth_mac(struct ice_hw *hw, struct LIST_HEAD_TYPE *em_list)
2788 {
2789 	if (!em_list || !hw)
2790 		return ICE_ERR_PARAM;
2791 
2792 	return ice_remove_eth_mac_rule(hw, em_list, hw->switch_info);
2793 }
2794 
2795 /**
2796  * ice_get_lg_act_aqc_res_type - get resource type for a large action
2797  * @res_type: resource type to be filled in case of function success
2798  * @num_acts: number of actions to hold with a large action entry
2799  *
2800  * Get resource type for a large action depending on the number
2801  * of single actions that it contains.
2802  */
2803 static enum ice_status
2804 ice_get_lg_act_aqc_res_type(u16 *res_type, int num_acts)
2805 {
2806 	if (!res_type)
2807 		return ICE_ERR_BAD_PTR;
2808 
2809 	/* If num_acts is 1, use ICE_AQC_RES_TYPE_WIDE_TABLE_1.
2810 	 * If num_acts is 2, use ICE_AQC_RES_TYPE_WIDE_TABLE_3.
2811 	 * If num_acts is greater than 2, then use
2812 	 * ICE_AQC_RES_TYPE_WIDE_TABLE_4.
2813 	 * The num_acts cannot be equal to 0 or greater than 4.
2814 	 */
2815 	switch (num_acts) {
2816 	case 1:
2817 		*res_type = ICE_AQC_RES_TYPE_WIDE_TABLE_1;
2818 		break;
2819 	case 2:
2820 		*res_type = ICE_AQC_RES_TYPE_WIDE_TABLE_2;
2821 		break;
2822 	case 3:
2823 	case 4:
2824 		*res_type = ICE_AQC_RES_TYPE_WIDE_TABLE_4;
2825 		break;
2826 	default:
2827 		return ICE_ERR_PARAM;
2828 	}
2829 
2830 	return ICE_SUCCESS;
2831 }
2832 
2833 /**
2834  * ice_alloc_res_lg_act - add large action resource
2835  * @hw: pointer to the hardware structure
2836  * @l_id: large action ID to fill it in
2837  * @num_acts: number of actions to hold with a large action entry
2838  */
2839 static enum ice_status
2840 ice_alloc_res_lg_act(struct ice_hw *hw, u16 *l_id, u16 num_acts)
2841 {
2842 	struct ice_aqc_alloc_free_res_elem *sw_buf;
2843 	enum ice_status status;
2844 	u16 buf_len, res_type;
2845 
2846 	if (!l_id)
2847 		return ICE_ERR_BAD_PTR;
2848 
2849 	status = ice_get_lg_act_aqc_res_type(&res_type, num_acts);
2850 	if (status)
2851 		return status;
2852 
2853 	/* Allocate resource for large action */
2854 	buf_len = ice_struct_size(sw_buf, elem, 1);
2855 	sw_buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
2856 	if (!sw_buf)
2857 		return ICE_ERR_NO_MEMORY;
2858 
2859 	sw_buf->res_type = CPU_TO_LE16(res_type);
2860 	sw_buf->num_elems = CPU_TO_LE16(1);
2861 
2862 	status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len,
2863 				       ice_aqc_opc_alloc_res, NULL);
2864 	if (!status)
2865 		*l_id = LE16_TO_CPU(sw_buf->elem[0].e.sw_resp);
2866 
2867 	ice_free(hw, sw_buf);
2868 
2869 	return status;
2870 }
2871 
2872 /**
2873  * ice_rem_sw_rule_info
2874  * @hw: pointer to the hardware structure
2875  * @rule_head: pointer to the switch list structure that we want to delete
2876  */
2877 static void
2878 ice_rem_sw_rule_info(struct ice_hw *hw, struct LIST_HEAD_TYPE *rule_head)
2879 {
2880 	if (!LIST_EMPTY(rule_head)) {
2881 		struct ice_fltr_mgmt_list_entry *entry;
2882 		struct ice_fltr_mgmt_list_entry *tmp;
2883 
2884 		LIST_FOR_EACH_ENTRY_SAFE(entry, tmp, rule_head,
2885 					 ice_fltr_mgmt_list_entry, list_entry) {
2886 			LIST_DEL(&entry->list_entry);
2887 			ice_free(hw, entry);
2888 		}
2889 	}
2890 }
2891 
2892 /**
2893  * ice_rem_all_sw_rules_info
2894  * @hw: pointer to the hardware structure
2895  */
2896 void ice_rem_all_sw_rules_info(struct ice_hw *hw)
2897 {
2898 	struct ice_switch_info *sw = hw->switch_info;
2899 	u8 i;
2900 
2901 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
2902 		struct LIST_HEAD_TYPE *rule_head;
2903 
2904 		rule_head = &sw->recp_list[i].filt_rules;
2905 		if (!sw->recp_list[i].adv_rule)
2906 			ice_rem_sw_rule_info(hw, rule_head);
2907 	}
2908 }
2909 
2910 /**
2911  * ice_cfg_dflt_vsi - change state of VSI to set/clear default
2912  * @pi: pointer to the port_info structure
2913  * @vsi_handle: VSI handle to set as default
2914  * @set: true to add the above mentioned switch rule, false to remove it
2915  * @direction: ICE_FLTR_RX or ICE_FLTR_TX
2916  *
2917  * add filter rule to set/unset given VSI as default VSI for the switch
2918  * (represented by swid)
2919  */
2920 enum ice_status
2921 ice_cfg_dflt_vsi(struct ice_port_info *pi, u16 vsi_handle, bool set,
2922 		 u8 direction)
2923 {
2924 	struct ice_fltr_list_entry f_list_entry;
2925 	struct ice_sw_recipe *recp_list = NULL;
2926 	struct ice_fltr_info f_info;
2927 	struct ice_hw *hw = pi->hw;
2928 	enum ice_status status;
2929 	u8 lport = pi->lport;
2930 	u16 hw_vsi_id;
2931 	recp_list = &pi->hw->switch_info->recp_list[ICE_SW_LKUP_DFLT];
2932 
2933 	if (!ice_is_vsi_valid(hw, vsi_handle))
2934 		return ICE_ERR_PARAM;
2935 
2936 	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
2937 
2938 	ice_memset(&f_info, 0, sizeof(f_info), ICE_NONDMA_MEM);
2939 
2940 	f_info.lkup_type = ICE_SW_LKUP_DFLT;
2941 	f_info.flag = direction;
2942 	f_info.fltr_act = ICE_FWD_TO_VSI;
2943 	f_info.fwd_id.hw_vsi_id = hw_vsi_id;
2944 	f_info.vsi_handle = vsi_handle;
2945 
2946 	if (f_info.flag & ICE_FLTR_RX) {
2947 		f_info.src = pi->lport;
2948 		f_info.src_id = ICE_SRC_ID_LPORT;
2949 	} else if (f_info.flag & ICE_FLTR_TX) {
2950 		f_info.src_id = ICE_SRC_ID_VSI;
2951 		f_info.src = hw_vsi_id;
2952 	}
2953 	f_list_entry.fltr_info = f_info;
2954 
2955 	if (set)
2956 		status = ice_add_rule_internal(hw, recp_list, lport,
2957 					       &f_list_entry);
2958 	else
2959 		status = ice_remove_rule_internal(hw, recp_list,
2960 						  &f_list_entry);
2961 
2962 	return status;
2963 }
2964 
2965 /**
2966  * ice_check_if_dflt_vsi - check if VSI is default VSI
2967  * @pi: pointer to the port_info structure
2968  * @vsi_handle: vsi handle to check for in filter list
2969  * @rule_exists: indicates if there are any VSI's in the rule list
2970  *
2971  * checks if the VSI is in a default VSI list, and also indicates
2972  * if the default VSI list is empty
2973  */
2974 bool ice_check_if_dflt_vsi(struct ice_port_info *pi, u16 vsi_handle,
2975 			   bool *rule_exists)
2976 {
2977 	struct ice_fltr_mgmt_list_entry *fm_entry;
2978 	struct LIST_HEAD_TYPE *rule_head;
2979 	struct ice_sw_recipe *recp_list;
2980 	struct ice_lock *rule_lock;
2981 	bool ret = false;
2982 	recp_list = &pi->hw->switch_info->recp_list[ICE_SW_LKUP_DFLT];
2983 	rule_lock = &recp_list->filt_rule_lock;
2984 	rule_head = &recp_list->filt_rules;
2985 
2986 	ice_acquire_lock(rule_lock);
2987 
2988 	if (rule_exists && !LIST_EMPTY(rule_head))
2989 		*rule_exists = true;
2990 
2991 	LIST_FOR_EACH_ENTRY(fm_entry, rule_head,
2992 			    ice_fltr_mgmt_list_entry, list_entry) {
2993 		if (ice_vsi_uses_fltr(fm_entry, vsi_handle)) {
2994 			ret = true;
2995 			break;
2996 		}
2997 	}
2998 
2999 	ice_release_lock(rule_lock);
3000 	return ret;
3001 }
3002 
3003 /**
3004  * ice_find_ucast_rule_entry - Search for a unicast MAC filter rule entry
3005  * @list_head: head of rule list
3006  * @f_info: rule information
3007  *
3008  * Helper function to search for a unicast rule entry - this is to be used
3009  * to remove unicast MAC filter that is not shared with other VSIs on the
3010  * PF switch.
3011  *
3012  * Returns pointer to entry storing the rule if found
3013  */
3014 static struct ice_fltr_mgmt_list_entry *
3015 ice_find_ucast_rule_entry(struct LIST_HEAD_TYPE *list_head,
3016 			  struct ice_fltr_info *f_info)
3017 {
3018 	struct ice_fltr_mgmt_list_entry *list_itr;
3019 
3020 	LIST_FOR_EACH_ENTRY(list_itr, list_head, ice_fltr_mgmt_list_entry,
3021 			    list_entry) {
3022 		if (!memcmp(&f_info->l_data, &list_itr->fltr_info.l_data,
3023 			    sizeof(f_info->l_data)) &&
3024 		    f_info->fwd_id.hw_vsi_id ==
3025 		    list_itr->fltr_info.fwd_id.hw_vsi_id &&
3026 		    f_info->flag == list_itr->fltr_info.flag)
3027 			return list_itr;
3028 	}
3029 	return NULL;
3030 }
3031 
3032 /**
3033  * ice_remove_mac_rule - remove a MAC based filter rule
3034  * @hw: pointer to the hardware structure
3035  * @m_list: list of MAC addresses and forwarding information
3036  * @recp_list: list from which function remove MAC address
3037  *
3038  * This function removes either a MAC filter rule or a specific VSI from a
3039  * VSI list for a multicast MAC address.
3040  *
3041  * Returns ICE_ERR_DOES_NOT_EXIST if a given entry was not added by
3042  * ice_add_mac. Caller should be aware that this call will only work if all
3043  * the entries passed into m_list were added previously. It will not attempt to
3044  * do a partial remove of entries that were found.
3045  */
3046 static enum ice_status
3047 ice_remove_mac_rule(struct ice_hw *hw, struct LIST_HEAD_TYPE *m_list,
3048 		    struct ice_sw_recipe *recp_list)
3049 {
3050 	struct ice_fltr_list_entry *list_itr, *tmp;
3051 	struct ice_lock *rule_lock; /* Lock to protect filter rule list */
3052 
3053 	if (!m_list)
3054 		return ICE_ERR_PARAM;
3055 
3056 	rule_lock = &recp_list->filt_rule_lock;
3057 	LIST_FOR_EACH_ENTRY_SAFE(list_itr, tmp, m_list, ice_fltr_list_entry,
3058 				 list_entry) {
3059 		enum ice_sw_lkup_type l_type = list_itr->fltr_info.lkup_type;
3060 		u8 *add = &list_itr->fltr_info.l_data.mac.mac_addr[0];
3061 		u16 vsi_handle;
3062 
3063 		if (l_type != ICE_SW_LKUP_MAC)
3064 			return ICE_ERR_PARAM;
3065 
3066 		vsi_handle = list_itr->fltr_info.vsi_handle;
3067 		if (!ice_is_vsi_valid(hw, vsi_handle))
3068 			return ICE_ERR_PARAM;
3069 
3070 		list_itr->fltr_info.fwd_id.hw_vsi_id =
3071 					ice_get_hw_vsi_num(hw, vsi_handle);
3072 		if (IS_UNICAST_ETHER_ADDR(add) && !hw->umac_shared) {
3073 			/* Don't remove the unicast address that belongs to
3074 			 * another VSI on the switch, since it is not being
3075 			 * shared...
3076 			 */
3077 			ice_acquire_lock(rule_lock);
3078 			if (!ice_find_ucast_rule_entry(&recp_list->filt_rules,
3079 						       &list_itr->fltr_info)) {
3080 				ice_release_lock(rule_lock);
3081 				return ICE_ERR_DOES_NOT_EXIST;
3082 			}
3083 			ice_release_lock(rule_lock);
3084 		}
3085 		list_itr->status = ice_remove_rule_internal(hw, recp_list,
3086 							    list_itr);
3087 		if (list_itr->status)
3088 			return list_itr->status;
3089 	}
3090 	return ICE_SUCCESS;
3091 }
3092 
3093 /**
3094  * ice_remove_mac - remove a MAC address based filter rule
3095  * @hw: pointer to the hardware structure
3096  * @m_list: list of MAC addresses and forwarding information
3097  *
3098  */
3099 enum ice_status ice_remove_mac(struct ice_hw *hw, struct LIST_HEAD_TYPE *m_list)
3100 {
3101 	struct ice_sw_recipe *recp_list;
3102 
3103 	recp_list = &hw->switch_info->recp_list[ICE_SW_LKUP_MAC];
3104 	return ice_remove_mac_rule(hw, m_list, recp_list);
3105 }
3106 
3107 /**
3108  * ice_remove_vlan_rule - Remove VLAN based filter rule
3109  * @hw: pointer to the hardware structure
3110  * @v_list: list of VLAN entries and forwarding information
3111  * @recp_list: list from which function remove VLAN
3112  */
3113 static enum ice_status
3114 ice_remove_vlan_rule(struct ice_hw *hw, struct LIST_HEAD_TYPE *v_list,
3115 		     struct ice_sw_recipe *recp_list)
3116 {
3117 	struct ice_fltr_list_entry *v_list_itr, *tmp;
3118 
3119 	LIST_FOR_EACH_ENTRY_SAFE(v_list_itr, tmp, v_list, ice_fltr_list_entry,
3120 				 list_entry) {
3121 		enum ice_sw_lkup_type l_type = v_list_itr->fltr_info.lkup_type;
3122 
3123 		if (l_type != ICE_SW_LKUP_VLAN)
3124 			return ICE_ERR_PARAM;
3125 		v_list_itr->status = ice_remove_rule_internal(hw, recp_list,
3126 							      v_list_itr);
3127 		if (v_list_itr->status)
3128 			return v_list_itr->status;
3129 	}
3130 	return ICE_SUCCESS;
3131 }
3132 
3133 /**
3134  * ice_remove_vlan - remove a VLAN address based filter rule
3135  * @hw: pointer to the hardware structure
3136  * @v_list: list of VLAN and forwarding information
3137  *
3138  */
3139 enum ice_status
3140 ice_remove_vlan(struct ice_hw *hw, struct LIST_HEAD_TYPE *v_list)
3141 {
3142 	struct ice_sw_recipe *recp_list;
3143 
3144 	if (!v_list || !hw)
3145 		return ICE_ERR_PARAM;
3146 
3147 	recp_list = &hw->switch_info->recp_list[ICE_SW_LKUP_VLAN];
3148 	return ice_remove_vlan_rule(hw, v_list, recp_list);
3149 }
3150 
3151 /**
3152  * ice_vsi_uses_fltr - Determine if given VSI uses specified filter
3153  * @fm_entry: filter entry to inspect
3154  * @vsi_handle: VSI handle to compare with filter info
3155  */
3156 static bool
3157 ice_vsi_uses_fltr(struct ice_fltr_mgmt_list_entry *fm_entry, u16 vsi_handle)
3158 {
3159 	return ((fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI &&
3160 		 fm_entry->fltr_info.vsi_handle == vsi_handle) ||
3161 		(fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI_LIST &&
3162 		 fm_entry->vsi_list_info &&
3163 		 (ice_is_bit_set(fm_entry->vsi_list_info->vsi_map,
3164 				 vsi_handle))));
3165 }
3166 
3167 /**
3168  * ice_add_entry_to_vsi_fltr_list - Add copy of fltr_list_entry to remove list
3169  * @hw: pointer to the hardware structure
3170  * @vsi_handle: VSI handle to remove filters from
3171  * @vsi_list_head: pointer to the list to add entry to
3172  * @fi: pointer to fltr_info of filter entry to copy & add
3173  *
3174  * Helper function, used when creating a list of filters to remove from
3175  * a specific VSI. The entry added to vsi_list_head is a COPY of the
3176  * original filter entry, with the exception of fltr_info.fltr_act and
3177  * fltr_info.fwd_id fields. These are set such that later logic can
3178  * extract which VSI to remove the fltr from, and pass on that information.
3179  */
3180 static enum ice_status
3181 ice_add_entry_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle,
3182 			       struct LIST_HEAD_TYPE *vsi_list_head,
3183 			       struct ice_fltr_info *fi)
3184 {
3185 	struct ice_fltr_list_entry *tmp;
3186 
3187 	/* this memory is freed up in the caller function
3188 	 * once filters for this VSI are removed
3189 	 */
3190 	tmp = (struct ice_fltr_list_entry *)ice_malloc(hw, sizeof(*tmp));
3191 	if (!tmp)
3192 		return ICE_ERR_NO_MEMORY;
3193 
3194 	tmp->fltr_info = *fi;
3195 
3196 	/* Overwrite these fields to indicate which VSI to remove filter from,
3197 	 * so find and remove logic can extract the information from the
3198 	 * list entries. Note that original entries will still have proper
3199 	 * values.
3200 	 */
3201 	tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI;
3202 	tmp->fltr_info.vsi_handle = vsi_handle;
3203 	tmp->fltr_info.fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3204 
3205 	LIST_ADD(&tmp->list_entry, vsi_list_head);
3206 
3207 	return ICE_SUCCESS;
3208 }
3209 
3210 /**
3211  * ice_add_to_vsi_fltr_list - Add VSI filters to the list
3212  * @hw: pointer to the hardware structure
3213  * @vsi_handle: VSI handle to remove filters from
3214  * @lkup_list_head: pointer to the list that has certain lookup type filters
3215  * @vsi_list_head: pointer to the list pertaining to VSI with vsi_handle
3216  *
3217  * Locates all filters in lkup_list_head that are used by the given VSI,
3218  * and adds COPIES of those entries to vsi_list_head (intended to be used
3219  * to remove the listed filters).
3220  * Note that this means all entries in vsi_list_head must be explicitly
3221  * deallocated by the caller when done with list.
3222  */
3223 static enum ice_status
3224 ice_add_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle,
3225 			 struct LIST_HEAD_TYPE *lkup_list_head,
3226 			 struct LIST_HEAD_TYPE *vsi_list_head)
3227 {
3228 	struct ice_fltr_mgmt_list_entry *fm_entry;
3229 	enum ice_status status = ICE_SUCCESS;
3230 
3231 	/* check to make sure VSI ID is valid and within boundary */
3232 	if (!ice_is_vsi_valid(hw, vsi_handle))
3233 		return ICE_ERR_PARAM;
3234 
3235 	LIST_FOR_EACH_ENTRY(fm_entry, lkup_list_head,
3236 			    ice_fltr_mgmt_list_entry, list_entry) {
3237 		if (!ice_vsi_uses_fltr(fm_entry, vsi_handle))
3238 			continue;
3239 
3240 		status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle,
3241 							vsi_list_head,
3242 							&fm_entry->fltr_info);
3243 		if (status)
3244 			return status;
3245 	}
3246 	return status;
3247 }
3248 
3249 /**
3250  * ice_determine_promisc_mask
3251  * @fi: filter info to parse
3252  * @promisc_mask: pointer to mask to be filled in
3253  *
3254  * Helper function to determine which ICE_PROMISC_ mask corresponds
3255  * to given filter into.
3256  */
3257 static void ice_determine_promisc_mask(struct ice_fltr_info *fi,
3258 				       ice_bitmap_t *promisc_mask)
3259 {
3260 	u16 vid = fi->l_data.mac_vlan.vlan_id;
3261 	u8 *macaddr = fi->l_data.mac.mac_addr;
3262 	bool is_tx_fltr = false;
3263 
3264 	ice_zero_bitmap(promisc_mask, ICE_PROMISC_MAX);
3265 
3266 	if (fi->flag == ICE_FLTR_TX)
3267 		is_tx_fltr = true;
3268 
3269 	if (IS_BROADCAST_ETHER_ADDR(macaddr)) {
3270 		ice_set_bit(is_tx_fltr ? ICE_PROMISC_BCAST_TX
3271 				       : ICE_PROMISC_BCAST_RX, promisc_mask);
3272 	} else if (IS_MULTICAST_ETHER_ADDR(macaddr)) {
3273 		ice_set_bit(is_tx_fltr ? ICE_PROMISC_MCAST_TX
3274 				       : ICE_PROMISC_MCAST_RX, promisc_mask);
3275 	} else if (IS_UNICAST_ETHER_ADDR(macaddr)) {
3276 		ice_set_bit(is_tx_fltr ? ICE_PROMISC_UCAST_TX
3277 				       : ICE_PROMISC_UCAST_RX, promisc_mask);
3278 	}
3279 
3280 	if (vid) {
3281 		ice_set_bit(is_tx_fltr ? ICE_PROMISC_VLAN_TX
3282 				       : ICE_PROMISC_VLAN_RX, promisc_mask);
3283 	}
3284 }
3285 
3286 /**
3287  * _ice_get_vsi_promisc - get promiscuous mode of given VSI
3288  * @hw: pointer to the hardware structure
3289  * @vsi_handle: VSI handle to retrieve info from
3290  * @promisc_mask: pointer to mask to be filled in
3291  * @vid: VLAN ID of promisc VLAN VSI
3292  * @sw: pointer to switch info struct for which function add rule
3293  * @lkup: switch rule filter lookup type
3294  */
3295 static enum ice_status
3296 _ice_get_vsi_promisc(struct ice_hw *hw, u16 vsi_handle,
3297 		     ice_bitmap_t *promisc_mask, u16 *vid,
3298 		     struct ice_switch_info *sw, enum ice_sw_lkup_type lkup)
3299 {
3300 	ice_declare_bitmap(fltr_promisc_mask, ICE_PROMISC_MAX);
3301 	struct ice_fltr_mgmt_list_entry *itr;
3302 	struct LIST_HEAD_TYPE *rule_head;
3303 	struct ice_lock *rule_lock;	/* Lock to protect filter rule list */
3304 
3305 	if (!ice_is_vsi_valid(hw, vsi_handle) ||
3306 	    (lkup != ICE_SW_LKUP_PROMISC && lkup != ICE_SW_LKUP_PROMISC_VLAN))
3307 		return ICE_ERR_PARAM;
3308 
3309 	*vid = 0;
3310 	rule_head = &sw->recp_list[lkup].filt_rules;
3311 	rule_lock = &sw->recp_list[lkup].filt_rule_lock;
3312 
3313 	ice_zero_bitmap(promisc_mask, ICE_PROMISC_MAX);
3314 
3315 	ice_acquire_lock(rule_lock);
3316 	LIST_FOR_EACH_ENTRY(itr, rule_head,
3317 			    ice_fltr_mgmt_list_entry, list_entry) {
3318 		/* Continue if this filter doesn't apply to this VSI or the
3319 		 * VSI ID is not in the VSI map for this filter
3320 		 */
3321 		if (!ice_vsi_uses_fltr(itr, vsi_handle))
3322 			continue;
3323 
3324 		ice_determine_promisc_mask(&itr->fltr_info, fltr_promisc_mask);
3325 		ice_or_bitmap(promisc_mask, promisc_mask, fltr_promisc_mask,
3326 			      ICE_PROMISC_MAX);
3327 
3328 	}
3329 	ice_release_lock(rule_lock);
3330 
3331 	return ICE_SUCCESS;
3332 }
3333 
3334 /**
3335  * ice_get_vsi_promisc - get promiscuous mode of given VSI
3336  * @hw: pointer to the hardware structure
3337  * @vsi_handle: VSI handle to retrieve info from
3338  * @promisc_mask: pointer to mask to be filled in
3339  * @vid: VLAN ID of promisc VLAN VSI
3340  */
3341 enum ice_status
3342 ice_get_vsi_promisc(struct ice_hw *hw, u16 vsi_handle,
3343 		    ice_bitmap_t *promisc_mask, u16 *vid)
3344 {
3345 	if (!vid || !promisc_mask || !hw)
3346 		return ICE_ERR_PARAM;
3347 
3348 	return _ice_get_vsi_promisc(hw, vsi_handle, promisc_mask,
3349 				    vid, hw->switch_info, ICE_SW_LKUP_PROMISC);
3350 }
3351 
3352 /**
3353  * ice_get_vsi_vlan_promisc - get VLAN promiscuous mode of given VSI
3354  * @hw: pointer to the hardware structure
3355  * @vsi_handle: VSI handle to retrieve info from
3356  * @promisc_mask: pointer to mask to be filled in
3357  * @vid: VLAN ID of promisc VLAN VSI
3358  */
3359 enum ice_status
3360 ice_get_vsi_vlan_promisc(struct ice_hw *hw, u16 vsi_handle,
3361 			 ice_bitmap_t *promisc_mask, u16 *vid)
3362 {
3363 	if (!hw || !promisc_mask || !vid)
3364 		return ICE_ERR_PARAM;
3365 
3366 	return _ice_get_vsi_promisc(hw, vsi_handle, promisc_mask,
3367 				    vid, hw->switch_info,
3368 				    ICE_SW_LKUP_PROMISC_VLAN);
3369 }
3370 
3371 /**
3372  * ice_remove_promisc - Remove promisc based filter rules
3373  * @hw: pointer to the hardware structure
3374  * @recp_id: recipe ID for which the rule needs to removed
3375  * @v_list: list of promisc entries
3376  */
3377 static enum ice_status
3378 ice_remove_promisc(struct ice_hw *hw, u8 recp_id,
3379 		   struct LIST_HEAD_TYPE *v_list)
3380 {
3381 	struct ice_fltr_list_entry *v_list_itr, *tmp;
3382 	struct ice_sw_recipe *recp_list;
3383 
3384 	recp_list = &hw->switch_info->recp_list[recp_id];
3385 	LIST_FOR_EACH_ENTRY_SAFE(v_list_itr, tmp, v_list, ice_fltr_list_entry,
3386 				 list_entry) {
3387 		v_list_itr->status =
3388 			ice_remove_rule_internal(hw, recp_list, v_list_itr);
3389 		if (v_list_itr->status)
3390 			return v_list_itr->status;
3391 	}
3392 	return ICE_SUCCESS;
3393 }
3394 
3395 /**
3396  * _ice_clear_vsi_promisc - clear specified promiscuous mode(s)
3397  * @hw: pointer to the hardware structure
3398  * @vsi_handle: VSI handle to clear mode
3399  * @promisc_mask: pointer to mask of promiscuous config bits to clear
3400  * @vid: VLAN ID to clear VLAN promiscuous
3401  * @sw: pointer to switch info struct for which function add rule
3402  */
3403 static enum ice_status
3404 _ice_clear_vsi_promisc(struct ice_hw *hw, u16 vsi_handle,
3405 		       ice_bitmap_t *promisc_mask, u16 vid,
3406 		       struct ice_switch_info *sw)
3407 {
3408 	ice_declare_bitmap(compl_promisc_mask, ICE_PROMISC_MAX);
3409 	ice_declare_bitmap(fltr_promisc_mask, ICE_PROMISC_MAX);
3410 	struct ice_fltr_list_entry *fm_entry, *tmp;
3411 	struct LIST_HEAD_TYPE remove_list_head;
3412 	struct ice_fltr_mgmt_list_entry *itr;
3413 	struct LIST_HEAD_TYPE *rule_head;
3414 	struct ice_lock *rule_lock;	/* Lock to protect filter rule list */
3415 	enum ice_status status = ICE_SUCCESS;
3416 	u8 recipe_id;
3417 
3418 	if (!ice_is_vsi_valid(hw, vsi_handle))
3419 		return ICE_ERR_PARAM;
3420 
3421 	if (ice_is_bit_set(promisc_mask, ICE_PROMISC_VLAN_RX) &&
3422 	    ice_is_bit_set(promisc_mask, ICE_PROMISC_VLAN_TX))
3423 		recipe_id = ICE_SW_LKUP_PROMISC_VLAN;
3424 	else
3425 		recipe_id = ICE_SW_LKUP_PROMISC;
3426 
3427 	rule_head = &sw->recp_list[recipe_id].filt_rules;
3428 	rule_lock = &sw->recp_list[recipe_id].filt_rule_lock;
3429 
3430 	INIT_LIST_HEAD(&remove_list_head);
3431 
3432 	ice_acquire_lock(rule_lock);
3433 	LIST_FOR_EACH_ENTRY(itr, rule_head,
3434 			    ice_fltr_mgmt_list_entry, list_entry) {
3435 		struct ice_fltr_info *fltr_info;
3436 		ice_zero_bitmap(compl_promisc_mask, ICE_PROMISC_MAX);
3437 
3438 		if (!ice_vsi_uses_fltr(itr, vsi_handle))
3439 			continue;
3440 		fltr_info = &itr->fltr_info;
3441 
3442 		if (recipe_id == ICE_SW_LKUP_PROMISC_VLAN &&
3443 		    vid != fltr_info->l_data.mac_vlan.vlan_id)
3444 			continue;
3445 
3446 		ice_determine_promisc_mask(fltr_info, fltr_promisc_mask);
3447 		ice_andnot_bitmap(compl_promisc_mask, fltr_promisc_mask,
3448 				  promisc_mask, ICE_PROMISC_MAX);
3449 
3450 		/* Skip if filter is not completely specified by given mask */
3451 		if (ice_is_any_bit_set(compl_promisc_mask, ICE_PROMISC_MAX))
3452 			continue;
3453 
3454 		status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle,
3455 							&remove_list_head,
3456 							fltr_info);
3457 		if (status) {
3458 			ice_release_lock(rule_lock);
3459 			goto free_fltr_list;
3460 		}
3461 	}
3462 	ice_release_lock(rule_lock);
3463 
3464 	status = ice_remove_promisc(hw, recipe_id, &remove_list_head);
3465 
3466 free_fltr_list:
3467 	LIST_FOR_EACH_ENTRY_SAFE(fm_entry, tmp, &remove_list_head,
3468 				 ice_fltr_list_entry, list_entry) {
3469 		LIST_DEL(&fm_entry->list_entry);
3470 		ice_free(hw, fm_entry);
3471 	}
3472 
3473 	return status;
3474 }
3475 
3476 /**
3477  * ice_clear_vsi_promisc - clear specified promiscuous mode(s) for given VSI
3478  * @hw: pointer to the hardware structure
3479  * @vsi_handle: VSI handle to clear mode
3480  * @promisc_mask: pointer to mask of promiscuous config bits to clear
3481  * @vid: VLAN ID to clear VLAN promiscuous
3482  */
3483 enum ice_status
3484 ice_clear_vsi_promisc(struct ice_hw *hw, u16 vsi_handle,
3485 		      ice_bitmap_t *promisc_mask, u16 vid)
3486 {
3487 	if (!hw || !promisc_mask)
3488 		return ICE_ERR_PARAM;
3489 
3490 	return _ice_clear_vsi_promisc(hw, vsi_handle, promisc_mask,
3491 				      vid, hw->switch_info);
3492 }
3493 
3494 /**
3495  * _ice_set_vsi_promisc - set given VSI to given promiscuous mode(s)
3496  * @hw: pointer to the hardware structure
3497  * @vsi_handle: VSI handle to configure
3498  * @promisc_mask: pointer to mask of promiscuous config bits
3499  * @vid: VLAN ID to set VLAN promiscuous
3500  * @lport: logical port number to configure promisc mode
3501  * @sw: pointer to switch info struct for which function add rule
3502  */
3503 static enum ice_status
3504 _ice_set_vsi_promisc(struct ice_hw *hw, u16 vsi_handle,
3505 		     ice_bitmap_t *promisc_mask, u16 vid, u8 lport,
3506 		     struct ice_switch_info *sw)
3507 {
3508 	enum { UCAST_FLTR = 1, MCAST_FLTR, BCAST_FLTR };
3509 	ice_declare_bitmap(p_mask, ICE_PROMISC_MAX);
3510 	struct ice_fltr_list_entry f_list_entry;
3511 	struct ice_fltr_info new_fltr;
3512 	enum ice_status status = ICE_SUCCESS;
3513 	bool is_tx_fltr;
3514 	u16 hw_vsi_id;
3515 	int pkt_type;
3516 	u8 recipe_id;
3517 
3518 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
3519 
3520 	if (!ice_is_vsi_valid(hw, vsi_handle))
3521 		return ICE_ERR_PARAM;
3522 	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3523 
3524 	ice_memset(&new_fltr, 0, sizeof(new_fltr), ICE_NONDMA_MEM);
3525 
3526 	/* Do not modify original bitmap */
3527 	ice_cp_bitmap(p_mask, promisc_mask, ICE_PROMISC_MAX);
3528 
3529 	if (ice_is_bit_set(p_mask, ICE_PROMISC_VLAN_RX) &&
3530 	    ice_is_bit_set(p_mask, ICE_PROMISC_VLAN_TX)) {
3531 		new_fltr.lkup_type = ICE_SW_LKUP_PROMISC_VLAN;
3532 		new_fltr.l_data.mac_vlan.vlan_id = vid;
3533 		recipe_id = ICE_SW_LKUP_PROMISC_VLAN;
3534 	} else {
3535 		new_fltr.lkup_type = ICE_SW_LKUP_PROMISC;
3536 		recipe_id = ICE_SW_LKUP_PROMISC;
3537 	}
3538 
3539 	/* Separate filters must be set for each direction/packet type
3540 	 * combination, so we will loop over the mask value, store the
3541 	 * individual type, and clear it out in the input mask as it
3542 	 * is found.
3543 	 */
3544 	while (ice_is_any_bit_set(p_mask, ICE_PROMISC_MAX)) {
3545 		struct ice_sw_recipe *recp_list;
3546 		u8 *mac_addr;
3547 
3548 		pkt_type = 0;
3549 		is_tx_fltr = false;
3550 
3551 		if (ice_test_and_clear_bit(ICE_PROMISC_UCAST_RX,
3552 					   p_mask)) {
3553 			pkt_type = UCAST_FLTR;
3554 		} else if (ice_test_and_clear_bit(ICE_PROMISC_UCAST_TX,
3555 						  p_mask)) {
3556 			pkt_type = UCAST_FLTR;
3557 			is_tx_fltr = true;
3558 		} else if (ice_test_and_clear_bit(ICE_PROMISC_MCAST_RX,
3559 						  p_mask)) {
3560 			pkt_type = MCAST_FLTR;
3561 		} else if (ice_test_and_clear_bit(ICE_PROMISC_MCAST_TX,
3562 						  p_mask)) {
3563 			pkt_type = MCAST_FLTR;
3564 			is_tx_fltr = true;
3565 		} else if (ice_test_and_clear_bit(ICE_PROMISC_BCAST_RX,
3566 						  p_mask)) {
3567 			pkt_type = BCAST_FLTR;
3568 		} else if (ice_test_and_clear_bit(ICE_PROMISC_BCAST_TX,
3569 						  p_mask)) {
3570 			pkt_type = BCAST_FLTR;
3571 			is_tx_fltr = true;
3572 		}
3573 
3574 		/* Check for VLAN promiscuous flag */
3575 		if (ice_is_bit_set(p_mask, ICE_PROMISC_VLAN_RX)) {
3576 			ice_clear_bit(ICE_PROMISC_VLAN_RX, p_mask);
3577 		} else if (ice_test_and_clear_bit(ICE_PROMISC_VLAN_TX,
3578 						  p_mask)) {
3579 			is_tx_fltr = true;
3580 		}
3581 		/* Set filter DA based on packet type */
3582 		mac_addr = new_fltr.l_data.mac.mac_addr;
3583 		if (pkt_type == BCAST_FLTR) {
3584 			ice_memset(mac_addr, 0xff, ETH_ALEN, ICE_NONDMA_MEM);
3585 		} else if (pkt_type == MCAST_FLTR ||
3586 			   pkt_type == UCAST_FLTR) {
3587 			/* Use the dummy ether header DA */
3588 			ice_memcpy(mac_addr, dummy_eth_header, ETH_ALEN,
3589 				   ICE_NONDMA_TO_NONDMA);
3590 			if (pkt_type == MCAST_FLTR)
3591 				mac_addr[0] |= 0x1;	/* Set multicast bit */
3592 		}
3593 
3594 		/* Need to reset this to zero for all iterations */
3595 		new_fltr.flag = 0;
3596 		if (is_tx_fltr) {
3597 			new_fltr.flag |= ICE_FLTR_TX;
3598 			new_fltr.src = hw_vsi_id;
3599 		} else {
3600 			new_fltr.flag |= ICE_FLTR_RX;
3601 			new_fltr.src = lport;
3602 		}
3603 
3604 		new_fltr.fltr_act = ICE_FWD_TO_VSI;
3605 		new_fltr.vsi_handle = vsi_handle;
3606 		new_fltr.fwd_id.hw_vsi_id = hw_vsi_id;
3607 		f_list_entry.fltr_info = new_fltr;
3608 		recp_list = &sw->recp_list[recipe_id];
3609 
3610 		status = ice_add_rule_internal(hw, recp_list, lport,
3611 					       &f_list_entry);
3612 		if (status != ICE_SUCCESS)
3613 			goto set_promisc_exit;
3614 	}
3615 
3616 set_promisc_exit:
3617 	return status;
3618 }
3619 
3620 /**
3621  * ice_set_vsi_promisc - set given VSI to given promiscuous mode(s)
3622  * @hw: pointer to the hardware structure
3623  * @vsi_handle: VSI handle to configure
3624  * @promisc_mask: pointer to mask of promiscuous config bits
3625  * @vid: VLAN ID to set VLAN promiscuous
3626  */
3627 enum ice_status
3628 ice_set_vsi_promisc(struct ice_hw *hw, u16 vsi_handle,
3629 		    ice_bitmap_t *promisc_mask, u16 vid)
3630 {
3631 	if (!hw || !promisc_mask)
3632 		return ICE_ERR_PARAM;
3633 
3634 	return _ice_set_vsi_promisc(hw, vsi_handle, promisc_mask, vid,
3635 				    hw->port_info->lport,
3636 				    hw->switch_info);
3637 }
3638 
3639 /**
3640  * _ice_set_vlan_vsi_promisc
3641  * @hw: pointer to the hardware structure
3642  * @vsi_handle: VSI handle to configure
3643  * @promisc_mask: pointer to mask of promiscuous config bits
3644  * @rm_vlan_promisc: Clear VLANs VSI promisc mode
3645  * @lport: logical port number to configure promisc mode
3646  * @sw: pointer to switch info struct for which function add rule
3647  *
3648  * Configure VSI with all associated VLANs to given promiscuous mode(s)
3649  */
3650 static enum ice_status
3651 _ice_set_vlan_vsi_promisc(struct ice_hw *hw, u16 vsi_handle,
3652 			  ice_bitmap_t *promisc_mask, bool rm_vlan_promisc,
3653 			  u8 lport, struct ice_switch_info *sw)
3654 {
3655 	struct ice_fltr_list_entry *list_itr, *tmp;
3656 	struct LIST_HEAD_TYPE vsi_list_head;
3657 	struct LIST_HEAD_TYPE *vlan_head;
3658 	struct ice_lock *vlan_lock; /* Lock to protect filter rule list */
3659 	enum ice_status status;
3660 	u16 vlan_id;
3661 
3662 	INIT_LIST_HEAD(&vsi_list_head);
3663 	vlan_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
3664 	vlan_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules;
3665 	ice_acquire_lock(vlan_lock);
3666 	status = ice_add_to_vsi_fltr_list(hw, vsi_handle, vlan_head,
3667 					  &vsi_list_head);
3668 	ice_release_lock(vlan_lock);
3669 	if (status)
3670 		goto free_fltr_list;
3671 
3672 	LIST_FOR_EACH_ENTRY(list_itr, &vsi_list_head, ice_fltr_list_entry,
3673 			    list_entry) {
3674 		/* Avoid enabling or disabling vlan zero twice when in double
3675 		 * vlan mode
3676 		 */
3677 		if (ice_is_dvm_ena(hw) &&
3678 		    list_itr->fltr_info.l_data.vlan.tpid == 0)
3679 			continue;
3680 
3681 		vlan_id = list_itr->fltr_info.l_data.vlan.vlan_id;
3682 		if (rm_vlan_promisc)
3683 			status =  _ice_clear_vsi_promisc(hw, vsi_handle,
3684 							 promisc_mask,
3685 							 vlan_id, sw);
3686 		else
3687 			status =  _ice_set_vsi_promisc(hw, vsi_handle,
3688 						       promisc_mask, vlan_id,
3689 						       lport, sw);
3690 		if (status && status != ICE_ERR_ALREADY_EXISTS)
3691 			break;
3692 	}
3693 
3694 free_fltr_list:
3695 	LIST_FOR_EACH_ENTRY_SAFE(list_itr, tmp, &vsi_list_head,
3696 				 ice_fltr_list_entry, list_entry) {
3697 		LIST_DEL(&list_itr->list_entry);
3698 		ice_free(hw, list_itr);
3699 	}
3700 	return status;
3701 }
3702 
3703 /**
3704  * ice_set_vlan_vsi_promisc
3705  * @hw: pointer to the hardware structure
3706  * @vsi_handle: VSI handle to configure
3707  * @promisc_mask: mask of promiscuous config bits
3708  * @rm_vlan_promisc: Clear VLANs VSI promisc mode
3709  *
3710  * Configure VSI with all associated VLANs to given promiscuous mode(s)
3711  */
3712 enum ice_status
3713 ice_set_vlan_vsi_promisc(struct ice_hw *hw, u16 vsi_handle,
3714 			 ice_bitmap_t *promisc_mask, bool rm_vlan_promisc)
3715 {
3716 	if (!hw || !promisc_mask)
3717 		return ICE_ERR_PARAM;
3718 
3719 	return _ice_set_vlan_vsi_promisc(hw, vsi_handle, promisc_mask,
3720 					 rm_vlan_promisc, hw->port_info->lport,
3721 					 hw->switch_info);
3722 }
3723 
3724 /**
3725  * ice_remove_vsi_lkup_fltr - Remove lookup type filters for a VSI
3726  * @hw: pointer to the hardware structure
3727  * @vsi_handle: VSI handle to remove filters from
3728  * @recp_list: recipe list from which function remove fltr
3729  * @lkup: switch rule filter lookup type
3730  */
3731 static void
3732 ice_remove_vsi_lkup_fltr(struct ice_hw *hw, u16 vsi_handle,
3733 			 struct ice_sw_recipe *recp_list,
3734 			 enum ice_sw_lkup_type lkup)
3735 {
3736 	struct ice_fltr_list_entry *fm_entry;
3737 	struct LIST_HEAD_TYPE remove_list_head;
3738 	struct LIST_HEAD_TYPE *rule_head;
3739 	struct ice_fltr_list_entry *tmp;
3740 	struct ice_lock *rule_lock;	/* Lock to protect filter rule list */
3741 	enum ice_status status;
3742 
3743 	INIT_LIST_HEAD(&remove_list_head);
3744 	rule_lock = &recp_list[lkup].filt_rule_lock;
3745 	rule_head = &recp_list[lkup].filt_rules;
3746 	ice_acquire_lock(rule_lock);
3747 	status = ice_add_to_vsi_fltr_list(hw, vsi_handle, rule_head,
3748 					  &remove_list_head);
3749 	ice_release_lock(rule_lock);
3750 	if (status)
3751 		goto free_fltr_list;
3752 
3753 	switch (lkup) {
3754 	case ICE_SW_LKUP_MAC:
3755 		ice_remove_mac_rule(hw, &remove_list_head, &recp_list[lkup]);
3756 		break;
3757 	case ICE_SW_LKUP_VLAN:
3758 		ice_remove_vlan_rule(hw, &remove_list_head, &recp_list[lkup]);
3759 		break;
3760 	case ICE_SW_LKUP_PROMISC:
3761 	case ICE_SW_LKUP_PROMISC_VLAN:
3762 		ice_remove_promisc(hw, (u8)lkup, &remove_list_head);
3763 		break;
3764 	case ICE_SW_LKUP_MAC_VLAN:
3765 		ice_debug(hw, ICE_DBG_SW, "MAC VLAN look up is not supported yet\n");
3766 		break;
3767 	case ICE_SW_LKUP_ETHERTYPE:
3768 	case ICE_SW_LKUP_ETHERTYPE_MAC:
3769 		ice_remove_eth_mac(hw, &remove_list_head);
3770 		break;
3771 	case ICE_SW_LKUP_DFLT:
3772 		ice_debug(hw, ICE_DBG_SW, "Remove filters for this lookup type hasn't been implemented yet\n");
3773 		break;
3774 	case ICE_SW_LKUP_LAST:
3775 		ice_debug(hw, ICE_DBG_SW, "Unsupported lookup type\n");
3776 		break;
3777 	}
3778 
3779 free_fltr_list:
3780 	LIST_FOR_EACH_ENTRY_SAFE(fm_entry, tmp, &remove_list_head,
3781 				 ice_fltr_list_entry, list_entry) {
3782 		LIST_DEL(&fm_entry->list_entry);
3783 		ice_free(hw, fm_entry);
3784 	}
3785 }
3786 
3787 /**
3788  * ice_remove_vsi_fltr_rule - Remove all filters for a VSI
3789  * @hw: pointer to the hardware structure
3790  * @vsi_handle: VSI handle to remove filters from
3791  * @sw: pointer to switch info struct
3792  */
3793 static void
3794 ice_remove_vsi_fltr_rule(struct ice_hw *hw, u16 vsi_handle,
3795 			 struct ice_switch_info *sw)
3796 {
3797 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
3798 
3799 	ice_remove_vsi_lkup_fltr(hw, vsi_handle,
3800 				 sw->recp_list, ICE_SW_LKUP_MAC);
3801 	ice_remove_vsi_lkup_fltr(hw, vsi_handle,
3802 				 sw->recp_list, ICE_SW_LKUP_MAC_VLAN);
3803 	ice_remove_vsi_lkup_fltr(hw, vsi_handle,
3804 				 sw->recp_list, ICE_SW_LKUP_PROMISC);
3805 	ice_remove_vsi_lkup_fltr(hw, vsi_handle,
3806 				 sw->recp_list, ICE_SW_LKUP_VLAN);
3807 	ice_remove_vsi_lkup_fltr(hw, vsi_handle,
3808 				 sw->recp_list, ICE_SW_LKUP_DFLT);
3809 	ice_remove_vsi_lkup_fltr(hw, vsi_handle,
3810 				 sw->recp_list, ICE_SW_LKUP_ETHERTYPE);
3811 	ice_remove_vsi_lkup_fltr(hw, vsi_handle,
3812 				 sw->recp_list, ICE_SW_LKUP_ETHERTYPE_MAC);
3813 	ice_remove_vsi_lkup_fltr(hw, vsi_handle,
3814 				 sw->recp_list, ICE_SW_LKUP_PROMISC_VLAN);
3815 }
3816 
3817 /**
3818  * ice_remove_vsi_fltr - Remove all filters for a VSI
3819  * @hw: pointer to the hardware structure
3820  * @vsi_handle: VSI handle to remove filters from
3821  */
3822 void ice_remove_vsi_fltr(struct ice_hw *hw, u16 vsi_handle)
3823 {
3824 	ice_remove_vsi_fltr_rule(hw, vsi_handle, hw->switch_info);
3825 }
3826 
3827 /**
3828  * ice_alloc_res_cntr - allocating resource counter
3829  * @hw: pointer to the hardware structure
3830  * @type: type of resource
3831  * @alloc_shared: if set it is shared else dedicated
3832  * @num_items: number of entries requested for FD resource type
3833  * @counter_id: counter index returned by AQ call
3834  */
3835 static enum ice_status
3836 ice_alloc_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items,
3837 		   u16 *counter_id)
3838 {
3839 	struct ice_aqc_alloc_free_res_elem *buf;
3840 	enum ice_status status;
3841 	u16 buf_len;
3842 
3843 	/* Allocate resource */
3844 	buf_len = ice_struct_size(buf, elem, 1);
3845 	buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
3846 	if (!buf)
3847 		return ICE_ERR_NO_MEMORY;
3848 
3849 	buf->num_elems = CPU_TO_LE16(num_items);
3850 	buf->res_type = CPU_TO_LE16(((type << ICE_AQC_RES_TYPE_S) &
3851 				      ICE_AQC_RES_TYPE_M) | alloc_shared);
3852 
3853 	status = ice_aq_alloc_free_res(hw, 1, buf, buf_len,
3854 				       ice_aqc_opc_alloc_res, NULL);
3855 	if (status)
3856 		goto exit;
3857 
3858 	*counter_id = LE16_TO_CPU(buf->elem[0].e.sw_resp);
3859 
3860 exit:
3861 	ice_free(hw, buf);
3862 	return status;
3863 }
3864 
3865 /**
3866  * ice_free_res_cntr - free resource counter
3867  * @hw: pointer to the hardware structure
3868  * @type: type of resource
3869  * @alloc_shared: if set it is shared else dedicated
3870  * @num_items: number of entries to be freed for FD resource type
3871  * @counter_id: counter ID resource which needs to be freed
3872  */
3873 static enum ice_status
3874 ice_free_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items,
3875 		  u16 counter_id)
3876 {
3877 	struct ice_aqc_alloc_free_res_elem *buf;
3878 	enum ice_status status;
3879 	u16 buf_len;
3880 
3881 	/* Free resource */
3882 	buf_len = ice_struct_size(buf, elem, 1);
3883 	buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
3884 	if (!buf)
3885 		return ICE_ERR_NO_MEMORY;
3886 
3887 	buf->num_elems = CPU_TO_LE16(num_items);
3888 	buf->res_type = CPU_TO_LE16(((type << ICE_AQC_RES_TYPE_S) &
3889 				      ICE_AQC_RES_TYPE_M) | alloc_shared);
3890 	buf->elem[0].e.sw_resp = CPU_TO_LE16(counter_id);
3891 
3892 	status = ice_aq_alloc_free_res(hw, 1, buf, buf_len,
3893 				       ice_aqc_opc_free_res, NULL);
3894 	if (status)
3895 		ice_debug(hw, ICE_DBG_SW, "counter resource could not be freed\n");
3896 
3897 	ice_free(hw, buf);
3898 	return status;
3899 }
3900 
3901 /**
3902  * ice_alloc_vlan_res_counter - obtain counter resource for VLAN type
3903  * @hw: pointer to the hardware structure
3904  * @counter_id: returns counter index
3905  */
3906 enum ice_status ice_alloc_vlan_res_counter(struct ice_hw *hw, u16 *counter_id)
3907 {
3908 	return ice_alloc_res_cntr(hw, ICE_AQC_RES_TYPE_VLAN_COUNTER,
3909 				  ICE_AQC_RES_TYPE_FLAG_DEDICATED, 1,
3910 				  counter_id);
3911 }
3912 
3913 /**
3914  * ice_free_vlan_res_counter - Free counter resource for VLAN type
3915  * @hw: pointer to the hardware structure
3916  * @counter_id: counter index to be freed
3917  */
3918 enum ice_status ice_free_vlan_res_counter(struct ice_hw *hw, u16 counter_id)
3919 {
3920 	return ice_free_res_cntr(hw, ICE_AQC_RES_TYPE_VLAN_COUNTER,
3921 				 ICE_AQC_RES_TYPE_FLAG_DEDICATED, 1,
3922 				 counter_id);
3923 }
3924 
3925 /**
3926  * ice_add_mac_with_sw_marker - add filter with sw marker
3927  * @hw: pointer to the hardware structure
3928  * @f_info: filter info structure containing the MAC filter information
3929  * @sw_marker: sw marker to tag the Rx descriptor with
3930  */
3931 enum ice_status
3932 ice_add_mac_with_sw_marker(struct ice_hw *hw, struct ice_fltr_info *f_info,
3933 			   u16 sw_marker)
3934 {
3935 	struct ice_fltr_mgmt_list_entry *m_entry;
3936 	struct ice_fltr_list_entry fl_info;
3937 	struct ice_sw_recipe *recp_list;
3938 	struct LIST_HEAD_TYPE l_head;
3939 	struct ice_lock *rule_lock;	/* Lock to protect filter rule list */
3940 	enum ice_status ret;
3941 	bool entry_exists;
3942 	u16 lg_act_id;
3943 
3944 	if (f_info->fltr_act != ICE_FWD_TO_VSI)
3945 		return ICE_ERR_PARAM;
3946 
3947 	if (f_info->lkup_type != ICE_SW_LKUP_MAC)
3948 		return ICE_ERR_PARAM;
3949 
3950 	if (sw_marker == ICE_INVAL_SW_MARKER_ID)
3951 		return ICE_ERR_PARAM;
3952 
3953 	if (!ice_is_vsi_valid(hw, f_info->vsi_handle))
3954 		return ICE_ERR_PARAM;
3955 	f_info->fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, f_info->vsi_handle);
3956 
3957 	/* Add filter if it doesn't exist so then the adding of large
3958 	 * action always results in update
3959 	 */
3960 
3961 	INIT_LIST_HEAD(&l_head);
3962 	fl_info.fltr_info = *f_info;
3963 	LIST_ADD(&fl_info.list_entry, &l_head);
3964 
3965 	entry_exists = false;
3966 	ret = ice_add_mac_rule(hw, &l_head, hw->switch_info,
3967 			       hw->port_info->lport);
3968 	if (ret == ICE_ERR_ALREADY_EXISTS)
3969 		entry_exists = true;
3970 	else if (ret)
3971 		return ret;
3972 
3973 	recp_list = &hw->switch_info->recp_list[ICE_SW_LKUP_MAC];
3974 	rule_lock = &recp_list->filt_rule_lock;
3975 	ice_acquire_lock(rule_lock);
3976 	/* Get the book keeping entry for the filter */
3977 	m_entry = ice_find_rule_entry(&recp_list->filt_rules, f_info);
3978 	if (!m_entry)
3979 		goto exit_error;
3980 
3981 	/* If counter action was enabled for this rule then don't enable
3982 	 * sw marker large action
3983 	 */
3984 	if (m_entry->counter_index != ICE_INVAL_COUNTER_ID) {
3985 		ret = ICE_ERR_PARAM;
3986 		goto exit_error;
3987 	}
3988 
3989 	/* if same marker was added before */
3990 	if (m_entry->sw_marker_id == sw_marker) {
3991 		ret = ICE_ERR_ALREADY_EXISTS;
3992 		goto exit_error;
3993 	}
3994 
3995 	/* Allocate a hardware table entry to hold large act. Three actions
3996 	 * for marker based large action
3997 	 */
3998 	ret = ice_alloc_res_lg_act(hw, &lg_act_id, 3);
3999 	if (ret)
4000 		goto exit_error;
4001 
4002 	if (lg_act_id == ICE_INVAL_LG_ACT_INDEX)
4003 		goto exit_error;
4004 
4005 	/* Update the switch rule to add the marker action */
4006 	ret = ice_add_marker_act(hw, m_entry, sw_marker, lg_act_id);
4007 	if (!ret) {
4008 		ice_release_lock(rule_lock);
4009 		return ret;
4010 	}
4011 
4012 exit_error:
4013 	ice_release_lock(rule_lock);
4014 	/* only remove entry if it did not exist previously */
4015 	if (!entry_exists)
4016 		ret = ice_remove_mac(hw, &l_head);
4017 
4018 	return ret;
4019 }
4020 
4021 /**
4022  * ice_add_mac_with_counter - add filter with counter enabled
4023  * @hw: pointer to the hardware structure
4024  * @f_info: pointer to filter info structure containing the MAC filter
4025  *          information
4026  */
4027 enum ice_status
4028 ice_add_mac_with_counter(struct ice_hw *hw, struct ice_fltr_info *f_info)
4029 {
4030 	struct ice_fltr_mgmt_list_entry *m_entry;
4031 	struct ice_fltr_list_entry fl_info;
4032 	struct ice_sw_recipe *recp_list;
4033 	struct LIST_HEAD_TYPE l_head;
4034 	struct ice_lock *rule_lock;	/* Lock to protect filter rule list */
4035 	enum ice_status ret;
4036 	bool entry_exist;
4037 	u16 counter_id;
4038 	u16 lg_act_id;
4039 
4040 	if (f_info->fltr_act != ICE_FWD_TO_VSI)
4041 		return ICE_ERR_PARAM;
4042 
4043 	if (f_info->lkup_type != ICE_SW_LKUP_MAC)
4044 		return ICE_ERR_PARAM;
4045 
4046 	if (!ice_is_vsi_valid(hw, f_info->vsi_handle))
4047 		return ICE_ERR_PARAM;
4048 	f_info->fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, f_info->vsi_handle);
4049 	recp_list = &hw->switch_info->recp_list[ICE_SW_LKUP_MAC];
4050 
4051 	entry_exist = false;
4052 
4053 	rule_lock = &recp_list->filt_rule_lock;
4054 
4055 	/* Add filter if it doesn't exist so then the adding of large
4056 	 * action always results in update
4057 	 */
4058 	INIT_LIST_HEAD(&l_head);
4059 
4060 	fl_info.fltr_info = *f_info;
4061 	LIST_ADD(&fl_info.list_entry, &l_head);
4062 
4063 	ret = ice_add_mac_rule(hw, &l_head, hw->switch_info,
4064 			       hw->port_info->lport);
4065 	if (ret == ICE_ERR_ALREADY_EXISTS)
4066 		entry_exist = true;
4067 	else if (ret)
4068 		return ret;
4069 
4070 	ice_acquire_lock(rule_lock);
4071 	m_entry = ice_find_rule_entry(&recp_list->filt_rules, f_info);
4072 	if (!m_entry) {
4073 		ret = ICE_ERR_BAD_PTR;
4074 		goto exit_error;
4075 	}
4076 
4077 	/* Don't enable counter for a filter for which sw marker was enabled */
4078 	if (m_entry->sw_marker_id != ICE_INVAL_SW_MARKER_ID) {
4079 		ret = ICE_ERR_PARAM;
4080 		goto exit_error;
4081 	}
4082 
4083 	/* If a counter was already enabled then don't need to add again */
4084 	if (m_entry->counter_index != ICE_INVAL_COUNTER_ID) {
4085 		ret = ICE_ERR_ALREADY_EXISTS;
4086 		goto exit_error;
4087 	}
4088 
4089 	/* Allocate a hardware table entry to VLAN counter */
4090 	ret = ice_alloc_vlan_res_counter(hw, &counter_id);
4091 	if (ret)
4092 		goto exit_error;
4093 
4094 	/* Allocate a hardware table entry to hold large act. Two actions for
4095 	 * counter based large action
4096 	 */
4097 	ret = ice_alloc_res_lg_act(hw, &lg_act_id, 2);
4098 	if (ret)
4099 		goto exit_error;
4100 
4101 	if (lg_act_id == ICE_INVAL_LG_ACT_INDEX)
4102 		goto exit_error;
4103 
4104 	/* Update the switch rule to add the counter action */
4105 	ret = ice_add_counter_act(hw, m_entry, counter_id, lg_act_id);
4106 	if (!ret) {
4107 		ice_release_lock(rule_lock);
4108 		return ret;
4109 	}
4110 
4111 exit_error:
4112 	ice_release_lock(rule_lock);
4113 	/* only remove entry if it did not exist previously */
4114 	if (!entry_exist)
4115 		ret = ice_remove_mac(hw, &l_head);
4116 
4117 	return ret;
4118 }
4119 
4120 /**
4121  * ice_replay_fltr - Replay all the filters stored by a specific list head
4122  * @hw: pointer to the hardware structure
4123  * @list_head: list for which filters needs to be replayed
4124  * @recp_id: Recipe ID for which rules need to be replayed
4125  */
4126 static enum ice_status
4127 ice_replay_fltr(struct ice_hw *hw, u8 recp_id, struct LIST_HEAD_TYPE *list_head)
4128 {
4129 	struct ice_fltr_mgmt_list_entry *itr;
4130 	enum ice_status status = ICE_SUCCESS;
4131 	struct ice_sw_recipe *recp_list;
4132 	u8 lport = hw->port_info->lport;
4133 	struct LIST_HEAD_TYPE l_head;
4134 
4135 	if (LIST_EMPTY(list_head))
4136 		return status;
4137 
4138 	recp_list = &hw->switch_info->recp_list[recp_id];
4139 	/* Move entries from the given list_head to a temporary l_head so that
4140 	 * they can be replayed. Otherwise when trying to re-add the same
4141 	 * filter, the function will return already exists
4142 	 */
4143 	LIST_REPLACE_INIT(list_head, &l_head);
4144 
4145 	/* Mark the given list_head empty by reinitializing it so filters
4146 	 * could be added again by *handler
4147 	 */
4148 	LIST_FOR_EACH_ENTRY(itr, &l_head, ice_fltr_mgmt_list_entry,
4149 			    list_entry) {
4150 		struct ice_fltr_list_entry f_entry;
4151 		u16 vsi_handle;
4152 
4153 		f_entry.fltr_info = itr->fltr_info;
4154 		if (itr->vsi_count < 2 && recp_id != ICE_SW_LKUP_VLAN) {
4155 			status = ice_add_rule_internal(hw, recp_list, lport,
4156 						       &f_entry);
4157 			if (status != ICE_SUCCESS)
4158 				goto end;
4159 			continue;
4160 		}
4161 
4162 		/* Add a filter per VSI separately */
4163 		ice_for_each_set_bit(vsi_handle, itr->vsi_list_info->vsi_map,
4164 				     ICE_MAX_VSI) {
4165 			if (!ice_is_vsi_valid(hw, vsi_handle))
4166 				break;
4167 
4168 			ice_clear_bit(vsi_handle, itr->vsi_list_info->vsi_map);
4169 			f_entry.fltr_info.vsi_handle = vsi_handle;
4170 			f_entry.fltr_info.fwd_id.hw_vsi_id =
4171 				ice_get_hw_vsi_num(hw, vsi_handle);
4172 			f_entry.fltr_info.fltr_act = ICE_FWD_TO_VSI;
4173 			if (recp_id == ICE_SW_LKUP_VLAN)
4174 				status = ice_add_vlan_internal(hw, recp_list,
4175 							       &f_entry);
4176 			else
4177 				status = ice_add_rule_internal(hw, recp_list,
4178 							       lport,
4179 							       &f_entry);
4180 			if (status != ICE_SUCCESS)
4181 				goto end;
4182 		}
4183 	}
4184 end:
4185 	/* Clear the filter management list */
4186 	ice_rem_sw_rule_info(hw, &l_head);
4187 	return status;
4188 }
4189 
4190 /**
4191  * ice_replay_all_fltr - replay all filters stored in bookkeeping lists
4192  * @hw: pointer to the hardware structure
4193  *
4194  * NOTE: This function does not clean up partially added filters on error.
4195  * It is up to caller of the function to issue a reset or fail early.
4196  */
4197 enum ice_status ice_replay_all_fltr(struct ice_hw *hw)
4198 {
4199 	struct ice_switch_info *sw = hw->switch_info;
4200 	enum ice_status status = ICE_SUCCESS;
4201 	u8 i;
4202 
4203 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
4204 		struct LIST_HEAD_TYPE *head = &sw->recp_list[i].filt_rules;
4205 
4206 		status = ice_replay_fltr(hw, i, head);
4207 		if (status != ICE_SUCCESS)
4208 			return status;
4209 	}
4210 	return status;
4211 }
4212 
4213 /**
4214  * ice_replay_vsi_fltr - Replay filters for requested VSI
4215  * @hw: pointer to the hardware structure
4216  * @pi: pointer to port information structure
4217  * @sw: pointer to switch info struct for which function replays filters
4218  * @vsi_handle: driver VSI handle
4219  * @recp_id: Recipe ID for which rules need to be replayed
4220  * @list_head: list for which filters need to be replayed
4221  *
4222  * Replays the filter of recipe recp_id for a VSI represented via vsi_handle.
4223  * It is required to pass valid VSI handle.
4224  */
4225 static enum ice_status
4226 ice_replay_vsi_fltr(struct ice_hw *hw, struct ice_port_info *pi,
4227 		    struct ice_switch_info *sw, u16 vsi_handle, u8 recp_id,
4228 		    struct LIST_HEAD_TYPE *list_head)
4229 {
4230 	struct ice_fltr_mgmt_list_entry *itr;
4231 	enum ice_status status = ICE_SUCCESS;
4232 	struct ice_sw_recipe *recp_list;
4233 	u16 hw_vsi_id;
4234 
4235 	if (LIST_EMPTY(list_head))
4236 		return status;
4237 	recp_list = &sw->recp_list[recp_id];
4238 	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
4239 
4240 	LIST_FOR_EACH_ENTRY(itr, list_head, ice_fltr_mgmt_list_entry,
4241 			    list_entry) {
4242 		struct ice_fltr_list_entry f_entry;
4243 
4244 		f_entry.fltr_info = itr->fltr_info;
4245 		if (itr->vsi_count < 2 && recp_id != ICE_SW_LKUP_VLAN &&
4246 		    itr->fltr_info.vsi_handle == vsi_handle) {
4247 			/* update the src in case it is VSI num */
4248 			if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI)
4249 				f_entry.fltr_info.src = hw_vsi_id;
4250 			status = ice_add_rule_internal(hw, recp_list,
4251 						       pi->lport,
4252 						       &f_entry);
4253 			if (status != ICE_SUCCESS)
4254 				goto end;
4255 			continue;
4256 		}
4257 		if (!itr->vsi_list_info ||
4258 		    !ice_is_bit_set(itr->vsi_list_info->vsi_map, vsi_handle))
4259 			continue;
4260 		/* Clearing it so that the logic can add it back */
4261 		ice_clear_bit(vsi_handle, itr->vsi_list_info->vsi_map);
4262 		f_entry.fltr_info.vsi_handle = vsi_handle;
4263 		f_entry.fltr_info.fltr_act = ICE_FWD_TO_VSI;
4264 		/* update the src in case it is VSI num */
4265 		if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI)
4266 			f_entry.fltr_info.src = hw_vsi_id;
4267 		if (recp_id == ICE_SW_LKUP_VLAN)
4268 			status = ice_add_vlan_internal(hw, recp_list, &f_entry);
4269 		else
4270 			status = ice_add_rule_internal(hw, recp_list,
4271 						       pi->lport,
4272 						       &f_entry);
4273 		if (status != ICE_SUCCESS)
4274 			goto end;
4275 	}
4276 end:
4277 	return status;
4278 }
4279 
4280 /**
4281  * ice_replay_vsi_all_fltr - replay all filters stored in bookkeeping lists
4282  * @hw: pointer to the hardware structure
4283  * @pi: pointer to port information structure
4284  * @vsi_handle: driver VSI handle
4285  *
4286  * Replays filters for requested VSI via vsi_handle.
4287  */
4288 enum ice_status
4289 ice_replay_vsi_all_fltr(struct ice_hw *hw, struct ice_port_info *pi,
4290 			u16 vsi_handle)
4291 {
4292 	struct ice_switch_info *sw = NULL;
4293 	enum ice_status status = ICE_SUCCESS;
4294 	u8 i;
4295 
4296 	sw = hw->switch_info;
4297 
4298 	/* Update the recipes that were created */
4299 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
4300 		struct LIST_HEAD_TYPE *head;
4301 
4302 		head = &sw->recp_list[i].filt_replay_rules;
4303 		if (!sw->recp_list[i].adv_rule)
4304 			status = ice_replay_vsi_fltr(hw, pi, sw, vsi_handle, i,
4305 						     head);
4306 		if (status != ICE_SUCCESS)
4307 			return status;
4308 	}
4309 
4310 	return ICE_SUCCESS;
4311 }
4312 
4313 /**
4314  * ice_rm_sw_replay_rule_info - helper function to delete filter replay rules
4315  * @hw: pointer to the HW struct
4316  * @sw: pointer to switch info struct for which function removes filters
4317  *
4318  * Deletes the filter replay rules for given switch
4319  */
4320 void ice_rm_sw_replay_rule_info(struct ice_hw *hw, struct ice_switch_info *sw)
4321 {
4322 	u8 i;
4323 
4324 	if (!sw)
4325 		return;
4326 
4327 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
4328 		if (!LIST_EMPTY(&sw->recp_list[i].filt_replay_rules)) {
4329 			struct LIST_HEAD_TYPE *l_head;
4330 
4331 			l_head = &sw->recp_list[i].filt_replay_rules;
4332 			if (!sw->recp_list[i].adv_rule)
4333 				ice_rem_sw_rule_info(hw, l_head);
4334 		}
4335 	}
4336 }
4337 
4338 /**
4339  * ice_rm_all_sw_replay_rule_info - deletes filter replay rules
4340  * @hw: pointer to the HW struct
4341  *
4342  * Deletes the filter replay rules.
4343  */
4344 void ice_rm_all_sw_replay_rule_info(struct ice_hw *hw)
4345 {
4346 	ice_rm_sw_replay_rule_info(hw, hw->switch_info);
4347 }
4348 
4349