xref: /freebsd/sys/dev/mmc/mmc.c (revision 4f52dfbb)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2006 Bernd Walter.  All rights reserved.
5  * Copyright (c) 2006 M. Warner Losh.  All rights reserved.
6  * Copyright (c) 2017 Marius Strobl <marius@FreeBSD.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  * Portions of this software may have been developed with reference to
29  * the SD Simplified Specification.  The following disclaimer may apply:
30  *
31  * The following conditions apply to the release of the simplified
32  * specification ("Simplified Specification") by the SD Card Association and
33  * the SD Group. The Simplified Specification is a subset of the complete SD
34  * Specification which is owned by the SD Card Association and the SD
35  * Group. This Simplified Specification is provided on a non-confidential
36  * basis subject to the disclaimers below. Any implementation of the
37  * Simplified Specification may require a license from the SD Card
38  * Association, SD Group, SD-3C LLC or other third parties.
39  *
40  * Disclaimers:
41  *
42  * The information contained in the Simplified Specification is presented only
43  * as a standard specification for SD Cards and SD Host/Ancillary products and
44  * is provided "AS-IS" without any representations or warranties of any
45  * kind. No responsibility is assumed by the SD Group, SD-3C LLC or the SD
46  * Card Association for any damages, any infringements of patents or other
47  * right of the SD Group, SD-3C LLC, the SD Card Association or any third
48  * parties, which may result from its use. No license is granted by
49  * implication, estoppel or otherwise under any patent or other rights of the
50  * SD Group, SD-3C LLC, the SD Card Association or any third party. Nothing
51  * herein shall be construed as an obligation by the SD Group, the SD-3C LLC
52  * or the SD Card Association to disclose or distribute any technical
53  * information, know-how or other confidential information to any third party.
54  */
55 
56 #include <sys/cdefs.h>
57 __FBSDID("$FreeBSD$");
58 
59 #include <sys/param.h>
60 #include <sys/systm.h>
61 #include <sys/kernel.h>
62 #include <sys/malloc.h>
63 #include <sys/lock.h>
64 #include <sys/module.h>
65 #include <sys/mutex.h>
66 #include <sys/bus.h>
67 #include <sys/endian.h>
68 #include <sys/sysctl.h>
69 #include <sys/time.h>
70 
71 #include <dev/mmc/bridge.h>
72 #include <dev/mmc/mmc_private.h>
73 #include <dev/mmc/mmc_subr.h>
74 #include <dev/mmc/mmcreg.h>
75 #include <dev/mmc/mmcbrvar.h>
76 #include <dev/mmc/mmcvar.h>
77 
78 #include "mmcbr_if.h"
79 #include "mmcbus_if.h"
80 
81 CTASSERT(bus_timing_max <= sizeof(uint32_t) * NBBY);
82 
83 /*
84  * Per-card data
85  */
86 struct mmc_ivars {
87 	uint32_t raw_cid[4];	/* Raw bits of the CID */
88 	uint32_t raw_csd[4];	/* Raw bits of the CSD */
89 	uint32_t raw_scr[2];	/* Raw bits of the SCR */
90 	uint8_t raw_ext_csd[MMC_EXTCSD_SIZE]; /* Raw bits of the EXT_CSD */
91 	uint32_t raw_sd_status[16];	/* Raw bits of the SD_STATUS */
92 	uint16_t rca;
93 	u_char read_only;	/* True when the device is read-only */
94 	u_char high_cap;	/* High Capacity device (block addressed) */
95 	enum mmc_card_mode mode;
96 	enum mmc_bus_width bus_width;	/* Bus width to use */
97 	struct mmc_cid cid;	/* cid decoded */
98 	struct mmc_csd csd;	/* csd decoded */
99 	struct mmc_scr scr;	/* scr decoded */
100 	struct mmc_sd_status sd_status;	/* SD_STATUS decoded */
101 	uint32_t sec_count;	/* Card capacity in 512byte blocks */
102 	uint32_t timings;	/* Mask of bus timings supported */
103 	uint32_t vccq_120;	/* Mask of bus timings at VCCQ of 1.2 V */
104 	uint32_t vccq_180;	/* Mask of bus timings at VCCQ of 1.8 V */
105 	uint32_t tran_speed;	/* Max speed in normal mode */
106 	uint32_t hs_tran_speed;	/* Max speed in high speed mode */
107 	uint32_t erase_sector;	/* Card native erase sector size */
108 	uint32_t cmd6_time;	/* Generic switch timeout [us] */
109 	uint32_t quirks;	/* Quirks as per mmc_quirk->quirks */
110 	char card_id_string[64];/* Formatted CID info (serial, MFG, etc) */
111 	char card_sn_string[16];/* Formatted serial # for disk->d_ident */
112 };
113 
114 #define	CMD_RETRIES	3
115 
116 static const struct mmc_quirk mmc_quirks[] = {
117 	/*
118 	 * For some SanDisk iNAND devices, the CMD38 argument needs to be
119 	 * provided in EXT_CSD[113].
120 	 */
121 	{ 0x2, 0x100,	 		"SEM02G", MMC_QUIRK_INAND_CMD38 },
122 	{ 0x2, 0x100,			"SEM04G", MMC_QUIRK_INAND_CMD38 },
123 	{ 0x2, 0x100,			"SEM08G", MMC_QUIRK_INAND_CMD38 },
124 	{ 0x2, 0x100,			"SEM16G", MMC_QUIRK_INAND_CMD38 },
125 	{ 0x2, 0x100,			"SEM32G", MMC_QUIRK_INAND_CMD38 },
126 
127 	/*
128 	 * Disable TRIM for Kingston eMMCs where a firmware bug can lead to
129 	 * unrecoverable data corruption.
130 	 */
131 	{ 0x70, MMC_QUIRK_OID_ANY,	"V10008", MMC_QUIRK_BROKEN_TRIM },
132 	{ 0x70, MMC_QUIRK_OID_ANY,	"V10016", MMC_QUIRK_BROKEN_TRIM },
133 
134 	{ 0x0, 0x0, NULL, 0x0 }
135 };
136 
137 static SYSCTL_NODE(_hw, OID_AUTO, mmc, CTLFLAG_RD, NULL, "mmc driver");
138 
139 static int mmc_debug;
140 SYSCTL_INT(_hw_mmc, OID_AUTO, debug, CTLFLAG_RWTUN, &mmc_debug, 0,
141     "Debug level");
142 
143 /* bus entry points */
144 static int mmc_acquire_bus(device_t busdev, device_t dev);
145 static int mmc_attach(device_t dev);
146 static int mmc_child_location_str(device_t dev, device_t child, char *buf,
147     size_t buflen);
148 static int mmc_detach(device_t dev);
149 static int mmc_probe(device_t dev);
150 static int mmc_read_ivar(device_t bus, device_t child, int which,
151     uintptr_t *result);
152 static int mmc_release_bus(device_t busdev, device_t dev);
153 static int mmc_resume(device_t dev);
154 static void mmc_retune_pause(device_t busdev, device_t dev, bool retune);
155 static void mmc_retune_unpause(device_t busdev, device_t dev);
156 static int mmc_suspend(device_t dev);
157 static int mmc_wait_for_request(device_t busdev, device_t dev,
158     struct mmc_request *req);
159 static int mmc_write_ivar(device_t bus, device_t child, int which,
160     uintptr_t value);
161 
162 #define	MMC_LOCK(_sc)		mtx_lock(&(_sc)->sc_mtx)
163 #define	MMC_UNLOCK(_sc)		mtx_unlock(&(_sc)->sc_mtx)
164 #define	MMC_LOCK_INIT(_sc)						\
165 	mtx_init(&(_sc)->sc_mtx, device_get_nameunit((_sc)->dev),	\
166 	    "mmc", MTX_DEF)
167 #define	MMC_LOCK_DESTROY(_sc)	mtx_destroy(&(_sc)->sc_mtx);
168 #define	MMC_ASSERT_LOCKED(_sc)	mtx_assert(&(_sc)->sc_mtx, MA_OWNED);
169 #define	MMC_ASSERT_UNLOCKED(_sc) mtx_assert(&(_sc)->sc_mtx, MA_NOTOWNED);
170 
171 static int mmc_all_send_cid(struct mmc_softc *sc, uint32_t *rawcid);
172 static void mmc_app_decode_scr(uint32_t *raw_scr, struct mmc_scr *scr);
173 static void mmc_app_decode_sd_status(uint32_t *raw_sd_status,
174     struct mmc_sd_status *sd_status);
175 static int mmc_app_sd_status(struct mmc_softc *sc, uint16_t rca,
176     uint32_t *rawsdstatus);
177 static int mmc_app_send_scr(struct mmc_softc *sc, uint16_t rca,
178     uint32_t *rawscr);
179 static int mmc_calculate_clock(struct mmc_softc *sc);
180 static void mmc_decode_cid_mmc(uint32_t *raw_cid, struct mmc_cid *cid,
181     bool is_4_41p);
182 static void mmc_decode_cid_sd(uint32_t *raw_cid, struct mmc_cid *cid);
183 static void mmc_decode_csd_mmc(uint32_t *raw_csd, struct mmc_csd *csd);
184 static int mmc_decode_csd_sd(uint32_t *raw_csd, struct mmc_csd *csd);
185 static void mmc_delayed_attach(void *xsc);
186 static int mmc_delete_cards(struct mmc_softc *sc, bool final);
187 static void mmc_discover_cards(struct mmc_softc *sc);
188 static void mmc_format_card_id_string(struct mmc_ivars *ivar);
189 static void mmc_go_discovery(struct mmc_softc *sc);
190 static uint32_t mmc_get_bits(uint32_t *bits, int bit_len, int start,
191     int size);
192 static int mmc_highest_voltage(uint32_t ocr);
193 static bool mmc_host_timing(device_t dev, enum mmc_bus_timing timing);
194 static void mmc_idle_cards(struct mmc_softc *sc);
195 static void mmc_ms_delay(int ms);
196 static void mmc_log_card(device_t dev, struct mmc_ivars *ivar, int newcard);
197 static void mmc_power_down(struct mmc_softc *sc);
198 static void mmc_power_up(struct mmc_softc *sc);
199 static void mmc_rescan_cards(struct mmc_softc *sc);
200 static int mmc_retune(device_t busdev, device_t dev, bool reset);
201 static void mmc_scan(struct mmc_softc *sc);
202 static int mmc_sd_switch(struct mmc_softc *sc, uint8_t mode, uint8_t grp,
203     uint8_t value, uint8_t *res);
204 static int mmc_select_card(struct mmc_softc *sc, uint16_t rca);
205 static uint32_t mmc_select_vdd(struct mmc_softc *sc, uint32_t ocr);
206 static int mmc_send_app_op_cond(struct mmc_softc *sc, uint32_t ocr,
207     uint32_t *rocr);
208 static int mmc_send_csd(struct mmc_softc *sc, uint16_t rca, uint32_t *rawcsd);
209 static int mmc_send_if_cond(struct mmc_softc *sc, uint8_t vhs);
210 static int mmc_send_op_cond(struct mmc_softc *sc, uint32_t ocr,
211     uint32_t *rocr);
212 static int mmc_send_relative_addr(struct mmc_softc *sc, uint32_t *resp);
213 static int mmc_set_blocklen(struct mmc_softc *sc, uint32_t len);
214 static int mmc_set_card_bus_width(struct mmc_softc *sc, struct mmc_ivars *ivar,
215     enum mmc_bus_timing timing);
216 static int mmc_set_power_class(struct mmc_softc *sc, struct mmc_ivars *ivar);
217 static int mmc_set_relative_addr(struct mmc_softc *sc, uint16_t resp);
218 static int mmc_set_timing(struct mmc_softc *sc, struct mmc_ivars *ivar,
219     enum mmc_bus_timing timing);
220 static int mmc_set_vccq(struct mmc_softc *sc, struct mmc_ivars *ivar,
221     enum mmc_bus_timing timing);
222 static int mmc_switch_to_hs200(struct mmc_softc *sc, struct mmc_ivars *ivar,
223     uint32_t clock);
224 static int mmc_switch_to_hs400(struct mmc_softc *sc, struct mmc_ivars *ivar,
225     uint32_t max_dtr, enum mmc_bus_timing max_timing);
226 static int mmc_test_bus_width(struct mmc_softc *sc);
227 static uint32_t mmc_timing_to_dtr(struct mmc_ivars *ivar,
228     enum mmc_bus_timing timing);
229 static const char *mmc_timing_to_string(enum mmc_bus_timing timing);
230 static void mmc_update_child_list(struct mmc_softc *sc);
231 static int mmc_wait_for_command(struct mmc_softc *sc, uint32_t opcode,
232     uint32_t arg, uint32_t flags, uint32_t *resp, int retries);
233 static int mmc_wait_for_req(struct mmc_softc *sc, struct mmc_request *req);
234 static void mmc_wakeup(struct mmc_request *req);
235 
236 static void
237 mmc_ms_delay(int ms)
238 {
239 
240 	DELAY(1000 * ms);	/* XXX BAD */
241 }
242 
243 static int
244 mmc_probe(device_t dev)
245 {
246 
247 	device_set_desc(dev, "MMC/SD bus");
248 	return (0);
249 }
250 
251 static int
252 mmc_attach(device_t dev)
253 {
254 	struct mmc_softc *sc;
255 
256 	sc = device_get_softc(dev);
257 	sc->dev = dev;
258 	MMC_LOCK_INIT(sc);
259 
260 	/* We'll probe and attach our children later, but before / mount */
261 	sc->config_intrhook.ich_func = mmc_delayed_attach;
262 	sc->config_intrhook.ich_arg = sc;
263 	if (config_intrhook_establish(&sc->config_intrhook) != 0)
264 		device_printf(dev, "config_intrhook_establish failed\n");
265 	return (0);
266 }
267 
268 static int
269 mmc_detach(device_t dev)
270 {
271 	struct mmc_softc *sc = device_get_softc(dev);
272 	int err;
273 
274 	err = mmc_delete_cards(sc, true);
275 	if (err != 0)
276 		return (err);
277 	mmc_power_down(sc);
278 	MMC_LOCK_DESTROY(sc);
279 
280 	return (0);
281 }
282 
283 static int
284 mmc_suspend(device_t dev)
285 {
286 	struct mmc_softc *sc = device_get_softc(dev);
287 	int err;
288 
289 	err = bus_generic_suspend(dev);
290 	if (err != 0)
291 		return (err);
292 	/*
293 	 * We power down with the bus acquired here, mainly so that no device
294 	 * is selected any longer and sc->last_rca gets set to 0.  Otherwise,
295 	 * the deselect as part of the bus acquisition in mmc_scan() may fail
296 	 * during resume, as the bus isn't powered up again before later in
297 	 * mmc_go_discovery().
298 	 */
299 	err = mmc_acquire_bus(dev, dev);
300 	if (err != 0)
301 		return (err);
302 	mmc_power_down(sc);
303 	err = mmc_release_bus(dev, dev);
304 	return (err);
305 }
306 
307 static int
308 mmc_resume(device_t dev)
309 {
310 	struct mmc_softc *sc = device_get_softc(dev);
311 
312 	mmc_scan(sc);
313 	return (bus_generic_resume(dev));
314 }
315 
316 static int
317 mmc_acquire_bus(device_t busdev, device_t dev)
318 {
319 	struct mmc_softc *sc;
320 	struct mmc_ivars *ivar;
321 	int err;
322 	uint16_t rca;
323 	enum mmc_bus_timing timing;
324 
325 	err = MMCBR_ACQUIRE_HOST(device_get_parent(busdev), busdev);
326 	if (err)
327 		return (err);
328 	sc = device_get_softc(busdev);
329 	MMC_LOCK(sc);
330 	if (sc->owner)
331 		panic("mmc: host bridge didn't serialize us.");
332 	sc->owner = dev;
333 	MMC_UNLOCK(sc);
334 
335 	if (busdev != dev) {
336 		/*
337 		 * Keep track of the last rca that we've selected.  If
338 		 * we're asked to do it again, don't.  We never
339 		 * unselect unless the bus code itself wants the mmc
340 		 * bus, and constantly reselecting causes problems.
341 		 */
342 		ivar = device_get_ivars(dev);
343 		rca = ivar->rca;
344 		if (sc->last_rca != rca) {
345 			if (mmc_select_card(sc, rca) != MMC_ERR_NONE) {
346 				device_printf(busdev, "Card at relative "
347 				    "address %d failed to select\n", rca);
348 				return (ENXIO);
349 			}
350 			sc->last_rca = rca;
351 			timing = mmcbr_get_timing(busdev);
352 			/*
353 			 * For eMMC modes, setting/updating bus width and VCCQ
354 			 * only really is necessary if there actually is more
355 			 * than one device on the bus as generally that already
356 			 * had to be done by mmc_calculate_clock() or one of
357 			 * its calees.  Moreover, setting the bus width anew
358 			 * can trigger re-tuning (via a CRC error on the next
359 			 * CMD), even if not switching between devices an the
360 			 * previously selected one is still tuned.  Obviously,
361 			 * we need to re-tune the host controller if devices
362 			 * are actually switched, though.
363 			 */
364 			if (timing >= bus_timing_mmc_ddr52 &&
365 			    sc->child_count == 1)
366 				return (0);
367 			/* Prepare bus width for the new card. */
368 			if (bootverbose || mmc_debug) {
369 				device_printf(busdev,
370 				    "setting bus width to %d bits %s timing\n",
371 				    (ivar->bus_width == bus_width_4) ? 4 :
372 				    (ivar->bus_width == bus_width_8) ? 8 : 1,
373 				    mmc_timing_to_string(timing));
374 			}
375 			if (mmc_set_card_bus_width(sc, ivar, timing) !=
376 			    MMC_ERR_NONE) {
377 				device_printf(busdev, "Card at relative "
378 				    "address %d failed to set bus width\n",
379 				    rca);
380 				return (ENXIO);
381 			}
382 			mmcbr_set_bus_width(busdev, ivar->bus_width);
383 			mmcbr_update_ios(busdev);
384 			if (mmc_set_vccq(sc, ivar, timing) != MMC_ERR_NONE) {
385 				device_printf(busdev, "Failed to set VCCQ "
386 				    "for card at relative address %d\n", rca);
387 				return (ENXIO);
388 			}
389 			if (timing >= bus_timing_mmc_hs200 &&
390 			    mmc_retune(busdev, dev, true) != 0) {
391 				device_printf(busdev, "Card at relative "
392 				    "address %d failed to re-tune\n", rca);
393 				return (ENXIO);
394 			}
395 		}
396 	} else {
397 		/*
398 		 * If there's a card selected, stand down.
399 		 */
400 		if (sc->last_rca != 0) {
401 			if (mmc_select_card(sc, 0) != MMC_ERR_NONE)
402 				return (ENXIO);
403 			sc->last_rca = 0;
404 		}
405 	}
406 
407 	return (0);
408 }
409 
410 static int
411 mmc_release_bus(device_t busdev, device_t dev)
412 {
413 	struct mmc_softc *sc;
414 	int err;
415 
416 	sc = device_get_softc(busdev);
417 
418 	MMC_LOCK(sc);
419 	if (!sc->owner)
420 		panic("mmc: releasing unowned bus.");
421 	if (sc->owner != dev)
422 		panic("mmc: you don't own the bus.  game over.");
423 	MMC_UNLOCK(sc);
424 	err = MMCBR_RELEASE_HOST(device_get_parent(busdev), busdev);
425 	if (err)
426 		return (err);
427 	MMC_LOCK(sc);
428 	sc->owner = NULL;
429 	MMC_UNLOCK(sc);
430 	return (0);
431 }
432 
433 static uint32_t
434 mmc_select_vdd(struct mmc_softc *sc, uint32_t ocr)
435 {
436 
437 	return (ocr & MMC_OCR_VOLTAGE);
438 }
439 
440 static int
441 mmc_highest_voltage(uint32_t ocr)
442 {
443 	int i;
444 
445 	for (i = MMC_OCR_MAX_VOLTAGE_SHIFT;
446 	    i >= MMC_OCR_MIN_VOLTAGE_SHIFT; i--)
447 		if (ocr & (1 << i))
448 			return (i);
449 	return (-1);
450 }
451 
452 static void
453 mmc_wakeup(struct mmc_request *req)
454 {
455 	struct mmc_softc *sc;
456 
457 	sc = (struct mmc_softc *)req->done_data;
458 	MMC_LOCK(sc);
459 	req->flags |= MMC_REQ_DONE;
460 	MMC_UNLOCK(sc);
461 	wakeup(req);
462 }
463 
464 static int
465 mmc_wait_for_req(struct mmc_softc *sc, struct mmc_request *req)
466 {
467 
468 	req->done = mmc_wakeup;
469 	req->done_data = sc;
470 	if (__predict_false(mmc_debug > 1)) {
471 		device_printf(sc->dev, "REQUEST: CMD%d arg %#x flags %#x",
472 		    req->cmd->opcode, req->cmd->arg, req->cmd->flags);
473 		if (req->cmd->data) {
474 			printf(" data %d\n", (int)req->cmd->data->len);
475 		} else
476 			printf("\n");
477 	}
478 	MMCBR_REQUEST(device_get_parent(sc->dev), sc->dev, req);
479 	MMC_LOCK(sc);
480 	while ((req->flags & MMC_REQ_DONE) == 0)
481 		msleep(req, &sc->sc_mtx, 0, "mmcreq", 0);
482 	MMC_UNLOCK(sc);
483 	if (__predict_false(mmc_debug > 2 || (mmc_debug > 0 &&
484 	    req->cmd->error != MMC_ERR_NONE)))
485 		device_printf(sc->dev, "CMD%d RESULT: %d\n",
486 		    req->cmd->opcode, req->cmd->error);
487 	return (0);
488 }
489 
490 static int
491 mmc_wait_for_request(device_t busdev, device_t dev, struct mmc_request *req)
492 {
493 	struct mmc_softc *sc;
494 	struct mmc_ivars *ivar;
495 	int err, i;
496 	enum mmc_retune_req retune_req;
497 
498 	sc = device_get_softc(busdev);
499 	KASSERT(sc->owner != NULL,
500 	    ("%s: Request from %s without bus being acquired.", __func__,
501 	    device_get_nameunit(dev)));
502 
503 	/*
504 	 * Unless no device is selected or re-tuning is already ongoing,
505 	 * execute re-tuning if a) the bridge is requesting to do so and
506 	 * re-tuning hasn't been otherwise paused, or b) if a child asked
507 	 * to be re-tuned prior to pausing (see also mmc_retune_pause()).
508 	 */
509 	if (__predict_false(sc->last_rca != 0 && sc->retune_ongoing == 0 &&
510 	    (((retune_req = mmcbr_get_retune_req(busdev)) != retune_req_none &&
511 	    sc->retune_paused == 0) || sc->retune_needed == 1))) {
512 		if (__predict_false(mmc_debug > 1)) {
513 			device_printf(busdev,
514 			    "Re-tuning with%s circuit reset required\n",
515 			    retune_req == retune_req_reset ? "" : "out");
516 		}
517 		if (device_get_parent(dev) == busdev)
518 			ivar = device_get_ivars(dev);
519 		else {
520 			for (i = 0; i < sc->child_count; i++) {
521 				ivar = device_get_ivars(sc->child_list[i]);
522 				if (ivar->rca == sc->last_rca)
523 					break;
524 			}
525 			if (ivar->rca != sc->last_rca)
526 				return (EINVAL);
527 		}
528 		sc->retune_ongoing = 1;
529 		err = mmc_retune(busdev, dev, retune_req == retune_req_reset);
530 		sc->retune_ongoing = 0;
531 		switch (err) {
532 		case MMC_ERR_NONE:
533 		case MMC_ERR_FAILED:	/* Re-tune error but still might work */
534 			break;
535 		case MMC_ERR_BADCRC:	/* Switch failure on HS400 recovery */
536 			return (ENXIO);
537 		case MMC_ERR_INVALID:	/* Driver implementation b0rken */
538 		default:		/* Unknown error, should not happen */
539 			return (EINVAL);
540 		}
541 		sc->retune_needed = 0;
542 	}
543 	return (mmc_wait_for_req(sc, req));
544 }
545 
546 static int
547 mmc_wait_for_command(struct mmc_softc *sc, uint32_t opcode,
548     uint32_t arg, uint32_t flags, uint32_t *resp, int retries)
549 {
550 	struct mmc_command cmd;
551 	int err;
552 
553 	memset(&cmd, 0, sizeof(cmd));
554 	cmd.opcode = opcode;
555 	cmd.arg = arg;
556 	cmd.flags = flags;
557 	cmd.data = NULL;
558 	err = mmc_wait_for_cmd(sc->dev, sc->dev, &cmd, retries);
559 	if (err)
560 		return (err);
561 	if (resp) {
562 		if (flags & MMC_RSP_136)
563 			memcpy(resp, cmd.resp, 4 * sizeof(uint32_t));
564 		else
565 			*resp = cmd.resp[0];
566 	}
567 	return (0);
568 }
569 
570 static void
571 mmc_idle_cards(struct mmc_softc *sc)
572 {
573 	device_t dev;
574 	struct mmc_command cmd;
575 
576 	dev = sc->dev;
577 	mmcbr_set_chip_select(dev, cs_high);
578 	mmcbr_update_ios(dev);
579 	mmc_ms_delay(1);
580 
581 	memset(&cmd, 0, sizeof(cmd));
582 	cmd.opcode = MMC_GO_IDLE_STATE;
583 	cmd.arg = 0;
584 	cmd.flags = MMC_RSP_NONE | MMC_CMD_BC;
585 	cmd.data = NULL;
586 	mmc_wait_for_cmd(sc->dev, sc->dev, &cmd, CMD_RETRIES);
587 	mmc_ms_delay(1);
588 
589 	mmcbr_set_chip_select(dev, cs_dontcare);
590 	mmcbr_update_ios(dev);
591 	mmc_ms_delay(1);
592 }
593 
594 static int
595 mmc_send_app_op_cond(struct mmc_softc *sc, uint32_t ocr, uint32_t *rocr)
596 {
597 	struct mmc_command cmd;
598 	int err = MMC_ERR_NONE, i;
599 
600 	memset(&cmd, 0, sizeof(cmd));
601 	cmd.opcode = ACMD_SD_SEND_OP_COND;
602 	cmd.arg = ocr;
603 	cmd.flags = MMC_RSP_R3 | MMC_CMD_BCR;
604 	cmd.data = NULL;
605 
606 	for (i = 0; i < 1000; i++) {
607 		err = mmc_wait_for_app_cmd(sc->dev, sc->dev, 0, &cmd,
608 		    CMD_RETRIES);
609 		if (err != MMC_ERR_NONE)
610 			break;
611 		if ((cmd.resp[0] & MMC_OCR_CARD_BUSY) ||
612 		    (ocr & MMC_OCR_VOLTAGE) == 0)
613 			break;
614 		err = MMC_ERR_TIMEOUT;
615 		mmc_ms_delay(10);
616 	}
617 	if (rocr && err == MMC_ERR_NONE)
618 		*rocr = cmd.resp[0];
619 	return (err);
620 }
621 
622 static int
623 mmc_send_op_cond(struct mmc_softc *sc, uint32_t ocr, uint32_t *rocr)
624 {
625 	struct mmc_command cmd;
626 	int err = MMC_ERR_NONE, i;
627 
628 	memset(&cmd, 0, sizeof(cmd));
629 	cmd.opcode = MMC_SEND_OP_COND;
630 	cmd.arg = ocr;
631 	cmd.flags = MMC_RSP_R3 | MMC_CMD_BCR;
632 	cmd.data = NULL;
633 
634 	for (i = 0; i < 1000; i++) {
635 		err = mmc_wait_for_cmd(sc->dev, sc->dev, &cmd, CMD_RETRIES);
636 		if (err != MMC_ERR_NONE)
637 			break;
638 		if ((cmd.resp[0] & MMC_OCR_CARD_BUSY) ||
639 		    (ocr & MMC_OCR_VOLTAGE) == 0)
640 			break;
641 		err = MMC_ERR_TIMEOUT;
642 		mmc_ms_delay(10);
643 	}
644 	if (rocr && err == MMC_ERR_NONE)
645 		*rocr = cmd.resp[0];
646 	return (err);
647 }
648 
649 static int
650 mmc_send_if_cond(struct mmc_softc *sc, uint8_t vhs)
651 {
652 	struct mmc_command cmd;
653 	int err;
654 
655 	memset(&cmd, 0, sizeof(cmd));
656 	cmd.opcode = SD_SEND_IF_COND;
657 	cmd.arg = (vhs << 8) + 0xAA;
658 	cmd.flags = MMC_RSP_R7 | MMC_CMD_BCR;
659 	cmd.data = NULL;
660 
661 	err = mmc_wait_for_cmd(sc->dev, sc->dev, &cmd, CMD_RETRIES);
662 	return (err);
663 }
664 
665 static void
666 mmc_power_up(struct mmc_softc *sc)
667 {
668 	device_t dev;
669 	enum mmc_vccq vccq;
670 
671 	dev = sc->dev;
672 	mmcbr_set_vdd(dev, mmc_highest_voltage(mmcbr_get_host_ocr(dev)));
673 	mmcbr_set_bus_mode(dev, opendrain);
674 	mmcbr_set_chip_select(dev, cs_dontcare);
675 	mmcbr_set_bus_width(dev, bus_width_1);
676 	mmcbr_set_power_mode(dev, power_up);
677 	mmcbr_set_clock(dev, 0);
678 	mmcbr_update_ios(dev);
679 	for (vccq = vccq_330; ; vccq--) {
680 		mmcbr_set_vccq(dev, vccq);
681 		if (mmcbr_switch_vccq(dev) == 0 || vccq == vccq_120)
682 			break;
683 	}
684 	mmc_ms_delay(1);
685 
686 	mmcbr_set_clock(dev, SD_MMC_CARD_ID_FREQUENCY);
687 	mmcbr_set_timing(dev, bus_timing_normal);
688 	mmcbr_set_power_mode(dev, power_on);
689 	mmcbr_update_ios(dev);
690 	mmc_ms_delay(2);
691 }
692 
693 static void
694 mmc_power_down(struct mmc_softc *sc)
695 {
696 	device_t dev = sc->dev;
697 
698 	mmcbr_set_bus_mode(dev, opendrain);
699 	mmcbr_set_chip_select(dev, cs_dontcare);
700 	mmcbr_set_bus_width(dev, bus_width_1);
701 	mmcbr_set_power_mode(dev, power_off);
702 	mmcbr_set_clock(dev, 0);
703 	mmcbr_set_timing(dev, bus_timing_normal);
704 	mmcbr_update_ios(dev);
705 }
706 
707 static int
708 mmc_select_card(struct mmc_softc *sc, uint16_t rca)
709 {
710 	int err, flags;
711 
712 	flags = (rca ? MMC_RSP_R1B : MMC_RSP_NONE) | MMC_CMD_AC;
713 	sc->retune_paused++;
714 	err = mmc_wait_for_command(sc, MMC_SELECT_CARD, (uint32_t)rca << 16,
715 	    flags, NULL, CMD_RETRIES);
716 	sc->retune_paused--;
717 	return (err);
718 }
719 
720 static int
721 mmc_sd_switch(struct mmc_softc *sc, uint8_t mode, uint8_t grp, uint8_t value,
722     uint8_t *res)
723 {
724 	int err;
725 	struct mmc_command cmd;
726 	struct mmc_data data;
727 
728 	memset(&cmd, 0, sizeof(cmd));
729 	memset(&data, 0, sizeof(data));
730 	memset(res, 0, 64);
731 
732 	cmd.opcode = SD_SWITCH_FUNC;
733 	cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
734 	cmd.arg = mode << 31;			/* 0 - check, 1 - set */
735 	cmd.arg |= 0x00FFFFFF;
736 	cmd.arg &= ~(0xF << (grp * 4));
737 	cmd.arg |= value << (grp * 4);
738 	cmd.data = &data;
739 
740 	data.data = res;
741 	data.len = 64;
742 	data.flags = MMC_DATA_READ;
743 
744 	err = mmc_wait_for_cmd(sc->dev, sc->dev, &cmd, CMD_RETRIES);
745 	return (err);
746 }
747 
748 static int
749 mmc_set_card_bus_width(struct mmc_softc *sc, struct mmc_ivars *ivar,
750     enum mmc_bus_timing timing)
751 {
752 	struct mmc_command cmd;
753 	int err;
754 	uint8_t	value;
755 
756 	if (mmcbr_get_mode(sc->dev) == mode_sd) {
757 		memset(&cmd, 0, sizeof(cmd));
758 		cmd.opcode = ACMD_SET_CLR_CARD_DETECT;
759 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
760 		cmd.arg = SD_CLR_CARD_DETECT;
761 		err = mmc_wait_for_app_cmd(sc->dev, sc->dev, ivar->rca, &cmd,
762 		    CMD_RETRIES);
763 		if (err != 0)
764 			return (err);
765 		memset(&cmd, 0, sizeof(cmd));
766 		cmd.opcode = ACMD_SET_BUS_WIDTH;
767 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
768 		switch (ivar->bus_width) {
769 		case bus_width_1:
770 			cmd.arg = SD_BUS_WIDTH_1;
771 			break;
772 		case bus_width_4:
773 			cmd.arg = SD_BUS_WIDTH_4;
774 			break;
775 		default:
776 			return (MMC_ERR_INVALID);
777 		}
778 		err = mmc_wait_for_app_cmd(sc->dev, sc->dev, ivar->rca, &cmd,
779 		    CMD_RETRIES);
780 	} else {
781 		switch (ivar->bus_width) {
782 		case bus_width_1:
783 			if (timing == bus_timing_mmc_hs400 ||
784 			    timing == bus_timing_mmc_hs400es)
785 				return (MMC_ERR_INVALID);
786 			value = EXT_CSD_BUS_WIDTH_1;
787 			break;
788 		case bus_width_4:
789 			switch (timing) {
790 			case bus_timing_mmc_ddr52:
791 				value = EXT_CSD_BUS_WIDTH_4_DDR;
792 				break;
793 			case bus_timing_mmc_hs400:
794 			case bus_timing_mmc_hs400es:
795 				return (MMC_ERR_INVALID);
796 			default:
797 				value = EXT_CSD_BUS_WIDTH_4;
798 				break;
799 			}
800 			break;
801 		case bus_width_8:
802 			value = 0;
803 			switch (timing) {
804 			case bus_timing_mmc_hs400es:
805 				value = EXT_CSD_BUS_WIDTH_ES;
806 				/* FALLTHROUGH */
807 			case bus_timing_mmc_ddr52:
808 			case bus_timing_mmc_hs400:
809 				value |= EXT_CSD_BUS_WIDTH_8_DDR;
810 				break;
811 			default:
812 				value = EXT_CSD_BUS_WIDTH_8;
813 				break;
814 			}
815 			break;
816 		default:
817 			return (MMC_ERR_INVALID);
818 		}
819 		err = mmc_switch(sc->dev, sc->dev, ivar->rca,
820 		    EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH, value,
821 		    ivar->cmd6_time, true);
822 	}
823 	return (err);
824 }
825 
826 static int
827 mmc_set_power_class(struct mmc_softc *sc, struct mmc_ivars *ivar)
828 {
829 	device_t dev;
830 	const uint8_t *ext_csd;
831 	uint32_t clock;
832 	uint8_t value;
833 
834 	dev = sc->dev;
835 	if (mmcbr_get_mode(dev) != mode_mmc || ivar->csd.spec_vers < 4)
836 		return (MMC_ERR_NONE);
837 
838 	value = 0;
839 	ext_csd = ivar->raw_ext_csd;
840 	clock = mmcbr_get_clock(dev);
841 	switch (1 << mmcbr_get_vdd(dev)) {
842 	case MMC_OCR_LOW_VOLTAGE:
843 		if (clock <= MMC_TYPE_HS_26_MAX)
844 			value = ext_csd[EXT_CSD_PWR_CL_26_195];
845 		else if (clock <= MMC_TYPE_HS_52_MAX) {
846 			if (mmcbr_get_timing(dev) >= bus_timing_mmc_ddr52 &&
847 			    ivar->bus_width >= bus_width_4)
848 				value = ext_csd[EXT_CSD_PWR_CL_52_195_DDR];
849 			else
850 				value = ext_csd[EXT_CSD_PWR_CL_52_195];
851 		} else if (clock <= MMC_TYPE_HS200_HS400ES_MAX)
852 			value = ext_csd[EXT_CSD_PWR_CL_200_195];
853 		break;
854 	case MMC_OCR_270_280:
855 	case MMC_OCR_280_290:
856 	case MMC_OCR_290_300:
857 	case MMC_OCR_300_310:
858 	case MMC_OCR_310_320:
859 	case MMC_OCR_320_330:
860 	case MMC_OCR_330_340:
861 	case MMC_OCR_340_350:
862 	case MMC_OCR_350_360:
863 		if (clock <= MMC_TYPE_HS_26_MAX)
864 			value = ext_csd[EXT_CSD_PWR_CL_26_360];
865 		else if (clock <= MMC_TYPE_HS_52_MAX) {
866 			if (mmcbr_get_timing(dev) == bus_timing_mmc_ddr52 &&
867 			    ivar->bus_width >= bus_width_4)
868 				value = ext_csd[EXT_CSD_PWR_CL_52_360_DDR];
869 			else
870 				value = ext_csd[EXT_CSD_PWR_CL_52_360];
871 		} else if (clock <= MMC_TYPE_HS200_HS400ES_MAX) {
872 			if (ivar->bus_width == bus_width_8)
873 				value = ext_csd[EXT_CSD_PWR_CL_200_360_DDR];
874 			else
875 				value = ext_csd[EXT_CSD_PWR_CL_200_360];
876 		}
877 		break;
878 	default:
879 		device_printf(dev, "No power class support for VDD 0x%x\n",
880 			1 << mmcbr_get_vdd(dev));
881 		return (MMC_ERR_INVALID);
882 	}
883 
884 	if (ivar->bus_width == bus_width_8)
885 		value = (value & EXT_CSD_POWER_CLASS_8BIT_MASK) >>
886 		    EXT_CSD_POWER_CLASS_8BIT_SHIFT;
887 	else
888 		value = (value & EXT_CSD_POWER_CLASS_4BIT_MASK) >>
889 		    EXT_CSD_POWER_CLASS_4BIT_SHIFT;
890 
891 	if (value == 0)
892 		return (MMC_ERR_NONE);
893 
894 	return (mmc_switch(dev, dev, ivar->rca, EXT_CSD_CMD_SET_NORMAL,
895 	    EXT_CSD_POWER_CLASS, value, ivar->cmd6_time, true));
896 }
897 
898 static int
899 mmc_set_timing(struct mmc_softc *sc, struct mmc_ivars *ivar,
900     enum mmc_bus_timing timing)
901 {
902 	u_char switch_res[64];
903 	uint8_t	value;
904 	int err;
905 
906 	if (mmcbr_get_mode(sc->dev) == mode_sd) {
907 		switch (timing) {
908 		case bus_timing_normal:
909 			value = SD_SWITCH_NORMAL_MODE;
910 			break;
911 		case bus_timing_hs:
912 			value = SD_SWITCH_HS_MODE;
913 			break;
914 		default:
915 			return (MMC_ERR_INVALID);
916 		}
917 		err = mmc_sd_switch(sc, SD_SWITCH_MODE_SET, SD_SWITCH_GROUP1,
918 		    value, switch_res);
919 		if (err != MMC_ERR_NONE)
920 			return (err);
921 		if ((switch_res[16] & 0xf) != value)
922 			return (MMC_ERR_FAILED);
923 		mmcbr_set_timing(sc->dev, timing);
924 		mmcbr_update_ios(sc->dev);
925 	} else {
926 		switch (timing) {
927 		case bus_timing_normal:
928 			value = EXT_CSD_HS_TIMING_BC;
929 			break;
930 		case bus_timing_hs:
931 		case bus_timing_mmc_ddr52:
932 			value = EXT_CSD_HS_TIMING_HS;
933 			break;
934 		case bus_timing_mmc_hs200:
935 			value = EXT_CSD_HS_TIMING_HS200;
936 			break;
937 		case bus_timing_mmc_hs400:
938 		case bus_timing_mmc_hs400es:
939 			value = EXT_CSD_HS_TIMING_HS400;
940 			break;
941 		default:
942 			return (MMC_ERR_INVALID);
943 		}
944 		err = mmc_switch(sc->dev, sc->dev, ivar->rca,
945 		    EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, value,
946 		    ivar->cmd6_time, false);
947 		if (err != MMC_ERR_NONE)
948 			return (err);
949 		mmcbr_set_timing(sc->dev, timing);
950 		mmcbr_update_ios(sc->dev);
951 		err = mmc_switch_status(sc->dev, sc->dev, ivar->rca,
952 		    ivar->cmd6_time);
953 	}
954 	return (err);
955 }
956 
957 static int
958 mmc_set_vccq(struct mmc_softc *sc, struct mmc_ivars *ivar,
959     enum mmc_bus_timing timing)
960 {
961 
962 	if (isset(&ivar->vccq_120, timing))
963 		mmcbr_set_vccq(sc->dev, vccq_120);
964 	else if (isset(&ivar->vccq_180, timing))
965 		mmcbr_set_vccq(sc->dev, vccq_180);
966 	else
967 		mmcbr_set_vccq(sc->dev, vccq_330);
968 	if (mmcbr_switch_vccq(sc->dev) != 0)
969 		return (MMC_ERR_INVALID);
970 	else
971 		return (MMC_ERR_NONE);
972 }
973 
974 static const uint8_t p8[8] = {
975 	0x55, 0xAA, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
976 };
977 
978 static const uint8_t p8ok[8] = {
979 	0xAA, 0x55, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
980 };
981 
982 static const uint8_t p4[4] = {
983 	0x5A, 0x00, 0x00, 0x00
984 };
985 
986 static const uint8_t p4ok[4] = {
987 	0xA5, 0x00, 0x00, 0x00
988 };
989 
990 static int
991 mmc_test_bus_width(struct mmc_softc *sc)
992 {
993 	struct mmc_command cmd;
994 	struct mmc_data data;
995 	uint8_t buf[8];
996 	int err;
997 
998 	if (mmcbr_get_caps(sc->dev) & MMC_CAP_8_BIT_DATA) {
999 		mmcbr_set_bus_width(sc->dev, bus_width_8);
1000 		mmcbr_update_ios(sc->dev);
1001 
1002 		sc->squelched++; /* Errors are expected, squelch reporting. */
1003 		memset(&cmd, 0, sizeof(cmd));
1004 		memset(&data, 0, sizeof(data));
1005 		cmd.opcode = MMC_BUSTEST_W;
1006 		cmd.arg = 0;
1007 		cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
1008 		cmd.data = &data;
1009 
1010 		data.data = __DECONST(void *, p8);
1011 		data.len = 8;
1012 		data.flags = MMC_DATA_WRITE;
1013 		mmc_wait_for_cmd(sc->dev, sc->dev, &cmd, 0);
1014 
1015 		memset(&cmd, 0, sizeof(cmd));
1016 		memset(&data, 0, sizeof(data));
1017 		cmd.opcode = MMC_BUSTEST_R;
1018 		cmd.arg = 0;
1019 		cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
1020 		cmd.data = &data;
1021 
1022 		data.data = buf;
1023 		data.len = 8;
1024 		data.flags = MMC_DATA_READ;
1025 		err = mmc_wait_for_cmd(sc->dev, sc->dev, &cmd, 0);
1026 		sc->squelched--;
1027 
1028 		mmcbr_set_bus_width(sc->dev, bus_width_1);
1029 		mmcbr_update_ios(sc->dev);
1030 
1031 		if (err == MMC_ERR_NONE && memcmp(buf, p8ok, 8) == 0)
1032 			return (bus_width_8);
1033 	}
1034 
1035 	if (mmcbr_get_caps(sc->dev) & MMC_CAP_4_BIT_DATA) {
1036 		mmcbr_set_bus_width(sc->dev, bus_width_4);
1037 		mmcbr_update_ios(sc->dev);
1038 
1039 		sc->squelched++; /* Errors are expected, squelch reporting. */
1040 		memset(&cmd, 0, sizeof(cmd));
1041 		memset(&data, 0, sizeof(data));
1042 		cmd.opcode = MMC_BUSTEST_W;
1043 		cmd.arg = 0;
1044 		cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
1045 		cmd.data = &data;
1046 
1047 		data.data = __DECONST(void *, p4);
1048 		data.len = 4;
1049 		data.flags = MMC_DATA_WRITE;
1050 		mmc_wait_for_cmd(sc->dev, sc->dev, &cmd, 0);
1051 
1052 		memset(&cmd, 0, sizeof(cmd));
1053 		memset(&data, 0, sizeof(data));
1054 		cmd.opcode = MMC_BUSTEST_R;
1055 		cmd.arg = 0;
1056 		cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
1057 		cmd.data = &data;
1058 
1059 		data.data = buf;
1060 		data.len = 4;
1061 		data.flags = MMC_DATA_READ;
1062 		err = mmc_wait_for_cmd(sc->dev, sc->dev, &cmd, 0);
1063 		sc->squelched--;
1064 
1065 		mmcbr_set_bus_width(sc->dev, bus_width_1);
1066 		mmcbr_update_ios(sc->dev);
1067 
1068 		if (err == MMC_ERR_NONE && memcmp(buf, p4ok, 4) == 0)
1069 			return (bus_width_4);
1070 	}
1071 	return (bus_width_1);
1072 }
1073 
1074 static uint32_t
1075 mmc_get_bits(uint32_t *bits, int bit_len, int start, int size)
1076 {
1077 	const int i = (bit_len / 32) - (start / 32) - 1;
1078 	const int shift = start & 31;
1079 	uint32_t retval = bits[i] >> shift;
1080 
1081 	if (size + shift > 32)
1082 		retval |= bits[i - 1] << (32 - shift);
1083 	return (retval & ((1llu << size) - 1));
1084 }
1085 
1086 static void
1087 mmc_decode_cid_sd(uint32_t *raw_cid, struct mmc_cid *cid)
1088 {
1089 	int i;
1090 
1091 	/* There's no version info, so we take it on faith */
1092 	memset(cid, 0, sizeof(*cid));
1093 	cid->mid = mmc_get_bits(raw_cid, 128, 120, 8);
1094 	cid->oid = mmc_get_bits(raw_cid, 128, 104, 16);
1095 	for (i = 0; i < 5; i++)
1096 		cid->pnm[i] = mmc_get_bits(raw_cid, 128, 96 - i * 8, 8);
1097 	cid->pnm[5] = 0;
1098 	cid->prv = mmc_get_bits(raw_cid, 128, 56, 8);
1099 	cid->psn = mmc_get_bits(raw_cid, 128, 24, 32);
1100 	cid->mdt_year = mmc_get_bits(raw_cid, 128, 12, 8) + 2000;
1101 	cid->mdt_month = mmc_get_bits(raw_cid, 128, 8, 4);
1102 }
1103 
1104 static void
1105 mmc_decode_cid_mmc(uint32_t *raw_cid, struct mmc_cid *cid, bool is_4_41p)
1106 {
1107 	int i;
1108 
1109 	/* There's no version info, so we take it on faith */
1110 	memset(cid, 0, sizeof(*cid));
1111 	cid->mid = mmc_get_bits(raw_cid, 128, 120, 8);
1112 	cid->oid = mmc_get_bits(raw_cid, 128, 104, 8);
1113 	for (i = 0; i < 6; i++)
1114 		cid->pnm[i] = mmc_get_bits(raw_cid, 128, 96 - i * 8, 8);
1115 	cid->pnm[6] = 0;
1116 	cid->prv = mmc_get_bits(raw_cid, 128, 48, 8);
1117 	cid->psn = mmc_get_bits(raw_cid, 128, 16, 32);
1118 	cid->mdt_month = mmc_get_bits(raw_cid, 128, 12, 4);
1119 	cid->mdt_year = mmc_get_bits(raw_cid, 128, 8, 4);
1120 	if (is_4_41p)
1121 		cid->mdt_year += 2013;
1122 	else
1123 		cid->mdt_year += 1997;
1124 }
1125 
1126 static void
1127 mmc_format_card_id_string(struct mmc_ivars *ivar)
1128 {
1129 	char oidstr[8];
1130 	uint8_t c1;
1131 	uint8_t c2;
1132 
1133 	/*
1134 	 * Format a card ID string for use by the mmcsd driver, it's what
1135 	 * appears between the <> in the following:
1136 	 * mmcsd0: 968MB <SD SD01G 8.0 SN 2686905 MFG 08/2008 by 3 TN> at mmc0
1137 	 * 22.5MHz/4bit/128-block
1138 	 *
1139 	 * Also format just the card serial number, which the mmcsd driver will
1140 	 * use as the disk->d_ident string.
1141 	 *
1142 	 * The card_id_string in mmc_ivars is currently allocated as 64 bytes,
1143 	 * and our max formatted length is currently 55 bytes if every field
1144 	 * contains the largest value.
1145 	 *
1146 	 * Sometimes the oid is two printable ascii chars; when it's not,
1147 	 * format it as 0xnnnn instead.
1148 	 */
1149 	c1 = (ivar->cid.oid >> 8) & 0x0ff;
1150 	c2 = ivar->cid.oid & 0x0ff;
1151 	if (c1 > 0x1f && c1 < 0x7f && c2 > 0x1f && c2 < 0x7f)
1152 		snprintf(oidstr, sizeof(oidstr), "%c%c", c1, c2);
1153 	else
1154 		snprintf(oidstr, sizeof(oidstr), "0x%04x", ivar->cid.oid);
1155 	snprintf(ivar->card_sn_string, sizeof(ivar->card_sn_string),
1156 	    "%08X", ivar->cid.psn);
1157 	snprintf(ivar->card_id_string, sizeof(ivar->card_id_string),
1158 	    "%s%s %s %d.%d SN %08X MFG %02d/%04d by %d %s",
1159 	    ivar->mode == mode_sd ? "SD" : "MMC", ivar->high_cap ? "HC" : "",
1160 	    ivar->cid.pnm, ivar->cid.prv >> 4, ivar->cid.prv & 0x0f,
1161 	    ivar->cid.psn, ivar->cid.mdt_month, ivar->cid.mdt_year,
1162 	    ivar->cid.mid, oidstr);
1163 }
1164 
1165 static const int exp[8] = {
1166 	1, 10, 100, 1000, 10000, 100000, 1000000, 10000000
1167 };
1168 
1169 static const int mant[16] = {
1170 	0, 10, 12, 13, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80
1171 };
1172 
1173 static const int cur_min[8] = {
1174 	500, 1000, 5000, 10000, 25000, 35000, 60000, 100000
1175 };
1176 
1177 static const int cur_max[8] = {
1178 	1000, 5000, 10000, 25000, 35000, 45000, 800000, 200000
1179 };
1180 
1181 static int
1182 mmc_decode_csd_sd(uint32_t *raw_csd, struct mmc_csd *csd)
1183 {
1184 	int v;
1185 	int m;
1186 	int e;
1187 
1188 	memset(csd, 0, sizeof(*csd));
1189 	csd->csd_structure = v = mmc_get_bits(raw_csd, 128, 126, 2);
1190 	if (v == 0) {
1191 		m = mmc_get_bits(raw_csd, 128, 115, 4);
1192 		e = mmc_get_bits(raw_csd, 128, 112, 3);
1193 		csd->tacc = (exp[e] * mant[m] + 9) / 10;
1194 		csd->nsac = mmc_get_bits(raw_csd, 128, 104, 8) * 100;
1195 		m = mmc_get_bits(raw_csd, 128, 99, 4);
1196 		e = mmc_get_bits(raw_csd, 128, 96, 3);
1197 		csd->tran_speed = exp[e] * 10000 * mant[m];
1198 		csd->ccc = mmc_get_bits(raw_csd, 128, 84, 12);
1199 		csd->read_bl_len = 1 << mmc_get_bits(raw_csd, 128, 80, 4);
1200 		csd->read_bl_partial = mmc_get_bits(raw_csd, 128, 79, 1);
1201 		csd->write_blk_misalign = mmc_get_bits(raw_csd, 128, 78, 1);
1202 		csd->read_blk_misalign = mmc_get_bits(raw_csd, 128, 77, 1);
1203 		csd->dsr_imp = mmc_get_bits(raw_csd, 128, 76, 1);
1204 		csd->vdd_r_curr_min =
1205 		    cur_min[mmc_get_bits(raw_csd, 128, 59, 3)];
1206 		csd->vdd_r_curr_max =
1207 		    cur_max[mmc_get_bits(raw_csd, 128, 56, 3)];
1208 		csd->vdd_w_curr_min =
1209 		    cur_min[mmc_get_bits(raw_csd, 128, 53, 3)];
1210 		csd->vdd_w_curr_max =
1211 		    cur_max[mmc_get_bits(raw_csd, 128, 50, 3)];
1212 		m = mmc_get_bits(raw_csd, 128, 62, 12);
1213 		e = mmc_get_bits(raw_csd, 128, 47, 3);
1214 		csd->capacity = ((1 + m) << (e + 2)) * csd->read_bl_len;
1215 		csd->erase_blk_en = mmc_get_bits(raw_csd, 128, 46, 1);
1216 		csd->erase_sector = mmc_get_bits(raw_csd, 128, 39, 7) + 1;
1217 		csd->wp_grp_size = mmc_get_bits(raw_csd, 128, 32, 7);
1218 		csd->wp_grp_enable = mmc_get_bits(raw_csd, 128, 31, 1);
1219 		csd->r2w_factor = 1 << mmc_get_bits(raw_csd, 128, 26, 3);
1220 		csd->write_bl_len = 1 << mmc_get_bits(raw_csd, 128, 22, 4);
1221 		csd->write_bl_partial = mmc_get_bits(raw_csd, 128, 21, 1);
1222 		return (MMC_ERR_NONE);
1223 	} else if (v == 1) {
1224 		m = mmc_get_bits(raw_csd, 128, 115, 4);
1225 		e = mmc_get_bits(raw_csd, 128, 112, 3);
1226 		csd->tacc = (exp[e] * mant[m] + 9) / 10;
1227 		csd->nsac = mmc_get_bits(raw_csd, 128, 104, 8) * 100;
1228 		m = mmc_get_bits(raw_csd, 128, 99, 4);
1229 		e = mmc_get_bits(raw_csd, 128, 96, 3);
1230 		csd->tran_speed = exp[e] * 10000 * mant[m];
1231 		csd->ccc = mmc_get_bits(raw_csd, 128, 84, 12);
1232 		csd->read_bl_len = 1 << mmc_get_bits(raw_csd, 128, 80, 4);
1233 		csd->read_bl_partial = mmc_get_bits(raw_csd, 128, 79, 1);
1234 		csd->write_blk_misalign = mmc_get_bits(raw_csd, 128, 78, 1);
1235 		csd->read_blk_misalign = mmc_get_bits(raw_csd, 128, 77, 1);
1236 		csd->dsr_imp = mmc_get_bits(raw_csd, 128, 76, 1);
1237 		csd->capacity = ((uint64_t)mmc_get_bits(raw_csd, 128, 48, 22) +
1238 		    1) * 512 * 1024;
1239 		csd->erase_blk_en = mmc_get_bits(raw_csd, 128, 46, 1);
1240 		csd->erase_sector = mmc_get_bits(raw_csd, 128, 39, 7) + 1;
1241 		csd->wp_grp_size = mmc_get_bits(raw_csd, 128, 32, 7);
1242 		csd->wp_grp_enable = mmc_get_bits(raw_csd, 128, 31, 1);
1243 		csd->r2w_factor = 1 << mmc_get_bits(raw_csd, 128, 26, 3);
1244 		csd->write_bl_len = 1 << mmc_get_bits(raw_csd, 128, 22, 4);
1245 		csd->write_bl_partial = mmc_get_bits(raw_csd, 128, 21, 1);
1246 		return (MMC_ERR_NONE);
1247 	}
1248 	return (MMC_ERR_INVALID);
1249 }
1250 
1251 static void
1252 mmc_decode_csd_mmc(uint32_t *raw_csd, struct mmc_csd *csd)
1253 {
1254 	int m;
1255 	int e;
1256 
1257 	memset(csd, 0, sizeof(*csd));
1258 	csd->csd_structure = mmc_get_bits(raw_csd, 128, 126, 2);
1259 	csd->spec_vers = mmc_get_bits(raw_csd, 128, 122, 4);
1260 	m = mmc_get_bits(raw_csd, 128, 115, 4);
1261 	e = mmc_get_bits(raw_csd, 128, 112, 3);
1262 	csd->tacc = exp[e] * mant[m] + 9 / 10;
1263 	csd->nsac = mmc_get_bits(raw_csd, 128, 104, 8) * 100;
1264 	m = mmc_get_bits(raw_csd, 128, 99, 4);
1265 	e = mmc_get_bits(raw_csd, 128, 96, 3);
1266 	csd->tran_speed = exp[e] * 10000 * mant[m];
1267 	csd->ccc = mmc_get_bits(raw_csd, 128, 84, 12);
1268 	csd->read_bl_len = 1 << mmc_get_bits(raw_csd, 128, 80, 4);
1269 	csd->read_bl_partial = mmc_get_bits(raw_csd, 128, 79, 1);
1270 	csd->write_blk_misalign = mmc_get_bits(raw_csd, 128, 78, 1);
1271 	csd->read_blk_misalign = mmc_get_bits(raw_csd, 128, 77, 1);
1272 	csd->dsr_imp = mmc_get_bits(raw_csd, 128, 76, 1);
1273 	csd->vdd_r_curr_min = cur_min[mmc_get_bits(raw_csd, 128, 59, 3)];
1274 	csd->vdd_r_curr_max = cur_max[mmc_get_bits(raw_csd, 128, 56, 3)];
1275 	csd->vdd_w_curr_min = cur_min[mmc_get_bits(raw_csd, 128, 53, 3)];
1276 	csd->vdd_w_curr_max = cur_max[mmc_get_bits(raw_csd, 128, 50, 3)];
1277 	m = mmc_get_bits(raw_csd, 128, 62, 12);
1278 	e = mmc_get_bits(raw_csd, 128, 47, 3);
1279 	csd->capacity = ((1 + m) << (e + 2)) * csd->read_bl_len;
1280 	csd->erase_blk_en = 0;
1281 	csd->erase_sector = (mmc_get_bits(raw_csd, 128, 42, 5) + 1) *
1282 	    (mmc_get_bits(raw_csd, 128, 37, 5) + 1);
1283 	csd->wp_grp_size = mmc_get_bits(raw_csd, 128, 32, 5);
1284 	csd->wp_grp_enable = mmc_get_bits(raw_csd, 128, 31, 1);
1285 	csd->r2w_factor = 1 << mmc_get_bits(raw_csd, 128, 26, 3);
1286 	csd->write_bl_len = 1 << mmc_get_bits(raw_csd, 128, 22, 4);
1287 	csd->write_bl_partial = mmc_get_bits(raw_csd, 128, 21, 1);
1288 }
1289 
1290 static void
1291 mmc_app_decode_scr(uint32_t *raw_scr, struct mmc_scr *scr)
1292 {
1293 	unsigned int scr_struct;
1294 
1295 	memset(scr, 0, sizeof(*scr));
1296 
1297 	scr_struct = mmc_get_bits(raw_scr, 64, 60, 4);
1298 	if (scr_struct != 0) {
1299 		printf("Unrecognised SCR structure version %d\n",
1300 		    scr_struct);
1301 		return;
1302 	}
1303 	scr->sda_vsn = mmc_get_bits(raw_scr, 64, 56, 4);
1304 	scr->bus_widths = mmc_get_bits(raw_scr, 64, 48, 4);
1305 }
1306 
1307 static void
1308 mmc_app_decode_sd_status(uint32_t *raw_sd_status,
1309     struct mmc_sd_status *sd_status)
1310 {
1311 
1312 	memset(sd_status, 0, sizeof(*sd_status));
1313 
1314 	sd_status->bus_width = mmc_get_bits(raw_sd_status, 512, 510, 2);
1315 	sd_status->secured_mode = mmc_get_bits(raw_sd_status, 512, 509, 1);
1316 	sd_status->card_type = mmc_get_bits(raw_sd_status, 512, 480, 16);
1317 	sd_status->prot_area = mmc_get_bits(raw_sd_status, 512, 448, 12);
1318 	sd_status->speed_class = mmc_get_bits(raw_sd_status, 512, 440, 8);
1319 	sd_status->perf_move = mmc_get_bits(raw_sd_status, 512, 432, 8);
1320 	sd_status->au_size = mmc_get_bits(raw_sd_status, 512, 428, 4);
1321 	sd_status->erase_size = mmc_get_bits(raw_sd_status, 512, 408, 16);
1322 	sd_status->erase_timeout = mmc_get_bits(raw_sd_status, 512, 402, 6);
1323 	sd_status->erase_offset = mmc_get_bits(raw_sd_status, 512, 400, 2);
1324 }
1325 
1326 static int
1327 mmc_all_send_cid(struct mmc_softc *sc, uint32_t *rawcid)
1328 {
1329 	struct mmc_command cmd;
1330 	int err;
1331 
1332 	memset(&cmd, 0, sizeof(cmd));
1333 	cmd.opcode = MMC_ALL_SEND_CID;
1334 	cmd.arg = 0;
1335 	cmd.flags = MMC_RSP_R2 | MMC_CMD_BCR;
1336 	cmd.data = NULL;
1337 	err = mmc_wait_for_cmd(sc->dev, sc->dev, &cmd, CMD_RETRIES);
1338 	memcpy(rawcid, cmd.resp, 4 * sizeof(uint32_t));
1339 	return (err);
1340 }
1341 
1342 static int
1343 mmc_send_csd(struct mmc_softc *sc, uint16_t rca, uint32_t *rawcsd)
1344 {
1345 	struct mmc_command cmd;
1346 	int err;
1347 
1348 	memset(&cmd, 0, sizeof(cmd));
1349 	cmd.opcode = MMC_SEND_CSD;
1350 	cmd.arg = rca << 16;
1351 	cmd.flags = MMC_RSP_R2 | MMC_CMD_BCR;
1352 	cmd.data = NULL;
1353 	err = mmc_wait_for_cmd(sc->dev, sc->dev, &cmd, CMD_RETRIES);
1354 	memcpy(rawcsd, cmd.resp, 4 * sizeof(uint32_t));
1355 	return (err);
1356 }
1357 
1358 static int
1359 mmc_app_send_scr(struct mmc_softc *sc, uint16_t rca, uint32_t *rawscr)
1360 {
1361 	int err;
1362 	struct mmc_command cmd;
1363 	struct mmc_data data;
1364 
1365 	memset(&cmd, 0, sizeof(cmd));
1366 	memset(&data, 0, sizeof(data));
1367 
1368 	memset(rawscr, 0, 8);
1369 	cmd.opcode = ACMD_SEND_SCR;
1370 	cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
1371 	cmd.arg = 0;
1372 	cmd.data = &data;
1373 
1374 	data.data = rawscr;
1375 	data.len = 8;
1376 	data.flags = MMC_DATA_READ;
1377 
1378 	err = mmc_wait_for_app_cmd(sc->dev, sc->dev, rca, &cmd, CMD_RETRIES);
1379 	rawscr[0] = be32toh(rawscr[0]);
1380 	rawscr[1] = be32toh(rawscr[1]);
1381 	return (err);
1382 }
1383 
1384 static int
1385 mmc_app_sd_status(struct mmc_softc *sc, uint16_t rca, uint32_t *rawsdstatus)
1386 {
1387 	struct mmc_command cmd;
1388 	struct mmc_data data;
1389 	int err, i;
1390 
1391 	memset(&cmd, 0, sizeof(cmd));
1392 	memset(&data, 0, sizeof(data));
1393 
1394 	memset(rawsdstatus, 0, 64);
1395 	cmd.opcode = ACMD_SD_STATUS;
1396 	cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
1397 	cmd.arg = 0;
1398 	cmd.data = &data;
1399 
1400 	data.data = rawsdstatus;
1401 	data.len = 64;
1402 	data.flags = MMC_DATA_READ;
1403 
1404 	err = mmc_wait_for_app_cmd(sc->dev, sc->dev, rca, &cmd, CMD_RETRIES);
1405 	for (i = 0; i < 16; i++)
1406 	    rawsdstatus[i] = be32toh(rawsdstatus[i]);
1407 	return (err);
1408 }
1409 
1410 static int
1411 mmc_set_relative_addr(struct mmc_softc *sc, uint16_t resp)
1412 {
1413 	struct mmc_command cmd;
1414 	int err;
1415 
1416 	memset(&cmd, 0, sizeof(cmd));
1417 	cmd.opcode = MMC_SET_RELATIVE_ADDR;
1418 	cmd.arg = resp << 16;
1419 	cmd.flags = MMC_RSP_R6 | MMC_CMD_BCR;
1420 	cmd.data = NULL;
1421 	err = mmc_wait_for_cmd(sc->dev, sc->dev, &cmd, CMD_RETRIES);
1422 	return (err);
1423 }
1424 
1425 static int
1426 mmc_send_relative_addr(struct mmc_softc *sc, uint32_t *resp)
1427 {
1428 	struct mmc_command cmd;
1429 	int err;
1430 
1431 	memset(&cmd, 0, sizeof(cmd));
1432 	cmd.opcode = SD_SEND_RELATIVE_ADDR;
1433 	cmd.arg = 0;
1434 	cmd.flags = MMC_RSP_R6 | MMC_CMD_BCR;
1435 	cmd.data = NULL;
1436 	err = mmc_wait_for_cmd(sc->dev, sc->dev, &cmd, CMD_RETRIES);
1437 	*resp = cmd.resp[0];
1438 	return (err);
1439 }
1440 
1441 static int
1442 mmc_set_blocklen(struct mmc_softc *sc, uint32_t len)
1443 {
1444 	struct mmc_command cmd;
1445 	int err;
1446 
1447 	memset(&cmd, 0, sizeof(cmd));
1448 	cmd.opcode = MMC_SET_BLOCKLEN;
1449 	cmd.arg = len;
1450 	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1451 	cmd.data = NULL;
1452 	err = mmc_wait_for_cmd(sc->dev, sc->dev, &cmd, CMD_RETRIES);
1453 	return (err);
1454 }
1455 
1456 static uint32_t
1457 mmc_timing_to_dtr(struct mmc_ivars *ivar, enum mmc_bus_timing timing)
1458 {
1459 
1460 	switch (timing) {
1461 	case bus_timing_normal:
1462 		return (ivar->tran_speed);
1463 	case bus_timing_hs:
1464 		return (ivar->hs_tran_speed);
1465 	case bus_timing_uhs_sdr12:
1466 		return (SD_SDR12_MAX);
1467 	case bus_timing_uhs_sdr25:
1468 		return (SD_SDR25_MAX);
1469 	case bus_timing_uhs_ddr50:
1470 		return (SD_DDR50_MAX);
1471 	case bus_timing_uhs_sdr50:
1472 		return (SD_SDR50_MAX);
1473 	case bus_timing_uhs_sdr104:
1474 		return (SD_SDR104_MAX);
1475 	case bus_timing_mmc_ddr52:
1476 		return (MMC_TYPE_DDR52_MAX);
1477 	case bus_timing_mmc_hs200:
1478 	case bus_timing_mmc_hs400:
1479 	case bus_timing_mmc_hs400es:
1480 		return (MMC_TYPE_HS200_HS400ES_MAX);
1481 	}
1482 	return (0);
1483 }
1484 
1485 static const char *
1486 mmc_timing_to_string(enum mmc_bus_timing timing)
1487 {
1488 
1489 	switch (timing) {
1490 	case bus_timing_normal:
1491 		return ("normal speed");
1492 	case bus_timing_hs:
1493 		return ("high speed");
1494 	case bus_timing_uhs_sdr12:
1495 	case bus_timing_uhs_sdr25:
1496 	case bus_timing_uhs_sdr50:
1497 	case bus_timing_uhs_sdr104:
1498 		return ("single data rate");
1499 	case bus_timing_uhs_ddr50:
1500 	case bus_timing_mmc_ddr52:
1501 		return ("dual data rate");
1502 	case bus_timing_mmc_hs200:
1503 		return ("HS200");
1504 	case bus_timing_mmc_hs400:
1505 		return ("HS400");
1506 	case bus_timing_mmc_hs400es:
1507 		return ("HS400 with enhanced strobe");
1508 	}
1509 	return ("");
1510 }
1511 
1512 static bool
1513 mmc_host_timing(device_t dev, enum mmc_bus_timing timing)
1514 {
1515 	int host_caps;
1516 
1517 	host_caps = mmcbr_get_caps(dev);
1518 
1519 #define	HOST_TIMING_CAP(host_caps, cap) ({				\
1520 	bool retval;							\
1521 	if (((host_caps) & (cap)) == (cap))				\
1522 		retval = true;						\
1523 	else								\
1524 		retval = false;						\
1525 	retval;								\
1526 })
1527 
1528 	switch (timing) {
1529 	case bus_timing_normal:
1530 		return (true);
1531 	case bus_timing_hs:
1532 		return (HOST_TIMING_CAP(host_caps, MMC_CAP_HSPEED));
1533 	case bus_timing_uhs_sdr12:
1534 		return (HOST_TIMING_CAP(host_caps, MMC_CAP_UHS_SDR12));
1535 	case bus_timing_uhs_sdr25:
1536 		return (HOST_TIMING_CAP(host_caps, MMC_CAP_UHS_SDR25));
1537 	case bus_timing_uhs_ddr50:
1538 		return (HOST_TIMING_CAP(host_caps, MMC_CAP_UHS_DDR50));
1539 	case bus_timing_uhs_sdr50:
1540 		return (HOST_TIMING_CAP(host_caps, MMC_CAP_UHS_SDR50));
1541 	case bus_timing_uhs_sdr104:
1542 		return (HOST_TIMING_CAP(host_caps, MMC_CAP_UHS_SDR104));
1543 	case bus_timing_mmc_ddr52:
1544 		return (HOST_TIMING_CAP(host_caps, MMC_CAP_MMC_DDR52));
1545 	case bus_timing_mmc_hs200:
1546 		return (HOST_TIMING_CAP(host_caps, MMC_CAP_MMC_HS200));
1547 	case bus_timing_mmc_hs400:
1548 		return (HOST_TIMING_CAP(host_caps, MMC_CAP_MMC_HS400));
1549 	case bus_timing_mmc_hs400es:
1550 		return (HOST_TIMING_CAP(host_caps, MMC_CAP_MMC_HS400 |
1551 		    MMC_CAP_MMC_ENH_STROBE));
1552 	}
1553 
1554 #undef HOST_TIMING_CAP
1555 
1556 	return (false);
1557 }
1558 
1559 static void
1560 mmc_log_card(device_t dev, struct mmc_ivars *ivar, int newcard)
1561 {
1562 	enum mmc_bus_timing timing;
1563 
1564 	device_printf(dev, "Card at relative address 0x%04x%s:\n",
1565 	    ivar->rca, newcard ? " added" : "");
1566 	device_printf(dev, " card: %s\n", ivar->card_id_string);
1567 	for (timing = bus_timing_max; timing > bus_timing_normal; timing--) {
1568 		if (isset(&ivar->timings, timing))
1569 			break;
1570 	}
1571 	device_printf(dev, " quirks: %b\n", ivar->quirks, MMC_QUIRKS_FMT);
1572 	device_printf(dev, " bus: %ubit, %uMHz (%s timing)\n",
1573 	    (ivar->bus_width == bus_width_1 ? 1 :
1574 	    (ivar->bus_width == bus_width_4 ? 4 : 8)),
1575 	    mmc_timing_to_dtr(ivar, timing) / 1000000,
1576 	    mmc_timing_to_string(timing));
1577 	device_printf(dev, " memory: %u blocks, erase sector %u blocks%s\n",
1578 	    ivar->sec_count, ivar->erase_sector,
1579 	    ivar->read_only ? ", read-only" : "");
1580 }
1581 
1582 static void
1583 mmc_discover_cards(struct mmc_softc *sc)
1584 {
1585 	u_char switch_res[64];
1586 	uint32_t raw_cid[4];
1587 	struct mmc_ivars *ivar = NULL;
1588 	const struct mmc_quirk *quirk;
1589 	device_t child;
1590 	int err, host_caps, i, newcard;
1591 	uint32_t resp, sec_count, status;
1592 	uint16_t rca = 2;
1593 
1594 	host_caps = mmcbr_get_caps(sc->dev);
1595 	if (bootverbose || mmc_debug)
1596 		device_printf(sc->dev, "Probing cards\n");
1597 	while (1) {
1598 		child = NULL;
1599 		sc->squelched++; /* Errors are expected, squelch reporting. */
1600 		err = mmc_all_send_cid(sc, raw_cid);
1601 		sc->squelched--;
1602 		if (err == MMC_ERR_TIMEOUT)
1603 			break;
1604 		if (err != MMC_ERR_NONE) {
1605 			device_printf(sc->dev, "Error reading CID %d\n", err);
1606 			break;
1607 		}
1608 		newcard = 1;
1609 		for (i = 0; i < sc->child_count; i++) {
1610 			ivar = device_get_ivars(sc->child_list[i]);
1611 			if (memcmp(ivar->raw_cid, raw_cid, sizeof(raw_cid)) ==
1612 			    0) {
1613 				newcard = 0;
1614 				break;
1615 			}
1616 		}
1617 		if (bootverbose || mmc_debug) {
1618 			device_printf(sc->dev,
1619 			    "%sard detected (CID %08x%08x%08x%08x)\n",
1620 			    newcard ? "New c" : "C",
1621 			    raw_cid[0], raw_cid[1], raw_cid[2], raw_cid[3]);
1622 		}
1623 		if (newcard) {
1624 			ivar = malloc(sizeof(struct mmc_ivars), M_DEVBUF,
1625 			    M_WAITOK | M_ZERO);
1626 			memcpy(ivar->raw_cid, raw_cid, sizeof(raw_cid));
1627 		}
1628 		if (mmcbr_get_ro(sc->dev))
1629 			ivar->read_only = 1;
1630 		ivar->bus_width = bus_width_1;
1631 		setbit(&ivar->timings, bus_timing_normal);
1632 		ivar->mode = mmcbr_get_mode(sc->dev);
1633 		if (ivar->mode == mode_sd) {
1634 			mmc_decode_cid_sd(ivar->raw_cid, &ivar->cid);
1635 			err = mmc_send_relative_addr(sc, &resp);
1636 			if (err != MMC_ERR_NONE) {
1637 				device_printf(sc->dev,
1638 				    "Error getting RCA %d\n", err);
1639 				goto free_ivar;
1640 			}
1641 			ivar->rca = resp >> 16;
1642 			/* Get card CSD. */
1643 			err = mmc_send_csd(sc, ivar->rca, ivar->raw_csd);
1644 			if (err != MMC_ERR_NONE) {
1645 				device_printf(sc->dev,
1646 				    "Error getting CSD %d\n", err);
1647 				goto free_ivar;
1648 			}
1649 			if (bootverbose || mmc_debug)
1650 				device_printf(sc->dev,
1651 				    "%sard detected (CSD %08x%08x%08x%08x)\n",
1652 				    newcard ? "New c" : "C", ivar->raw_csd[0],
1653 				    ivar->raw_csd[1], ivar->raw_csd[2],
1654 				    ivar->raw_csd[3]);
1655 			err = mmc_decode_csd_sd(ivar->raw_csd, &ivar->csd);
1656 			if (err != MMC_ERR_NONE) {
1657 				device_printf(sc->dev, "Error decoding CSD\n");
1658 				goto free_ivar;
1659 			}
1660 			ivar->sec_count = ivar->csd.capacity / MMC_SECTOR_SIZE;
1661 			if (ivar->csd.csd_structure > 0)
1662 				ivar->high_cap = 1;
1663 			ivar->tran_speed = ivar->csd.tran_speed;
1664 			ivar->erase_sector = ivar->csd.erase_sector *
1665 			    ivar->csd.write_bl_len / MMC_SECTOR_SIZE;
1666 
1667 			err = mmc_send_status(sc->dev, sc->dev, ivar->rca,
1668 			    &status);
1669 			if (err != MMC_ERR_NONE) {
1670 				device_printf(sc->dev,
1671 				    "Error reading card status %d\n", err);
1672 				goto free_ivar;
1673 			}
1674 			if ((status & R1_CARD_IS_LOCKED) != 0) {
1675 				device_printf(sc->dev,
1676 				    "Card is password protected, skipping\n");
1677 				goto free_ivar;
1678 			}
1679 
1680 			/* Get card SCR.  Card must be selected to fetch it. */
1681 			err = mmc_select_card(sc, ivar->rca);
1682 			if (err != MMC_ERR_NONE) {
1683 				device_printf(sc->dev,
1684 				    "Error selecting card %d\n", err);
1685 				goto free_ivar;
1686 			}
1687 			err = mmc_app_send_scr(sc, ivar->rca, ivar->raw_scr);
1688 			if (err != MMC_ERR_NONE) {
1689 				device_printf(sc->dev,
1690 				    "Error reading SCR %d\n", err);
1691 				goto free_ivar;
1692 			}
1693 			mmc_app_decode_scr(ivar->raw_scr, &ivar->scr);
1694 			/* Get card switch capabilities (command class 10). */
1695 			if ((ivar->scr.sda_vsn >= 1) &&
1696 			    (ivar->csd.ccc & (1 << 10))) {
1697 				err = mmc_sd_switch(sc, SD_SWITCH_MODE_CHECK,
1698 				    SD_SWITCH_GROUP1, SD_SWITCH_NOCHANGE,
1699 				    switch_res);
1700 				if (err == MMC_ERR_NONE &&
1701 				    switch_res[13] & (1 << SD_SWITCH_HS_MODE)) {
1702 					setbit(&ivar->timings, bus_timing_hs);
1703 					ivar->hs_tran_speed = SD_HS_MAX;
1704 				}
1705 			}
1706 
1707 			/*
1708 			 * We deselect then reselect the card here.  Some cards
1709 			 * become unselected and timeout with the above two
1710 			 * commands, although the state tables / diagrams in the
1711 			 * standard suggest they go back to the transfer state.
1712 			 * Other cards don't become deselected, and if we
1713 			 * attempt to blindly re-select them, we get timeout
1714 			 * errors from some controllers.  So we deselect then
1715 			 * reselect to handle all situations.  The only thing we
1716 			 * use from the sd_status is the erase sector size, but
1717 			 * it is still nice to get that right.
1718 			 */
1719 			(void)mmc_select_card(sc, 0);
1720 			(void)mmc_select_card(sc, ivar->rca);
1721 			(void)mmc_app_sd_status(sc, ivar->rca,
1722 			    ivar->raw_sd_status);
1723 			mmc_app_decode_sd_status(ivar->raw_sd_status,
1724 			    &ivar->sd_status);
1725 			if (ivar->sd_status.au_size != 0) {
1726 				ivar->erase_sector =
1727 				    16 << ivar->sd_status.au_size;
1728 			}
1729 			/* Find maximum supported bus width. */
1730 			if ((host_caps & MMC_CAP_4_BIT_DATA) &&
1731 			    (ivar->scr.bus_widths & SD_SCR_BUS_WIDTH_4))
1732 				ivar->bus_width = bus_width_4;
1733 
1734 			goto child_common;
1735 		}
1736 		ivar->rca = rca++;
1737 		err = mmc_set_relative_addr(sc, ivar->rca);
1738 		if (err != MMC_ERR_NONE) {
1739 			device_printf(sc->dev, "Error setting RCA %d\n", err);
1740 			goto free_ivar;
1741 		}
1742 		/* Get card CSD. */
1743 		err = mmc_send_csd(sc, ivar->rca, ivar->raw_csd);
1744 		if (err != MMC_ERR_NONE) {
1745 			device_printf(sc->dev, "Error getting CSD %d\n", err);
1746 			goto free_ivar;
1747 		}
1748 		if (bootverbose || mmc_debug)
1749 			device_printf(sc->dev,
1750 			    "%sard detected (CSD %08x%08x%08x%08x)\n",
1751 			    newcard ? "New c" : "C", ivar->raw_csd[0],
1752 			    ivar->raw_csd[1], ivar->raw_csd[2],
1753 			    ivar->raw_csd[3]);
1754 
1755 		mmc_decode_csd_mmc(ivar->raw_csd, &ivar->csd);
1756 		ivar->sec_count = ivar->csd.capacity / MMC_SECTOR_SIZE;
1757 		ivar->tran_speed = ivar->csd.tran_speed;
1758 		ivar->erase_sector = ivar->csd.erase_sector *
1759 		    ivar->csd.write_bl_len / MMC_SECTOR_SIZE;
1760 
1761 		err = mmc_send_status(sc->dev, sc->dev, ivar->rca, &status);
1762 		if (err != MMC_ERR_NONE) {
1763 			device_printf(sc->dev,
1764 			    "Error reading card status %d\n", err);
1765 			goto free_ivar;
1766 		}
1767 		if ((status & R1_CARD_IS_LOCKED) != 0) {
1768 			device_printf(sc->dev,
1769 			    "Card is password protected, skipping\n");
1770 			goto free_ivar;
1771 		}
1772 
1773 		err = mmc_select_card(sc, ivar->rca);
1774 		if (err != MMC_ERR_NONE) {
1775 			device_printf(sc->dev, "Error selecting card %d\n",
1776 			    err);
1777 			goto free_ivar;
1778 		}
1779 
1780 		/* Only MMC >= 4.x devices support EXT_CSD. */
1781 		if (ivar->csd.spec_vers >= 4) {
1782 			err = mmc_send_ext_csd(sc->dev, sc->dev,
1783 			    ivar->raw_ext_csd);
1784 			if (err != MMC_ERR_NONE) {
1785 				device_printf(sc->dev,
1786 				    "Error reading EXT_CSD %d\n", err);
1787 				goto free_ivar;
1788 			}
1789 			/* Handle extended capacity from EXT_CSD */
1790 			sec_count = ivar->raw_ext_csd[EXT_CSD_SEC_CNT] +
1791 			    (ivar->raw_ext_csd[EXT_CSD_SEC_CNT + 1] << 8) +
1792 			    (ivar->raw_ext_csd[EXT_CSD_SEC_CNT + 2] << 16) +
1793 			    (ivar->raw_ext_csd[EXT_CSD_SEC_CNT + 3] << 24);
1794 			if (sec_count != 0) {
1795 				ivar->sec_count = sec_count;
1796 				ivar->high_cap = 1;
1797 			}
1798 			/* Find maximum supported bus width. */
1799 			ivar->bus_width = mmc_test_bus_width(sc);
1800 			/* Get device speeds beyond normal mode. */
1801 			if ((ivar->raw_ext_csd[EXT_CSD_CARD_TYPE] &
1802 			    EXT_CSD_CARD_TYPE_HS_52) != 0) {
1803 				setbit(&ivar->timings, bus_timing_hs);
1804 				ivar->hs_tran_speed = MMC_TYPE_HS_52_MAX;
1805 			} else if ((ivar->raw_ext_csd[EXT_CSD_CARD_TYPE] &
1806 			    EXT_CSD_CARD_TYPE_HS_26) != 0) {
1807 				setbit(&ivar->timings, bus_timing_hs);
1808 				ivar->hs_tran_speed = MMC_TYPE_HS_26_MAX;
1809 			}
1810 			if ((ivar->raw_ext_csd[EXT_CSD_CARD_TYPE] &
1811 			    EXT_CSD_CARD_TYPE_DDR_52_1_2V) != 0 &&
1812 			    (host_caps & MMC_CAP_SIGNALING_120) != 0) {
1813 				setbit(&ivar->timings, bus_timing_mmc_ddr52);
1814 				setbit(&ivar->vccq_120, bus_timing_mmc_ddr52);
1815 			}
1816 			if ((ivar->raw_ext_csd[EXT_CSD_CARD_TYPE] &
1817 			    EXT_CSD_CARD_TYPE_DDR_52_1_8V) != 0 &&
1818 			    (host_caps & MMC_CAP_SIGNALING_180) != 0) {
1819 				setbit(&ivar->timings, bus_timing_mmc_ddr52);
1820 				setbit(&ivar->vccq_180, bus_timing_mmc_ddr52);
1821 			}
1822 			if ((ivar->raw_ext_csd[EXT_CSD_CARD_TYPE] &
1823 			    EXT_CSD_CARD_TYPE_HS200_1_2V) != 0 &&
1824 			    (host_caps & MMC_CAP_SIGNALING_120) != 0) {
1825 				setbit(&ivar->timings, bus_timing_mmc_hs200);
1826 				setbit(&ivar->vccq_120, bus_timing_mmc_hs200);
1827 			}
1828 			if ((ivar->raw_ext_csd[EXT_CSD_CARD_TYPE] &
1829 			    EXT_CSD_CARD_TYPE_HS200_1_8V) != 0 &&
1830 			    (host_caps & MMC_CAP_SIGNALING_180) != 0) {
1831 				setbit(&ivar->timings, bus_timing_mmc_hs200);
1832 				setbit(&ivar->vccq_180, bus_timing_mmc_hs200);
1833 			}
1834 			if ((ivar->raw_ext_csd[EXT_CSD_CARD_TYPE] &
1835 			    EXT_CSD_CARD_TYPE_HS400_1_2V) != 0 &&
1836 			    (host_caps & MMC_CAP_SIGNALING_120) != 0 &&
1837 			    ivar->bus_width == bus_width_8) {
1838 				setbit(&ivar->timings, bus_timing_mmc_hs400);
1839 				setbit(&ivar->vccq_120, bus_timing_mmc_hs400);
1840 			}
1841 			if ((ivar->raw_ext_csd[EXT_CSD_CARD_TYPE] &
1842 			    EXT_CSD_CARD_TYPE_HS400_1_8V) != 0 &&
1843 			    (host_caps & MMC_CAP_SIGNALING_180) != 0 &&
1844 			    ivar->bus_width == bus_width_8) {
1845 				setbit(&ivar->timings, bus_timing_mmc_hs400);
1846 				setbit(&ivar->vccq_180, bus_timing_mmc_hs400);
1847 			}
1848 			if ((ivar->raw_ext_csd[EXT_CSD_CARD_TYPE] &
1849 			    EXT_CSD_CARD_TYPE_HS400_1_2V) != 0 &&
1850 			    (ivar->raw_ext_csd[EXT_CSD_STROBE_SUPPORT] &
1851 			    EXT_CSD_STROBE_SUPPORT_EN) != 0 &&
1852 			    (host_caps & MMC_CAP_SIGNALING_120) != 0 &&
1853 			    ivar->bus_width == bus_width_8) {
1854 				setbit(&ivar->timings, bus_timing_mmc_hs400es);
1855 				setbit(&ivar->vccq_120, bus_timing_mmc_hs400es);
1856 			}
1857 			if ((ivar->raw_ext_csd[EXT_CSD_CARD_TYPE] &
1858 			    EXT_CSD_CARD_TYPE_HS400_1_8V) != 0 &&
1859 			    (ivar->raw_ext_csd[EXT_CSD_STROBE_SUPPORT] &
1860 			    EXT_CSD_STROBE_SUPPORT_EN) != 0 &&
1861 			    (host_caps & MMC_CAP_SIGNALING_180) != 0 &&
1862 			    ivar->bus_width == bus_width_8) {
1863 				setbit(&ivar->timings, bus_timing_mmc_hs400es);
1864 				setbit(&ivar->vccq_180, bus_timing_mmc_hs400es);
1865 			}
1866 			/*
1867 			 * Determine generic switch timeout (provided in
1868 			 * units of 10 ms), defaulting to 500 ms.
1869 			 */
1870 			ivar->cmd6_time = 500 * 1000;
1871 			if (ivar->raw_ext_csd[EXT_CSD_REV] >= 6)
1872 				ivar->cmd6_time = 10 *
1873 				    ivar->raw_ext_csd[EXT_CSD_GEN_CMD6_TIME];
1874 			/* Handle HC erase sector size. */
1875 			if (ivar->raw_ext_csd[EXT_CSD_ERASE_GRP_SIZE] != 0) {
1876 				ivar->erase_sector = 1024 *
1877 				    ivar->raw_ext_csd[EXT_CSD_ERASE_GRP_SIZE];
1878 				err = mmc_switch(sc->dev, sc->dev, ivar->rca,
1879 				    EXT_CSD_CMD_SET_NORMAL,
1880 				    EXT_CSD_ERASE_GRP_DEF,
1881 				    EXT_CSD_ERASE_GRP_DEF_EN,
1882 				    ivar->cmd6_time, true);
1883 				if (err != MMC_ERR_NONE) {
1884 					device_printf(sc->dev,
1885 					    "Error setting erase group %d\n",
1886 					    err);
1887 					goto free_ivar;
1888 				}
1889 			}
1890 		}
1891 
1892 		mmc_decode_cid_mmc(ivar->raw_cid, &ivar->cid,
1893 		    ivar->raw_ext_csd[EXT_CSD_REV] >= 5);
1894 
1895 child_common:
1896 		for (quirk = &mmc_quirks[0]; quirk->mid != 0x0; quirk++) {
1897 			if ((quirk->mid == MMC_QUIRK_MID_ANY ||
1898 			    quirk->mid == ivar->cid.mid) &&
1899 			    (quirk->oid == MMC_QUIRK_OID_ANY ||
1900 			    quirk->oid == ivar->cid.oid) &&
1901 			    strncmp(quirk->pnm, ivar->cid.pnm,
1902 			    sizeof(ivar->cid.pnm)) == 0) {
1903 				ivar->quirks = quirk->quirks;
1904 				break;
1905 			}
1906 		}
1907 
1908 		/*
1909 		 * Some cards that report maximum I/O block sizes greater
1910 		 * than 512 require the block length to be set to 512, even
1911 		 * though that is supposed to be the default.  Example:
1912 		 *
1913 		 * Transcend 2GB SDSC card, CID:
1914 		 * mid=0x1b oid=0x534d pnm="00000" prv=1.0 mdt=00.2000
1915 		 */
1916 		if (ivar->csd.read_bl_len != MMC_SECTOR_SIZE ||
1917 		    ivar->csd.write_bl_len != MMC_SECTOR_SIZE)
1918 			mmc_set_blocklen(sc, MMC_SECTOR_SIZE);
1919 
1920 		mmc_format_card_id_string(ivar);
1921 
1922 		if (bootverbose || mmc_debug)
1923 			mmc_log_card(sc->dev, ivar, newcard);
1924 		if (newcard) {
1925 			/* Add device. */
1926 			child = device_add_child(sc->dev, NULL, -1);
1927 			if (child != NULL) {
1928 				device_set_ivars(child, ivar);
1929 				sc->child_list = realloc(sc->child_list,
1930 				    sizeof(device_t) * sc->child_count + 1,
1931 				    M_DEVBUF, M_WAITOK);
1932 				sc->child_list[sc->child_count++] = child;
1933 			} else
1934 				device_printf(sc->dev, "Error adding child\n");
1935 		}
1936 
1937 free_ivar:
1938 		if (newcard && child == NULL)
1939 			free(ivar, M_DEVBUF);
1940 		(void)mmc_select_card(sc, 0);
1941 		/*
1942 		 * Not returning here when one MMC device could no be added
1943 		 * potentially would mean looping forever when that device
1944 		 * is broken (in which case it also may impact the remainder
1945 		 * of the bus anyway, though).
1946 		 */
1947 		if ((newcard && child == NULL) ||
1948 		    mmcbr_get_mode(sc->dev) == mode_sd)
1949 			return;
1950 	}
1951 }
1952 
1953 static void
1954 mmc_update_child_list(struct mmc_softc *sc)
1955 {
1956 	device_t child;
1957 	int i, j;
1958 
1959 	if (sc->child_count == 0) {
1960 		free(sc->child_list, M_DEVBUF);
1961 		return;
1962 	}
1963 	for (i = j = 0; i < sc->child_count; i++) {
1964 		for (;;) {
1965 			child = sc->child_list[j++];
1966 			if (child != NULL)
1967 				break;
1968 		}
1969 		if (i != j)
1970 			sc->child_list[i] = child;
1971 	}
1972 	sc->child_list = realloc(sc->child_list, sizeof(device_t) *
1973 	    sc->child_count, M_DEVBUF, M_WAITOK);
1974 }
1975 
1976 static void
1977 mmc_rescan_cards(struct mmc_softc *sc)
1978 {
1979 	struct mmc_ivars *ivar;
1980 	int err, i, j;
1981 
1982 	for (i = j = 0; i < sc->child_count; i++) {
1983 		ivar = device_get_ivars(sc->child_list[i]);
1984 		if (mmc_select_card(sc, ivar->rca) != MMC_ERR_NONE) {
1985 			if (bootverbose || mmc_debug)
1986 				device_printf(sc->dev,
1987 				    "Card at relative address %d lost\n",
1988 				    ivar->rca);
1989 			err = device_delete_child(sc->dev, sc->child_list[i]);
1990 			if (err != 0) {
1991 				j++;
1992 				continue;
1993 			}
1994 			free(ivar, M_DEVBUF);
1995 		} else
1996 			j++;
1997 	}
1998 	if (sc->child_count == j)
1999 		goto out;
2000 	sc->child_count = j;
2001 	mmc_update_child_list(sc);
2002 out:
2003 	(void)mmc_select_card(sc, 0);
2004 }
2005 
2006 static int
2007 mmc_delete_cards(struct mmc_softc *sc, bool final)
2008 {
2009 	struct mmc_ivars *ivar;
2010 	int err, i, j;
2011 
2012 	err = 0;
2013 	for (i = j = 0; i < sc->child_count; i++) {
2014 		ivar = device_get_ivars(sc->child_list[i]);
2015 		if (bootverbose || mmc_debug)
2016 			device_printf(sc->dev,
2017 			    "Card at relative address %d deleted\n",
2018 			    ivar->rca);
2019 		err = device_delete_child(sc->dev, sc->child_list[i]);
2020 		if (err != 0) {
2021 			j++;
2022 			if (final == false)
2023 				continue;
2024 			else
2025 				break;
2026 		}
2027 		free(ivar, M_DEVBUF);
2028 	}
2029 	sc->child_count = j;
2030 	mmc_update_child_list(sc);
2031 	return (err);
2032 }
2033 
2034 static void
2035 mmc_go_discovery(struct mmc_softc *sc)
2036 {
2037 	uint32_t ocr;
2038 	device_t dev;
2039 	int err;
2040 
2041 	dev = sc->dev;
2042 	if (mmcbr_get_power_mode(dev) != power_on) {
2043 		/*
2044 		 * First, try SD modes
2045 		 */
2046 		sc->squelched++; /* Errors are expected, squelch reporting. */
2047 		mmcbr_set_mode(dev, mode_sd);
2048 		mmc_power_up(sc);
2049 		mmcbr_set_bus_mode(dev, pushpull);
2050 		if (bootverbose || mmc_debug)
2051 			device_printf(sc->dev, "Probing bus\n");
2052 		mmc_idle_cards(sc);
2053 		err = mmc_send_if_cond(sc, 1);
2054 		if ((bootverbose || mmc_debug) && err == 0)
2055 			device_printf(sc->dev,
2056 			    "SD 2.0 interface conditions: OK\n");
2057 		if (mmc_send_app_op_cond(sc, 0, &ocr) != MMC_ERR_NONE) {
2058 			if (bootverbose || mmc_debug)
2059 				device_printf(sc->dev, "SD probe: failed\n");
2060 			/*
2061 			 * Failed, try MMC
2062 			 */
2063 			mmcbr_set_mode(dev, mode_mmc);
2064 			if (mmc_send_op_cond(sc, 0, &ocr) != MMC_ERR_NONE) {
2065 				if (bootverbose || mmc_debug)
2066 					device_printf(sc->dev,
2067 					    "MMC probe: failed\n");
2068 				ocr = 0; /* Failed both, powerdown. */
2069 			} else if (bootverbose || mmc_debug)
2070 				device_printf(sc->dev,
2071 				    "MMC probe: OK (OCR: 0x%08x)\n", ocr);
2072 		} else if (bootverbose || mmc_debug)
2073 			device_printf(sc->dev, "SD probe: OK (OCR: 0x%08x)\n",
2074 			    ocr);
2075 		sc->squelched--;
2076 
2077 		mmcbr_set_ocr(dev, mmc_select_vdd(sc, ocr));
2078 		if (mmcbr_get_ocr(dev) != 0)
2079 			mmc_idle_cards(sc);
2080 	} else {
2081 		mmcbr_set_bus_mode(dev, opendrain);
2082 		mmcbr_set_clock(dev, SD_MMC_CARD_ID_FREQUENCY);
2083 		mmcbr_update_ios(dev);
2084 		/* XXX recompute vdd based on new cards? */
2085 	}
2086 	/*
2087 	 * Make sure that we have a mutually agreeable voltage to at least
2088 	 * one card on the bus.
2089 	 */
2090 	if (bootverbose || mmc_debug)
2091 		device_printf(sc->dev, "Current OCR: 0x%08x\n",
2092 		    mmcbr_get_ocr(dev));
2093 	if (mmcbr_get_ocr(dev) == 0) {
2094 		device_printf(sc->dev, "No compatible cards found on bus\n");
2095 		(void)mmc_delete_cards(sc, false);
2096 		mmc_power_down(sc);
2097 		return;
2098 	}
2099 	/*
2100 	 * Reselect the cards after we've idled them above.
2101 	 */
2102 	if (mmcbr_get_mode(dev) == mode_sd) {
2103 		err = mmc_send_if_cond(sc, 1);
2104 		mmc_send_app_op_cond(sc,
2105 		    (err ? 0 : MMC_OCR_CCS) | mmcbr_get_ocr(dev), NULL);
2106 	} else
2107 		mmc_send_op_cond(sc, MMC_OCR_CCS | mmcbr_get_ocr(dev), NULL);
2108 	mmc_discover_cards(sc);
2109 	mmc_rescan_cards(sc);
2110 
2111 	mmcbr_set_bus_mode(dev, pushpull);
2112 	mmcbr_update_ios(dev);
2113 	mmc_calculate_clock(sc);
2114 }
2115 
2116 static int
2117 mmc_calculate_clock(struct mmc_softc *sc)
2118 {
2119 	device_t dev;
2120 	struct mmc_ivars *ivar;
2121 	int i;
2122 	uint32_t dtr, max_dtr;
2123 	uint16_t rca;
2124 	enum mmc_bus_timing max_timing, timing;
2125 	bool changed, hs400;
2126 
2127 	dev = sc->dev;
2128 	max_dtr = mmcbr_get_f_max(dev);
2129 	max_timing = bus_timing_max;
2130 	do {
2131 		changed = false;
2132 		for (i = 0; i < sc->child_count; i++) {
2133 			ivar = device_get_ivars(sc->child_list[i]);
2134 			if (isclr(&ivar->timings, max_timing) ||
2135 			    !mmc_host_timing(dev, max_timing)) {
2136 				for (timing = max_timing - 1; timing >=
2137 				    bus_timing_normal; timing--) {
2138 					if (isset(&ivar->timings, timing) &&
2139 					    mmc_host_timing(dev, timing)) {
2140 						max_timing = timing;
2141 						break;
2142 					}
2143 				}
2144 				changed = true;
2145 			}
2146 			dtr = mmc_timing_to_dtr(ivar, max_timing);
2147 			if (dtr < max_dtr) {
2148 				max_dtr = dtr;
2149 				changed = true;
2150 			}
2151 		}
2152 	} while (changed == true);
2153 
2154 	if (bootverbose || mmc_debug) {
2155 		device_printf(dev,
2156 		    "setting transfer rate to %d.%03dMHz (%s timing)\n",
2157 		    max_dtr / 1000000, (max_dtr / 1000) % 1000,
2158 		    mmc_timing_to_string(max_timing));
2159 	}
2160 
2161 	/*
2162 	 * HS400 must be tuned in HS200 mode, so in case of HS400 we begin
2163 	 * with HS200 following the sequence as described in "6.6.2.2 HS200
2164 	 * timing mode selection" of the eMMC specification v5.1, too, and
2165 	 * switch to max_timing later.  HS400ES requires no tuning and, thus,
2166 	 * can be switch to directly, but requires the same detour via high
2167 	 * speed mode as does HS400 (see mmc_switch_to_hs400()).
2168 	 */
2169 	hs400 = max_timing == bus_timing_mmc_hs400;
2170 	timing = hs400 == true ? bus_timing_mmc_hs200 : max_timing;
2171 	for (i = 0; i < sc->child_count; i++) {
2172 		ivar = device_get_ivars(sc->child_list[i]);
2173 		if ((ivar->timings & ~(1 << bus_timing_normal)) == 0)
2174 			continue;
2175 
2176 		rca = ivar->rca;
2177 		if (mmc_select_card(sc, rca) != MMC_ERR_NONE) {
2178 			device_printf(dev, "Card at relative address %d "
2179 			    "failed to select\n", rca);
2180 			continue;
2181 		}
2182 
2183 		if (timing == bus_timing_mmc_hs200 ||	/* includes HS400 */
2184 		    timing == bus_timing_mmc_hs400es) {
2185 			if (mmc_set_vccq(sc, ivar, timing) != MMC_ERR_NONE) {
2186 				device_printf(dev, "Failed to set VCCQ for "
2187 				    "card at relative address %d\n", rca);
2188 				continue;
2189 			}
2190 		}
2191 
2192 		if (timing == bus_timing_mmc_hs200) {	/* includes HS400 */
2193 			/* Set bus width (required for initial tuning). */
2194 			if (mmc_set_card_bus_width(sc, ivar, timing) !=
2195 			    MMC_ERR_NONE) {
2196 				device_printf(dev, "Card at relative address "
2197 				    "%d failed to set bus width\n", rca);
2198 				continue;
2199 			}
2200 			mmcbr_set_bus_width(dev, ivar->bus_width);
2201 			mmcbr_update_ios(dev);
2202 		} else if (timing == bus_timing_mmc_hs400es) {
2203 			if (mmc_switch_to_hs400(sc, ivar, max_dtr, timing) !=
2204 			    MMC_ERR_NONE) {
2205 				device_printf(dev, "Card at relative address "
2206 				    "%d failed to set %s timing\n", rca,
2207 				    mmc_timing_to_string(timing));
2208 				continue;
2209 			}
2210 			goto power_class;
2211 		}
2212 
2213 		if (mmc_set_timing(sc, ivar, timing) != MMC_ERR_NONE) {
2214 			device_printf(dev, "Card at relative address %d "
2215 			    "failed to set %s timing\n", rca,
2216 			    mmc_timing_to_string(timing));
2217 			continue;
2218 		}
2219 
2220 		if (timing == bus_timing_mmc_ddr52) {
2221 			/*
2222 			 * Set EXT_CSD_BUS_WIDTH_n_DDR in EXT_CSD_BUS_WIDTH
2223 			 * (must be done after switching to EXT_CSD_HS_TIMING).
2224 			 */
2225 			if (mmc_set_card_bus_width(sc, ivar, timing) !=
2226 			    MMC_ERR_NONE) {
2227 				device_printf(dev, "Card at relative address "
2228 				    "%d failed to set bus width\n", rca);
2229 				continue;
2230 			}
2231 			mmcbr_set_bus_width(dev, ivar->bus_width);
2232 			mmcbr_update_ios(dev);
2233 			if (mmc_set_vccq(sc, ivar, timing) != MMC_ERR_NONE) {
2234 				device_printf(dev, "Failed to set VCCQ for "
2235 				    "card at relative address %d\n", rca);
2236 				continue;
2237 			}
2238 		}
2239 
2240 		/* Set clock (must be done before initial tuning). */
2241 		mmcbr_set_clock(dev, max_dtr);
2242 		mmcbr_update_ios(dev);
2243 
2244 		if (mmcbr_tune(dev, hs400) != 0) {
2245 			device_printf(dev, "Card at relative address %d "
2246 			    "failed to execute initial tuning\n", rca);
2247 			continue;
2248 		}
2249 
2250 		if (hs400 == true && mmc_switch_to_hs400(sc, ivar, max_dtr,
2251 		    max_timing) != MMC_ERR_NONE) {
2252 			device_printf(dev, "Card at relative address %d "
2253 			    "failed to set %s timing\n", rca,
2254 			    mmc_timing_to_string(max_timing));
2255 			continue;
2256 		}
2257 
2258 power_class:
2259 		if (mmc_set_power_class(sc, ivar) != MMC_ERR_NONE) {
2260 			device_printf(dev, "Card at relative address %d "
2261 			    "failed to set power class\n", rca);
2262 		}
2263 	}
2264 	(void)mmc_select_card(sc, 0);
2265 	return (max_dtr);
2266 }
2267 
2268 /*
2269  * Switch from HS200 to HS400 (either initially or for re-tuning) or directly
2270  * to HS400ES.  This follows the sequences described in "6.6.2.3 HS400 timing
2271  * mode selection" of the eMMC specification v5.1.
2272  */
2273 static int
2274 mmc_switch_to_hs400(struct mmc_softc *sc, struct mmc_ivars *ivar,
2275     uint32_t clock, enum mmc_bus_timing max_timing)
2276 {
2277 	device_t dev;
2278 	int err;
2279 	uint16_t rca;
2280 
2281 	dev = sc->dev;
2282 	rca = ivar->rca;
2283 
2284 	/*
2285 	 * Both clock and timing must be set as appropriate for high speed
2286 	 * before eventually switching to HS400/HS400ES; mmc_set_timing()
2287 	 * will issue mmcbr_update_ios().
2288 	 */
2289 	mmcbr_set_clock(dev, ivar->hs_tran_speed);
2290 	err = mmc_set_timing(sc, ivar, bus_timing_hs);
2291 	if (err != MMC_ERR_NONE)
2292 		return (err);
2293 
2294 	/*
2295 	 * Set EXT_CSD_BUS_WIDTH_8_DDR in EXT_CSD_BUS_WIDTH (and additionally
2296 	 * EXT_CSD_BUS_WIDTH_ES for HS400ES).
2297 	 */
2298 	err = mmc_set_card_bus_width(sc, ivar, max_timing);
2299 	if (err != MMC_ERR_NONE)
2300 		return (err);
2301 	mmcbr_set_bus_width(dev, ivar->bus_width);
2302 	mmcbr_update_ios(dev);
2303 
2304 	/* Finally, switch to HS400/HS400ES mode. */
2305 	err = mmc_set_timing(sc, ivar, max_timing);
2306 	if (err != MMC_ERR_NONE)
2307 		return (err);
2308 	mmcbr_set_clock(dev, clock);
2309 	mmcbr_update_ios(dev);
2310 	return (MMC_ERR_NONE);
2311 }
2312 
2313 /*
2314  * Switch from HS400 to HS200 (for re-tuning).
2315  */
2316 static int
2317 mmc_switch_to_hs200(struct mmc_softc *sc, struct mmc_ivars *ivar,
2318     uint32_t clock)
2319 {
2320 	device_t dev;
2321 	int err;
2322 	uint16_t rca;
2323 
2324 	dev = sc->dev;
2325 	rca = ivar->rca;
2326 
2327 	/*
2328 	 * Both clock and timing must initially be set as appropriate for
2329 	 * DDR52 before eventually switching to HS200; mmc_set_timing()
2330 	 * will issue mmcbr_update_ios().
2331 	 */
2332 	mmcbr_set_clock(dev, ivar->hs_tran_speed);
2333 	err = mmc_set_timing(sc, ivar, bus_timing_mmc_ddr52);
2334 	if (err != MMC_ERR_NONE)
2335 		return (err);
2336 
2337 	/*
2338 	 * Next, switch to high speed.  Thus, clear EXT_CSD_BUS_WIDTH_n_DDR
2339 	 * in EXT_CSD_BUS_WIDTH and update bus width and timing in ios.
2340 	 */
2341 	err = mmc_set_card_bus_width(sc, ivar, bus_timing_hs);
2342 	if (err != MMC_ERR_NONE)
2343 		return (err);
2344 	mmcbr_set_bus_width(dev, ivar->bus_width);
2345 	mmcbr_set_timing(sc->dev, bus_timing_hs);
2346 	mmcbr_update_ios(dev);
2347 
2348 	/* Finally, switch to HS200 mode. */
2349 	err = mmc_set_timing(sc, ivar, bus_timing_mmc_hs200);
2350 	if (err != MMC_ERR_NONE)
2351 		return (err);
2352 	mmcbr_set_clock(dev, clock);
2353 	mmcbr_update_ios(dev);
2354 	return (MMC_ERR_NONE);
2355 }
2356 
2357 static int
2358 mmc_retune(device_t busdev, device_t dev, bool reset)
2359 {
2360 	struct mmc_softc *sc;
2361 	struct mmc_ivars *ivar;
2362 	int err;
2363 	uint32_t clock;
2364 	enum mmc_bus_timing timing;
2365 
2366 	if (device_get_parent(dev) != busdev)
2367 		return (MMC_ERR_INVALID);
2368 
2369 	sc = device_get_softc(busdev);
2370 	if (sc->retune_needed != 1 && sc->retune_paused != 0)
2371 		return (MMC_ERR_INVALID);
2372 
2373 	timing = mmcbr_get_timing(busdev);
2374 	if (timing == bus_timing_mmc_hs400) {
2375 		/*
2376 		 * Controllers use the data strobe line to latch data from
2377 		 * the devices in HS400 mode so periodic re-tuning isn't
2378 		 * expected to be required, i. e. only if a CRC or tuning
2379 		 * error is signaled to the bridge.  In these latter cases
2380 		 * we are asked to reset the tuning circuit and need to do
2381 		 * the switch timing dance.
2382 		 */
2383 		if (reset == false)
2384 			return (0);
2385 		ivar = device_get_ivars(dev);
2386 		clock = mmcbr_get_clock(busdev);
2387 		if (mmc_switch_to_hs200(sc, ivar, clock) != MMC_ERR_NONE)
2388 			return (MMC_ERR_BADCRC);
2389 	}
2390 	err = mmcbr_retune(busdev, reset);
2391 	if (err != 0 && timing == bus_timing_mmc_hs400)
2392 		return (MMC_ERR_BADCRC);
2393 	switch (err) {
2394 	case 0:
2395 		break;
2396 	case EIO:
2397 		return (MMC_ERR_FAILED);
2398 	default:
2399 		return (MMC_ERR_INVALID);
2400 	}
2401 	if (timing == bus_timing_mmc_hs400) {
2402 		if (mmc_switch_to_hs400(sc, ivar, clock, timing) !=
2403 		    MMC_ERR_NONE)
2404 			return (MMC_ERR_BADCRC);
2405 	}
2406 	return (MMC_ERR_NONE);
2407 }
2408 
2409 static void
2410 mmc_retune_pause(device_t busdev, device_t dev, bool retune)
2411 {
2412 	struct mmc_softc *sc;
2413 
2414 	sc = device_get_softc(busdev);
2415 	KASSERT(device_get_parent(dev) == busdev,
2416 	    ("%s: %s is not a child of %s", __func__, device_get_nameunit(dev),
2417 	    device_get_nameunit(busdev)));
2418 	KASSERT(sc->owner != NULL,
2419 	    ("%s: Request from %s without bus being acquired.", __func__,
2420 	    device_get_nameunit(dev)));
2421 
2422 	if (retune == true && sc->retune_paused == 0)
2423 		sc->retune_needed = 1;
2424 	sc->retune_paused++;
2425 }
2426 
2427 static void
2428 mmc_retune_unpause(device_t busdev, device_t dev)
2429 {
2430 	struct mmc_softc *sc;
2431 
2432 	sc = device_get_softc(busdev);
2433 	KASSERT(device_get_parent(dev) == busdev,
2434 	    ("%s: %s is not a child of %s", __func__, device_get_nameunit(dev),
2435 	    device_get_nameunit(busdev)));
2436 	KASSERT(sc->owner != NULL,
2437 	    ("%s: Request from %s without bus being acquired.", __func__,
2438 	    device_get_nameunit(dev)));
2439 	KASSERT(sc->retune_paused != 0,
2440 	    ("%s: Re-tune pause count already at 0", __func__));
2441 
2442 	sc->retune_paused--;
2443 }
2444 
2445 static void
2446 mmc_scan(struct mmc_softc *sc)
2447 {
2448 	device_t dev = sc->dev;
2449 	int err;
2450 
2451 	err = mmc_acquire_bus(dev, dev);
2452 	if (err != 0) {
2453 		device_printf(dev, "Failed to acquire bus for scanning\n");
2454 		return;
2455 	}
2456 	mmc_go_discovery(sc);
2457 	err = mmc_release_bus(dev, dev);
2458 	if (err != 0) {
2459 		device_printf(dev, "Failed to release bus after scanning\n");
2460 		return;
2461 	}
2462 	(void)bus_generic_attach(dev);
2463 }
2464 
2465 static int
2466 mmc_read_ivar(device_t bus, device_t child, int which, uintptr_t *result)
2467 {
2468 	struct mmc_ivars *ivar = device_get_ivars(child);
2469 
2470 	switch (which) {
2471 	default:
2472 		return (EINVAL);
2473 	case MMC_IVAR_SPEC_VERS:
2474 		*result = ivar->csd.spec_vers;
2475 		break;
2476 	case MMC_IVAR_DSR_IMP:
2477 		*result = ivar->csd.dsr_imp;
2478 		break;
2479 	case MMC_IVAR_MEDIA_SIZE:
2480 		*result = ivar->sec_count;
2481 		break;
2482 	case MMC_IVAR_RCA:
2483 		*result = ivar->rca;
2484 		break;
2485 	case MMC_IVAR_SECTOR_SIZE:
2486 		*result = MMC_SECTOR_SIZE;
2487 		break;
2488 	case MMC_IVAR_TRAN_SPEED:
2489 		*result = mmcbr_get_clock(bus);
2490 		break;
2491 	case MMC_IVAR_READ_ONLY:
2492 		*result = ivar->read_only;
2493 		break;
2494 	case MMC_IVAR_HIGH_CAP:
2495 		*result = ivar->high_cap;
2496 		break;
2497 	case MMC_IVAR_CARD_TYPE:
2498 		*result = ivar->mode;
2499 		break;
2500 	case MMC_IVAR_BUS_WIDTH:
2501 		*result = ivar->bus_width;
2502 		break;
2503 	case MMC_IVAR_ERASE_SECTOR:
2504 		*result = ivar->erase_sector;
2505 		break;
2506 	case MMC_IVAR_MAX_DATA:
2507 		*result = mmcbr_get_max_data(bus);
2508 		break;
2509 	case MMC_IVAR_CMD6_TIMEOUT:
2510 		*result = ivar->cmd6_time;
2511 		break;
2512 	case MMC_IVAR_QUIRKS:
2513 		*result = ivar->quirks;
2514 		break;
2515 	case MMC_IVAR_CARD_ID_STRING:
2516 		*(char **)result = ivar->card_id_string;
2517 		break;
2518 	case MMC_IVAR_CARD_SN_STRING:
2519 		*(char **)result = ivar->card_sn_string;
2520 		break;
2521 	}
2522 	return (0);
2523 }
2524 
2525 static int
2526 mmc_write_ivar(device_t bus, device_t child, int which, uintptr_t value)
2527 {
2528 
2529 	/*
2530 	 * None are writable ATM
2531 	 */
2532 	return (EINVAL);
2533 }
2534 
2535 static void
2536 mmc_delayed_attach(void *xsc)
2537 {
2538 	struct mmc_softc *sc = xsc;
2539 
2540 	mmc_scan(sc);
2541 	config_intrhook_disestablish(&sc->config_intrhook);
2542 }
2543 
2544 static int
2545 mmc_child_location_str(device_t dev, device_t child, char *buf,
2546     size_t buflen)
2547 {
2548 
2549 	snprintf(buf, buflen, "rca=0x%04x", mmc_get_rca(child));
2550 	return (0);
2551 }
2552 
2553 static device_method_t mmc_methods[] = {
2554 	/* device_if */
2555 	DEVMETHOD(device_probe, mmc_probe),
2556 	DEVMETHOD(device_attach, mmc_attach),
2557 	DEVMETHOD(device_detach, mmc_detach),
2558 	DEVMETHOD(device_suspend, mmc_suspend),
2559 	DEVMETHOD(device_resume, mmc_resume),
2560 
2561 	/* Bus interface */
2562 	DEVMETHOD(bus_read_ivar, mmc_read_ivar),
2563 	DEVMETHOD(bus_write_ivar, mmc_write_ivar),
2564 	DEVMETHOD(bus_child_location_str, mmc_child_location_str),
2565 
2566 	/* MMC Bus interface */
2567 	DEVMETHOD(mmcbus_retune_pause, mmc_retune_pause),
2568 	DEVMETHOD(mmcbus_retune_unpause, mmc_retune_unpause),
2569 	DEVMETHOD(mmcbus_wait_for_request, mmc_wait_for_request),
2570 	DEVMETHOD(mmcbus_acquire_bus, mmc_acquire_bus),
2571 	DEVMETHOD(mmcbus_release_bus, mmc_release_bus),
2572 
2573 	DEVMETHOD_END
2574 };
2575 
2576 driver_t mmc_driver = {
2577 	"mmc",
2578 	mmc_methods,
2579 	sizeof(struct mmc_softc),
2580 };
2581 devclass_t mmc_devclass;
2582 
2583 MODULE_VERSION(mmc, MMC_VERSION);
2584