xref: /freebsd/sys/dev/neta/if_mvneta.c (revision f374ba41)
1 /*
2  * Copyright (c) 2017 Stormshield.
3  * Copyright (c) 2017 Semihalf.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
17  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
18  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
19  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
20  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
21  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
23  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
24  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25  * POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include "opt_platform.h"
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/endian.h>
35 #include <sys/mbuf.h>
36 #include <sys/lock.h>
37 #include <sys/mutex.h>
38 #include <sys/kernel.h>
39 #include <sys/module.h>
40 #include <sys/socket.h>
41 #include <sys/sysctl.h>
42 #include <sys/smp.h>
43 #include <sys/taskqueue.h>
44 #ifdef MVNETA_KTR
45 #include <sys/ktr.h>
46 #endif
47 
48 #include <net/ethernet.h>
49 #include <net/bpf.h>
50 #include <net/if.h>
51 #include <net/if_arp.h>
52 #include <net/if_dl.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55 #include <net/if_vlan_var.h>
56 
57 #include <netinet/in_systm.h>
58 #include <netinet/in.h>
59 #include <netinet/ip.h>
60 #include <netinet/tcp_lro.h>
61 
62 #include <sys/sockio.h>
63 #include <sys/bus.h>
64 #include <machine/bus.h>
65 #include <sys/rman.h>
66 #include <machine/resource.h>
67 
68 #include <dev/extres/clk/clk.h>
69 
70 #include <dev/mii/mii.h>
71 #include <dev/mii/miivar.h>
72 
73 #include <dev/mdio/mdio.h>
74 
75 #include <arm/mv/mvvar.h>
76 
77 #if !defined(__aarch64__)
78 #include <arm/mv/mvreg.h>
79 #include <arm/mv/mvwin.h>
80 #endif
81 
82 #include "if_mvnetareg.h"
83 #include "if_mvnetavar.h"
84 
85 #include "miibus_if.h"
86 #include "mdio_if.h"
87 
88 #ifdef MVNETA_DEBUG
89 #define	STATIC /* nothing */
90 #else
91 #define	STATIC static
92 #endif
93 
94 #define	DASSERT(x) KASSERT((x), (#x))
95 
96 #define	A3700_TCLK_250MHZ		250000000
97 
98 /* Device Register Initialization */
99 STATIC int mvneta_initreg(if_t);
100 
101 /* Descriptor Ring Control for each of queues */
102 STATIC int mvneta_ring_alloc_rx_queue(struct mvneta_softc *, int);
103 STATIC int mvneta_ring_alloc_tx_queue(struct mvneta_softc *, int);
104 STATIC void mvneta_ring_dealloc_rx_queue(struct mvneta_softc *, int);
105 STATIC void mvneta_ring_dealloc_tx_queue(struct mvneta_softc *, int);
106 STATIC int mvneta_ring_init_rx_queue(struct mvneta_softc *, int);
107 STATIC int mvneta_ring_init_tx_queue(struct mvneta_softc *, int);
108 STATIC void mvneta_ring_flush_rx_queue(struct mvneta_softc *, int);
109 STATIC void mvneta_ring_flush_tx_queue(struct mvneta_softc *, int);
110 STATIC void mvneta_dmamap_cb(void *, bus_dma_segment_t *, int, int);
111 STATIC int mvneta_dma_create(struct mvneta_softc *);
112 
113 /* Rx/Tx Queue Control */
114 STATIC int mvneta_rx_queue_init(if_t, int);
115 STATIC int mvneta_tx_queue_init(if_t, int);
116 STATIC int mvneta_rx_queue_enable(if_t, int);
117 STATIC int mvneta_tx_queue_enable(if_t, int);
118 STATIC void mvneta_rx_lockq(struct mvneta_softc *, int);
119 STATIC void mvneta_rx_unlockq(struct mvneta_softc *, int);
120 STATIC void mvneta_tx_lockq(struct mvneta_softc *, int);
121 STATIC void mvneta_tx_unlockq(struct mvneta_softc *, int);
122 
123 /* Interrupt Handlers */
124 STATIC void mvneta_disable_intr(struct mvneta_softc *);
125 STATIC void mvneta_enable_intr(struct mvneta_softc *);
126 STATIC void mvneta_rxtxth_intr(void *);
127 STATIC int mvneta_misc_intr(struct mvneta_softc *);
128 STATIC void mvneta_tick(void *);
129 /* struct ifnet and mii callbacks*/
130 STATIC int mvneta_xmitfast_locked(struct mvneta_softc *, int, struct mbuf **);
131 STATIC int mvneta_xmit_locked(struct mvneta_softc *, int);
132 #ifdef MVNETA_MULTIQUEUE
133 STATIC int mvneta_transmit(if_t, struct mbuf *);
134 #else /* !MVNETA_MULTIQUEUE */
135 STATIC void mvneta_start(if_t);
136 #endif
137 STATIC void mvneta_qflush(if_t);
138 STATIC void mvneta_tx_task(void *, int);
139 STATIC int mvneta_ioctl(if_t, u_long, caddr_t);
140 STATIC void mvneta_init(void *);
141 STATIC void mvneta_init_locked(void *);
142 STATIC void mvneta_stop(struct mvneta_softc *);
143 STATIC void mvneta_stop_locked(struct mvneta_softc *);
144 STATIC int mvneta_mediachange(if_t);
145 STATIC void mvneta_mediastatus(if_t, struct ifmediareq *);
146 STATIC void mvneta_portup(struct mvneta_softc *);
147 STATIC void mvneta_portdown(struct mvneta_softc *);
148 
149 /* Link State Notify */
150 STATIC void mvneta_update_autoneg(struct mvneta_softc *, int);
151 STATIC int mvneta_update_media(struct mvneta_softc *, int);
152 STATIC void mvneta_adjust_link(struct mvneta_softc *);
153 STATIC void mvneta_update_eee(struct mvneta_softc *);
154 STATIC void mvneta_update_fc(struct mvneta_softc *);
155 STATIC void mvneta_link_isr(struct mvneta_softc *);
156 STATIC void mvneta_linkupdate(struct mvneta_softc *, boolean_t);
157 STATIC void mvneta_linkup(struct mvneta_softc *);
158 STATIC void mvneta_linkdown(struct mvneta_softc *);
159 STATIC void mvneta_linkreset(struct mvneta_softc *);
160 
161 /* Tx Subroutines */
162 STATIC int mvneta_tx_queue(struct mvneta_softc *, struct mbuf **, int);
163 STATIC void mvneta_tx_set_csumflag(if_t,
164     struct mvneta_tx_desc *, struct mbuf *);
165 STATIC void mvneta_tx_queue_complete(struct mvneta_softc *, int);
166 STATIC void mvneta_tx_drain(struct mvneta_softc *);
167 
168 /* Rx Subroutines */
169 STATIC int mvneta_rx(struct mvneta_softc *, int, int);
170 STATIC void mvneta_rx_queue(struct mvneta_softc *, int, int);
171 STATIC void mvneta_rx_queue_refill(struct mvneta_softc *, int);
172 STATIC void mvneta_rx_set_csumflag(if_t,
173     struct mvneta_rx_desc *, struct mbuf *);
174 STATIC void mvneta_rx_buf_free(struct mvneta_softc *, struct mvneta_buf *);
175 
176 /* MAC address filter */
177 STATIC void mvneta_filter_setup(struct mvneta_softc *);
178 
179 /* sysctl(9) */
180 STATIC int sysctl_read_mib(SYSCTL_HANDLER_ARGS);
181 STATIC int sysctl_clear_mib(SYSCTL_HANDLER_ARGS);
182 STATIC int sysctl_set_queue_rxthtime(SYSCTL_HANDLER_ARGS);
183 STATIC void sysctl_mvneta_init(struct mvneta_softc *);
184 
185 /* MIB */
186 STATIC void mvneta_clear_mib(struct mvneta_softc *);
187 STATIC uint64_t mvneta_read_mib(struct mvneta_softc *, int);
188 STATIC void mvneta_update_mib(struct mvneta_softc *);
189 
190 /* Switch */
191 STATIC boolean_t mvneta_has_switch(device_t);
192 
193 #define	mvneta_sc_lock(sc) mtx_lock(&sc->mtx)
194 #define	mvneta_sc_unlock(sc) mtx_unlock(&sc->mtx)
195 
196 STATIC struct mtx mii_mutex;
197 STATIC int mii_init = 0;
198 
199 /* Device */
200 STATIC int mvneta_detach(device_t);
201 /* MII */
202 STATIC int mvneta_miibus_readreg(device_t, int, int);
203 STATIC int mvneta_miibus_writereg(device_t, int, int, int);
204 
205 static device_method_t mvneta_methods[] = {
206 	/* Device interface */
207 	DEVMETHOD(device_detach,	mvneta_detach),
208 	/* MII interface */
209 	DEVMETHOD(miibus_readreg,       mvneta_miibus_readreg),
210 	DEVMETHOD(miibus_writereg,      mvneta_miibus_writereg),
211 	/* MDIO interface */
212 	DEVMETHOD(mdio_readreg,		mvneta_miibus_readreg),
213 	DEVMETHOD(mdio_writereg,	mvneta_miibus_writereg),
214 
215 	/* End */
216 	DEVMETHOD_END
217 };
218 
219 DEFINE_CLASS_0(mvneta, mvneta_driver, mvneta_methods, sizeof(struct mvneta_softc));
220 
221 DRIVER_MODULE(miibus, mvneta, miibus_driver, 0, 0);
222 DRIVER_MODULE(mdio, mvneta, mdio_driver, 0, 0);
223 MODULE_DEPEND(mvneta, mdio, 1, 1, 1);
224 MODULE_DEPEND(mvneta, ether, 1, 1, 1);
225 MODULE_DEPEND(mvneta, miibus, 1, 1, 1);
226 MODULE_DEPEND(mvneta, mvxpbm, 1, 1, 1);
227 
228 /*
229  * List of MIB register and names
230  */
231 enum mvneta_mib_idx
232 {
233 	MVNETA_MIB_RX_GOOD_OCT_IDX,
234 	MVNETA_MIB_RX_BAD_OCT_IDX,
235 	MVNETA_MIB_TX_MAC_TRNS_ERR_IDX,
236 	MVNETA_MIB_RX_GOOD_FRAME_IDX,
237 	MVNETA_MIB_RX_BAD_FRAME_IDX,
238 	MVNETA_MIB_RX_BCAST_FRAME_IDX,
239 	MVNETA_MIB_RX_MCAST_FRAME_IDX,
240 	MVNETA_MIB_RX_FRAME64_OCT_IDX,
241 	MVNETA_MIB_RX_FRAME127_OCT_IDX,
242 	MVNETA_MIB_RX_FRAME255_OCT_IDX,
243 	MVNETA_MIB_RX_FRAME511_OCT_IDX,
244 	MVNETA_MIB_RX_FRAME1023_OCT_IDX,
245 	MVNETA_MIB_RX_FRAMEMAX_OCT_IDX,
246 	MVNETA_MIB_TX_GOOD_OCT_IDX,
247 	MVNETA_MIB_TX_GOOD_FRAME_IDX,
248 	MVNETA_MIB_TX_EXCES_COL_IDX,
249 	MVNETA_MIB_TX_MCAST_FRAME_IDX,
250 	MVNETA_MIB_TX_BCAST_FRAME_IDX,
251 	MVNETA_MIB_TX_MAC_CTL_ERR_IDX,
252 	MVNETA_MIB_FC_SENT_IDX,
253 	MVNETA_MIB_FC_GOOD_IDX,
254 	MVNETA_MIB_FC_BAD_IDX,
255 	MVNETA_MIB_PKT_UNDERSIZE_IDX,
256 	MVNETA_MIB_PKT_FRAGMENT_IDX,
257 	MVNETA_MIB_PKT_OVERSIZE_IDX,
258 	MVNETA_MIB_PKT_JABBER_IDX,
259 	MVNETA_MIB_MAC_RX_ERR_IDX,
260 	MVNETA_MIB_MAC_CRC_ERR_IDX,
261 	MVNETA_MIB_MAC_COL_IDX,
262 	MVNETA_MIB_MAC_LATE_COL_IDX,
263 };
264 
265 STATIC struct mvneta_mib_def {
266 	uint32_t regnum;
267 	int reg64;
268 	const char *sysctl_name;
269 	const char *desc;
270 } mvneta_mib_list[] = {
271 	[MVNETA_MIB_RX_GOOD_OCT_IDX] = {MVNETA_MIB_RX_GOOD_OCT, 1,
272 	    "rx_good_oct", "Good Octets Rx"},
273 	[MVNETA_MIB_RX_BAD_OCT_IDX] = {MVNETA_MIB_RX_BAD_OCT, 0,
274 	    "rx_bad_oct", "Bad  Octets Rx"},
275 	[MVNETA_MIB_TX_MAC_TRNS_ERR_IDX] = {MVNETA_MIB_TX_MAC_TRNS_ERR, 0,
276 	    "tx_mac_err", "MAC Transmit Error"},
277 	[MVNETA_MIB_RX_GOOD_FRAME_IDX] = {MVNETA_MIB_RX_GOOD_FRAME, 0,
278 	    "rx_good_frame", "Good Frames Rx"},
279 	[MVNETA_MIB_RX_BAD_FRAME_IDX] = {MVNETA_MIB_RX_BAD_FRAME, 0,
280 	    "rx_bad_frame", "Bad Frames Rx"},
281 	[MVNETA_MIB_RX_BCAST_FRAME_IDX] = {MVNETA_MIB_RX_BCAST_FRAME, 0,
282 	    "rx_bcast_frame", "Broadcast Frames Rx"},
283 	[MVNETA_MIB_RX_MCAST_FRAME_IDX] = {MVNETA_MIB_RX_MCAST_FRAME, 0,
284 	    "rx_mcast_frame", "Multicast Frames Rx"},
285 	[MVNETA_MIB_RX_FRAME64_OCT_IDX] = {MVNETA_MIB_RX_FRAME64_OCT, 0,
286 	    "rx_frame_1_64", "Frame Size    1 -   64"},
287 	[MVNETA_MIB_RX_FRAME127_OCT_IDX] = {MVNETA_MIB_RX_FRAME127_OCT, 0,
288 	    "rx_frame_65_127", "Frame Size   65 -  127"},
289 	[MVNETA_MIB_RX_FRAME255_OCT_IDX] = {MVNETA_MIB_RX_FRAME255_OCT, 0,
290 	    "rx_frame_128_255", "Frame Size  128 -  255"},
291 	[MVNETA_MIB_RX_FRAME511_OCT_IDX] = {MVNETA_MIB_RX_FRAME511_OCT, 0,
292 	    "rx_frame_256_511", "Frame Size  256 -  511"},
293 	[MVNETA_MIB_RX_FRAME1023_OCT_IDX] = {MVNETA_MIB_RX_FRAME1023_OCT, 0,
294 	    "rx_frame_512_1023", "Frame Size  512 - 1023"},
295 	[MVNETA_MIB_RX_FRAMEMAX_OCT_IDX] = {MVNETA_MIB_RX_FRAMEMAX_OCT, 0,
296 	    "rx_fame_1024_max", "Frame Size 1024 -  Max"},
297 	[MVNETA_MIB_TX_GOOD_OCT_IDX] = {MVNETA_MIB_TX_GOOD_OCT, 1,
298 	    "tx_good_oct", "Good Octets Tx"},
299 	[MVNETA_MIB_TX_GOOD_FRAME_IDX] = {MVNETA_MIB_TX_GOOD_FRAME, 0,
300 	    "tx_good_frame", "Good Frames Tx"},
301 	[MVNETA_MIB_TX_EXCES_COL_IDX] = {MVNETA_MIB_TX_EXCES_COL, 0,
302 	    "tx_exces_collision", "Excessive Collision"},
303 	[MVNETA_MIB_TX_MCAST_FRAME_IDX] = {MVNETA_MIB_TX_MCAST_FRAME, 0,
304 	    "tx_mcast_frame", "Multicast Frames Tx"},
305 	[MVNETA_MIB_TX_BCAST_FRAME_IDX] = {MVNETA_MIB_TX_BCAST_FRAME, 0,
306 	    "tx_bcast_frame", "Broadcast Frames Tx"},
307 	[MVNETA_MIB_TX_MAC_CTL_ERR_IDX] = {MVNETA_MIB_TX_MAC_CTL_ERR, 0,
308 	    "tx_mac_ctl_err", "Unknown MAC Control"},
309 	[MVNETA_MIB_FC_SENT_IDX] = {MVNETA_MIB_FC_SENT, 0,
310 	    "fc_tx", "Flow Control Tx"},
311 	[MVNETA_MIB_FC_GOOD_IDX] = {MVNETA_MIB_FC_GOOD, 0,
312 	    "fc_rx_good", "Good Flow Control Rx"},
313 	[MVNETA_MIB_FC_BAD_IDX] = {MVNETA_MIB_FC_BAD, 0,
314 	    "fc_rx_bad", "Bad Flow Control Rx"},
315 	[MVNETA_MIB_PKT_UNDERSIZE_IDX] = {MVNETA_MIB_PKT_UNDERSIZE, 0,
316 	    "pkt_undersize", "Undersized Packets Rx"},
317 	[MVNETA_MIB_PKT_FRAGMENT_IDX] = {MVNETA_MIB_PKT_FRAGMENT, 0,
318 	    "pkt_fragment", "Fragmented Packets Rx"},
319 	[MVNETA_MIB_PKT_OVERSIZE_IDX] = {MVNETA_MIB_PKT_OVERSIZE, 0,
320 	    "pkt_oversize", "Oversized Packets Rx"},
321 	[MVNETA_MIB_PKT_JABBER_IDX] = {MVNETA_MIB_PKT_JABBER, 0,
322 	    "pkt_jabber", "Jabber Packets Rx"},
323 	[MVNETA_MIB_MAC_RX_ERR_IDX] = {MVNETA_MIB_MAC_RX_ERR, 0,
324 	    "mac_rx_err", "MAC Rx Errors"},
325 	[MVNETA_MIB_MAC_CRC_ERR_IDX] = {MVNETA_MIB_MAC_CRC_ERR, 0,
326 	    "mac_crc_err", "MAC CRC Errors"},
327 	[MVNETA_MIB_MAC_COL_IDX] = {MVNETA_MIB_MAC_COL, 0,
328 	    "mac_collision", "MAC Collision"},
329 	[MVNETA_MIB_MAC_LATE_COL_IDX] = {MVNETA_MIB_MAC_LATE_COL, 0,
330 	    "mac_late_collision", "MAC Late Collision"},
331 };
332 
333 static struct resource_spec res_spec[] = {
334 	{ SYS_RES_MEMORY, 0, RF_ACTIVE },
335 	{ SYS_RES_IRQ, 0, RF_ACTIVE },
336 	{ -1, 0}
337 };
338 
339 static struct {
340 	driver_intr_t *handler;
341 	char * description;
342 } mvneta_intrs[] = {
343 	{ mvneta_rxtxth_intr, "MVNETA aggregated interrupt" },
344 };
345 
346 static int
347 mvneta_set_mac_address(struct mvneta_softc *sc, uint8_t *addr)
348 {
349 	unsigned int mac_h;
350 	unsigned int mac_l;
351 
352 	mac_l = (addr[4] << 8) | (addr[5]);
353 	mac_h = (addr[0] << 24) | (addr[1] << 16) |
354 	    (addr[2] << 8) | (addr[3] << 0);
355 
356 	MVNETA_WRITE(sc, MVNETA_MACAL, mac_l);
357 	MVNETA_WRITE(sc, MVNETA_MACAH, mac_h);
358 	return (0);
359 }
360 
361 static int
362 mvneta_get_mac_address(struct mvneta_softc *sc, uint8_t *addr)
363 {
364 	uint32_t mac_l, mac_h;
365 
366 #ifdef FDT
367 	if (mvneta_fdt_mac_address(sc, addr) == 0)
368 		return (0);
369 #endif
370 	/*
371 	 * Fall back -- use the currently programmed address.
372 	 */
373 	mac_l = MVNETA_READ(sc, MVNETA_MACAL);
374 	mac_h = MVNETA_READ(sc, MVNETA_MACAH);
375 	if (mac_l == 0 && mac_h == 0) {
376 		/*
377 		 * Generate pseudo-random MAC.
378 		 * Set lower part to random number | unit number.
379 		 */
380 		mac_l = arc4random() & ~0xff;
381 		mac_l |= device_get_unit(sc->dev) & 0xff;
382 		mac_h = arc4random();
383 		mac_h &= ~(3 << 24);	/* Clear multicast and LAA bits */
384 		if (bootverbose) {
385 			device_printf(sc->dev,
386 			    "Could not acquire MAC address. "
387 			    "Using randomized one.\n");
388 		}
389 	}
390 
391 	addr[0] = (mac_h & 0xff000000) >> 24;
392 	addr[1] = (mac_h & 0x00ff0000) >> 16;
393 	addr[2] = (mac_h & 0x0000ff00) >> 8;
394 	addr[3] = (mac_h & 0x000000ff);
395 	addr[4] = (mac_l & 0x0000ff00) >> 8;
396 	addr[5] = (mac_l & 0x000000ff);
397 	return (0);
398 }
399 
400 STATIC boolean_t
401 mvneta_has_switch(device_t self)
402 {
403 #ifdef FDT
404 	return (mvneta_has_switch_fdt(self));
405 #endif
406 
407 	return (false);
408 }
409 
410 STATIC int
411 mvneta_dma_create(struct mvneta_softc *sc)
412 {
413 	size_t maxsize, maxsegsz;
414 	size_t q;
415 	int error;
416 
417 	/*
418 	 * Create Tx DMA
419 	 */
420 	maxsize = maxsegsz = sizeof(struct mvneta_tx_desc) * MVNETA_TX_RING_CNT;
421 
422 	error = bus_dma_tag_create(
423 	    bus_get_dma_tag(sc->dev),		/* parent */
424 	    16, 0,                              /* alignment, boundary */
425 	    BUS_SPACE_MAXADDR_32BIT,            /* lowaddr */
426 	    BUS_SPACE_MAXADDR,                  /* highaddr */
427 	    NULL, NULL,                         /* filtfunc, filtfuncarg */
428 	    maxsize,				/* maxsize */
429 	    1,					/* nsegments */
430 	    maxsegsz,				/* maxsegsz */
431 	    0,					/* flags */
432 	    NULL, NULL,				/* lockfunc, lockfuncarg */
433 	    &sc->tx_dtag);			/* dmat */
434 	if (error != 0) {
435 		device_printf(sc->dev,
436 		    "Failed to create DMA tag for Tx descriptors.\n");
437 		goto fail;
438 	}
439 	error = bus_dma_tag_create(
440 	    bus_get_dma_tag(sc->dev),		/* parent */
441 	    1, 0,				/* alignment, boundary */
442 	    BUS_SPACE_MAXADDR_32BIT,		/* lowaddr */
443 	    BUS_SPACE_MAXADDR,			/* highaddr */
444 	    NULL, NULL,				/* filtfunc, filtfuncarg */
445 	    MVNETA_MAX_FRAME,			/* maxsize */
446 	    MVNETA_TX_SEGLIMIT,			/* nsegments */
447 	    MVNETA_MAX_FRAME,			/* maxsegsz */
448 	    BUS_DMA_ALLOCNOW,			/* flags */
449 	    NULL, NULL,				/* lockfunc, lockfuncarg */
450 	    &sc->txmbuf_dtag);
451 	if (error != 0) {
452 		device_printf(sc->dev,
453 		    "Failed to create DMA tag for Tx mbufs.\n");
454 		goto fail;
455 	}
456 
457 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
458 		error = mvneta_ring_alloc_tx_queue(sc, q);
459 		if (error != 0) {
460 			device_printf(sc->dev,
461 			    "Failed to allocate DMA safe memory for TxQ: %zu\n", q);
462 			goto fail;
463 		}
464 	}
465 
466 	/*
467 	 * Create Rx DMA.
468 	 */
469 	/* Create tag for Rx descripors */
470 	error = bus_dma_tag_create(
471 	    bus_get_dma_tag(sc->dev),		/* parent */
472 	    32, 0,                              /* alignment, boundary */
473 	    BUS_SPACE_MAXADDR_32BIT,            /* lowaddr */
474 	    BUS_SPACE_MAXADDR,                  /* highaddr */
475 	    NULL, NULL,                         /* filtfunc, filtfuncarg */
476 	    sizeof(struct mvneta_rx_desc) * MVNETA_RX_RING_CNT, /* maxsize */
477 	    1,					/* nsegments */
478 	    sizeof(struct mvneta_rx_desc) * MVNETA_RX_RING_CNT, /* maxsegsz */
479 	    0,					/* flags */
480 	    NULL, NULL,				/* lockfunc, lockfuncarg */
481 	    &sc->rx_dtag);			/* dmat */
482 	if (error != 0) {
483 		device_printf(sc->dev,
484 		    "Failed to create DMA tag for Rx descriptors.\n");
485 		goto fail;
486 	}
487 
488 	/* Create tag for Rx buffers */
489 	error = bus_dma_tag_create(
490 	    bus_get_dma_tag(sc->dev),		/* parent */
491 	    32, 0,				/* alignment, boundary */
492 	    BUS_SPACE_MAXADDR_32BIT,		/* lowaddr */
493 	    BUS_SPACE_MAXADDR,			/* highaddr */
494 	    NULL, NULL,				/* filtfunc, filtfuncarg */
495 	    MVNETA_MAX_FRAME, 1,		/* maxsize, nsegments */
496 	    MVNETA_MAX_FRAME,			/* maxsegsz */
497 	    0,					/* flags */
498 	    NULL, NULL,				/* lockfunc, lockfuncarg */
499 	    &sc->rxbuf_dtag);			/* dmat */
500 	if (error != 0) {
501 		device_printf(sc->dev,
502 		    "Failed to create DMA tag for Rx buffers.\n");
503 		goto fail;
504 	}
505 
506 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
507 		if (mvneta_ring_alloc_rx_queue(sc, q) != 0) {
508 			device_printf(sc->dev,
509 			    "Failed to allocate DMA safe memory for RxQ: %zu\n", q);
510 			goto fail;
511 		}
512 	}
513 
514 	return (0);
515 fail:
516 	mvneta_detach(sc->dev);
517 
518 	return (error);
519 }
520 
521 /* ARGSUSED */
522 int
523 mvneta_attach(device_t self)
524 {
525 	struct mvneta_softc *sc;
526 	if_t ifp;
527 	device_t child;
528 	int ifm_target;
529 	int q, error;
530 #if !defined(__aarch64__)
531 	uint32_t reg;
532 #endif
533 	clk_t clk;
534 
535 	sc = device_get_softc(self);
536 	sc->dev = self;
537 
538 	mtx_init(&sc->mtx, "mvneta_sc", NULL, MTX_DEF);
539 
540 	error = bus_alloc_resources(self, res_spec, sc->res);
541 	if (error) {
542 		device_printf(self, "could not allocate resources\n");
543 		return (ENXIO);
544 	}
545 
546 	sc->version = MVNETA_READ(sc, MVNETA_PV);
547 	device_printf(self, "version is %x\n", sc->version);
548 	callout_init(&sc->tick_ch, 0);
549 
550 	/*
551 	 * make sure DMA engines are in reset state
552 	 */
553 	MVNETA_WRITE(sc, MVNETA_PRXINIT, 0x00000001);
554 	MVNETA_WRITE(sc, MVNETA_PTXINIT, 0x00000001);
555 
556 	error = clk_get_by_ofw_index(sc->dev, ofw_bus_get_node(sc->dev), 0,
557 	    &clk);
558 	if (error != 0) {
559 #if defined(__aarch64__)
560 		device_printf(sc->dev,
561 			"Cannot get clock, using default frequency: %d\n",
562 			A3700_TCLK_250MHZ);
563 		sc->clk_freq = A3700_TCLK_250MHZ;
564 #else
565 		device_printf(sc->dev,
566 			"Cannot get clock, using get_tclk()\n");
567 		sc->clk_freq = get_tclk();
568 #endif
569 	} else {
570 		error = clk_get_freq(clk, &sc->clk_freq);
571 		if (error != 0) {
572 			device_printf(sc->dev,
573 				"Cannot obtain frequency from parent clock\n");
574 			bus_release_resources(sc->dev, res_spec, sc->res);
575 			return (error);
576 		}
577 	}
578 
579 #if !defined(__aarch64__)
580 	/*
581 	 * Disable port snoop for buffers and descriptors
582 	 * to avoid L2 caching of both without DRAM copy.
583 	 * Obtain coherency settings from the first MBUS
584 	 * window attribute.
585 	 */
586 	if ((MVNETA_READ(sc, MV_WIN_NETA_BASE(0)) & IO_WIN_COH_ATTR_MASK) == 0) {
587 		reg = MVNETA_READ(sc, MVNETA_PSNPCFG);
588 		reg &= ~MVNETA_PSNPCFG_DESCSNP_MASK;
589 		reg &= ~MVNETA_PSNPCFG_BUFSNP_MASK;
590 		MVNETA_WRITE(sc, MVNETA_PSNPCFG, reg);
591 	}
592 #endif
593 
594 	error = bus_setup_intr(self, sc->res[1],
595 	    INTR_TYPE_NET | INTR_MPSAFE, NULL, mvneta_intrs[0].handler, sc,
596 	    &sc->ih_cookie[0]);
597 	if (error) {
598 		device_printf(self, "could not setup %s\n",
599 		    mvneta_intrs[0].description);
600 		mvneta_detach(self);
601 		return (error);
602 	}
603 
604 	/*
605 	 * MAC address
606 	 */
607 	if (mvneta_get_mac_address(sc, sc->enaddr)) {
608 		device_printf(self, "no mac address.\n");
609 		return (ENXIO);
610 	}
611 	mvneta_set_mac_address(sc, sc->enaddr);
612 
613 	mvneta_disable_intr(sc);
614 
615 	/* Allocate network interface */
616 	ifp = sc->ifp = if_alloc(IFT_ETHER);
617 	if (ifp == NULL) {
618 		device_printf(self, "if_alloc() failed\n");
619 		mvneta_detach(self);
620 		return (ENOMEM);
621 	}
622 	if_initname(ifp, device_get_name(self), device_get_unit(self));
623 
624 	/*
625 	 * We can support 802.1Q VLAN-sized frames and jumbo
626 	 * Ethernet frames.
627 	 */
628 	if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU | IFCAP_JUMBO_MTU, 0);
629 
630 	if_setsoftc(ifp, sc);
631 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
632 #ifdef MVNETA_MULTIQUEUE
633 	if_settransmitfn(ifp, mvneta_transmit);
634 	if_setqflushfn(ifp, mvneta_qflush);
635 #else /* !MVNETA_MULTIQUEUE */
636 	if_setstartfn(ifp, mvneta_start);
637 	if_setsendqlen(ifp, MVNETA_TX_RING_CNT - 1);
638 	if_setsendqready(ifp);
639 #endif
640 	if_setinitfn(ifp, mvneta_init);
641 	if_setioctlfn(ifp, mvneta_ioctl);
642 
643 	/*
644 	 * We can do IPv4/TCPv4/UDPv4/TCPv6/UDPv6 checksums in hardware.
645 	 */
646 	if_setcapabilitiesbit(ifp, IFCAP_HWCSUM, 0);
647 
648 	/*
649 	 * As VLAN hardware tagging is not supported
650 	 * but is necessary to perform VLAN hardware checksums,
651 	 * it is done in the driver
652 	 */
653 	if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM, 0);
654 
655 	/*
656 	 * Currently IPv6 HW checksum is broken, so make sure it is disabled.
657 	 */
658 	if_setcapabilitiesbit(ifp, 0, IFCAP_HWCSUM_IPV6);
659 	if_setcapenable(ifp, if_getcapabilities(ifp));
660 
661 	/*
662 	 * Disabled option(s):
663 	 * - Support for Large Receive Offload
664 	 */
665 	if_setcapabilitiesbit(ifp, IFCAP_LRO, 0);
666 
667 	if_sethwassist(ifp, CSUM_IP | CSUM_TCP | CSUM_UDP);
668 
669 	sc->rx_frame_size = MCLBYTES; /* ether_ifattach() always sets normal mtu */
670 
671 	/*
672 	 * Device DMA Buffer allocation.
673 	 * Handles resource deallocation in case of failure.
674 	 */
675 	error = mvneta_dma_create(sc);
676 	if (error != 0) {
677 		mvneta_detach(self);
678 		return (error);
679 	}
680 
681 	/* Initialize queues */
682 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
683 		error = mvneta_ring_init_tx_queue(sc, q);
684 		if (error != 0) {
685 			mvneta_detach(self);
686 			return (error);
687 		}
688 	}
689 
690 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
691 		error = mvneta_ring_init_rx_queue(sc, q);
692 		if (error != 0) {
693 			mvneta_detach(self);
694 			return (error);
695 		}
696 	}
697 
698 	/*
699 	 * Enable DMA engines and Initialize Device Registers.
700 	 */
701 	MVNETA_WRITE(sc, MVNETA_PRXINIT, 0x00000000);
702 	MVNETA_WRITE(sc, MVNETA_PTXINIT, 0x00000000);
703 	MVNETA_WRITE(sc, MVNETA_PACC, MVNETA_PACC_ACCELERATIONMODE_EDM);
704 	mvneta_sc_lock(sc);
705 	mvneta_filter_setup(sc);
706 	mvneta_sc_unlock(sc);
707 	mvneta_initreg(ifp);
708 
709 	/*
710 	 * Now MAC is working, setup MII.
711 	 */
712 	if (mii_init == 0) {
713 		/*
714 		 * MII bus is shared by all MACs and all PHYs in SoC.
715 		 * serializing the bus access should be safe.
716 		 */
717 		mtx_init(&mii_mutex, "mvneta_mii", NULL, MTX_DEF);
718 		mii_init = 1;
719 	}
720 
721 	/* Attach PHY(s) */
722 	if ((sc->phy_addr != MII_PHY_ANY) && (!sc->use_inband_status)) {
723 		error = mii_attach(self, &sc->miibus, ifp, mvneta_mediachange,
724 		    mvneta_mediastatus, BMSR_DEFCAPMASK, sc->phy_addr,
725 		    MII_OFFSET_ANY, 0);
726 		if (error != 0) {
727 			device_printf(self, "MII attach failed, error: %d\n",
728 			    error);
729 			ether_ifdetach(sc->ifp);
730 			mvneta_detach(self);
731 			return (error);
732 		}
733 		sc->mii = device_get_softc(sc->miibus);
734 		sc->phy_attached = 1;
735 
736 		/* Disable auto-negotiation in MAC - rely on PHY layer */
737 		mvneta_update_autoneg(sc, FALSE);
738 	} else if (sc->use_inband_status == TRUE) {
739 		/* In-band link status */
740 		ifmedia_init(&sc->mvneta_ifmedia, 0, mvneta_mediachange,
741 		    mvneta_mediastatus);
742 
743 		/* Configure media */
744 		ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_1000_T | IFM_FDX,
745 		    0, NULL);
746 		ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_100_TX, 0, NULL);
747 		ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_100_TX | IFM_FDX,
748 		    0, NULL);
749 		ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_10_T, 0, NULL);
750 		ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_10_T | IFM_FDX,
751 		    0, NULL);
752 		ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
753 		ifmedia_set(&sc->mvneta_ifmedia, IFM_ETHER | IFM_AUTO);
754 
755 		/* Enable auto-negotiation */
756 		mvneta_update_autoneg(sc, TRUE);
757 
758 		mvneta_sc_lock(sc);
759 		if (MVNETA_IS_LINKUP(sc))
760 			mvneta_linkup(sc);
761 		else
762 			mvneta_linkdown(sc);
763 		mvneta_sc_unlock(sc);
764 
765 	} else {
766 		/* Fixed-link, use predefined values */
767 		mvneta_update_autoneg(sc, FALSE);
768 		ifmedia_init(&sc->mvneta_ifmedia, 0, mvneta_mediachange,
769 		    mvneta_mediastatus);
770 
771 		ifm_target = IFM_ETHER;
772 		switch (sc->phy_speed) {
773 		case 2500:
774 			if (sc->phy_mode != MVNETA_PHY_SGMII &&
775 			    sc->phy_mode != MVNETA_PHY_QSGMII) {
776 				device_printf(self,
777 				    "2.5G speed can work only in (Q)SGMII mode\n");
778 				ether_ifdetach(sc->ifp);
779 				mvneta_detach(self);
780 				return (ENXIO);
781 			}
782 			ifm_target |= IFM_2500_T;
783 			break;
784 		case 1000:
785 			ifm_target |= IFM_1000_T;
786 			break;
787 		case 100:
788 			ifm_target |= IFM_100_TX;
789 			break;
790 		case 10:
791 			ifm_target |= IFM_10_T;
792 			break;
793 		default:
794 			ether_ifdetach(sc->ifp);
795 			mvneta_detach(self);
796 			return (ENXIO);
797 		}
798 
799 		if (sc->phy_fdx)
800 			ifm_target |= IFM_FDX;
801 		else
802 			ifm_target |= IFM_HDX;
803 
804 		ifmedia_add(&sc->mvneta_ifmedia, ifm_target, 0, NULL);
805 		ifmedia_set(&sc->mvneta_ifmedia, ifm_target);
806 		if_link_state_change(sc->ifp, LINK_STATE_UP);
807 
808 		if (mvneta_has_switch(self)) {
809 			if (bootverbose)
810 				device_printf(self, "This device is attached to a switch\n");
811 			child = device_add_child(sc->dev, "mdio", -1);
812 			if (child == NULL) {
813 				ether_ifdetach(sc->ifp);
814 				mvneta_detach(self);
815 				return (ENXIO);
816 			}
817 			bus_generic_attach(sc->dev);
818 			bus_generic_attach(child);
819 		}
820 
821 		/* Configure MAC media */
822 		mvneta_update_media(sc, ifm_target);
823 	}
824 
825 	ether_ifattach(ifp, sc->enaddr);
826 
827 	callout_reset(&sc->tick_ch, 0, mvneta_tick, sc);
828 
829 	sysctl_mvneta_init(sc);
830 
831 	return (0);
832 }
833 
834 STATIC int
835 mvneta_detach(device_t dev)
836 {
837 	struct mvneta_softc *sc;
838 	int q;
839 
840 	sc = device_get_softc(dev);
841 
842 	if (device_is_attached(dev)) {
843 		mvneta_stop(sc);
844 		callout_drain(&sc->tick_ch);
845 		ether_ifdetach(sc->ifp);
846 	}
847 
848 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++)
849 		mvneta_ring_dealloc_rx_queue(sc, q);
850 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++)
851 		mvneta_ring_dealloc_tx_queue(sc, q);
852 
853 	device_delete_children(dev);
854 
855 	if (sc->ih_cookie[0] != NULL)
856 		bus_teardown_intr(dev, sc->res[1], sc->ih_cookie[0]);
857 
858 	if (sc->tx_dtag != NULL)
859 		bus_dma_tag_destroy(sc->tx_dtag);
860 	if (sc->rx_dtag != NULL)
861 		bus_dma_tag_destroy(sc->rx_dtag);
862 	if (sc->txmbuf_dtag != NULL)
863 		bus_dma_tag_destroy(sc->txmbuf_dtag);
864 	if (sc->rxbuf_dtag != NULL)
865 		bus_dma_tag_destroy(sc->rxbuf_dtag);
866 
867 	bus_release_resources(dev, res_spec, sc->res);
868 
869 	if (sc->ifp)
870 		if_free(sc->ifp);
871 
872 	if (mtx_initialized(&sc->mtx))
873 		mtx_destroy(&sc->mtx);
874 
875 	return (0);
876 }
877 
878 /*
879  * MII
880  */
881 STATIC int
882 mvneta_miibus_readreg(device_t dev, int phy, int reg)
883 {
884 	struct mvneta_softc *sc;
885 	if_t ifp;
886 	uint32_t smi, val;
887 	int i;
888 
889 	sc = device_get_softc(dev);
890 	ifp = sc->ifp;
891 
892 	mtx_lock(&mii_mutex);
893 
894 	for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) {
895 		if ((MVNETA_READ(sc, MVNETA_SMI) & MVNETA_SMI_BUSY) == 0)
896 			break;
897 		DELAY(1);
898 	}
899 	if (i == MVNETA_PHY_TIMEOUT) {
900 		if_printf(ifp, "SMI busy timeout\n");
901 		mtx_unlock(&mii_mutex);
902 		return (-1);
903 	}
904 
905 	smi = MVNETA_SMI_PHYAD(phy) |
906 	    MVNETA_SMI_REGAD(reg) | MVNETA_SMI_OPCODE_READ;
907 	MVNETA_WRITE(sc, MVNETA_SMI, smi);
908 
909 	for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) {
910 		if ((MVNETA_READ(sc, MVNETA_SMI) & MVNETA_SMI_BUSY) == 0)
911 			break;
912 		DELAY(1);
913 	}
914 
915 	if (i == MVNETA_PHY_TIMEOUT) {
916 		if_printf(ifp, "SMI busy timeout\n");
917 		mtx_unlock(&mii_mutex);
918 		return (-1);
919 	}
920 	for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) {
921 		smi = MVNETA_READ(sc, MVNETA_SMI);
922 		if (smi & MVNETA_SMI_READVALID)
923 			break;
924 		DELAY(1);
925 	}
926 
927 	if (i == MVNETA_PHY_TIMEOUT) {
928 		if_printf(ifp, "SMI busy timeout\n");
929 		mtx_unlock(&mii_mutex);
930 		return (-1);
931 	}
932 
933 	mtx_unlock(&mii_mutex);
934 
935 #ifdef MVNETA_KTR
936 	CTR3(KTR_SPARE2, "%s i=%d, timeout=%d\n", if_getname(ifp), i,
937 	    MVNETA_PHY_TIMEOUT);
938 #endif
939 
940 	val = smi & MVNETA_SMI_DATA_MASK;
941 
942 #ifdef MVNETA_KTR
943 	CTR4(KTR_SPARE2, "%s phy=%d, reg=%#x, val=%#x\n", if_getname(ifp), phy,
944 	    reg, val);
945 #endif
946 	return (val);
947 }
948 
949 STATIC int
950 mvneta_miibus_writereg(device_t dev, int phy, int reg, int val)
951 {
952 	struct mvneta_softc *sc;
953 	if_t ifp;
954 	uint32_t smi;
955 	int i;
956 
957 	sc = device_get_softc(dev);
958 	ifp = sc->ifp;
959 #ifdef MVNETA_KTR
960 	CTR4(KTR_SPARE2, "%s phy=%d, reg=%#x, val=%#x\n", if_name(ifp),
961 	    phy, reg, val);
962 #endif
963 
964 	mtx_lock(&mii_mutex);
965 
966 	for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) {
967 		if ((MVNETA_READ(sc, MVNETA_SMI) & MVNETA_SMI_BUSY) == 0)
968 			break;
969 		DELAY(1);
970 	}
971 	if (i == MVNETA_PHY_TIMEOUT) {
972 		if_printf(ifp, "SMI busy timeout\n");
973 		mtx_unlock(&mii_mutex);
974 		return (0);
975 	}
976 
977 	smi = MVNETA_SMI_PHYAD(phy) | MVNETA_SMI_REGAD(reg) |
978 	    MVNETA_SMI_OPCODE_WRITE | (val & MVNETA_SMI_DATA_MASK);
979 	MVNETA_WRITE(sc, MVNETA_SMI, smi);
980 
981 	for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) {
982 		if ((MVNETA_READ(sc, MVNETA_SMI) & MVNETA_SMI_BUSY) == 0)
983 			break;
984 		DELAY(1);
985 	}
986 
987 	mtx_unlock(&mii_mutex);
988 
989 	if (i == MVNETA_PHY_TIMEOUT)
990 		if_printf(ifp, "phy write timed out\n");
991 
992 	return (0);
993 }
994 
995 STATIC void
996 mvneta_portup(struct mvneta_softc *sc)
997 {
998 	int q;
999 
1000 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
1001 		mvneta_rx_lockq(sc, q);
1002 		mvneta_rx_queue_enable(sc->ifp, q);
1003 		mvneta_rx_unlockq(sc, q);
1004 	}
1005 
1006 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
1007 		mvneta_tx_lockq(sc, q);
1008 		mvneta_tx_queue_enable(sc->ifp, q);
1009 		mvneta_tx_unlockq(sc, q);
1010 	}
1011 
1012 }
1013 
1014 STATIC void
1015 mvneta_portdown(struct mvneta_softc *sc)
1016 {
1017 	struct mvneta_rx_ring *rx;
1018 	struct mvneta_tx_ring *tx;
1019 	int q, cnt;
1020 	uint32_t reg;
1021 
1022 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
1023 		rx = MVNETA_RX_RING(sc, q);
1024 		mvneta_rx_lockq(sc, q);
1025 		rx->queue_status = MVNETA_QUEUE_DISABLED;
1026 		mvneta_rx_unlockq(sc, q);
1027 	}
1028 
1029 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
1030 		tx = MVNETA_TX_RING(sc, q);
1031 		mvneta_tx_lockq(sc, q);
1032 		tx->queue_status = MVNETA_QUEUE_DISABLED;
1033 		mvneta_tx_unlockq(sc, q);
1034 	}
1035 
1036 	/* Wait for all Rx activity to terminate. */
1037 	reg = MVNETA_READ(sc, MVNETA_RQC) & MVNETA_RQC_EN_MASK;
1038 	reg = MVNETA_RQC_DIS(reg);
1039 	MVNETA_WRITE(sc, MVNETA_RQC, reg);
1040 	cnt = 0;
1041 	do {
1042 		if (cnt >= RX_DISABLE_TIMEOUT) {
1043 			if_printf(sc->ifp,
1044 			    "timeout for RX stopped. rqc 0x%x\n", reg);
1045 			break;
1046 		}
1047 		cnt++;
1048 		reg = MVNETA_READ(sc, MVNETA_RQC);
1049 	} while ((reg & MVNETA_RQC_EN_MASK) != 0);
1050 
1051 	/* Wait for all Tx activity to terminate. */
1052 	reg  = MVNETA_READ(sc, MVNETA_PIE);
1053 	reg &= ~MVNETA_PIE_TXPKTINTRPTENB_MASK;
1054 	MVNETA_WRITE(sc, MVNETA_PIE, reg);
1055 
1056 	reg  = MVNETA_READ(sc, MVNETA_PRXTXTIM);
1057 	reg &= ~MVNETA_PRXTXTI_TBTCQ_MASK;
1058 	MVNETA_WRITE(sc, MVNETA_PRXTXTIM, reg);
1059 
1060 	reg = MVNETA_READ(sc, MVNETA_TQC) & MVNETA_TQC_EN_MASK;
1061 	reg = MVNETA_TQC_DIS(reg);
1062 	MVNETA_WRITE(sc, MVNETA_TQC, reg);
1063 	cnt = 0;
1064 	do {
1065 		if (cnt >= TX_DISABLE_TIMEOUT) {
1066 			if_printf(sc->ifp,
1067 			    "timeout for TX stopped. tqc 0x%x\n", reg);
1068 			break;
1069 		}
1070 		cnt++;
1071 		reg = MVNETA_READ(sc, MVNETA_TQC);
1072 	} while ((reg & MVNETA_TQC_EN_MASK) != 0);
1073 
1074 	/* Wait for all Tx FIFO is empty */
1075 	cnt = 0;
1076 	do {
1077 		if (cnt >= TX_FIFO_EMPTY_TIMEOUT) {
1078 			if_printf(sc->ifp,
1079 			    "timeout for TX FIFO drained. ps0 0x%x\n", reg);
1080 			break;
1081 		}
1082 		cnt++;
1083 		reg = MVNETA_READ(sc, MVNETA_PS0);
1084 	} while (((reg & MVNETA_PS0_TXFIFOEMP) == 0) &&
1085 	    ((reg & MVNETA_PS0_TXINPROG) != 0));
1086 }
1087 
1088 /*
1089  * Device Register Initialization
1090  *  reset device registers to device driver default value.
1091  *  the device is not enabled here.
1092  */
1093 STATIC int
1094 mvneta_initreg(if_t ifp)
1095 {
1096 	struct mvneta_softc *sc;
1097 	int q;
1098 	uint32_t reg;
1099 
1100 	sc = if_getsoftc(ifp);
1101 #ifdef MVNETA_KTR
1102 	CTR1(KTR_SPARE2, "%s initializing device register", if_name(ifp));
1103 #endif
1104 
1105 	/* Disable Legacy WRR, Disable EJP, Release from reset. */
1106 	MVNETA_WRITE(sc, MVNETA_TQC_1, 0);
1107 	/* Enable mbus retry. */
1108 	MVNETA_WRITE(sc, MVNETA_MBUS_CONF, MVNETA_MBUS_RETRY_EN);
1109 
1110 	/* Init TX/RX Queue Registers */
1111 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
1112 		mvneta_rx_lockq(sc, q);
1113 		if (mvneta_rx_queue_init(ifp, q) != 0) {
1114 			device_printf(sc->dev,
1115 			    "initialization failed: cannot initialize queue\n");
1116 			mvneta_rx_unlockq(sc, q);
1117 			return (ENOBUFS);
1118 		}
1119 		mvneta_rx_unlockq(sc, q);
1120 	}
1121 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
1122 		mvneta_tx_lockq(sc, q);
1123 		if (mvneta_tx_queue_init(ifp, q) != 0) {
1124 			device_printf(sc->dev,
1125 			    "initialization failed: cannot initialize queue\n");
1126 			mvneta_tx_unlockq(sc, q);
1127 			return (ENOBUFS);
1128 		}
1129 		mvneta_tx_unlockq(sc, q);
1130 	}
1131 
1132 	/*
1133 	 * Ethernet Unit Control - disable automatic PHY management by HW.
1134 	 * In case the port uses SMI-controlled PHY, poll its status with
1135 	 * mii_tick() and update MAC settings accordingly.
1136 	 */
1137 	reg = MVNETA_READ(sc, MVNETA_EUC);
1138 	reg &= ~MVNETA_EUC_POLLING;
1139 	MVNETA_WRITE(sc, MVNETA_EUC, reg);
1140 
1141 	/* EEE: Low Power Idle */
1142 	reg  = MVNETA_LPIC0_LILIMIT(MVNETA_LPI_LI);
1143 	reg |= MVNETA_LPIC0_TSLIMIT(MVNETA_LPI_TS);
1144 	MVNETA_WRITE(sc, MVNETA_LPIC0, reg);
1145 
1146 	reg  = MVNETA_LPIC1_TWLIMIT(MVNETA_LPI_TW);
1147 	MVNETA_WRITE(sc, MVNETA_LPIC1, reg);
1148 
1149 	reg = MVNETA_LPIC2_MUSTSET;
1150 	MVNETA_WRITE(sc, MVNETA_LPIC2, reg);
1151 
1152 	/* Port MAC Control set 0 */
1153 	reg  = MVNETA_PMACC0_MUSTSET;	/* must write 0x1 */
1154 	reg &= ~MVNETA_PMACC0_PORTEN;	/* port is still disabled */
1155 	reg |= MVNETA_PMACC0_FRAMESIZELIMIT(if_getmtu(ifp) + MVNETA_ETHER_SIZE);
1156 	MVNETA_WRITE(sc, MVNETA_PMACC0, reg);
1157 
1158 	/* Port MAC Control set 2 */
1159 	reg = MVNETA_READ(sc, MVNETA_PMACC2);
1160 	switch (sc->phy_mode) {
1161 	case MVNETA_PHY_QSGMII:
1162 		reg |= (MVNETA_PMACC2_PCSEN | MVNETA_PMACC2_RGMIIEN);
1163 		MVNETA_WRITE(sc, MVNETA_PSERDESCFG, MVNETA_PSERDESCFG_QSGMII);
1164 		break;
1165 	case MVNETA_PHY_SGMII:
1166 		reg |= (MVNETA_PMACC2_PCSEN | MVNETA_PMACC2_RGMIIEN);
1167 		MVNETA_WRITE(sc, MVNETA_PSERDESCFG, MVNETA_PSERDESCFG_SGMII);
1168 		break;
1169 	case MVNETA_PHY_RGMII:
1170 	case MVNETA_PHY_RGMII_ID:
1171 		reg |= MVNETA_PMACC2_RGMIIEN;
1172 		break;
1173 	}
1174 	reg |= MVNETA_PMACC2_MUSTSET;
1175 	reg &= ~MVNETA_PMACC2_PORTMACRESET;
1176 	MVNETA_WRITE(sc, MVNETA_PMACC2, reg);
1177 
1178 	/* Port Configuration Extended: enable Tx CRC generation */
1179 	reg = MVNETA_READ(sc, MVNETA_PXCX);
1180 	reg &= ~MVNETA_PXCX_TXCRCDIS;
1181 	MVNETA_WRITE(sc, MVNETA_PXCX, reg);
1182 
1183 	/* clear MIB counter registers(clear by read) */
1184 	mvneta_sc_lock(sc);
1185 	mvneta_clear_mib(sc);
1186 	mvneta_sc_unlock(sc);
1187 
1188 	/* Set SDC register except IPGINT bits */
1189 	reg  = MVNETA_SDC_RXBSZ_16_64BITWORDS;
1190 	reg |= MVNETA_SDC_TXBSZ_16_64BITWORDS;
1191 	reg |= MVNETA_SDC_BLMR;
1192 	reg |= MVNETA_SDC_BLMT;
1193 	MVNETA_WRITE(sc, MVNETA_SDC, reg);
1194 
1195 	return (0);
1196 }
1197 
1198 STATIC void
1199 mvneta_dmamap_cb(void *arg, bus_dma_segment_t * segs, int nseg, int error)
1200 {
1201 
1202 	if (error != 0)
1203 		return;
1204 	*(bus_addr_t *)arg = segs->ds_addr;
1205 }
1206 
1207 STATIC int
1208 mvneta_ring_alloc_rx_queue(struct mvneta_softc *sc, int q)
1209 {
1210 	struct mvneta_rx_ring *rx;
1211 	struct mvneta_buf *rxbuf;
1212 	bus_dmamap_t dmap;
1213 	int i, error;
1214 
1215 	if (q >= MVNETA_RX_QNUM_MAX)
1216 		return (EINVAL);
1217 
1218 	rx = MVNETA_RX_RING(sc, q);
1219 	mtx_init(&rx->ring_mtx, "mvneta_rx", NULL, MTX_DEF);
1220 	/* Allocate DMA memory for Rx descriptors */
1221 	error = bus_dmamem_alloc(sc->rx_dtag,
1222 	    (void**)&(rx->desc),
1223 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1224 	    &rx->desc_map);
1225 	if (error != 0 || rx->desc == NULL)
1226 		goto fail;
1227 	error = bus_dmamap_load(sc->rx_dtag, rx->desc_map,
1228 	    rx->desc,
1229 	    sizeof(struct mvneta_rx_desc) * MVNETA_RX_RING_CNT,
1230 	    mvneta_dmamap_cb, &rx->desc_pa, BUS_DMA_NOWAIT);
1231 	if (error != 0)
1232 		goto fail;
1233 
1234 	for (i = 0; i < MVNETA_RX_RING_CNT; i++) {
1235 		error = bus_dmamap_create(sc->rxbuf_dtag, 0, &dmap);
1236 		if (error != 0) {
1237 			device_printf(sc->dev,
1238 			    "Failed to create DMA map for Rx buffer num: %d\n", i);
1239 			goto fail;
1240 		}
1241 		rxbuf = &rx->rxbuf[i];
1242 		rxbuf->dmap = dmap;
1243 		rxbuf->m = NULL;
1244 	}
1245 
1246 	return (0);
1247 fail:
1248 	mvneta_rx_lockq(sc, q);
1249 	mvneta_ring_flush_rx_queue(sc, q);
1250 	mvneta_rx_unlockq(sc, q);
1251 	mvneta_ring_dealloc_rx_queue(sc, q);
1252 	device_printf(sc->dev, "DMA Ring buffer allocation failure.\n");
1253 	return (error);
1254 }
1255 
1256 STATIC int
1257 mvneta_ring_alloc_tx_queue(struct mvneta_softc *sc, int q)
1258 {
1259 	struct mvneta_tx_ring *tx;
1260 	int error;
1261 
1262 	if (q >= MVNETA_TX_QNUM_MAX)
1263 		return (EINVAL);
1264 	tx = MVNETA_TX_RING(sc, q);
1265 	mtx_init(&tx->ring_mtx, "mvneta_tx", NULL, MTX_DEF);
1266 	error = bus_dmamem_alloc(sc->tx_dtag,
1267 	    (void**)&(tx->desc),
1268 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1269 	    &tx->desc_map);
1270 	if (error != 0 || tx->desc == NULL)
1271 		goto fail;
1272 	error = bus_dmamap_load(sc->tx_dtag, tx->desc_map,
1273 	    tx->desc,
1274 	    sizeof(struct mvneta_tx_desc) * MVNETA_TX_RING_CNT,
1275 	    mvneta_dmamap_cb, &tx->desc_pa, BUS_DMA_NOWAIT);
1276 	if (error != 0)
1277 		goto fail;
1278 
1279 #ifdef MVNETA_MULTIQUEUE
1280 	tx->br = buf_ring_alloc(MVNETA_BUFRING_SIZE, M_DEVBUF, M_NOWAIT,
1281 	    &tx->ring_mtx);
1282 	if (tx->br == NULL) {
1283 		device_printf(sc->dev,
1284 		    "Could not setup buffer ring for TxQ(%d)\n", q);
1285 		error = ENOMEM;
1286 		goto fail;
1287 	}
1288 #endif
1289 
1290 	return (0);
1291 fail:
1292 	mvneta_tx_lockq(sc, q);
1293 	mvneta_ring_flush_tx_queue(sc, q);
1294 	mvneta_tx_unlockq(sc, q);
1295 	mvneta_ring_dealloc_tx_queue(sc, q);
1296 	device_printf(sc->dev, "DMA Ring buffer allocation failure.\n");
1297 	return (error);
1298 }
1299 
1300 STATIC void
1301 mvneta_ring_dealloc_tx_queue(struct mvneta_softc *sc, int q)
1302 {
1303 	struct mvneta_tx_ring *tx;
1304 	struct mvneta_buf *txbuf;
1305 	void *kva;
1306 	int error;
1307 	int i;
1308 
1309 	if (q >= MVNETA_TX_QNUM_MAX)
1310 		return;
1311 	tx = MVNETA_TX_RING(sc, q);
1312 
1313 	if (tx->taskq != NULL) {
1314 		/* Remove task */
1315 		while (taskqueue_cancel(tx->taskq, &tx->task, NULL) != 0)
1316 			taskqueue_drain(tx->taskq, &tx->task);
1317 	}
1318 #ifdef MVNETA_MULTIQUEUE
1319 	if (tx->br != NULL)
1320 		drbr_free(tx->br, M_DEVBUF);
1321 #endif
1322 
1323 	if (sc->txmbuf_dtag != NULL) {
1324 		for (i = 0; i < MVNETA_TX_RING_CNT; i++) {
1325 			txbuf = &tx->txbuf[i];
1326 			if (txbuf->dmap != NULL) {
1327 				error = bus_dmamap_destroy(sc->txmbuf_dtag,
1328 				    txbuf->dmap);
1329 				if (error != 0) {
1330 					panic("%s: map busy for Tx descriptor (Q%d, %d)",
1331 					    __func__, q, i);
1332 				}
1333 			}
1334 		}
1335 	}
1336 
1337 	if (tx->desc_pa != 0)
1338 		bus_dmamap_unload(sc->tx_dtag, tx->desc_map);
1339 
1340 	kva = (void *)tx->desc;
1341 	if (kva != NULL)
1342 		bus_dmamem_free(sc->tx_dtag, tx->desc, tx->desc_map);
1343 
1344 	if (mtx_name(&tx->ring_mtx) != NULL)
1345 		mtx_destroy(&tx->ring_mtx);
1346 
1347 	memset(tx, 0, sizeof(*tx));
1348 }
1349 
1350 STATIC void
1351 mvneta_ring_dealloc_rx_queue(struct mvneta_softc *sc, int q)
1352 {
1353 	struct mvneta_rx_ring *rx;
1354 	struct lro_ctrl	*lro;
1355 	void *kva;
1356 
1357 	if (q >= MVNETA_RX_QNUM_MAX)
1358 		return;
1359 
1360 	rx = MVNETA_RX_RING(sc, q);
1361 
1362 	if (rx->desc_pa != 0)
1363 		bus_dmamap_unload(sc->rx_dtag, rx->desc_map);
1364 
1365 	kva = (void *)rx->desc;
1366 	if (kva != NULL)
1367 		bus_dmamem_free(sc->rx_dtag, rx->desc, rx->desc_map);
1368 
1369 	lro = &rx->lro;
1370 	tcp_lro_free(lro);
1371 
1372 	if (mtx_name(&rx->ring_mtx) != NULL)
1373 		mtx_destroy(&rx->ring_mtx);
1374 
1375 	memset(rx, 0, sizeof(*rx));
1376 }
1377 
1378 STATIC int
1379 mvneta_ring_init_rx_queue(struct mvneta_softc *sc, int q)
1380 {
1381 	struct mvneta_rx_ring *rx;
1382 	struct lro_ctrl	*lro;
1383 	int error;
1384 
1385 	if (q >= MVNETA_RX_QNUM_MAX)
1386 		return (0);
1387 
1388 	rx = MVNETA_RX_RING(sc, q);
1389 	rx->dma = rx->cpu = 0;
1390 	rx->queue_th_received = MVNETA_RXTH_COUNT;
1391 	rx->queue_th_time = (sc->clk_freq / 1000) / 10; /* 0.1 [ms] */
1392 
1393 	/* Initialize LRO */
1394 	rx->lro_enabled = FALSE;
1395 	if ((if_getcapenable(sc->ifp) & IFCAP_LRO) != 0) {
1396 		lro = &rx->lro;
1397 		error = tcp_lro_init(lro);
1398 		if (error != 0)
1399 			device_printf(sc->dev, "LRO Initialization failed!\n");
1400 		else {
1401 			rx->lro_enabled = TRUE;
1402 			lro->ifp = sc->ifp;
1403 		}
1404 	}
1405 
1406 	return (0);
1407 }
1408 
1409 STATIC int
1410 mvneta_ring_init_tx_queue(struct mvneta_softc *sc, int q)
1411 {
1412 	struct mvneta_tx_ring *tx;
1413 	struct mvneta_buf *txbuf;
1414 	int i, error;
1415 
1416 	if (q >= MVNETA_TX_QNUM_MAX)
1417 		return (0);
1418 
1419 	tx = MVNETA_TX_RING(sc, q);
1420 
1421 	/* Tx handle */
1422 	for (i = 0; i < MVNETA_TX_RING_CNT; i++) {
1423 		txbuf = &tx->txbuf[i];
1424 		txbuf->m = NULL;
1425 		/* Tx handle needs DMA map for busdma_load_mbuf() */
1426 		error = bus_dmamap_create(sc->txmbuf_dtag, 0,
1427 		    &txbuf->dmap);
1428 		if (error != 0) {
1429 			device_printf(sc->dev,
1430 			    "can't create dma map (tx ring %d)\n", i);
1431 			return (error);
1432 		}
1433 	}
1434 	tx->dma = tx->cpu = 0;
1435 	tx->used = 0;
1436 	tx->drv_error = 0;
1437 	tx->queue_status = MVNETA_QUEUE_DISABLED;
1438 	tx->queue_hung = FALSE;
1439 
1440 	tx->ifp = sc->ifp;
1441 	tx->qidx = q;
1442 	TASK_INIT(&tx->task, 0, mvneta_tx_task, tx);
1443 	tx->taskq = taskqueue_create_fast("mvneta_tx_taskq", M_WAITOK,
1444 	    taskqueue_thread_enqueue, &tx->taskq);
1445 	taskqueue_start_threads(&tx->taskq, 1, PI_NET, "%s: tx_taskq(%d)",
1446 	    device_get_nameunit(sc->dev), q);
1447 
1448 	return (0);
1449 }
1450 
1451 STATIC void
1452 mvneta_ring_flush_tx_queue(struct mvneta_softc *sc, int q)
1453 {
1454 	struct mvneta_tx_ring *tx;
1455 	struct mvneta_buf *txbuf;
1456 	int i;
1457 
1458 	tx = MVNETA_TX_RING(sc, q);
1459 	KASSERT_TX_MTX(sc, q);
1460 
1461 	/* Tx handle */
1462 	for (i = 0; i < MVNETA_TX_RING_CNT; i++) {
1463 		txbuf = &tx->txbuf[i];
1464 		bus_dmamap_unload(sc->txmbuf_dtag, txbuf->dmap);
1465 		if (txbuf->m != NULL) {
1466 			m_freem(txbuf->m);
1467 			txbuf->m = NULL;
1468 		}
1469 	}
1470 	tx->dma = tx->cpu = 0;
1471 	tx->used = 0;
1472 }
1473 
1474 STATIC void
1475 mvneta_ring_flush_rx_queue(struct mvneta_softc *sc, int q)
1476 {
1477 	struct mvneta_rx_ring *rx;
1478 	struct mvneta_buf *rxbuf;
1479 	int i;
1480 
1481 	rx = MVNETA_RX_RING(sc, q);
1482 	KASSERT_RX_MTX(sc, q);
1483 
1484 	/* Rx handle */
1485 	for (i = 0; i < MVNETA_RX_RING_CNT; i++) {
1486 		rxbuf = &rx->rxbuf[i];
1487 		mvneta_rx_buf_free(sc, rxbuf);
1488 	}
1489 	rx->dma = rx->cpu = 0;
1490 }
1491 
1492 /*
1493  * Rx/Tx Queue Control
1494  */
1495 STATIC int
1496 mvneta_rx_queue_init(if_t ifp, int q)
1497 {
1498 	struct mvneta_softc *sc;
1499 	struct mvneta_rx_ring *rx;
1500 	uint32_t reg;
1501 
1502 	sc = if_getsoftc(ifp);
1503 	KASSERT_RX_MTX(sc, q);
1504 	rx =  MVNETA_RX_RING(sc, q);
1505 	DASSERT(rx->desc_pa != 0);
1506 
1507 	/* descriptor address */
1508 	MVNETA_WRITE(sc, MVNETA_PRXDQA(q), rx->desc_pa);
1509 
1510 	/* Rx buffer size and descriptor ring size */
1511 	reg  = MVNETA_PRXDQS_BUFFERSIZE(sc->rx_frame_size >> 3);
1512 	reg |= MVNETA_PRXDQS_DESCRIPTORSQUEUESIZE(MVNETA_RX_RING_CNT);
1513 	MVNETA_WRITE(sc, MVNETA_PRXDQS(q), reg);
1514 #ifdef MVNETA_KTR
1515 	CTR3(KTR_SPARE2, "%s PRXDQS(%d): %#x", if_name(ifp), q,
1516 	    MVNETA_READ(sc, MVNETA_PRXDQS(q)));
1517 #endif
1518 	/* Rx packet offset address */
1519 	reg = MVNETA_PRXC_PACKETOFFSET(MVNETA_PACKET_OFFSET >> 3);
1520 	MVNETA_WRITE(sc, MVNETA_PRXC(q), reg);
1521 #ifdef MVNETA_KTR
1522 	CTR3(KTR_SPARE2, "%s PRXC(%d): %#x", if_name(ifp), q,
1523 	    MVNETA_READ(sc, MVNETA_PRXC(q)));
1524 #endif
1525 
1526 	/* if DMA is not working, register is not updated */
1527 	DASSERT(MVNETA_READ(sc, MVNETA_PRXDQA(q)) == rx->desc_pa);
1528 	return (0);
1529 }
1530 
1531 STATIC int
1532 mvneta_tx_queue_init(if_t ifp, int q)
1533 {
1534 	struct mvneta_softc *sc;
1535 	struct mvneta_tx_ring *tx;
1536 	uint32_t reg;
1537 
1538 	sc = if_getsoftc(ifp);
1539 	KASSERT_TX_MTX(sc, q);
1540 	tx = MVNETA_TX_RING(sc, q);
1541 	DASSERT(tx->desc_pa != 0);
1542 
1543 	/* descriptor address */
1544 	MVNETA_WRITE(sc, MVNETA_PTXDQA(q), tx->desc_pa);
1545 
1546 	/* descriptor ring size */
1547 	reg = MVNETA_PTXDQS_DQS(MVNETA_TX_RING_CNT);
1548 	MVNETA_WRITE(sc, MVNETA_PTXDQS(q), reg);
1549 
1550 	/* if DMA is not working, register is not updated */
1551 	DASSERT(MVNETA_READ(sc, MVNETA_PTXDQA(q)) == tx->desc_pa);
1552 	return (0);
1553 }
1554 
1555 STATIC int
1556 mvneta_rx_queue_enable(if_t ifp, int q)
1557 {
1558 	struct mvneta_softc *sc;
1559 	struct mvneta_rx_ring *rx;
1560 	uint32_t reg;
1561 
1562 	sc = if_getsoftc(ifp);
1563 	rx = MVNETA_RX_RING(sc, q);
1564 	KASSERT_RX_MTX(sc, q);
1565 
1566 	/* Set Rx interrupt threshold */
1567 	reg  = MVNETA_PRXDQTH_ODT(rx->queue_th_received);
1568 	MVNETA_WRITE(sc, MVNETA_PRXDQTH(q), reg);
1569 
1570 	reg  = MVNETA_PRXITTH_RITT(rx->queue_th_time);
1571 	MVNETA_WRITE(sc, MVNETA_PRXITTH(q), reg);
1572 
1573 	/* Unmask RXTX_TH Intr. */
1574 	reg = MVNETA_READ(sc, MVNETA_PRXTXTIM);
1575 	reg |= MVNETA_PRXTXTI_RBICTAPQ(q); /* Rx Buffer Interrupt Coalese */
1576 	MVNETA_WRITE(sc, MVNETA_PRXTXTIM, reg);
1577 
1578 	/* Enable Rx queue */
1579 	reg = MVNETA_READ(sc, MVNETA_RQC) & MVNETA_RQC_EN_MASK;
1580 	reg |= MVNETA_RQC_ENQ(q);
1581 	MVNETA_WRITE(sc, MVNETA_RQC, reg);
1582 
1583 	rx->queue_status = MVNETA_QUEUE_WORKING;
1584 	return (0);
1585 }
1586 
1587 STATIC int
1588 mvneta_tx_queue_enable(if_t ifp, int q)
1589 {
1590 	struct mvneta_softc *sc;
1591 	struct mvneta_tx_ring *tx;
1592 
1593 	sc = if_getsoftc(ifp);
1594 	tx = MVNETA_TX_RING(sc, q);
1595 	KASSERT_TX_MTX(sc, q);
1596 
1597 	/* Enable Tx queue */
1598 	MVNETA_WRITE(sc, MVNETA_TQC, MVNETA_TQC_ENQ(q));
1599 
1600 	tx->queue_status = MVNETA_QUEUE_IDLE;
1601 	tx->queue_hung = FALSE;
1602 	return (0);
1603 }
1604 
1605 STATIC __inline void
1606 mvneta_rx_lockq(struct mvneta_softc *sc, int q)
1607 {
1608 
1609 	DASSERT(q >= 0);
1610 	DASSERT(q < MVNETA_RX_QNUM_MAX);
1611 	mtx_lock(&sc->rx_ring[q].ring_mtx);
1612 }
1613 
1614 STATIC __inline void
1615 mvneta_rx_unlockq(struct mvneta_softc *sc, int q)
1616 {
1617 
1618 	DASSERT(q >= 0);
1619 	DASSERT(q < MVNETA_RX_QNUM_MAX);
1620 	mtx_unlock(&sc->rx_ring[q].ring_mtx);
1621 }
1622 
1623 STATIC __inline int __unused
1624 mvneta_tx_trylockq(struct mvneta_softc *sc, int q)
1625 {
1626 
1627 	DASSERT(q >= 0);
1628 	DASSERT(q < MVNETA_TX_QNUM_MAX);
1629 	return (mtx_trylock(&sc->tx_ring[q].ring_mtx));
1630 }
1631 
1632 STATIC __inline void
1633 mvneta_tx_lockq(struct mvneta_softc *sc, int q)
1634 {
1635 
1636 	DASSERT(q >= 0);
1637 	DASSERT(q < MVNETA_TX_QNUM_MAX);
1638 	mtx_lock(&sc->tx_ring[q].ring_mtx);
1639 }
1640 
1641 STATIC __inline void
1642 mvneta_tx_unlockq(struct mvneta_softc *sc, int q)
1643 {
1644 
1645 	DASSERT(q >= 0);
1646 	DASSERT(q < MVNETA_TX_QNUM_MAX);
1647 	mtx_unlock(&sc->tx_ring[q].ring_mtx);
1648 }
1649 
1650 /*
1651  * Interrupt Handlers
1652  */
1653 STATIC void
1654 mvneta_disable_intr(struct mvneta_softc *sc)
1655 {
1656 
1657 	MVNETA_WRITE(sc, MVNETA_EUIM, 0);
1658 	MVNETA_WRITE(sc, MVNETA_EUIC, 0);
1659 	MVNETA_WRITE(sc, MVNETA_PRXTXTIM, 0);
1660 	MVNETA_WRITE(sc, MVNETA_PRXTXTIC, 0);
1661 	MVNETA_WRITE(sc, MVNETA_PRXTXIM, 0);
1662 	MVNETA_WRITE(sc, MVNETA_PRXTXIC, 0);
1663 	MVNETA_WRITE(sc, MVNETA_PMIM, 0);
1664 	MVNETA_WRITE(sc, MVNETA_PMIC, 0);
1665 	MVNETA_WRITE(sc, MVNETA_PIE, 0);
1666 }
1667 
1668 STATIC void
1669 mvneta_enable_intr(struct mvneta_softc *sc)
1670 {
1671 	uint32_t reg;
1672 
1673 	/* Enable Summary Bit to check all interrupt cause. */
1674 	reg = MVNETA_READ(sc, MVNETA_PRXTXTIM);
1675 	reg |= MVNETA_PRXTXTI_PMISCICSUMMARY;
1676 	MVNETA_WRITE(sc, MVNETA_PRXTXTIM, reg);
1677 
1678 	if (!sc->phy_attached || sc->use_inband_status) {
1679 		/* Enable Port MISC Intr. (via RXTX_TH_Summary bit) */
1680 		MVNETA_WRITE(sc, MVNETA_PMIM, MVNETA_PMI_PHYSTATUSCHNG |
1681 		    MVNETA_PMI_LINKCHANGE | MVNETA_PMI_PSCSYNCCHANGE);
1682 	}
1683 
1684 	/* Enable All Queue Interrupt */
1685 	reg  = MVNETA_READ(sc, MVNETA_PIE);
1686 	reg |= MVNETA_PIE_RXPKTINTRPTENB_MASK;
1687 	reg |= MVNETA_PIE_TXPKTINTRPTENB_MASK;
1688 	MVNETA_WRITE(sc, MVNETA_PIE, reg);
1689 }
1690 
1691 STATIC void
1692 mvneta_rxtxth_intr(void *arg)
1693 {
1694 	struct mvneta_softc *sc;
1695 	if_t ifp;
1696 	uint32_t ic, queues;
1697 
1698 	sc = arg;
1699 	ifp = sc->ifp;
1700 #ifdef MVNETA_KTR
1701 	CTR1(KTR_SPARE2, "%s got RXTX_TH_Intr", if_name(ifp));
1702 #endif
1703 	ic = MVNETA_READ(sc, MVNETA_PRXTXTIC);
1704 	if (ic == 0)
1705 		return;
1706 	MVNETA_WRITE(sc, MVNETA_PRXTXTIC, ~ic);
1707 
1708 	/* Ack maintenance interrupt first */
1709 	if (__predict_false((ic & MVNETA_PRXTXTI_PMISCICSUMMARY) &&
1710 	    (!sc->phy_attached || sc->use_inband_status))) {
1711 		mvneta_sc_lock(sc);
1712 		mvneta_misc_intr(sc);
1713 		mvneta_sc_unlock(sc);
1714 	}
1715 	if (__predict_false(!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)))
1716 		return;
1717 	/* RxTxTH interrupt */
1718 	queues = MVNETA_PRXTXTI_GET_RBICTAPQ(ic);
1719 	if (__predict_true(queues)) {
1720 #ifdef MVNETA_KTR
1721 		CTR1(KTR_SPARE2, "%s got PRXTXTIC: +RXEOF", if_name(ifp));
1722 #endif
1723 		/* At the moment the driver support only one RX queue. */
1724 		DASSERT(MVNETA_IS_QUEUE_SET(queues, 0));
1725 		mvneta_rx(sc, 0, 0);
1726 	}
1727 }
1728 
1729 STATIC int
1730 mvneta_misc_intr(struct mvneta_softc *sc)
1731 {
1732 	uint32_t ic;
1733 	int claimed = 0;
1734 
1735 #ifdef MVNETA_KTR
1736 	CTR1(KTR_SPARE2, "%s got MISC_INTR", if_name(sc->ifp));
1737 #endif
1738 	KASSERT_SC_MTX(sc);
1739 
1740 	for (;;) {
1741 		ic = MVNETA_READ(sc, MVNETA_PMIC);
1742 		ic &= MVNETA_READ(sc, MVNETA_PMIM);
1743 		if (ic == 0)
1744 			break;
1745 		MVNETA_WRITE(sc, MVNETA_PMIC, ~ic);
1746 		claimed = 1;
1747 
1748 		if (ic & (MVNETA_PMI_PHYSTATUSCHNG |
1749 		    MVNETA_PMI_LINKCHANGE | MVNETA_PMI_PSCSYNCCHANGE))
1750 			mvneta_link_isr(sc);
1751 	}
1752 	return (claimed);
1753 }
1754 
1755 STATIC void
1756 mvneta_tick(void *arg)
1757 {
1758 	struct mvneta_softc *sc;
1759 	struct mvneta_tx_ring *tx;
1760 	struct mvneta_rx_ring *rx;
1761 	int q;
1762 	uint32_t fc_prev, fc_curr;
1763 
1764 	sc = arg;
1765 
1766 	/*
1767 	 * This is done before mib update to get the right stats
1768 	 * for this tick.
1769 	 */
1770 	mvneta_tx_drain(sc);
1771 
1772 	/* Extract previous flow-control frame received counter. */
1773 	fc_prev = sc->sysctl_mib[MVNETA_MIB_FC_GOOD_IDX].counter;
1774 	/* Read mib registers (clear by read). */
1775 	mvneta_update_mib(sc);
1776 	/* Extract current flow-control frame received counter. */
1777 	fc_curr = sc->sysctl_mib[MVNETA_MIB_FC_GOOD_IDX].counter;
1778 
1779 
1780 	if (sc->phy_attached && if_getflags(sc->ifp) & IFF_UP) {
1781 		mvneta_sc_lock(sc);
1782 		mii_tick(sc->mii);
1783 
1784 		/* Adjust MAC settings */
1785 		mvneta_adjust_link(sc);
1786 		mvneta_sc_unlock(sc);
1787 	}
1788 
1789 	/*
1790 	 * We were unable to refill the rx queue and left the rx func, leaving
1791 	 * the ring without mbuf and no way to call the refill func.
1792 	 */
1793 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
1794 		rx = MVNETA_RX_RING(sc, q);
1795 		if (rx->needs_refill == TRUE) {
1796 			mvneta_rx_lockq(sc, q);
1797 			mvneta_rx_queue_refill(sc, q);
1798 			mvneta_rx_unlockq(sc, q);
1799 		}
1800 	}
1801 
1802 	/*
1803 	 * Watchdog:
1804 	 * - check if queue is mark as hung.
1805 	 * - ignore hung status if we received some pause frame
1806 	 *   as hardware may have paused packet transmit.
1807 	 */
1808 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
1809 		/*
1810 		 * We should take queue lock, but as we only read
1811 		 * queue status we can do it without lock, we may
1812 		 * only missdetect queue status for one tick.
1813 		 */
1814 		tx = MVNETA_TX_RING(sc, q);
1815 
1816 		if (tx->queue_hung && (fc_curr - fc_prev) == 0)
1817 			goto timeout;
1818 	}
1819 
1820 	callout_schedule(&sc->tick_ch, hz);
1821 	return;
1822 
1823 timeout:
1824 	if_printf(sc->ifp, "watchdog timeout\n");
1825 
1826 	mvneta_sc_lock(sc);
1827 	sc->counter_watchdog++;
1828 	sc->counter_watchdog_mib++;
1829 	/* Trigger reinitialize sequence. */
1830 	mvneta_stop_locked(sc);
1831 	mvneta_init_locked(sc);
1832 	mvneta_sc_unlock(sc);
1833 }
1834 
1835 STATIC void
1836 mvneta_qflush(if_t ifp)
1837 {
1838 #ifdef MVNETA_MULTIQUEUE
1839 	struct mvneta_softc *sc;
1840 	struct mvneta_tx_ring *tx;
1841 	struct mbuf *m;
1842 	size_t q;
1843 
1844 	sc = if_getsoftc(ifp);
1845 
1846 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
1847 		tx = MVNETA_TX_RING(sc, q);
1848 		mvneta_tx_lockq(sc, q);
1849 		while ((m = buf_ring_dequeue_sc(tx->br)) != NULL)
1850 			m_freem(m);
1851 		mvneta_tx_unlockq(sc, q);
1852 	}
1853 #endif
1854 	if_qflush(ifp);
1855 }
1856 
1857 STATIC void
1858 mvneta_tx_task(void *arg, int pending)
1859 {
1860 	struct mvneta_softc *sc;
1861 	struct mvneta_tx_ring *tx;
1862 	if_t ifp;
1863 	int error;
1864 
1865 	tx = arg;
1866 	ifp = tx->ifp;
1867 	sc = if_getsoftc(ifp);
1868 
1869 	mvneta_tx_lockq(sc, tx->qidx);
1870 	error = mvneta_xmit_locked(sc, tx->qidx);
1871 	mvneta_tx_unlockq(sc, tx->qidx);
1872 
1873 	/* Try again */
1874 	if (__predict_false(error != 0 && error != ENETDOWN)) {
1875 		pause("mvneta_tx_task_sleep", 1);
1876 		taskqueue_enqueue(tx->taskq, &tx->task);
1877 	}
1878 }
1879 
1880 STATIC int
1881 mvneta_xmitfast_locked(struct mvneta_softc *sc, int q, struct mbuf **m)
1882 {
1883 	struct mvneta_tx_ring *tx;
1884 	if_t ifp;
1885 	int error;
1886 
1887 	KASSERT_TX_MTX(sc, q);
1888 	tx = MVNETA_TX_RING(sc, q);
1889 	error = 0;
1890 
1891 	ifp = sc->ifp;
1892 
1893 	/* Dont enqueue packet if the queue is disabled. */
1894 	if (__predict_false(tx->queue_status == MVNETA_QUEUE_DISABLED)) {
1895 		m_freem(*m);
1896 		*m = NULL;
1897 		return (ENETDOWN);
1898 	}
1899 
1900 	/* Reclaim mbuf if above threshold. */
1901 	if (__predict_true(tx->used > MVNETA_TX_RECLAIM_COUNT))
1902 		mvneta_tx_queue_complete(sc, q);
1903 
1904 	/* Do not call transmit path if queue is already too full. */
1905 	if (__predict_false(tx->used >
1906 	    MVNETA_TX_RING_CNT - MVNETA_TX_SEGLIMIT))
1907 		return (ENOBUFS);
1908 
1909 	error = mvneta_tx_queue(sc, m, q);
1910 	if (__predict_false(error != 0))
1911 		return (error);
1912 
1913 	/* Send a copy of the frame to the BPF listener */
1914 	ETHER_BPF_MTAP(ifp, *m);
1915 
1916 	/* Set watchdog on */
1917 	tx->watchdog_time = ticks;
1918 	tx->queue_status = MVNETA_QUEUE_WORKING;
1919 
1920 	return (error);
1921 }
1922 
1923 #ifdef MVNETA_MULTIQUEUE
1924 STATIC int
1925 mvneta_transmit(if_t ifp, struct mbuf *m)
1926 {
1927 	struct mvneta_softc *sc;
1928 	struct mvneta_tx_ring *tx;
1929 	int error;
1930 	int q;
1931 
1932 	sc = if_getsoftc(ifp);
1933 
1934 	/* Use default queue if there is no flow id as thread can migrate. */
1935 	if (__predict_true(M_HASHTYPE_GET(m) != M_HASHTYPE_NONE))
1936 		q = m->m_pkthdr.flowid % MVNETA_TX_QNUM_MAX;
1937 	else
1938 		q = 0;
1939 
1940 	tx = MVNETA_TX_RING(sc, q);
1941 
1942 	/* If buf_ring is full start transmit immediately. */
1943 	if (buf_ring_full(tx->br)) {
1944 		mvneta_tx_lockq(sc, q);
1945 		mvneta_xmit_locked(sc, q);
1946 		mvneta_tx_unlockq(sc, q);
1947 	}
1948 
1949 	/*
1950 	 * If the buf_ring is empty we will not reorder packets.
1951 	 * If the lock is available transmit without using buf_ring.
1952 	 */
1953 	if (buf_ring_empty(tx->br) && mvneta_tx_trylockq(sc, q) != 0) {
1954 		error = mvneta_xmitfast_locked(sc, q, &m);
1955 		mvneta_tx_unlockq(sc, q);
1956 		if (__predict_true(error == 0))
1957 			return (0);
1958 
1959 		/* Transmit can fail in fastpath. */
1960 		if (__predict_false(m == NULL))
1961 			return (error);
1962 	}
1963 
1964 	/* Enqueue then schedule taskqueue. */
1965 	error = drbr_enqueue(ifp, tx->br, m);
1966 	if (__predict_false(error != 0))
1967 		return (error);
1968 
1969 	taskqueue_enqueue(tx->taskq, &tx->task);
1970 	return (0);
1971 }
1972 
1973 STATIC int
1974 mvneta_xmit_locked(struct mvneta_softc *sc, int q)
1975 {
1976 	if_t ifp;
1977 	struct mvneta_tx_ring *tx;
1978 	struct mbuf *m;
1979 	int error;
1980 
1981 	KASSERT_TX_MTX(sc, q);
1982 	ifp = sc->ifp;
1983 	tx = MVNETA_TX_RING(sc, q);
1984 	error = 0;
1985 
1986 	while ((m = drbr_peek(ifp, tx->br)) != NULL) {
1987 		error = mvneta_xmitfast_locked(sc, q, &m);
1988 		if (__predict_false(error != 0)) {
1989 			if (m != NULL)
1990 				drbr_putback(ifp, tx->br, m);
1991 			else
1992 				drbr_advance(ifp, tx->br);
1993 			break;
1994 		}
1995 		drbr_advance(ifp, tx->br);
1996 	}
1997 
1998 	return (error);
1999 }
2000 #else /* !MVNETA_MULTIQUEUE */
2001 STATIC void
2002 mvneta_start(if_t ifp)
2003 {
2004 	struct mvneta_softc *sc;
2005 	struct mvneta_tx_ring *tx;
2006 	int error;
2007 
2008 	sc = if_getsoftc(ifp);
2009 	tx = MVNETA_TX_RING(sc, 0);
2010 
2011 	mvneta_tx_lockq(sc, 0);
2012 	error = mvneta_xmit_locked(sc, 0);
2013 	mvneta_tx_unlockq(sc, 0);
2014 	/* Handle retransmit in the background taskq. */
2015 	if (__predict_false(error != 0 && error != ENETDOWN))
2016 		taskqueue_enqueue(tx->taskq, &tx->task);
2017 }
2018 
2019 STATIC int
2020 mvneta_xmit_locked(struct mvneta_softc *sc, int q)
2021 {
2022 	if_t ifp;
2023 	struct mbuf *m;
2024 	int error;
2025 
2026 	KASSERT_TX_MTX(sc, q);
2027 	ifp = sc->ifp;
2028 	error = 0;
2029 
2030 	while (!if_sendq_empty(ifp)) {
2031 		m = if_dequeue(ifp);
2032 		if (m == NULL)
2033 			break;
2034 
2035 		error = mvneta_xmitfast_locked(sc, q, &m);
2036 		if (__predict_false(error != 0)) {
2037 			if (m != NULL)
2038 				if_sendq_prepend(ifp, m);
2039 			break;
2040 		}
2041 	}
2042 
2043 	return (error);
2044 }
2045 #endif
2046 
2047 STATIC int
2048 mvneta_ioctl(if_t ifp, u_long cmd, caddr_t data)
2049 {
2050 	struct mvneta_softc *sc;
2051 	struct mvneta_rx_ring *rx;
2052 	struct ifreq *ifr;
2053 	int error, mask;
2054 	uint32_t flags;
2055 	bool reinit;
2056 	int q;
2057 
2058 	error = 0;
2059 	reinit = false;
2060 	sc = if_getsoftc(ifp);
2061 	ifr = (struct ifreq *)data;
2062 	switch (cmd) {
2063 	case SIOCSIFFLAGS:
2064 		mvneta_sc_lock(sc);
2065 		if (if_getflags(ifp) & IFF_UP) {
2066 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
2067 				flags = if_getflags(ifp) ^ sc->mvneta_if_flags;
2068 
2069 				if (flags != 0)
2070 					sc->mvneta_if_flags = if_getflags(ifp);
2071 
2072 				if ((flags & IFF_PROMISC) != 0)
2073 					mvneta_filter_setup(sc);
2074 			} else {
2075 				mvneta_init_locked(sc);
2076 				sc->mvneta_if_flags = if_getflags(ifp);
2077 				if (sc->phy_attached)
2078 					mii_mediachg(sc->mii);
2079 				mvneta_sc_unlock(sc);
2080 				break;
2081 			}
2082 		} else if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
2083 			mvneta_stop_locked(sc);
2084 
2085 		sc->mvneta_if_flags = if_getflags(ifp);
2086 		mvneta_sc_unlock(sc);
2087 		break;
2088 	case SIOCSIFCAP:
2089 		if (if_getmtu(ifp) > sc->tx_csum_limit &&
2090 		    ifr->ifr_reqcap & IFCAP_TXCSUM)
2091 			ifr->ifr_reqcap &= ~IFCAP_TXCSUM;
2092 		mask = if_getcapenable(ifp) ^ ifr->ifr_reqcap;
2093 		if (mask & IFCAP_HWCSUM) {
2094 			if_setcapenablebit(ifp, IFCAP_HWCSUM & ifr->ifr_reqcap,
2095 			    IFCAP_HWCSUM);
2096 			if (if_getcapenable(ifp) & IFCAP_TXCSUM)
2097 				if_sethwassist(ifp, CSUM_IP | CSUM_TCP |
2098 				    CSUM_UDP);
2099 			else
2100 				if_sethwassist(ifp, 0);
2101 		}
2102 		if (mask & IFCAP_LRO) {
2103 			mvneta_sc_lock(sc);
2104 			if_togglecapenable(ifp, IFCAP_LRO);
2105 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2106 				for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
2107 					rx = MVNETA_RX_RING(sc, q);
2108 					rx->lro_enabled = !rx->lro_enabled;
2109 				}
2110 			}
2111 			mvneta_sc_unlock(sc);
2112 		}
2113 		VLAN_CAPABILITIES(ifp);
2114 		break;
2115 	case SIOCSIFMEDIA:
2116 		if ((IFM_SUBTYPE(ifr->ifr_media) == IFM_1000_T ||
2117 		    IFM_SUBTYPE(ifr->ifr_media) == IFM_2500_T) &&
2118 		    (ifr->ifr_media & IFM_FDX) == 0) {
2119 			device_printf(sc->dev,
2120 			    "%s half-duplex unsupported\n",
2121 			    IFM_SUBTYPE(ifr->ifr_media) == IFM_1000_T ?
2122 			    "1000Base-T" :
2123 			    "2500Base-T");
2124 			error = EINVAL;
2125 			break;
2126 		}
2127 	case SIOCGIFMEDIA: /* FALLTHROUGH */
2128 	case SIOCGIFXMEDIA:
2129 		if (!sc->phy_attached)
2130 			error = ifmedia_ioctl(ifp, ifr, &sc->mvneta_ifmedia,
2131 			    cmd);
2132 		else
2133 			error = ifmedia_ioctl(ifp, ifr, &sc->mii->mii_media,
2134 			    cmd);
2135 		break;
2136 	case SIOCSIFMTU:
2137 		if (ifr->ifr_mtu < 68 || ifr->ifr_mtu > MVNETA_MAX_FRAME -
2138 		    MVNETA_ETHER_SIZE) {
2139 			error = EINVAL;
2140 		} else {
2141 			if_setmtu(ifp, ifr->ifr_mtu);
2142 			mvneta_sc_lock(sc);
2143 			if (if_getmtu(ifp) + MVNETA_ETHER_SIZE <= MCLBYTES) {
2144 				sc->rx_frame_size = MCLBYTES;
2145 			} else {
2146 				sc->rx_frame_size = MJUM9BYTES;
2147 			}
2148 			if (if_getmtu(ifp) > sc->tx_csum_limit) {
2149 				if_setcapenablebit(ifp, 0, IFCAP_TXCSUM);
2150 				if_sethwassist(ifp, 0);
2151 			} else {
2152 				if_setcapenablebit(ifp, IFCAP_TXCSUM, 0);
2153 				if_sethwassist(ifp, CSUM_IP | CSUM_TCP |
2154 					CSUM_UDP);
2155 			}
2156 			/*
2157 			 * Reinitialize RX queues.
2158 			 * We need to update RX descriptor size.
2159 			 */
2160 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
2161 				reinit = true;
2162 				mvneta_stop_locked(sc);
2163 			}
2164 
2165 			for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
2166 				mvneta_rx_lockq(sc, q);
2167 				if (mvneta_rx_queue_init(ifp, q) != 0) {
2168 					device_printf(sc->dev,
2169 					    "initialization failed:"
2170 					    " cannot initialize queue\n");
2171 					mvneta_rx_unlockq(sc, q);
2172 					error = ENOBUFS;
2173 					break;
2174 				}
2175 				mvneta_rx_unlockq(sc, q);
2176 			}
2177 			if (reinit)
2178 				mvneta_init_locked(sc);
2179 
2180 			mvneta_sc_unlock(sc);
2181                 }
2182                 break;
2183 
2184 	default:
2185 		error = ether_ioctl(ifp, cmd, data);
2186 		break;
2187 	}
2188 
2189 	return (error);
2190 }
2191 
2192 STATIC void
2193 mvneta_init_locked(void *arg)
2194 {
2195 	struct mvneta_softc *sc;
2196 	if_t ifp;
2197 	uint32_t reg;
2198 	int q, cpu;
2199 
2200 	sc = arg;
2201 	ifp = sc->ifp;
2202 
2203 	if (!device_is_attached(sc->dev) ||
2204 	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2205 		return;
2206 
2207 	mvneta_disable_intr(sc);
2208 	callout_stop(&sc->tick_ch);
2209 
2210 	/* Get the latest mac address */
2211 	bcopy(if_getlladdr(ifp), sc->enaddr, ETHER_ADDR_LEN);
2212 	mvneta_set_mac_address(sc, sc->enaddr);
2213 	mvneta_filter_setup(sc);
2214 
2215 	/* Start DMA Engine */
2216 	MVNETA_WRITE(sc, MVNETA_PRXINIT, 0x00000000);
2217 	MVNETA_WRITE(sc, MVNETA_PTXINIT, 0x00000000);
2218 	MVNETA_WRITE(sc, MVNETA_PACC, MVNETA_PACC_ACCELERATIONMODE_EDM);
2219 
2220 	/* Enable port */
2221 	reg  = MVNETA_READ(sc, MVNETA_PMACC0);
2222 	reg |= MVNETA_PMACC0_PORTEN;
2223 	reg &= ~MVNETA_PMACC0_FRAMESIZELIMIT_MASK;
2224 	reg |= MVNETA_PMACC0_FRAMESIZELIMIT(if_getmtu(ifp) + MVNETA_ETHER_SIZE);
2225 	MVNETA_WRITE(sc, MVNETA_PMACC0, reg);
2226 
2227 	/* Allow access to each TXQ/RXQ from both CPU's */
2228 	for (cpu = 0; cpu < mp_ncpus; ++cpu)
2229 		MVNETA_WRITE(sc, MVNETA_PCP2Q(cpu),
2230 		    MVNETA_PCP2Q_TXQEN_MASK | MVNETA_PCP2Q_RXQEN_MASK);
2231 
2232 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
2233 		mvneta_rx_lockq(sc, q);
2234 		mvneta_rx_queue_refill(sc, q);
2235 		mvneta_rx_unlockq(sc, q);
2236 	}
2237 
2238 	if (!sc->phy_attached)
2239 		mvneta_linkup(sc);
2240 
2241 	/* Enable interrupt */
2242 	mvneta_enable_intr(sc);
2243 
2244 	/* Set Counter */
2245 	callout_schedule(&sc->tick_ch, hz);
2246 
2247 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
2248 }
2249 
2250 STATIC void
2251 mvneta_init(void *arg)
2252 {
2253 	struct mvneta_softc *sc;
2254 
2255 	sc = arg;
2256 	mvneta_sc_lock(sc);
2257 	mvneta_init_locked(sc);
2258 	if (sc->phy_attached)
2259 		mii_mediachg(sc->mii);
2260 	mvneta_sc_unlock(sc);
2261 }
2262 
2263 /* ARGSUSED */
2264 STATIC void
2265 mvneta_stop_locked(struct mvneta_softc *sc)
2266 {
2267 	if_t ifp;
2268 	uint32_t reg;
2269 	int q;
2270 
2271 	ifp = sc->ifp;
2272 	if (ifp == NULL || (if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
2273 		return;
2274 
2275 	mvneta_disable_intr(sc);
2276 
2277 	callout_stop(&sc->tick_ch);
2278 
2279 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2280 
2281 	/* Link down */
2282 	if (sc->linkup == TRUE)
2283 		mvneta_linkdown(sc);
2284 
2285 	/* Reset the MAC Port Enable bit */
2286 	reg = MVNETA_READ(sc, MVNETA_PMACC0);
2287 	reg &= ~MVNETA_PMACC0_PORTEN;
2288 	MVNETA_WRITE(sc, MVNETA_PMACC0, reg);
2289 
2290 	/* Disable each of queue */
2291 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
2292 		mvneta_rx_lockq(sc, q);
2293 		mvneta_ring_flush_rx_queue(sc, q);
2294 		mvneta_rx_unlockq(sc, q);
2295 	}
2296 
2297 	/*
2298 	 * Hold Reset state of DMA Engine
2299 	 * (must write 0x0 to restart it)
2300 	 */
2301 	MVNETA_WRITE(sc, MVNETA_PRXINIT, 0x00000001);
2302 	MVNETA_WRITE(sc, MVNETA_PTXINIT, 0x00000001);
2303 
2304 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
2305 		mvneta_tx_lockq(sc, q);
2306 		mvneta_ring_flush_tx_queue(sc, q);
2307 		mvneta_tx_unlockq(sc, q);
2308 	}
2309 }
2310 
2311 STATIC void
2312 mvneta_stop(struct mvneta_softc *sc)
2313 {
2314 
2315 	mvneta_sc_lock(sc);
2316 	mvneta_stop_locked(sc);
2317 	mvneta_sc_unlock(sc);
2318 }
2319 
2320 STATIC int
2321 mvneta_mediachange(if_t ifp)
2322 {
2323 	struct mvneta_softc *sc;
2324 
2325 	sc = if_getsoftc(ifp);
2326 
2327 	if (!sc->phy_attached && !sc->use_inband_status) {
2328 		/* We shouldn't be here */
2329 		if_printf(ifp, "Cannot change media in fixed-link mode!\n");
2330 		return (0);
2331 	}
2332 
2333 	if (sc->use_inband_status) {
2334 		mvneta_update_media(sc, sc->mvneta_ifmedia.ifm_media);
2335 		return (0);
2336 	}
2337 
2338 	mvneta_sc_lock(sc);
2339 
2340 	/* Update PHY */
2341 	mii_mediachg(sc->mii);
2342 
2343 	mvneta_sc_unlock(sc);
2344 
2345 	return (0);
2346 }
2347 
2348 STATIC void
2349 mvneta_get_media(struct mvneta_softc *sc, struct ifmediareq *ifmr)
2350 {
2351 	uint32_t psr;
2352 
2353 	psr = MVNETA_READ(sc, MVNETA_PSR);
2354 
2355 	/* Speed */
2356 	if (psr & MVNETA_PSR_GMIISPEED)
2357 		ifmr->ifm_active = IFM_ETHER_SUBTYPE_SET(IFM_1000_T);
2358 	else if (psr & MVNETA_PSR_MIISPEED)
2359 		ifmr->ifm_active = IFM_ETHER_SUBTYPE_SET(IFM_100_TX);
2360 	else if (psr & MVNETA_PSR_LINKUP)
2361 		ifmr->ifm_active = IFM_ETHER_SUBTYPE_SET(IFM_10_T);
2362 
2363 	/* Duplex */
2364 	if (psr & MVNETA_PSR_FULLDX)
2365 		ifmr->ifm_active |= IFM_FDX;
2366 
2367 	/* Link */
2368 	ifmr->ifm_status = IFM_AVALID;
2369 	if (psr & MVNETA_PSR_LINKUP)
2370 		ifmr->ifm_status |= IFM_ACTIVE;
2371 }
2372 
2373 STATIC void
2374 mvneta_mediastatus(if_t ifp, struct ifmediareq *ifmr)
2375 {
2376 	struct mvneta_softc *sc;
2377 	struct mii_data *mii;
2378 
2379 	sc = if_getsoftc(ifp);
2380 
2381 	if (!sc->phy_attached && !sc->use_inband_status) {
2382 		ifmr->ifm_status = IFM_AVALID | IFM_ACTIVE;
2383 		return;
2384 	}
2385 
2386 	mvneta_sc_lock(sc);
2387 
2388 	if (sc->use_inband_status) {
2389 		mvneta_get_media(sc, ifmr);
2390 		mvneta_sc_unlock(sc);
2391 		return;
2392 	}
2393 
2394 	mii = sc->mii;
2395 	mii_pollstat(mii);
2396 
2397 	ifmr->ifm_active = mii->mii_media_active;
2398 	ifmr->ifm_status = mii->mii_media_status;
2399 
2400 	mvneta_sc_unlock(sc);
2401 }
2402 
2403 /*
2404  * Link State Notify
2405  */
2406 STATIC void
2407 mvneta_update_autoneg(struct mvneta_softc *sc, int enable)
2408 {
2409 	int reg;
2410 
2411 	if (enable) {
2412 		reg = MVNETA_READ(sc, MVNETA_PANC);
2413 		reg &= ~(MVNETA_PANC_FORCELINKFAIL | MVNETA_PANC_FORCELINKPASS |
2414 		    MVNETA_PANC_ANFCEN);
2415 		reg |= MVNETA_PANC_ANDUPLEXEN | MVNETA_PANC_ANSPEEDEN |
2416 		    MVNETA_PANC_INBANDANEN;
2417 		MVNETA_WRITE(sc, MVNETA_PANC, reg);
2418 
2419 		reg = MVNETA_READ(sc, MVNETA_PMACC2);
2420 		reg |= MVNETA_PMACC2_INBANDANMODE;
2421 		MVNETA_WRITE(sc, MVNETA_PMACC2, reg);
2422 
2423 		reg = MVNETA_READ(sc, MVNETA_PSOMSCD);
2424 		reg |= MVNETA_PSOMSCD_ENABLE;
2425 		MVNETA_WRITE(sc, MVNETA_PSOMSCD, reg);
2426 	} else {
2427 		reg = MVNETA_READ(sc, MVNETA_PANC);
2428 		reg &= ~(MVNETA_PANC_FORCELINKFAIL | MVNETA_PANC_FORCELINKPASS |
2429 		    MVNETA_PANC_ANDUPLEXEN | MVNETA_PANC_ANSPEEDEN |
2430 		    MVNETA_PANC_INBANDANEN);
2431 		MVNETA_WRITE(sc, MVNETA_PANC, reg);
2432 
2433 		reg = MVNETA_READ(sc, MVNETA_PMACC2);
2434 		reg &= ~MVNETA_PMACC2_INBANDANMODE;
2435 		MVNETA_WRITE(sc, MVNETA_PMACC2, reg);
2436 
2437 		reg = MVNETA_READ(sc, MVNETA_PSOMSCD);
2438 		reg &= ~MVNETA_PSOMSCD_ENABLE;
2439 		MVNETA_WRITE(sc, MVNETA_PSOMSCD, reg);
2440 	}
2441 }
2442 
2443 STATIC int
2444 mvneta_update_media(struct mvneta_softc *sc, int media)
2445 {
2446 	int reg, err;
2447 	boolean_t running;
2448 
2449 	err = 0;
2450 
2451 	mvneta_sc_lock(sc);
2452 
2453 	mvneta_linkreset(sc);
2454 
2455 	running = (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) != 0;
2456 	if (running)
2457 		mvneta_stop_locked(sc);
2458 
2459 	sc->autoneg = (IFM_SUBTYPE(media) == IFM_AUTO);
2460 
2461 	if (!sc->phy_attached || sc->use_inband_status)
2462 		mvneta_update_autoneg(sc, IFM_SUBTYPE(media) == IFM_AUTO);
2463 
2464 	mvneta_update_eee(sc);
2465 	mvneta_update_fc(sc);
2466 
2467 	if (IFM_SUBTYPE(media) != IFM_AUTO) {
2468 		reg = MVNETA_READ(sc, MVNETA_PANC);
2469 		reg &= ~(MVNETA_PANC_SETGMIISPEED |
2470 		    MVNETA_PANC_SETMIISPEED |
2471 		    MVNETA_PANC_SETFULLDX);
2472 		if (IFM_SUBTYPE(media) == IFM_1000_T ||
2473 		    IFM_SUBTYPE(media) == IFM_2500_T) {
2474 			if ((media & IFM_FDX) == 0) {
2475 				device_printf(sc->dev,
2476 				    "%s half-duplex unsupported\n",
2477 				    IFM_SUBTYPE(media) == IFM_1000_T ?
2478 				    "1000Base-T" :
2479 				    "2500Base-T");
2480 				err = EINVAL;
2481 				goto out;
2482 			}
2483 			reg |= MVNETA_PANC_SETGMIISPEED;
2484 		} else if (IFM_SUBTYPE(media) == IFM_100_TX)
2485 			reg |= MVNETA_PANC_SETMIISPEED;
2486 
2487 		if (media & IFM_FDX)
2488 			reg |= MVNETA_PANC_SETFULLDX;
2489 
2490 		MVNETA_WRITE(sc, MVNETA_PANC, reg);
2491 	}
2492 out:
2493 	if (running)
2494 		mvneta_init_locked(sc);
2495 	mvneta_sc_unlock(sc);
2496 	return (err);
2497 }
2498 
2499 STATIC void
2500 mvneta_adjust_link(struct mvneta_softc *sc)
2501 {
2502 	boolean_t phy_linkup;
2503 	int reg;
2504 
2505 	/* Update eee/fc */
2506 	mvneta_update_eee(sc);
2507 	mvneta_update_fc(sc);
2508 
2509 	/* Check for link change */
2510 	phy_linkup = (sc->mii->mii_media_status &
2511 	    (IFM_AVALID | IFM_ACTIVE)) == (IFM_AVALID | IFM_ACTIVE);
2512 
2513 	if (sc->linkup != phy_linkup)
2514 		mvneta_linkupdate(sc, phy_linkup);
2515 
2516 	/* Don't update media on disabled link */
2517 	if (!phy_linkup)
2518 		return;
2519 
2520 	/* Check for media type change */
2521 	if (sc->mvneta_media != sc->mii->mii_media_active) {
2522 		sc->mvneta_media = sc->mii->mii_media_active;
2523 
2524 		reg = MVNETA_READ(sc, MVNETA_PANC);
2525 		reg &= ~(MVNETA_PANC_SETGMIISPEED |
2526 		    MVNETA_PANC_SETMIISPEED |
2527 		    MVNETA_PANC_SETFULLDX);
2528 		if (IFM_SUBTYPE(sc->mvneta_media) == IFM_1000_T ||
2529 		    IFM_SUBTYPE(sc->mvneta_media) == IFM_2500_T) {
2530 			reg |= MVNETA_PANC_SETGMIISPEED;
2531 		} else if (IFM_SUBTYPE(sc->mvneta_media) == IFM_100_TX)
2532 			reg |= MVNETA_PANC_SETMIISPEED;
2533 
2534 		if (sc->mvneta_media & IFM_FDX)
2535 			reg |= MVNETA_PANC_SETFULLDX;
2536 
2537 		MVNETA_WRITE(sc, MVNETA_PANC, reg);
2538 	}
2539 }
2540 
2541 STATIC void
2542 mvneta_link_isr(struct mvneta_softc *sc)
2543 {
2544 	int linkup;
2545 
2546 	KASSERT_SC_MTX(sc);
2547 
2548 	linkup = MVNETA_IS_LINKUP(sc) ? TRUE : FALSE;
2549 	if (sc->linkup == linkup)
2550 		return;
2551 
2552 	if (linkup == TRUE)
2553 		mvneta_linkup(sc);
2554 	else
2555 		mvneta_linkdown(sc);
2556 
2557 #ifdef DEBUG
2558 	device_printf(sc->dev,
2559 	    "%s: link %s\n", if_name(sc->ifp), linkup ? "up" : "down");
2560 #endif
2561 }
2562 
2563 STATIC void
2564 mvneta_linkupdate(struct mvneta_softc *sc, boolean_t linkup)
2565 {
2566 
2567 	KASSERT_SC_MTX(sc);
2568 
2569 	if (linkup == TRUE)
2570 		mvneta_linkup(sc);
2571 	else
2572 		mvneta_linkdown(sc);
2573 
2574 #ifdef DEBUG
2575 	device_printf(sc->dev,
2576 	    "%s: link %s\n", if_name(sc->ifp), linkup ? "up" : "down");
2577 #endif
2578 }
2579 
2580 STATIC void
2581 mvneta_update_eee(struct mvneta_softc *sc)
2582 {
2583 	uint32_t reg;
2584 
2585 	KASSERT_SC_MTX(sc);
2586 
2587 	/* set EEE parameters */
2588 	reg = MVNETA_READ(sc, MVNETA_LPIC1);
2589 	if (sc->cf_lpi)
2590 		reg |= MVNETA_LPIC1_LPIRE;
2591 	else
2592 		reg &= ~MVNETA_LPIC1_LPIRE;
2593 	MVNETA_WRITE(sc, MVNETA_LPIC1, reg);
2594 }
2595 
2596 STATIC void
2597 mvneta_update_fc(struct mvneta_softc *sc)
2598 {
2599 	uint32_t reg;
2600 
2601 	KASSERT_SC_MTX(sc);
2602 
2603 	reg  = MVNETA_READ(sc, MVNETA_PANC);
2604 	if (sc->cf_fc) {
2605 		/* Flow control negotiation */
2606 		reg |= MVNETA_PANC_PAUSEADV;
2607 		reg |= MVNETA_PANC_ANFCEN;
2608 	} else {
2609 		/* Disable flow control negotiation */
2610 		reg &= ~MVNETA_PANC_PAUSEADV;
2611 		reg &= ~MVNETA_PANC_ANFCEN;
2612 	}
2613 
2614 	MVNETA_WRITE(sc, MVNETA_PANC, reg);
2615 }
2616 
2617 STATIC void
2618 mvneta_linkup(struct mvneta_softc *sc)
2619 {
2620 	uint32_t reg;
2621 
2622 	KASSERT_SC_MTX(sc);
2623 
2624 	if (!sc->phy_attached || !sc->use_inband_status) {
2625 		reg  = MVNETA_READ(sc, MVNETA_PANC);
2626 		reg |= MVNETA_PANC_FORCELINKPASS;
2627 		reg &= ~MVNETA_PANC_FORCELINKFAIL;
2628 		MVNETA_WRITE(sc, MVNETA_PANC, reg);
2629 	}
2630 
2631 	mvneta_qflush(sc->ifp);
2632 	mvneta_portup(sc);
2633 	sc->linkup = TRUE;
2634 	if_link_state_change(sc->ifp, LINK_STATE_UP);
2635 }
2636 
2637 STATIC void
2638 mvneta_linkdown(struct mvneta_softc *sc)
2639 {
2640 	uint32_t reg;
2641 
2642 	KASSERT_SC_MTX(sc);
2643 
2644 	if (!sc->phy_attached || !sc->use_inband_status) {
2645 		reg  = MVNETA_READ(sc, MVNETA_PANC);
2646 		reg &= ~MVNETA_PANC_FORCELINKPASS;
2647 		reg |= MVNETA_PANC_FORCELINKFAIL;
2648 		MVNETA_WRITE(sc, MVNETA_PANC, reg);
2649 	}
2650 
2651 	mvneta_portdown(sc);
2652 	mvneta_qflush(sc->ifp);
2653 	sc->linkup = FALSE;
2654 	if_link_state_change(sc->ifp, LINK_STATE_DOWN);
2655 }
2656 
2657 STATIC void
2658 mvneta_linkreset(struct mvneta_softc *sc)
2659 {
2660 	struct mii_softc *mii;
2661 
2662 	if (sc->phy_attached) {
2663 		/* Force reset PHY */
2664 		mii = LIST_FIRST(&sc->mii->mii_phys);
2665 		if (mii)
2666 			mii_phy_reset(mii);
2667 	}
2668 }
2669 
2670 /*
2671  * Tx Subroutines
2672  */
2673 STATIC int
2674 mvneta_tx_queue(struct mvneta_softc *sc, struct mbuf **mbufp, int q)
2675 {
2676 	if_t ifp;
2677 	bus_dma_segment_t txsegs[MVNETA_TX_SEGLIMIT];
2678 	struct mbuf *mtmp, *mbuf;
2679 	struct mvneta_tx_ring *tx;
2680 	struct mvneta_buf *txbuf;
2681 	struct mvneta_tx_desc *t;
2682 	uint32_t ptxsu;
2683 	int used, error, i, txnsegs;
2684 
2685 	mbuf = *mbufp;
2686 	tx = MVNETA_TX_RING(sc, q);
2687 	DASSERT(tx->used >= 0);
2688 	DASSERT(tx->used <= MVNETA_TX_RING_CNT);
2689 	t = NULL;
2690 	ifp = sc->ifp;
2691 
2692 	if (__predict_false(mbuf->m_flags & M_VLANTAG)) {
2693 		mbuf = ether_vlanencap(mbuf, mbuf->m_pkthdr.ether_vtag);
2694 		if (mbuf == NULL) {
2695 			tx->drv_error++;
2696 			*mbufp = NULL;
2697 			return (ENOBUFS);
2698 		}
2699 		mbuf->m_flags &= ~M_VLANTAG;
2700 		*mbufp = mbuf;
2701 	}
2702 
2703 	if (__predict_false(mbuf->m_next != NULL &&
2704 	    (mbuf->m_pkthdr.csum_flags &
2705 	    (CSUM_IP | CSUM_TCP | CSUM_UDP)) != 0)) {
2706 		if (M_WRITABLE(mbuf) == 0) {
2707 			mtmp = m_dup(mbuf, M_NOWAIT);
2708 			m_freem(mbuf);
2709 			if (mtmp == NULL) {
2710 				tx->drv_error++;
2711 				*mbufp = NULL;
2712 				return (ENOBUFS);
2713 			}
2714 			*mbufp = mbuf = mtmp;
2715 		}
2716 	}
2717 
2718 	/* load mbuf using dmamap of 1st descriptor */
2719 	txbuf = &tx->txbuf[tx->cpu];
2720 	error = bus_dmamap_load_mbuf_sg(sc->txmbuf_dtag,
2721 	    txbuf->dmap, mbuf, txsegs, &txnsegs,
2722 	    BUS_DMA_NOWAIT);
2723 	if (__predict_false(error != 0)) {
2724 #ifdef MVNETA_KTR
2725 		CTR3(KTR_SPARE2, "%s:%u bus_dmamap_load_mbuf_sg error=%d", if_name(ifp), q, error);
2726 #endif
2727 		/* This is the only recoverable error (except EFBIG). */
2728 		if (error != ENOMEM) {
2729 			tx->drv_error++;
2730 			m_freem(mbuf);
2731 			*mbufp = NULL;
2732 			return (ENOBUFS);
2733 		}
2734 		return (error);
2735 	}
2736 
2737 	if (__predict_false(txnsegs <= 0
2738 	    || (txnsegs + tx->used) > MVNETA_TX_RING_CNT)) {
2739 		/* we have no enough descriptors or mbuf is broken */
2740 #ifdef MVNETA_KTR
2741 		CTR3(KTR_SPARE2, "%s:%u not enough descriptors txnsegs=%d",
2742 		    if_name(ifp), q, txnsegs);
2743 #endif
2744 		bus_dmamap_unload(sc->txmbuf_dtag, txbuf->dmap);
2745 		return (ENOBUFS);
2746 	}
2747 	DASSERT(txbuf->m == NULL);
2748 
2749 	/* remember mbuf using 1st descriptor */
2750 	txbuf->m = mbuf;
2751 	bus_dmamap_sync(sc->txmbuf_dtag, txbuf->dmap,
2752 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2753 
2754 	/* load to tx descriptors */
2755 	used = 0;
2756 	for (i = 0; i < txnsegs; i++) {
2757 		t = &tx->desc[tx->cpu];
2758 		t->command = 0;
2759 		t->l4ichk = 0;
2760 		t->flags = 0;
2761 		if (__predict_true(i == 0)) {
2762 			/* 1st descriptor */
2763 			t->command |= MVNETA_TX_CMD_W_PACKET_OFFSET(0);
2764 			t->command |= MVNETA_TX_CMD_F;
2765 			mvneta_tx_set_csumflag(ifp, t, mbuf);
2766 		}
2767 		t->bufptr_pa = txsegs[i].ds_addr;
2768 		t->bytecnt = txsegs[i].ds_len;
2769 		tx->cpu = tx_counter_adv(tx->cpu, 1);
2770 
2771 		tx->used++;
2772 		used++;
2773 	}
2774 	/* t is last descriptor here */
2775 	DASSERT(t != NULL);
2776 	t->command |= MVNETA_TX_CMD_L|MVNETA_TX_CMD_PADDING;
2777 
2778 	bus_dmamap_sync(sc->tx_dtag, tx->desc_map,
2779 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2780 
2781 	while (__predict_false(used > 255)) {
2782 		ptxsu = MVNETA_PTXSU_NOWD(255);
2783 		MVNETA_WRITE(sc, MVNETA_PTXSU(q), ptxsu);
2784 		used -= 255;
2785 	}
2786 	if (__predict_true(used > 0)) {
2787 		ptxsu = MVNETA_PTXSU_NOWD(used);
2788 		MVNETA_WRITE(sc, MVNETA_PTXSU(q), ptxsu);
2789 	}
2790 	return (0);
2791 }
2792 
2793 STATIC void
2794 mvneta_tx_set_csumflag(if_t ifp,
2795     struct mvneta_tx_desc *t, struct mbuf *m)
2796 {
2797 	struct ether_header *eh;
2798 	struct ether_vlan_header *evh;
2799 	int csum_flags;
2800 	uint32_t iphl, ipoff;
2801 	struct ip *ip;
2802 
2803 	iphl = ipoff = 0;
2804 	csum_flags = if_gethwassist(ifp) & m->m_pkthdr.csum_flags;
2805 	eh = mtod(m, struct ether_header *);
2806 
2807 	switch (ntohs(eh->ether_type)) {
2808 	case ETHERTYPE_IP:
2809 		ipoff = ETHER_HDR_LEN;
2810 		break;
2811 	case ETHERTYPE_VLAN:
2812 		ipoff = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
2813 		evh = mtod(m, struct ether_vlan_header *);
2814 		if (ntohs(evh->evl_proto) == ETHERTYPE_VLAN)
2815 			ipoff += ETHER_VLAN_ENCAP_LEN;
2816 		break;
2817 	default:
2818 		csum_flags = 0;
2819 	}
2820 
2821 	if (__predict_true(csum_flags & (CSUM_IP|CSUM_IP_TCP|CSUM_IP_UDP))) {
2822 		ip = (struct ip *)(m->m_data + ipoff);
2823 		iphl = ip->ip_hl<<2;
2824 		t->command |= MVNETA_TX_CMD_L3_IP4;
2825 	} else {
2826 		t->command |= MVNETA_TX_CMD_L4_CHECKSUM_NONE;
2827 		return;
2828 	}
2829 
2830 
2831 	/* L3 */
2832 	if (csum_flags & CSUM_IP) {
2833 		t->command |= MVNETA_TX_CMD_IP4_CHECKSUM;
2834 	}
2835 
2836 	/* L4 */
2837 	if (csum_flags & CSUM_IP_TCP) {
2838 		t->command |= MVNETA_TX_CMD_L4_CHECKSUM_NOFRAG;
2839 		t->command |= MVNETA_TX_CMD_L4_TCP;
2840 	} else if (csum_flags & CSUM_IP_UDP) {
2841 		t->command |= MVNETA_TX_CMD_L4_CHECKSUM_NOFRAG;
2842 		t->command |= MVNETA_TX_CMD_L4_UDP;
2843 	} else
2844 		t->command |= MVNETA_TX_CMD_L4_CHECKSUM_NONE;
2845 
2846 	t->l4ichk = 0;
2847 	t->command |= MVNETA_TX_CMD_IP_HEADER_LEN(iphl >> 2);
2848 	t->command |= MVNETA_TX_CMD_L3_OFFSET(ipoff);
2849 }
2850 
2851 STATIC void
2852 mvneta_tx_queue_complete(struct mvneta_softc *sc, int q)
2853 {
2854 	struct mvneta_tx_ring *tx;
2855 	struct mvneta_buf *txbuf;
2856 	struct mvneta_tx_desc *t __diagused;
2857 	uint32_t ptxs, ptxsu, ndesc;
2858 	int i;
2859 
2860 	KASSERT_TX_MTX(sc, q);
2861 
2862 	tx = MVNETA_TX_RING(sc, q);
2863 	if (__predict_false(tx->queue_status == MVNETA_QUEUE_DISABLED))
2864 		return;
2865 
2866 	ptxs = MVNETA_READ(sc, MVNETA_PTXS(q));
2867 	ndesc = MVNETA_PTXS_GET_TBC(ptxs);
2868 
2869 	if (__predict_false(ndesc == 0)) {
2870 		if (tx->used == 0)
2871 			tx->queue_status = MVNETA_QUEUE_IDLE;
2872 		else if (tx->queue_status == MVNETA_QUEUE_WORKING &&
2873 		    ((ticks - tx->watchdog_time) > MVNETA_WATCHDOG))
2874 			tx->queue_hung = TRUE;
2875 		return;
2876 	}
2877 
2878 #ifdef MVNETA_KTR
2879 	CTR3(KTR_SPARE2, "%s:%u tx_complete begin ndesc=%u",
2880 	    if_name(sc->ifp), q, ndesc);
2881 #endif
2882 
2883 	bus_dmamap_sync(sc->tx_dtag, tx->desc_map,
2884 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2885 
2886 	for (i = 0; i < ndesc; i++) {
2887 		t = &tx->desc[tx->dma];
2888 #ifdef MVNETA_KTR
2889 		if (t->flags & MVNETA_TX_F_ES)
2890 			CTR3(KTR_SPARE2, "%s tx error queue %d desc %d",
2891 			    if_name(sc->ifp), q, tx->dma);
2892 #endif
2893 		txbuf = &tx->txbuf[tx->dma];
2894 		if (__predict_true(txbuf->m != NULL)) {
2895 			DASSERT((t->command & MVNETA_TX_CMD_F) != 0);
2896 			bus_dmamap_unload(sc->txmbuf_dtag, txbuf->dmap);
2897 			m_freem(txbuf->m);
2898 			txbuf->m = NULL;
2899 		}
2900 		else
2901 			DASSERT((t->flags & MVNETA_TX_CMD_F) == 0);
2902 		tx->dma = tx_counter_adv(tx->dma, 1);
2903 		tx->used--;
2904 	}
2905 	DASSERT(tx->used >= 0);
2906 	DASSERT(tx->used <= MVNETA_TX_RING_CNT);
2907 	while (__predict_false(ndesc > 255)) {
2908 		ptxsu = MVNETA_PTXSU_NORB(255);
2909 		MVNETA_WRITE(sc, MVNETA_PTXSU(q), ptxsu);
2910 		ndesc -= 255;
2911 	}
2912 	if (__predict_true(ndesc > 0)) {
2913 		ptxsu = MVNETA_PTXSU_NORB(ndesc);
2914 		MVNETA_WRITE(sc, MVNETA_PTXSU(q), ptxsu);
2915 	}
2916 #ifdef MVNETA_KTR
2917 	CTR5(KTR_SPARE2, "%s:%u tx_complete tx_cpu=%d tx_dma=%d tx_used=%d",
2918 	    if_name(sc->ifp), q, tx->cpu, tx->dma, tx->used);
2919 #endif
2920 
2921 	tx->watchdog_time = ticks;
2922 
2923 	if (tx->used == 0)
2924 		tx->queue_status = MVNETA_QUEUE_IDLE;
2925 }
2926 
2927 /*
2928  * Do a final TX complete when TX is idle.
2929  */
2930 STATIC void
2931 mvneta_tx_drain(struct mvneta_softc *sc)
2932 {
2933 	struct mvneta_tx_ring *tx;
2934 	int q;
2935 
2936 	/*
2937 	 * Handle trailing mbuf on TX queue.
2938 	 * Check is done lockess to avoid TX path contention.
2939 	 */
2940 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
2941 		tx = MVNETA_TX_RING(sc, q);
2942 		if ((ticks - tx->watchdog_time) > MVNETA_WATCHDOG_TXCOMP &&
2943 		    tx->used > 0) {
2944 			mvneta_tx_lockq(sc, q);
2945 			mvneta_tx_queue_complete(sc, q);
2946 			mvneta_tx_unlockq(sc, q);
2947 		}
2948 	}
2949 }
2950 
2951 /*
2952  * Rx Subroutines
2953  */
2954 STATIC int
2955 mvneta_rx(struct mvneta_softc *sc, int q, int count)
2956 {
2957 	uint32_t prxs, npkt;
2958 	int more;
2959 
2960 	more = 0;
2961 	mvneta_rx_lockq(sc, q);
2962 	prxs = MVNETA_READ(sc, MVNETA_PRXS(q));
2963 	npkt = MVNETA_PRXS_GET_ODC(prxs);
2964 	if (__predict_false(npkt == 0))
2965 		goto out;
2966 
2967 	if (count > 0 && npkt > count) {
2968 		more = 1;
2969 		npkt = count;
2970 	}
2971 	mvneta_rx_queue(sc, q, npkt);
2972 out:
2973 	mvneta_rx_unlockq(sc, q);
2974 	return more;
2975 }
2976 
2977 /*
2978  * Helper routine for updating PRXSU register of a given queue.
2979  * Handles number of processed descriptors bigger than maximum acceptable value.
2980  */
2981 STATIC __inline void
2982 mvneta_prxsu_update(struct mvneta_softc *sc, int q, int processed)
2983 {
2984 	uint32_t prxsu;
2985 
2986 	while (__predict_false(processed > 255)) {
2987 		prxsu = MVNETA_PRXSU_NOOFPROCESSEDDESCRIPTORS(255);
2988 		MVNETA_WRITE(sc, MVNETA_PRXSU(q), prxsu);
2989 		processed -= 255;
2990 	}
2991 	prxsu = MVNETA_PRXSU_NOOFPROCESSEDDESCRIPTORS(processed);
2992 	MVNETA_WRITE(sc, MVNETA_PRXSU(q), prxsu);
2993 }
2994 
2995 static __inline void
2996 mvneta_prefetch(void *p)
2997 {
2998 
2999 	__builtin_prefetch(p);
3000 }
3001 
3002 STATIC void
3003 mvneta_rx_queue(struct mvneta_softc *sc, int q, int npkt)
3004 {
3005 	if_t ifp;
3006 	struct mvneta_rx_ring *rx;
3007 	struct mvneta_rx_desc *r;
3008 	struct mvneta_buf *rxbuf;
3009 	struct mbuf *m;
3010 	struct lro_ctrl *lro;
3011 	struct lro_entry *queued;
3012 	void *pktbuf;
3013 	int i, pktlen, processed, ndma;
3014 
3015 	KASSERT_RX_MTX(sc, q);
3016 
3017 	ifp = sc->ifp;
3018 	rx = MVNETA_RX_RING(sc, q);
3019 	processed = 0;
3020 
3021 	if (__predict_false(rx->queue_status == MVNETA_QUEUE_DISABLED))
3022 		return;
3023 
3024 	bus_dmamap_sync(sc->rx_dtag, rx->desc_map,
3025 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3026 
3027 	for (i = 0; i < npkt; i++) {
3028 		/* Prefetch next desc, rxbuf. */
3029 		ndma = rx_counter_adv(rx->dma, 1);
3030 		mvneta_prefetch(&rx->desc[ndma]);
3031 		mvneta_prefetch(&rx->rxbuf[ndma]);
3032 
3033 		/* get descriptor and packet */
3034 		r = &rx->desc[rx->dma];
3035 		rxbuf = &rx->rxbuf[rx->dma];
3036 		m = rxbuf->m;
3037 		rxbuf->m = NULL;
3038 		DASSERT(m != NULL);
3039 		bus_dmamap_sync(sc->rxbuf_dtag, rxbuf->dmap,
3040 		    BUS_DMASYNC_POSTREAD);
3041 		bus_dmamap_unload(sc->rxbuf_dtag, rxbuf->dmap);
3042 		/* Prefetch mbuf header. */
3043 		mvneta_prefetch(m);
3044 
3045 		processed++;
3046 		/* Drop desc with error status or not in a single buffer. */
3047 		DASSERT((r->status & (MVNETA_RX_F|MVNETA_RX_L)) ==
3048 		    (MVNETA_RX_F|MVNETA_RX_L));
3049 		if (__predict_false((r->status & MVNETA_RX_ES) ||
3050 		    (r->status & (MVNETA_RX_F|MVNETA_RX_L)) !=
3051 		    (MVNETA_RX_F|MVNETA_RX_L)))
3052 			goto rx_error;
3053 
3054 		/*
3055 		 * [ OFF | MH | PKT | CRC ]
3056 		 * bytecnt cover MH, PKT, CRC
3057 		 */
3058 		pktlen = r->bytecnt - ETHER_CRC_LEN - MVNETA_HWHEADER_SIZE;
3059 		pktbuf = (uint8_t *)rx->rxbuf_virt_addr[rx->dma] + MVNETA_PACKET_OFFSET +
3060                     MVNETA_HWHEADER_SIZE;
3061 
3062 		/* Prefetch mbuf data. */
3063 		mvneta_prefetch(pktbuf);
3064 
3065 		/* Write value to mbuf (avoid read). */
3066 		m->m_data = pktbuf;
3067 		m->m_len = m->m_pkthdr.len = pktlen;
3068 		m->m_pkthdr.rcvif = ifp;
3069 		mvneta_rx_set_csumflag(ifp, r, m);
3070 
3071 		/* Increase rx_dma before releasing the lock. */
3072 		rx->dma = ndma;
3073 
3074 		if (__predict_false(rx->lro_enabled &&
3075 		    ((r->status & MVNETA_RX_L3_IP) != 0) &&
3076 		    ((r->status & MVNETA_RX_L4_MASK) == MVNETA_RX_L4_TCP) &&
3077 		    (m->m_pkthdr.csum_flags &
3078 		    (CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) ==
3079 		    (CSUM_DATA_VALID | CSUM_PSEUDO_HDR))) {
3080 			if (rx->lro.lro_cnt != 0) {
3081 				if (tcp_lro_rx(&rx->lro, m, 0) == 0)
3082 					goto rx_done;
3083 			}
3084 		}
3085 
3086 		mvneta_rx_unlockq(sc, q);
3087 		if_input(ifp, m);
3088 		mvneta_rx_lockq(sc, q);
3089 		/*
3090 		 * Check whether this queue has been disabled in the
3091 		 * meantime. If yes, then clear LRO and exit.
3092 		 */
3093 		if(__predict_false(rx->queue_status == MVNETA_QUEUE_DISABLED))
3094 			goto rx_lro;
3095 rx_done:
3096 		/* Refresh receive ring to avoid stall and minimize jitter. */
3097 		if (processed >= MVNETA_RX_REFILL_COUNT) {
3098 			mvneta_prxsu_update(sc, q, processed);
3099 			mvneta_rx_queue_refill(sc, q);
3100 			processed = 0;
3101 		}
3102 		continue;
3103 rx_error:
3104 		m_freem(m);
3105 		rx->dma = ndma;
3106 		/* Refresh receive ring to avoid stall and minimize jitter. */
3107 		if (processed >= MVNETA_RX_REFILL_COUNT) {
3108 			mvneta_prxsu_update(sc, q, processed);
3109 			mvneta_rx_queue_refill(sc, q);
3110 			processed = 0;
3111 		}
3112 	}
3113 #ifdef MVNETA_KTR
3114 	CTR3(KTR_SPARE2, "%s:%u %u packets received", if_name(ifp), q, npkt);
3115 #endif
3116 	/* DMA status update */
3117 	mvneta_prxsu_update(sc, q, processed);
3118 	/* Refill the rest of buffers if there are any to refill */
3119 	mvneta_rx_queue_refill(sc, q);
3120 
3121 rx_lro:
3122 	/*
3123 	 * Flush any outstanding LRO work
3124 	 */
3125 	lro = &rx->lro;
3126 	while (__predict_false((queued = LIST_FIRST(&lro->lro_active)) != NULL)) {
3127 		LIST_REMOVE(LIST_FIRST((&lro->lro_active)), next);
3128 		tcp_lro_flush(lro, queued);
3129 	}
3130 }
3131 
3132 STATIC void
3133 mvneta_rx_buf_free(struct mvneta_softc *sc, struct mvneta_buf *rxbuf)
3134 {
3135 
3136 	bus_dmamap_unload(sc->rxbuf_dtag, rxbuf->dmap);
3137 	/* This will remove all data at once */
3138 	m_freem(rxbuf->m);
3139 }
3140 
3141 STATIC void
3142 mvneta_rx_queue_refill(struct mvneta_softc *sc, int q)
3143 {
3144 	struct mvneta_rx_ring *rx;
3145 	struct mvneta_rx_desc *r;
3146 	struct mvneta_buf *rxbuf;
3147 	bus_dma_segment_t segs;
3148 	struct mbuf *m;
3149 	uint32_t prxs, prxsu, ndesc;
3150 	int npkt, refill, nsegs, error;
3151 
3152 	KASSERT_RX_MTX(sc, q);
3153 
3154 	rx = MVNETA_RX_RING(sc, q);
3155 	prxs = MVNETA_READ(sc, MVNETA_PRXS(q));
3156 	ndesc = MVNETA_PRXS_GET_NODC(prxs) + MVNETA_PRXS_GET_ODC(prxs);
3157 	refill = MVNETA_RX_RING_CNT - ndesc;
3158 #ifdef MVNETA_KTR
3159 	CTR3(KTR_SPARE2, "%s:%u refill %u packets", if_name(sc->ifp), q,
3160 	    refill);
3161 #endif
3162 	if (__predict_false(refill <= 0))
3163 		return;
3164 
3165 	for (npkt = 0; npkt < refill; npkt++) {
3166 		rxbuf = &rx->rxbuf[rx->cpu];
3167 		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, sc->rx_frame_size);
3168 		if (__predict_false(m == NULL)) {
3169 			error = ENOBUFS;
3170 			break;
3171 		}
3172 		m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
3173 
3174 		error = bus_dmamap_load_mbuf_sg(sc->rxbuf_dtag, rxbuf->dmap,
3175 		    m, &segs, &nsegs, BUS_DMA_NOWAIT);
3176 		if (__predict_false(error != 0 || nsegs != 1)) {
3177 			KASSERT(1, ("Failed to load Rx mbuf DMA map"));
3178 			m_freem(m);
3179 			break;
3180 		}
3181 
3182 		/* Add the packet to the ring */
3183 		rxbuf->m = m;
3184 		r = &rx->desc[rx->cpu];
3185 		r->bufptr_pa = segs.ds_addr;
3186 		rx->rxbuf_virt_addr[rx->cpu] = m->m_data;
3187 
3188 		rx->cpu = rx_counter_adv(rx->cpu, 1);
3189 	}
3190 	if (npkt == 0) {
3191 		if (refill == MVNETA_RX_RING_CNT)
3192 			rx->needs_refill = TRUE;
3193 		return;
3194 	}
3195 
3196 	rx->needs_refill = FALSE;
3197 	bus_dmamap_sync(sc->rx_dtag, rx->desc_map, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3198 
3199 	while (__predict_false(npkt > 255)) {
3200 		prxsu = MVNETA_PRXSU_NOOFNEWDESCRIPTORS(255);
3201 		MVNETA_WRITE(sc, MVNETA_PRXSU(q), prxsu);
3202 		npkt -= 255;
3203 	}
3204 	if (__predict_true(npkt > 0)) {
3205 		prxsu = MVNETA_PRXSU_NOOFNEWDESCRIPTORS(npkt);
3206 		MVNETA_WRITE(sc, MVNETA_PRXSU(q), prxsu);
3207 	}
3208 }
3209 
3210 STATIC __inline void
3211 mvneta_rx_set_csumflag(if_t ifp,
3212     struct mvneta_rx_desc *r, struct mbuf *m)
3213 {
3214 	uint32_t csum_flags;
3215 
3216 	csum_flags = 0;
3217 	if (__predict_false((r->status &
3218 	    (MVNETA_RX_IP_HEADER_OK|MVNETA_RX_L3_IP)) == 0))
3219 		return; /* not a IP packet */
3220 
3221 	/* L3 */
3222 	if (__predict_true((r->status & MVNETA_RX_IP_HEADER_OK) ==
3223 	    MVNETA_RX_IP_HEADER_OK))
3224 		csum_flags |= CSUM_L3_CALC|CSUM_L3_VALID;
3225 
3226 	if (__predict_true((r->status & (MVNETA_RX_IP_HEADER_OK|MVNETA_RX_L3_IP)) ==
3227 	    (MVNETA_RX_IP_HEADER_OK|MVNETA_RX_L3_IP))) {
3228 		/* L4 */
3229 		switch (r->status & MVNETA_RX_L4_MASK) {
3230 		case MVNETA_RX_L4_TCP:
3231 		case MVNETA_RX_L4_UDP:
3232 			csum_flags |= CSUM_L4_CALC;
3233 			if (__predict_true((r->status &
3234 			    MVNETA_RX_L4_CHECKSUM_OK) == MVNETA_RX_L4_CHECKSUM_OK)) {
3235 				csum_flags |= CSUM_L4_VALID;
3236 				m->m_pkthdr.csum_data = htons(0xffff);
3237 			}
3238 			break;
3239 		case MVNETA_RX_L4_OTH:
3240 		default:
3241 			break;
3242 		}
3243 	}
3244 	m->m_pkthdr.csum_flags = csum_flags;
3245 }
3246 
3247 /*
3248  * MAC address filter
3249  */
3250 STATIC void
3251 mvneta_filter_setup(struct mvneta_softc *sc)
3252 {
3253 	if_t ifp;
3254 	uint32_t dfut[MVNETA_NDFUT], dfsmt[MVNETA_NDFSMT], dfomt[MVNETA_NDFOMT];
3255 	uint32_t pxc;
3256 	int i;
3257 
3258 	KASSERT_SC_MTX(sc);
3259 
3260 	memset(dfut, 0, sizeof(dfut));
3261 	memset(dfsmt, 0, sizeof(dfsmt));
3262 	memset(dfomt, 0, sizeof(dfomt));
3263 
3264 	ifp = sc->ifp;
3265 	if_setflagbits(ifp, IFF_ALLMULTI, 0);
3266 	if (if_getflags(ifp) & (IFF_ALLMULTI | IFF_PROMISC)) {
3267 		for (i = 0; i < MVNETA_NDFSMT; i++) {
3268 			dfsmt[i] = dfomt[i] =
3269 			    MVNETA_DF(0, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
3270 			    MVNETA_DF(1, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
3271 			    MVNETA_DF(2, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
3272 			    MVNETA_DF(3, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS);
3273 		}
3274 	}
3275 
3276 	pxc = MVNETA_READ(sc, MVNETA_PXC);
3277 	pxc &= ~(MVNETA_PXC_UPM | MVNETA_PXC_RXQ_MASK | MVNETA_PXC_RXQARP_MASK |
3278 	    MVNETA_PXC_TCPQ_MASK | MVNETA_PXC_UDPQ_MASK | MVNETA_PXC_BPDUQ_MASK);
3279 	pxc |= MVNETA_PXC_RXQ(MVNETA_RX_QNUM_MAX-1);
3280 	pxc |= MVNETA_PXC_RXQARP(MVNETA_RX_QNUM_MAX-1);
3281 	pxc |= MVNETA_PXC_TCPQ(MVNETA_RX_QNUM_MAX-1);
3282 	pxc |= MVNETA_PXC_UDPQ(MVNETA_RX_QNUM_MAX-1);
3283 	pxc |= MVNETA_PXC_BPDUQ(MVNETA_RX_QNUM_MAX-1);
3284 	pxc |= MVNETA_PXC_RB | MVNETA_PXC_RBIP | MVNETA_PXC_RBARP;
3285 	if (if_getflags(ifp) & IFF_BROADCAST) {
3286 		pxc &= ~(MVNETA_PXC_RB | MVNETA_PXC_RBIP | MVNETA_PXC_RBARP);
3287 	}
3288 	if (if_getflags(ifp) & IFF_PROMISC) {
3289 		pxc |= MVNETA_PXC_UPM;
3290 	}
3291 	MVNETA_WRITE(sc, MVNETA_PXC, pxc);
3292 
3293 	/* Set Destination Address Filter Unicast Table */
3294 	if (if_getflags(ifp) & IFF_PROMISC) {
3295 		/* pass all unicast addresses */
3296 		for (i = 0; i < MVNETA_NDFUT; i++) {
3297 			dfut[i] =
3298 			    MVNETA_DF(0, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
3299 			    MVNETA_DF(1, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
3300 			    MVNETA_DF(2, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
3301 			    MVNETA_DF(3, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS);
3302 		}
3303 	} else {
3304 		i = sc->enaddr[5] & 0xf;		/* last nibble */
3305 		dfut[i>>2] = MVNETA_DF(i&3, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS);
3306 	}
3307 	MVNETA_WRITE_REGION(sc, MVNETA_DFUT(0), dfut, MVNETA_NDFUT);
3308 
3309 	/* Set Destination Address Filter Multicast Tables */
3310 	MVNETA_WRITE_REGION(sc, MVNETA_DFSMT(0), dfsmt, MVNETA_NDFSMT);
3311 	MVNETA_WRITE_REGION(sc, MVNETA_DFOMT(0), dfomt, MVNETA_NDFOMT);
3312 }
3313 
3314 /*
3315  * sysctl(9)
3316  */
3317 STATIC int
3318 sysctl_read_mib(SYSCTL_HANDLER_ARGS)
3319 {
3320 	struct mvneta_sysctl_mib *arg;
3321 	struct mvneta_softc *sc;
3322 	uint64_t val;
3323 
3324 	arg = (struct mvneta_sysctl_mib *)arg1;
3325 	if (arg == NULL)
3326 		return (EINVAL);
3327 
3328 	sc = arg->sc;
3329 	if (sc == NULL)
3330 		return (EINVAL);
3331 	if (arg->index < 0 || arg->index > MVNETA_PORTMIB_NOCOUNTER)
3332 		return (EINVAL);
3333 
3334 	mvneta_sc_lock(sc);
3335 	val = arg->counter;
3336 	mvneta_sc_unlock(sc);
3337 	return sysctl_handle_64(oidp, &val, 0, req);
3338 }
3339 
3340 
3341 STATIC int
3342 sysctl_clear_mib(SYSCTL_HANDLER_ARGS)
3343 {
3344 	struct mvneta_softc *sc;
3345 	int err, val;
3346 
3347 	val = 0;
3348 	sc = (struct mvneta_softc *)arg1;
3349 	if (sc == NULL)
3350 		return (EINVAL);
3351 
3352 	err = sysctl_handle_int(oidp, &val, 0, req);
3353 	if (err != 0)
3354 		return (err);
3355 
3356 	if (val < 0 || val > 1)
3357 		return (EINVAL);
3358 
3359 	if (val == 1) {
3360 		mvneta_sc_lock(sc);
3361 		mvneta_clear_mib(sc);
3362 		mvneta_sc_unlock(sc);
3363 	}
3364 
3365 	return (0);
3366 }
3367 
3368 STATIC int
3369 sysctl_set_queue_rxthtime(SYSCTL_HANDLER_ARGS)
3370 {
3371 	struct mvneta_sysctl_queue *arg;
3372 	struct mvneta_rx_ring *rx;
3373 	struct mvneta_softc *sc;
3374 	uint32_t reg, time_mvtclk;
3375 	int err, time_us;
3376 
3377 	rx = NULL;
3378 	arg = (struct mvneta_sysctl_queue *)arg1;
3379 	if (arg == NULL)
3380 		return (EINVAL);
3381 	if (arg->queue < 0 || arg->queue > MVNETA_RX_RING_CNT)
3382 		return (EINVAL);
3383 	if (arg->rxtx != MVNETA_SYSCTL_RX)
3384 		return (EINVAL);
3385 
3386 	sc = arg->sc;
3387 	if (sc == NULL)
3388 		return (EINVAL);
3389 
3390 	/* read queue length */
3391 	mvneta_sc_lock(sc);
3392 	mvneta_rx_lockq(sc, arg->queue);
3393 	rx = MVNETA_RX_RING(sc, arg->queue);
3394 	time_mvtclk = rx->queue_th_time;
3395 	time_us = ((uint64_t)time_mvtclk * 1000ULL * 1000ULL) / sc->clk_freq;
3396 	mvneta_rx_unlockq(sc, arg->queue);
3397 	mvneta_sc_unlock(sc);
3398 
3399 	err = sysctl_handle_int(oidp, &time_us, 0, req);
3400 	if (err != 0)
3401 		return (err);
3402 
3403 	mvneta_sc_lock(sc);
3404 	mvneta_rx_lockq(sc, arg->queue);
3405 
3406 	/* update queue length (0[sec] - 1[sec]) */
3407 	if (time_us < 0 || time_us > (1000 * 1000)) {
3408 		mvneta_rx_unlockq(sc, arg->queue);
3409 		mvneta_sc_unlock(sc);
3410 		return (EINVAL);
3411 	}
3412 	time_mvtclk = sc->clk_freq * (uint64_t)time_us / (1000ULL * 1000ULL);
3413 	rx->queue_th_time = time_mvtclk;
3414 	reg = MVNETA_PRXITTH_RITT(rx->queue_th_time);
3415 	MVNETA_WRITE(sc, MVNETA_PRXITTH(arg->queue), reg);
3416 	mvneta_rx_unlockq(sc, arg->queue);
3417 	mvneta_sc_unlock(sc);
3418 
3419 	return (0);
3420 }
3421 
3422 STATIC void
3423 sysctl_mvneta_init(struct mvneta_softc *sc)
3424 {
3425 	struct sysctl_ctx_list *ctx;
3426 	struct sysctl_oid_list *children;
3427 	struct sysctl_oid_list *rxchildren;
3428 	struct sysctl_oid_list *qchildren, *mchildren;
3429 	struct sysctl_oid *tree;
3430 	int i, q;
3431 	struct mvneta_sysctl_queue *rxarg;
3432 #define	MVNETA_SYSCTL_NAME(num) "queue" # num
3433 	static const char *sysctl_queue_names[] = {
3434 		MVNETA_SYSCTL_NAME(0), MVNETA_SYSCTL_NAME(1),
3435 		MVNETA_SYSCTL_NAME(2), MVNETA_SYSCTL_NAME(3),
3436 		MVNETA_SYSCTL_NAME(4), MVNETA_SYSCTL_NAME(5),
3437 		MVNETA_SYSCTL_NAME(6), MVNETA_SYSCTL_NAME(7),
3438 	};
3439 #undef MVNETA_SYSCTL_NAME
3440 
3441 #ifndef NO_SYSCTL_DESCR
3442 #define	MVNETA_SYSCTL_DESCR(num) "configuration parameters for queue " # num
3443 	static const char *sysctl_queue_descrs[] = {
3444 		MVNETA_SYSCTL_DESCR(0), MVNETA_SYSCTL_DESCR(1),
3445 		MVNETA_SYSCTL_DESCR(2), MVNETA_SYSCTL_DESCR(3),
3446 		MVNETA_SYSCTL_DESCR(4), MVNETA_SYSCTL_DESCR(5),
3447 		MVNETA_SYSCTL_DESCR(6), MVNETA_SYSCTL_DESCR(7),
3448 	};
3449 #undef MVNETA_SYSCTL_DESCR
3450 #endif
3451 
3452 
3453 	ctx = device_get_sysctl_ctx(sc->dev);
3454 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
3455 
3456 	tree = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rx",
3457 	    CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "NETA RX");
3458 	rxchildren = SYSCTL_CHILDREN(tree);
3459 	tree = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "mib",
3460 	    CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "NETA MIB");
3461 	mchildren = SYSCTL_CHILDREN(tree);
3462 
3463 
3464 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "flow_control",
3465 	    CTLFLAG_RW, &sc->cf_fc, 0, "flow control");
3466 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lpi",
3467 	    CTLFLAG_RW, &sc->cf_lpi, 0, "Low Power Idle");
3468 
3469 	/*
3470 	 * MIB access
3471 	 */
3472 	/* dev.mvneta.[unit].mib.<mibs> */
3473 	for (i = 0; i < MVNETA_PORTMIB_NOCOUNTER; i++) {
3474 		struct mvneta_sysctl_mib *mib_arg = &sc->sysctl_mib[i];
3475 
3476 		mib_arg->sc = sc;
3477 		mib_arg->index = i;
3478 		SYSCTL_ADD_PROC(ctx, mchildren, OID_AUTO,
3479 		    mvneta_mib_list[i].sysctl_name,
3480 		    CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
3481 		    (void *)mib_arg, 0, sysctl_read_mib, "I",
3482 		    mvneta_mib_list[i].desc);
3483 	}
3484 	SYSCTL_ADD_UQUAD(ctx, mchildren, OID_AUTO, "rx_discard",
3485 	    CTLFLAG_RD, &sc->counter_pdfc, "Port Rx Discard Frame Counter");
3486 	SYSCTL_ADD_UQUAD(ctx, mchildren, OID_AUTO, "overrun",
3487 	    CTLFLAG_RD, &sc->counter_pofc, "Port Overrun Frame Counter");
3488 	SYSCTL_ADD_UINT(ctx, mchildren, OID_AUTO, "watchdog",
3489 	    CTLFLAG_RD, &sc->counter_watchdog, 0, "TX Watchdog Counter");
3490 
3491 	SYSCTL_ADD_PROC(ctx, mchildren, OID_AUTO, "reset",
3492 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
3493 	    (void *)sc, 0, sysctl_clear_mib, "I", "Reset MIB counters");
3494 
3495 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
3496 		rxarg = &sc->sysctl_rx_queue[q];
3497 
3498 		rxarg->sc = sc;
3499 		rxarg->queue = q;
3500 		rxarg->rxtx = MVNETA_SYSCTL_RX;
3501 
3502 		/* hw.mvneta.mvneta[unit].rx.[queue] */
3503 		tree = SYSCTL_ADD_NODE(ctx, rxchildren, OID_AUTO,
3504 		    sysctl_queue_names[q], CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
3505 		    sysctl_queue_descrs[q]);
3506 		qchildren = SYSCTL_CHILDREN(tree);
3507 
3508 		/* hw.mvneta.mvneta[unit].rx.[queue].threshold_timer_us */
3509 		SYSCTL_ADD_PROC(ctx, qchildren, OID_AUTO, "threshold_timer_us",
3510 		    CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, rxarg, 0,
3511 		    sysctl_set_queue_rxthtime, "I",
3512 		    "interrupt coalescing threshold timer [us]");
3513 	}
3514 }
3515 
3516 /*
3517  * MIB
3518  */
3519 STATIC uint64_t
3520 mvneta_read_mib(struct mvneta_softc *sc, int index)
3521 {
3522 	struct mvneta_mib_def *mib;
3523 	uint64_t val;
3524 
3525 	mib = &mvneta_mib_list[index];
3526 	val = MVNETA_READ_MIB(sc, mib->regnum);
3527 	if (mib->reg64)
3528 		val |= (uint64_t)MVNETA_READ_MIB(sc, mib->regnum + 4) << 32;
3529 	return (val);
3530 }
3531 
3532 STATIC void
3533 mvneta_clear_mib(struct mvneta_softc *sc)
3534 {
3535 	int i;
3536 
3537 	KASSERT_SC_MTX(sc);
3538 
3539 	for (i = 0; i < nitems(mvneta_mib_list); i++) {
3540 		(void)mvneta_read_mib(sc, i);
3541 		sc->sysctl_mib[i].counter = 0;
3542 	}
3543 	MVNETA_READ(sc, MVNETA_PDFC);
3544 	sc->counter_pdfc = 0;
3545 	MVNETA_READ(sc, MVNETA_POFC);
3546 	sc->counter_pofc = 0;
3547 	sc->counter_watchdog = 0;
3548 }
3549 
3550 STATIC void
3551 mvneta_update_mib(struct mvneta_softc *sc)
3552 {
3553 	struct mvneta_tx_ring *tx;
3554 	int i;
3555 	uint64_t val;
3556 	uint32_t reg;
3557 
3558 	for (i = 0; i < nitems(mvneta_mib_list); i++) {
3559 
3560 		val = mvneta_read_mib(sc, i);
3561 		if (val == 0)
3562 			continue;
3563 
3564 		sc->sysctl_mib[i].counter += val;
3565 		switch (mvneta_mib_list[i].regnum) {
3566 			case MVNETA_MIB_RX_GOOD_OCT:
3567 				if_inc_counter(sc->ifp, IFCOUNTER_IBYTES, val);
3568 				break;
3569 			case MVNETA_MIB_RX_BAD_FRAME:
3570 				if_inc_counter(sc->ifp, IFCOUNTER_IERRORS, val);
3571 				break;
3572 			case MVNETA_MIB_RX_GOOD_FRAME:
3573 				if_inc_counter(sc->ifp, IFCOUNTER_IPACKETS, val);
3574 				break;
3575 			case MVNETA_MIB_RX_MCAST_FRAME:
3576 				if_inc_counter(sc->ifp, IFCOUNTER_IMCASTS, val);
3577 				break;
3578 			case MVNETA_MIB_TX_GOOD_OCT:
3579 				if_inc_counter(sc->ifp, IFCOUNTER_OBYTES, val);
3580 				break;
3581 			case MVNETA_MIB_TX_GOOD_FRAME:
3582 				if_inc_counter(sc->ifp, IFCOUNTER_OPACKETS, val);
3583 				break;
3584 			case MVNETA_MIB_TX_MCAST_FRAME:
3585 				if_inc_counter(sc->ifp, IFCOUNTER_OMCASTS, val);
3586 				break;
3587 			case MVNETA_MIB_MAC_COL:
3588 				if_inc_counter(sc->ifp, IFCOUNTER_COLLISIONS, val);
3589 				break;
3590 			case MVNETA_MIB_TX_MAC_TRNS_ERR:
3591 			case MVNETA_MIB_TX_EXCES_COL:
3592 			case MVNETA_MIB_MAC_LATE_COL:
3593 				if_inc_counter(sc->ifp, IFCOUNTER_OERRORS, val);
3594 				break;
3595 		}
3596 	}
3597 
3598 	reg = MVNETA_READ(sc, MVNETA_PDFC);
3599 	sc->counter_pdfc += reg;
3600 	if_inc_counter(sc->ifp, IFCOUNTER_IQDROPS, reg);
3601 	reg = MVNETA_READ(sc, MVNETA_POFC);
3602 	sc->counter_pofc += reg;
3603 	if_inc_counter(sc->ifp, IFCOUNTER_IQDROPS, reg);
3604 
3605 	/* TX watchdog. */
3606 	if (sc->counter_watchdog_mib > 0) {
3607 		if_inc_counter(sc->ifp, IFCOUNTER_OERRORS, sc->counter_watchdog_mib);
3608 		sc->counter_watchdog_mib = 0;
3609 	}
3610 	/*
3611 	 * TX driver errors:
3612 	 * We do not take queue locks to not disrupt TX path.
3613 	 * We may only miss one drv error which will be fixed at
3614 	 * next mib update. We may also clear counter when TX path
3615 	 * is incrementing it but we only do it if counter was not zero
3616 	 * thus we may only loose one error.
3617 	 */
3618 	for (i = 0; i < MVNETA_TX_QNUM_MAX; i++) {
3619 		tx = MVNETA_TX_RING(sc, i);
3620 
3621 		if (tx->drv_error > 0) {
3622 			if_inc_counter(sc->ifp, IFCOUNTER_OERRORS, tx->drv_error);
3623 			tx->drv_error = 0;
3624 		}
3625 	}
3626 }
3627