xref: /freebsd/sys/dev/netmap/netmap_freebsd.c (revision 38a52bd3)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2013-2014 Universita` di Pisa. All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  *   1. Redistributions of source code must retain the above copyright
10  *      notice, this list of conditions and the following disclaimer.
11  *   2. Redistributions in binary form must reproduce the above copyright
12  *      notice, this list of conditions and the following disclaimer in the
13  *      documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 /* $FreeBSD$ */
29 #include "opt_inet.h"
30 #include "opt_inet6.h"
31 
32 #include <sys/param.h>
33 #include <sys/module.h>
34 #include <sys/errno.h>
35 #include <sys/eventhandler.h>
36 #include <sys/jail.h>
37 #include <sys/poll.h>  /* POLLIN, POLLOUT */
38 #include <sys/kernel.h> /* types used in module initialization */
39 #include <sys/conf.h>	/* DEV_MODULE_ORDERED */
40 #include <sys/endian.h>
41 #include <sys/syscallsubr.h> /* kern_ioctl() */
42 
43 #include <sys/rwlock.h>
44 
45 #include <vm/vm.h>      /* vtophys */
46 #include <vm/pmap.h>    /* vtophys */
47 #include <vm/vm_param.h>
48 #include <vm/vm_object.h>
49 #include <vm/vm_page.h>
50 #include <vm/vm_pager.h>
51 #include <vm/uma.h>
52 
53 
54 #include <sys/malloc.h>
55 #include <sys/socket.h> /* sockaddrs */
56 #include <sys/selinfo.h>
57 #include <sys/kthread.h> /* kthread_add() */
58 #include <sys/proc.h> /* PROC_LOCK() */
59 #include <sys/unistd.h> /* RFNOWAIT */
60 #include <sys/sched.h> /* sched_bind() */
61 #include <sys/smp.h> /* mp_maxid */
62 #include <sys/taskqueue.h> /* taskqueue_enqueue(), taskqueue_create(), ... */
63 #include <net/if.h>
64 #include <net/if_var.h>
65 #include <net/if_types.h> /* IFT_ETHER */
66 #include <net/ethernet.h> /* ether_ifdetach */
67 #include <net/if_dl.h> /* LLADDR */
68 #include <machine/bus.h>        /* bus_dmamap_* */
69 #include <netinet/in.h>		/* in6_cksum_pseudo() */
70 #include <machine/in_cksum.h>  /* in_pseudo(), in_cksum_hdr() */
71 
72 #include <net/netmap.h>
73 #include <dev/netmap/netmap_kern.h>
74 #include <net/netmap_virt.h>
75 #include <dev/netmap/netmap_mem2.h>
76 
77 
78 /* ======================== FREEBSD-SPECIFIC ROUTINES ================== */
79 
80 static void
81 nm_kqueue_notify(void *opaque, int pending)
82 {
83 	struct nm_selinfo *si = opaque;
84 
85 	/* We use a non-zero hint to distinguish this notification call
86 	 * from the call done in kqueue_scan(), which uses hint=0.
87 	 */
88 	KNOTE_UNLOCKED(&si->si.si_note, /*hint=*/0x100);
89 }
90 
91 int nm_os_selinfo_init(NM_SELINFO_T *si, const char *name) {
92 	int err;
93 
94 	TASK_INIT(&si->ntfytask, 0, nm_kqueue_notify, si);
95 	si->ntfytq = taskqueue_create(name, M_NOWAIT,
96 	    taskqueue_thread_enqueue, &si->ntfytq);
97 	if (si->ntfytq == NULL)
98 		return -ENOMEM;
99 	err = taskqueue_start_threads(&si->ntfytq, 1, PI_NET, "tq %s", name);
100 	if (err) {
101 		taskqueue_free(si->ntfytq);
102 		si->ntfytq = NULL;
103 		return err;
104 	}
105 
106 	snprintf(si->mtxname, sizeof(si->mtxname), "nmkl%s", name);
107 	mtx_init(&si->m, si->mtxname, NULL, MTX_DEF);
108 	knlist_init_mtx(&si->si.si_note, &si->m);
109 	si->kqueue_users = 0;
110 
111 	return (0);
112 }
113 
114 void
115 nm_os_selinfo_uninit(NM_SELINFO_T *si)
116 {
117 	if (si->ntfytq == NULL) {
118 		return;	/* si was not initialized */
119 	}
120 	taskqueue_drain(si->ntfytq, &si->ntfytask);
121 	taskqueue_free(si->ntfytq);
122 	si->ntfytq = NULL;
123 	knlist_delete(&si->si.si_note, curthread, /*islocked=*/0);
124 	knlist_destroy(&si->si.si_note);
125 	/* now we don't need the mutex anymore */
126 	mtx_destroy(&si->m);
127 }
128 
129 void *
130 nm_os_malloc(size_t size)
131 {
132 	return malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
133 }
134 
135 void *
136 nm_os_realloc(void *addr, size_t new_size, size_t old_size __unused)
137 {
138 	return realloc(addr, new_size, M_DEVBUF, M_NOWAIT | M_ZERO);
139 }
140 
141 void
142 nm_os_free(void *addr)
143 {
144 	free(addr, M_DEVBUF);
145 }
146 
147 void
148 nm_os_ifnet_lock(void)
149 {
150 	IFNET_RLOCK();
151 }
152 
153 void
154 nm_os_ifnet_unlock(void)
155 {
156 	IFNET_RUNLOCK();
157 }
158 
159 static int netmap_use_count = 0;
160 
161 void
162 nm_os_get_module(void)
163 {
164 	netmap_use_count++;
165 }
166 
167 void
168 nm_os_put_module(void)
169 {
170 	netmap_use_count--;
171 }
172 
173 static void
174 netmap_ifnet_arrival_handler(void *arg __unused, struct ifnet *ifp)
175 {
176 	netmap_undo_zombie(ifp);
177 }
178 
179 static void
180 netmap_ifnet_departure_handler(void *arg __unused, struct ifnet *ifp)
181 {
182 	netmap_make_zombie(ifp);
183 }
184 
185 static eventhandler_tag nm_ifnet_ah_tag;
186 static eventhandler_tag nm_ifnet_dh_tag;
187 
188 int
189 nm_os_ifnet_init(void)
190 {
191 	nm_ifnet_ah_tag =
192 		EVENTHANDLER_REGISTER(ifnet_arrival_event,
193 				netmap_ifnet_arrival_handler,
194 				NULL, EVENTHANDLER_PRI_ANY);
195 	nm_ifnet_dh_tag =
196 		EVENTHANDLER_REGISTER(ifnet_departure_event,
197 				netmap_ifnet_departure_handler,
198 				NULL, EVENTHANDLER_PRI_ANY);
199 	return 0;
200 }
201 
202 void
203 nm_os_ifnet_fini(void)
204 {
205 	EVENTHANDLER_DEREGISTER(ifnet_arrival_event,
206 			nm_ifnet_ah_tag);
207 	EVENTHANDLER_DEREGISTER(ifnet_departure_event,
208 			nm_ifnet_dh_tag);
209 }
210 
211 unsigned
212 nm_os_ifnet_mtu(struct ifnet *ifp)
213 {
214 #if __FreeBSD_version < 1100030
215 	return ifp->if_data.ifi_mtu;
216 #else /* __FreeBSD_version >= 1100030 */
217 	return ifp->if_mtu;
218 #endif
219 }
220 
221 rawsum_t
222 nm_os_csum_raw(uint8_t *data, size_t len, rawsum_t cur_sum)
223 {
224 	/* TODO XXX please use the FreeBSD implementation for this. */
225 	uint16_t *words = (uint16_t *)data;
226 	int nw = len / 2;
227 	int i;
228 
229 	for (i = 0; i < nw; i++)
230 		cur_sum += be16toh(words[i]);
231 
232 	if (len & 1)
233 		cur_sum += (data[len-1] << 8);
234 
235 	return cur_sum;
236 }
237 
238 /* Fold a raw checksum: 'cur_sum' is in host byte order, while the
239  * return value is in network byte order.
240  */
241 uint16_t
242 nm_os_csum_fold(rawsum_t cur_sum)
243 {
244 	/* TODO XXX please use the FreeBSD implementation for this. */
245 	while (cur_sum >> 16)
246 		cur_sum = (cur_sum & 0xFFFF) + (cur_sum >> 16);
247 
248 	return htobe16((~cur_sum) & 0xFFFF);
249 }
250 
251 uint16_t nm_os_csum_ipv4(struct nm_iphdr *iph)
252 {
253 #if 0
254 	return in_cksum_hdr((void *)iph);
255 #else
256 	return nm_os_csum_fold(nm_os_csum_raw((uint8_t*)iph, sizeof(struct nm_iphdr), 0));
257 #endif
258 }
259 
260 void
261 nm_os_csum_tcpudp_ipv4(struct nm_iphdr *iph, void *data,
262 					size_t datalen, uint16_t *check)
263 {
264 #ifdef INET
265 	uint16_t pseudolen = datalen + iph->protocol;
266 
267 	/* Compute and insert the pseudo-header checksum. */
268 	*check = in_pseudo(iph->saddr, iph->daddr,
269 				 htobe16(pseudolen));
270 	/* Compute the checksum on TCP/UDP header + payload
271 	 * (includes the pseudo-header).
272 	 */
273 	*check = nm_os_csum_fold(nm_os_csum_raw(data, datalen, 0));
274 #else
275 	static int notsupported = 0;
276 	if (!notsupported) {
277 		notsupported = 1;
278 		nm_prerr("inet4 segmentation not supported");
279 	}
280 #endif
281 }
282 
283 void
284 nm_os_csum_tcpudp_ipv6(struct nm_ipv6hdr *ip6h, void *data,
285 					size_t datalen, uint16_t *check)
286 {
287 #ifdef INET6
288 	*check = in6_cksum_pseudo((void*)ip6h, datalen, ip6h->nexthdr, 0);
289 	*check = nm_os_csum_fold(nm_os_csum_raw(data, datalen, 0));
290 #else
291 	static int notsupported = 0;
292 	if (!notsupported) {
293 		notsupported = 1;
294 		nm_prerr("inet6 segmentation not supported");
295 	}
296 #endif
297 }
298 
299 /* on FreeBSD we send up one packet at a time */
300 void *
301 nm_os_send_up(struct ifnet *ifp, struct mbuf *m, struct mbuf *prev)
302 {
303 	NA(ifp)->if_input(ifp, m);
304 	return NULL;
305 }
306 
307 int
308 nm_os_mbuf_has_csum_offld(struct mbuf *m)
309 {
310 	return m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_SCTP |
311 					 CSUM_TCP_IPV6 | CSUM_UDP_IPV6 |
312 					 CSUM_SCTP_IPV6);
313 }
314 
315 int
316 nm_os_mbuf_has_seg_offld(struct mbuf *m)
317 {
318 	return m->m_pkthdr.csum_flags & CSUM_TSO;
319 }
320 
321 static void
322 freebsd_generic_rx_handler(struct ifnet *ifp, struct mbuf *m)
323 {
324 	int stolen;
325 
326 	if (unlikely(!NM_NA_VALID(ifp))) {
327 		nm_prlim(1, "Warning: RX packet intercepted, but no"
328 				" emulated adapter");
329 		return;
330 	}
331 
332 	stolen = generic_rx_handler(ifp, m);
333 	if (!stolen) {
334 		struct netmap_generic_adapter *gna =
335 				(struct netmap_generic_adapter *)NA(ifp);
336 		gna->save_if_input(ifp, m);
337 	}
338 }
339 
340 /*
341  * Intercept the rx routine in the standard device driver.
342  * Second argument is non-zero to intercept, 0 to restore
343  */
344 int
345 nm_os_catch_rx(struct netmap_generic_adapter *gna, int intercept)
346 {
347 	struct netmap_adapter *na = &gna->up.up;
348 	struct ifnet *ifp = na->ifp;
349 	int ret = 0;
350 
351 	nm_os_ifnet_lock();
352 	if (intercept) {
353 		if (gna->save_if_input) {
354 			nm_prerr("RX on %s already intercepted", na->name);
355 			ret = EBUSY; /* already set */
356 			goto out;
357 		}
358 		gna->save_if_input = ifp->if_input;
359 		ifp->if_input = freebsd_generic_rx_handler;
360 	} else {
361 		if (!gna->save_if_input) {
362 			nm_prerr("Failed to undo RX intercept on %s",
363 				na->name);
364 			ret = EINVAL;  /* not saved */
365 			goto out;
366 		}
367 		ifp->if_input = gna->save_if_input;
368 		gna->save_if_input = NULL;
369 	}
370 out:
371 	nm_os_ifnet_unlock();
372 
373 	return ret;
374 }
375 
376 
377 /*
378  * Intercept the packet steering routine in the tx path,
379  * so that we can decide which queue is used for an mbuf.
380  * Second argument is non-zero to intercept, 0 to restore.
381  * On freebsd we just intercept if_transmit.
382  */
383 int
384 nm_os_catch_tx(struct netmap_generic_adapter *gna, int intercept)
385 {
386 	struct netmap_adapter *na = &gna->up.up;
387 	struct ifnet *ifp = netmap_generic_getifp(gna);
388 
389 	nm_os_ifnet_lock();
390 	if (intercept) {
391 		na->if_transmit = ifp->if_transmit;
392 		ifp->if_transmit = netmap_transmit;
393 	} else {
394 		ifp->if_transmit = na->if_transmit;
395 	}
396 	nm_os_ifnet_unlock();
397 
398 	return 0;
399 }
400 
401 
402 /*
403  * Transmit routine used by generic_netmap_txsync(). Returns 0 on success
404  * and non-zero on error (which may be packet drops or other errors).
405  * addr and len identify the netmap buffer, m is the (preallocated)
406  * mbuf to use for transmissions.
407  *
408  * We should add a reference to the mbuf so the m_freem() at the end
409  * of the transmission does not consume resources.
410  *
411  * On FreeBSD, and on multiqueue cards, we can force the queue using
412  *      if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
413  *              i = m->m_pkthdr.flowid % adapter->num_queues;
414  *      else
415  *              i = curcpu % adapter->num_queues;
416  *
417  */
418 int
419 nm_os_generic_xmit_frame(struct nm_os_gen_arg *a)
420 {
421 	int ret;
422 	u_int len = a->len;
423 	struct ifnet *ifp = a->ifp;
424 	struct mbuf *m = a->m;
425 
426 #if __FreeBSD_version < 1100000
427 	/*
428 	 * Old FreeBSD versions. The mbuf has a cluster attached,
429 	 * we need to copy from the cluster to the netmap buffer.
430 	 */
431 	if (MBUF_REFCNT(m) != 1) {
432 		nm_prerr("invalid refcnt %d for %p", MBUF_REFCNT(m), m);
433 		panic("in generic_xmit_frame");
434 	}
435 	if (m->m_ext.ext_size < len) {
436 		nm_prlim(2, "size %d < len %d", m->m_ext.ext_size, len);
437 		len = m->m_ext.ext_size;
438 	}
439 	bcopy(a->addr, m->m_data, len);
440 #else  /* __FreeBSD_version >= 1100000 */
441 	/* New FreeBSD versions. Link the external storage to
442 	 * the netmap buffer, so that no copy is necessary. */
443 	m->m_ext.ext_buf = m->m_data = a->addr;
444 	m->m_ext.ext_size = len;
445 #endif /* __FreeBSD_version >= 1100000 */
446 
447 	m->m_flags |= M_PKTHDR;
448 	m->m_len = m->m_pkthdr.len = len;
449 
450 	/* mbuf refcnt is not contended, no need to use atomic
451 	 * (a memory barrier is enough). */
452 	SET_MBUF_REFCNT(m, 2);
453 	M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE);
454 	m->m_pkthdr.flowid = a->ring_nr;
455 	m->m_pkthdr.rcvif = ifp; /* used for tx notification */
456 	CURVNET_SET(ifp->if_vnet);
457 	ret = NA(ifp)->if_transmit(ifp, m);
458 	CURVNET_RESTORE();
459 	return ret ? -1 : 0;
460 }
461 
462 
463 #if __FreeBSD_version >= 1100005
464 struct netmap_adapter *
465 netmap_getna(if_t ifp)
466 {
467 	return (NA((struct ifnet *)ifp));
468 }
469 #endif /* __FreeBSD_version >= 1100005 */
470 
471 /*
472  * The following two functions are empty until we have a generic
473  * way to extract the info from the ifp
474  */
475 int
476 nm_os_generic_find_num_desc(struct ifnet *ifp, unsigned int *tx, unsigned int *rx)
477 {
478 	return 0;
479 }
480 
481 
482 void
483 nm_os_generic_find_num_queues(struct ifnet *ifp, u_int *txq, u_int *rxq)
484 {
485 	unsigned num_rings = netmap_generic_rings ? netmap_generic_rings : 1;
486 
487 	*txq = num_rings;
488 	*rxq = num_rings;
489 }
490 
491 void
492 nm_os_generic_set_features(struct netmap_generic_adapter *gna)
493 {
494 
495 	gna->rxsg = 1; /* Supported through m_copydata. */
496 	gna->txqdisc = 0; /* Not supported. */
497 }
498 
499 void
500 nm_os_mitigation_init(struct nm_generic_mit *mit, int idx, struct netmap_adapter *na)
501 {
502 	mit->mit_pending = 0;
503 	mit->mit_ring_idx = idx;
504 	mit->mit_na = na;
505 }
506 
507 
508 void
509 nm_os_mitigation_start(struct nm_generic_mit *mit)
510 {
511 }
512 
513 
514 void
515 nm_os_mitigation_restart(struct nm_generic_mit *mit)
516 {
517 }
518 
519 
520 int
521 nm_os_mitigation_active(struct nm_generic_mit *mit)
522 {
523 
524 	return 0;
525 }
526 
527 
528 void
529 nm_os_mitigation_cleanup(struct nm_generic_mit *mit)
530 {
531 }
532 
533 static int
534 nm_vi_dummy(struct ifnet *ifp, u_long cmd, caddr_t addr)
535 {
536 
537 	return EINVAL;
538 }
539 
540 static void
541 nm_vi_start(struct ifnet *ifp)
542 {
543 	panic("nm_vi_start() must not be called");
544 }
545 
546 /*
547  * Index manager of persistent virtual interfaces.
548  * It is used to decide the lowest byte of the MAC address.
549  * We use the same algorithm with management of bridge port index.
550  */
551 #define NM_VI_MAX	255
552 static struct {
553 	uint8_t index[NM_VI_MAX]; /* XXX just for a reasonable number */
554 	uint8_t active;
555 	struct mtx lock;
556 } nm_vi_indices;
557 
558 void
559 nm_os_vi_init_index(void)
560 {
561 	int i;
562 	for (i = 0; i < NM_VI_MAX; i++)
563 		nm_vi_indices.index[i] = i;
564 	nm_vi_indices.active = 0;
565 	mtx_init(&nm_vi_indices.lock, "nm_vi_indices_lock", NULL, MTX_DEF);
566 }
567 
568 /* return -1 if no index available */
569 static int
570 nm_vi_get_index(void)
571 {
572 	int ret;
573 
574 	mtx_lock(&nm_vi_indices.lock);
575 	ret = nm_vi_indices.active == NM_VI_MAX ? -1 :
576 		nm_vi_indices.index[nm_vi_indices.active++];
577 	mtx_unlock(&nm_vi_indices.lock);
578 	return ret;
579 }
580 
581 static void
582 nm_vi_free_index(uint8_t val)
583 {
584 	int i, lim;
585 
586 	mtx_lock(&nm_vi_indices.lock);
587 	lim = nm_vi_indices.active;
588 	for (i = 0; i < lim; i++) {
589 		if (nm_vi_indices.index[i] == val) {
590 			/* swap index[lim-1] and j */
591 			int tmp = nm_vi_indices.index[lim-1];
592 			nm_vi_indices.index[lim-1] = val;
593 			nm_vi_indices.index[i] = tmp;
594 			nm_vi_indices.active--;
595 			break;
596 		}
597 	}
598 	if (lim == nm_vi_indices.active)
599 		nm_prerr("Index %u not found", val);
600 	mtx_unlock(&nm_vi_indices.lock);
601 }
602 #undef NM_VI_MAX
603 
604 /*
605  * Implementation of a netmap-capable virtual interface that
606  * registered to the system.
607  * It is based on if_tap.c and ip_fw_log.c in FreeBSD 9.
608  *
609  * Note: Linux sets refcount to 0 on allocation of net_device,
610  * then increments it on registration to the system.
611  * FreeBSD sets refcount to 1 on if_alloc(), and does not
612  * increment this refcount on if_attach().
613  */
614 int
615 nm_os_vi_persist(const char *name, struct ifnet **ret)
616 {
617 	struct ifnet *ifp;
618 	u_short macaddr_hi;
619 	uint32_t macaddr_mid;
620 	u_char eaddr[6];
621 	int unit = nm_vi_get_index(); /* just to decide MAC address */
622 
623 	if (unit < 0)
624 		return EBUSY;
625 	/*
626 	 * We use the same MAC address generation method with tap
627 	 * except for the highest octet is 00:be instead of 00:bd
628 	 */
629 	macaddr_hi = htons(0x00be); /* XXX tap + 1 */
630 	macaddr_mid = (uint32_t) ticks;
631 	bcopy(&macaddr_hi, eaddr, sizeof(short));
632 	bcopy(&macaddr_mid, &eaddr[2], sizeof(uint32_t));
633 	eaddr[5] = (uint8_t)unit;
634 
635 	ifp = if_alloc(IFT_ETHER);
636 	if (ifp == NULL) {
637 		nm_prerr("if_alloc failed");
638 		return ENOMEM;
639 	}
640 	if_initname(ifp, name, IF_DUNIT_NONE);
641 	ifp->if_mtu = 65536;
642 	ifp->if_flags = IFF_UP | IFF_SIMPLEX | IFF_MULTICAST;
643 	ifp->if_init = (void *)nm_vi_dummy;
644 	ifp->if_ioctl = nm_vi_dummy;
645 	ifp->if_start = nm_vi_start;
646 	ifp->if_mtu = ETHERMTU;
647 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
648 	ifp->if_capabilities |= IFCAP_LINKSTATE;
649 	ifp->if_capenable |= IFCAP_LINKSTATE;
650 
651 	ether_ifattach(ifp, eaddr);
652 	*ret = ifp;
653 	return 0;
654 }
655 
656 /* unregister from the system and drop the final refcount */
657 void
658 nm_os_vi_detach(struct ifnet *ifp)
659 {
660 	nm_vi_free_index(((char *)IF_LLADDR(ifp))[5]);
661 	ether_ifdetach(ifp);
662 	if_free(ifp);
663 }
664 
665 #ifdef WITH_EXTMEM
666 #include <vm/vm_map.h>
667 #include <vm/vm_extern.h>
668 #include <vm/vm_kern.h>
669 struct nm_os_extmem {
670 	vm_object_t obj;
671 	vm_offset_t kva;
672 	vm_offset_t size;
673 	uintptr_t scan;
674 };
675 
676 void
677 nm_os_extmem_delete(struct nm_os_extmem *e)
678 {
679 	nm_prinf("freeing %zx bytes", (size_t)e->size);
680 	vm_map_remove(kernel_map, e->kva, e->kva + e->size);
681 	nm_os_free(e);
682 }
683 
684 char *
685 nm_os_extmem_nextpage(struct nm_os_extmem *e)
686 {
687 	char *rv = NULL;
688 	if (e->scan < e->kva + e->size) {
689 		rv = (char *)e->scan;
690 		e->scan += PAGE_SIZE;
691 	}
692 	return rv;
693 }
694 
695 int
696 nm_os_extmem_isequal(struct nm_os_extmem *e1, struct nm_os_extmem *e2)
697 {
698 	return (e1->obj == e2->obj);
699 }
700 
701 int
702 nm_os_extmem_nr_pages(struct nm_os_extmem *e)
703 {
704 	return e->size >> PAGE_SHIFT;
705 }
706 
707 struct nm_os_extmem *
708 nm_os_extmem_create(unsigned long p, struct nmreq_pools_info *pi, int *perror)
709 {
710 	vm_map_t map;
711 	vm_map_entry_t entry;
712 	vm_object_t obj;
713 	vm_prot_t prot;
714 	vm_pindex_t index;
715 	boolean_t wired;
716 	struct nm_os_extmem *e = NULL;
717 	int rv, error = 0;
718 
719 	e = nm_os_malloc(sizeof(*e));
720 	if (e == NULL) {
721 		error = ENOMEM;
722 		goto out;
723 	}
724 
725 	map = &curthread->td_proc->p_vmspace->vm_map;
726 	rv = vm_map_lookup(&map, p, VM_PROT_RW, &entry,
727 			&obj, &index, &prot, &wired);
728 	if (rv != KERN_SUCCESS) {
729 		nm_prerr("address %lx not found", p);
730 		error = vm_mmap_to_errno(rv);
731 		goto out_free;
732 	}
733 	vm_object_reference(obj);
734 
735 	/* check that we are given the whole vm_object ? */
736 	vm_map_lookup_done(map, entry);
737 
738 	e->obj = obj;
739 	/* Wire the memory and add the vm_object to the kernel map,
740 	 * to make sure that it is not freed even if all the processes
741 	 * that are mmap()ing should munmap() it.
742 	 */
743 	e->kva = vm_map_min(kernel_map);
744 	e->size = obj->size << PAGE_SHIFT;
745 	rv = vm_map_find(kernel_map, obj, 0, &e->kva, e->size, 0,
746 			VMFS_OPTIMAL_SPACE, VM_PROT_READ | VM_PROT_WRITE,
747 			VM_PROT_READ | VM_PROT_WRITE, 0);
748 	if (rv != KERN_SUCCESS) {
749 		nm_prerr("vm_map_find(%zx) failed", (size_t)e->size);
750 		error = vm_mmap_to_errno(rv);
751 		goto out_rel;
752 	}
753 	rv = vm_map_wire(kernel_map, e->kva, e->kva + e->size,
754 			VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
755 	if (rv != KERN_SUCCESS) {
756 		nm_prerr("vm_map_wire failed");
757 		error = vm_mmap_to_errno(rv);
758 		goto out_rem;
759 	}
760 
761 	e->scan = e->kva;
762 
763 	return e;
764 
765 out_rem:
766 	vm_map_remove(kernel_map, e->kva, e->kva + e->size);
767 out_rel:
768 	vm_object_deallocate(e->obj);
769 	e->obj = NULL;
770 out_free:
771 	nm_os_free(e);
772 out:
773 	if (perror)
774 		*perror = error;
775 	return NULL;
776 }
777 #endif /* WITH_EXTMEM */
778 
779 /* ================== PTNETMAP GUEST SUPPORT ==================== */
780 
781 #ifdef WITH_PTNETMAP
782 #include <sys/bus.h>
783 #include <sys/rman.h>
784 #include <machine/bus.h>        /* bus_dmamap_* */
785 #include <machine/resource.h>
786 #include <dev/pci/pcivar.h>
787 #include <dev/pci/pcireg.h>
788 /*
789  * ptnetmap memory device (memdev) for freebsd guest,
790  * ssed to expose host netmap memory to the guest through a PCI BAR.
791  */
792 
793 /*
794  * ptnetmap memdev private data structure
795  */
796 struct ptnetmap_memdev {
797 	device_t dev;
798 	struct resource *pci_io;
799 	struct resource *pci_mem;
800 	struct netmap_mem_d *nm_mem;
801 };
802 
803 static int	ptn_memdev_probe(device_t);
804 static int	ptn_memdev_attach(device_t);
805 static int	ptn_memdev_detach(device_t);
806 static int	ptn_memdev_shutdown(device_t);
807 
808 static device_method_t ptn_memdev_methods[] = {
809 	DEVMETHOD(device_probe, ptn_memdev_probe),
810 	DEVMETHOD(device_attach, ptn_memdev_attach),
811 	DEVMETHOD(device_detach, ptn_memdev_detach),
812 	DEVMETHOD(device_shutdown, ptn_memdev_shutdown),
813 	DEVMETHOD_END
814 };
815 
816 static driver_t ptn_memdev_driver = {
817 	PTNETMAP_MEMDEV_NAME,
818 	ptn_memdev_methods,
819 	sizeof(struct ptnetmap_memdev),
820 };
821 
822 /* We use (SI_ORDER_MIDDLE+1) here, see DEV_MODULE_ORDERED() invocation
823  * below. */
824 DRIVER_MODULE_ORDERED(ptn_memdev, pci, ptn_memdev_driver, NULL, NULL,
825 		      SI_ORDER_MIDDLE + 1);
826 
827 /*
828  * Map host netmap memory through PCI-BAR in the guest OS,
829  * returning physical (nm_paddr) and virtual (nm_addr) addresses
830  * of the netmap memory mapped in the guest.
831  */
832 int
833 nm_os_pt_memdev_iomap(struct ptnetmap_memdev *ptn_dev, vm_paddr_t *nm_paddr,
834 		      void **nm_addr, uint64_t *mem_size)
835 {
836 	int rid;
837 
838 	nm_prinf("ptn_memdev_driver iomap");
839 
840 	rid = PCIR_BAR(PTNETMAP_MEM_PCI_BAR);
841 	*mem_size = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMSIZE_HI);
842 	*mem_size = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMSIZE_LO) |
843 			(*mem_size << 32);
844 
845 	/* map memory allocator */
846 	ptn_dev->pci_mem = bus_alloc_resource(ptn_dev->dev, SYS_RES_MEMORY,
847 			&rid, 0, ~0, *mem_size, RF_ACTIVE);
848 	if (ptn_dev->pci_mem == NULL) {
849 		*nm_paddr = 0;
850 		*nm_addr = NULL;
851 		return ENOMEM;
852 	}
853 
854 	*nm_paddr = rman_get_start(ptn_dev->pci_mem);
855 	*nm_addr = rman_get_virtual(ptn_dev->pci_mem);
856 
857 	nm_prinf("=== BAR %d start %lx len %lx mem_size %lx ===",
858 			PTNETMAP_MEM_PCI_BAR,
859 			(unsigned long)(*nm_paddr),
860 			(unsigned long)rman_get_size(ptn_dev->pci_mem),
861 			(unsigned long)*mem_size);
862 	return (0);
863 }
864 
865 uint32_t
866 nm_os_pt_memdev_ioread(struct ptnetmap_memdev *ptn_dev, unsigned int reg)
867 {
868 	return bus_read_4(ptn_dev->pci_io, reg);
869 }
870 
871 /* Unmap host netmap memory. */
872 void
873 nm_os_pt_memdev_iounmap(struct ptnetmap_memdev *ptn_dev)
874 {
875 	nm_prinf("ptn_memdev_driver iounmap");
876 
877 	if (ptn_dev->pci_mem) {
878 		bus_release_resource(ptn_dev->dev, SYS_RES_MEMORY,
879 			PCIR_BAR(PTNETMAP_MEM_PCI_BAR), ptn_dev->pci_mem);
880 		ptn_dev->pci_mem = NULL;
881 	}
882 }
883 
884 /* Device identification routine, return BUS_PROBE_DEFAULT on success,
885  * positive on failure */
886 static int
887 ptn_memdev_probe(device_t dev)
888 {
889 	char desc[256];
890 
891 	if (pci_get_vendor(dev) != PTNETMAP_PCI_VENDOR_ID)
892 		return (ENXIO);
893 	if (pci_get_device(dev) != PTNETMAP_PCI_DEVICE_ID)
894 		return (ENXIO);
895 
896 	snprintf(desc, sizeof(desc), "%s PCI adapter",
897 			PTNETMAP_MEMDEV_NAME);
898 	device_set_desc_copy(dev, desc);
899 
900 	return (BUS_PROBE_DEFAULT);
901 }
902 
903 /* Device initialization routine. */
904 static int
905 ptn_memdev_attach(device_t dev)
906 {
907 	struct ptnetmap_memdev *ptn_dev;
908 	int rid;
909 	uint16_t mem_id;
910 
911 	ptn_dev = device_get_softc(dev);
912 	ptn_dev->dev = dev;
913 
914 	pci_enable_busmaster(dev);
915 
916 	rid = PCIR_BAR(PTNETMAP_IO_PCI_BAR);
917 	ptn_dev->pci_io = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
918 						 RF_ACTIVE);
919 	if (ptn_dev->pci_io == NULL) {
920 	        device_printf(dev, "cannot map I/O space\n");
921 	        return (ENXIO);
922 	}
923 
924 	mem_id = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMID);
925 
926 	/* create guest allocator */
927 	ptn_dev->nm_mem = netmap_mem_pt_guest_attach(ptn_dev, mem_id);
928 	if (ptn_dev->nm_mem == NULL) {
929 		ptn_memdev_detach(dev);
930 	        return (ENOMEM);
931 	}
932 	netmap_mem_get(ptn_dev->nm_mem);
933 
934 	nm_prinf("ptnetmap memdev attached, host memid: %u", mem_id);
935 
936 	return (0);
937 }
938 
939 /* Device removal routine. */
940 static int
941 ptn_memdev_detach(device_t dev)
942 {
943 	struct ptnetmap_memdev *ptn_dev;
944 
945 	ptn_dev = device_get_softc(dev);
946 
947 	if (ptn_dev->nm_mem) {
948 		nm_prinf("ptnetmap memdev detached, host memid %u",
949 			netmap_mem_get_id(ptn_dev->nm_mem));
950 		netmap_mem_put(ptn_dev->nm_mem);
951 		ptn_dev->nm_mem = NULL;
952 	}
953 	if (ptn_dev->pci_mem) {
954 		bus_release_resource(dev, SYS_RES_MEMORY,
955 			PCIR_BAR(PTNETMAP_MEM_PCI_BAR), ptn_dev->pci_mem);
956 		ptn_dev->pci_mem = NULL;
957 	}
958 	if (ptn_dev->pci_io) {
959 		bus_release_resource(dev, SYS_RES_IOPORT,
960 			PCIR_BAR(PTNETMAP_IO_PCI_BAR), ptn_dev->pci_io);
961 		ptn_dev->pci_io = NULL;
962 	}
963 
964 	return (0);
965 }
966 
967 static int
968 ptn_memdev_shutdown(device_t dev)
969 {
970 	return bus_generic_shutdown(dev);
971 }
972 
973 #endif /* WITH_PTNETMAP */
974 
975 /*
976  * In order to track whether pages are still mapped, we hook into
977  * the standard cdev_pager and intercept the constructor and
978  * destructor.
979  */
980 
981 struct netmap_vm_handle_t {
982 	struct cdev 		*dev;
983 	struct netmap_priv_d	*priv;
984 };
985 
986 
987 static int
988 netmap_dev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot,
989 		vm_ooffset_t foff, struct ucred *cred, u_short *color)
990 {
991 	struct netmap_vm_handle_t *vmh = handle;
992 
993 	if (netmap_verbose)
994 		nm_prinf("handle %p size %jd prot %d foff %jd",
995 			handle, (intmax_t)size, prot, (intmax_t)foff);
996 	if (color)
997 		*color = 0;
998 	dev_ref(vmh->dev);
999 	return 0;
1000 }
1001 
1002 
1003 static void
1004 netmap_dev_pager_dtor(void *handle)
1005 {
1006 	struct netmap_vm_handle_t *vmh = handle;
1007 	struct cdev *dev = vmh->dev;
1008 	struct netmap_priv_d *priv = vmh->priv;
1009 
1010 	if (netmap_verbose)
1011 		nm_prinf("handle %p", handle);
1012 	netmap_dtor(priv);
1013 	free(vmh, M_DEVBUF);
1014 	dev_rel(dev);
1015 }
1016 
1017 
1018 static int
1019 netmap_dev_pager_fault(vm_object_t object, vm_ooffset_t offset,
1020 	int prot, vm_page_t *mres)
1021 {
1022 	struct netmap_vm_handle_t *vmh = object->handle;
1023 	struct netmap_priv_d *priv = vmh->priv;
1024 	struct netmap_adapter *na = priv->np_na;
1025 	vm_paddr_t paddr;
1026 	vm_page_t page;
1027 	vm_memattr_t memattr;
1028 
1029 	nm_prdis("object %p offset %jd prot %d mres %p",
1030 			object, (intmax_t)offset, prot, mres);
1031 	memattr = object->memattr;
1032 	paddr = netmap_mem_ofstophys(na->nm_mem, offset);
1033 	if (paddr == 0)
1034 		return VM_PAGER_FAIL;
1035 
1036 	if (((*mres)->flags & PG_FICTITIOUS) != 0) {
1037 		/*
1038 		 * If the passed in result page is a fake page, update it with
1039 		 * the new physical address.
1040 		 */
1041 		page = *mres;
1042 		vm_page_updatefake(page, paddr, memattr);
1043 	} else {
1044 		/*
1045 		 * Replace the passed in reqpage page with our own fake page and
1046 		 * free up the all of the original pages.
1047 		 */
1048 #ifndef VM_OBJECT_WUNLOCK	/* FreeBSD < 10.x */
1049 #define VM_OBJECT_WUNLOCK VM_OBJECT_UNLOCK
1050 #define VM_OBJECT_WLOCK	VM_OBJECT_LOCK
1051 #endif /* VM_OBJECT_WUNLOCK */
1052 
1053 		VM_OBJECT_WUNLOCK(object);
1054 		page = vm_page_getfake(paddr, memattr);
1055 		VM_OBJECT_WLOCK(object);
1056 		vm_page_replace(page, object, (*mres)->pindex, *mres);
1057 		*mres = page;
1058 	}
1059 	page->valid = VM_PAGE_BITS_ALL;
1060 	return (VM_PAGER_OK);
1061 }
1062 
1063 
1064 static struct cdev_pager_ops netmap_cdev_pager_ops = {
1065 	.cdev_pg_ctor = netmap_dev_pager_ctor,
1066 	.cdev_pg_dtor = netmap_dev_pager_dtor,
1067 	.cdev_pg_fault = netmap_dev_pager_fault,
1068 };
1069 
1070 
1071 static int
1072 netmap_mmap_single(struct cdev *cdev, vm_ooffset_t *foff,
1073 	vm_size_t objsize,  vm_object_t *objp, int prot)
1074 {
1075 	int error;
1076 	struct netmap_vm_handle_t *vmh;
1077 	struct netmap_priv_d *priv;
1078 	vm_object_t obj;
1079 
1080 	if (netmap_verbose)
1081 		nm_prinf("cdev %p foff %jd size %jd objp %p prot %d", cdev,
1082 		    (intmax_t )*foff, (intmax_t )objsize, objp, prot);
1083 
1084 	vmh = malloc(sizeof(struct netmap_vm_handle_t), M_DEVBUF,
1085 			      M_NOWAIT | M_ZERO);
1086 	if (vmh == NULL)
1087 		return ENOMEM;
1088 	vmh->dev = cdev;
1089 
1090 	NMG_LOCK();
1091 	error = devfs_get_cdevpriv((void**)&priv);
1092 	if (error)
1093 		goto err_unlock;
1094 	if (priv->np_nifp == NULL) {
1095 		error = EINVAL;
1096 		goto err_unlock;
1097 	}
1098 	vmh->priv = priv;
1099 	priv->np_refs++;
1100 	NMG_UNLOCK();
1101 
1102 	obj = cdev_pager_allocate(vmh, OBJT_DEVICE,
1103 		&netmap_cdev_pager_ops, objsize, prot,
1104 		*foff, NULL);
1105 	if (obj == NULL) {
1106 		nm_prerr("cdev_pager_allocate failed");
1107 		error = EINVAL;
1108 		goto err_deref;
1109 	}
1110 
1111 	*objp = obj;
1112 	return 0;
1113 
1114 err_deref:
1115 	NMG_LOCK();
1116 	priv->np_refs--;
1117 err_unlock:
1118 	NMG_UNLOCK();
1119 // err:
1120 	free(vmh, M_DEVBUF);
1121 	return error;
1122 }
1123 
1124 /*
1125  * On FreeBSD the close routine is only called on the last close on
1126  * the device (/dev/netmap) so we cannot do anything useful.
1127  * To track close() on individual file descriptors we pass netmap_dtor() to
1128  * devfs_set_cdevpriv() on open(). The FreeBSD kernel will call the destructor
1129  * when the last fd pointing to the device is closed.
1130  *
1131  * Note that FreeBSD does not even munmap() on close() so we also have
1132  * to track mmap() ourselves, and postpone the call to
1133  * netmap_dtor() is called when the process has no open fds and no active
1134  * memory maps on /dev/netmap, as in linux.
1135  */
1136 static int
1137 netmap_close(struct cdev *dev, int fflag, int devtype, struct thread *td)
1138 {
1139 	if (netmap_verbose)
1140 		nm_prinf("dev %p fflag 0x%x devtype %d td %p",
1141 			dev, fflag, devtype, td);
1142 	return 0;
1143 }
1144 
1145 
1146 static int
1147 netmap_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
1148 {
1149 	struct netmap_priv_d *priv;
1150 	int error;
1151 
1152 	(void)dev;
1153 	(void)oflags;
1154 	(void)devtype;
1155 	(void)td;
1156 
1157 	NMG_LOCK();
1158 	priv = netmap_priv_new();
1159 	if (priv == NULL) {
1160 		error = ENOMEM;
1161 		goto out;
1162 	}
1163 	error = devfs_set_cdevpriv(priv, netmap_dtor);
1164 	if (error) {
1165 		netmap_priv_delete(priv);
1166 	}
1167 out:
1168 	NMG_UNLOCK();
1169 	return error;
1170 }
1171 
1172 /******************** kthread wrapper ****************/
1173 #include <sys/sysproto.h>
1174 u_int
1175 nm_os_ncpus(void)
1176 {
1177 	return mp_maxid + 1;
1178 }
1179 
1180 struct nm_kctx_ctx {
1181 	/* Userspace thread (kthread creator). */
1182 	struct thread *user_td;
1183 
1184 	/* worker function and parameter */
1185 	nm_kctx_worker_fn_t worker_fn;
1186 	void *worker_private;
1187 
1188 	struct nm_kctx *nmk;
1189 
1190 	/* integer to manage multiple worker contexts (e.g., RX or TX on ptnetmap) */
1191 	long type;
1192 };
1193 
1194 struct nm_kctx {
1195 	struct thread *worker;
1196 	struct mtx worker_lock;
1197 	struct nm_kctx_ctx worker_ctx;
1198 	int run;			/* used to stop kthread */
1199 	int attach_user;		/* kthread attached to user_process */
1200 	int affinity;
1201 };
1202 
1203 static void
1204 nm_kctx_worker(void *data)
1205 {
1206 	struct nm_kctx *nmk = data;
1207 	struct nm_kctx_ctx *ctx = &nmk->worker_ctx;
1208 
1209 	if (nmk->affinity >= 0) {
1210 		thread_lock(curthread);
1211 		sched_bind(curthread, nmk->affinity);
1212 		thread_unlock(curthread);
1213 	}
1214 
1215 	while (nmk->run) {
1216 		/*
1217 		 * check if the parent process dies
1218 		 * (when kthread is attached to user process)
1219 		 */
1220 		if (ctx->user_td) {
1221 			PROC_LOCK(curproc);
1222 			thread_suspend_check(0);
1223 			PROC_UNLOCK(curproc);
1224 		} else {
1225 			kthread_suspend_check();
1226 		}
1227 
1228 		/* Continuously execute worker process. */
1229 		ctx->worker_fn(ctx->worker_private); /* worker body */
1230 	}
1231 
1232 	kthread_exit();
1233 }
1234 
1235 void
1236 nm_os_kctx_worker_setaff(struct nm_kctx *nmk, int affinity)
1237 {
1238 	nmk->affinity = affinity;
1239 }
1240 
1241 struct nm_kctx *
1242 nm_os_kctx_create(struct nm_kctx_cfg *cfg, void *opaque)
1243 {
1244 	struct nm_kctx *nmk = NULL;
1245 
1246 	nmk = malloc(sizeof(*nmk),  M_DEVBUF, M_NOWAIT | M_ZERO);
1247 	if (!nmk)
1248 		return NULL;
1249 
1250 	mtx_init(&nmk->worker_lock, "nm_kthread lock", NULL, MTX_DEF);
1251 	nmk->worker_ctx.worker_fn = cfg->worker_fn;
1252 	nmk->worker_ctx.worker_private = cfg->worker_private;
1253 	nmk->worker_ctx.type = cfg->type;
1254 	nmk->affinity = -1;
1255 
1256 	/* attach kthread to user process (ptnetmap) */
1257 	nmk->attach_user = cfg->attach_user;
1258 
1259 	return nmk;
1260 }
1261 
1262 int
1263 nm_os_kctx_worker_start(struct nm_kctx *nmk)
1264 {
1265 	struct proc *p = NULL;
1266 	int error = 0;
1267 
1268 	/* Temporarily disable this function as it is currently broken
1269 	 * and causes kernel crashes. The failure can be triggered by
1270 	 * the "vale_polling_enable_disable" test in ctrl-api-test.c. */
1271 	return EOPNOTSUPP;
1272 
1273 	if (nmk->worker)
1274 		return EBUSY;
1275 
1276 	/* check if we want to attach kthread to user process */
1277 	if (nmk->attach_user) {
1278 		nmk->worker_ctx.user_td = curthread;
1279 		p = curthread->td_proc;
1280 	}
1281 
1282 	/* enable kthread main loop */
1283 	nmk->run = 1;
1284 	/* create kthread */
1285 	if((error = kthread_add(nm_kctx_worker, nmk, p,
1286 			&nmk->worker, RFNOWAIT /* to be checked */, 0, "nm-kthread-%ld",
1287 			nmk->worker_ctx.type))) {
1288 		goto err;
1289 	}
1290 
1291 	nm_prinf("nm_kthread started td %p", nmk->worker);
1292 
1293 	return 0;
1294 err:
1295 	nm_prerr("nm_kthread start failed err %d", error);
1296 	nmk->worker = NULL;
1297 	return error;
1298 }
1299 
1300 void
1301 nm_os_kctx_worker_stop(struct nm_kctx *nmk)
1302 {
1303 	if (!nmk->worker)
1304 		return;
1305 
1306 	/* tell to kthread to exit from main loop */
1307 	nmk->run = 0;
1308 
1309 	/* wake up kthread if it sleeps */
1310 	kthread_resume(nmk->worker);
1311 
1312 	nmk->worker = NULL;
1313 }
1314 
1315 void
1316 nm_os_kctx_destroy(struct nm_kctx *nmk)
1317 {
1318 	if (!nmk)
1319 		return;
1320 
1321 	if (nmk->worker)
1322 		nm_os_kctx_worker_stop(nmk);
1323 
1324 	free(nmk, M_DEVBUF);
1325 }
1326 
1327 /******************** kqueue support ****************/
1328 
1329 /*
1330  * In addition to calling selwakeuppri(), nm_os_selwakeup() also
1331  * needs to call knote() to wake up kqueue listeners.
1332  * This operation is deferred to a taskqueue in order to avoid possible
1333  * lock order reversals; these may happen because knote() grabs a
1334  * private lock associated to the 'si' (see struct selinfo,
1335  * struct nm_selinfo, and nm_os_selinfo_init), and nm_os_selwakeup()
1336  * can be called while holding the lock associated to a different
1337  * 'si'.
1338  * When calling knote() we use a non-zero 'hint' argument to inform
1339  * the netmap_knrw() function that it is being called from
1340  * 'nm_os_selwakeup'; this is necessary because when netmap_knrw() is
1341  * called by the kevent subsystem (i.e. kevent_scan()) we also need to
1342  * call netmap_poll().
1343  *
1344  * The netmap_kqfilter() function registers one or another f_event
1345  * depending on read or write mode. A pointer to the struct
1346  * 'netmap_priv_d' is stored into kn->kn_hook, so that it can later
1347  * be passed to netmap_poll(). We pass NULL as a third argument to
1348  * netmap_poll(), so that the latter only runs the txsync/rxsync
1349  * (if necessary), and skips the nm_os_selrecord() calls.
1350  */
1351 
1352 
1353 void
1354 nm_os_selwakeup(struct nm_selinfo *si)
1355 {
1356 	selwakeuppri(&si->si, PI_NET);
1357 	if (si->kqueue_users > 0) {
1358 		taskqueue_enqueue(si->ntfytq, &si->ntfytask);
1359 	}
1360 }
1361 
1362 void
1363 nm_os_selrecord(struct thread *td, struct nm_selinfo *si)
1364 {
1365 	selrecord(td, &si->si);
1366 }
1367 
1368 static void
1369 netmap_knrdetach(struct knote *kn)
1370 {
1371 	struct netmap_priv_d *priv = (struct netmap_priv_d *)kn->kn_hook;
1372 	struct nm_selinfo *si = priv->np_si[NR_RX];
1373 
1374 	knlist_remove(&si->si.si_note, kn, /*islocked=*/0);
1375 	NMG_LOCK();
1376 	KASSERT(si->kqueue_users > 0, ("kqueue_user underflow on %s",
1377 	    si->mtxname));
1378 	si->kqueue_users--;
1379 	nm_prinf("kqueue users for %s: %d", si->mtxname, si->kqueue_users);
1380 	NMG_UNLOCK();
1381 }
1382 
1383 static void
1384 netmap_knwdetach(struct knote *kn)
1385 {
1386 	struct netmap_priv_d *priv = (struct netmap_priv_d *)kn->kn_hook;
1387 	struct nm_selinfo *si = priv->np_si[NR_TX];
1388 
1389 	knlist_remove(&si->si.si_note, kn, /*islocked=*/0);
1390 	NMG_LOCK();
1391 	si->kqueue_users--;
1392 	nm_prinf("kqueue users for %s: %d", si->mtxname, si->kqueue_users);
1393 	NMG_UNLOCK();
1394 }
1395 
1396 /*
1397  * Callback triggered by netmap notifications (see netmap_notify()),
1398  * and by the application calling kevent(). In the former case we
1399  * just return 1 (events ready), since we are not able to do better.
1400  * In the latter case we use netmap_poll() to see which events are
1401  * ready.
1402  */
1403 static int
1404 netmap_knrw(struct knote *kn, long hint, int events)
1405 {
1406 	struct netmap_priv_d *priv;
1407 	int revents;
1408 
1409 	if (hint != 0) {
1410 		/* Called from netmap_notify(), typically from a
1411 		 * thread different from the one issuing kevent().
1412 		 * Assume we are ready. */
1413 		return 1;
1414 	}
1415 
1416 	/* Called from kevent(). */
1417 	priv = kn->kn_hook;
1418 	revents = netmap_poll(priv, events, /*thread=*/NULL);
1419 
1420 	return (events & revents) ? 1 : 0;
1421 }
1422 
1423 static int
1424 netmap_knread(struct knote *kn, long hint)
1425 {
1426 	return netmap_knrw(kn, hint, POLLIN);
1427 }
1428 
1429 static int
1430 netmap_knwrite(struct knote *kn, long hint)
1431 {
1432 	return netmap_knrw(kn, hint, POLLOUT);
1433 }
1434 
1435 static struct filterops netmap_rfiltops = {
1436 	.f_isfd = 1,
1437 	.f_detach = netmap_knrdetach,
1438 	.f_event = netmap_knread,
1439 };
1440 
1441 static struct filterops netmap_wfiltops = {
1442 	.f_isfd = 1,
1443 	.f_detach = netmap_knwdetach,
1444 	.f_event = netmap_knwrite,
1445 };
1446 
1447 
1448 /*
1449  * This is called when a thread invokes kevent() to record
1450  * a change in the configuration of the kqueue().
1451  * The 'priv' is the one associated to the open netmap device.
1452  */
1453 static int
1454 netmap_kqfilter(struct cdev *dev, struct knote *kn)
1455 {
1456 	struct netmap_priv_d *priv;
1457 	int error;
1458 	struct netmap_adapter *na;
1459 	struct nm_selinfo *si;
1460 	int ev = kn->kn_filter;
1461 
1462 	if (ev != EVFILT_READ && ev != EVFILT_WRITE) {
1463 		nm_prerr("bad filter request %d", ev);
1464 		return 1;
1465 	}
1466 	error = devfs_get_cdevpriv((void**)&priv);
1467 	if (error) {
1468 		nm_prerr("device not yet setup");
1469 		return 1;
1470 	}
1471 	na = priv->np_na;
1472 	if (na == NULL) {
1473 		nm_prerr("no netmap adapter for this file descriptor");
1474 		return 1;
1475 	}
1476 	/* the si is indicated in the priv */
1477 	si = priv->np_si[(ev == EVFILT_WRITE) ? NR_TX : NR_RX];
1478 	kn->kn_fop = (ev == EVFILT_WRITE) ?
1479 		&netmap_wfiltops : &netmap_rfiltops;
1480 	kn->kn_hook = priv;
1481 	NMG_LOCK();
1482 	si->kqueue_users++;
1483 	nm_prinf("kqueue users for %s: %d", si->mtxname, si->kqueue_users);
1484 	NMG_UNLOCK();
1485 	knlist_add(&si->si.si_note, kn, /*islocked=*/0);
1486 
1487 	return 0;
1488 }
1489 
1490 static int
1491 freebsd_netmap_poll(struct cdev *cdevi __unused, int events, struct thread *td)
1492 {
1493 	struct netmap_priv_d *priv;
1494 	if (devfs_get_cdevpriv((void **)&priv)) {
1495 		return POLLERR;
1496 	}
1497 	return netmap_poll(priv, events, td);
1498 }
1499 
1500 static int
1501 freebsd_netmap_ioctl(struct cdev *dev __unused, u_long cmd, caddr_t data,
1502 		int ffla __unused, struct thread *td)
1503 {
1504 	int error;
1505 	struct netmap_priv_d *priv;
1506 
1507 	CURVNET_SET(TD_TO_VNET(td));
1508 	error = devfs_get_cdevpriv((void **)&priv);
1509 	if (error) {
1510 		/* XXX ENOENT should be impossible, since the priv
1511 		 * is now created in the open */
1512 		if (error == ENOENT)
1513 			error = ENXIO;
1514 		goto out;
1515 	}
1516 	error = netmap_ioctl(priv, cmd, data, td, /*nr_body_is_user=*/1);
1517 out:
1518 	CURVNET_RESTORE();
1519 
1520 	return error;
1521 }
1522 
1523 void
1524 nm_os_onattach(struct ifnet *ifp)
1525 {
1526 	ifp->if_capabilities |= IFCAP_NETMAP;
1527 }
1528 
1529 void
1530 nm_os_onenter(struct ifnet *ifp)
1531 {
1532 	struct netmap_adapter *na = NA(ifp);
1533 
1534 	na->if_transmit = ifp->if_transmit;
1535 	ifp->if_transmit = netmap_transmit;
1536 	ifp->if_capenable |= IFCAP_NETMAP;
1537 }
1538 
1539 void
1540 nm_os_onexit(struct ifnet *ifp)
1541 {
1542 	struct netmap_adapter *na = NA(ifp);
1543 
1544 	ifp->if_transmit = na->if_transmit;
1545 	ifp->if_capenable &= ~IFCAP_NETMAP;
1546 }
1547 
1548 extern struct cdevsw netmap_cdevsw; /* XXX used in netmap.c, should go elsewhere */
1549 struct cdevsw netmap_cdevsw = {
1550 	.d_version = D_VERSION,
1551 	.d_name = "netmap",
1552 	.d_open = netmap_open,
1553 	.d_mmap_single = netmap_mmap_single,
1554 	.d_ioctl = freebsd_netmap_ioctl,
1555 	.d_poll = freebsd_netmap_poll,
1556 	.d_kqfilter = netmap_kqfilter,
1557 	.d_close = netmap_close,
1558 };
1559 /*--- end of kqueue support ----*/
1560 
1561 /*
1562  * Kernel entry point.
1563  *
1564  * Initialize/finalize the module and return.
1565  *
1566  * Return 0 on success, errno on failure.
1567  */
1568 static int
1569 netmap_loader(__unused struct module *module, int event, __unused void *arg)
1570 {
1571 	int error = 0;
1572 
1573 	switch (event) {
1574 	case MOD_LOAD:
1575 		error = netmap_init();
1576 		break;
1577 
1578 	case MOD_UNLOAD:
1579 		/*
1580 		 * if some one is still using netmap,
1581 		 * then the module can not be unloaded.
1582 		 */
1583 		if (netmap_use_count) {
1584 			nm_prerr("netmap module can not be unloaded - netmap_use_count: %d",
1585 					netmap_use_count);
1586 			error = EBUSY;
1587 			break;
1588 		}
1589 		netmap_fini();
1590 		break;
1591 
1592 	default:
1593 		error = EOPNOTSUPP;
1594 		break;
1595 	}
1596 
1597 	return (error);
1598 }
1599 
1600 #ifdef DEV_MODULE_ORDERED
1601 /*
1602  * The netmap module contains three drivers: (i) the netmap character device
1603  * driver; (ii) the ptnetmap memdev PCI device driver, (iii) the ptnet PCI
1604  * device driver. The attach() routines of both (ii) and (iii) need the
1605  * lock of the global allocator, and such lock is initialized in netmap_init(),
1606  * which is part of (i).
1607  * Therefore, we make sure that (i) is loaded before (ii) and (iii), using
1608  * the 'order' parameter of driver declaration macros. For (i), we specify
1609  * SI_ORDER_MIDDLE, while higher orders are used with the DRIVER_MODULE_ORDERED
1610  * macros for (ii) and (iii).
1611  */
1612 DEV_MODULE_ORDERED(netmap, netmap_loader, NULL, SI_ORDER_MIDDLE);
1613 #else /* !DEV_MODULE_ORDERED */
1614 DEV_MODULE(netmap, netmap_loader, NULL);
1615 #endif /* DEV_MODULE_ORDERED  */
1616 MODULE_DEPEND(netmap, pci, 1, 1, 1);
1617 MODULE_VERSION(netmap, 1);
1618 /* reduce conditional code */
1619 // linux API, use for the knlist in FreeBSD
1620 /* use a private mutex for the knlist */
1621