xref: /freebsd/sys/dev/nfe/if_nfe.c (revision 38a52bd3)
1 /*	$OpenBSD: if_nfe.c,v 1.54 2006/04/07 12:38:12 jsg Exp $	*/
2 
3 /*-
4  * Copyright (c) 2006 Shigeaki Tagashira <shigeaki@se.hiroshima-u.ac.jp>
5  * Copyright (c) 2006 Damien Bergamini <damien.bergamini@free.fr>
6  * Copyright (c) 2005, 2006 Jonathan Gray <jsg@openbsd.org>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */
22 
23 #include <sys/cdefs.h>
24 __FBSDID("$FreeBSD$");
25 
26 #ifdef HAVE_KERNEL_OPTION_HEADERS
27 #include "opt_device_polling.h"
28 #endif
29 
30 #include <sys/param.h>
31 #include <sys/endian.h>
32 #include <sys/systm.h>
33 #include <sys/sockio.h>
34 #include <sys/mbuf.h>
35 #include <sys/malloc.h>
36 #include <sys/module.h>
37 #include <sys/kernel.h>
38 #include <sys/queue.h>
39 #include <sys/socket.h>
40 #include <sys/sysctl.h>
41 #include <sys/taskqueue.h>
42 
43 #include <net/if.h>
44 #include <net/if_var.h>
45 #include <net/if_arp.h>
46 #include <net/ethernet.h>
47 #include <net/if_dl.h>
48 #include <net/if_media.h>
49 #include <net/if_types.h>
50 #include <net/if_vlan_var.h>
51 
52 #include <net/bpf.h>
53 
54 #include <machine/bus.h>
55 #include <machine/resource.h>
56 #include <sys/bus.h>
57 #include <sys/rman.h>
58 
59 #include <dev/mii/mii.h>
60 #include <dev/mii/miivar.h>
61 
62 #include <dev/pci/pcireg.h>
63 #include <dev/pci/pcivar.h>
64 
65 #include <dev/nfe/if_nfereg.h>
66 #include <dev/nfe/if_nfevar.h>
67 
68 MODULE_DEPEND(nfe, pci, 1, 1, 1);
69 MODULE_DEPEND(nfe, ether, 1, 1, 1);
70 MODULE_DEPEND(nfe, miibus, 1, 1, 1);
71 
72 /* "device miibus" required.  See GENERIC if you get errors here. */
73 #include "miibus_if.h"
74 
75 static int  nfe_probe(device_t);
76 static int  nfe_attach(device_t);
77 static int  nfe_detach(device_t);
78 static int  nfe_suspend(device_t);
79 static int  nfe_resume(device_t);
80 static int nfe_shutdown(device_t);
81 static int  nfe_can_use_msix(struct nfe_softc *);
82 static int  nfe_detect_msik9(struct nfe_softc *);
83 static void nfe_power(struct nfe_softc *);
84 static int  nfe_miibus_readreg(device_t, int, int);
85 static int  nfe_miibus_writereg(device_t, int, int, int);
86 static void nfe_miibus_statchg(device_t);
87 static void nfe_mac_config(struct nfe_softc *, struct mii_data *);
88 static void nfe_set_intr(struct nfe_softc *);
89 static __inline void nfe_enable_intr(struct nfe_softc *);
90 static __inline void nfe_disable_intr(struct nfe_softc *);
91 static int  nfe_ioctl(if_t, u_long, caddr_t);
92 static void nfe_alloc_msix(struct nfe_softc *, int);
93 static int nfe_intr(void *);
94 static void nfe_int_task(void *, int);
95 static __inline void nfe_discard_rxbuf(struct nfe_softc *, int);
96 static __inline void nfe_discard_jrxbuf(struct nfe_softc *, int);
97 static int nfe_newbuf(struct nfe_softc *, int);
98 static int nfe_jnewbuf(struct nfe_softc *, int);
99 static int  nfe_rxeof(struct nfe_softc *, int, int *);
100 static int  nfe_jrxeof(struct nfe_softc *, int, int *);
101 static void nfe_txeof(struct nfe_softc *);
102 static int  nfe_encap(struct nfe_softc *, struct mbuf **);
103 static void nfe_setmulti(struct nfe_softc *);
104 static void nfe_start(if_t);
105 static void nfe_start_locked(if_t);
106 static void nfe_watchdog(if_t);
107 static void nfe_init(void *);
108 static void nfe_init_locked(void *);
109 static void nfe_stop(if_t);
110 static int  nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
111 static void nfe_alloc_jrx_ring(struct nfe_softc *, struct nfe_jrx_ring *);
112 static int  nfe_init_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
113 static int  nfe_init_jrx_ring(struct nfe_softc *, struct nfe_jrx_ring *);
114 static void nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
115 static void nfe_free_jrx_ring(struct nfe_softc *, struct nfe_jrx_ring *);
116 static int  nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
117 static void nfe_init_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
118 static void nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
119 static int  nfe_ifmedia_upd(if_t);
120 static void nfe_ifmedia_sts(if_t, struct ifmediareq *);
121 static void nfe_tick(void *);
122 static void nfe_get_macaddr(struct nfe_softc *, uint8_t *);
123 static void nfe_set_macaddr(struct nfe_softc *, uint8_t *);
124 static void nfe_dma_map_segs(void *, bus_dma_segment_t *, int, int);
125 
126 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
127 static int sysctl_hw_nfe_proc_limit(SYSCTL_HANDLER_ARGS);
128 static void nfe_sysctl_node(struct nfe_softc *);
129 static void nfe_stats_clear(struct nfe_softc *);
130 static void nfe_stats_update(struct nfe_softc *);
131 static void nfe_set_linkspeed(struct nfe_softc *);
132 static void nfe_set_wol(struct nfe_softc *);
133 
134 #ifdef NFE_DEBUG
135 static int nfedebug = 0;
136 #define	DPRINTF(sc, ...)	do {				\
137 	if (nfedebug)						\
138 		device_printf((sc)->nfe_dev, __VA_ARGS__);	\
139 } while (0)
140 #define	DPRINTFN(sc, n, ...)	do {				\
141 	if (nfedebug >= (n))					\
142 		device_printf((sc)->nfe_dev, __VA_ARGS__);	\
143 } while (0)
144 #else
145 #define	DPRINTF(sc, ...)
146 #define	DPRINTFN(sc, n, ...)
147 #endif
148 
149 #define	NFE_LOCK(_sc)		mtx_lock(&(_sc)->nfe_mtx)
150 #define	NFE_UNLOCK(_sc)		mtx_unlock(&(_sc)->nfe_mtx)
151 #define	NFE_LOCK_ASSERT(_sc)	mtx_assert(&(_sc)->nfe_mtx, MA_OWNED)
152 
153 /* Tunables. */
154 static int msi_disable = 0;
155 static int msix_disable = 0;
156 static int jumbo_disable = 0;
157 TUNABLE_INT("hw.nfe.msi_disable", &msi_disable);
158 TUNABLE_INT("hw.nfe.msix_disable", &msix_disable);
159 TUNABLE_INT("hw.nfe.jumbo_disable", &jumbo_disable);
160 
161 static device_method_t nfe_methods[] = {
162 	/* Device interface */
163 	DEVMETHOD(device_probe,		nfe_probe),
164 	DEVMETHOD(device_attach,	nfe_attach),
165 	DEVMETHOD(device_detach,	nfe_detach),
166 	DEVMETHOD(device_suspend,	nfe_suspend),
167 	DEVMETHOD(device_resume,	nfe_resume),
168 	DEVMETHOD(device_shutdown,	nfe_shutdown),
169 
170 	/* MII interface */
171 	DEVMETHOD(miibus_readreg,	nfe_miibus_readreg),
172 	DEVMETHOD(miibus_writereg,	nfe_miibus_writereg),
173 	DEVMETHOD(miibus_statchg,	nfe_miibus_statchg),
174 
175 	DEVMETHOD_END
176 };
177 
178 static driver_t nfe_driver = {
179 	"nfe",
180 	nfe_methods,
181 	sizeof(struct nfe_softc)
182 };
183 
184 DRIVER_MODULE(nfe, pci, nfe_driver, 0, 0);
185 DRIVER_MODULE(miibus, nfe, miibus_driver, 0, 0);
186 
187 static struct nfe_type nfe_devs[] = {
188 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN,
189 	    "NVIDIA nForce MCP Networking Adapter"},
190 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN,
191 	    "NVIDIA nForce2 MCP2 Networking Adapter"},
192 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN1,
193 	    "NVIDIA nForce2 400 MCP4 Networking Adapter"},
194 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN2,
195 	    "NVIDIA nForce2 400 MCP5 Networking Adapter"},
196 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1,
197 	    "NVIDIA nForce3 MCP3 Networking Adapter"},
198 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_250_LAN,
199 	    "NVIDIA nForce3 250 MCP6 Networking Adapter"},
200 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4,
201 	    "NVIDIA nForce3 MCP7 Networking Adapter"},
202 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE4_LAN1,
203 	    "NVIDIA nForce4 CK804 MCP8 Networking Adapter"},
204 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE4_LAN2,
205 	    "NVIDIA nForce4 CK804 MCP9 Networking Adapter"},
206 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1,
207 	    "NVIDIA nForce MCP04 Networking Adapter"},		/* MCP10 */
208 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2,
209 	    "NVIDIA nForce MCP04 Networking Adapter"},		/* MCP11 */
210 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE430_LAN1,
211 	    "NVIDIA nForce 430 MCP12 Networking Adapter"},
212 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE430_LAN2,
213 	    "NVIDIA nForce 430 MCP13 Networking Adapter"},
214 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1,
215 	    "NVIDIA nForce MCP55 Networking Adapter"},
216 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2,
217 	    "NVIDIA nForce MCP55 Networking Adapter"},
218 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1,
219 	    "NVIDIA nForce MCP61 Networking Adapter"},
220 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2,
221 	    "NVIDIA nForce MCP61 Networking Adapter"},
222 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3,
223 	    "NVIDIA nForce MCP61 Networking Adapter"},
224 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4,
225 	    "NVIDIA nForce MCP61 Networking Adapter"},
226 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1,
227 	    "NVIDIA nForce MCP65 Networking Adapter"},
228 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2,
229 	    "NVIDIA nForce MCP65 Networking Adapter"},
230 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3,
231 	    "NVIDIA nForce MCP65 Networking Adapter"},
232 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4,
233 	    "NVIDIA nForce MCP65 Networking Adapter"},
234 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN1,
235 	    "NVIDIA nForce MCP67 Networking Adapter"},
236 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN2,
237 	    "NVIDIA nForce MCP67 Networking Adapter"},
238 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN3,
239 	    "NVIDIA nForce MCP67 Networking Adapter"},
240 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN4,
241 	    "NVIDIA nForce MCP67 Networking Adapter"},
242 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN1,
243 	    "NVIDIA nForce MCP73 Networking Adapter"},
244 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN2,
245 	    "NVIDIA nForce MCP73 Networking Adapter"},
246 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN3,
247 	    "NVIDIA nForce MCP73 Networking Adapter"},
248 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN4,
249 	    "NVIDIA nForce MCP73 Networking Adapter"},
250 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN1,
251 	    "NVIDIA nForce MCP77 Networking Adapter"},
252 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN2,
253 	    "NVIDIA nForce MCP77 Networking Adapter"},
254 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN3,
255 	    "NVIDIA nForce MCP77 Networking Adapter"},
256 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN4,
257 	    "NVIDIA nForce MCP77 Networking Adapter"},
258 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN1,
259 	    "NVIDIA nForce MCP79 Networking Adapter"},
260 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN2,
261 	    "NVIDIA nForce MCP79 Networking Adapter"},
262 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN3,
263 	    "NVIDIA nForce MCP79 Networking Adapter"},
264 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN4,
265 	    "NVIDIA nForce MCP79 Networking Adapter"},
266 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP89_LAN,
267 	    "NVIDIA nForce MCP89 Networking Adapter"},
268 	{0, 0, NULL}
269 };
270 
271 /* Probe for supported hardware ID's */
272 static int
273 nfe_probe(device_t dev)
274 {
275 	struct nfe_type *t;
276 
277 	t = nfe_devs;
278 	/* Check for matching PCI DEVICE ID's */
279 	while (t->name != NULL) {
280 		if ((pci_get_vendor(dev) == t->vid_id) &&
281 		    (pci_get_device(dev) == t->dev_id)) {
282 			device_set_desc(dev, t->name);
283 			return (BUS_PROBE_DEFAULT);
284 		}
285 		t++;
286 	}
287 
288 	return (ENXIO);
289 }
290 
291 static void
292 nfe_alloc_msix(struct nfe_softc *sc, int count)
293 {
294 	int rid;
295 
296 	rid = PCIR_BAR(2);
297 	sc->nfe_msix_res = bus_alloc_resource_any(sc->nfe_dev, SYS_RES_MEMORY,
298 	    &rid, RF_ACTIVE);
299 	if (sc->nfe_msix_res == NULL) {
300 		device_printf(sc->nfe_dev,
301 		    "couldn't allocate MSIX table resource\n");
302 		return;
303 	}
304 	rid = PCIR_BAR(3);
305 	sc->nfe_msix_pba_res = bus_alloc_resource_any(sc->nfe_dev,
306 	    SYS_RES_MEMORY, &rid, RF_ACTIVE);
307 	if (sc->nfe_msix_pba_res == NULL) {
308 		device_printf(sc->nfe_dev,
309 		    "couldn't allocate MSIX PBA resource\n");
310 		bus_release_resource(sc->nfe_dev, SYS_RES_MEMORY, PCIR_BAR(2),
311 		    sc->nfe_msix_res);
312 		sc->nfe_msix_res = NULL;
313 		return;
314 	}
315 
316 	if (pci_alloc_msix(sc->nfe_dev, &count) == 0) {
317 		if (count == NFE_MSI_MESSAGES) {
318 			if (bootverbose)
319 				device_printf(sc->nfe_dev,
320 				    "Using %d MSIX messages\n", count);
321 			sc->nfe_msix = 1;
322 		} else {
323 			if (bootverbose)
324 				device_printf(sc->nfe_dev,
325 				    "couldn't allocate MSIX\n");
326 			pci_release_msi(sc->nfe_dev);
327 			bus_release_resource(sc->nfe_dev, SYS_RES_MEMORY,
328 			    PCIR_BAR(3), sc->nfe_msix_pba_res);
329 			bus_release_resource(sc->nfe_dev, SYS_RES_MEMORY,
330 			    PCIR_BAR(2), sc->nfe_msix_res);
331 			sc->nfe_msix_pba_res = NULL;
332 			sc->nfe_msix_res = NULL;
333 		}
334 	}
335 }
336 
337 static int
338 nfe_detect_msik9(struct nfe_softc *sc)
339 {
340 	static const char *maker = "MSI";
341 	static const char *product = "K9N6PGM2-V2 (MS-7309)";
342 	char *m, *p;
343 	int found;
344 
345 	found = 0;
346 	m = kern_getenv("smbios.planar.maker");
347 	p = kern_getenv("smbios.planar.product");
348 	if (m != NULL && p != NULL) {
349 		if (strcmp(m, maker) == 0 && strcmp(p, product) == 0)
350 			found = 1;
351 	}
352 	if (m != NULL)
353 		freeenv(m);
354 	if (p != NULL)
355 		freeenv(p);
356 
357 	return (found);
358 }
359 
360 static int
361 nfe_attach(device_t dev)
362 {
363 	struct nfe_softc *sc;
364 	if_t ifp;
365 	bus_addr_t dma_addr_max;
366 	int error = 0, i, msic, phyloc, reg, rid;
367 
368 	sc = device_get_softc(dev);
369 	sc->nfe_dev = dev;
370 
371 	mtx_init(&sc->nfe_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
372 	    MTX_DEF);
373 	callout_init_mtx(&sc->nfe_stat_ch, &sc->nfe_mtx, 0);
374 
375 	pci_enable_busmaster(dev);
376 
377 	rid = PCIR_BAR(0);
378 	sc->nfe_res[0] = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
379 	    RF_ACTIVE);
380 	if (sc->nfe_res[0] == NULL) {
381 		device_printf(dev, "couldn't map memory resources\n");
382 		mtx_destroy(&sc->nfe_mtx);
383 		return (ENXIO);
384 	}
385 
386 	if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
387 		uint16_t v, width;
388 
389 		v = pci_read_config(dev, reg + 0x08, 2);
390 		/* Change max. read request size to 4096. */
391 		v &= ~(7 << 12);
392 		v |= (5 << 12);
393 		pci_write_config(dev, reg + 0x08, v, 2);
394 
395 		v = pci_read_config(dev, reg + 0x0c, 2);
396 		/* link capability */
397 		v = (v >> 4) & 0x0f;
398 		width = pci_read_config(dev, reg + 0x12, 2);
399 		/* negotiated link width */
400 		width = (width >> 4) & 0x3f;
401 		if (v != width)
402 			device_printf(sc->nfe_dev,
403 			    "warning, negotiated width of link(x%d) != "
404 			    "max. width of link(x%d)\n", width, v);
405 	}
406 
407 	if (nfe_can_use_msix(sc) == 0) {
408 		device_printf(sc->nfe_dev,
409 		    "MSI/MSI-X capability black-listed, will use INTx\n");
410 		msix_disable = 1;
411 		msi_disable = 1;
412 	}
413 
414 	/* Allocate interrupt */
415 	if (msix_disable == 0 || msi_disable == 0) {
416 		if (msix_disable == 0 &&
417 		    (msic = pci_msix_count(dev)) == NFE_MSI_MESSAGES)
418 			nfe_alloc_msix(sc, msic);
419 		if (msi_disable == 0 && sc->nfe_msix == 0 &&
420 		    (msic = pci_msi_count(dev)) == NFE_MSI_MESSAGES &&
421 		    pci_alloc_msi(dev, &msic) == 0) {
422 			if (msic == NFE_MSI_MESSAGES) {
423 				if (bootverbose)
424 					device_printf(dev,
425 					    "Using %d MSI messages\n", msic);
426 				sc->nfe_msi = 1;
427 			} else
428 				pci_release_msi(dev);
429 		}
430 	}
431 
432 	if (sc->nfe_msix == 0 && sc->nfe_msi == 0) {
433 		rid = 0;
434 		sc->nfe_irq[0] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
435 		    RF_SHAREABLE | RF_ACTIVE);
436 		if (sc->nfe_irq[0] == NULL) {
437 			device_printf(dev, "couldn't allocate IRQ resources\n");
438 			error = ENXIO;
439 			goto fail;
440 		}
441 	} else {
442 		for (i = 0, rid = 1; i < NFE_MSI_MESSAGES; i++, rid++) {
443 			sc->nfe_irq[i] = bus_alloc_resource_any(dev,
444 			    SYS_RES_IRQ, &rid, RF_ACTIVE);
445 			if (sc->nfe_irq[i] == NULL) {
446 				device_printf(dev,
447 				    "couldn't allocate IRQ resources for "
448 				    "message %d\n", rid);
449 				error = ENXIO;
450 				goto fail;
451 			}
452 		}
453 		/* Map interrupts to vector 0. */
454 		if (sc->nfe_msix != 0) {
455 			NFE_WRITE(sc, NFE_MSIX_MAP0, 0);
456 			NFE_WRITE(sc, NFE_MSIX_MAP1, 0);
457 		} else if (sc->nfe_msi != 0) {
458 			NFE_WRITE(sc, NFE_MSI_MAP0, 0);
459 			NFE_WRITE(sc, NFE_MSI_MAP1, 0);
460 		}
461 	}
462 
463 	/* Set IRQ status/mask register. */
464 	sc->nfe_irq_status = NFE_IRQ_STATUS;
465 	sc->nfe_irq_mask = NFE_IRQ_MASK;
466 	sc->nfe_intrs = NFE_IRQ_WANTED;
467 	sc->nfe_nointrs = 0;
468 	if (sc->nfe_msix != 0) {
469 		sc->nfe_irq_status = NFE_MSIX_IRQ_STATUS;
470 		sc->nfe_nointrs = NFE_IRQ_WANTED;
471 	} else if (sc->nfe_msi != 0) {
472 		sc->nfe_irq_mask = NFE_MSI_IRQ_MASK;
473 		sc->nfe_intrs = NFE_MSI_VECTOR_0_ENABLED;
474 	}
475 
476 	sc->nfe_devid = pci_get_device(dev);
477 	sc->nfe_revid = pci_get_revid(dev);
478 	sc->nfe_flags = 0;
479 
480 	switch (sc->nfe_devid) {
481 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2:
482 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3:
483 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4:
484 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5:
485 		sc->nfe_flags |= NFE_JUMBO_SUP | NFE_HW_CSUM;
486 		break;
487 	case PCI_PRODUCT_NVIDIA_MCP51_LAN1:
488 	case PCI_PRODUCT_NVIDIA_MCP51_LAN2:
489 		sc->nfe_flags |= NFE_40BIT_ADDR | NFE_PWR_MGMT | NFE_MIB_V1;
490 		break;
491 	case PCI_PRODUCT_NVIDIA_CK804_LAN1:
492 	case PCI_PRODUCT_NVIDIA_CK804_LAN2:
493 	case PCI_PRODUCT_NVIDIA_MCP04_LAN1:
494 	case PCI_PRODUCT_NVIDIA_MCP04_LAN2:
495 		sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
496 		    NFE_MIB_V1;
497 		break;
498 	case PCI_PRODUCT_NVIDIA_MCP55_LAN1:
499 	case PCI_PRODUCT_NVIDIA_MCP55_LAN2:
500 		sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
501 		    NFE_HW_VLAN | NFE_PWR_MGMT | NFE_TX_FLOW_CTRL | NFE_MIB_V2;
502 		break;
503 
504 	case PCI_PRODUCT_NVIDIA_MCP61_LAN1:
505 	case PCI_PRODUCT_NVIDIA_MCP61_LAN2:
506 	case PCI_PRODUCT_NVIDIA_MCP61_LAN3:
507 	case PCI_PRODUCT_NVIDIA_MCP61_LAN4:
508 	case PCI_PRODUCT_NVIDIA_MCP67_LAN1:
509 	case PCI_PRODUCT_NVIDIA_MCP67_LAN2:
510 	case PCI_PRODUCT_NVIDIA_MCP67_LAN3:
511 	case PCI_PRODUCT_NVIDIA_MCP67_LAN4:
512 	case PCI_PRODUCT_NVIDIA_MCP73_LAN1:
513 	case PCI_PRODUCT_NVIDIA_MCP73_LAN2:
514 	case PCI_PRODUCT_NVIDIA_MCP73_LAN3:
515 	case PCI_PRODUCT_NVIDIA_MCP73_LAN4:
516 		sc->nfe_flags |= NFE_40BIT_ADDR | NFE_PWR_MGMT |
517 		    NFE_CORRECT_MACADDR | NFE_TX_FLOW_CTRL | NFE_MIB_V2;
518 		break;
519 	case PCI_PRODUCT_NVIDIA_MCP77_LAN1:
520 	case PCI_PRODUCT_NVIDIA_MCP77_LAN2:
521 	case PCI_PRODUCT_NVIDIA_MCP77_LAN3:
522 	case PCI_PRODUCT_NVIDIA_MCP77_LAN4:
523 		/* XXX flow control */
524 		sc->nfe_flags |= NFE_40BIT_ADDR | NFE_HW_CSUM | NFE_PWR_MGMT |
525 		    NFE_CORRECT_MACADDR | NFE_MIB_V3;
526 		break;
527 	case PCI_PRODUCT_NVIDIA_MCP79_LAN1:
528 	case PCI_PRODUCT_NVIDIA_MCP79_LAN2:
529 	case PCI_PRODUCT_NVIDIA_MCP79_LAN3:
530 	case PCI_PRODUCT_NVIDIA_MCP79_LAN4:
531 	case PCI_PRODUCT_NVIDIA_MCP89_LAN:
532 		/* XXX flow control */
533 		sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
534 		    NFE_PWR_MGMT | NFE_CORRECT_MACADDR | NFE_MIB_V3;
535 		break;
536 	case PCI_PRODUCT_NVIDIA_MCP65_LAN1:
537 	case PCI_PRODUCT_NVIDIA_MCP65_LAN2:
538 	case PCI_PRODUCT_NVIDIA_MCP65_LAN3:
539 	case PCI_PRODUCT_NVIDIA_MCP65_LAN4:
540 		sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR |
541 		    NFE_PWR_MGMT | NFE_CORRECT_MACADDR | NFE_TX_FLOW_CTRL |
542 		    NFE_MIB_V2;
543 		break;
544 	}
545 
546 	nfe_power(sc);
547 	/* Check for reversed ethernet address */
548 	if ((NFE_READ(sc, NFE_TX_UNK) & NFE_MAC_ADDR_INORDER) != 0)
549 		sc->nfe_flags |= NFE_CORRECT_MACADDR;
550 	nfe_get_macaddr(sc, sc->eaddr);
551 	/*
552 	 * Allocate the parent bus DMA tag appropriate for PCI.
553 	 */
554 	dma_addr_max = BUS_SPACE_MAXADDR_32BIT;
555 	if ((sc->nfe_flags & NFE_40BIT_ADDR) != 0)
556 		dma_addr_max = NFE_DMA_MAXADDR;
557 	error = bus_dma_tag_create(
558 	    bus_get_dma_tag(sc->nfe_dev),	/* parent */
559 	    1, 0,				/* alignment, boundary */
560 	    dma_addr_max,			/* lowaddr */
561 	    BUS_SPACE_MAXADDR,			/* highaddr */
562 	    NULL, NULL,				/* filter, filterarg */
563 	    BUS_SPACE_MAXSIZE_32BIT, 0,		/* maxsize, nsegments */
564 	    BUS_SPACE_MAXSIZE_32BIT,		/* maxsegsize */
565 	    0,					/* flags */
566 	    NULL, NULL,				/* lockfunc, lockarg */
567 	    &sc->nfe_parent_tag);
568 	if (error)
569 		goto fail;
570 
571 	ifp = sc->nfe_ifp = if_gethandle(IFT_ETHER);
572 	if (ifp == NULL) {
573 		device_printf(dev, "can not if_gethandle()\n");
574 		error = ENOSPC;
575 		goto fail;
576 	}
577 
578 	/*
579 	 * Allocate Tx and Rx rings.
580 	 */
581 	if ((error = nfe_alloc_tx_ring(sc, &sc->txq)) != 0)
582 		goto fail;
583 
584 	if ((error = nfe_alloc_rx_ring(sc, &sc->rxq)) != 0)
585 		goto fail;
586 
587 	nfe_alloc_jrx_ring(sc, &sc->jrxq);
588 	/* Create sysctl node. */
589 	nfe_sysctl_node(sc);
590 
591 	if_setsoftc(ifp, sc);
592 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
593 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
594 	if_setioctlfn(ifp, nfe_ioctl);
595 	if_setstartfn(ifp, nfe_start);
596 	if_sethwassist(ifp, 0);
597 	if_setcapabilities(ifp, 0);
598 	if_setinitfn(ifp, nfe_init);
599 	if_setsendqlen(ifp, NFE_TX_RING_COUNT - 1);
600 	if_setsendqready(ifp);
601 
602 	if (sc->nfe_flags & NFE_HW_CSUM) {
603 		if_setcapabilitiesbit(ifp, IFCAP_HWCSUM | IFCAP_TSO4, 0);
604 		if_sethwassistbits(ifp, NFE_CSUM_FEATURES | CSUM_TSO, 0);
605 	}
606 	if_setcapenable(ifp, if_getcapabilities(ifp));
607 
608 	sc->nfe_framesize = if_getmtu(ifp) + NFE_RX_HEADERS;
609 	/* VLAN capability setup. */
610 	if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU, 0);
611 	if ((sc->nfe_flags & NFE_HW_VLAN) != 0) {
612 		if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWTAGGING, 0);
613 		if ((if_getcapabilities(ifp) & IFCAP_HWCSUM) != 0)
614 			if_setcapabilitiesbit(ifp,
615 			    (IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO), 0);
616 	}
617 
618 	if (pci_find_cap(dev, PCIY_PMG, &reg) == 0)
619 		if_setcapabilitiesbit(ifp, IFCAP_WOL_MAGIC, 0);
620 	if_setcapenable(ifp, if_getcapabilities(ifp));
621 
622 	/*
623 	 * Tell the upper layer(s) we support long frames.
624 	 * Must appear after the call to ether_ifattach() because
625 	 * ether_ifattach() sets ifi_hdrlen to the default value.
626 	 */
627 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
628 
629 #ifdef DEVICE_POLLING
630 	if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0);
631 #endif
632 
633 	/* Do MII setup */
634 	phyloc = MII_PHY_ANY;
635 	if (sc->nfe_devid == PCI_PRODUCT_NVIDIA_MCP61_LAN1 ||
636 	    sc->nfe_devid == PCI_PRODUCT_NVIDIA_MCP61_LAN2 ||
637 	    sc->nfe_devid == PCI_PRODUCT_NVIDIA_MCP61_LAN3 ||
638 	    sc->nfe_devid == PCI_PRODUCT_NVIDIA_MCP61_LAN4) {
639 		if (nfe_detect_msik9(sc) != 0)
640 			phyloc = 0;
641 	}
642 	error = mii_attach(dev, &sc->nfe_miibus, ifp,
643 	    (ifm_change_cb_t)nfe_ifmedia_upd, (ifm_stat_cb_t)nfe_ifmedia_sts,
644 	    BMSR_DEFCAPMASK, phyloc, MII_OFFSET_ANY, MIIF_DOPAUSE);
645 	if (error != 0) {
646 		device_printf(dev, "attaching PHYs failed\n");
647 		goto fail;
648 	}
649 	ether_ifattach(ifp, sc->eaddr);
650 
651 	NET_TASK_INIT(&sc->nfe_int_task, 0, nfe_int_task, sc);
652 	sc->nfe_tq = taskqueue_create_fast("nfe_taskq", M_WAITOK,
653 	    taskqueue_thread_enqueue, &sc->nfe_tq);
654 	taskqueue_start_threads(&sc->nfe_tq, 1, PI_NET, "%s taskq",
655 	    device_get_nameunit(sc->nfe_dev));
656 	error = 0;
657 	if (sc->nfe_msi == 0 && sc->nfe_msix == 0) {
658 		error = bus_setup_intr(dev, sc->nfe_irq[0],
659 		    INTR_TYPE_NET | INTR_MPSAFE, nfe_intr, NULL, sc,
660 		    &sc->nfe_intrhand[0]);
661 	} else {
662 		for (i = 0; i < NFE_MSI_MESSAGES; i++) {
663 			error = bus_setup_intr(dev, sc->nfe_irq[i],
664 			    INTR_TYPE_NET | INTR_MPSAFE, nfe_intr, NULL, sc,
665 			    &sc->nfe_intrhand[i]);
666 			if (error != 0)
667 				break;
668 		}
669 	}
670 	if (error) {
671 		device_printf(dev, "couldn't set up irq\n");
672 		taskqueue_free(sc->nfe_tq);
673 		sc->nfe_tq = NULL;
674 		ether_ifdetach(ifp);
675 		goto fail;
676 	}
677 
678 fail:
679 	if (error)
680 		nfe_detach(dev);
681 
682 	return (error);
683 }
684 
685 static int
686 nfe_detach(device_t dev)
687 {
688 	struct nfe_softc *sc;
689 	if_t ifp;
690 	uint8_t eaddr[ETHER_ADDR_LEN];
691 	int i, rid;
692 
693 	sc = device_get_softc(dev);
694 	KASSERT(mtx_initialized(&sc->nfe_mtx), ("nfe mutex not initialized"));
695 	ifp = sc->nfe_ifp;
696 
697 #ifdef DEVICE_POLLING
698 	if (ifp != NULL && if_getcapenable(ifp) & IFCAP_POLLING)
699 		ether_poll_deregister(ifp);
700 #endif
701 	if (device_is_attached(dev)) {
702 		NFE_LOCK(sc);
703 		nfe_stop(ifp);
704 		if_setflagbits(ifp, 0, IFF_UP);
705 		NFE_UNLOCK(sc);
706 		callout_drain(&sc->nfe_stat_ch);
707 		ether_ifdetach(ifp);
708 	}
709 
710 	if (ifp) {
711 		/* restore ethernet address */
712 		if ((sc->nfe_flags & NFE_CORRECT_MACADDR) == 0) {
713 			for (i = 0; i < ETHER_ADDR_LEN; i++) {
714 				eaddr[i] = sc->eaddr[5 - i];
715 			}
716 		} else
717 			bcopy(sc->eaddr, eaddr, ETHER_ADDR_LEN);
718 		nfe_set_macaddr(sc, eaddr);
719 		if_free(ifp);
720 	}
721 	if (sc->nfe_miibus)
722 		device_delete_child(dev, sc->nfe_miibus);
723 	bus_generic_detach(dev);
724 	if (sc->nfe_tq != NULL) {
725 		taskqueue_drain(sc->nfe_tq, &sc->nfe_int_task);
726 		taskqueue_free(sc->nfe_tq);
727 		sc->nfe_tq = NULL;
728 	}
729 
730 	for (i = 0; i < NFE_MSI_MESSAGES; i++) {
731 		if (sc->nfe_intrhand[i] != NULL) {
732 			bus_teardown_intr(dev, sc->nfe_irq[i],
733 			    sc->nfe_intrhand[i]);
734 			sc->nfe_intrhand[i] = NULL;
735 		}
736 	}
737 
738 	if (sc->nfe_msi == 0 && sc->nfe_msix == 0) {
739 		if (sc->nfe_irq[0] != NULL)
740 			bus_release_resource(dev, SYS_RES_IRQ, 0,
741 			    sc->nfe_irq[0]);
742 	} else {
743 		for (i = 0, rid = 1; i < NFE_MSI_MESSAGES; i++, rid++) {
744 			if (sc->nfe_irq[i] != NULL) {
745 				bus_release_resource(dev, SYS_RES_IRQ, rid,
746 				    sc->nfe_irq[i]);
747 				sc->nfe_irq[i] = NULL;
748 			}
749 		}
750 		pci_release_msi(dev);
751 	}
752 	if (sc->nfe_msix_pba_res != NULL) {
753 		bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(3),
754 		    sc->nfe_msix_pba_res);
755 		sc->nfe_msix_pba_res = NULL;
756 	}
757 	if (sc->nfe_msix_res != NULL) {
758 		bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(2),
759 		    sc->nfe_msix_res);
760 		sc->nfe_msix_res = NULL;
761 	}
762 	if (sc->nfe_res[0] != NULL) {
763 		bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
764 		    sc->nfe_res[0]);
765 		sc->nfe_res[0] = NULL;
766 	}
767 
768 	nfe_free_tx_ring(sc, &sc->txq);
769 	nfe_free_rx_ring(sc, &sc->rxq);
770 	nfe_free_jrx_ring(sc, &sc->jrxq);
771 
772 	if (sc->nfe_parent_tag) {
773 		bus_dma_tag_destroy(sc->nfe_parent_tag);
774 		sc->nfe_parent_tag = NULL;
775 	}
776 
777 	mtx_destroy(&sc->nfe_mtx);
778 
779 	return (0);
780 }
781 
782 static int
783 nfe_suspend(device_t dev)
784 {
785 	struct nfe_softc *sc;
786 
787 	sc = device_get_softc(dev);
788 
789 	NFE_LOCK(sc);
790 	nfe_stop(sc->nfe_ifp);
791 	nfe_set_wol(sc);
792 	sc->nfe_suspended = 1;
793 	NFE_UNLOCK(sc);
794 
795 	return (0);
796 }
797 
798 static int
799 nfe_resume(device_t dev)
800 {
801 	struct nfe_softc *sc;
802 	if_t ifp;
803 
804 	sc = device_get_softc(dev);
805 
806 	NFE_LOCK(sc);
807 	nfe_power(sc);
808 	ifp = sc->nfe_ifp;
809 	if (if_getflags(ifp) & IFF_UP)
810 		nfe_init_locked(sc);
811 	sc->nfe_suspended = 0;
812 	NFE_UNLOCK(sc);
813 
814 	return (0);
815 }
816 
817 static int
818 nfe_can_use_msix(struct nfe_softc *sc)
819 {
820 	static struct msix_blacklist {
821 		char	*maker;
822 		char	*product;
823 	} msix_blacklists[] = {
824 		{ "ASUSTeK Computer INC.", "P5N32-SLI PREMIUM" }
825 	};
826 
827 	struct msix_blacklist *mblp;
828 	char *maker, *product;
829 	int count, n, use_msix;
830 
831 	/*
832 	 * Search base board manufacturer and product name table
833 	 * to see this system has a known MSI/MSI-X issue.
834 	 */
835 	maker = kern_getenv("smbios.planar.maker");
836 	product = kern_getenv("smbios.planar.product");
837 	use_msix = 1;
838 	if (maker != NULL && product != NULL) {
839 		count = nitems(msix_blacklists);
840 		mblp = msix_blacklists;
841 		for (n = 0; n < count; n++) {
842 			if (strcmp(maker, mblp->maker) == 0 &&
843 			    strcmp(product, mblp->product) == 0) {
844 				use_msix = 0;
845 				break;
846 			}
847 			mblp++;
848 		}
849 	}
850 	if (maker != NULL)
851 		freeenv(maker);
852 	if (product != NULL)
853 		freeenv(product);
854 
855 	return (use_msix);
856 }
857 
858 /* Take PHY/NIC out of powerdown, from Linux */
859 static void
860 nfe_power(struct nfe_softc *sc)
861 {
862 	uint32_t pwr;
863 
864 	if ((sc->nfe_flags & NFE_PWR_MGMT) == 0)
865 		return;
866 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | NFE_RXTX_BIT2);
867 	NFE_WRITE(sc, NFE_MAC_RESET, NFE_MAC_RESET_MAGIC);
868 	DELAY(100);
869 	NFE_WRITE(sc, NFE_MAC_RESET, 0);
870 	DELAY(100);
871 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT2);
872 	pwr = NFE_READ(sc, NFE_PWR2_CTL);
873 	pwr &= ~NFE_PWR2_WAKEUP_MASK;
874 	if (sc->nfe_revid >= 0xa3 &&
875 	    (sc->nfe_devid == PCI_PRODUCT_NVIDIA_NFORCE430_LAN1 ||
876 	    sc->nfe_devid == PCI_PRODUCT_NVIDIA_NFORCE430_LAN2))
877 		pwr |= NFE_PWR2_REVA3;
878 	NFE_WRITE(sc, NFE_PWR2_CTL, pwr);
879 }
880 
881 static void
882 nfe_miibus_statchg(device_t dev)
883 {
884 	struct nfe_softc *sc;
885 	struct mii_data *mii;
886 	if_t ifp;
887 	uint32_t rxctl, txctl;
888 
889 	sc = device_get_softc(dev);
890 
891 	mii = device_get_softc(sc->nfe_miibus);
892 	ifp = sc->nfe_ifp;
893 
894 	sc->nfe_link = 0;
895 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
896 	    (IFM_ACTIVE | IFM_AVALID)) {
897 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
898 		case IFM_10_T:
899 		case IFM_100_TX:
900 		case IFM_1000_T:
901 			sc->nfe_link = 1;
902 			break;
903 		default:
904 			break;
905 		}
906 	}
907 
908 	nfe_mac_config(sc, mii);
909 	txctl = NFE_READ(sc, NFE_TX_CTL);
910 	rxctl = NFE_READ(sc, NFE_RX_CTL);
911 	if (sc->nfe_link != 0 && (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
912 		txctl |= NFE_TX_START;
913 		rxctl |= NFE_RX_START;
914 	} else {
915 		txctl &= ~NFE_TX_START;
916 		rxctl &= ~NFE_RX_START;
917 	}
918 	NFE_WRITE(sc, NFE_TX_CTL, txctl);
919 	NFE_WRITE(sc, NFE_RX_CTL, rxctl);
920 }
921 
922 static void
923 nfe_mac_config(struct nfe_softc *sc, struct mii_data *mii)
924 {
925 	uint32_t link, misc, phy, seed;
926 	uint32_t val;
927 
928 	NFE_LOCK_ASSERT(sc);
929 
930 	phy = NFE_READ(sc, NFE_PHY_IFACE);
931 	phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T);
932 
933 	seed = NFE_READ(sc, NFE_RNDSEED);
934 	seed &= ~NFE_SEED_MASK;
935 
936 	misc = NFE_MISC1_MAGIC;
937 	link = NFE_MEDIA_SET;
938 
939 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) == 0) {
940 		phy  |= NFE_PHY_HDX;	/* half-duplex */
941 		misc |= NFE_MISC1_HDX;
942 	}
943 
944 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
945 	case IFM_1000_T:	/* full-duplex only */
946 		link |= NFE_MEDIA_1000T;
947 		seed |= NFE_SEED_1000T;
948 		phy  |= NFE_PHY_1000T;
949 		break;
950 	case IFM_100_TX:
951 		link |= NFE_MEDIA_100TX;
952 		seed |= NFE_SEED_100TX;
953 		phy  |= NFE_PHY_100TX;
954 		break;
955 	case IFM_10_T:
956 		link |= NFE_MEDIA_10T;
957 		seed |= NFE_SEED_10T;
958 		break;
959 	}
960 
961 	if ((phy & 0x10000000) != 0) {
962 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T)
963 			val = NFE_R1_MAGIC_1000;
964 		else
965 			val = NFE_R1_MAGIC_10_100;
966 	} else
967 		val = NFE_R1_MAGIC_DEFAULT;
968 	NFE_WRITE(sc, NFE_SETUP_R1, val);
969 
970 	NFE_WRITE(sc, NFE_RNDSEED, seed);	/* XXX: gigabit NICs only? */
971 
972 	NFE_WRITE(sc, NFE_PHY_IFACE, phy);
973 	NFE_WRITE(sc, NFE_MISC1, misc);
974 	NFE_WRITE(sc, NFE_LINKSPEED, link);
975 
976 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
977 		/* It seems all hardwares supports Rx pause frames. */
978 		val = NFE_READ(sc, NFE_RXFILTER);
979 		if ((IFM_OPTIONS(mii->mii_media_active) &
980 		    IFM_ETH_RXPAUSE) != 0)
981 			val |= NFE_PFF_RX_PAUSE;
982 		else
983 			val &= ~NFE_PFF_RX_PAUSE;
984 		NFE_WRITE(sc, NFE_RXFILTER, val);
985 		if ((sc->nfe_flags & NFE_TX_FLOW_CTRL) != 0) {
986 			val = NFE_READ(sc, NFE_MISC1);
987 			if ((IFM_OPTIONS(mii->mii_media_active) &
988 			    IFM_ETH_TXPAUSE) != 0) {
989 				NFE_WRITE(sc, NFE_TX_PAUSE_FRAME,
990 				    NFE_TX_PAUSE_FRAME_ENABLE);
991 				val |= NFE_MISC1_TX_PAUSE;
992 			} else {
993 				val &= ~NFE_MISC1_TX_PAUSE;
994 				NFE_WRITE(sc, NFE_TX_PAUSE_FRAME,
995 				    NFE_TX_PAUSE_FRAME_DISABLE);
996 			}
997 			NFE_WRITE(sc, NFE_MISC1, val);
998 		}
999 	} else {
1000 		/* disable rx/tx pause frames */
1001 		val = NFE_READ(sc, NFE_RXFILTER);
1002 		val &= ~NFE_PFF_RX_PAUSE;
1003 		NFE_WRITE(sc, NFE_RXFILTER, val);
1004 		if ((sc->nfe_flags & NFE_TX_FLOW_CTRL) != 0) {
1005 			NFE_WRITE(sc, NFE_TX_PAUSE_FRAME,
1006 			    NFE_TX_PAUSE_FRAME_DISABLE);
1007 			val = NFE_READ(sc, NFE_MISC1);
1008 			val &= ~NFE_MISC1_TX_PAUSE;
1009 			NFE_WRITE(sc, NFE_MISC1, val);
1010 		}
1011 	}
1012 }
1013 
1014 static int
1015 nfe_miibus_readreg(device_t dev, int phy, int reg)
1016 {
1017 	struct nfe_softc *sc = device_get_softc(dev);
1018 	uint32_t val;
1019 	int ntries;
1020 
1021 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1022 
1023 	if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
1024 		NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
1025 		DELAY(100);
1026 	}
1027 
1028 	NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg);
1029 
1030 	for (ntries = 0; ntries < NFE_TIMEOUT; ntries++) {
1031 		DELAY(100);
1032 		if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
1033 			break;
1034 	}
1035 	if (ntries == NFE_TIMEOUT) {
1036 		DPRINTFN(sc, 2, "timeout waiting for PHY\n");
1037 		return 0;
1038 	}
1039 
1040 	if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) {
1041 		DPRINTFN(sc, 2, "could not read PHY\n");
1042 		return 0;
1043 	}
1044 
1045 	val = NFE_READ(sc, NFE_PHY_DATA);
1046 	if (val != 0xffffffff && val != 0)
1047 		sc->mii_phyaddr = phy;
1048 
1049 	DPRINTFN(sc, 2, "mii read phy %d reg 0x%x ret 0x%x\n", phy, reg, val);
1050 
1051 	return (val);
1052 }
1053 
1054 static int
1055 nfe_miibus_writereg(device_t dev, int phy, int reg, int val)
1056 {
1057 	struct nfe_softc *sc = device_get_softc(dev);
1058 	uint32_t ctl;
1059 	int ntries;
1060 
1061 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1062 
1063 	if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
1064 		NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
1065 		DELAY(100);
1066 	}
1067 
1068 	NFE_WRITE(sc, NFE_PHY_DATA, val);
1069 	ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg;
1070 	NFE_WRITE(sc, NFE_PHY_CTL, ctl);
1071 
1072 	for (ntries = 0; ntries < NFE_TIMEOUT; ntries++) {
1073 		DELAY(100);
1074 		if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
1075 			break;
1076 	}
1077 #ifdef NFE_DEBUG
1078 	if (nfedebug >= 2 && ntries == NFE_TIMEOUT)
1079 		device_printf(sc->nfe_dev, "could not write to PHY\n");
1080 #endif
1081 	return (0);
1082 }
1083 
1084 struct nfe_dmamap_arg {
1085 	bus_addr_t nfe_busaddr;
1086 };
1087 
1088 static int
1089 nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1090 {
1091 	struct nfe_dmamap_arg ctx;
1092 	struct nfe_rx_data *data;
1093 	void *desc;
1094 	int i, error, descsize;
1095 
1096 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1097 		desc = ring->desc64;
1098 		descsize = sizeof (struct nfe_desc64);
1099 	} else {
1100 		desc = ring->desc32;
1101 		descsize = sizeof (struct nfe_desc32);
1102 	}
1103 
1104 	ring->cur = ring->next = 0;
1105 
1106 	error = bus_dma_tag_create(sc->nfe_parent_tag,
1107 	    NFE_RING_ALIGN, 0,			/* alignment, boundary */
1108 	    BUS_SPACE_MAXADDR,			/* lowaddr */
1109 	    BUS_SPACE_MAXADDR,			/* highaddr */
1110 	    NULL, NULL,				/* filter, filterarg */
1111 	    NFE_RX_RING_COUNT * descsize, 1,	/* maxsize, nsegments */
1112 	    NFE_RX_RING_COUNT * descsize,	/* maxsegsize */
1113 	    0,					/* flags */
1114 	    NULL, NULL,				/* lockfunc, lockarg */
1115 	    &ring->rx_desc_tag);
1116 	if (error != 0) {
1117 		device_printf(sc->nfe_dev, "could not create desc DMA tag\n");
1118 		goto fail;
1119 	}
1120 
1121 	/* allocate memory to desc */
1122 	error = bus_dmamem_alloc(ring->rx_desc_tag, &desc, BUS_DMA_WAITOK |
1123 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &ring->rx_desc_map);
1124 	if (error != 0) {
1125 		device_printf(sc->nfe_dev, "could not create desc DMA map\n");
1126 		goto fail;
1127 	}
1128 	if (sc->nfe_flags & NFE_40BIT_ADDR)
1129 		ring->desc64 = desc;
1130 	else
1131 		ring->desc32 = desc;
1132 
1133 	/* map desc to device visible address space */
1134 	ctx.nfe_busaddr = 0;
1135 	error = bus_dmamap_load(ring->rx_desc_tag, ring->rx_desc_map, desc,
1136 	    NFE_RX_RING_COUNT * descsize, nfe_dma_map_segs, &ctx, 0);
1137 	if (error != 0) {
1138 		device_printf(sc->nfe_dev, "could not load desc DMA map\n");
1139 		goto fail;
1140 	}
1141 	ring->physaddr = ctx.nfe_busaddr;
1142 
1143 	error = bus_dma_tag_create(sc->nfe_parent_tag,
1144 	    1, 0,			/* alignment, boundary */
1145 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1146 	    BUS_SPACE_MAXADDR,		/* highaddr */
1147 	    NULL, NULL,			/* filter, filterarg */
1148 	    MCLBYTES, 1,		/* maxsize, nsegments */
1149 	    MCLBYTES,			/* maxsegsize */
1150 	    0,				/* flags */
1151 	    NULL, NULL,			/* lockfunc, lockarg */
1152 	    &ring->rx_data_tag);
1153 	if (error != 0) {
1154 		device_printf(sc->nfe_dev, "could not create Rx DMA tag\n");
1155 		goto fail;
1156 	}
1157 
1158 	error = bus_dmamap_create(ring->rx_data_tag, 0, &ring->rx_spare_map);
1159 	if (error != 0) {
1160 		device_printf(sc->nfe_dev,
1161 		    "could not create Rx DMA spare map\n");
1162 		goto fail;
1163 	}
1164 
1165 	/*
1166 	 * Pre-allocate Rx buffers and populate Rx ring.
1167 	 */
1168 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1169 		data = &sc->rxq.data[i];
1170 		data->rx_data_map = NULL;
1171 		data->m = NULL;
1172 		error = bus_dmamap_create(ring->rx_data_tag, 0,
1173 		    &data->rx_data_map);
1174 		if (error != 0) {
1175 			device_printf(sc->nfe_dev,
1176 			    "could not create Rx DMA map\n");
1177 			goto fail;
1178 		}
1179 	}
1180 
1181 fail:
1182 	return (error);
1183 }
1184 
1185 static void
1186 nfe_alloc_jrx_ring(struct nfe_softc *sc, struct nfe_jrx_ring *ring)
1187 {
1188 	struct nfe_dmamap_arg ctx;
1189 	struct nfe_rx_data *data;
1190 	void *desc;
1191 	int i, error, descsize;
1192 
1193 	if ((sc->nfe_flags & NFE_JUMBO_SUP) == 0)
1194 		return;
1195 	if (jumbo_disable != 0) {
1196 		device_printf(sc->nfe_dev, "disabling jumbo frame support\n");
1197 		sc->nfe_jumbo_disable = 1;
1198 		return;
1199 	}
1200 
1201 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1202 		desc = ring->jdesc64;
1203 		descsize = sizeof (struct nfe_desc64);
1204 	} else {
1205 		desc = ring->jdesc32;
1206 		descsize = sizeof (struct nfe_desc32);
1207 	}
1208 
1209 	ring->jcur = ring->jnext = 0;
1210 
1211 	/* Create DMA tag for jumbo Rx ring. */
1212 	error = bus_dma_tag_create(sc->nfe_parent_tag,
1213 	    NFE_RING_ALIGN, 0,			/* alignment, boundary */
1214 	    BUS_SPACE_MAXADDR,			/* lowaddr */
1215 	    BUS_SPACE_MAXADDR,			/* highaddr */
1216 	    NULL, NULL,				/* filter, filterarg */
1217 	    NFE_JUMBO_RX_RING_COUNT * descsize,	/* maxsize */
1218 	    1, 					/* nsegments */
1219 	    NFE_JUMBO_RX_RING_COUNT * descsize,	/* maxsegsize */
1220 	    0,					/* flags */
1221 	    NULL, NULL,				/* lockfunc, lockarg */
1222 	    &ring->jrx_desc_tag);
1223 	if (error != 0) {
1224 		device_printf(sc->nfe_dev,
1225 		    "could not create jumbo ring DMA tag\n");
1226 		goto fail;
1227 	}
1228 
1229 	/* Create DMA tag for jumbo Rx buffers. */
1230 	error = bus_dma_tag_create(sc->nfe_parent_tag,
1231 	    1, 0,				/* alignment, boundary */
1232 	    BUS_SPACE_MAXADDR,			/* lowaddr */
1233 	    BUS_SPACE_MAXADDR,			/* highaddr */
1234 	    NULL, NULL,				/* filter, filterarg */
1235 	    MJUM9BYTES,				/* maxsize */
1236 	    1,					/* nsegments */
1237 	    MJUM9BYTES,				/* maxsegsize */
1238 	    0,					/* flags */
1239 	    NULL, NULL,				/* lockfunc, lockarg */
1240 	    &ring->jrx_data_tag);
1241 	if (error != 0) {
1242 		device_printf(sc->nfe_dev,
1243 		    "could not create jumbo Rx buffer DMA tag\n");
1244 		goto fail;
1245 	}
1246 
1247 	/* Allocate DMA'able memory and load the DMA map for jumbo Rx ring. */
1248 	error = bus_dmamem_alloc(ring->jrx_desc_tag, &desc, BUS_DMA_WAITOK |
1249 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &ring->jrx_desc_map);
1250 	if (error != 0) {
1251 		device_printf(sc->nfe_dev,
1252 		    "could not allocate DMA'able memory for jumbo Rx ring\n");
1253 		goto fail;
1254 	}
1255 	if (sc->nfe_flags & NFE_40BIT_ADDR)
1256 		ring->jdesc64 = desc;
1257 	else
1258 		ring->jdesc32 = desc;
1259 
1260 	ctx.nfe_busaddr = 0;
1261 	error = bus_dmamap_load(ring->jrx_desc_tag, ring->jrx_desc_map, desc,
1262 	    NFE_JUMBO_RX_RING_COUNT * descsize, nfe_dma_map_segs, &ctx, 0);
1263 	if (error != 0) {
1264 		device_printf(sc->nfe_dev,
1265 		    "could not load DMA'able memory for jumbo Rx ring\n");
1266 		goto fail;
1267 	}
1268 	ring->jphysaddr = ctx.nfe_busaddr;
1269 
1270 	/* Create DMA maps for jumbo Rx buffers. */
1271 	error = bus_dmamap_create(ring->jrx_data_tag, 0, &ring->jrx_spare_map);
1272 	if (error != 0) {
1273 		device_printf(sc->nfe_dev,
1274 		    "could not create jumbo Rx DMA spare map\n");
1275 		goto fail;
1276 	}
1277 
1278 	for (i = 0; i < NFE_JUMBO_RX_RING_COUNT; i++) {
1279 		data = &sc->jrxq.jdata[i];
1280 		data->rx_data_map = NULL;
1281 		data->m = NULL;
1282 		error = bus_dmamap_create(ring->jrx_data_tag, 0,
1283 		    &data->rx_data_map);
1284 		if (error != 0) {
1285 			device_printf(sc->nfe_dev,
1286 			    "could not create jumbo Rx DMA map\n");
1287 			goto fail;
1288 		}
1289 	}
1290 
1291 	return;
1292 
1293 fail:
1294 	/*
1295 	 * Running without jumbo frame support is ok for most cases
1296 	 * so don't fail on creating dma tag/map for jumbo frame.
1297 	 */
1298 	nfe_free_jrx_ring(sc, ring);
1299 	device_printf(sc->nfe_dev, "disabling jumbo frame support due to "
1300 	    "resource shortage\n");
1301 	sc->nfe_jumbo_disable = 1;
1302 }
1303 
1304 static int
1305 nfe_init_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1306 {
1307 	void *desc;
1308 	size_t descsize;
1309 	int i;
1310 
1311 	ring->cur = ring->next = 0;
1312 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1313 		desc = ring->desc64;
1314 		descsize = sizeof (struct nfe_desc64);
1315 	} else {
1316 		desc = ring->desc32;
1317 		descsize = sizeof (struct nfe_desc32);
1318 	}
1319 	bzero(desc, descsize * NFE_RX_RING_COUNT);
1320 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1321 		if (nfe_newbuf(sc, i) != 0)
1322 			return (ENOBUFS);
1323 	}
1324 
1325 	bus_dmamap_sync(ring->rx_desc_tag, ring->rx_desc_map,
1326 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1327 
1328 	return (0);
1329 }
1330 
1331 static int
1332 nfe_init_jrx_ring(struct nfe_softc *sc, struct nfe_jrx_ring *ring)
1333 {
1334 	void *desc;
1335 	size_t descsize;
1336 	int i;
1337 
1338 	ring->jcur = ring->jnext = 0;
1339 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1340 		desc = ring->jdesc64;
1341 		descsize = sizeof (struct nfe_desc64);
1342 	} else {
1343 		desc = ring->jdesc32;
1344 		descsize = sizeof (struct nfe_desc32);
1345 	}
1346 	bzero(desc, descsize * NFE_JUMBO_RX_RING_COUNT);
1347 	for (i = 0; i < NFE_JUMBO_RX_RING_COUNT; i++) {
1348 		if (nfe_jnewbuf(sc, i) != 0)
1349 			return (ENOBUFS);
1350 	}
1351 
1352 	bus_dmamap_sync(ring->jrx_desc_tag, ring->jrx_desc_map,
1353 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1354 
1355 	return (0);
1356 }
1357 
1358 static void
1359 nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1360 {
1361 	struct nfe_rx_data *data;
1362 	void *desc;
1363 	int i;
1364 
1365 	if (sc->nfe_flags & NFE_40BIT_ADDR)
1366 		desc = ring->desc64;
1367 	else
1368 		desc = ring->desc32;
1369 
1370 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1371 		data = &ring->data[i];
1372 		if (data->rx_data_map != NULL) {
1373 			bus_dmamap_destroy(ring->rx_data_tag,
1374 			    data->rx_data_map);
1375 			data->rx_data_map = NULL;
1376 		}
1377 		if (data->m != NULL) {
1378 			m_freem(data->m);
1379 			data->m = NULL;
1380 		}
1381 	}
1382 	if (ring->rx_data_tag != NULL) {
1383 		if (ring->rx_spare_map != NULL) {
1384 			bus_dmamap_destroy(ring->rx_data_tag,
1385 			    ring->rx_spare_map);
1386 			ring->rx_spare_map = NULL;
1387 		}
1388 		bus_dma_tag_destroy(ring->rx_data_tag);
1389 		ring->rx_data_tag = NULL;
1390 	}
1391 
1392 	if (desc != NULL) {
1393 		bus_dmamap_unload(ring->rx_desc_tag, ring->rx_desc_map);
1394 		bus_dmamem_free(ring->rx_desc_tag, desc, ring->rx_desc_map);
1395 		ring->desc64 = NULL;
1396 		ring->desc32 = NULL;
1397 	}
1398 	if (ring->rx_desc_tag != NULL) {
1399 		bus_dma_tag_destroy(ring->rx_desc_tag);
1400 		ring->rx_desc_tag = NULL;
1401 	}
1402 }
1403 
1404 static void
1405 nfe_free_jrx_ring(struct nfe_softc *sc, struct nfe_jrx_ring *ring)
1406 {
1407 	struct nfe_rx_data *data;
1408 	void *desc;
1409 	int i;
1410 
1411 	if ((sc->nfe_flags & NFE_JUMBO_SUP) == 0)
1412 		return;
1413 
1414 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1415 		desc = ring->jdesc64;
1416 	} else {
1417 		desc = ring->jdesc32;
1418 	}
1419 
1420 	for (i = 0; i < NFE_JUMBO_RX_RING_COUNT; i++) {
1421 		data = &ring->jdata[i];
1422 		if (data->rx_data_map != NULL) {
1423 			bus_dmamap_destroy(ring->jrx_data_tag,
1424 			    data->rx_data_map);
1425 			data->rx_data_map = NULL;
1426 		}
1427 		if (data->m != NULL) {
1428 			m_freem(data->m);
1429 			data->m = NULL;
1430 		}
1431 	}
1432 	if (ring->jrx_data_tag != NULL) {
1433 		if (ring->jrx_spare_map != NULL) {
1434 			bus_dmamap_destroy(ring->jrx_data_tag,
1435 			    ring->jrx_spare_map);
1436 			ring->jrx_spare_map = NULL;
1437 		}
1438 		bus_dma_tag_destroy(ring->jrx_data_tag);
1439 		ring->jrx_data_tag = NULL;
1440 	}
1441 
1442 	if (desc != NULL) {
1443 		bus_dmamap_unload(ring->jrx_desc_tag, ring->jrx_desc_map);
1444 		bus_dmamem_free(ring->jrx_desc_tag, desc, ring->jrx_desc_map);
1445 		ring->jdesc64 = NULL;
1446 		ring->jdesc32 = NULL;
1447 	}
1448 
1449 	if (ring->jrx_desc_tag != NULL) {
1450 		bus_dma_tag_destroy(ring->jrx_desc_tag);
1451 		ring->jrx_desc_tag = NULL;
1452 	}
1453 }
1454 
1455 static int
1456 nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1457 {
1458 	struct nfe_dmamap_arg ctx;
1459 	int i, error;
1460 	void *desc;
1461 	int descsize;
1462 
1463 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1464 		desc = ring->desc64;
1465 		descsize = sizeof (struct nfe_desc64);
1466 	} else {
1467 		desc = ring->desc32;
1468 		descsize = sizeof (struct nfe_desc32);
1469 	}
1470 
1471 	ring->queued = 0;
1472 	ring->cur = ring->next = 0;
1473 
1474 	error = bus_dma_tag_create(sc->nfe_parent_tag,
1475 	    NFE_RING_ALIGN, 0,			/* alignment, boundary */
1476 	    BUS_SPACE_MAXADDR,			/* lowaddr */
1477 	    BUS_SPACE_MAXADDR,			/* highaddr */
1478 	    NULL, NULL,				/* filter, filterarg */
1479 	    NFE_TX_RING_COUNT * descsize, 1,	/* maxsize, nsegments */
1480 	    NFE_TX_RING_COUNT * descsize,	/* maxsegsize */
1481 	    0,					/* flags */
1482 	    NULL, NULL,				/* lockfunc, lockarg */
1483 	    &ring->tx_desc_tag);
1484 	if (error != 0) {
1485 		device_printf(sc->nfe_dev, "could not create desc DMA tag\n");
1486 		goto fail;
1487 	}
1488 
1489 	error = bus_dmamem_alloc(ring->tx_desc_tag, &desc, BUS_DMA_WAITOK |
1490 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &ring->tx_desc_map);
1491 	if (error != 0) {
1492 		device_printf(sc->nfe_dev, "could not create desc DMA map\n");
1493 		goto fail;
1494 	}
1495 	if (sc->nfe_flags & NFE_40BIT_ADDR)
1496 		ring->desc64 = desc;
1497 	else
1498 		ring->desc32 = desc;
1499 
1500 	ctx.nfe_busaddr = 0;
1501 	error = bus_dmamap_load(ring->tx_desc_tag, ring->tx_desc_map, desc,
1502 	    NFE_TX_RING_COUNT * descsize, nfe_dma_map_segs, &ctx, 0);
1503 	if (error != 0) {
1504 		device_printf(sc->nfe_dev, "could not load desc DMA map\n");
1505 		goto fail;
1506 	}
1507 	ring->physaddr = ctx.nfe_busaddr;
1508 
1509 	error = bus_dma_tag_create(sc->nfe_parent_tag,
1510 	    1, 0,
1511 	    BUS_SPACE_MAXADDR,
1512 	    BUS_SPACE_MAXADDR,
1513 	    NULL, NULL,
1514 	    NFE_TSO_MAXSIZE,
1515 	    NFE_MAX_SCATTER,
1516 	    NFE_TSO_MAXSGSIZE,
1517 	    0,
1518 	    NULL, NULL,
1519 	    &ring->tx_data_tag);
1520 	if (error != 0) {
1521 		device_printf(sc->nfe_dev, "could not create Tx DMA tag\n");
1522 		goto fail;
1523 	}
1524 
1525 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1526 		error = bus_dmamap_create(ring->tx_data_tag, 0,
1527 		    &ring->data[i].tx_data_map);
1528 		if (error != 0) {
1529 			device_printf(sc->nfe_dev,
1530 			    "could not create Tx DMA map\n");
1531 			goto fail;
1532 		}
1533 	}
1534 
1535 fail:
1536 	return (error);
1537 }
1538 
1539 static void
1540 nfe_init_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1541 {
1542 	void *desc;
1543 	size_t descsize;
1544 
1545 	sc->nfe_force_tx = 0;
1546 	ring->queued = 0;
1547 	ring->cur = ring->next = 0;
1548 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1549 		desc = ring->desc64;
1550 		descsize = sizeof (struct nfe_desc64);
1551 	} else {
1552 		desc = ring->desc32;
1553 		descsize = sizeof (struct nfe_desc32);
1554 	}
1555 	bzero(desc, descsize * NFE_TX_RING_COUNT);
1556 
1557 	bus_dmamap_sync(ring->tx_desc_tag, ring->tx_desc_map,
1558 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1559 }
1560 
1561 static void
1562 nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1563 {
1564 	struct nfe_tx_data *data;
1565 	void *desc;
1566 	int i;
1567 
1568 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1569 		desc = ring->desc64;
1570 	} else {
1571 		desc = ring->desc32;
1572 	}
1573 
1574 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1575 		data = &ring->data[i];
1576 
1577 		if (data->m != NULL) {
1578 			bus_dmamap_sync(ring->tx_data_tag, data->tx_data_map,
1579 			    BUS_DMASYNC_POSTWRITE);
1580 			bus_dmamap_unload(ring->tx_data_tag, data->tx_data_map);
1581 			m_freem(data->m);
1582 			data->m = NULL;
1583 		}
1584 		if (data->tx_data_map != NULL) {
1585 			bus_dmamap_destroy(ring->tx_data_tag,
1586 			    data->tx_data_map);
1587 			data->tx_data_map = NULL;
1588 		}
1589 	}
1590 
1591 	if (ring->tx_data_tag != NULL) {
1592 		bus_dma_tag_destroy(ring->tx_data_tag);
1593 		ring->tx_data_tag = NULL;
1594 	}
1595 
1596 	if (desc != NULL) {
1597 		bus_dmamap_sync(ring->tx_desc_tag, ring->tx_desc_map,
1598 		    BUS_DMASYNC_POSTWRITE);
1599 		bus_dmamap_unload(ring->tx_desc_tag, ring->tx_desc_map);
1600 		bus_dmamem_free(ring->tx_desc_tag, desc, ring->tx_desc_map);
1601 		ring->desc64 = NULL;
1602 		ring->desc32 = NULL;
1603 		bus_dma_tag_destroy(ring->tx_desc_tag);
1604 		ring->tx_desc_tag = NULL;
1605 	}
1606 }
1607 
1608 #ifdef DEVICE_POLLING
1609 static poll_handler_t nfe_poll;
1610 
1611 static int
1612 nfe_poll(if_t ifp, enum poll_cmd cmd, int count)
1613 {
1614 	struct nfe_softc *sc = if_getsoftc(ifp);
1615 	uint32_t r;
1616 	int rx_npkts = 0;
1617 
1618 	NFE_LOCK(sc);
1619 
1620 	if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
1621 		NFE_UNLOCK(sc);
1622 		return (rx_npkts);
1623 	}
1624 
1625 	if (sc->nfe_framesize > MCLBYTES - ETHER_HDR_LEN)
1626 		rx_npkts = nfe_jrxeof(sc, count, &rx_npkts);
1627 	else
1628 		rx_npkts = nfe_rxeof(sc, count, &rx_npkts);
1629 	nfe_txeof(sc);
1630 	if (!if_sendq_empty(ifp))
1631 		nfe_start_locked(ifp);
1632 
1633 	if (cmd == POLL_AND_CHECK_STATUS) {
1634 		if ((r = NFE_READ(sc, sc->nfe_irq_status)) == 0) {
1635 			NFE_UNLOCK(sc);
1636 			return (rx_npkts);
1637 		}
1638 		NFE_WRITE(sc, sc->nfe_irq_status, r);
1639 
1640 		if (r & NFE_IRQ_LINK) {
1641 			NFE_READ(sc, NFE_PHY_STATUS);
1642 			NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1643 			DPRINTF(sc, "link state changed\n");
1644 		}
1645 	}
1646 	NFE_UNLOCK(sc);
1647 	return (rx_npkts);
1648 }
1649 #endif /* DEVICE_POLLING */
1650 
1651 static void
1652 nfe_set_intr(struct nfe_softc *sc)
1653 {
1654 
1655 	if (sc->nfe_msi != 0)
1656 		NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
1657 }
1658 
1659 /* In MSIX, a write to mask reegisters behaves as XOR. */
1660 static __inline void
1661 nfe_enable_intr(struct nfe_softc *sc)
1662 {
1663 
1664 	if (sc->nfe_msix != 0) {
1665 		/* XXX Should have a better way to enable interrupts! */
1666 		if (NFE_READ(sc, sc->nfe_irq_mask) == 0)
1667 			NFE_WRITE(sc, sc->nfe_irq_mask, sc->nfe_intrs);
1668 	} else
1669 		NFE_WRITE(sc, sc->nfe_irq_mask, sc->nfe_intrs);
1670 }
1671 
1672 static __inline void
1673 nfe_disable_intr(struct nfe_softc *sc)
1674 {
1675 
1676 	if (sc->nfe_msix != 0) {
1677 		/* XXX Should have a better way to disable interrupts! */
1678 		if (NFE_READ(sc, sc->nfe_irq_mask) != 0)
1679 			NFE_WRITE(sc, sc->nfe_irq_mask, sc->nfe_nointrs);
1680 	} else
1681 		NFE_WRITE(sc, sc->nfe_irq_mask, sc->nfe_nointrs);
1682 }
1683 
1684 static int
1685 nfe_ioctl(if_t ifp, u_long cmd, caddr_t data)
1686 {
1687 	struct nfe_softc *sc;
1688 	struct ifreq *ifr;
1689 	struct mii_data *mii;
1690 	int error, init, mask;
1691 
1692 	sc = if_getsoftc(ifp);
1693 	ifr = (struct ifreq *) data;
1694 	error = 0;
1695 	init = 0;
1696 	switch (cmd) {
1697 	case SIOCSIFMTU:
1698 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > NFE_JUMBO_MTU)
1699 			error = EINVAL;
1700 		else if (if_getmtu(ifp) != ifr->ifr_mtu) {
1701 			if ((((sc->nfe_flags & NFE_JUMBO_SUP) == 0) ||
1702 			    (sc->nfe_jumbo_disable != 0)) &&
1703 			    ifr->ifr_mtu > ETHERMTU)
1704 				error = EINVAL;
1705 			else {
1706 				NFE_LOCK(sc);
1707 				if_setmtu(ifp, ifr->ifr_mtu);
1708 				if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
1709 					if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1710 					nfe_init_locked(sc);
1711 				}
1712 				NFE_UNLOCK(sc);
1713 			}
1714 		}
1715 		break;
1716 	case SIOCSIFFLAGS:
1717 		NFE_LOCK(sc);
1718 		if (if_getflags(ifp) & IFF_UP) {
1719 			/*
1720 			 * If only the PROMISC or ALLMULTI flag changes, then
1721 			 * don't do a full re-init of the chip, just update
1722 			 * the Rx filter.
1723 			 */
1724 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) &&
1725 			    ((if_getflags(ifp) ^ sc->nfe_if_flags) &
1726 			     (IFF_ALLMULTI | IFF_PROMISC)) != 0)
1727 				nfe_setmulti(sc);
1728 			else
1729 				nfe_init_locked(sc);
1730 		} else {
1731 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
1732 				nfe_stop(ifp);
1733 		}
1734 		sc->nfe_if_flags = if_getflags(ifp);
1735 		NFE_UNLOCK(sc);
1736 		error = 0;
1737 		break;
1738 	case SIOCADDMULTI:
1739 	case SIOCDELMULTI:
1740 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1741 			NFE_LOCK(sc);
1742 			nfe_setmulti(sc);
1743 			NFE_UNLOCK(sc);
1744 			error = 0;
1745 		}
1746 		break;
1747 	case SIOCSIFMEDIA:
1748 	case SIOCGIFMEDIA:
1749 		mii = device_get_softc(sc->nfe_miibus);
1750 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1751 		break;
1752 	case SIOCSIFCAP:
1753 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
1754 #ifdef DEVICE_POLLING
1755 		if ((mask & IFCAP_POLLING) != 0) {
1756 			if ((ifr->ifr_reqcap & IFCAP_POLLING) != 0) {
1757 				error = ether_poll_register(nfe_poll, ifp);
1758 				if (error)
1759 					break;
1760 				NFE_LOCK(sc);
1761 				nfe_disable_intr(sc);
1762 				if_setcapenablebit(ifp, IFCAP_POLLING, 0);
1763 				NFE_UNLOCK(sc);
1764 			} else {
1765 				error = ether_poll_deregister(ifp);
1766 				/* Enable interrupt even in error case */
1767 				NFE_LOCK(sc);
1768 				nfe_enable_intr(sc);
1769 				if_setcapenablebit(ifp, 0, IFCAP_POLLING);
1770 				NFE_UNLOCK(sc);
1771 			}
1772 		}
1773 #endif /* DEVICE_POLLING */
1774 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1775 		    (if_getcapabilities(ifp) & IFCAP_WOL_MAGIC) != 0)
1776 			if_togglecapenable(ifp, IFCAP_WOL_MAGIC);
1777 		if ((mask & IFCAP_TXCSUM) != 0 &&
1778 		    (if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) {
1779 			if_togglecapenable(ifp, IFCAP_TXCSUM);
1780 			if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
1781 				if_sethwassistbits(ifp, NFE_CSUM_FEATURES, 0);
1782 			else
1783 				if_sethwassistbits(ifp, 0, NFE_CSUM_FEATURES);
1784 		}
1785 		if ((mask & IFCAP_RXCSUM) != 0 &&
1786 		    (if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0) {
1787 			if_togglecapenable(ifp, IFCAP_RXCSUM);
1788 			init++;
1789 		}
1790 		if ((mask & IFCAP_TSO4) != 0 &&
1791 		    (if_getcapabilities(ifp) & IFCAP_TSO4) != 0) {
1792 			if_togglecapenable(ifp, IFCAP_TSO4);
1793 			if ((IFCAP_TSO4 & if_getcapenable(ifp)) != 0)
1794 				if_sethwassistbits(ifp, CSUM_TSO, 0);
1795 			else
1796 				if_sethwassistbits(ifp, 0, CSUM_TSO);
1797 		}
1798 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1799 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0)
1800 			if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
1801 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1802 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
1803 			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
1804 			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0)
1805 				if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWTSO);
1806 			init++;
1807 		}
1808 		/*
1809 		 * XXX
1810 		 * It seems that VLAN stripping requires Rx checksum offload.
1811 		 * Unfortunately FreeBSD has no way to disable only Rx side
1812 		 * VLAN stripping. So when we know Rx checksum offload is
1813 		 * disabled turn entire hardware VLAN assist off.
1814 		 */
1815 		if ((if_getcapenable(ifp) & IFCAP_RXCSUM) == 0) {
1816 			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0)
1817 				init++;
1818 			if_setcapenablebit(ifp, 0,
1819 			    (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWTSO));
1820 		}
1821 		if (init > 0 && (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1822 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1823 			nfe_init(sc);
1824 		}
1825 		if_vlancap(ifp);
1826 		break;
1827 	default:
1828 		error = ether_ioctl(ifp, cmd, data);
1829 		break;
1830 	}
1831 
1832 	return (error);
1833 }
1834 
1835 static int
1836 nfe_intr(void *arg)
1837 {
1838 	struct nfe_softc *sc;
1839 	uint32_t status;
1840 
1841 	sc = (struct nfe_softc *)arg;
1842 
1843 	status = NFE_READ(sc, sc->nfe_irq_status);
1844 	if (status == 0 || status == 0xffffffff)
1845 		return (FILTER_STRAY);
1846 	nfe_disable_intr(sc);
1847 	taskqueue_enqueue(sc->nfe_tq, &sc->nfe_int_task);
1848 
1849 	return (FILTER_HANDLED);
1850 }
1851 
1852 static void
1853 nfe_int_task(void *arg, int pending)
1854 {
1855 	struct nfe_softc *sc = arg;
1856 	if_t ifp = sc->nfe_ifp;
1857 	uint32_t r;
1858 	int domore;
1859 
1860 	NFE_LOCK(sc);
1861 
1862 	if ((r = NFE_READ(sc, sc->nfe_irq_status)) == 0) {
1863 		nfe_enable_intr(sc);
1864 		NFE_UNLOCK(sc);
1865 		return;	/* not for us */
1866 	}
1867 	NFE_WRITE(sc, sc->nfe_irq_status, r);
1868 
1869 	DPRINTFN(sc, 5, "nfe_intr: interrupt register %x\n", r);
1870 
1871 #ifdef DEVICE_POLLING
1872 	if (if_getcapenable(ifp) & IFCAP_POLLING) {
1873 		NFE_UNLOCK(sc);
1874 		return;
1875 	}
1876 #endif
1877 
1878 	if (r & NFE_IRQ_LINK) {
1879 		NFE_READ(sc, NFE_PHY_STATUS);
1880 		NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1881 		DPRINTF(sc, "link state changed\n");
1882 	}
1883 
1884 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
1885 		NFE_UNLOCK(sc);
1886 		nfe_disable_intr(sc);
1887 		return;
1888 	}
1889 
1890 	domore = 0;
1891 	/* check Rx ring */
1892 	if (sc->nfe_framesize > MCLBYTES - ETHER_HDR_LEN)
1893 		domore = nfe_jrxeof(sc, sc->nfe_process_limit, NULL);
1894 	else
1895 		domore = nfe_rxeof(sc, sc->nfe_process_limit, NULL);
1896 	/* check Tx ring */
1897 	nfe_txeof(sc);
1898 
1899 	if (!if_sendq_empty(ifp))
1900 		nfe_start_locked(ifp);
1901 
1902 	NFE_UNLOCK(sc);
1903 
1904 	if (domore || (NFE_READ(sc, sc->nfe_irq_status) != 0)) {
1905 		taskqueue_enqueue(sc->nfe_tq, &sc->nfe_int_task);
1906 		return;
1907 	}
1908 
1909 	/* Reenable interrupts. */
1910 	nfe_enable_intr(sc);
1911 }
1912 
1913 static __inline void
1914 nfe_discard_rxbuf(struct nfe_softc *sc, int idx)
1915 {
1916 	struct nfe_desc32 *desc32;
1917 	struct nfe_desc64 *desc64;
1918 	struct nfe_rx_data *data;
1919 	struct mbuf *m;
1920 
1921 	data = &sc->rxq.data[idx];
1922 	m = data->m;
1923 
1924 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1925 		desc64 = &sc->rxq.desc64[idx];
1926 		/* VLAN packet may have overwritten it. */
1927 		desc64->physaddr[0] = htole32(NFE_ADDR_HI(data->paddr));
1928 		desc64->physaddr[1] = htole32(NFE_ADDR_LO(data->paddr));
1929 		desc64->length = htole16(m->m_len);
1930 		desc64->flags = htole16(NFE_RX_READY);
1931 	} else {
1932 		desc32 = &sc->rxq.desc32[idx];
1933 		desc32->length = htole16(m->m_len);
1934 		desc32->flags = htole16(NFE_RX_READY);
1935 	}
1936 }
1937 
1938 static __inline void
1939 nfe_discard_jrxbuf(struct nfe_softc *sc, int idx)
1940 {
1941 	struct nfe_desc32 *desc32;
1942 	struct nfe_desc64 *desc64;
1943 	struct nfe_rx_data *data;
1944 	struct mbuf *m;
1945 
1946 	data = &sc->jrxq.jdata[idx];
1947 	m = data->m;
1948 
1949 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1950 		desc64 = &sc->jrxq.jdesc64[idx];
1951 		/* VLAN packet may have overwritten it. */
1952 		desc64->physaddr[0] = htole32(NFE_ADDR_HI(data->paddr));
1953 		desc64->physaddr[1] = htole32(NFE_ADDR_LO(data->paddr));
1954 		desc64->length = htole16(m->m_len);
1955 		desc64->flags = htole16(NFE_RX_READY);
1956 	} else {
1957 		desc32 = &sc->jrxq.jdesc32[idx];
1958 		desc32->length = htole16(m->m_len);
1959 		desc32->flags = htole16(NFE_RX_READY);
1960 	}
1961 }
1962 
1963 static int
1964 nfe_newbuf(struct nfe_softc *sc, int idx)
1965 {
1966 	struct nfe_rx_data *data;
1967 	struct nfe_desc32 *desc32;
1968 	struct nfe_desc64 *desc64;
1969 	struct mbuf *m;
1970 	bus_dma_segment_t segs[1];
1971 	bus_dmamap_t map;
1972 	int nsegs;
1973 
1974 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1975 	if (m == NULL)
1976 		return (ENOBUFS);
1977 
1978 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1979 	m_adj(m, ETHER_ALIGN);
1980 
1981 	if (bus_dmamap_load_mbuf_sg(sc->rxq.rx_data_tag, sc->rxq.rx_spare_map,
1982 	    m, segs, &nsegs, BUS_DMA_NOWAIT) != 0) {
1983 		m_freem(m);
1984 		return (ENOBUFS);
1985 	}
1986 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1987 
1988 	data = &sc->rxq.data[idx];
1989 	if (data->m != NULL) {
1990 		bus_dmamap_sync(sc->rxq.rx_data_tag, data->rx_data_map,
1991 		    BUS_DMASYNC_POSTREAD);
1992 		bus_dmamap_unload(sc->rxq.rx_data_tag, data->rx_data_map);
1993 	}
1994 	map = data->rx_data_map;
1995 	data->rx_data_map = sc->rxq.rx_spare_map;
1996 	sc->rxq.rx_spare_map = map;
1997 	bus_dmamap_sync(sc->rxq.rx_data_tag, data->rx_data_map,
1998 	    BUS_DMASYNC_PREREAD);
1999 	data->paddr = segs[0].ds_addr;
2000 	data->m = m;
2001 	/* update mapping address in h/w descriptor */
2002 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
2003 		desc64 = &sc->rxq.desc64[idx];
2004 		desc64->physaddr[0] = htole32(NFE_ADDR_HI(segs[0].ds_addr));
2005 		desc64->physaddr[1] = htole32(NFE_ADDR_LO(segs[0].ds_addr));
2006 		desc64->length = htole16(segs[0].ds_len);
2007 		desc64->flags = htole16(NFE_RX_READY);
2008 	} else {
2009 		desc32 = &sc->rxq.desc32[idx];
2010 		desc32->physaddr = htole32(NFE_ADDR_LO(segs[0].ds_addr));
2011 		desc32->length = htole16(segs[0].ds_len);
2012 		desc32->flags = htole16(NFE_RX_READY);
2013 	}
2014 
2015 	return (0);
2016 }
2017 
2018 static int
2019 nfe_jnewbuf(struct nfe_softc *sc, int idx)
2020 {
2021 	struct nfe_rx_data *data;
2022 	struct nfe_desc32 *desc32;
2023 	struct nfe_desc64 *desc64;
2024 	struct mbuf *m;
2025 	bus_dma_segment_t segs[1];
2026 	bus_dmamap_t map;
2027 	int nsegs;
2028 
2029 	m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
2030 	if (m == NULL)
2031 		return (ENOBUFS);
2032 	m->m_pkthdr.len = m->m_len = MJUM9BYTES;
2033 	m_adj(m, ETHER_ALIGN);
2034 
2035 	if (bus_dmamap_load_mbuf_sg(sc->jrxq.jrx_data_tag,
2036 	    sc->jrxq.jrx_spare_map, m, segs, &nsegs, BUS_DMA_NOWAIT) != 0) {
2037 		m_freem(m);
2038 		return (ENOBUFS);
2039 	}
2040 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
2041 
2042 	data = &sc->jrxq.jdata[idx];
2043 	if (data->m != NULL) {
2044 		bus_dmamap_sync(sc->jrxq.jrx_data_tag, data->rx_data_map,
2045 		    BUS_DMASYNC_POSTREAD);
2046 		bus_dmamap_unload(sc->jrxq.jrx_data_tag, data->rx_data_map);
2047 	}
2048 	map = data->rx_data_map;
2049 	data->rx_data_map = sc->jrxq.jrx_spare_map;
2050 	sc->jrxq.jrx_spare_map = map;
2051 	bus_dmamap_sync(sc->jrxq.jrx_data_tag, data->rx_data_map,
2052 	    BUS_DMASYNC_PREREAD);
2053 	data->paddr = segs[0].ds_addr;
2054 	data->m = m;
2055 	/* update mapping address in h/w descriptor */
2056 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
2057 		desc64 = &sc->jrxq.jdesc64[idx];
2058 		desc64->physaddr[0] = htole32(NFE_ADDR_HI(segs[0].ds_addr));
2059 		desc64->physaddr[1] = htole32(NFE_ADDR_LO(segs[0].ds_addr));
2060 		desc64->length = htole16(segs[0].ds_len);
2061 		desc64->flags = htole16(NFE_RX_READY);
2062 	} else {
2063 		desc32 = &sc->jrxq.jdesc32[idx];
2064 		desc32->physaddr = htole32(NFE_ADDR_LO(segs[0].ds_addr));
2065 		desc32->length = htole16(segs[0].ds_len);
2066 		desc32->flags = htole16(NFE_RX_READY);
2067 	}
2068 
2069 	return (0);
2070 }
2071 
2072 static int
2073 nfe_rxeof(struct nfe_softc *sc, int count, int *rx_npktsp)
2074 {
2075 	if_t ifp = sc->nfe_ifp;
2076 	struct nfe_desc32 *desc32;
2077 	struct nfe_desc64 *desc64;
2078 	struct nfe_rx_data *data;
2079 	struct mbuf *m;
2080 	uint16_t flags;
2081 	int len, prog, rx_npkts;
2082 	uint32_t vtag = 0;
2083 
2084 	rx_npkts = 0;
2085 	NFE_LOCK_ASSERT(sc);
2086 
2087 	bus_dmamap_sync(sc->rxq.rx_desc_tag, sc->rxq.rx_desc_map,
2088 	    BUS_DMASYNC_POSTREAD);
2089 
2090 	for (prog = 0;;NFE_INC(sc->rxq.cur, NFE_RX_RING_COUNT), vtag = 0) {
2091 		if (count <= 0)
2092 			break;
2093 		count--;
2094 
2095 		data = &sc->rxq.data[sc->rxq.cur];
2096 
2097 		if (sc->nfe_flags & NFE_40BIT_ADDR) {
2098 			desc64 = &sc->rxq.desc64[sc->rxq.cur];
2099 			vtag = le32toh(desc64->physaddr[1]);
2100 			flags = le16toh(desc64->flags);
2101 			len = le16toh(desc64->length) & NFE_RX_LEN_MASK;
2102 		} else {
2103 			desc32 = &sc->rxq.desc32[sc->rxq.cur];
2104 			flags = le16toh(desc32->flags);
2105 			len = le16toh(desc32->length) & NFE_RX_LEN_MASK;
2106 		}
2107 
2108 		if (flags & NFE_RX_READY)
2109 			break;
2110 		prog++;
2111 		if ((sc->nfe_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
2112 			if (!(flags & NFE_RX_VALID_V1)) {
2113 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2114 				nfe_discard_rxbuf(sc, sc->rxq.cur);
2115 				continue;
2116 			}
2117 			if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
2118 				flags &= ~NFE_RX_ERROR;
2119 				len--;	/* fix buffer length */
2120 			}
2121 		} else {
2122 			if (!(flags & NFE_RX_VALID_V2)) {
2123 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2124 				nfe_discard_rxbuf(sc, sc->rxq.cur);
2125 				continue;
2126 			}
2127 
2128 			if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
2129 				flags &= ~NFE_RX_ERROR;
2130 				len--;	/* fix buffer length */
2131 			}
2132 		}
2133 
2134 		if (flags & NFE_RX_ERROR) {
2135 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2136 			nfe_discard_rxbuf(sc, sc->rxq.cur);
2137 			continue;
2138 		}
2139 
2140 		m = data->m;
2141 		if (nfe_newbuf(sc, sc->rxq.cur) != 0) {
2142 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2143 			nfe_discard_rxbuf(sc, sc->rxq.cur);
2144 			continue;
2145 		}
2146 
2147 		if ((vtag & NFE_RX_VTAG) != 0 &&
2148 		    (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
2149 			m->m_pkthdr.ether_vtag = vtag & 0xffff;
2150 			m->m_flags |= M_VLANTAG;
2151 		}
2152 
2153 		m->m_pkthdr.len = m->m_len = len;
2154 		m->m_pkthdr.rcvif = ifp;
2155 
2156 		if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) {
2157 			if ((flags & NFE_RX_IP_CSUMOK) != 0) {
2158 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2159 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2160 				if ((flags & NFE_RX_TCP_CSUMOK) != 0 ||
2161 				    (flags & NFE_RX_UDP_CSUMOK) != 0) {
2162 					m->m_pkthdr.csum_flags |=
2163 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2164 					m->m_pkthdr.csum_data = 0xffff;
2165 				}
2166 			}
2167 		}
2168 
2169 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2170 
2171 		NFE_UNLOCK(sc);
2172 		if_input(ifp, m);
2173 		NFE_LOCK(sc);
2174 		rx_npkts++;
2175 	}
2176 
2177 	if (prog > 0)
2178 		bus_dmamap_sync(sc->rxq.rx_desc_tag, sc->rxq.rx_desc_map,
2179 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2180 
2181 	if (rx_npktsp != NULL)
2182 		*rx_npktsp = rx_npkts;
2183 	return (count > 0 ? 0 : EAGAIN);
2184 }
2185 
2186 static int
2187 nfe_jrxeof(struct nfe_softc *sc, int count, int *rx_npktsp)
2188 {
2189 	if_t ifp = sc->nfe_ifp;
2190 	struct nfe_desc32 *desc32;
2191 	struct nfe_desc64 *desc64;
2192 	struct nfe_rx_data *data;
2193 	struct mbuf *m;
2194 	uint16_t flags;
2195 	int len, prog, rx_npkts;
2196 	uint32_t vtag = 0;
2197 
2198 	rx_npkts = 0;
2199 	NFE_LOCK_ASSERT(sc);
2200 
2201 	bus_dmamap_sync(sc->jrxq.jrx_desc_tag, sc->jrxq.jrx_desc_map,
2202 	    BUS_DMASYNC_POSTREAD);
2203 
2204 	for (prog = 0;;NFE_INC(sc->jrxq.jcur, NFE_JUMBO_RX_RING_COUNT),
2205 	    vtag = 0) {
2206 		if (count <= 0)
2207 			break;
2208 		count--;
2209 
2210 		data = &sc->jrxq.jdata[sc->jrxq.jcur];
2211 
2212 		if (sc->nfe_flags & NFE_40BIT_ADDR) {
2213 			desc64 = &sc->jrxq.jdesc64[sc->jrxq.jcur];
2214 			vtag = le32toh(desc64->physaddr[1]);
2215 			flags = le16toh(desc64->flags);
2216 			len = le16toh(desc64->length) & NFE_RX_LEN_MASK;
2217 		} else {
2218 			desc32 = &sc->jrxq.jdesc32[sc->jrxq.jcur];
2219 			flags = le16toh(desc32->flags);
2220 			len = le16toh(desc32->length) & NFE_RX_LEN_MASK;
2221 		}
2222 
2223 		if (flags & NFE_RX_READY)
2224 			break;
2225 		prog++;
2226 		if ((sc->nfe_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
2227 			if (!(flags & NFE_RX_VALID_V1)) {
2228 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2229 				nfe_discard_jrxbuf(sc, sc->jrxq.jcur);
2230 				continue;
2231 			}
2232 			if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
2233 				flags &= ~NFE_RX_ERROR;
2234 				len--;	/* fix buffer length */
2235 			}
2236 		} else {
2237 			if (!(flags & NFE_RX_VALID_V2)) {
2238 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2239 				nfe_discard_jrxbuf(sc, sc->jrxq.jcur);
2240 				continue;
2241 			}
2242 
2243 			if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
2244 				flags &= ~NFE_RX_ERROR;
2245 				len--;	/* fix buffer length */
2246 			}
2247 		}
2248 
2249 		if (flags & NFE_RX_ERROR) {
2250 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2251 			nfe_discard_jrxbuf(sc, sc->jrxq.jcur);
2252 			continue;
2253 		}
2254 
2255 		m = data->m;
2256 		if (nfe_jnewbuf(sc, sc->jrxq.jcur) != 0) {
2257 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2258 			nfe_discard_jrxbuf(sc, sc->jrxq.jcur);
2259 			continue;
2260 		}
2261 
2262 		if ((vtag & NFE_RX_VTAG) != 0 &&
2263 		    (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
2264 			m->m_pkthdr.ether_vtag = vtag & 0xffff;
2265 			m->m_flags |= M_VLANTAG;
2266 		}
2267 
2268 		m->m_pkthdr.len = m->m_len = len;
2269 		m->m_pkthdr.rcvif = ifp;
2270 
2271 		if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) {
2272 			if ((flags & NFE_RX_IP_CSUMOK) != 0) {
2273 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2274 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2275 				if ((flags & NFE_RX_TCP_CSUMOK) != 0 ||
2276 				    (flags & NFE_RX_UDP_CSUMOK) != 0) {
2277 					m->m_pkthdr.csum_flags |=
2278 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2279 					m->m_pkthdr.csum_data = 0xffff;
2280 				}
2281 			}
2282 		}
2283 
2284 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2285 
2286 		NFE_UNLOCK(sc);
2287 		if_input(ifp, m);
2288 		NFE_LOCK(sc);
2289 		rx_npkts++;
2290 	}
2291 
2292 	if (prog > 0)
2293 		bus_dmamap_sync(sc->jrxq.jrx_desc_tag, sc->jrxq.jrx_desc_map,
2294 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2295 
2296 	if (rx_npktsp != NULL)
2297 		*rx_npktsp = rx_npkts;
2298 	return (count > 0 ? 0 : EAGAIN);
2299 }
2300 
2301 static void
2302 nfe_txeof(struct nfe_softc *sc)
2303 {
2304 	if_t ifp = sc->nfe_ifp;
2305 	struct nfe_desc32 *desc32;
2306 	struct nfe_desc64 *desc64;
2307 	struct nfe_tx_data *data = NULL;
2308 	uint16_t flags;
2309 	int cons, prog;
2310 
2311 	NFE_LOCK_ASSERT(sc);
2312 
2313 	bus_dmamap_sync(sc->txq.tx_desc_tag, sc->txq.tx_desc_map,
2314 	    BUS_DMASYNC_POSTREAD);
2315 
2316 	prog = 0;
2317 	for (cons = sc->txq.next; cons != sc->txq.cur;
2318 	    NFE_INC(cons, NFE_TX_RING_COUNT)) {
2319 		if (sc->nfe_flags & NFE_40BIT_ADDR) {
2320 			desc64 = &sc->txq.desc64[cons];
2321 			flags = le16toh(desc64->flags);
2322 		} else {
2323 			desc32 = &sc->txq.desc32[cons];
2324 			flags = le16toh(desc32->flags);
2325 		}
2326 
2327 		if (flags & NFE_TX_VALID)
2328 			break;
2329 
2330 		prog++;
2331 		sc->txq.queued--;
2332 		data = &sc->txq.data[cons];
2333 
2334 		if ((sc->nfe_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
2335 			if ((flags & NFE_TX_LASTFRAG_V1) == 0)
2336 				continue;
2337 			if ((flags & NFE_TX_ERROR_V1) != 0) {
2338 				device_printf(sc->nfe_dev,
2339 				    "tx v1 error 0x%4b\n", flags, NFE_V1_TXERR);
2340 
2341 				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2342 			} else
2343 				if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
2344 		} else {
2345 			if ((flags & NFE_TX_LASTFRAG_V2) == 0)
2346 				continue;
2347 			if ((flags & NFE_TX_ERROR_V2) != 0) {
2348 				device_printf(sc->nfe_dev,
2349 				    "tx v2 error 0x%4b\n", flags, NFE_V2_TXERR);
2350 				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2351 			} else
2352 				if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
2353 		}
2354 
2355 		/* last fragment of the mbuf chain transmitted */
2356 		KASSERT(data->m != NULL, ("%s: freeing NULL mbuf!", __func__));
2357 		bus_dmamap_sync(sc->txq.tx_data_tag, data->tx_data_map,
2358 		    BUS_DMASYNC_POSTWRITE);
2359 		bus_dmamap_unload(sc->txq.tx_data_tag, data->tx_data_map);
2360 		m_freem(data->m);
2361 		data->m = NULL;
2362 	}
2363 
2364 	if (prog > 0) {
2365 		sc->nfe_force_tx = 0;
2366 		sc->txq.next = cons;
2367 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2368 		if (sc->txq.queued == 0)
2369 			sc->nfe_watchdog_timer = 0;
2370 	}
2371 }
2372 
2373 static int
2374 nfe_encap(struct nfe_softc *sc, struct mbuf **m_head)
2375 {
2376 	struct nfe_desc32 *desc32 = NULL;
2377 	struct nfe_desc64 *desc64 = NULL;
2378 	bus_dmamap_t map;
2379 	bus_dma_segment_t segs[NFE_MAX_SCATTER];
2380 	int error, i, nsegs, prod, si;
2381 	uint32_t tsosegsz;
2382 	uint16_t cflags, flags;
2383 	struct mbuf *m;
2384 
2385 	prod = si = sc->txq.cur;
2386 	map = sc->txq.data[prod].tx_data_map;
2387 
2388 	error = bus_dmamap_load_mbuf_sg(sc->txq.tx_data_tag, map, *m_head, segs,
2389 	    &nsegs, BUS_DMA_NOWAIT);
2390 	if (error == EFBIG) {
2391 		m = m_collapse(*m_head, M_NOWAIT, NFE_MAX_SCATTER);
2392 		if (m == NULL) {
2393 			m_freem(*m_head);
2394 			*m_head = NULL;
2395 			return (ENOBUFS);
2396 		}
2397 		*m_head = m;
2398 		error = bus_dmamap_load_mbuf_sg(sc->txq.tx_data_tag, map,
2399 		    *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
2400 		if (error != 0) {
2401 			m_freem(*m_head);
2402 			*m_head = NULL;
2403 			return (ENOBUFS);
2404 		}
2405 	} else if (error != 0)
2406 		return (error);
2407 	if (nsegs == 0) {
2408 		m_freem(*m_head);
2409 		*m_head = NULL;
2410 		return (EIO);
2411 	}
2412 
2413 	if (sc->txq.queued + nsegs >= NFE_TX_RING_COUNT - 2) {
2414 		bus_dmamap_unload(sc->txq.tx_data_tag, map);
2415 		return (ENOBUFS);
2416 	}
2417 
2418 	m = *m_head;
2419 	cflags = flags = 0;
2420 	tsosegsz = 0;
2421 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2422 		tsosegsz = (uint32_t)m->m_pkthdr.tso_segsz <<
2423 		    NFE_TX_TSO_SHIFT;
2424 		cflags &= ~(NFE_TX_IP_CSUM | NFE_TX_TCP_UDP_CSUM);
2425 		cflags |= NFE_TX_TSO;
2426 	} else if ((m->m_pkthdr.csum_flags & NFE_CSUM_FEATURES) != 0) {
2427 		if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
2428 			cflags |= NFE_TX_IP_CSUM;
2429 		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
2430 			cflags |= NFE_TX_TCP_UDP_CSUM;
2431 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
2432 			cflags |= NFE_TX_TCP_UDP_CSUM;
2433 	}
2434 
2435 	for (i = 0; i < nsegs; i++) {
2436 		if (sc->nfe_flags & NFE_40BIT_ADDR) {
2437 			desc64 = &sc->txq.desc64[prod];
2438 			desc64->physaddr[0] =
2439 			    htole32(NFE_ADDR_HI(segs[i].ds_addr));
2440 			desc64->physaddr[1] =
2441 			    htole32(NFE_ADDR_LO(segs[i].ds_addr));
2442 			desc64->vtag = 0;
2443 			desc64->length = htole16(segs[i].ds_len - 1);
2444 			desc64->flags = htole16(flags);
2445 		} else {
2446 			desc32 = &sc->txq.desc32[prod];
2447 			desc32->physaddr =
2448 			    htole32(NFE_ADDR_LO(segs[i].ds_addr));
2449 			desc32->length = htole16(segs[i].ds_len - 1);
2450 			desc32->flags = htole16(flags);
2451 		}
2452 
2453 		/*
2454 		 * Setting of the valid bit in the first descriptor is
2455 		 * deferred until the whole chain is fully setup.
2456 		 */
2457 		flags |= NFE_TX_VALID;
2458 
2459 		sc->txq.queued++;
2460 		NFE_INC(prod, NFE_TX_RING_COUNT);
2461 	}
2462 
2463 	/*
2464 	 * the whole mbuf chain has been DMA mapped, fix last/first descriptor.
2465 	 * csum flags, vtag and TSO belong to the first fragment only.
2466 	 */
2467 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
2468 		desc64->flags |= htole16(NFE_TX_LASTFRAG_V2);
2469 		desc64 = &sc->txq.desc64[si];
2470 		if ((m->m_flags & M_VLANTAG) != 0)
2471 			desc64->vtag = htole32(NFE_TX_VTAG |
2472 			    m->m_pkthdr.ether_vtag);
2473 		if (tsosegsz != 0) {
2474 			/*
2475 			 * XXX
2476 			 * The following indicates the descriptor element
2477 			 * is a 32bit quantity.
2478 			 */
2479 			desc64->length |= htole16((uint16_t)tsosegsz);
2480 			desc64->flags |= htole16(tsosegsz >> 16);
2481 		}
2482 		/*
2483 		 * finally, set the valid/checksum/TSO bit in the first
2484 		 * descriptor.
2485 		 */
2486 		desc64->flags |= htole16(NFE_TX_VALID | cflags);
2487 	} else {
2488 		if (sc->nfe_flags & NFE_JUMBO_SUP)
2489 			desc32->flags |= htole16(NFE_TX_LASTFRAG_V2);
2490 		else
2491 			desc32->flags |= htole16(NFE_TX_LASTFRAG_V1);
2492 		desc32 = &sc->txq.desc32[si];
2493 		if (tsosegsz != 0) {
2494 			/*
2495 			 * XXX
2496 			 * The following indicates the descriptor element
2497 			 * is a 32bit quantity.
2498 			 */
2499 			desc32->length |= htole16((uint16_t)tsosegsz);
2500 			desc32->flags |= htole16(tsosegsz >> 16);
2501 		}
2502 		/*
2503 		 * finally, set the valid/checksum/TSO bit in the first
2504 		 * descriptor.
2505 		 */
2506 		desc32->flags |= htole16(NFE_TX_VALID | cflags);
2507 	}
2508 
2509 	sc->txq.cur = prod;
2510 	prod = (prod + NFE_TX_RING_COUNT - 1) % NFE_TX_RING_COUNT;
2511 	sc->txq.data[si].tx_data_map = sc->txq.data[prod].tx_data_map;
2512 	sc->txq.data[prod].tx_data_map = map;
2513 	sc->txq.data[prod].m = m;
2514 
2515 	bus_dmamap_sync(sc->txq.tx_data_tag, map, BUS_DMASYNC_PREWRITE);
2516 
2517 	return (0);
2518 }
2519 
2520 struct nfe_hash_maddr_ctx {
2521 	uint8_t addr[ETHER_ADDR_LEN];
2522 	uint8_t mask[ETHER_ADDR_LEN];
2523 };
2524 
2525 static u_int
2526 nfe_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
2527 {
2528 	struct nfe_hash_maddr_ctx *ctx = arg;
2529 	uint8_t *addrp, mcaddr;
2530 	int j;
2531 
2532 	addrp = LLADDR(sdl);
2533 	for (j = 0; j < ETHER_ADDR_LEN; j++) {
2534 		mcaddr = addrp[j];
2535 		ctx->addr[j] &= mcaddr;
2536 		ctx->mask[j] &= ~mcaddr;
2537 	}
2538 
2539 	return (1);
2540 }
2541 
2542 static void
2543 nfe_setmulti(struct nfe_softc *sc)
2544 {
2545 	if_t ifp = sc->nfe_ifp;
2546 	struct nfe_hash_maddr_ctx ctx;
2547 	uint32_t filter;
2548 	uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] = {
2549 		0xff, 0xff, 0xff, 0xff, 0xff, 0xff
2550 	};
2551 	int i;
2552 
2553 	NFE_LOCK_ASSERT(sc);
2554 
2555 	if ((if_getflags(ifp) & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
2556 		bzero(ctx.addr, ETHER_ADDR_LEN);
2557 		bzero(ctx.mask, ETHER_ADDR_LEN);
2558 		goto done;
2559 	}
2560 
2561 	bcopy(etherbroadcastaddr, ctx.addr, ETHER_ADDR_LEN);
2562 	bcopy(etherbroadcastaddr, ctx.mask, ETHER_ADDR_LEN);
2563 
2564 	if_foreach_llmaddr(ifp, nfe_hash_maddr, &ctx);
2565 
2566 	for (i = 0; i < ETHER_ADDR_LEN; i++) {
2567 		ctx.mask[i] |= ctx.addr[i];
2568 	}
2569 
2570 done:
2571 	ctx.addr[0] |= 0x01;	/* make sure multicast bit is set */
2572 
2573 	NFE_WRITE(sc, NFE_MULTIADDR_HI, ctx.addr[3] << 24 | ctx.addr[2] << 16 |
2574 	    ctx.addr[1] << 8 | ctx.addr[0]);
2575 	NFE_WRITE(sc, NFE_MULTIADDR_LO,
2576 	    ctx.addr[5] <<  8 | ctx.addr[4]);
2577 	NFE_WRITE(sc, NFE_MULTIMASK_HI, ctx.mask[3] << 24 | ctx.mask[2] << 16 |
2578 	    ctx.mask[1] << 8 | ctx.mask[0]);
2579 	NFE_WRITE(sc, NFE_MULTIMASK_LO,
2580 	    ctx.mask[5] <<  8 | ctx.mask[4]);
2581 
2582 	filter = NFE_READ(sc, NFE_RXFILTER);
2583 	filter &= NFE_PFF_RX_PAUSE;
2584 	filter |= NFE_RXFILTER_MAGIC;
2585 	filter |= (if_getflags(ifp) & IFF_PROMISC) ? NFE_PFF_PROMISC : NFE_PFF_U2M;
2586 	NFE_WRITE(sc, NFE_RXFILTER, filter);
2587 }
2588 
2589 static void
2590 nfe_start(if_t ifp)
2591 {
2592 	struct nfe_softc *sc = if_getsoftc(ifp);
2593 
2594 	NFE_LOCK(sc);
2595 	nfe_start_locked(ifp);
2596 	NFE_UNLOCK(sc);
2597 }
2598 
2599 static void
2600 nfe_start_locked(if_t ifp)
2601 {
2602 	struct nfe_softc *sc = if_getsoftc(ifp);
2603 	struct mbuf *m0;
2604 	int enq = 0;
2605 
2606 	NFE_LOCK_ASSERT(sc);
2607 
2608 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2609 	    IFF_DRV_RUNNING || sc->nfe_link == 0)
2610 		return;
2611 
2612 	while (!if_sendq_empty(ifp)) {
2613 		m0 = if_dequeue(ifp);
2614 
2615 		if (m0 == NULL)
2616 			break;
2617 
2618 		if (nfe_encap(sc, &m0) != 0) {
2619 			if (m0 == NULL)
2620 				break;
2621 			if_sendq_prepend(ifp, m0);
2622 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
2623 			break;
2624 		}
2625 		enq++;
2626 		if_etherbpfmtap(ifp, m0);
2627 	}
2628 
2629 	if (enq > 0) {
2630 		bus_dmamap_sync(sc->txq.tx_desc_tag, sc->txq.tx_desc_map,
2631 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2632 
2633 		/* kick Tx */
2634 		NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
2635 
2636 		/*
2637 		 * Set a timeout in case the chip goes out to lunch.
2638 		 */
2639 		sc->nfe_watchdog_timer = 5;
2640 	}
2641 }
2642 
2643 static void
2644 nfe_watchdog(if_t ifp)
2645 {
2646 	struct nfe_softc *sc = if_getsoftc(ifp);
2647 
2648 	if (sc->nfe_watchdog_timer == 0 || --sc->nfe_watchdog_timer)
2649 		return;
2650 
2651 	/* Check if we've lost Tx completion interrupt. */
2652 	nfe_txeof(sc);
2653 	if (sc->txq.queued == 0) {
2654 		if_printf(ifp, "watchdog timeout (missed Tx interrupts) "
2655 		    "-- recovering\n");
2656 		if (!if_sendq_empty(ifp))
2657 			nfe_start_locked(ifp);
2658 		return;
2659 	}
2660 	/* Check if we've lost start Tx command. */
2661 	sc->nfe_force_tx++;
2662 	if (sc->nfe_force_tx <= 3) {
2663 		/*
2664 		 * If this is the case for watchdog timeout, the following
2665 		 * code should go to nfe_txeof().
2666 		 */
2667 		NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
2668 		return;
2669 	}
2670 	sc->nfe_force_tx = 0;
2671 
2672 	if_printf(ifp, "watchdog timeout\n");
2673 
2674 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2675 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2676 	nfe_init_locked(sc);
2677 }
2678 
2679 static void
2680 nfe_init(void *xsc)
2681 {
2682 	struct nfe_softc *sc = xsc;
2683 
2684 	NFE_LOCK(sc);
2685 	nfe_init_locked(sc);
2686 	NFE_UNLOCK(sc);
2687 }
2688 
2689 static void
2690 nfe_init_locked(void *xsc)
2691 {
2692 	struct nfe_softc *sc = xsc;
2693 	if_t ifp = sc->nfe_ifp;
2694 	struct mii_data *mii;
2695 	uint32_t val;
2696 	int error;
2697 
2698 	NFE_LOCK_ASSERT(sc);
2699 
2700 	mii = device_get_softc(sc->nfe_miibus);
2701 
2702 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
2703 		return;
2704 
2705 	nfe_stop(ifp);
2706 
2707 	sc->nfe_framesize = if_getmtu(ifp) + NFE_RX_HEADERS;
2708 
2709 	nfe_init_tx_ring(sc, &sc->txq);
2710 	if (sc->nfe_framesize > (MCLBYTES - ETHER_HDR_LEN))
2711 		error = nfe_init_jrx_ring(sc, &sc->jrxq);
2712 	else
2713 		error = nfe_init_rx_ring(sc, &sc->rxq);
2714 	if (error != 0) {
2715 		device_printf(sc->nfe_dev,
2716 		    "initialization failed: no memory for rx buffers\n");
2717 		nfe_stop(ifp);
2718 		return;
2719 	}
2720 
2721 	val = 0;
2722 	if ((sc->nfe_flags & NFE_CORRECT_MACADDR) != 0)
2723 		val |= NFE_MAC_ADDR_INORDER;
2724 	NFE_WRITE(sc, NFE_TX_UNK, val);
2725 	NFE_WRITE(sc, NFE_STATUS, 0);
2726 
2727 	if ((sc->nfe_flags & NFE_TX_FLOW_CTRL) != 0)
2728 		NFE_WRITE(sc, NFE_TX_PAUSE_FRAME, NFE_TX_PAUSE_FRAME_DISABLE);
2729 
2730 	sc->rxtxctl = NFE_RXTX_BIT2;
2731 	if (sc->nfe_flags & NFE_40BIT_ADDR)
2732 		sc->rxtxctl |= NFE_RXTX_V3MAGIC;
2733 	else if (sc->nfe_flags & NFE_JUMBO_SUP)
2734 		sc->rxtxctl |= NFE_RXTX_V2MAGIC;
2735 
2736 	if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
2737 		sc->rxtxctl |= NFE_RXTX_RXCSUM;
2738 	if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0)
2739 		sc->rxtxctl |= NFE_RXTX_VTAG_INSERT | NFE_RXTX_VTAG_STRIP;
2740 
2741 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl);
2742 	DELAY(10);
2743 	NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
2744 
2745 	if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0)
2746 		NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE);
2747 	else
2748 		NFE_WRITE(sc, NFE_VTAG_CTL, 0);
2749 
2750 	NFE_WRITE(sc, NFE_SETUP_R6, 0);
2751 
2752 	/* set MAC address */
2753 	nfe_set_macaddr(sc, if_getlladdr(ifp));
2754 
2755 	/* tell MAC where rings are in memory */
2756 	if (sc->nfe_framesize > MCLBYTES - ETHER_HDR_LEN) {
2757 		NFE_WRITE(sc, NFE_RX_RING_ADDR_HI,
2758 		    NFE_ADDR_HI(sc->jrxq.jphysaddr));
2759 		NFE_WRITE(sc, NFE_RX_RING_ADDR_LO,
2760 		    NFE_ADDR_LO(sc->jrxq.jphysaddr));
2761 	} else {
2762 		NFE_WRITE(sc, NFE_RX_RING_ADDR_HI,
2763 		    NFE_ADDR_HI(sc->rxq.physaddr));
2764 		NFE_WRITE(sc, NFE_RX_RING_ADDR_LO,
2765 		    NFE_ADDR_LO(sc->rxq.physaddr));
2766 	}
2767 	NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, NFE_ADDR_HI(sc->txq.physaddr));
2768 	NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, NFE_ADDR_LO(sc->txq.physaddr));
2769 
2770 	NFE_WRITE(sc, NFE_RING_SIZE,
2771 	    (NFE_RX_RING_COUNT - 1) << 16 |
2772 	    (NFE_TX_RING_COUNT - 1));
2773 
2774 	NFE_WRITE(sc, NFE_RXBUFSZ, sc->nfe_framesize);
2775 
2776 	/* force MAC to wakeup */
2777 	val = NFE_READ(sc, NFE_PWR_STATE);
2778 	if ((val & NFE_PWR_WAKEUP) == 0)
2779 		NFE_WRITE(sc, NFE_PWR_STATE, val | NFE_PWR_WAKEUP);
2780 	DELAY(10);
2781 	val = NFE_READ(sc, NFE_PWR_STATE);
2782 	NFE_WRITE(sc, NFE_PWR_STATE, val | NFE_PWR_VALID);
2783 
2784 #if 1
2785 	/* configure interrupts coalescing/mitigation */
2786 	NFE_WRITE(sc, NFE_IMTIMER, NFE_IM_DEFAULT);
2787 #else
2788 	/* no interrupt mitigation: one interrupt per packet */
2789 	NFE_WRITE(sc, NFE_IMTIMER, 970);
2790 #endif
2791 
2792 	NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC_10_100);
2793 	NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC);
2794 	NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC);
2795 
2796 	/* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */
2797 	NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC);
2798 
2799 	NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC);
2800 	/* Disable WOL. */
2801 	NFE_WRITE(sc, NFE_WOL_CTL, 0);
2802 
2803 	sc->rxtxctl &= ~NFE_RXTX_BIT2;
2804 	NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
2805 	DELAY(10);
2806 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl);
2807 
2808 	/* set Rx filter */
2809 	nfe_setmulti(sc);
2810 
2811 	/* enable Rx */
2812 	NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START);
2813 
2814 	/* enable Tx */
2815 	NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START);
2816 
2817 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
2818 
2819 	/* Clear hardware stats. */
2820 	nfe_stats_clear(sc);
2821 
2822 #ifdef DEVICE_POLLING
2823 	if (if_getcapenable(ifp) & IFCAP_POLLING)
2824 		nfe_disable_intr(sc);
2825 	else
2826 #endif
2827 	nfe_set_intr(sc);
2828 	nfe_enable_intr(sc); /* enable interrupts */
2829 
2830 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
2831 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2832 
2833 	sc->nfe_link = 0;
2834 	mii_mediachg(mii);
2835 
2836 	callout_reset(&sc->nfe_stat_ch, hz, nfe_tick, sc);
2837 }
2838 
2839 static void
2840 nfe_stop(if_t ifp)
2841 {
2842 	struct nfe_softc *sc = if_getsoftc(ifp);
2843 	struct nfe_rx_ring *rx_ring;
2844 	struct nfe_jrx_ring *jrx_ring;
2845 	struct nfe_tx_ring *tx_ring;
2846 	struct nfe_rx_data *rdata;
2847 	struct nfe_tx_data *tdata;
2848 	int i;
2849 
2850 	NFE_LOCK_ASSERT(sc);
2851 
2852 	sc->nfe_watchdog_timer = 0;
2853 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
2854 
2855 	callout_stop(&sc->nfe_stat_ch);
2856 
2857 	/* abort Tx */
2858 	NFE_WRITE(sc, NFE_TX_CTL, 0);
2859 
2860 	/* disable Rx */
2861 	NFE_WRITE(sc, NFE_RX_CTL, 0);
2862 
2863 	/* disable interrupts */
2864 	nfe_disable_intr(sc);
2865 
2866 	sc->nfe_link = 0;
2867 
2868 	/* free Rx and Tx mbufs still in the queues. */
2869 	rx_ring = &sc->rxq;
2870 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
2871 		rdata = &rx_ring->data[i];
2872 		if (rdata->m != NULL) {
2873 			bus_dmamap_sync(rx_ring->rx_data_tag,
2874 			    rdata->rx_data_map, BUS_DMASYNC_POSTREAD);
2875 			bus_dmamap_unload(rx_ring->rx_data_tag,
2876 			    rdata->rx_data_map);
2877 			m_freem(rdata->m);
2878 			rdata->m = NULL;
2879 		}
2880 	}
2881 
2882 	if ((sc->nfe_flags & NFE_JUMBO_SUP) != 0) {
2883 		jrx_ring = &sc->jrxq;
2884 		for (i = 0; i < NFE_JUMBO_RX_RING_COUNT; i++) {
2885 			rdata = &jrx_ring->jdata[i];
2886 			if (rdata->m != NULL) {
2887 				bus_dmamap_sync(jrx_ring->jrx_data_tag,
2888 				    rdata->rx_data_map, BUS_DMASYNC_POSTREAD);
2889 				bus_dmamap_unload(jrx_ring->jrx_data_tag,
2890 				    rdata->rx_data_map);
2891 				m_freem(rdata->m);
2892 				rdata->m = NULL;
2893 			}
2894 		}
2895 	}
2896 
2897 	tx_ring = &sc->txq;
2898 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
2899 		tdata = &tx_ring->data[i];
2900 		if (tdata->m != NULL) {
2901 			bus_dmamap_sync(tx_ring->tx_data_tag,
2902 			    tdata->tx_data_map, BUS_DMASYNC_POSTWRITE);
2903 			bus_dmamap_unload(tx_ring->tx_data_tag,
2904 			    tdata->tx_data_map);
2905 			m_freem(tdata->m);
2906 			tdata->m = NULL;
2907 		}
2908 	}
2909 	/* Update hardware stats. */
2910 	nfe_stats_update(sc);
2911 }
2912 
2913 static int
2914 nfe_ifmedia_upd(if_t ifp)
2915 {
2916 	struct nfe_softc *sc = if_getsoftc(ifp);
2917 	struct mii_data *mii;
2918 
2919 	NFE_LOCK(sc);
2920 	mii = device_get_softc(sc->nfe_miibus);
2921 	mii_mediachg(mii);
2922 	NFE_UNLOCK(sc);
2923 
2924 	return (0);
2925 }
2926 
2927 static void
2928 nfe_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
2929 {
2930 	struct nfe_softc *sc;
2931 	struct mii_data *mii;
2932 
2933 	sc = if_getsoftc(ifp);
2934 
2935 	NFE_LOCK(sc);
2936 	mii = device_get_softc(sc->nfe_miibus);
2937 	mii_pollstat(mii);
2938 
2939 	ifmr->ifm_active = mii->mii_media_active;
2940 	ifmr->ifm_status = mii->mii_media_status;
2941 	NFE_UNLOCK(sc);
2942 }
2943 
2944 void
2945 nfe_tick(void *xsc)
2946 {
2947 	struct nfe_softc *sc;
2948 	struct mii_data *mii;
2949 	if_t ifp;
2950 
2951 	sc = (struct nfe_softc *)xsc;
2952 
2953 	NFE_LOCK_ASSERT(sc);
2954 
2955 	ifp = sc->nfe_ifp;
2956 
2957 	mii = device_get_softc(sc->nfe_miibus);
2958 	mii_tick(mii);
2959 	nfe_stats_update(sc);
2960 	nfe_watchdog(ifp);
2961 	callout_reset(&sc->nfe_stat_ch, hz, nfe_tick, sc);
2962 }
2963 
2964 static int
2965 nfe_shutdown(device_t dev)
2966 {
2967 
2968 	return (nfe_suspend(dev));
2969 }
2970 
2971 static void
2972 nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr)
2973 {
2974 	uint32_t val;
2975 
2976 	if ((sc->nfe_flags & NFE_CORRECT_MACADDR) == 0) {
2977 		val = NFE_READ(sc, NFE_MACADDR_LO);
2978 		addr[0] = (val >> 8) & 0xff;
2979 		addr[1] = (val & 0xff);
2980 
2981 		val = NFE_READ(sc, NFE_MACADDR_HI);
2982 		addr[2] = (val >> 24) & 0xff;
2983 		addr[3] = (val >> 16) & 0xff;
2984 		addr[4] = (val >>  8) & 0xff;
2985 		addr[5] = (val & 0xff);
2986 	} else {
2987 		val = NFE_READ(sc, NFE_MACADDR_LO);
2988 		addr[5] = (val >> 8) & 0xff;
2989 		addr[4] = (val & 0xff);
2990 
2991 		val = NFE_READ(sc, NFE_MACADDR_HI);
2992 		addr[3] = (val >> 24) & 0xff;
2993 		addr[2] = (val >> 16) & 0xff;
2994 		addr[1] = (val >>  8) & 0xff;
2995 		addr[0] = (val & 0xff);
2996 	}
2997 }
2998 
2999 static void
3000 nfe_set_macaddr(struct nfe_softc *sc, uint8_t *addr)
3001 {
3002 
3003 	NFE_WRITE(sc, NFE_MACADDR_LO, addr[5] <<  8 | addr[4]);
3004 	NFE_WRITE(sc, NFE_MACADDR_HI, addr[3] << 24 | addr[2] << 16 |
3005 	    addr[1] << 8 | addr[0]);
3006 }
3007 
3008 /*
3009  * Map a single buffer address.
3010  */
3011 
3012 static void
3013 nfe_dma_map_segs(void *arg, bus_dma_segment_t *segs, int nseg, int error)
3014 {
3015 	struct nfe_dmamap_arg *ctx;
3016 
3017 	if (error != 0)
3018 		return;
3019 
3020 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
3021 
3022 	ctx = (struct nfe_dmamap_arg *)arg;
3023 	ctx->nfe_busaddr = segs[0].ds_addr;
3024 }
3025 
3026 static int
3027 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3028 {
3029 	int error, value;
3030 
3031 	if (!arg1)
3032 		return (EINVAL);
3033 	value = *(int *)arg1;
3034 	error = sysctl_handle_int(oidp, &value, 0, req);
3035 	if (error || !req->newptr)
3036 		return (error);
3037 	if (value < low || value > high)
3038 		return (EINVAL);
3039 	*(int *)arg1 = value;
3040 
3041 	return (0);
3042 }
3043 
3044 static int
3045 sysctl_hw_nfe_proc_limit(SYSCTL_HANDLER_ARGS)
3046 {
3047 
3048 	return (sysctl_int_range(oidp, arg1, arg2, req, NFE_PROC_MIN,
3049 	    NFE_PROC_MAX));
3050 }
3051 
3052 #define	NFE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
3053 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
3054 #define	NFE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
3055 	    SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
3056 
3057 static void
3058 nfe_sysctl_node(struct nfe_softc *sc)
3059 {
3060 	struct sysctl_ctx_list *ctx;
3061 	struct sysctl_oid_list *child, *parent;
3062 	struct sysctl_oid *tree;
3063 	struct nfe_hw_stats *stats;
3064 	int error;
3065 
3066 	stats = &sc->nfe_stats;
3067 	ctx = device_get_sysctl_ctx(sc->nfe_dev);
3068 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->nfe_dev));
3069 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit",
3070 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
3071 	    &sc->nfe_process_limit, 0, sysctl_hw_nfe_proc_limit, "I",
3072 	    "max number of Rx events to process");
3073 
3074 	sc->nfe_process_limit = NFE_PROC_DEFAULT;
3075 	error = resource_int_value(device_get_name(sc->nfe_dev),
3076 	    device_get_unit(sc->nfe_dev), "process_limit",
3077 	    &sc->nfe_process_limit);
3078 	if (error == 0) {
3079 		if (sc->nfe_process_limit < NFE_PROC_MIN ||
3080 		    sc->nfe_process_limit > NFE_PROC_MAX) {
3081 			device_printf(sc->nfe_dev,
3082 			    "process_limit value out of range; "
3083 			    "using default: %d\n", NFE_PROC_DEFAULT);
3084 			sc->nfe_process_limit = NFE_PROC_DEFAULT;
3085 		}
3086 	}
3087 
3088 	if ((sc->nfe_flags & (NFE_MIB_V1 | NFE_MIB_V2 | NFE_MIB_V3)) == 0)
3089 		return;
3090 
3091 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats",
3092 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NFE statistics");
3093 	parent = SYSCTL_CHILDREN(tree);
3094 
3095 	/* Rx statistics. */
3096 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx",
3097 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Rx MAC statistics");
3098 	child = SYSCTL_CHILDREN(tree);
3099 
3100 	NFE_SYSCTL_STAT_ADD32(ctx, child, "frame_errors",
3101 	    &stats->rx_frame_errors, "Framing Errors");
3102 	NFE_SYSCTL_STAT_ADD32(ctx, child, "extra_bytes",
3103 	    &stats->rx_extra_bytes, "Extra Bytes");
3104 	NFE_SYSCTL_STAT_ADD32(ctx, child, "late_cols",
3105 	    &stats->rx_late_cols, "Late Collisions");
3106 	NFE_SYSCTL_STAT_ADD32(ctx, child, "runts",
3107 	    &stats->rx_runts, "Runts");
3108 	NFE_SYSCTL_STAT_ADD32(ctx, child, "jumbos",
3109 	    &stats->rx_jumbos, "Jumbos");
3110 	NFE_SYSCTL_STAT_ADD32(ctx, child, "fifo_overuns",
3111 	    &stats->rx_fifo_overuns, "FIFO Overruns");
3112 	NFE_SYSCTL_STAT_ADD32(ctx, child, "crc_errors",
3113 	    &stats->rx_crc_errors, "CRC Errors");
3114 	NFE_SYSCTL_STAT_ADD32(ctx, child, "fae",
3115 	    &stats->rx_fae, "Frame Alignment Errors");
3116 	NFE_SYSCTL_STAT_ADD32(ctx, child, "len_errors",
3117 	    &stats->rx_len_errors, "Length Errors");
3118 	NFE_SYSCTL_STAT_ADD32(ctx, child, "unicast",
3119 	    &stats->rx_unicast, "Unicast Frames");
3120 	NFE_SYSCTL_STAT_ADD32(ctx, child, "multicast",
3121 	    &stats->rx_multicast, "Multicast Frames");
3122 	NFE_SYSCTL_STAT_ADD32(ctx, child, "broadcast",
3123 	    &stats->rx_broadcast, "Broadcast Frames");
3124 	if ((sc->nfe_flags & NFE_MIB_V2) != 0) {
3125 		NFE_SYSCTL_STAT_ADD64(ctx, child, "octets",
3126 		    &stats->rx_octets, "Octets");
3127 		NFE_SYSCTL_STAT_ADD32(ctx, child, "pause",
3128 		    &stats->rx_pause, "Pause frames");
3129 		NFE_SYSCTL_STAT_ADD32(ctx, child, "drops",
3130 		    &stats->rx_drops, "Drop frames");
3131 	}
3132 
3133 	/* Tx statistics. */
3134 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx",
3135 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Tx MAC statistics");
3136 	child = SYSCTL_CHILDREN(tree);
3137 	NFE_SYSCTL_STAT_ADD64(ctx, child, "octets",
3138 	    &stats->tx_octets, "Octets");
3139 	NFE_SYSCTL_STAT_ADD32(ctx, child, "zero_rexmits",
3140 	    &stats->tx_zero_rexmits, "Zero Retransmits");
3141 	NFE_SYSCTL_STAT_ADD32(ctx, child, "one_rexmits",
3142 	    &stats->tx_one_rexmits, "One Retransmits");
3143 	NFE_SYSCTL_STAT_ADD32(ctx, child, "multi_rexmits",
3144 	    &stats->tx_multi_rexmits, "Multiple Retransmits");
3145 	NFE_SYSCTL_STAT_ADD32(ctx, child, "late_cols",
3146 	    &stats->tx_late_cols, "Late Collisions");
3147 	NFE_SYSCTL_STAT_ADD32(ctx, child, "fifo_underuns",
3148 	    &stats->tx_fifo_underuns, "FIFO Underruns");
3149 	NFE_SYSCTL_STAT_ADD32(ctx, child, "carrier_losts",
3150 	    &stats->tx_carrier_losts, "Carrier Losts");
3151 	NFE_SYSCTL_STAT_ADD32(ctx, child, "excess_deferrals",
3152 	    &stats->tx_excess_deferals, "Excess Deferrals");
3153 	NFE_SYSCTL_STAT_ADD32(ctx, child, "retry_errors",
3154 	    &stats->tx_retry_errors, "Retry Errors");
3155 	if ((sc->nfe_flags & NFE_MIB_V2) != 0) {
3156 		NFE_SYSCTL_STAT_ADD32(ctx, child, "deferrals",
3157 		    &stats->tx_deferals, "Deferrals");
3158 		NFE_SYSCTL_STAT_ADD32(ctx, child, "frames",
3159 		    &stats->tx_frames, "Frames");
3160 		NFE_SYSCTL_STAT_ADD32(ctx, child, "pause",
3161 		    &stats->tx_pause, "Pause Frames");
3162 	}
3163 	if ((sc->nfe_flags & NFE_MIB_V3) != 0) {
3164 		NFE_SYSCTL_STAT_ADD32(ctx, child, "unicast",
3165 		    &stats->tx_deferals, "Unicast Frames");
3166 		NFE_SYSCTL_STAT_ADD32(ctx, child, "multicast",
3167 		    &stats->tx_frames, "Multicast Frames");
3168 		NFE_SYSCTL_STAT_ADD32(ctx, child, "broadcast",
3169 		    &stats->tx_pause, "Broadcast Frames");
3170 	}
3171 }
3172 
3173 #undef NFE_SYSCTL_STAT_ADD32
3174 #undef NFE_SYSCTL_STAT_ADD64
3175 
3176 static void
3177 nfe_stats_clear(struct nfe_softc *sc)
3178 {
3179 	int i, mib_cnt;
3180 
3181 	if ((sc->nfe_flags & NFE_MIB_V1) != 0)
3182 		mib_cnt = NFE_NUM_MIB_STATV1;
3183 	else if ((sc->nfe_flags & (NFE_MIB_V2 | NFE_MIB_V3)) != 0)
3184 		mib_cnt = NFE_NUM_MIB_STATV2;
3185 	else
3186 		return;
3187 
3188 	for (i = 0; i < mib_cnt; i++)
3189 		NFE_READ(sc, NFE_TX_OCTET + i * sizeof(uint32_t));
3190 
3191 	if ((sc->nfe_flags & NFE_MIB_V3) != 0) {
3192 		NFE_READ(sc, NFE_TX_UNICAST);
3193 		NFE_READ(sc, NFE_TX_MULTICAST);
3194 		NFE_READ(sc, NFE_TX_BROADCAST);
3195 	}
3196 }
3197 
3198 static void
3199 nfe_stats_update(struct nfe_softc *sc)
3200 {
3201 	struct nfe_hw_stats *stats;
3202 
3203 	NFE_LOCK_ASSERT(sc);
3204 
3205 	if ((sc->nfe_flags & (NFE_MIB_V1 | NFE_MIB_V2 | NFE_MIB_V3)) == 0)
3206 		return;
3207 
3208 	stats = &sc->nfe_stats;
3209 	stats->tx_octets += NFE_READ(sc, NFE_TX_OCTET);
3210 	stats->tx_zero_rexmits += NFE_READ(sc, NFE_TX_ZERO_REXMIT);
3211 	stats->tx_one_rexmits += NFE_READ(sc, NFE_TX_ONE_REXMIT);
3212 	stats->tx_multi_rexmits += NFE_READ(sc, NFE_TX_MULTI_REXMIT);
3213 	stats->tx_late_cols += NFE_READ(sc, NFE_TX_LATE_COL);
3214 	stats->tx_fifo_underuns += NFE_READ(sc, NFE_TX_FIFO_UNDERUN);
3215 	stats->tx_carrier_losts += NFE_READ(sc, NFE_TX_CARRIER_LOST);
3216 	stats->tx_excess_deferals += NFE_READ(sc, NFE_TX_EXCESS_DEFERRAL);
3217 	stats->tx_retry_errors += NFE_READ(sc, NFE_TX_RETRY_ERROR);
3218 	stats->rx_frame_errors += NFE_READ(sc, NFE_RX_FRAME_ERROR);
3219 	stats->rx_extra_bytes += NFE_READ(sc, NFE_RX_EXTRA_BYTES);
3220 	stats->rx_late_cols += NFE_READ(sc, NFE_RX_LATE_COL);
3221 	stats->rx_runts += NFE_READ(sc, NFE_RX_RUNT);
3222 	stats->rx_jumbos += NFE_READ(sc, NFE_RX_JUMBO);
3223 	stats->rx_fifo_overuns += NFE_READ(sc, NFE_RX_FIFO_OVERUN);
3224 	stats->rx_crc_errors += NFE_READ(sc, NFE_RX_CRC_ERROR);
3225 	stats->rx_fae += NFE_READ(sc, NFE_RX_FAE);
3226 	stats->rx_len_errors += NFE_READ(sc, NFE_RX_LEN_ERROR);
3227 	stats->rx_unicast += NFE_READ(sc, NFE_RX_UNICAST);
3228 	stats->rx_multicast += NFE_READ(sc, NFE_RX_MULTICAST);
3229 	stats->rx_broadcast += NFE_READ(sc, NFE_RX_BROADCAST);
3230 
3231 	if ((sc->nfe_flags & NFE_MIB_V2) != 0) {
3232 		stats->tx_deferals += NFE_READ(sc, NFE_TX_DEFERAL);
3233 		stats->tx_frames += NFE_READ(sc, NFE_TX_FRAME);
3234 		stats->rx_octets += NFE_READ(sc, NFE_RX_OCTET);
3235 		stats->tx_pause += NFE_READ(sc, NFE_TX_PAUSE);
3236 		stats->rx_pause += NFE_READ(sc, NFE_RX_PAUSE);
3237 		stats->rx_drops += NFE_READ(sc, NFE_RX_DROP);
3238 	}
3239 
3240 	if ((sc->nfe_flags & NFE_MIB_V3) != 0) {
3241 		stats->tx_unicast += NFE_READ(sc, NFE_TX_UNICAST);
3242 		stats->tx_multicast += NFE_READ(sc, NFE_TX_MULTICAST);
3243 		stats->tx_broadcast += NFE_READ(sc, NFE_TX_BROADCAST);
3244 	}
3245 }
3246 
3247 static void
3248 nfe_set_linkspeed(struct nfe_softc *sc)
3249 {
3250 	struct mii_softc *miisc;
3251 	struct mii_data *mii;
3252 	int aneg, i, phyno;
3253 
3254 	NFE_LOCK_ASSERT(sc);
3255 
3256 	mii = device_get_softc(sc->nfe_miibus);
3257 	mii_pollstat(mii);
3258 	aneg = 0;
3259 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
3260 	    (IFM_ACTIVE | IFM_AVALID)) {
3261 		switch IFM_SUBTYPE(mii->mii_media_active) {
3262 		case IFM_10_T:
3263 		case IFM_100_TX:
3264 			return;
3265 		case IFM_1000_T:
3266 			aneg++;
3267 			break;
3268 		default:
3269 			break;
3270 		}
3271 	}
3272 	miisc = LIST_FIRST(&mii->mii_phys);
3273 	phyno = miisc->mii_phy;
3274 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
3275 		PHY_RESET(miisc);
3276 	nfe_miibus_writereg(sc->nfe_dev, phyno, MII_100T2CR, 0);
3277 	nfe_miibus_writereg(sc->nfe_dev, phyno,
3278 	    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
3279 	nfe_miibus_writereg(sc->nfe_dev, phyno,
3280 	    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
3281 	DELAY(1000);
3282 	if (aneg != 0) {
3283 		/*
3284 		 * Poll link state until nfe(4) get a 10/100Mbps link.
3285 		 */
3286 		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
3287 			mii_pollstat(mii);
3288 			if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
3289 			    == (IFM_ACTIVE | IFM_AVALID)) {
3290 				switch (IFM_SUBTYPE(mii->mii_media_active)) {
3291 				case IFM_10_T:
3292 				case IFM_100_TX:
3293 					nfe_mac_config(sc, mii);
3294 					return;
3295 				default:
3296 					break;
3297 				}
3298 			}
3299 			NFE_UNLOCK(sc);
3300 			pause("nfelnk", hz);
3301 			NFE_LOCK(sc);
3302 		}
3303 		if (i == MII_ANEGTICKS_GIGE)
3304 			device_printf(sc->nfe_dev,
3305 			    "establishing a link failed, WOL may not work!");
3306 	}
3307 	/*
3308 	 * No link, force MAC to have 100Mbps, full-duplex link.
3309 	 * This is the last resort and may/may not work.
3310 	 */
3311 	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
3312 	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
3313 	nfe_mac_config(sc, mii);
3314 }
3315 
3316 static void
3317 nfe_set_wol(struct nfe_softc *sc)
3318 {
3319 	if_t ifp;
3320 	uint32_t wolctl;
3321 	int pmc;
3322 	uint16_t pmstat;
3323 
3324 	NFE_LOCK_ASSERT(sc);
3325 
3326 	if (pci_find_cap(sc->nfe_dev, PCIY_PMG, &pmc) != 0)
3327 		return;
3328 	ifp = sc->nfe_ifp;
3329 	if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0)
3330 		wolctl = NFE_WOL_MAGIC;
3331 	else
3332 		wolctl = 0;
3333 	NFE_WRITE(sc, NFE_WOL_CTL, wolctl);
3334 	if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0) {
3335 		nfe_set_linkspeed(sc);
3336 		if ((sc->nfe_flags & NFE_PWR_MGMT) != 0)
3337 			NFE_WRITE(sc, NFE_PWR2_CTL,
3338 			    NFE_READ(sc, NFE_PWR2_CTL) & ~NFE_PWR2_GATE_CLOCKS);
3339 		/* Enable RX. */
3340 		NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, 0);
3341 		NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, 0);
3342 		NFE_WRITE(sc, NFE_RX_CTL, NFE_READ(sc, NFE_RX_CTL) |
3343 		    NFE_RX_START);
3344 	}
3345 	/* Request PME if WOL is requested. */
3346 	pmstat = pci_read_config(sc->nfe_dev, pmc + PCIR_POWER_STATUS, 2);
3347 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
3348 	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0)
3349 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3350 	pci_write_config(sc->nfe_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
3351 }
3352