xref: /freebsd/sys/dev/sk/if_sk.c (revision 41840d75)
1 /*	$OpenBSD: if_sk.c,v 2.33 2003/08/12 05:23:06 nate Exp $	*/
2 
3 /*-
4  * Copyright (c) 1997, 1998, 1999, 2000
5  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 /*-
35  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
36  *
37  * Permission to use, copy, modify, and distribute this software for any
38  * purpose with or without fee is hereby granted, provided that the above
39  * copyright notice and this permission notice appear in all copies.
40  *
41  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
42  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
43  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
44  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
45  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
46  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
47  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
48  */
49 
50 #include <sys/cdefs.h>
51 __FBSDID("$FreeBSD$");
52 
53 /*
54  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
55  * the SK-984x series adapters, both single port and dual port.
56  * References:
57  * 	The XaQti XMAC II datasheet,
58  *  http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
59  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
60  *
61  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
62  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
63  * convenience to others until Vitesse corrects this problem:
64  *
65  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
66  *
67  * Written by Bill Paul <wpaul@ee.columbia.edu>
68  * Department of Electrical Engineering
69  * Columbia University, New York City
70  */
71 /*
72  * The SysKonnect gigabit ethernet adapters consist of two main
73  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
74  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
75  * components and a PHY while the GEnesis controller provides a PCI
76  * interface with DMA support. Each card may have between 512K and
77  * 2MB of SRAM on board depending on the configuration.
78  *
79  * The SysKonnect GEnesis controller can have either one or two XMAC
80  * chips connected to it, allowing single or dual port NIC configurations.
81  * SysKonnect has the distinction of being the only vendor on the market
82  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
83  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
84  * XMAC registers. This driver takes advantage of these features to allow
85  * both XMACs to operate as independent interfaces.
86  */
87 
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/bus.h>
91 #include <sys/endian.h>
92 #include <sys/mbuf.h>
93 #include <sys/malloc.h>
94 #include <sys/kernel.h>
95 #include <sys/module.h>
96 #include <sys/socket.h>
97 #include <sys/sockio.h>
98 #include <sys/queue.h>
99 #include <sys/sysctl.h>
100 
101 #include <net/bpf.h>
102 #include <net/ethernet.h>
103 #include <net/if.h>
104 #include <net/if_arp.h>
105 #include <net/if_dl.h>
106 #include <net/if_media.h>
107 #include <net/if_types.h>
108 #include <net/if_vlan_var.h>
109 
110 #include <netinet/in.h>
111 #include <netinet/in_systm.h>
112 #include <netinet/ip.h>
113 
114 #include <machine/bus.h>
115 #include <machine/in_cksum.h>
116 #include <machine/resource.h>
117 #include <sys/rman.h>
118 
119 #include <dev/mii/mii.h>
120 #include <dev/mii/miivar.h>
121 #include <dev/mii/brgphyreg.h>
122 
123 #include <dev/pci/pcireg.h>
124 #include <dev/pci/pcivar.h>
125 
126 #if 0
127 #define SK_USEIOSPACE
128 #endif
129 
130 #include <dev/sk/if_skreg.h>
131 #include <dev/sk/xmaciireg.h>
132 #include <dev/sk/yukonreg.h>
133 
134 MODULE_DEPEND(sk, pci, 1, 1, 1);
135 MODULE_DEPEND(sk, ether, 1, 1, 1);
136 MODULE_DEPEND(sk, miibus, 1, 1, 1);
137 
138 /* "device miibus" required.  See GENERIC if you get errors here. */
139 #include "miibus_if.h"
140 
141 #ifndef lint
142 static const char rcsid[] =
143   "$FreeBSD$";
144 #endif
145 
146 static const struct sk_type sk_devs[] = {
147 	{
148 		VENDORID_SK,
149 		DEVICEID_SK_V1,
150 		"SysKonnect Gigabit Ethernet (V1.0)"
151 	},
152 	{
153 		VENDORID_SK,
154 		DEVICEID_SK_V2,
155 		"SysKonnect Gigabit Ethernet (V2.0)"
156 	},
157 	{
158 		VENDORID_MARVELL,
159 		DEVICEID_SK_V2,
160 		"Marvell Gigabit Ethernet"
161 	},
162 	{
163 		VENDORID_MARVELL,
164 		DEVICEID_BELKIN_5005,
165 		"Belkin F5D5005 Gigabit Ethernet"
166 	},
167 	{
168 		VENDORID_3COM,
169 		DEVICEID_3COM_3C940,
170 		"3Com 3C940 Gigabit Ethernet"
171 	},
172 	{
173 		VENDORID_LINKSYS,
174 		DEVICEID_LINKSYS_EG1032,
175 		"Linksys EG1032 Gigabit Ethernet"
176 	},
177 	{
178 		VENDORID_DLINK,
179 		DEVICEID_DLINK_DGE530T_A1,
180 		"D-Link DGE-530T Gigabit Ethernet"
181 	},
182 	{
183 		VENDORID_DLINK,
184 		DEVICEID_DLINK_DGE530T_B1,
185 		"D-Link DGE-530T Gigabit Ethernet"
186 	},
187 	{ 0, 0, NULL }
188 };
189 
190 static int skc_probe(device_t);
191 static int skc_attach(device_t);
192 static int skc_detach(device_t);
193 static int skc_shutdown(device_t);
194 static int skc_suspend(device_t);
195 static int skc_resume(device_t);
196 static bus_dma_tag_t skc_get_dma_tag(device_t, device_t);
197 static int sk_detach(device_t);
198 static int sk_probe(device_t);
199 static int sk_attach(device_t);
200 static void sk_tick(void *);
201 static void sk_yukon_tick(void *);
202 static void sk_intr(void *);
203 static void sk_intr_xmac(struct sk_if_softc *);
204 static void sk_intr_bcom(struct sk_if_softc *);
205 static void sk_intr_yukon(struct sk_if_softc *);
206 static __inline void sk_rxcksum(struct ifnet *, struct mbuf *, u_int32_t);
207 static __inline int sk_rxvalid(struct sk_softc *, u_int32_t, u_int32_t);
208 static void sk_rxeof(struct sk_if_softc *);
209 static void sk_jumbo_rxeof(struct sk_if_softc *);
210 static void sk_txeof(struct sk_if_softc *);
211 static void sk_txcksum(struct ifnet *, struct mbuf *, struct sk_tx_desc *);
212 static int sk_encap(struct sk_if_softc *, struct mbuf **);
213 static void sk_start(struct ifnet *);
214 static void sk_start_locked(struct ifnet *);
215 static int sk_ioctl(struct ifnet *, u_long, caddr_t);
216 static void sk_init(void *);
217 static void sk_init_locked(struct sk_if_softc *);
218 static void sk_init_xmac(struct sk_if_softc *);
219 static void sk_init_yukon(struct sk_if_softc *);
220 static void sk_stop(struct sk_if_softc *);
221 static void sk_watchdog(void *);
222 static int sk_ifmedia_upd(struct ifnet *);
223 static void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
224 static void sk_reset(struct sk_softc *);
225 static __inline void sk_discard_rxbuf(struct sk_if_softc *, int);
226 static __inline void sk_discard_jumbo_rxbuf(struct sk_if_softc *, int);
227 static int sk_newbuf(struct sk_if_softc *, int);
228 static int sk_jumbo_newbuf(struct sk_if_softc *, int);
229 static void sk_dmamap_cb(void *, bus_dma_segment_t *, int, int);
230 static int sk_dma_alloc(struct sk_if_softc *);
231 static int sk_dma_jumbo_alloc(struct sk_if_softc *);
232 static void sk_dma_free(struct sk_if_softc *);
233 static void sk_dma_jumbo_free(struct sk_if_softc *);
234 static int sk_init_rx_ring(struct sk_if_softc *);
235 static int sk_init_jumbo_rx_ring(struct sk_if_softc *);
236 static void sk_init_tx_ring(struct sk_if_softc *);
237 static u_int32_t sk_win_read_4(struct sk_softc *, int);
238 static u_int16_t sk_win_read_2(struct sk_softc *, int);
239 static u_int8_t sk_win_read_1(struct sk_softc *, int);
240 static void sk_win_write_4(struct sk_softc *, int, u_int32_t);
241 static void sk_win_write_2(struct sk_softc *, int, u_int32_t);
242 static void sk_win_write_1(struct sk_softc *, int, u_int32_t);
243 
244 static int sk_miibus_readreg(device_t, int, int);
245 static int sk_miibus_writereg(device_t, int, int, int);
246 static void sk_miibus_statchg(device_t);
247 
248 static int sk_xmac_miibus_readreg(struct sk_if_softc *, int, int);
249 static int sk_xmac_miibus_writereg(struct sk_if_softc *, int, int,
250 						int);
251 static void sk_xmac_miibus_statchg(struct sk_if_softc *);
252 
253 static int sk_marv_miibus_readreg(struct sk_if_softc *, int, int);
254 static int sk_marv_miibus_writereg(struct sk_if_softc *, int, int,
255 						int);
256 static void sk_marv_miibus_statchg(struct sk_if_softc *);
257 
258 static uint32_t sk_xmchash(const uint8_t *);
259 static void sk_setfilt(struct sk_if_softc *, u_int16_t *, int);
260 static void sk_rxfilter(struct sk_if_softc *);
261 static void sk_rxfilter_genesis(struct sk_if_softc *);
262 static void sk_rxfilter_yukon(struct sk_if_softc *);
263 
264 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high);
265 static int sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS);
266 
267 /* Tunables. */
268 static int jumbo_disable = 0;
269 TUNABLE_INT("hw.skc.jumbo_disable", &jumbo_disable);
270 
271 /*
272  * It seems that SK-NET GENESIS supports very simple checksum offload
273  * capability for Tx and I believe it can generate 0 checksum value for
274  * UDP packets in Tx as the hardware can't differenciate UDP packets from
275  * TCP packets. 0 chcecksum value for UDP packet is an invalid one as it
276  * means sender didn't perforam checksum computation. For the safety I
277  * disabled UDP checksum offload capability at the moment. Alternatively
278  * we can intrduce a LINK0/LINK1 flag as hme(4) did in its Tx checksum
279  * offload routine.
280  */
281 #define SK_CSUM_FEATURES	(CSUM_TCP)
282 
283 /*
284  * Note that we have newbus methods for both the GEnesis controller
285  * itself and the XMAC(s). The XMACs are children of the GEnesis, and
286  * the miibus code is a child of the XMACs. We need to do it this way
287  * so that the miibus drivers can access the PHY registers on the
288  * right PHY. It's not quite what I had in mind, but it's the only
289  * design that achieves the desired effect.
290  */
291 static device_method_t skc_methods[] = {
292 	/* Device interface */
293 	DEVMETHOD(device_probe,		skc_probe),
294 	DEVMETHOD(device_attach,	skc_attach),
295 	DEVMETHOD(device_detach,	skc_detach),
296 	DEVMETHOD(device_suspend,	skc_suspend),
297 	DEVMETHOD(device_resume,	skc_resume),
298 	DEVMETHOD(device_shutdown,	skc_shutdown),
299 
300 	DEVMETHOD(bus_get_dma_tag,	skc_get_dma_tag),
301 
302 	DEVMETHOD_END
303 };
304 
305 static driver_t skc_driver = {
306 	"skc",
307 	skc_methods,
308 	sizeof(struct sk_softc)
309 };
310 
311 static devclass_t skc_devclass;
312 
313 static device_method_t sk_methods[] = {
314 	/* Device interface */
315 	DEVMETHOD(device_probe,		sk_probe),
316 	DEVMETHOD(device_attach,	sk_attach),
317 	DEVMETHOD(device_detach,	sk_detach),
318 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
319 
320 	/* MII interface */
321 	DEVMETHOD(miibus_readreg,	sk_miibus_readreg),
322 	DEVMETHOD(miibus_writereg,	sk_miibus_writereg),
323 	DEVMETHOD(miibus_statchg,	sk_miibus_statchg),
324 
325 	DEVMETHOD_END
326 };
327 
328 static driver_t sk_driver = {
329 	"sk",
330 	sk_methods,
331 	sizeof(struct sk_if_softc)
332 };
333 
334 static devclass_t sk_devclass;
335 
336 DRIVER_MODULE(skc, pci, skc_driver, skc_devclass, NULL, NULL);
337 DRIVER_MODULE(sk, skc, sk_driver, sk_devclass, NULL, NULL);
338 DRIVER_MODULE(miibus, sk, miibus_driver, miibus_devclass, NULL, NULL);
339 
340 static struct resource_spec sk_res_spec_io[] = {
341 	{ SYS_RES_IOPORT,	PCIR_BAR(1),	RF_ACTIVE },
342 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
343 	{ -1,			0,		0 }
344 };
345 
346 static struct resource_spec sk_res_spec_mem[] = {
347 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
348 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
349 	{ -1,			0,		0 }
350 };
351 
352 #define SK_SETBIT(sc, reg, x)		\
353 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
354 
355 #define SK_CLRBIT(sc, reg, x)		\
356 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
357 
358 #define SK_WIN_SETBIT_4(sc, reg, x)	\
359 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
360 
361 #define SK_WIN_CLRBIT_4(sc, reg, x)	\
362 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
363 
364 #define SK_WIN_SETBIT_2(sc, reg, x)	\
365 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
366 
367 #define SK_WIN_CLRBIT_2(sc, reg, x)	\
368 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
369 
370 static u_int32_t
371 sk_win_read_4(sc, reg)
372 	struct sk_softc		*sc;
373 	int			reg;
374 {
375 #ifdef SK_USEIOSPACE
376 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
377 	return(CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg)));
378 #else
379 	return(CSR_READ_4(sc, reg));
380 #endif
381 }
382 
383 static u_int16_t
384 sk_win_read_2(sc, reg)
385 	struct sk_softc		*sc;
386 	int			reg;
387 {
388 #ifdef SK_USEIOSPACE
389 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
390 	return(CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg)));
391 #else
392 	return(CSR_READ_2(sc, reg));
393 #endif
394 }
395 
396 static u_int8_t
397 sk_win_read_1(sc, reg)
398 	struct sk_softc		*sc;
399 	int			reg;
400 {
401 #ifdef SK_USEIOSPACE
402 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
403 	return(CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg)));
404 #else
405 	return(CSR_READ_1(sc, reg));
406 #endif
407 }
408 
409 static void
410 sk_win_write_4(sc, reg, val)
411 	struct sk_softc		*sc;
412 	int			reg;
413 	u_int32_t		val;
414 {
415 #ifdef SK_USEIOSPACE
416 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
417 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), val);
418 #else
419 	CSR_WRITE_4(sc, reg, val);
420 #endif
421 	return;
422 }
423 
424 static void
425 sk_win_write_2(sc, reg, val)
426 	struct sk_softc		*sc;
427 	int			reg;
428 	u_int32_t		val;
429 {
430 #ifdef SK_USEIOSPACE
431 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
432 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), val);
433 #else
434 	CSR_WRITE_2(sc, reg, val);
435 #endif
436 	return;
437 }
438 
439 static void
440 sk_win_write_1(sc, reg, val)
441 	struct sk_softc		*sc;
442 	int			reg;
443 	u_int32_t		val;
444 {
445 #ifdef SK_USEIOSPACE
446 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
447 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), val);
448 #else
449 	CSR_WRITE_1(sc, reg, val);
450 #endif
451 	return;
452 }
453 
454 static int
455 sk_miibus_readreg(dev, phy, reg)
456 	device_t		dev;
457 	int			phy, reg;
458 {
459 	struct sk_if_softc	*sc_if;
460 	int			v;
461 
462 	sc_if = device_get_softc(dev);
463 
464 	SK_IF_MII_LOCK(sc_if);
465 	switch(sc_if->sk_softc->sk_type) {
466 	case SK_GENESIS:
467 		v = sk_xmac_miibus_readreg(sc_if, phy, reg);
468 		break;
469 	case SK_YUKON:
470 	case SK_YUKON_LITE:
471 	case SK_YUKON_LP:
472 		v = sk_marv_miibus_readreg(sc_if, phy, reg);
473 		break;
474 	default:
475 		v = 0;
476 		break;
477 	}
478 	SK_IF_MII_UNLOCK(sc_if);
479 
480 	return (v);
481 }
482 
483 static int
484 sk_miibus_writereg(dev, phy, reg, val)
485 	device_t		dev;
486 	int			phy, reg, val;
487 {
488 	struct sk_if_softc	*sc_if;
489 	int			v;
490 
491 	sc_if = device_get_softc(dev);
492 
493 	SK_IF_MII_LOCK(sc_if);
494 	switch(sc_if->sk_softc->sk_type) {
495 	case SK_GENESIS:
496 		v = sk_xmac_miibus_writereg(sc_if, phy, reg, val);
497 		break;
498 	case SK_YUKON:
499 	case SK_YUKON_LITE:
500 	case SK_YUKON_LP:
501 		v = sk_marv_miibus_writereg(sc_if, phy, reg, val);
502 		break;
503 	default:
504 		v = 0;
505 		break;
506 	}
507 	SK_IF_MII_UNLOCK(sc_if);
508 
509 	return (v);
510 }
511 
512 static void
513 sk_miibus_statchg(dev)
514 	device_t		dev;
515 {
516 	struct sk_if_softc	*sc_if;
517 
518 	sc_if = device_get_softc(dev);
519 
520 	SK_IF_MII_LOCK(sc_if);
521 	switch(sc_if->sk_softc->sk_type) {
522 	case SK_GENESIS:
523 		sk_xmac_miibus_statchg(sc_if);
524 		break;
525 	case SK_YUKON:
526 	case SK_YUKON_LITE:
527 	case SK_YUKON_LP:
528 		sk_marv_miibus_statchg(sc_if);
529 		break;
530 	}
531 	SK_IF_MII_UNLOCK(sc_if);
532 
533 	return;
534 }
535 
536 static int
537 sk_xmac_miibus_readreg(sc_if, phy, reg)
538 	struct sk_if_softc	*sc_if;
539 	int			phy, reg;
540 {
541 	int			i;
542 
543 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
544 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
545 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
546 		for (i = 0; i < SK_TIMEOUT; i++) {
547 			DELAY(1);
548 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
549 			    XM_MMUCMD_PHYDATARDY)
550 				break;
551 		}
552 
553 		if (i == SK_TIMEOUT) {
554 			if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
555 			return(0);
556 		}
557 	}
558 	DELAY(1);
559 	i = SK_XM_READ_2(sc_if, XM_PHY_DATA);
560 
561 	return(i);
562 }
563 
564 static int
565 sk_xmac_miibus_writereg(sc_if, phy, reg, val)
566 	struct sk_if_softc	*sc_if;
567 	int			phy, reg, val;
568 {
569 	int			i;
570 
571 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
572 	for (i = 0; i < SK_TIMEOUT; i++) {
573 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
574 			break;
575 	}
576 
577 	if (i == SK_TIMEOUT) {
578 		if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
579 		return (ETIMEDOUT);
580 	}
581 
582 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
583 	for (i = 0; i < SK_TIMEOUT; i++) {
584 		DELAY(1);
585 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
586 			break;
587 	}
588 	if (i == SK_TIMEOUT)
589 		if_printf(sc_if->sk_ifp, "phy write timed out\n");
590 
591 	return(0);
592 }
593 
594 static void
595 sk_xmac_miibus_statchg(sc_if)
596 	struct sk_if_softc	*sc_if;
597 {
598 	struct mii_data		*mii;
599 
600 	mii = device_get_softc(sc_if->sk_miibus);
601 
602 	/*
603 	 * If this is a GMII PHY, manually set the XMAC's
604 	 * duplex mode accordingly.
605 	 */
606 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
607 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
608 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
609 		} else {
610 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
611 		}
612 	}
613 }
614 
615 static int
616 sk_marv_miibus_readreg(sc_if, phy, reg)
617 	struct sk_if_softc	*sc_if;
618 	int			phy, reg;
619 {
620 	u_int16_t		val;
621 	int			i;
622 
623 	if (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
624 	    sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER) {
625 		return(0);
626 	}
627 
628         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
629 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
630 
631 	for (i = 0; i < SK_TIMEOUT; i++) {
632 		DELAY(1);
633 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
634 		if (val & YU_SMICR_READ_VALID)
635 			break;
636 	}
637 
638 	if (i == SK_TIMEOUT) {
639 		if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
640 		return(0);
641 	}
642 
643 	val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
644 
645 	return(val);
646 }
647 
648 static int
649 sk_marv_miibus_writereg(sc_if, phy, reg, val)
650 	struct sk_if_softc	*sc_if;
651 	int			phy, reg, val;
652 {
653 	int			i;
654 
655 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
656 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
657 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
658 
659 	for (i = 0; i < SK_TIMEOUT; i++) {
660 		DELAY(1);
661 		if ((SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY) == 0)
662 			break;
663 	}
664 	if (i == SK_TIMEOUT)
665 		if_printf(sc_if->sk_ifp, "phy write timeout\n");
666 
667 	return(0);
668 }
669 
670 static void
671 sk_marv_miibus_statchg(sc_if)
672 	struct sk_if_softc	*sc_if;
673 {
674 	return;
675 }
676 
677 #define HASH_BITS		6
678 
679 static u_int32_t
680 sk_xmchash(addr)
681 	const uint8_t *addr;
682 {
683 	uint32_t crc;
684 
685 	/* Compute CRC for the address value. */
686 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
687 
688 	return (~crc & ((1 << HASH_BITS) - 1));
689 }
690 
691 static void
692 sk_setfilt(sc_if, addr, slot)
693 	struct sk_if_softc	*sc_if;
694 	u_int16_t		*addr;
695 	int			slot;
696 {
697 	int			base;
698 
699 	base = XM_RXFILT_ENTRY(slot);
700 
701 	SK_XM_WRITE_2(sc_if, base, addr[0]);
702 	SK_XM_WRITE_2(sc_if, base + 2, addr[1]);
703 	SK_XM_WRITE_2(sc_if, base + 4, addr[2]);
704 
705 	return;
706 }
707 
708 static void
709 sk_rxfilter(sc_if)
710 	struct sk_if_softc	*sc_if;
711 {
712 	struct sk_softc		*sc;
713 
714 	SK_IF_LOCK_ASSERT(sc_if);
715 
716 	sc = sc_if->sk_softc;
717 	if (sc->sk_type == SK_GENESIS)
718 		sk_rxfilter_genesis(sc_if);
719 	else
720 		sk_rxfilter_yukon(sc_if);
721 }
722 
723 static void
724 sk_rxfilter_genesis(sc_if)
725 	struct sk_if_softc	*sc_if;
726 {
727 	struct ifnet		*ifp = sc_if->sk_ifp;
728 	u_int32_t		hashes[2] = { 0, 0 }, mode;
729 	int			h = 0, i;
730 	struct ifmultiaddr	*ifma;
731 	u_int16_t		dummy[] = { 0, 0, 0 };
732 	u_int16_t		maddr[(ETHER_ADDR_LEN+1)/2];
733 
734 	SK_IF_LOCK_ASSERT(sc_if);
735 
736 	mode = SK_XM_READ_4(sc_if, XM_MODE);
737 	mode &= ~(XM_MODE_RX_PROMISC | XM_MODE_RX_USE_HASH |
738 	    XM_MODE_RX_USE_PERFECT);
739 	/* First, zot all the existing perfect filters. */
740 	for (i = 1; i < XM_RXFILT_MAX; i++)
741 		sk_setfilt(sc_if, dummy, i);
742 
743 	/* Now program new ones. */
744 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
745 		if (ifp->if_flags & IFF_ALLMULTI)
746 			mode |= XM_MODE_RX_USE_HASH;
747 		if (ifp->if_flags & IFF_PROMISC)
748 			mode |= XM_MODE_RX_PROMISC;
749 		hashes[0] = 0xFFFFFFFF;
750 		hashes[1] = 0xFFFFFFFF;
751 	} else {
752 		i = 1;
753 		if_maddr_rlock(ifp);
754 		TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead,
755 		    ifma_link) {
756 			if (ifma->ifma_addr->sa_family != AF_LINK)
757 				continue;
758 			/*
759 			 * Program the first XM_RXFILT_MAX multicast groups
760 			 * into the perfect filter.
761 			 */
762 			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
763 			    maddr, ETHER_ADDR_LEN);
764 			if (i < XM_RXFILT_MAX) {
765 				sk_setfilt(sc_if, maddr, i);
766 				mode |= XM_MODE_RX_USE_PERFECT;
767 				i++;
768 				continue;
769 			}
770 			h = sk_xmchash((const uint8_t *)maddr);
771 			if (h < 32)
772 				hashes[0] |= (1 << h);
773 			else
774 				hashes[1] |= (1 << (h - 32));
775 			mode |= XM_MODE_RX_USE_HASH;
776 		}
777 		if_maddr_runlock(ifp);
778 	}
779 
780 	SK_XM_WRITE_4(sc_if, XM_MODE, mode);
781 	SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
782 	SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
783 }
784 
785 static void
786 sk_rxfilter_yukon(sc_if)
787 	struct sk_if_softc	*sc_if;
788 {
789 	struct ifnet		*ifp;
790 	u_int32_t		crc, hashes[2] = { 0, 0 }, mode;
791 	struct ifmultiaddr	*ifma;
792 
793 	SK_IF_LOCK_ASSERT(sc_if);
794 
795 	ifp = sc_if->sk_ifp;
796 	mode = SK_YU_READ_2(sc_if, YUKON_RCR);
797 	if (ifp->if_flags & IFF_PROMISC)
798 		mode &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN);
799 	else if (ifp->if_flags & IFF_ALLMULTI) {
800 		mode |= YU_RCR_UFLEN | YU_RCR_MUFLEN;
801 		hashes[0] = 0xFFFFFFFF;
802 		hashes[1] = 0xFFFFFFFF;
803 	} else {
804 		mode |= YU_RCR_UFLEN;
805 		if_maddr_rlock(ifp);
806 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
807 			if (ifma->ifma_addr->sa_family != AF_LINK)
808 				continue;
809 			crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
810 			    ifma->ifma_addr), ETHER_ADDR_LEN);
811 			/* Just want the 6 least significant bits. */
812 			crc &= 0x3f;
813 			/* Set the corresponding bit in the hash table. */
814 			hashes[crc >> 5] |= 1 << (crc & 0x1f);
815 		}
816 		if_maddr_runlock(ifp);
817 		if (hashes[0] != 0 || hashes[1] != 0)
818 			mode |= YU_RCR_MUFLEN;
819 	}
820 
821 	SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
822 	SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
823 	SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
824 	SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
825 	SK_YU_WRITE_2(sc_if, YUKON_RCR, mode);
826 }
827 
828 static int
829 sk_init_rx_ring(sc_if)
830 	struct sk_if_softc	*sc_if;
831 {
832 	struct sk_ring_data	*rd;
833 	bus_addr_t		addr;
834 	u_int32_t		csum_start;
835 	int			i;
836 
837 	sc_if->sk_cdata.sk_rx_cons = 0;
838 
839 	csum_start = (ETHER_HDR_LEN + sizeof(struct ip))  << 16 |
840 	    ETHER_HDR_LEN;
841 	rd = &sc_if->sk_rdata;
842 	bzero(rd->sk_rx_ring, sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
843 	for (i = 0; i < SK_RX_RING_CNT; i++) {
844 		if (sk_newbuf(sc_if, i) != 0)
845 			return (ENOBUFS);
846 		if (i == (SK_RX_RING_CNT - 1))
847 			addr = SK_RX_RING_ADDR(sc_if, 0);
848 		else
849 			addr = SK_RX_RING_ADDR(sc_if, i + 1);
850 		rd->sk_rx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
851 		rd->sk_rx_ring[i].sk_csum_start = htole32(csum_start);
852 	}
853 
854 	bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
855 	    sc_if->sk_cdata.sk_rx_ring_map,
856 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
857 
858 	return(0);
859 }
860 
861 static int
862 sk_init_jumbo_rx_ring(sc_if)
863 	struct sk_if_softc	*sc_if;
864 {
865 	struct sk_ring_data	*rd;
866 	bus_addr_t		addr;
867 	u_int32_t		csum_start;
868 	int			i;
869 
870 	sc_if->sk_cdata.sk_jumbo_rx_cons = 0;
871 
872 	csum_start = ((ETHER_HDR_LEN + sizeof(struct ip)) << 16) |
873 	    ETHER_HDR_LEN;
874 	rd = &sc_if->sk_rdata;
875 	bzero(rd->sk_jumbo_rx_ring,
876 	    sizeof(struct sk_rx_desc) * SK_JUMBO_RX_RING_CNT);
877 	for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
878 		if (sk_jumbo_newbuf(sc_if, i) != 0)
879 			return (ENOBUFS);
880 		if (i == (SK_JUMBO_RX_RING_CNT - 1))
881 			addr = SK_JUMBO_RX_RING_ADDR(sc_if, 0);
882 		else
883 			addr = SK_JUMBO_RX_RING_ADDR(sc_if, i + 1);
884 		rd->sk_jumbo_rx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
885 		rd->sk_jumbo_rx_ring[i].sk_csum_start = htole32(csum_start);
886 	}
887 
888 	bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
889 	    sc_if->sk_cdata.sk_jumbo_rx_ring_map,
890 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
891 
892 	return (0);
893 }
894 
895 static void
896 sk_init_tx_ring(sc_if)
897 	struct sk_if_softc	*sc_if;
898 {
899 	struct sk_ring_data	*rd;
900 	struct sk_txdesc	*txd;
901 	bus_addr_t		addr;
902 	int			i;
903 
904 	STAILQ_INIT(&sc_if->sk_cdata.sk_txfreeq);
905 	STAILQ_INIT(&sc_if->sk_cdata.sk_txbusyq);
906 
907 	sc_if->sk_cdata.sk_tx_prod = 0;
908 	sc_if->sk_cdata.sk_tx_cons = 0;
909 	sc_if->sk_cdata.sk_tx_cnt = 0;
910 
911 	rd = &sc_if->sk_rdata;
912 	bzero(rd->sk_tx_ring, sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
913 	for (i = 0; i < SK_TX_RING_CNT; i++) {
914 		if (i == (SK_TX_RING_CNT - 1))
915 			addr = SK_TX_RING_ADDR(sc_if, 0);
916 		else
917 			addr = SK_TX_RING_ADDR(sc_if, i + 1);
918 		rd->sk_tx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
919 		txd = &sc_if->sk_cdata.sk_txdesc[i];
920 		STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txfreeq, txd, tx_q);
921 	}
922 
923 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
924 	    sc_if->sk_cdata.sk_tx_ring_map,
925 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
926 }
927 
928 static __inline void
929 sk_discard_rxbuf(sc_if, idx)
930 	struct sk_if_softc	*sc_if;
931 	int			idx;
932 {
933 	struct sk_rx_desc	*r;
934 	struct sk_rxdesc	*rxd;
935 	struct mbuf		*m;
936 
937 
938 	r = &sc_if->sk_rdata.sk_rx_ring[idx];
939 	rxd = &sc_if->sk_cdata.sk_rxdesc[idx];
940 	m = rxd->rx_m;
941 	r->sk_ctl = htole32(m->m_len | SK_RXSTAT | SK_OPCODE_CSUM);
942 }
943 
944 static __inline void
945 sk_discard_jumbo_rxbuf(sc_if, idx)
946 	struct sk_if_softc	*sc_if;
947 	int			idx;
948 {
949 	struct sk_rx_desc	*r;
950 	struct sk_rxdesc	*rxd;
951 	struct mbuf		*m;
952 
953 	r = &sc_if->sk_rdata.sk_jumbo_rx_ring[idx];
954 	rxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[idx];
955 	m = rxd->rx_m;
956 	r->sk_ctl = htole32(m->m_len | SK_RXSTAT | SK_OPCODE_CSUM);
957 }
958 
959 static int
960 sk_newbuf(sc_if, idx)
961 	struct sk_if_softc	*sc_if;
962 	int 			idx;
963 {
964 	struct sk_rx_desc	*r;
965 	struct sk_rxdesc	*rxd;
966 	struct mbuf		*m;
967 	bus_dma_segment_t	segs[1];
968 	bus_dmamap_t		map;
969 	int			nsegs;
970 
971 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
972 	if (m == NULL)
973 		return (ENOBUFS);
974 	m->m_len = m->m_pkthdr.len = MCLBYTES;
975 	m_adj(m, ETHER_ALIGN);
976 
977 	if (bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_rx_tag,
978 	    sc_if->sk_cdata.sk_rx_sparemap, m, segs, &nsegs, 0) != 0) {
979 		m_freem(m);
980 		return (ENOBUFS);
981 	}
982 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
983 
984 	rxd = &sc_if->sk_cdata.sk_rxdesc[idx];
985 	if (rxd->rx_m != NULL) {
986 		bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap,
987 		    BUS_DMASYNC_POSTREAD);
988 		bus_dmamap_unload(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap);
989 	}
990 	map = rxd->rx_dmamap;
991 	rxd->rx_dmamap = sc_if->sk_cdata.sk_rx_sparemap;
992 	sc_if->sk_cdata.sk_rx_sparemap = map;
993 	bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap,
994 	    BUS_DMASYNC_PREREAD);
995 	rxd->rx_m = m;
996 	r = &sc_if->sk_rdata.sk_rx_ring[idx];
997 	r->sk_data_lo = htole32(SK_ADDR_LO(segs[0].ds_addr));
998 	r->sk_data_hi = htole32(SK_ADDR_HI(segs[0].ds_addr));
999 	r->sk_ctl = htole32(segs[0].ds_len | SK_RXSTAT | SK_OPCODE_CSUM);
1000 
1001 	return (0);
1002 }
1003 
1004 static int
1005 sk_jumbo_newbuf(sc_if, idx)
1006 	struct sk_if_softc	*sc_if;
1007 	int			idx;
1008 {
1009 	struct sk_rx_desc	*r;
1010 	struct sk_rxdesc	*rxd;
1011 	struct mbuf		*m;
1012 	bus_dma_segment_t	segs[1];
1013 	bus_dmamap_t		map;
1014 	int			nsegs;
1015 
1016 	m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
1017 	if (m == NULL)
1018 		return (ENOBUFS);
1019 	if ((m->m_flags & M_EXT) == 0) {
1020 		m_freem(m);
1021 		return (ENOBUFS);
1022 	}
1023 	m->m_pkthdr.len = m->m_len = MJUM9BYTES;
1024 	/*
1025 	 * Adjust alignment so packet payload begins on a
1026 	 * longword boundary. Mandatory for Alpha, useful on
1027 	 * x86 too.
1028 	 */
1029 	m_adj(m, ETHER_ALIGN);
1030 
1031 	if (bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_jumbo_rx_tag,
1032 	    sc_if->sk_cdata.sk_jumbo_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1033 		m_freem(m);
1034 		return (ENOBUFS);
1035 	}
1036 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1037 
1038 	rxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[idx];
1039 	if (rxd->rx_m != NULL) {
1040 		bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag, rxd->rx_dmamap,
1041 		    BUS_DMASYNC_POSTREAD);
1042 		bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_tag,
1043 		    rxd->rx_dmamap);
1044 	}
1045 	map = rxd->rx_dmamap;
1046 	rxd->rx_dmamap = sc_if->sk_cdata.sk_jumbo_rx_sparemap;
1047 	sc_if->sk_cdata.sk_jumbo_rx_sparemap = map;
1048 	bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag, rxd->rx_dmamap,
1049 	    BUS_DMASYNC_PREREAD);
1050 	rxd->rx_m = m;
1051 	r = &sc_if->sk_rdata.sk_jumbo_rx_ring[idx];
1052 	r->sk_data_lo = htole32(SK_ADDR_LO(segs[0].ds_addr));
1053 	r->sk_data_hi = htole32(SK_ADDR_HI(segs[0].ds_addr));
1054 	r->sk_ctl = htole32(segs[0].ds_len | SK_RXSTAT | SK_OPCODE_CSUM);
1055 
1056 	return (0);
1057 }
1058 
1059 /*
1060  * Set media options.
1061  */
1062 static int
1063 sk_ifmedia_upd(ifp)
1064 	struct ifnet		*ifp;
1065 {
1066 	struct sk_if_softc	*sc_if = ifp->if_softc;
1067 	struct mii_data		*mii;
1068 
1069 	mii = device_get_softc(sc_if->sk_miibus);
1070 	sk_init(sc_if);
1071 	mii_mediachg(mii);
1072 
1073 	return(0);
1074 }
1075 
1076 /*
1077  * Report current media status.
1078  */
1079 static void
1080 sk_ifmedia_sts(ifp, ifmr)
1081 	struct ifnet		*ifp;
1082 	struct ifmediareq	*ifmr;
1083 {
1084 	struct sk_if_softc	*sc_if;
1085 	struct mii_data		*mii;
1086 
1087 	sc_if = ifp->if_softc;
1088 	mii = device_get_softc(sc_if->sk_miibus);
1089 
1090 	mii_pollstat(mii);
1091 	ifmr->ifm_active = mii->mii_media_active;
1092 	ifmr->ifm_status = mii->mii_media_status;
1093 
1094 	return;
1095 }
1096 
1097 static int
1098 sk_ioctl(ifp, command, data)
1099 	struct ifnet		*ifp;
1100 	u_long			command;
1101 	caddr_t			data;
1102 {
1103 	struct sk_if_softc	*sc_if = ifp->if_softc;
1104 	struct ifreq		*ifr = (struct ifreq *) data;
1105 	int			error, mask;
1106 	struct mii_data		*mii;
1107 
1108 	error = 0;
1109 	switch(command) {
1110 	case SIOCSIFMTU:
1111 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > SK_JUMBO_MTU)
1112 			error = EINVAL;
1113 		else if (ifp->if_mtu != ifr->ifr_mtu) {
1114 			if (sc_if->sk_jumbo_disable != 0 &&
1115 			    ifr->ifr_mtu > SK_MAX_FRAMELEN)
1116 				error = EINVAL;
1117 			else {
1118 				SK_IF_LOCK(sc_if);
1119 				ifp->if_mtu = ifr->ifr_mtu;
1120 				if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1121 					ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1122 					sk_init_locked(sc_if);
1123 				}
1124 				SK_IF_UNLOCK(sc_if);
1125 			}
1126 		}
1127 		break;
1128 	case SIOCSIFFLAGS:
1129 		SK_IF_LOCK(sc_if);
1130 		if (ifp->if_flags & IFF_UP) {
1131 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1132 				if ((ifp->if_flags ^ sc_if->sk_if_flags)
1133 				    & (IFF_PROMISC | IFF_ALLMULTI))
1134 					sk_rxfilter(sc_if);
1135 			} else
1136 				sk_init_locked(sc_if);
1137 		} else {
1138 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1139 				sk_stop(sc_if);
1140 		}
1141 		sc_if->sk_if_flags = ifp->if_flags;
1142 		SK_IF_UNLOCK(sc_if);
1143 		break;
1144 	case SIOCADDMULTI:
1145 	case SIOCDELMULTI:
1146 		SK_IF_LOCK(sc_if);
1147 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1148 			sk_rxfilter(sc_if);
1149 		SK_IF_UNLOCK(sc_if);
1150 		break;
1151 	case SIOCGIFMEDIA:
1152 	case SIOCSIFMEDIA:
1153 		mii = device_get_softc(sc_if->sk_miibus);
1154 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1155 		break;
1156 	case SIOCSIFCAP:
1157 		SK_IF_LOCK(sc_if);
1158 		if (sc_if->sk_softc->sk_type == SK_GENESIS) {
1159 			SK_IF_UNLOCK(sc_if);
1160 			break;
1161 		}
1162 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1163 		if ((mask & IFCAP_TXCSUM) != 0 &&
1164 		    (IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
1165 			ifp->if_capenable ^= IFCAP_TXCSUM;
1166 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1167 				ifp->if_hwassist |= SK_CSUM_FEATURES;
1168 			else
1169 				ifp->if_hwassist &= ~SK_CSUM_FEATURES;
1170 		}
1171 		if ((mask & IFCAP_RXCSUM) != 0 &&
1172 		    (IFCAP_RXCSUM & ifp->if_capabilities) != 0)
1173 			ifp->if_capenable ^= IFCAP_RXCSUM;
1174 		SK_IF_UNLOCK(sc_if);
1175 		break;
1176 	default:
1177 		error = ether_ioctl(ifp, command, data);
1178 		break;
1179 	}
1180 
1181 	return (error);
1182 }
1183 
1184 /*
1185  * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
1186  * IDs against our list and return a device name if we find a match.
1187  */
1188 static int
1189 skc_probe(dev)
1190 	device_t		dev;
1191 {
1192 	const struct sk_type	*t = sk_devs;
1193 
1194 	while(t->sk_name != NULL) {
1195 		if ((pci_get_vendor(dev) == t->sk_vid) &&
1196 		    (pci_get_device(dev) == t->sk_did)) {
1197 			/*
1198 			 * Only attach to rev. 2 of the Linksys EG1032 adapter.
1199 			 * Rev. 3 is supported by re(4).
1200 			 */
1201 			if ((t->sk_vid == VENDORID_LINKSYS) &&
1202 				(t->sk_did == DEVICEID_LINKSYS_EG1032) &&
1203 				(pci_get_subdevice(dev) !=
1204 				 SUBDEVICEID_LINKSYS_EG1032_REV2)) {
1205 				t++;
1206 				continue;
1207 			}
1208 			device_set_desc(dev, t->sk_name);
1209 			return (BUS_PROBE_DEFAULT);
1210 		}
1211 		t++;
1212 	}
1213 
1214 	return(ENXIO);
1215 }
1216 
1217 /*
1218  * Force the GEnesis into reset, then bring it out of reset.
1219  */
1220 static void
1221 sk_reset(sc)
1222 	struct sk_softc		*sc;
1223 {
1224 
1225 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1226 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1227 	if (SK_YUKON_FAMILY(sc->sk_type))
1228 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1229 
1230 	DELAY(1000);
1231 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1232 	DELAY(2);
1233 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1234 	if (SK_YUKON_FAMILY(sc->sk_type))
1235 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1236 
1237 	if (sc->sk_type == SK_GENESIS) {
1238 		/* Configure packet arbiter */
1239 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1240 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1241 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1242 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1243 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1244 	}
1245 
1246 	/* Enable RAM interface */
1247 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1248 
1249 	/*
1250          * Configure interrupt moderation. The moderation timer
1251 	 * defers interrupts specified in the interrupt moderation
1252 	 * timer mask based on the timeout specified in the interrupt
1253 	 * moderation timer init register. Each bit in the timer
1254 	 * register represents one tick, so to specify a timeout in
1255 	 * microseconds, we have to multiply by the correct number of
1256 	 * ticks-per-microsecond.
1257 	 */
1258 	switch (sc->sk_type) {
1259 	case SK_GENESIS:
1260 		sc->sk_int_ticks = SK_IMTIMER_TICKS_GENESIS;
1261 		break;
1262 	default:
1263 		sc->sk_int_ticks = SK_IMTIMER_TICKS_YUKON;
1264 		break;
1265 	}
1266 	if (bootverbose)
1267 		device_printf(sc->sk_dev, "interrupt moderation is %d us\n",
1268 		    sc->sk_int_mod);
1269 	sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod,
1270 	    sc->sk_int_ticks));
1271 	sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1272 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1273 	sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1274 
1275 	return;
1276 }
1277 
1278 static int
1279 sk_probe(dev)
1280 	device_t		dev;
1281 {
1282 	struct sk_softc		*sc;
1283 
1284 	sc = device_get_softc(device_get_parent(dev));
1285 
1286 	/*
1287 	 * Not much to do here. We always know there will be
1288 	 * at least one XMAC present, and if there are two,
1289 	 * skc_attach() will create a second device instance
1290 	 * for us.
1291 	 */
1292 	switch (sc->sk_type) {
1293 	case SK_GENESIS:
1294 		device_set_desc(dev, "XaQti Corp. XMAC II");
1295 		break;
1296 	case SK_YUKON:
1297 	case SK_YUKON_LITE:
1298 	case SK_YUKON_LP:
1299 		device_set_desc(dev, "Marvell Semiconductor, Inc. Yukon");
1300 		break;
1301 	}
1302 
1303 	return (BUS_PROBE_DEFAULT);
1304 }
1305 
1306 /*
1307  * Each XMAC chip is attached as a separate logical IP interface.
1308  * Single port cards will have only one logical interface of course.
1309  */
1310 static int
1311 sk_attach(dev)
1312 	device_t		dev;
1313 {
1314 	struct sk_softc		*sc;
1315 	struct sk_if_softc	*sc_if;
1316 	struct ifnet		*ifp;
1317 	u_int32_t		r;
1318 	int			error, i, phy, port;
1319 	u_char			eaddr[6];
1320 	u_char			inv_mac[] = {0, 0, 0, 0, 0, 0};
1321 
1322 	if (dev == NULL)
1323 		return(EINVAL);
1324 
1325 	error = 0;
1326 	sc_if = device_get_softc(dev);
1327 	sc = device_get_softc(device_get_parent(dev));
1328 	port = *(int *)device_get_ivars(dev);
1329 
1330 	sc_if->sk_if_dev = dev;
1331 	sc_if->sk_port = port;
1332 	sc_if->sk_softc = sc;
1333 	sc->sk_if[port] = sc_if;
1334 	if (port == SK_PORT_A)
1335 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1336 	if (port == SK_PORT_B)
1337 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1338 
1339 	callout_init_mtx(&sc_if->sk_tick_ch, &sc_if->sk_softc->sk_mtx, 0);
1340 	callout_init_mtx(&sc_if->sk_watchdog_ch, &sc_if->sk_softc->sk_mtx, 0);
1341 
1342 	if (sk_dma_alloc(sc_if) != 0) {
1343 		error = ENOMEM;
1344 		goto fail;
1345 	}
1346 	sk_dma_jumbo_alloc(sc_if);
1347 
1348 	ifp = sc_if->sk_ifp = if_alloc(IFT_ETHER);
1349 	if (ifp == NULL) {
1350 		device_printf(sc_if->sk_if_dev, "can not if_alloc()\n");
1351 		error = ENOSPC;
1352 		goto fail;
1353 	}
1354 	ifp->if_softc = sc_if;
1355 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1356 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1357 	/*
1358 	 * SK_GENESIS has a bug in checksum offload - From linux.
1359 	 */
1360 	if (sc_if->sk_softc->sk_type != SK_GENESIS) {
1361 		ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_RXCSUM;
1362 		ifp->if_hwassist = 0;
1363 	} else {
1364 		ifp->if_capabilities = 0;
1365 		ifp->if_hwassist = 0;
1366 	}
1367 	ifp->if_capenable = ifp->if_capabilities;
1368 	/*
1369 	 * Some revision of Yukon controller generates corrupted
1370 	 * frame when TX checksum offloading is enabled.  The
1371 	 * frame has a valid checksum value so payload might be
1372 	 * modified during TX checksum calculation. Disable TX
1373 	 * checksum offloading but give users chance to enable it
1374 	 * when they know their controller works without problems
1375 	 * with TX checksum offloading.
1376 	 */
1377 	ifp->if_capenable &= ~IFCAP_TXCSUM;
1378 	ifp->if_ioctl = sk_ioctl;
1379 	ifp->if_start = sk_start;
1380 	ifp->if_init = sk_init;
1381 	IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1382 	ifp->if_snd.ifq_drv_maxlen = SK_TX_RING_CNT - 1;
1383 	IFQ_SET_READY(&ifp->if_snd);
1384 
1385 	/*
1386 	 * Get station address for this interface. Note that
1387 	 * dual port cards actually come with three station
1388 	 * addresses: one for each port, plus an extra. The
1389 	 * extra one is used by the SysKonnect driver software
1390 	 * as a 'virtual' station address for when both ports
1391 	 * are operating in failover mode. Currently we don't
1392 	 * use this extra address.
1393 	 */
1394 	SK_IF_LOCK(sc_if);
1395 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1396 		eaddr[i] =
1397 		    sk_win_read_1(sc, SK_MAC0_0 + (port * 8) + i);
1398 
1399 	/* Verify whether the station address is invalid or not. */
1400 	if (bcmp(eaddr, inv_mac, sizeof(inv_mac)) == 0) {
1401 		device_printf(sc_if->sk_if_dev,
1402 		    "Generating random ethernet address\n");
1403 		r = arc4random();
1404 		/*
1405 		 * Set OUI to convenient locally assigned address.  'b'
1406 		 * is 0x62, which has the locally assigned bit set, and
1407 		 * the broadcast/multicast bit clear.
1408 		 */
1409 		eaddr[0] = 'b';
1410 		eaddr[1] = 's';
1411 		eaddr[2] = 'd';
1412 		eaddr[3] = (r >> 16) & 0xff;
1413 		eaddr[4] = (r >>  8) & 0xff;
1414 		eaddr[5] = (r >>  0) & 0xff;
1415 	}
1416 	/*
1417 	 * Set up RAM buffer addresses. The NIC will have a certain
1418 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
1419 	 * need to divide this up a) between the transmitter and
1420  	 * receiver and b) between the two XMACs, if this is a
1421 	 * dual port NIC. Our algotithm is to divide up the memory
1422 	 * evenly so that everyone gets a fair share.
1423 	 *
1424 	 * Just to be contrary, Yukon2 appears to have separate memory
1425 	 * for each MAC.
1426 	 */
1427 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1428 		u_int32_t		chunk, val;
1429 
1430 		chunk = sc->sk_ramsize / 2;
1431 		val = sc->sk_rboff / sizeof(u_int64_t);
1432 		sc_if->sk_rx_ramstart = val;
1433 		val += (chunk / sizeof(u_int64_t));
1434 		sc_if->sk_rx_ramend = val - 1;
1435 		sc_if->sk_tx_ramstart = val;
1436 		val += (chunk / sizeof(u_int64_t));
1437 		sc_if->sk_tx_ramend = val - 1;
1438 	} else {
1439 		u_int32_t		chunk, val;
1440 
1441 		chunk = sc->sk_ramsize / 4;
1442 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1443 		    sizeof(u_int64_t);
1444 		sc_if->sk_rx_ramstart = val;
1445 		val += (chunk / sizeof(u_int64_t));
1446 		sc_if->sk_rx_ramend = val - 1;
1447 		sc_if->sk_tx_ramstart = val;
1448 		val += (chunk / sizeof(u_int64_t));
1449 		sc_if->sk_tx_ramend = val - 1;
1450 	}
1451 
1452 	/* Read and save PHY type and set PHY address */
1453 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1454 	if (!SK_YUKON_FAMILY(sc->sk_type)) {
1455 		switch(sc_if->sk_phytype) {
1456 		case SK_PHYTYPE_XMAC:
1457 			sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1458 			break;
1459 		case SK_PHYTYPE_BCOM:
1460 			sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1461 			break;
1462 		default:
1463 			device_printf(sc->sk_dev, "unsupported PHY type: %d\n",
1464 			    sc_if->sk_phytype);
1465 			error = ENODEV;
1466 			SK_IF_UNLOCK(sc_if);
1467 			goto fail;
1468 		}
1469 	} else {
1470 		if (sc_if->sk_phytype < SK_PHYTYPE_MARV_COPPER &&
1471 		    sc->sk_pmd != 'S') {
1472 			/* not initialized, punt */
1473 			sc_if->sk_phytype = SK_PHYTYPE_MARV_COPPER;
1474 			sc->sk_coppertype = 1;
1475 		}
1476 
1477 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1478 
1479 		if (!(sc->sk_coppertype))
1480 			sc_if->sk_phytype = SK_PHYTYPE_MARV_FIBER;
1481 	}
1482 
1483 	/*
1484 	 * Call MI attach routine.  Can't hold locks when calling into ether_*.
1485 	 */
1486 	SK_IF_UNLOCK(sc_if);
1487 	ether_ifattach(ifp, eaddr);
1488 	SK_IF_LOCK(sc_if);
1489 
1490 	/*
1491 	 * The hardware should be ready for VLAN_MTU by default:
1492 	 * XMAC II has 0x8100 in VLAN Tag Level 1 register initially;
1493 	 * YU_SMR_MFL_VLAN is set by this driver in Yukon.
1494 	 *
1495 	 */
1496         ifp->if_capabilities |= IFCAP_VLAN_MTU;
1497         ifp->if_capenable |= IFCAP_VLAN_MTU;
1498 	/*
1499 	 * Tell the upper layer(s) we support long frames.
1500 	 * Must appear after the call to ether_ifattach() because
1501 	 * ether_ifattach() sets ifi_hdrlen to the default value.
1502 	 */
1503         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1504 
1505 	/*
1506 	 * Do miibus setup.
1507 	 */
1508 	phy = MII_PHY_ANY;
1509 	switch (sc->sk_type) {
1510 	case SK_GENESIS:
1511 		sk_init_xmac(sc_if);
1512 		if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
1513 			phy = 0;
1514 		break;
1515 	case SK_YUKON:
1516 	case SK_YUKON_LITE:
1517 	case SK_YUKON_LP:
1518 		sk_init_yukon(sc_if);
1519 		phy = 0;
1520 		break;
1521 	}
1522 
1523 	SK_IF_UNLOCK(sc_if);
1524 	error = mii_attach(dev, &sc_if->sk_miibus, ifp, sk_ifmedia_upd,
1525 	    sk_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
1526 	if (error != 0) {
1527 		device_printf(sc_if->sk_if_dev, "attaching PHYs failed\n");
1528 		ether_ifdetach(ifp);
1529 		goto fail;
1530 	}
1531 
1532 fail:
1533 	if (error) {
1534 		/* Access should be ok even though lock has been dropped */
1535 		sc->sk_if[port] = NULL;
1536 		sk_detach(dev);
1537 	}
1538 
1539 	return(error);
1540 }
1541 
1542 /*
1543  * Attach the interface. Allocate softc structures, do ifmedia
1544  * setup and ethernet/BPF attach.
1545  */
1546 static int
1547 skc_attach(dev)
1548 	device_t		dev;
1549 {
1550 	struct sk_softc		*sc;
1551 	int			error = 0, *port;
1552 	uint8_t			skrs;
1553 	const char		*pname = NULL;
1554 	char			*revstr;
1555 
1556 	sc = device_get_softc(dev);
1557 	sc->sk_dev = dev;
1558 
1559 	mtx_init(&sc->sk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1560 	    MTX_DEF);
1561 	mtx_init(&sc->sk_mii_mtx, "sk_mii_mutex", NULL, MTX_DEF);
1562 	/*
1563 	 * Map control/status registers.
1564 	 */
1565 	pci_enable_busmaster(dev);
1566 
1567 	/* Allocate resources */
1568 #ifdef SK_USEIOSPACE
1569 	sc->sk_res_spec = sk_res_spec_io;
1570 #else
1571 	sc->sk_res_spec = sk_res_spec_mem;
1572 #endif
1573 	error = bus_alloc_resources(dev, sc->sk_res_spec, sc->sk_res);
1574 	if (error) {
1575 		if (sc->sk_res_spec == sk_res_spec_mem)
1576 			sc->sk_res_spec = sk_res_spec_io;
1577 		else
1578 			sc->sk_res_spec = sk_res_spec_mem;
1579 		error = bus_alloc_resources(dev, sc->sk_res_spec, sc->sk_res);
1580 		if (error) {
1581 			device_printf(dev, "couldn't allocate %s resources\n",
1582 			    sc->sk_res_spec == sk_res_spec_mem ? "memory" :
1583 			    "I/O");
1584 			goto fail;
1585 		}
1586 	}
1587 
1588 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1589 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4) & 0xf;
1590 
1591 	/* Bail out if chip is not recognized. */
1592 	if (sc->sk_type != SK_GENESIS && !SK_YUKON_FAMILY(sc->sk_type)) {
1593 		device_printf(dev, "unknown device: chipver=%02x, rev=%x\n",
1594 		    sc->sk_type, sc->sk_rev);
1595 		error = ENXIO;
1596 		goto fail;
1597 	}
1598 
1599 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
1600 		SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1601 		OID_AUTO, "int_mod", CTLTYPE_INT|CTLFLAG_RW,
1602 		&sc->sk_int_mod, 0, sysctl_hw_sk_int_mod, "I",
1603 		"SK interrupt moderation");
1604 
1605 	/* Pull in device tunables. */
1606 	sc->sk_int_mod = SK_IM_DEFAULT;
1607 	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
1608 		"int_mod", &sc->sk_int_mod);
1609 	if (error == 0) {
1610 		if (sc->sk_int_mod < SK_IM_MIN ||
1611 		    sc->sk_int_mod > SK_IM_MAX) {
1612 			device_printf(dev, "int_mod value out of range; "
1613 			    "using default: %d\n", SK_IM_DEFAULT);
1614 			sc->sk_int_mod = SK_IM_DEFAULT;
1615 		}
1616 	}
1617 
1618 	/* Reset the adapter. */
1619 	sk_reset(sc);
1620 
1621 	skrs = sk_win_read_1(sc, SK_EPROM0);
1622 	if (sc->sk_type == SK_GENESIS) {
1623 		/* Read and save RAM size and RAMbuffer offset */
1624 		switch(skrs) {
1625 		case SK_RAMSIZE_512K_64:
1626 			sc->sk_ramsize = 0x80000;
1627 			sc->sk_rboff = SK_RBOFF_0;
1628 			break;
1629 		case SK_RAMSIZE_1024K_64:
1630 			sc->sk_ramsize = 0x100000;
1631 			sc->sk_rboff = SK_RBOFF_80000;
1632 			break;
1633 		case SK_RAMSIZE_1024K_128:
1634 			sc->sk_ramsize = 0x100000;
1635 			sc->sk_rboff = SK_RBOFF_0;
1636 			break;
1637 		case SK_RAMSIZE_2048K_128:
1638 			sc->sk_ramsize = 0x200000;
1639 			sc->sk_rboff = SK_RBOFF_0;
1640 			break;
1641 		default:
1642 			device_printf(dev, "unknown ram size: %d\n", skrs);
1643 			error = ENXIO;
1644 			goto fail;
1645 		}
1646 	} else { /* SK_YUKON_FAMILY */
1647 		if (skrs == 0x00)
1648 			sc->sk_ramsize = 0x20000;
1649 		else
1650 			sc->sk_ramsize = skrs * (1<<12);
1651 		sc->sk_rboff = SK_RBOFF_0;
1652 	}
1653 
1654 	/* Read and save physical media type */
1655 	 sc->sk_pmd = sk_win_read_1(sc, SK_PMDTYPE);
1656 
1657 	 if (sc->sk_pmd == 'T' || sc->sk_pmd == '1')
1658 		 sc->sk_coppertype = 1;
1659 	 else
1660 		 sc->sk_coppertype = 0;
1661 
1662 	/* Determine whether to name it with VPD PN or just make it up.
1663 	 * Marvell Yukon VPD PN seems to freqently be bogus. */
1664 	switch (pci_get_device(dev)) {
1665 	case DEVICEID_SK_V1:
1666 	case DEVICEID_BELKIN_5005:
1667 	case DEVICEID_3COM_3C940:
1668 	case DEVICEID_LINKSYS_EG1032:
1669 	case DEVICEID_DLINK_DGE530T_A1:
1670 	case DEVICEID_DLINK_DGE530T_B1:
1671 		/* Stay with VPD PN. */
1672 		(void) pci_get_vpd_ident(dev, &pname);
1673 		break;
1674 	case DEVICEID_SK_V2:
1675 		/* YUKON VPD PN might bear no resemblance to reality. */
1676 		switch (sc->sk_type) {
1677 		case SK_GENESIS:
1678 			/* Stay with VPD PN. */
1679 			(void) pci_get_vpd_ident(dev, &pname);
1680 			break;
1681 		case SK_YUKON:
1682 			pname = "Marvell Yukon Gigabit Ethernet";
1683 			break;
1684 		case SK_YUKON_LITE:
1685 			pname = "Marvell Yukon Lite Gigabit Ethernet";
1686 			break;
1687 		case SK_YUKON_LP:
1688 			pname = "Marvell Yukon LP Gigabit Ethernet";
1689 			break;
1690 		default:
1691 			pname = "Marvell Yukon (Unknown) Gigabit Ethernet";
1692 			break;
1693 		}
1694 
1695 		/* Yukon Lite Rev. A0 needs special test. */
1696 		if (sc->sk_type == SK_YUKON || sc->sk_type == SK_YUKON_LP) {
1697 			u_int32_t far;
1698 			u_int8_t testbyte;
1699 
1700 			/* Save flash address register before testing. */
1701 			far = sk_win_read_4(sc, SK_EP_ADDR);
1702 
1703 			sk_win_write_1(sc, SK_EP_ADDR+0x03, 0xff);
1704 			testbyte = sk_win_read_1(sc, SK_EP_ADDR+0x03);
1705 
1706 			if (testbyte != 0x00) {
1707 				/* Yukon Lite Rev. A0 detected. */
1708 				sc->sk_type = SK_YUKON_LITE;
1709 				sc->sk_rev = SK_YUKON_LITE_REV_A0;
1710 				/* Restore flash address register. */
1711 				sk_win_write_4(sc, SK_EP_ADDR, far);
1712 			}
1713 		}
1714 		break;
1715 	default:
1716 		device_printf(dev, "unknown device: vendor=%04x, device=%04x, "
1717 			"chipver=%02x, rev=%x\n",
1718 			pci_get_vendor(dev), pci_get_device(dev),
1719 			sc->sk_type, sc->sk_rev);
1720 		error = ENXIO;
1721 		goto fail;
1722 	}
1723 
1724 	if (sc->sk_type == SK_YUKON_LITE) {
1725 		switch (sc->sk_rev) {
1726 		case SK_YUKON_LITE_REV_A0:
1727 			revstr = "A0";
1728 			break;
1729 		case SK_YUKON_LITE_REV_A1:
1730 			revstr = "A1";
1731 			break;
1732 		case SK_YUKON_LITE_REV_A3:
1733 			revstr = "A3";
1734 			break;
1735 		default:
1736 			revstr = "";
1737 			break;
1738 		}
1739 	} else {
1740 		revstr = "";
1741 	}
1742 
1743 	/* Announce the product name and more VPD data if there. */
1744 	if (pname != NULL)
1745 		device_printf(dev, "%s rev. %s(0x%x)\n",
1746 			pname, revstr, sc->sk_rev);
1747 
1748 	if (bootverbose) {
1749 		device_printf(dev, "chip ver  = 0x%02x\n", sc->sk_type);
1750 		device_printf(dev, "chip rev  = 0x%02x\n", sc->sk_rev);
1751 		device_printf(dev, "SK_EPROM0 = 0x%02x\n", skrs);
1752 		device_printf(dev, "SRAM size = 0x%06x\n", sc->sk_ramsize);
1753 	}
1754 
1755 	sc->sk_devs[SK_PORT_A] = device_add_child(dev, "sk", -1);
1756 	if (sc->sk_devs[SK_PORT_A] == NULL) {
1757 		device_printf(dev, "failed to add child for PORT_A\n");
1758 		error = ENXIO;
1759 		goto fail;
1760 	}
1761 	port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1762 	if (port == NULL) {
1763 		device_printf(dev, "failed to allocate memory for "
1764 		    "ivars of PORT_A\n");
1765 		error = ENXIO;
1766 		goto fail;
1767 	}
1768 	*port = SK_PORT_A;
1769 	device_set_ivars(sc->sk_devs[SK_PORT_A], port);
1770 
1771 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1772 		sc->sk_devs[SK_PORT_B] = device_add_child(dev, "sk", -1);
1773 		if (sc->sk_devs[SK_PORT_B] == NULL) {
1774 			device_printf(dev, "failed to add child for PORT_B\n");
1775 			error = ENXIO;
1776 			goto fail;
1777 		}
1778 		port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1779 		if (port == NULL) {
1780 			device_printf(dev, "failed to allocate memory for "
1781 			    "ivars of PORT_B\n");
1782 			error = ENXIO;
1783 			goto fail;
1784 		}
1785 		*port = SK_PORT_B;
1786 		device_set_ivars(sc->sk_devs[SK_PORT_B], port);
1787 	}
1788 
1789 	/* Turn on the 'driver is loaded' LED. */
1790 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1791 
1792 	error = bus_generic_attach(dev);
1793 	if (error) {
1794 		device_printf(dev, "failed to attach port(s)\n");
1795 		goto fail;
1796 	}
1797 
1798 	/* Hook interrupt last to avoid having to lock softc */
1799 	error = bus_setup_intr(dev, sc->sk_res[1], INTR_TYPE_NET|INTR_MPSAFE,
1800 	    NULL, sk_intr, sc, &sc->sk_intrhand);
1801 
1802 	if (error) {
1803 		device_printf(dev, "couldn't set up irq\n");
1804 		goto fail;
1805 	}
1806 
1807 fail:
1808 	if (error)
1809 		skc_detach(dev);
1810 
1811 	return(error);
1812 }
1813 
1814 /*
1815  * Shutdown hardware and free up resources. This can be called any
1816  * time after the mutex has been initialized. It is called in both
1817  * the error case in attach and the normal detach case so it needs
1818  * to be careful about only freeing resources that have actually been
1819  * allocated.
1820  */
1821 static int
1822 sk_detach(dev)
1823 	device_t		dev;
1824 {
1825 	struct sk_if_softc	*sc_if;
1826 	struct ifnet		*ifp;
1827 
1828 	sc_if = device_get_softc(dev);
1829 	KASSERT(mtx_initialized(&sc_if->sk_softc->sk_mtx),
1830 	    ("sk mutex not initialized in sk_detach"));
1831 	SK_IF_LOCK(sc_if);
1832 
1833 	ifp = sc_if->sk_ifp;
1834 	/* These should only be active if attach_xmac succeeded */
1835 	if (device_is_attached(dev)) {
1836 		sk_stop(sc_if);
1837 		/* Can't hold locks while calling detach */
1838 		SK_IF_UNLOCK(sc_if);
1839 		callout_drain(&sc_if->sk_tick_ch);
1840 		callout_drain(&sc_if->sk_watchdog_ch);
1841 		ether_ifdetach(ifp);
1842 		SK_IF_LOCK(sc_if);
1843 	}
1844 	if (ifp)
1845 		if_free(ifp);
1846 	/*
1847 	 * We're generally called from skc_detach() which is using
1848 	 * device_delete_child() to get to here. It's already trashed
1849 	 * miibus for us, so don't do it here or we'll panic.
1850 	 */
1851 	/*
1852 	if (sc_if->sk_miibus != NULL)
1853 		device_delete_child(dev, sc_if->sk_miibus);
1854 	*/
1855 	bus_generic_detach(dev);
1856 	sk_dma_jumbo_free(sc_if);
1857 	sk_dma_free(sc_if);
1858 	SK_IF_UNLOCK(sc_if);
1859 
1860 	return(0);
1861 }
1862 
1863 static int
1864 skc_detach(dev)
1865 	device_t		dev;
1866 {
1867 	struct sk_softc		*sc;
1868 
1869 	sc = device_get_softc(dev);
1870 	KASSERT(mtx_initialized(&sc->sk_mtx), ("sk mutex not initialized"));
1871 
1872 	if (device_is_alive(dev)) {
1873 		if (sc->sk_devs[SK_PORT_A] != NULL) {
1874 			free(device_get_ivars(sc->sk_devs[SK_PORT_A]), M_DEVBUF);
1875 			device_delete_child(dev, sc->sk_devs[SK_PORT_A]);
1876 		}
1877 		if (sc->sk_devs[SK_PORT_B] != NULL) {
1878 			free(device_get_ivars(sc->sk_devs[SK_PORT_B]), M_DEVBUF);
1879 			device_delete_child(dev, sc->sk_devs[SK_PORT_B]);
1880 		}
1881 		bus_generic_detach(dev);
1882 	}
1883 
1884 	if (sc->sk_intrhand)
1885 		bus_teardown_intr(dev, sc->sk_res[1], sc->sk_intrhand);
1886 	bus_release_resources(dev, sc->sk_res_spec, sc->sk_res);
1887 
1888 	mtx_destroy(&sc->sk_mii_mtx);
1889 	mtx_destroy(&sc->sk_mtx);
1890 
1891 	return(0);
1892 }
1893 
1894 static bus_dma_tag_t
1895 skc_get_dma_tag(device_t bus, device_t child __unused)
1896 {
1897 
1898 	return (bus_get_dma_tag(bus));
1899 }
1900 
1901 struct sk_dmamap_arg {
1902 	bus_addr_t	sk_busaddr;
1903 };
1904 
1905 static void
1906 sk_dmamap_cb(arg, segs, nseg, error)
1907 	void			*arg;
1908 	bus_dma_segment_t	*segs;
1909 	int			nseg;
1910 	int			error;
1911 {
1912 	struct sk_dmamap_arg	*ctx;
1913 
1914 	if (error != 0)
1915 		return;
1916 
1917 	ctx = arg;
1918 	ctx->sk_busaddr = segs[0].ds_addr;
1919 }
1920 
1921 /*
1922  * Allocate jumbo buffer storage. The SysKonnect adapters support
1923  * "jumbograms" (9K frames), although SysKonnect doesn't currently
1924  * use them in their drivers. In order for us to use them, we need
1925  * large 9K receive buffers, however standard mbuf clusters are only
1926  * 2048 bytes in size. Consequently, we need to allocate and manage
1927  * our own jumbo buffer pool. Fortunately, this does not require an
1928  * excessive amount of additional code.
1929  */
1930 static int
1931 sk_dma_alloc(sc_if)
1932 	struct sk_if_softc	*sc_if;
1933 {
1934 	struct sk_dmamap_arg	ctx;
1935 	struct sk_txdesc	*txd;
1936 	struct sk_rxdesc	*rxd;
1937 	int			error, i;
1938 
1939 	/* create parent tag */
1940 	/*
1941 	 * XXX
1942 	 * This driver should use BUS_SPACE_MAXADDR for lowaddr argument
1943 	 * in bus_dma_tag_create(9) as the NIC would support DAC mode.
1944 	 * However bz@ reported that it does not work on amd64 with > 4GB
1945 	 * RAM. Until we have more clues of the breakage, disable DAC mode
1946 	 * by limiting DMA address to be in 32bit address space.
1947 	 */
1948 	error = bus_dma_tag_create(
1949 		    bus_get_dma_tag(sc_if->sk_if_dev),/* parent */
1950 		    1, 0,			/* algnmnt, boundary */
1951 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1952 		    BUS_SPACE_MAXADDR,		/* highaddr */
1953 		    NULL, NULL,			/* filter, filterarg */
1954 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1955 		    0,				/* nsegments */
1956 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1957 		    0,				/* flags */
1958 		    NULL, NULL,			/* lockfunc, lockarg */
1959 		    &sc_if->sk_cdata.sk_parent_tag);
1960 	if (error != 0) {
1961 		device_printf(sc_if->sk_if_dev,
1962 		    "failed to create parent DMA tag\n");
1963 		goto fail;
1964 	}
1965 
1966 	/* create tag for Tx ring */
1967 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
1968 		    SK_RING_ALIGN, 0,		/* algnmnt, boundary */
1969 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1970 		    BUS_SPACE_MAXADDR,		/* highaddr */
1971 		    NULL, NULL,			/* filter, filterarg */
1972 		    SK_TX_RING_SZ,		/* maxsize */
1973 		    1,				/* nsegments */
1974 		    SK_TX_RING_SZ,		/* maxsegsize */
1975 		    0,				/* flags */
1976 		    NULL, NULL,			/* lockfunc, lockarg */
1977 		    &sc_if->sk_cdata.sk_tx_ring_tag);
1978 	if (error != 0) {
1979 		device_printf(sc_if->sk_if_dev,
1980 		    "failed to allocate Tx ring DMA tag\n");
1981 		goto fail;
1982 	}
1983 
1984 	/* create tag for Rx ring */
1985 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
1986 		    SK_RING_ALIGN, 0,		/* algnmnt, boundary */
1987 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1988 		    BUS_SPACE_MAXADDR,		/* highaddr */
1989 		    NULL, NULL,			/* filter, filterarg */
1990 		    SK_RX_RING_SZ,		/* maxsize */
1991 		    1,				/* nsegments */
1992 		    SK_RX_RING_SZ,		/* maxsegsize */
1993 		    0,				/* flags */
1994 		    NULL, NULL,			/* lockfunc, lockarg */
1995 		    &sc_if->sk_cdata.sk_rx_ring_tag);
1996 	if (error != 0) {
1997 		device_printf(sc_if->sk_if_dev,
1998 		    "failed to allocate Rx ring DMA tag\n");
1999 		goto fail;
2000 	}
2001 
2002 	/* create tag for Tx buffers */
2003 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2004 		    1, 0,			/* algnmnt, boundary */
2005 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2006 		    BUS_SPACE_MAXADDR,		/* highaddr */
2007 		    NULL, NULL,			/* filter, filterarg */
2008 		    MCLBYTES * SK_MAXTXSEGS,	/* maxsize */
2009 		    SK_MAXTXSEGS,		/* nsegments */
2010 		    MCLBYTES,			/* maxsegsize */
2011 		    0,				/* flags */
2012 		    NULL, NULL,			/* lockfunc, lockarg */
2013 		    &sc_if->sk_cdata.sk_tx_tag);
2014 	if (error != 0) {
2015 		device_printf(sc_if->sk_if_dev,
2016 		    "failed to allocate Tx DMA tag\n");
2017 		goto fail;
2018 	}
2019 
2020 	/* create tag for Rx buffers */
2021 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2022 		    1, 0,			/* algnmnt, boundary */
2023 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2024 		    BUS_SPACE_MAXADDR,		/* highaddr */
2025 		    NULL, NULL,			/* filter, filterarg */
2026 		    MCLBYTES,			/* maxsize */
2027 		    1,				/* nsegments */
2028 		    MCLBYTES,			/* maxsegsize */
2029 		    0,				/* flags */
2030 		    NULL, NULL,			/* lockfunc, lockarg */
2031 		    &sc_if->sk_cdata.sk_rx_tag);
2032 	if (error != 0) {
2033 		device_printf(sc_if->sk_if_dev,
2034 		    "failed to allocate Rx DMA tag\n");
2035 		goto fail;
2036 	}
2037 
2038 	/* allocate DMA'able memory and load the DMA map for Tx ring */
2039 	error = bus_dmamem_alloc(sc_if->sk_cdata.sk_tx_ring_tag,
2040 	    (void **)&sc_if->sk_rdata.sk_tx_ring, BUS_DMA_NOWAIT |
2041 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->sk_cdata.sk_tx_ring_map);
2042 	if (error != 0) {
2043 		device_printf(sc_if->sk_if_dev,
2044 		    "failed to allocate DMA'able memory for Tx ring\n");
2045 		goto fail;
2046 	}
2047 
2048 	ctx.sk_busaddr = 0;
2049 	error = bus_dmamap_load(sc_if->sk_cdata.sk_tx_ring_tag,
2050 	    sc_if->sk_cdata.sk_tx_ring_map, sc_if->sk_rdata.sk_tx_ring,
2051 	    SK_TX_RING_SZ, sk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
2052 	if (error != 0) {
2053 		device_printf(sc_if->sk_if_dev,
2054 		    "failed to load DMA'able memory for Tx ring\n");
2055 		goto fail;
2056 	}
2057 	sc_if->sk_rdata.sk_tx_ring_paddr = ctx.sk_busaddr;
2058 
2059 	/* allocate DMA'able memory and load the DMA map for Rx ring */
2060 	error = bus_dmamem_alloc(sc_if->sk_cdata.sk_rx_ring_tag,
2061 	    (void **)&sc_if->sk_rdata.sk_rx_ring, BUS_DMA_NOWAIT |
2062 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->sk_cdata.sk_rx_ring_map);
2063 	if (error != 0) {
2064 		device_printf(sc_if->sk_if_dev,
2065 		    "failed to allocate DMA'able memory for Rx ring\n");
2066 		goto fail;
2067 	}
2068 
2069 	ctx.sk_busaddr = 0;
2070 	error = bus_dmamap_load(sc_if->sk_cdata.sk_rx_ring_tag,
2071 	    sc_if->sk_cdata.sk_rx_ring_map, sc_if->sk_rdata.sk_rx_ring,
2072 	    SK_RX_RING_SZ, sk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
2073 	if (error != 0) {
2074 		device_printf(sc_if->sk_if_dev,
2075 		    "failed to load DMA'able memory for Rx ring\n");
2076 		goto fail;
2077 	}
2078 	sc_if->sk_rdata.sk_rx_ring_paddr = ctx.sk_busaddr;
2079 
2080 	/* create DMA maps for Tx buffers */
2081 	for (i = 0; i < SK_TX_RING_CNT; i++) {
2082 		txd = &sc_if->sk_cdata.sk_txdesc[i];
2083 		txd->tx_m = NULL;
2084 		txd->tx_dmamap = NULL;
2085 		error = bus_dmamap_create(sc_if->sk_cdata.sk_tx_tag, 0,
2086 		    &txd->tx_dmamap);
2087 		if (error != 0) {
2088 			device_printf(sc_if->sk_if_dev,
2089 			    "failed to create Tx dmamap\n");
2090 			goto fail;
2091 		}
2092 	}
2093 
2094 	/* create DMA maps for Rx buffers */
2095 	if ((error = bus_dmamap_create(sc_if->sk_cdata.sk_rx_tag, 0,
2096 	    &sc_if->sk_cdata.sk_rx_sparemap)) != 0) {
2097 		device_printf(sc_if->sk_if_dev,
2098 		    "failed to create spare Rx dmamap\n");
2099 		goto fail;
2100 	}
2101 	for (i = 0; i < SK_RX_RING_CNT; i++) {
2102 		rxd = &sc_if->sk_cdata.sk_rxdesc[i];
2103 		rxd->rx_m = NULL;
2104 		rxd->rx_dmamap = NULL;
2105 		error = bus_dmamap_create(sc_if->sk_cdata.sk_rx_tag, 0,
2106 		    &rxd->rx_dmamap);
2107 		if (error != 0) {
2108 			device_printf(sc_if->sk_if_dev,
2109 			    "failed to create Rx dmamap\n");
2110 			goto fail;
2111 		}
2112 	}
2113 
2114 fail:
2115 	return (error);
2116 }
2117 
2118 static int
2119 sk_dma_jumbo_alloc(sc_if)
2120 	struct sk_if_softc	*sc_if;
2121 {
2122 	struct sk_dmamap_arg	ctx;
2123 	struct sk_rxdesc	*jrxd;
2124 	int			error, i;
2125 
2126 	if (jumbo_disable != 0) {
2127 		device_printf(sc_if->sk_if_dev, "disabling jumbo frame support\n");
2128 		sc_if->sk_jumbo_disable = 1;
2129 		return (0);
2130 	}
2131 	/* create tag for jumbo Rx ring */
2132 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2133 		    SK_RING_ALIGN, 0,		/* algnmnt, boundary */
2134 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2135 		    BUS_SPACE_MAXADDR,		/* highaddr */
2136 		    NULL, NULL,			/* filter, filterarg */
2137 		    SK_JUMBO_RX_RING_SZ,	/* maxsize */
2138 		    1,				/* nsegments */
2139 		    SK_JUMBO_RX_RING_SZ,	/* maxsegsize */
2140 		    0,				/* flags */
2141 		    NULL, NULL,			/* lockfunc, lockarg */
2142 		    &sc_if->sk_cdata.sk_jumbo_rx_ring_tag);
2143 	if (error != 0) {
2144 		device_printf(sc_if->sk_if_dev,
2145 		    "failed to allocate jumbo Rx ring DMA tag\n");
2146 		goto jumbo_fail;
2147 	}
2148 
2149 	/* create tag for jumbo Rx buffers */
2150 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2151 		    1, 0,			/* algnmnt, boundary */
2152 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2153 		    BUS_SPACE_MAXADDR,		/* highaddr */
2154 		    NULL, NULL,			/* filter, filterarg */
2155 		    MJUM9BYTES,			/* maxsize */
2156 		    1,				/* nsegments */
2157 		    MJUM9BYTES,			/* maxsegsize */
2158 		    0,				/* flags */
2159 		    NULL, NULL,			/* lockfunc, lockarg */
2160 		    &sc_if->sk_cdata.sk_jumbo_rx_tag);
2161 	if (error != 0) {
2162 		device_printf(sc_if->sk_if_dev,
2163 		    "failed to allocate jumbo Rx DMA tag\n");
2164 		goto jumbo_fail;
2165 	}
2166 
2167 	/* allocate DMA'able memory and load the DMA map for jumbo Rx ring */
2168 	error = bus_dmamem_alloc(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2169 	    (void **)&sc_if->sk_rdata.sk_jumbo_rx_ring, BUS_DMA_NOWAIT |
2170 	    BUS_DMA_COHERENT | BUS_DMA_ZERO,
2171 	    &sc_if->sk_cdata.sk_jumbo_rx_ring_map);
2172 	if (error != 0) {
2173 		device_printf(sc_if->sk_if_dev,
2174 		    "failed to allocate DMA'able memory for jumbo Rx ring\n");
2175 		goto jumbo_fail;
2176 	}
2177 
2178 	ctx.sk_busaddr = 0;
2179 	error = bus_dmamap_load(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2180 	    sc_if->sk_cdata.sk_jumbo_rx_ring_map,
2181 	    sc_if->sk_rdata.sk_jumbo_rx_ring, SK_JUMBO_RX_RING_SZ, sk_dmamap_cb,
2182 	    &ctx, BUS_DMA_NOWAIT);
2183 	if (error != 0) {
2184 		device_printf(sc_if->sk_if_dev,
2185 		    "failed to load DMA'able memory for jumbo Rx ring\n");
2186 		goto jumbo_fail;
2187 	}
2188 	sc_if->sk_rdata.sk_jumbo_rx_ring_paddr = ctx.sk_busaddr;
2189 
2190 	/* create DMA maps for jumbo Rx buffers */
2191 	if ((error = bus_dmamap_create(sc_if->sk_cdata.sk_jumbo_rx_tag, 0,
2192 	    &sc_if->sk_cdata.sk_jumbo_rx_sparemap)) != 0) {
2193 		device_printf(sc_if->sk_if_dev,
2194 		    "failed to create spare jumbo Rx dmamap\n");
2195 		goto jumbo_fail;
2196 	}
2197 	for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
2198 		jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
2199 		jrxd->rx_m = NULL;
2200 		jrxd->rx_dmamap = NULL;
2201 		error = bus_dmamap_create(sc_if->sk_cdata.sk_jumbo_rx_tag, 0,
2202 		    &jrxd->rx_dmamap);
2203 		if (error != 0) {
2204 			device_printf(sc_if->sk_if_dev,
2205 			    "failed to create jumbo Rx dmamap\n");
2206 			goto jumbo_fail;
2207 		}
2208 	}
2209 
2210 	return (0);
2211 
2212 jumbo_fail:
2213 	sk_dma_jumbo_free(sc_if);
2214 	device_printf(sc_if->sk_if_dev, "disabling jumbo frame support due to "
2215 	    "resource shortage\n");
2216 	sc_if->sk_jumbo_disable = 1;
2217 	return (0);
2218 }
2219 
2220 static void
2221 sk_dma_free(sc_if)
2222 	struct sk_if_softc	*sc_if;
2223 {
2224 	struct sk_txdesc	*txd;
2225 	struct sk_rxdesc	*rxd;
2226 	int			i;
2227 
2228 	/* Tx ring */
2229 	if (sc_if->sk_cdata.sk_tx_ring_tag) {
2230 		if (sc_if->sk_cdata.sk_tx_ring_map)
2231 			bus_dmamap_unload(sc_if->sk_cdata.sk_tx_ring_tag,
2232 			    sc_if->sk_cdata.sk_tx_ring_map);
2233 		if (sc_if->sk_cdata.sk_tx_ring_map &&
2234 		    sc_if->sk_rdata.sk_tx_ring)
2235 			bus_dmamem_free(sc_if->sk_cdata.sk_tx_ring_tag,
2236 			    sc_if->sk_rdata.sk_tx_ring,
2237 			    sc_if->sk_cdata.sk_tx_ring_map);
2238 		sc_if->sk_rdata.sk_tx_ring = NULL;
2239 		sc_if->sk_cdata.sk_tx_ring_map = NULL;
2240 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_tx_ring_tag);
2241 		sc_if->sk_cdata.sk_tx_ring_tag = NULL;
2242 	}
2243 	/* Rx ring */
2244 	if (sc_if->sk_cdata.sk_rx_ring_tag) {
2245 		if (sc_if->sk_cdata.sk_rx_ring_map)
2246 			bus_dmamap_unload(sc_if->sk_cdata.sk_rx_ring_tag,
2247 			    sc_if->sk_cdata.sk_rx_ring_map);
2248 		if (sc_if->sk_cdata.sk_rx_ring_map &&
2249 		    sc_if->sk_rdata.sk_rx_ring)
2250 			bus_dmamem_free(sc_if->sk_cdata.sk_rx_ring_tag,
2251 			    sc_if->sk_rdata.sk_rx_ring,
2252 			    sc_if->sk_cdata.sk_rx_ring_map);
2253 		sc_if->sk_rdata.sk_rx_ring = NULL;
2254 		sc_if->sk_cdata.sk_rx_ring_map = NULL;
2255 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_rx_ring_tag);
2256 		sc_if->sk_cdata.sk_rx_ring_tag = NULL;
2257 	}
2258 	/* Tx buffers */
2259 	if (sc_if->sk_cdata.sk_tx_tag) {
2260 		for (i = 0; i < SK_TX_RING_CNT; i++) {
2261 			txd = &sc_if->sk_cdata.sk_txdesc[i];
2262 			if (txd->tx_dmamap) {
2263 				bus_dmamap_destroy(sc_if->sk_cdata.sk_tx_tag,
2264 				    txd->tx_dmamap);
2265 				txd->tx_dmamap = NULL;
2266 			}
2267 		}
2268 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_tx_tag);
2269 		sc_if->sk_cdata.sk_tx_tag = NULL;
2270 	}
2271 	/* Rx buffers */
2272 	if (sc_if->sk_cdata.sk_rx_tag) {
2273 		for (i = 0; i < SK_RX_RING_CNT; i++) {
2274 			rxd = &sc_if->sk_cdata.sk_rxdesc[i];
2275 			if (rxd->rx_dmamap) {
2276 				bus_dmamap_destroy(sc_if->sk_cdata.sk_rx_tag,
2277 				    rxd->rx_dmamap);
2278 				rxd->rx_dmamap = NULL;
2279 			}
2280 		}
2281 		if (sc_if->sk_cdata.sk_rx_sparemap) {
2282 			bus_dmamap_destroy(sc_if->sk_cdata.sk_rx_tag,
2283 			    sc_if->sk_cdata.sk_rx_sparemap);
2284 			sc_if->sk_cdata.sk_rx_sparemap = NULL;
2285 		}
2286 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_rx_tag);
2287 		sc_if->sk_cdata.sk_rx_tag = NULL;
2288 	}
2289 
2290 	if (sc_if->sk_cdata.sk_parent_tag) {
2291 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_parent_tag);
2292 		sc_if->sk_cdata.sk_parent_tag = NULL;
2293 	}
2294 }
2295 
2296 static void
2297 sk_dma_jumbo_free(sc_if)
2298 	struct sk_if_softc	*sc_if;
2299 {
2300 	struct sk_rxdesc	*jrxd;
2301 	int			i;
2302 
2303 	/* jumbo Rx ring */
2304 	if (sc_if->sk_cdata.sk_jumbo_rx_ring_tag) {
2305 		if (sc_if->sk_cdata.sk_jumbo_rx_ring_map)
2306 			bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2307 			    sc_if->sk_cdata.sk_jumbo_rx_ring_map);
2308 		if (sc_if->sk_cdata.sk_jumbo_rx_ring_map &&
2309 		    sc_if->sk_rdata.sk_jumbo_rx_ring)
2310 			bus_dmamem_free(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2311 			    sc_if->sk_rdata.sk_jumbo_rx_ring,
2312 			    sc_if->sk_cdata.sk_jumbo_rx_ring_map);
2313 		sc_if->sk_rdata.sk_jumbo_rx_ring = NULL;
2314 		sc_if->sk_cdata.sk_jumbo_rx_ring_map = NULL;
2315 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_jumbo_rx_ring_tag);
2316 		sc_if->sk_cdata.sk_jumbo_rx_ring_tag = NULL;
2317 	}
2318 
2319 	/* jumbo Rx buffers */
2320 	if (sc_if->sk_cdata.sk_jumbo_rx_tag) {
2321 		for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
2322 			jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
2323 			if (jrxd->rx_dmamap) {
2324 				bus_dmamap_destroy(
2325 				    sc_if->sk_cdata.sk_jumbo_rx_tag,
2326 				    jrxd->rx_dmamap);
2327 				jrxd->rx_dmamap = NULL;
2328 			}
2329 		}
2330 		if (sc_if->sk_cdata.sk_jumbo_rx_sparemap) {
2331 			bus_dmamap_destroy(sc_if->sk_cdata.sk_jumbo_rx_tag,
2332 			    sc_if->sk_cdata.sk_jumbo_rx_sparemap);
2333 			sc_if->sk_cdata.sk_jumbo_rx_sparemap = NULL;
2334 		}
2335 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_jumbo_rx_tag);
2336 		sc_if->sk_cdata.sk_jumbo_rx_tag = NULL;
2337 	}
2338 }
2339 
2340 static void
2341 sk_txcksum(ifp, m, f)
2342 	struct ifnet		*ifp;
2343 	struct mbuf		*m;
2344 	struct sk_tx_desc	*f;
2345 {
2346 	struct ip		*ip;
2347 	u_int16_t		offset;
2348 	u_int8_t 		*p;
2349 
2350 	offset = sizeof(struct ip) + ETHER_HDR_LEN;
2351 	for(; m && m->m_len == 0; m = m->m_next)
2352 		;
2353 	if (m == NULL || m->m_len < ETHER_HDR_LEN) {
2354 		if_printf(ifp, "%s: m_len < ETHER_HDR_LEN\n", __func__);
2355 		/* checksum may be corrupted */
2356 		goto sendit;
2357 	}
2358 	if (m->m_len < ETHER_HDR_LEN + sizeof(u_int32_t)) {
2359 		if (m->m_len != ETHER_HDR_LEN) {
2360 			if_printf(ifp, "%s: m_len != ETHER_HDR_LEN\n",
2361 			    __func__);
2362 			/* checksum may be corrupted */
2363 			goto sendit;
2364 		}
2365 		for(m = m->m_next; m && m->m_len == 0; m = m->m_next)
2366 			;
2367 		if (m == NULL) {
2368 			offset = sizeof(struct ip) + ETHER_HDR_LEN;
2369 			/* checksum may be corrupted */
2370 			goto sendit;
2371 		}
2372 		ip = mtod(m, struct ip *);
2373 	} else {
2374 		p = mtod(m, u_int8_t *);
2375 		p += ETHER_HDR_LEN;
2376 		ip = (struct ip *)p;
2377 	}
2378 	offset = (ip->ip_hl << 2) + ETHER_HDR_LEN;
2379 
2380 sendit:
2381 	f->sk_csum_startval = 0;
2382 	f->sk_csum_start = htole32(((offset + m->m_pkthdr.csum_data) & 0xffff) |
2383 	    (offset << 16));
2384 }
2385 
2386 static int
2387 sk_encap(sc_if, m_head)
2388         struct sk_if_softc	*sc_if;
2389         struct mbuf		**m_head;
2390 {
2391 	struct sk_txdesc	*txd;
2392 	struct sk_tx_desc	*f = NULL;
2393 	struct mbuf		*m;
2394 	bus_dma_segment_t	txsegs[SK_MAXTXSEGS];
2395 	u_int32_t		cflags, frag, si, sk_ctl;
2396 	int			error, i, nseg;
2397 
2398 	SK_IF_LOCK_ASSERT(sc_if);
2399 
2400 	if ((txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txfreeq)) == NULL)
2401 		return (ENOBUFS);
2402 
2403 	error = bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_tx_tag,
2404 	    txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
2405 	if (error == EFBIG) {
2406 		m = m_defrag(*m_head, M_NOWAIT);
2407 		if (m == NULL) {
2408 			m_freem(*m_head);
2409 			*m_head = NULL;
2410 			return (ENOMEM);
2411 		}
2412 		*m_head = m;
2413 		error = bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_tx_tag,
2414 		    txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
2415 		if (error != 0) {
2416 			m_freem(*m_head);
2417 			*m_head = NULL;
2418 			return (error);
2419 		}
2420 	} else if (error != 0)
2421 		return (error);
2422 	if (nseg == 0) {
2423 		m_freem(*m_head);
2424 		*m_head = NULL;
2425 		return (EIO);
2426 	}
2427 	if (sc_if->sk_cdata.sk_tx_cnt + nseg >= SK_TX_RING_CNT) {
2428 		bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap);
2429 		return (ENOBUFS);
2430 	}
2431 
2432 	m = *m_head;
2433 	if ((m->m_pkthdr.csum_flags & sc_if->sk_ifp->if_hwassist) != 0)
2434 		cflags = SK_OPCODE_CSUM;
2435 	else
2436 		cflags = SK_OPCODE_DEFAULT;
2437 	si = frag = sc_if->sk_cdata.sk_tx_prod;
2438 	for (i = 0; i < nseg; i++) {
2439 		f = &sc_if->sk_rdata.sk_tx_ring[frag];
2440 		f->sk_data_lo = htole32(SK_ADDR_LO(txsegs[i].ds_addr));
2441 		f->sk_data_hi = htole32(SK_ADDR_HI(txsegs[i].ds_addr));
2442 		sk_ctl = txsegs[i].ds_len | cflags;
2443 		if (i == 0) {
2444 			if (cflags == SK_OPCODE_CSUM)
2445 				sk_txcksum(sc_if->sk_ifp, m, f);
2446 			sk_ctl |= SK_TXCTL_FIRSTFRAG;
2447 		} else
2448 			sk_ctl |= SK_TXCTL_OWN;
2449 		f->sk_ctl = htole32(sk_ctl);
2450 		sc_if->sk_cdata.sk_tx_cnt++;
2451 		SK_INC(frag, SK_TX_RING_CNT);
2452 	}
2453 	sc_if->sk_cdata.sk_tx_prod = frag;
2454 
2455 	/* set EOF on the last desciptor */
2456 	frag = (frag + SK_TX_RING_CNT - 1) % SK_TX_RING_CNT;
2457 	f = &sc_if->sk_rdata.sk_tx_ring[frag];
2458 	f->sk_ctl |= htole32(SK_TXCTL_LASTFRAG | SK_TXCTL_EOF_INTR);
2459 
2460 	/* turn the first descriptor ownership to NIC */
2461 	f = &sc_if->sk_rdata.sk_tx_ring[si];
2462 	f->sk_ctl |= htole32(SK_TXCTL_OWN);
2463 
2464 	STAILQ_REMOVE_HEAD(&sc_if->sk_cdata.sk_txfreeq, tx_q);
2465 	STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txbusyq, txd, tx_q);
2466 	txd->tx_m = m;
2467 
2468 	/* sync descriptors */
2469 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap,
2470 	    BUS_DMASYNC_PREWRITE);
2471 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
2472 	    sc_if->sk_cdata.sk_tx_ring_map,
2473 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2474 
2475 	return (0);
2476 }
2477 
2478 static void
2479 sk_start(ifp)
2480 	struct ifnet		*ifp;
2481 {
2482 	struct sk_if_softc *sc_if;
2483 
2484 	sc_if = ifp->if_softc;
2485 
2486 	SK_IF_LOCK(sc_if);
2487 	sk_start_locked(ifp);
2488 	SK_IF_UNLOCK(sc_if);
2489 
2490 	return;
2491 }
2492 
2493 static void
2494 sk_start_locked(ifp)
2495 	struct ifnet		*ifp;
2496 {
2497         struct sk_softc		*sc;
2498         struct sk_if_softc	*sc_if;
2499         struct mbuf		*m_head;
2500 	int			enq;
2501 
2502 	sc_if = ifp->if_softc;
2503 	sc = sc_if->sk_softc;
2504 
2505 	SK_IF_LOCK_ASSERT(sc_if);
2506 
2507 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2508 	    sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 1; ) {
2509 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2510 		if (m_head == NULL)
2511 			break;
2512 
2513 		/*
2514 		 * Pack the data into the transmit ring. If we
2515 		 * don't have room, set the OACTIVE flag and wait
2516 		 * for the NIC to drain the ring.
2517 		 */
2518 		if (sk_encap(sc_if, &m_head)) {
2519 			if (m_head == NULL)
2520 				break;
2521 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2522 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2523 			break;
2524 		}
2525 
2526 		enq++;
2527 		/*
2528 		 * If there's a BPF listener, bounce a copy of this frame
2529 		 * to him.
2530 		 */
2531 		BPF_MTAP(ifp, m_head);
2532 	}
2533 
2534 	if (enq > 0) {
2535 		/* Transmit */
2536 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2537 
2538 		/* Set a timeout in case the chip goes out to lunch. */
2539 		sc_if->sk_watchdog_timer = 5;
2540 	}
2541 }
2542 
2543 
2544 static void
2545 sk_watchdog(arg)
2546 	void			*arg;
2547 {
2548 	struct sk_if_softc	*sc_if;
2549 	struct ifnet		*ifp;
2550 
2551 	ifp = arg;
2552 	sc_if = ifp->if_softc;
2553 
2554 	SK_IF_LOCK_ASSERT(sc_if);
2555 
2556 	if (sc_if->sk_watchdog_timer == 0 || --sc_if->sk_watchdog_timer)
2557 		goto done;
2558 
2559 	/*
2560 	 * Reclaim first as there is a possibility of losing Tx completion
2561 	 * interrupts.
2562 	 */
2563 	sk_txeof(sc_if);
2564 	if (sc_if->sk_cdata.sk_tx_cnt != 0) {
2565 		if_printf(sc_if->sk_ifp, "watchdog timeout\n");
2566 		ifp->if_oerrors++;
2567 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2568 		sk_init_locked(sc_if);
2569 	}
2570 
2571 done:
2572 	callout_reset(&sc_if->sk_watchdog_ch, hz, sk_watchdog, ifp);
2573 
2574 	return;
2575 }
2576 
2577 static int
2578 skc_shutdown(dev)
2579 	device_t		dev;
2580 {
2581 	struct sk_softc		*sc;
2582 
2583 	sc = device_get_softc(dev);
2584 	SK_LOCK(sc);
2585 
2586 	/* Turn off the 'driver is loaded' LED. */
2587 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2588 
2589 	/*
2590 	 * Reset the GEnesis controller. Doing this should also
2591 	 * assert the resets on the attached XMAC(s).
2592 	 */
2593 	sk_reset(sc);
2594 	SK_UNLOCK(sc);
2595 
2596 	return (0);
2597 }
2598 
2599 static int
2600 skc_suspend(dev)
2601 	device_t		dev;
2602 {
2603 	struct sk_softc		*sc;
2604 	struct sk_if_softc	*sc_if0, *sc_if1;
2605 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
2606 
2607 	sc = device_get_softc(dev);
2608 
2609 	SK_LOCK(sc);
2610 
2611 	sc_if0 = sc->sk_if[SK_PORT_A];
2612 	sc_if1 = sc->sk_if[SK_PORT_B];
2613 	if (sc_if0 != NULL)
2614 		ifp0 = sc_if0->sk_ifp;
2615 	if (sc_if1 != NULL)
2616 		ifp1 = sc_if1->sk_ifp;
2617 	if (ifp0 != NULL)
2618 		sk_stop(sc_if0);
2619 	if (ifp1 != NULL)
2620 		sk_stop(sc_if1);
2621 	sc->sk_suspended = 1;
2622 
2623 	SK_UNLOCK(sc);
2624 
2625 	return (0);
2626 }
2627 
2628 static int
2629 skc_resume(dev)
2630 	device_t		dev;
2631 {
2632 	struct sk_softc		*sc;
2633 	struct sk_if_softc	*sc_if0, *sc_if1;
2634 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
2635 
2636 	sc = device_get_softc(dev);
2637 
2638 	SK_LOCK(sc);
2639 
2640 	sc_if0 = sc->sk_if[SK_PORT_A];
2641 	sc_if1 = sc->sk_if[SK_PORT_B];
2642 	if (sc_if0 != NULL)
2643 		ifp0 = sc_if0->sk_ifp;
2644 	if (sc_if1 != NULL)
2645 		ifp1 = sc_if1->sk_ifp;
2646 	if (ifp0 != NULL && ifp0->if_flags & IFF_UP)
2647 		sk_init_locked(sc_if0);
2648 	if (ifp1 != NULL && ifp1->if_flags & IFF_UP)
2649 		sk_init_locked(sc_if1);
2650 	sc->sk_suspended = 0;
2651 
2652 	SK_UNLOCK(sc);
2653 
2654 	return (0);
2655 }
2656 
2657 /*
2658  * According to the data sheet from SK-NET GENESIS the hardware can compute
2659  * two Rx checksums at the same time(Each checksum start position is
2660  * programmed in Rx descriptors). However it seems that TCP/UDP checksum
2661  * does not work at least on my Yukon hardware. I tried every possible ways
2662  * to get correct checksum value but couldn't get correct one. So TCP/UDP
2663  * checksum offload was disabled at the moment and only IP checksum offload
2664  * was enabled.
2665  * As nomral IP header size is 20 bytes I can't expect it would give an
2666  * increase in throughput. However it seems it doesn't hurt performance in
2667  * my testing. If there is a more detailed information for checksum secret
2668  * of the hardware in question please contact yongari@FreeBSD.org to add
2669  * TCP/UDP checksum offload support.
2670  */
2671 static __inline void
2672 sk_rxcksum(ifp, m, csum)
2673 	struct ifnet		*ifp;
2674 	struct mbuf		*m;
2675 	u_int32_t		csum;
2676 {
2677 	struct ether_header	*eh;
2678 	struct ip		*ip;
2679 	int32_t			hlen, len, pktlen;
2680 	u_int16_t		csum1, csum2, ipcsum;
2681 
2682 	pktlen = m->m_pkthdr.len;
2683 	if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
2684 		return;
2685 	eh = mtod(m, struct ether_header *);
2686 	if (eh->ether_type != htons(ETHERTYPE_IP))
2687 		return;
2688 	ip = (struct ip *)(eh + 1);
2689 	if (ip->ip_v != IPVERSION)
2690 		return;
2691 	hlen = ip->ip_hl << 2;
2692 	pktlen -= sizeof(struct ether_header);
2693 	if (hlen < sizeof(struct ip))
2694 		return;
2695 	if (ntohs(ip->ip_len) < hlen)
2696 		return;
2697 	if (ntohs(ip->ip_len) != pktlen)
2698 		return;
2699 
2700 	csum1 = htons(csum & 0xffff);
2701 	csum2 = htons((csum >> 16) & 0xffff);
2702 	ipcsum = in_addword(csum1, ~csum2 & 0xffff);
2703 	/* checksum fixup for IP options */
2704 	len = hlen - sizeof(struct ip);
2705 	if (len > 0) {
2706 		/*
2707 		 * If the second checksum value is correct we can compute IP
2708 		 * checksum with simple math. Unfortunately the second checksum
2709 		 * value is wrong so we can't verify the checksum from the
2710 		 * value(It seems there is some magic here to get correct
2711 		 * value). If the second checksum value is correct it also
2712 		 * means we can get TCP/UDP checksum) here. However, it still
2713 		 * needs pseudo header checksum calculation due to hardware
2714 		 * limitations.
2715 		 */
2716 		return;
2717 	}
2718 	m->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
2719 	if (ipcsum == 0xffff)
2720 		m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2721 }
2722 
2723 static __inline int
2724 sk_rxvalid(sc, stat, len)
2725 	struct sk_softc		*sc;
2726 	u_int32_t		stat, len;
2727 {
2728 
2729 	if (sc->sk_type == SK_GENESIS) {
2730 		if ((stat & XM_RXSTAT_ERRFRAME) == XM_RXSTAT_ERRFRAME ||
2731 		    XM_RXSTAT_BYTES(stat) != len)
2732 			return (0);
2733 	} else {
2734 		if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
2735 		    YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
2736 		    YU_RXSTAT_JABBER)) != 0 ||
2737 		    (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
2738 		    YU_RXSTAT_BYTES(stat) != len)
2739 			return (0);
2740 	}
2741 
2742 	return (1);
2743 }
2744 
2745 static void
2746 sk_rxeof(sc_if)
2747 	struct sk_if_softc	*sc_if;
2748 {
2749 	struct sk_softc		*sc;
2750 	struct mbuf		*m;
2751 	struct ifnet		*ifp;
2752 	struct sk_rx_desc	*cur_rx;
2753 	struct sk_rxdesc	*rxd;
2754 	int			cons, prog;
2755 	u_int32_t		csum, rxstat, sk_ctl;
2756 
2757 	sc = sc_if->sk_softc;
2758 	ifp = sc_if->sk_ifp;
2759 
2760 	SK_IF_LOCK_ASSERT(sc_if);
2761 
2762 	bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
2763 	    sc_if->sk_cdata.sk_rx_ring_map, BUS_DMASYNC_POSTREAD);
2764 
2765 	prog = 0;
2766 	for (cons = sc_if->sk_cdata.sk_rx_cons; prog < SK_RX_RING_CNT;
2767 	    prog++, SK_INC(cons, SK_RX_RING_CNT)) {
2768 		cur_rx = &sc_if->sk_rdata.sk_rx_ring[cons];
2769 		sk_ctl = le32toh(cur_rx->sk_ctl);
2770 		if ((sk_ctl & SK_RXCTL_OWN) != 0)
2771 			break;
2772 		rxd = &sc_if->sk_cdata.sk_rxdesc[cons];
2773 		rxstat = le32toh(cur_rx->sk_xmac_rxstat);
2774 
2775 		if ((sk_ctl & (SK_RXCTL_STATUS_VALID | SK_RXCTL_FIRSTFRAG |
2776 		    SK_RXCTL_LASTFRAG)) != (SK_RXCTL_STATUS_VALID |
2777 		    SK_RXCTL_FIRSTFRAG | SK_RXCTL_LASTFRAG) ||
2778 		    SK_RXBYTES(sk_ctl) < SK_MIN_FRAMELEN ||
2779 		    SK_RXBYTES(sk_ctl) > SK_MAX_FRAMELEN ||
2780 		    sk_rxvalid(sc, rxstat, SK_RXBYTES(sk_ctl)) == 0) {
2781 			ifp->if_ierrors++;
2782 			sk_discard_rxbuf(sc_if, cons);
2783 			continue;
2784 		}
2785 
2786 		m = rxd->rx_m;
2787 		csum = le32toh(cur_rx->sk_csum);
2788 		if (sk_newbuf(sc_if, cons) != 0) {
2789 			ifp->if_iqdrops++;
2790 			/* reuse old buffer */
2791 			sk_discard_rxbuf(sc_if, cons);
2792 			continue;
2793 		}
2794 		m->m_pkthdr.rcvif = ifp;
2795 		m->m_pkthdr.len = m->m_len = SK_RXBYTES(sk_ctl);
2796 		ifp->if_ipackets++;
2797 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2798 			sk_rxcksum(ifp, m, csum);
2799 		SK_IF_UNLOCK(sc_if);
2800 		(*ifp->if_input)(ifp, m);
2801 		SK_IF_LOCK(sc_if);
2802 	}
2803 
2804 	if (prog > 0) {
2805 		sc_if->sk_cdata.sk_rx_cons = cons;
2806 		bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
2807 		    sc_if->sk_cdata.sk_rx_ring_map,
2808 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2809 	}
2810 }
2811 
2812 static void
2813 sk_jumbo_rxeof(sc_if)
2814 	struct sk_if_softc	*sc_if;
2815 {
2816 	struct sk_softc		*sc;
2817 	struct mbuf		*m;
2818 	struct ifnet		*ifp;
2819 	struct sk_rx_desc	*cur_rx;
2820 	struct sk_rxdesc	*jrxd;
2821 	int			cons, prog;
2822 	u_int32_t		csum, rxstat, sk_ctl;
2823 
2824 	sc = sc_if->sk_softc;
2825 	ifp = sc_if->sk_ifp;
2826 
2827 	SK_IF_LOCK_ASSERT(sc_if);
2828 
2829 	bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2830 	    sc_if->sk_cdata.sk_jumbo_rx_ring_map, BUS_DMASYNC_POSTREAD);
2831 
2832 	prog = 0;
2833 	for (cons = sc_if->sk_cdata.sk_jumbo_rx_cons;
2834 	    prog < SK_JUMBO_RX_RING_CNT;
2835 	    prog++, SK_INC(cons, SK_JUMBO_RX_RING_CNT)) {
2836 		cur_rx = &sc_if->sk_rdata.sk_jumbo_rx_ring[cons];
2837 		sk_ctl = le32toh(cur_rx->sk_ctl);
2838 		if ((sk_ctl & SK_RXCTL_OWN) != 0)
2839 			break;
2840 		jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[cons];
2841 		rxstat = le32toh(cur_rx->sk_xmac_rxstat);
2842 
2843 		if ((sk_ctl & (SK_RXCTL_STATUS_VALID | SK_RXCTL_FIRSTFRAG |
2844 		    SK_RXCTL_LASTFRAG)) != (SK_RXCTL_STATUS_VALID |
2845 		    SK_RXCTL_FIRSTFRAG | SK_RXCTL_LASTFRAG) ||
2846 		    SK_RXBYTES(sk_ctl) < SK_MIN_FRAMELEN ||
2847 		    SK_RXBYTES(sk_ctl) > SK_JUMBO_FRAMELEN ||
2848 		    sk_rxvalid(sc, rxstat, SK_RXBYTES(sk_ctl)) == 0) {
2849 			ifp->if_ierrors++;
2850 			sk_discard_jumbo_rxbuf(sc_if, cons);
2851 			continue;
2852 		}
2853 
2854 		m = jrxd->rx_m;
2855 		csum = le32toh(cur_rx->sk_csum);
2856 		if (sk_jumbo_newbuf(sc_if, cons) != 0) {
2857 			ifp->if_iqdrops++;
2858 			/* reuse old buffer */
2859 			sk_discard_jumbo_rxbuf(sc_if, cons);
2860 			continue;
2861 		}
2862 		m->m_pkthdr.rcvif = ifp;
2863 		m->m_pkthdr.len = m->m_len = SK_RXBYTES(sk_ctl);
2864 		ifp->if_ipackets++;
2865 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2866 			sk_rxcksum(ifp, m, csum);
2867 		SK_IF_UNLOCK(sc_if);
2868 		(*ifp->if_input)(ifp, m);
2869 		SK_IF_LOCK(sc_if);
2870 	}
2871 
2872 	if (prog > 0) {
2873 		sc_if->sk_cdata.sk_jumbo_rx_cons = cons;
2874 		bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2875 		    sc_if->sk_cdata.sk_jumbo_rx_ring_map,
2876 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2877 	}
2878 }
2879 
2880 static void
2881 sk_txeof(sc_if)
2882 	struct sk_if_softc	*sc_if;
2883 {
2884 	struct sk_softc		*sc;
2885 	struct sk_txdesc	*txd;
2886 	struct sk_tx_desc	*cur_tx;
2887 	struct ifnet		*ifp;
2888 	u_int32_t		idx, sk_ctl;
2889 
2890 	sc = sc_if->sk_softc;
2891 	ifp = sc_if->sk_ifp;
2892 
2893 	txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txbusyq);
2894 	if (txd == NULL)
2895 		return;
2896 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
2897 	    sc_if->sk_cdata.sk_tx_ring_map, BUS_DMASYNC_POSTREAD);
2898 	/*
2899 	 * Go through our tx ring and free mbufs for those
2900 	 * frames that have been sent.
2901 	 */
2902 	for (idx = sc_if->sk_cdata.sk_tx_cons;; SK_INC(idx, SK_TX_RING_CNT)) {
2903 		if (sc_if->sk_cdata.sk_tx_cnt <= 0)
2904 			break;
2905 		cur_tx = &sc_if->sk_rdata.sk_tx_ring[idx];
2906 		sk_ctl = le32toh(cur_tx->sk_ctl);
2907 		if (sk_ctl & SK_TXCTL_OWN)
2908 			break;
2909 		sc_if->sk_cdata.sk_tx_cnt--;
2910 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2911 		if ((sk_ctl & SK_TXCTL_LASTFRAG) == 0)
2912 			continue;
2913 		bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap,
2914 		    BUS_DMASYNC_POSTWRITE);
2915 		bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap);
2916 
2917 		ifp->if_opackets++;
2918 		m_freem(txd->tx_m);
2919 		txd->tx_m = NULL;
2920 		STAILQ_REMOVE_HEAD(&sc_if->sk_cdata.sk_txbusyq, tx_q);
2921 		STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txfreeq, txd, tx_q);
2922 		txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txbusyq);
2923 	}
2924 	sc_if->sk_cdata.sk_tx_cons = idx;
2925 	sc_if->sk_watchdog_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
2926 
2927 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
2928 	    sc_if->sk_cdata.sk_tx_ring_map,
2929 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2930 }
2931 
2932 static void
2933 sk_tick(xsc_if)
2934 	void			*xsc_if;
2935 {
2936 	struct sk_if_softc	*sc_if;
2937 	struct mii_data		*mii;
2938 	struct ifnet		*ifp;
2939 	int			i;
2940 
2941 	sc_if = xsc_if;
2942 	ifp = sc_if->sk_ifp;
2943 	mii = device_get_softc(sc_if->sk_miibus);
2944 
2945 	if (!(ifp->if_flags & IFF_UP))
2946 		return;
2947 
2948 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2949 		sk_intr_bcom(sc_if);
2950 		return;
2951 	}
2952 
2953 	/*
2954 	 * According to SysKonnect, the correct way to verify that
2955 	 * the link has come back up is to poll bit 0 of the GPIO
2956 	 * register three times. This pin has the signal from the
2957 	 * link_sync pin connected to it; if we read the same link
2958 	 * state 3 times in a row, we know the link is up.
2959 	 */
2960 	for (i = 0; i < 3; i++) {
2961 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2962 			break;
2963 	}
2964 
2965 	if (i != 3) {
2966 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2967 		return;
2968 	}
2969 
2970 	/* Turn the GP0 interrupt back on. */
2971 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2972 	SK_XM_READ_2(sc_if, XM_ISR);
2973 	mii_tick(mii);
2974 	callout_stop(&sc_if->sk_tick_ch);
2975 }
2976 
2977 static void
2978 sk_yukon_tick(xsc_if)
2979 	void			*xsc_if;
2980 {
2981 	struct sk_if_softc	*sc_if;
2982 	struct mii_data		*mii;
2983 
2984 	sc_if = xsc_if;
2985 	mii = device_get_softc(sc_if->sk_miibus);
2986 
2987 	mii_tick(mii);
2988 	callout_reset(&sc_if->sk_tick_ch, hz, sk_yukon_tick, sc_if);
2989 }
2990 
2991 static void
2992 sk_intr_bcom(sc_if)
2993 	struct sk_if_softc	*sc_if;
2994 {
2995 	struct mii_data		*mii;
2996 	struct ifnet		*ifp;
2997 	int			status;
2998 	mii = device_get_softc(sc_if->sk_miibus);
2999 	ifp = sc_if->sk_ifp;
3000 
3001 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
3002 
3003 	/*
3004 	 * Read the PHY interrupt register to make sure
3005 	 * we clear any pending interrupts.
3006 	 */
3007 	status = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
3008 
3009 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3010 		sk_init_xmac(sc_if);
3011 		return;
3012 	}
3013 
3014 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
3015 		int			lstat;
3016 		lstat = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM,
3017 		    BRGPHY_MII_AUXSTS);
3018 
3019 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
3020 			mii_mediachg(mii);
3021 			/* Turn off the link LED. */
3022 			SK_IF_WRITE_1(sc_if, 0,
3023 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
3024 			sc_if->sk_link = 0;
3025 		} else if (status & BRGPHY_ISR_LNK_CHG) {
3026 			sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3027 	    		    BRGPHY_MII_IMR, 0xFF00);
3028 			mii_tick(mii);
3029 			sc_if->sk_link = 1;
3030 			/* Turn on the link LED. */
3031 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
3032 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
3033 			    SK_LINKLED_BLINK_OFF);
3034 		} else {
3035 			mii_tick(mii);
3036 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
3037 		}
3038 	}
3039 
3040 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
3041 
3042 	return;
3043 }
3044 
3045 static void
3046 sk_intr_xmac(sc_if)
3047 	struct sk_if_softc	*sc_if;
3048 {
3049 	struct sk_softc		*sc;
3050 	u_int16_t		status;
3051 
3052 	sc = sc_if->sk_softc;
3053 	status = SK_XM_READ_2(sc_if, XM_ISR);
3054 
3055 	/*
3056 	 * Link has gone down. Start MII tick timeout to
3057 	 * watch for link resync.
3058 	 */
3059 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
3060 		if (status & XM_ISR_GP0_SET) {
3061 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
3062 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
3063 		}
3064 
3065 		if (status & XM_ISR_AUTONEG_DONE) {
3066 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
3067 		}
3068 	}
3069 
3070 	if (status & XM_IMR_TX_UNDERRUN)
3071 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
3072 
3073 	if (status & XM_IMR_RX_OVERRUN)
3074 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
3075 
3076 	status = SK_XM_READ_2(sc_if, XM_ISR);
3077 
3078 	return;
3079 }
3080 
3081 static void
3082 sk_intr_yukon(sc_if)
3083 	struct sk_if_softc	*sc_if;
3084 {
3085 	u_int8_t status;
3086 
3087 	status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
3088 	/* RX overrun */
3089 	if ((status & SK_GMAC_INT_RX_OVER) != 0) {
3090 		SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
3091 		    SK_RFCTL_RX_FIFO_OVER);
3092 	}
3093 	/* TX underrun */
3094 	if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
3095 		SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
3096 		    SK_TFCTL_TX_FIFO_UNDER);
3097 	}
3098 }
3099 
3100 static void
3101 sk_intr(xsc)
3102 	void			*xsc;
3103 {
3104 	struct sk_softc		*sc = xsc;
3105 	struct sk_if_softc	*sc_if0, *sc_if1;
3106 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
3107 	u_int32_t		status;
3108 
3109 	SK_LOCK(sc);
3110 
3111 	status = CSR_READ_4(sc, SK_ISSR);
3112 	if (status == 0 || status == 0xffffffff || sc->sk_suspended)
3113 		goto done_locked;
3114 
3115 	sc_if0 = sc->sk_if[SK_PORT_A];
3116 	sc_if1 = sc->sk_if[SK_PORT_B];
3117 
3118 	if (sc_if0 != NULL)
3119 		ifp0 = sc_if0->sk_ifp;
3120 	if (sc_if1 != NULL)
3121 		ifp1 = sc_if1->sk_ifp;
3122 
3123 	for (; (status &= sc->sk_intrmask) != 0;) {
3124 		/* Handle receive interrupts first. */
3125 		if (status & SK_ISR_RX1_EOF) {
3126 			if (ifp0->if_mtu > SK_MAX_FRAMELEN)
3127 				sk_jumbo_rxeof(sc_if0);
3128 			else
3129 				sk_rxeof(sc_if0);
3130 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
3131 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
3132 		}
3133 		if (status & SK_ISR_RX2_EOF) {
3134 			if (ifp1->if_mtu > SK_MAX_FRAMELEN)
3135 				sk_jumbo_rxeof(sc_if1);
3136 			else
3137 				sk_rxeof(sc_if1);
3138 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
3139 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
3140 		}
3141 
3142 		/* Then transmit interrupts. */
3143 		if (status & SK_ISR_TX1_S_EOF) {
3144 			sk_txeof(sc_if0);
3145 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0, SK_TXBMU_CLR_IRQ_EOF);
3146 		}
3147 		if (status & SK_ISR_TX2_S_EOF) {
3148 			sk_txeof(sc_if1);
3149 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1, SK_TXBMU_CLR_IRQ_EOF);
3150 		}
3151 
3152 		/* Then MAC interrupts. */
3153 		if (status & SK_ISR_MAC1 &&
3154 		    ifp0->if_drv_flags & IFF_DRV_RUNNING) {
3155 			if (sc->sk_type == SK_GENESIS)
3156 				sk_intr_xmac(sc_if0);
3157 			else
3158 				sk_intr_yukon(sc_if0);
3159 		}
3160 
3161 		if (status & SK_ISR_MAC2 &&
3162 		    ifp1->if_drv_flags & IFF_DRV_RUNNING) {
3163 			if (sc->sk_type == SK_GENESIS)
3164 				sk_intr_xmac(sc_if1);
3165 			else
3166 				sk_intr_yukon(sc_if1);
3167 		}
3168 
3169 		if (status & SK_ISR_EXTERNAL_REG) {
3170 			if (ifp0 != NULL &&
3171 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
3172 				sk_intr_bcom(sc_if0);
3173 			if (ifp1 != NULL &&
3174 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
3175 				sk_intr_bcom(sc_if1);
3176 		}
3177 		status = CSR_READ_4(sc, SK_ISSR);
3178 	}
3179 
3180 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
3181 
3182 	if (ifp0 != NULL && !IFQ_DRV_IS_EMPTY(&ifp0->if_snd))
3183 		sk_start_locked(ifp0);
3184 	if (ifp1 != NULL && !IFQ_DRV_IS_EMPTY(&ifp1->if_snd))
3185 		sk_start_locked(ifp1);
3186 
3187 done_locked:
3188 	SK_UNLOCK(sc);
3189 }
3190 
3191 static void
3192 sk_init_xmac(sc_if)
3193 	struct sk_if_softc	*sc_if;
3194 {
3195 	struct sk_softc		*sc;
3196 	struct ifnet		*ifp;
3197 	u_int16_t		eaddr[(ETHER_ADDR_LEN+1)/2];
3198 	static const struct sk_bcom_hack bhack[] = {
3199 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
3200 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
3201 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
3202 	{ 0, 0 } };
3203 
3204 	SK_IF_LOCK_ASSERT(sc_if);
3205 
3206 	sc = sc_if->sk_softc;
3207 	ifp = sc_if->sk_ifp;
3208 
3209 	/* Unreset the XMAC. */
3210 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
3211 	DELAY(1000);
3212 
3213 	/* Reset the XMAC's internal state. */
3214 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
3215 
3216 	/* Save the XMAC II revision */
3217 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
3218 
3219 	/*
3220 	 * Perform additional initialization for external PHYs,
3221 	 * namely for the 1000baseTX cards that use the XMAC's
3222 	 * GMII mode.
3223 	 */
3224 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
3225 		int			i = 0;
3226 		u_int32_t		val;
3227 
3228 		/* Take PHY out of reset. */
3229 		val = sk_win_read_4(sc, SK_GPIO);
3230 		if (sc_if->sk_port == SK_PORT_A)
3231 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
3232 		else
3233 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
3234 		sk_win_write_4(sc, SK_GPIO, val);
3235 
3236 		/* Enable GMII mode on the XMAC. */
3237 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
3238 
3239 		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3240 		    BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET);
3241 		DELAY(10000);
3242 		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3243 		    BRGPHY_MII_IMR, 0xFFF0);
3244 
3245 		/*
3246 		 * Early versions of the BCM5400 apparently have
3247 		 * a bug that requires them to have their reserved
3248 		 * registers initialized to some magic values. I don't
3249 		 * know what the numbers do, I'm just the messenger.
3250 		 */
3251 		if (sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, 0x03)
3252 		    == 0x6041) {
3253 			while(bhack[i].reg) {
3254 				sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3255 				    bhack[i].reg, bhack[i].val);
3256 				i++;
3257 			}
3258 		}
3259 	}
3260 
3261 	/* Set station address */
3262 	bcopy(IF_LLADDR(sc_if->sk_ifp), eaddr, ETHER_ADDR_LEN);
3263 	SK_XM_WRITE_2(sc_if, XM_PAR0, eaddr[0]);
3264 	SK_XM_WRITE_2(sc_if, XM_PAR1, eaddr[1]);
3265 	SK_XM_WRITE_2(sc_if, XM_PAR2, eaddr[2]);
3266 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
3267 
3268 	if (ifp->if_flags & IFF_BROADCAST) {
3269 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
3270 	} else {
3271 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
3272 	}
3273 
3274 	/* We don't need the FCS appended to the packet. */
3275 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
3276 
3277 	/* We want short frames padded to 60 bytes. */
3278 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
3279 
3280 	/*
3281 	 * Enable the reception of all error frames. This is is
3282 	 * a necessary evil due to the design of the XMAC. The
3283 	 * XMAC's receive FIFO is only 8K in size, however jumbo
3284 	 * frames can be up to 9000 bytes in length. When bad
3285 	 * frame filtering is enabled, the XMAC's RX FIFO operates
3286 	 * in 'store and forward' mode. For this to work, the
3287 	 * entire frame has to fit into the FIFO, but that means
3288 	 * that jumbo frames larger than 8192 bytes will be
3289 	 * truncated. Disabling all bad frame filtering causes
3290 	 * the RX FIFO to operate in streaming mode, in which
3291 	 * case the XMAC will start transfering frames out of the
3292 	 * RX FIFO as soon as the FIFO threshold is reached.
3293 	 */
3294 	if (ifp->if_mtu > SK_MAX_FRAMELEN) {
3295 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
3296 		    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
3297 		    XM_MODE_RX_INRANGELEN);
3298 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
3299 	} else
3300 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
3301 
3302 	/*
3303 	 * Bump up the transmit threshold. This helps hold off transmit
3304 	 * underruns when we're blasting traffic from both ports at once.
3305 	 */
3306 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
3307 
3308 	/* Set Rx filter */
3309 	sk_rxfilter_genesis(sc_if);
3310 
3311 	/* Clear and enable interrupts */
3312 	SK_XM_READ_2(sc_if, XM_ISR);
3313 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
3314 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
3315 	else
3316 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
3317 
3318 	/* Configure MAC arbiter */
3319 	switch(sc_if->sk_xmac_rev) {
3320 	case XM_XMAC_REV_B2:
3321 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
3322 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
3323 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
3324 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
3325 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
3326 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
3327 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
3328 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
3329 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
3330 		break;
3331 	case XM_XMAC_REV_C1:
3332 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
3333 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
3334 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
3335 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
3336 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
3337 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
3338 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
3339 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
3340 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
3341 		break;
3342 	default:
3343 		break;
3344 	}
3345 	sk_win_write_2(sc, SK_MACARB_CTL,
3346 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
3347 
3348 	sc_if->sk_link = 1;
3349 
3350 	return;
3351 }
3352 
3353 static void
3354 sk_init_yukon(sc_if)
3355 	struct sk_if_softc	*sc_if;
3356 {
3357 	u_int32_t		phy, v;
3358 	u_int16_t		reg;
3359 	struct sk_softc		*sc;
3360 	struct ifnet		*ifp;
3361 	u_int8_t		*eaddr;
3362 	int			i;
3363 
3364 	SK_IF_LOCK_ASSERT(sc_if);
3365 
3366 	sc = sc_if->sk_softc;
3367 	ifp = sc_if->sk_ifp;
3368 
3369 	if (sc->sk_type == SK_YUKON_LITE &&
3370 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
3371 		/*
3372 		 * Workaround code for COMA mode, set PHY reset.
3373 		 * Otherwise it will not correctly take chip out of
3374 		 * powerdown (coma)
3375 		 */
3376 		v = sk_win_read_4(sc, SK_GPIO);
3377 		v |= SK_GPIO_DIR9 | SK_GPIO_DAT9;
3378 		sk_win_write_4(sc, SK_GPIO, v);
3379 	}
3380 
3381 	/* GMAC and GPHY Reset */
3382 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
3383 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
3384 	DELAY(1000);
3385 
3386 	if (sc->sk_type == SK_YUKON_LITE &&
3387 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
3388 		/*
3389 		 * Workaround code for COMA mode, clear PHY reset
3390 		 */
3391 		v = sk_win_read_4(sc, SK_GPIO);
3392 		v |= SK_GPIO_DIR9;
3393 		v &= ~SK_GPIO_DAT9;
3394 		sk_win_write_4(sc, SK_GPIO, v);
3395 	}
3396 
3397 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
3398 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
3399 
3400 	if (sc->sk_coppertype)
3401 		phy |= SK_GPHY_COPPER;
3402 	else
3403 		phy |= SK_GPHY_FIBER;
3404 
3405 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
3406 	DELAY(1000);
3407 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
3408 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
3409 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
3410 
3411 	/* unused read of the interrupt source register */
3412 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
3413 
3414 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
3415 
3416 	/* MIB Counter Clear Mode set */
3417 	reg |= YU_PAR_MIB_CLR;
3418 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
3419 
3420 	/* MIB Counter Clear Mode clear */
3421 	reg &= ~YU_PAR_MIB_CLR;
3422 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
3423 
3424 	/* receive control reg */
3425 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
3426 
3427 	/* transmit parameter register */
3428 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
3429 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
3430 
3431 	/* serial mode register */
3432 	reg = YU_SMR_DATA_BLIND(0x1c) | YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e);
3433 	if (ifp->if_mtu > SK_MAX_FRAMELEN)
3434 		reg |= YU_SMR_MFL_JUMBO;
3435 	SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
3436 
3437 	/* Setup Yukon's station address */
3438 	eaddr = IF_LLADDR(sc_if->sk_ifp);
3439 	for (i = 0; i < 3; i++)
3440 		SK_YU_WRITE_2(sc_if, SK_MAC0_0 + i * 4,
3441 		    eaddr[i * 2] | eaddr[i * 2 + 1] << 8);
3442 	/* Set GMAC source address of flow control. */
3443 	for (i = 0; i < 3; i++)
3444 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
3445 		    eaddr[i * 2] | eaddr[i * 2 + 1] << 8);
3446 	/* Set GMAC virtual address. */
3447 	for (i = 0; i < 3; i++)
3448 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4,
3449 		    eaddr[i * 2] | eaddr[i * 2 + 1] << 8);
3450 
3451 	/* Set Rx filter */
3452 	sk_rxfilter_yukon(sc_if);
3453 
3454 	/* enable interrupt mask for counter overflows */
3455 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
3456 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
3457 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
3458 
3459 	/* Configure RX MAC FIFO Flush Mask */
3460 	v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
3461 	    YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
3462 	    YU_RXSTAT_JABBER;
3463 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
3464 
3465 	/* Disable RX MAC FIFO Flush for YUKON-Lite Rev. A0 only */
3466 	if (sc->sk_type == SK_YUKON_LITE && sc->sk_rev == SK_YUKON_LITE_REV_A0)
3467 		v = SK_TFCTL_OPERATION_ON;
3468 	else
3469 		v = SK_TFCTL_OPERATION_ON | SK_RFCTL_FIFO_FLUSH_ON;
3470 	/* Configure RX MAC FIFO */
3471 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
3472 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, v);
3473 
3474 	/* Increase flush threshould to 64 bytes */
3475 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD,
3476 	    SK_RFCTL_FIFO_THRESHOLD + 1);
3477 
3478 	/* Configure TX MAC FIFO */
3479 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
3480 	SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
3481 }
3482 
3483 /*
3484  * Note that to properly initialize any part of the GEnesis chip,
3485  * you first have to take it out of reset mode.
3486  */
3487 static void
3488 sk_init(xsc)
3489 	void			*xsc;
3490 {
3491 	struct sk_if_softc	*sc_if = xsc;
3492 
3493 	SK_IF_LOCK(sc_if);
3494 	sk_init_locked(sc_if);
3495 	SK_IF_UNLOCK(sc_if);
3496 
3497 	return;
3498 }
3499 
3500 static void
3501 sk_init_locked(sc_if)
3502 	struct sk_if_softc	*sc_if;
3503 {
3504 	struct sk_softc		*sc;
3505 	struct ifnet		*ifp;
3506 	struct mii_data		*mii;
3507 	u_int16_t		reg;
3508 	u_int32_t		imr;
3509 	int			error;
3510 
3511 	SK_IF_LOCK_ASSERT(sc_if);
3512 
3513 	ifp = sc_if->sk_ifp;
3514 	sc = sc_if->sk_softc;
3515 	mii = device_get_softc(sc_if->sk_miibus);
3516 
3517 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3518 		return;
3519 
3520 	/* Cancel pending I/O and free all RX/TX buffers. */
3521 	sk_stop(sc_if);
3522 
3523 	if (sc->sk_type == SK_GENESIS) {
3524 		/* Configure LINK_SYNC LED */
3525 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
3526 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
3527 			SK_LINKLED_LINKSYNC_ON);
3528 
3529 		/* Configure RX LED */
3530 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
3531 			SK_RXLEDCTL_COUNTER_START);
3532 
3533 		/* Configure TX LED */
3534 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
3535 			SK_TXLEDCTL_COUNTER_START);
3536 	}
3537 
3538 	/*
3539 	 * Configure descriptor poll timer
3540 	 *
3541 	 * SK-NET GENESIS data sheet says that possibility of losing Start
3542 	 * transmit command due to CPU/cache related interim storage problems
3543 	 * under certain conditions. The document recommends a polling
3544 	 * mechanism to send a Start transmit command to initiate transfer
3545 	 * of ready descriptors regulary. To cope with this issue sk(4) now
3546 	 * enables descriptor poll timer to initiate descriptor processing
3547 	 * periodically as defined by SK_DPT_TIMER_MAX. However sk(4) still
3548 	 * issue SK_TXBMU_TX_START to Tx BMU to get fast execution of Tx
3549 	 * command instead of waiting for next descriptor polling time.
3550 	 * The same rule may apply to Rx side too but it seems that is not
3551 	 * needed at the moment.
3552 	 * Since sk(4) uses descriptor polling as a last resort there is no
3553 	 * need to set smaller polling time than maximum allowable one.
3554 	 */
3555 	SK_IF_WRITE_4(sc_if, 0, SK_DPT_INIT, SK_DPT_TIMER_MAX);
3556 
3557 	/* Configure I2C registers */
3558 
3559 	/* Configure XMAC(s) */
3560 	switch (sc->sk_type) {
3561 	case SK_GENESIS:
3562 		sk_init_xmac(sc_if);
3563 		break;
3564 	case SK_YUKON:
3565 	case SK_YUKON_LITE:
3566 	case SK_YUKON_LP:
3567 		sk_init_yukon(sc_if);
3568 		break;
3569 	}
3570 	mii_mediachg(mii);
3571 
3572 	if (sc->sk_type == SK_GENESIS) {
3573 		/* Configure MAC FIFOs */
3574 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
3575 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
3576 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
3577 
3578 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
3579 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
3580 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
3581 	}
3582 
3583 	/* Configure transmit arbiter(s) */
3584 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
3585 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
3586 
3587 	/* Configure RAMbuffers */
3588 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
3589 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
3590 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
3591 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
3592 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
3593 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
3594 
3595 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
3596 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
3597 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
3598 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
3599 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
3600 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
3601 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
3602 
3603 	/* Configure BMUs */
3604 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
3605 	if (ifp->if_mtu > SK_MAX_FRAMELEN) {
3606 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
3607 		    SK_ADDR_LO(SK_JUMBO_RX_RING_ADDR(sc_if, 0)));
3608 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI,
3609 		    SK_ADDR_HI(SK_JUMBO_RX_RING_ADDR(sc_if, 0)));
3610 	} else {
3611 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
3612 		    SK_ADDR_LO(SK_RX_RING_ADDR(sc_if, 0)));
3613 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI,
3614 		    SK_ADDR_HI(SK_RX_RING_ADDR(sc_if, 0)));
3615 	}
3616 
3617 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
3618 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
3619 	    SK_ADDR_LO(SK_TX_RING_ADDR(sc_if, 0)));
3620 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI,
3621 	    SK_ADDR_HI(SK_TX_RING_ADDR(sc_if, 0)));
3622 
3623 	/* Init descriptors */
3624 	if (ifp->if_mtu > SK_MAX_FRAMELEN)
3625 		error = sk_init_jumbo_rx_ring(sc_if);
3626 	else
3627 		error = sk_init_rx_ring(sc_if);
3628 	if (error != 0) {
3629 		device_printf(sc_if->sk_if_dev,
3630 		    "initialization failed: no memory for rx buffers\n");
3631 		sk_stop(sc_if);
3632 		return;
3633 	}
3634 	sk_init_tx_ring(sc_if);
3635 
3636 	/* Set interrupt moderation if changed via sysctl. */
3637 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
3638 	if (imr != SK_IM_USECS(sc->sk_int_mod, sc->sk_int_ticks)) {
3639 		sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod,
3640 		    sc->sk_int_ticks));
3641 		if (bootverbose)
3642 			device_printf(sc_if->sk_if_dev,
3643 			    "interrupt moderation is %d us.\n",
3644 			    sc->sk_int_mod);
3645 	}
3646 
3647 	/* Configure interrupt handling */
3648 	CSR_READ_4(sc, SK_ISSR);
3649 	if (sc_if->sk_port == SK_PORT_A)
3650 		sc->sk_intrmask |= SK_INTRS1;
3651 	else
3652 		sc->sk_intrmask |= SK_INTRS2;
3653 
3654 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
3655 
3656 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
3657 
3658 	/* Start BMUs. */
3659 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
3660 
3661 	switch(sc->sk_type) {
3662 	case SK_GENESIS:
3663 		/* Enable XMACs TX and RX state machines */
3664 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
3665 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
3666 		break;
3667 	case SK_YUKON:
3668 	case SK_YUKON_LITE:
3669 	case SK_YUKON_LP:
3670 		reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
3671 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
3672 #if 0
3673 		/* XXX disable 100Mbps and full duplex mode? */
3674 		reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_DIS);
3675 #endif
3676 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
3677 	}
3678 
3679 	/* Activate descriptor polling timer */
3680 	SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_START);
3681 	/* start transfer of Tx descriptors */
3682 	CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
3683 
3684 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3685 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3686 
3687 	switch (sc->sk_type) {
3688 	case SK_YUKON:
3689 	case SK_YUKON_LITE:
3690 	case SK_YUKON_LP:
3691 		callout_reset(&sc_if->sk_tick_ch, hz, sk_yukon_tick, sc_if);
3692 		break;
3693 	}
3694 
3695 	callout_reset(&sc_if->sk_watchdog_ch, hz, sk_watchdog, ifp);
3696 
3697 	return;
3698 }
3699 
3700 static void
3701 sk_stop(sc_if)
3702 	struct sk_if_softc	*sc_if;
3703 {
3704 	int			i;
3705 	struct sk_softc		*sc;
3706 	struct sk_txdesc	*txd;
3707 	struct sk_rxdesc	*rxd;
3708 	struct sk_rxdesc	*jrxd;
3709 	struct ifnet		*ifp;
3710 	u_int32_t		val;
3711 
3712 	SK_IF_LOCK_ASSERT(sc_if);
3713 	sc = sc_if->sk_softc;
3714 	ifp = sc_if->sk_ifp;
3715 
3716 	callout_stop(&sc_if->sk_tick_ch);
3717 	callout_stop(&sc_if->sk_watchdog_ch);
3718 
3719 	/* stop Tx descriptor polling timer */
3720 	SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
3721 	/* stop transfer of Tx descriptors */
3722 	CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_STOP);
3723 	for (i = 0; i < SK_TIMEOUT; i++) {
3724 		val = CSR_READ_4(sc, sc_if->sk_tx_bmu);
3725 		if ((val & SK_TXBMU_TX_STOP) == 0)
3726 			break;
3727 		DELAY(1);
3728 	}
3729 	if (i == SK_TIMEOUT)
3730 		device_printf(sc_if->sk_if_dev,
3731 		    "can not stop transfer of Tx descriptor\n");
3732 	/* stop transfer of Rx descriptors */
3733 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_STOP);
3734 	for (i = 0; i < SK_TIMEOUT; i++) {
3735 		val = SK_IF_READ_4(sc_if, 0, SK_RXQ1_BMU_CSR);
3736 		if ((val & SK_RXBMU_RX_STOP) == 0)
3737 			break;
3738 		DELAY(1);
3739 	}
3740 	if (i == SK_TIMEOUT)
3741 		device_printf(sc_if->sk_if_dev,
3742 		    "can not stop transfer of Rx descriptor\n");
3743 
3744 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
3745 		/* Put PHY back into reset. */
3746 		val = sk_win_read_4(sc, SK_GPIO);
3747 		if (sc_if->sk_port == SK_PORT_A) {
3748 			val |= SK_GPIO_DIR0;
3749 			val &= ~SK_GPIO_DAT0;
3750 		} else {
3751 			val |= SK_GPIO_DIR2;
3752 			val &= ~SK_GPIO_DAT2;
3753 		}
3754 		sk_win_write_4(sc, SK_GPIO, val);
3755 	}
3756 
3757 	/* Turn off various components of this interface. */
3758 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
3759 	switch (sc->sk_type) {
3760 	case SK_GENESIS:
3761 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET);
3762 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
3763 		break;
3764 	case SK_YUKON:
3765 	case SK_YUKON_LITE:
3766 	case SK_YUKON_LP:
3767 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
3768 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
3769 		break;
3770 	}
3771 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
3772 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
3773 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
3774 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
3775 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
3776 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
3777 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
3778 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
3779 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
3780 
3781 	/* Disable interrupts */
3782 	if (sc_if->sk_port == SK_PORT_A)
3783 		sc->sk_intrmask &= ~SK_INTRS1;
3784 	else
3785 		sc->sk_intrmask &= ~SK_INTRS2;
3786 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
3787 
3788 	SK_XM_READ_2(sc_if, XM_ISR);
3789 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
3790 
3791 	/* Free RX and TX mbufs still in the queues. */
3792 	for (i = 0; i < SK_RX_RING_CNT; i++) {
3793 		rxd = &sc_if->sk_cdata.sk_rxdesc[i];
3794 		if (rxd->rx_m != NULL) {
3795 			bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag,
3796 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3797 			bus_dmamap_unload(sc_if->sk_cdata.sk_rx_tag,
3798 			    rxd->rx_dmamap);
3799 			m_freem(rxd->rx_m);
3800 			rxd->rx_m = NULL;
3801 		}
3802 	}
3803 	for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
3804 		jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
3805 		if (jrxd->rx_m != NULL) {
3806 			bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag,
3807 			    jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3808 			bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_tag,
3809 			    jrxd->rx_dmamap);
3810 			m_freem(jrxd->rx_m);
3811 			jrxd->rx_m = NULL;
3812 		}
3813 	}
3814 	for (i = 0; i < SK_TX_RING_CNT; i++) {
3815 		txd = &sc_if->sk_cdata.sk_txdesc[i];
3816 		if (txd->tx_m != NULL) {
3817 			bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag,
3818 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
3819 			bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag,
3820 			    txd->tx_dmamap);
3821 			m_freem(txd->tx_m);
3822 			txd->tx_m = NULL;
3823 		}
3824 	}
3825 
3826 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING|IFF_DRV_OACTIVE);
3827 
3828 	return;
3829 }
3830 
3831 static int
3832 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3833 {
3834 	int error, value;
3835 
3836 	if (!arg1)
3837 		return (EINVAL);
3838 	value = *(int *)arg1;
3839 	error = sysctl_handle_int(oidp, &value, 0, req);
3840 	if (error || !req->newptr)
3841 		return (error);
3842 	if (value < low || value > high)
3843 		return (EINVAL);
3844 	*(int *)arg1 = value;
3845 	return (0);
3846 }
3847 
3848 static int
3849 sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS)
3850 {
3851 	return (sysctl_int_range(oidp, arg1, arg2, req, SK_IM_MIN, SK_IM_MAX));
3852 }
3853