xref: /freebsd/sys/dev/tsec/if_tsec.c (revision 38a52bd3)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2007-2008 Semihalf, Rafal Jaworowski
5  * Copyright (C) 2006-2007 Semihalf, Piotr Kruszynski
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
20  * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
22  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
23  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
24  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
25  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
26  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /*
30  * Freescale integrated Three-Speed Ethernet Controller (TSEC) driver.
31  */
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #ifdef HAVE_KERNEL_OPTION_HEADERS
36 #include "opt_device_polling.h"
37 #endif
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/bus.h>
42 #include <sys/endian.h>
43 #include <sys/mbuf.h>
44 #include <sys/kernel.h>
45 #include <sys/module.h>
46 #include <sys/socket.h>
47 #include <sys/sockio.h>
48 #include <sys/sysctl.h>
49 
50 #include <net/bpf.h>
51 #include <net/ethernet.h>
52 #include <net/if.h>
53 #include <net/if_var.h>
54 #include <net/if_arp.h>
55 #include <net/if_dl.h>
56 #include <net/if_media.h>
57 #include <net/if_types.h>
58 #include <net/if_vlan_var.h>
59 
60 #include <netinet/in_systm.h>
61 #include <netinet/in.h>
62 #include <netinet/ip.h>
63 
64 #include <machine/bus.h>
65 
66 #include <dev/mii/mii.h>
67 #include <dev/mii/miivar.h>
68 
69 #include <dev/tsec/if_tsec.h>
70 #include <dev/tsec/if_tsecreg.h>
71 
72 static int	tsec_alloc_dma_desc(device_t dev, bus_dma_tag_t *dtag,
73     bus_dmamap_t *dmap, bus_size_t dsize, void **vaddr, void *raddr,
74     const char *dname);
75 static void	tsec_dma_ctl(struct tsec_softc *sc, int state);
76 static void	 tsec_encap(struct ifnet *ifp, struct tsec_softc *sc,
77     struct mbuf *m0, uint16_t fcb_flags, int *start_tx);
78 static void	tsec_free_dma(struct tsec_softc *sc);
79 static void	tsec_free_dma_desc(bus_dma_tag_t dtag, bus_dmamap_t dmap, void *vaddr);
80 static int	tsec_ifmedia_upd(struct ifnet *ifp);
81 static void	tsec_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr);
82 static int	tsec_new_rxbuf(bus_dma_tag_t tag, bus_dmamap_t map,
83     struct mbuf **mbufp, uint32_t *paddr);
84 static void	tsec_map_dma_addr(void *arg, bus_dma_segment_t *segs,
85     int nseg, int error);
86 static void	tsec_intrs_ctl(struct tsec_softc *sc, int state);
87 static void	tsec_init(void *xsc);
88 static void	tsec_init_locked(struct tsec_softc *sc);
89 static int	tsec_ioctl(struct ifnet *ifp, u_long command, caddr_t data);
90 static void	tsec_reset_mac(struct tsec_softc *sc);
91 static void	tsec_setfilter(struct tsec_softc *sc);
92 static void	tsec_set_mac_address(struct tsec_softc *sc);
93 static void	tsec_start(struct ifnet *ifp);
94 static void	tsec_start_locked(struct ifnet *ifp);
95 static void	tsec_stop(struct tsec_softc *sc);
96 static void	tsec_tick(void *arg);
97 static void	tsec_watchdog(struct tsec_softc *sc);
98 static void	tsec_add_sysctls(struct tsec_softc *sc);
99 static int	tsec_sysctl_ic_time(SYSCTL_HANDLER_ARGS);
100 static int	tsec_sysctl_ic_count(SYSCTL_HANDLER_ARGS);
101 static void	tsec_set_rxic(struct tsec_softc *sc);
102 static void	tsec_set_txic(struct tsec_softc *sc);
103 static int	tsec_receive_intr_locked(struct tsec_softc *sc, int count);
104 static void	tsec_transmit_intr_locked(struct tsec_softc *sc);
105 static void	tsec_error_intr_locked(struct tsec_softc *sc, int count);
106 static void	tsec_offload_setup(struct tsec_softc *sc);
107 static void	tsec_offload_process_frame(struct tsec_softc *sc,
108     struct mbuf *m);
109 static void	tsec_setup_multicast(struct tsec_softc *sc);
110 static int	tsec_set_mtu(struct tsec_softc *sc, unsigned int mtu);
111 
112 DRIVER_MODULE(miibus, tsec, miibus_driver, 0, 0);
113 MODULE_DEPEND(tsec, ether, 1, 1, 1);
114 MODULE_DEPEND(tsec, miibus, 1, 1, 1);
115 
116 struct mtx tsec_phy_mtx;
117 
118 int
119 tsec_attach(struct tsec_softc *sc)
120 {
121 	uint8_t hwaddr[ETHER_ADDR_LEN];
122 	struct ifnet *ifp;
123 	int error = 0;
124 	int i;
125 
126 	/* Initialize global (because potentially shared) MII lock */
127 	if (!mtx_initialized(&tsec_phy_mtx))
128 		mtx_init(&tsec_phy_mtx, "tsec mii", NULL, MTX_DEF);
129 
130 	/* Reset all TSEC counters */
131 	TSEC_TX_RX_COUNTERS_INIT(sc);
132 
133 	/* Stop DMA engine if enabled by firmware */
134 	tsec_dma_ctl(sc, 0);
135 
136 	/* Reset MAC */
137 	tsec_reset_mac(sc);
138 
139 	/* Disable interrupts for now */
140 	tsec_intrs_ctl(sc, 0);
141 
142 	/* Configure defaults for interrupts coalescing */
143 	sc->rx_ic_time = 768;
144 	sc->rx_ic_count = 16;
145 	sc->tx_ic_time = 768;
146 	sc->tx_ic_count = 16;
147 	tsec_set_rxic(sc);
148 	tsec_set_txic(sc);
149 	tsec_add_sysctls(sc);
150 
151 	/* Allocate a busdma tag and DMA safe memory for TX descriptors. */
152 	error = tsec_alloc_dma_desc(sc->dev, &sc->tsec_tx_dtag,
153 	    &sc->tsec_tx_dmap, sizeof(*sc->tsec_tx_vaddr) * TSEC_TX_NUM_DESC,
154 	    (void **)&sc->tsec_tx_vaddr, &sc->tsec_tx_raddr, "TX");
155 
156 	if (error) {
157 		tsec_detach(sc);
158 		return (ENXIO);
159 	}
160 
161 	/* Allocate a busdma tag and DMA safe memory for RX descriptors. */
162 	error = tsec_alloc_dma_desc(sc->dev, &sc->tsec_rx_dtag,
163 	    &sc->tsec_rx_dmap, sizeof(*sc->tsec_rx_vaddr) * TSEC_RX_NUM_DESC,
164 	    (void **)&sc->tsec_rx_vaddr, &sc->tsec_rx_raddr, "RX");
165 	if (error) {
166 		tsec_detach(sc);
167 		return (ENXIO);
168 	}
169 
170 	/* Allocate a busdma tag for TX mbufs. */
171 	error = bus_dma_tag_create(NULL,	/* parent */
172 	    TSEC_TXBUFFER_ALIGNMENT, 0,		/* alignment, boundary */
173 	    BUS_SPACE_MAXADDR_32BIT,		/* lowaddr */
174 	    BUS_SPACE_MAXADDR,			/* highaddr */
175 	    NULL, NULL,				/* filtfunc, filtfuncarg */
176 	    MCLBYTES * (TSEC_TX_NUM_DESC - 1),	/* maxsize */
177 	    TSEC_TX_MAX_DMA_SEGS,		/* nsegments */
178 	    MCLBYTES, 0,			/* maxsegsz, flags */
179 	    NULL, NULL,				/* lockfunc, lockfuncarg */
180 	    &sc->tsec_tx_mtag);			/* dmat */
181 	if (error) {
182 		device_printf(sc->dev, "failed to allocate busdma tag "
183 		    "(tx mbufs)\n");
184 		tsec_detach(sc);
185 		return (ENXIO);
186 	}
187 
188 	/* Allocate a busdma tag for RX mbufs. */
189 	error = bus_dma_tag_create(NULL,	/* parent */
190 	    TSEC_RXBUFFER_ALIGNMENT, 0,		/* alignment, boundary */
191 	    BUS_SPACE_MAXADDR_32BIT,		/* lowaddr */
192 	    BUS_SPACE_MAXADDR,			/* highaddr */
193 	    NULL, NULL,				/* filtfunc, filtfuncarg */
194 	    MCLBYTES,				/* maxsize */
195 	    1,					/* nsegments */
196 	    MCLBYTES, 0,			/* maxsegsz, flags */
197 	    NULL, NULL,				/* lockfunc, lockfuncarg */
198 	    &sc->tsec_rx_mtag);			/* dmat */
199 	if (error) {
200 		device_printf(sc->dev, "failed to allocate busdma tag "
201 		    "(rx mbufs)\n");
202 		tsec_detach(sc);
203 		return (ENXIO);
204 	}
205 
206 	/* Create TX busdma maps */
207 	for (i = 0; i < TSEC_TX_NUM_DESC; i++) {
208 		error = bus_dmamap_create(sc->tsec_tx_mtag, 0,
209 		   &sc->tx_bufmap[i].map);
210 		if (error) {
211 			device_printf(sc->dev, "failed to init TX ring\n");
212 			tsec_detach(sc);
213 			return (ENXIO);
214 		}
215 		sc->tx_bufmap[i].map_initialized = 1;
216 	}
217 
218 	/* Create RX busdma maps and zero mbuf handlers */
219 	for (i = 0; i < TSEC_RX_NUM_DESC; i++) {
220 		error = bus_dmamap_create(sc->tsec_rx_mtag, 0,
221 		    &sc->rx_data[i].map);
222 		if (error) {
223 			device_printf(sc->dev, "failed to init RX ring\n");
224 			tsec_detach(sc);
225 			return (ENXIO);
226 		}
227 		sc->rx_data[i].mbuf = NULL;
228 	}
229 
230 	/* Create mbufs for RX buffers */
231 	for (i = 0; i < TSEC_RX_NUM_DESC; i++) {
232 		error = tsec_new_rxbuf(sc->tsec_rx_mtag, sc->rx_data[i].map,
233 		    &sc->rx_data[i].mbuf, &sc->rx_data[i].paddr);
234 		if (error) {
235 			device_printf(sc->dev, "can't load rx DMA map %d, "
236 			    "error = %d\n", i, error);
237 			tsec_detach(sc);
238 			return (error);
239 		}
240 	}
241 
242 	/* Create network interface for upper layers */
243 	ifp = sc->tsec_ifp = if_alloc(IFT_ETHER);
244 	if (ifp == NULL) {
245 		device_printf(sc->dev, "if_alloc() failed\n");
246 		tsec_detach(sc);
247 		return (ENOMEM);
248 	}
249 
250 	ifp->if_softc = sc;
251 	if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev));
252 	ifp->if_flags = IFF_SIMPLEX | IFF_MULTICAST | IFF_BROADCAST;
253 	ifp->if_init = tsec_init;
254 	ifp->if_start = tsec_start;
255 	ifp->if_ioctl = tsec_ioctl;
256 
257 	IFQ_SET_MAXLEN(&ifp->if_snd, TSEC_TX_NUM_DESC - 1);
258 	ifp->if_snd.ifq_drv_maxlen = TSEC_TX_NUM_DESC - 1;
259 	IFQ_SET_READY(&ifp->if_snd);
260 
261 	ifp->if_capabilities = IFCAP_VLAN_MTU;
262 	if (sc->is_etsec)
263 		ifp->if_capabilities |= IFCAP_HWCSUM;
264 
265 	ifp->if_capenable = ifp->if_capabilities;
266 
267 #ifdef DEVICE_POLLING
268 	/* Advertise that polling is supported */
269 	ifp->if_capabilities |= IFCAP_POLLING;
270 #endif
271 
272 	/* Attach PHY(s) */
273 	error = mii_attach(sc->dev, &sc->tsec_miibus, ifp, tsec_ifmedia_upd,
274 	    tsec_ifmedia_sts, BMSR_DEFCAPMASK, sc->phyaddr, MII_OFFSET_ANY,
275 	    0);
276 	if (error) {
277 		device_printf(sc->dev, "attaching PHYs failed\n");
278 		if_free(ifp);
279 		sc->tsec_ifp = NULL;
280 		tsec_detach(sc);
281 		return (error);
282 	}
283 	sc->tsec_mii = device_get_softc(sc->tsec_miibus);
284 
285 	/* Set MAC address */
286 	tsec_get_hwaddr(sc, hwaddr);
287 	ether_ifattach(ifp, hwaddr);
288 
289 	return (0);
290 }
291 
292 int
293 tsec_detach(struct tsec_softc *sc)
294 {
295 
296 	if (sc->tsec_ifp != NULL) {
297 #ifdef DEVICE_POLLING
298 		if (sc->tsec_ifp->if_capenable & IFCAP_POLLING)
299 			ether_poll_deregister(sc->tsec_ifp);
300 #endif
301 
302 		/* Stop TSEC controller and free TX queue */
303 		if (sc->sc_rres)
304 			tsec_shutdown(sc->dev);
305 
306 		/* Detach network interface */
307 		ether_ifdetach(sc->tsec_ifp);
308 		if_free(sc->tsec_ifp);
309 		sc->tsec_ifp = NULL;
310 	}
311 
312 	/* Free DMA resources */
313 	tsec_free_dma(sc);
314 
315 	return (0);
316 }
317 
318 int
319 tsec_shutdown(device_t dev)
320 {
321 	struct tsec_softc *sc;
322 
323 	sc = device_get_softc(dev);
324 
325 	TSEC_GLOBAL_LOCK(sc);
326 	tsec_stop(sc);
327 	TSEC_GLOBAL_UNLOCK(sc);
328 	return (0);
329 }
330 
331 int
332 tsec_suspend(device_t dev)
333 {
334 
335 	/* TODO not implemented! */
336 	return (0);
337 }
338 
339 int
340 tsec_resume(device_t dev)
341 {
342 
343 	/* TODO not implemented! */
344 	return (0);
345 }
346 
347 static void
348 tsec_init(void *xsc)
349 {
350 	struct tsec_softc *sc = xsc;
351 
352 	TSEC_GLOBAL_LOCK(sc);
353 	tsec_init_locked(sc);
354 	TSEC_GLOBAL_UNLOCK(sc);
355 }
356 
357 static int
358 tsec_mii_wait(struct tsec_softc *sc, uint32_t flags)
359 {
360 	int timeout;
361 
362 	/*
363 	 * The status indicators are not set immediately after a command.
364 	 * Discard the first value.
365 	 */
366 	TSEC_PHY_READ(sc, TSEC_REG_MIIMIND);
367 
368 	timeout = TSEC_READ_RETRY;
369 	while ((TSEC_PHY_READ(sc, TSEC_REG_MIIMIND) & flags) && --timeout)
370 		DELAY(TSEC_READ_DELAY);
371 
372 	return (timeout == 0);
373 }
374 
375 static void
376 tsec_init_locked(struct tsec_softc *sc)
377 {
378 	struct tsec_desc *tx_desc = sc->tsec_tx_vaddr;
379 	struct tsec_desc *rx_desc = sc->tsec_rx_vaddr;
380 	struct ifnet *ifp = sc->tsec_ifp;
381 	uint32_t val, i;
382 	int timeout;
383 
384 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
385 		return;
386 
387 	TSEC_GLOBAL_LOCK_ASSERT(sc);
388 	tsec_stop(sc);
389 
390 	/*
391 	 * These steps are according to the MPC8555E PowerQUICCIII RM:
392 	 * 14.7 Initialization/Application Information
393 	 */
394 
395 	/* Step 1: soft reset MAC */
396 	tsec_reset_mac(sc);
397 
398 	/* Step 2: Initialize MACCFG2 */
399 	TSEC_WRITE(sc, TSEC_REG_MACCFG2,
400 	    TSEC_MACCFG2_FULLDUPLEX |	/* Full Duplex = 1 */
401 	    TSEC_MACCFG2_PADCRC |	/* PAD/CRC append */
402 	    TSEC_MACCFG2_GMII |		/* I/F Mode bit */
403 	    TSEC_MACCFG2_PRECNT		/* Preamble count = 7 */
404 	);
405 
406 	/* Step 3: Initialize ECNTRL
407 	 * While the documentation states that R100M is ignored if RPM is
408 	 * not set, it does seem to be needed to get the orange boxes to
409 	 * work (which have a Marvell 88E1111 PHY). Go figure.
410 	 */
411 
412 	/*
413 	 * XXX kludge - use circumstancial evidence to program ECNTRL
414 	 * correctly. Ideally we need some board information to guide
415 	 * us here.
416 	 */
417 	i = TSEC_READ(sc, TSEC_REG_ID2);
418 	val = (i & 0xffff)
419 	    ? (TSEC_ECNTRL_TBIM | TSEC_ECNTRL_SGMIIM)	/* Sumatra */
420 	    : TSEC_ECNTRL_R100M;			/* Orange + CDS */
421 	TSEC_WRITE(sc, TSEC_REG_ECNTRL, TSEC_ECNTRL_STEN | val);
422 
423 	/* Step 4: Initialize MAC station address */
424 	tsec_set_mac_address(sc);
425 
426 	/*
427 	 * Step 5: Assign a Physical address to the TBI so as to not conflict
428 	 * with the external PHY physical address
429 	 */
430 	TSEC_WRITE(sc, TSEC_REG_TBIPA, 5);
431 
432 	TSEC_PHY_LOCK(sc);
433 
434 	/* Step 6: Reset the management interface */
435 	TSEC_PHY_WRITE(sc, TSEC_REG_MIIMCFG, TSEC_MIIMCFG_RESETMGMT);
436 
437 	/* Step 7: Setup the MII Mgmt clock speed */
438 	TSEC_PHY_WRITE(sc, TSEC_REG_MIIMCFG, TSEC_MIIMCFG_CLKDIV28);
439 
440 	/* Step 8: Read MII Mgmt indicator register and check for Busy = 0 */
441 	timeout = tsec_mii_wait(sc, TSEC_MIIMIND_BUSY);
442 
443 	TSEC_PHY_UNLOCK(sc);
444 	if (timeout) {
445 		if_printf(ifp, "tsec_init_locked(): Mgmt busy timeout\n");
446 		return;
447 	}
448 
449 	/* Step 9: Setup the MII Mgmt */
450 	mii_mediachg(sc->tsec_mii);
451 
452 	/* Step 10: Clear IEVENT register */
453 	TSEC_WRITE(sc, TSEC_REG_IEVENT, 0xffffffff);
454 
455 	/* Step 11: Enable interrupts */
456 #ifdef DEVICE_POLLING
457 	/*
458 	 * ...only if polling is not turned on. Disable interrupts explicitly
459 	 * if polling is enabled.
460 	 */
461 	if (ifp->if_capenable & IFCAP_POLLING )
462 		tsec_intrs_ctl(sc, 0);
463 	else
464 #endif /* DEVICE_POLLING */
465 	tsec_intrs_ctl(sc, 1);
466 
467 	/* Step 12: Initialize IADDRn */
468 	TSEC_WRITE(sc, TSEC_REG_IADDR0, 0);
469 	TSEC_WRITE(sc, TSEC_REG_IADDR1, 0);
470 	TSEC_WRITE(sc, TSEC_REG_IADDR2, 0);
471 	TSEC_WRITE(sc, TSEC_REG_IADDR3, 0);
472 	TSEC_WRITE(sc, TSEC_REG_IADDR4, 0);
473 	TSEC_WRITE(sc, TSEC_REG_IADDR5, 0);
474 	TSEC_WRITE(sc, TSEC_REG_IADDR6, 0);
475 	TSEC_WRITE(sc, TSEC_REG_IADDR7, 0);
476 
477 	/* Step 13: Initialize GADDRn */
478 	TSEC_WRITE(sc, TSEC_REG_GADDR0, 0);
479 	TSEC_WRITE(sc, TSEC_REG_GADDR1, 0);
480 	TSEC_WRITE(sc, TSEC_REG_GADDR2, 0);
481 	TSEC_WRITE(sc, TSEC_REG_GADDR3, 0);
482 	TSEC_WRITE(sc, TSEC_REG_GADDR4, 0);
483 	TSEC_WRITE(sc, TSEC_REG_GADDR5, 0);
484 	TSEC_WRITE(sc, TSEC_REG_GADDR6, 0);
485 	TSEC_WRITE(sc, TSEC_REG_GADDR7, 0);
486 
487 	/* Step 14: Initialize RCTRL */
488 	TSEC_WRITE(sc, TSEC_REG_RCTRL, 0);
489 
490 	/* Step 15: Initialize DMACTRL */
491 	tsec_dma_ctl(sc, 1);
492 
493 	/* Step 16: Initialize FIFO_PAUSE_CTRL */
494 	TSEC_WRITE(sc, TSEC_REG_FIFO_PAUSE_CTRL, TSEC_FIFO_PAUSE_CTRL_EN);
495 
496 	/*
497 	 * Step 17: Initialize transmit/receive descriptor rings.
498 	 * Initialize TBASE and RBASE.
499 	 */
500 	TSEC_WRITE(sc, TSEC_REG_TBASE, sc->tsec_tx_raddr);
501 	TSEC_WRITE(sc, TSEC_REG_RBASE, sc->tsec_rx_raddr);
502 
503 	for (i = 0; i < TSEC_TX_NUM_DESC; i++) {
504 		tx_desc[i].bufptr = 0;
505 		tx_desc[i].length = 0;
506 		tx_desc[i].flags = ((i == TSEC_TX_NUM_DESC - 1) ?
507 		    TSEC_TXBD_W : 0);
508 	}
509 	bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
510 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
511 
512 	for (i = 0; i < TSEC_RX_NUM_DESC; i++) {
513 		rx_desc[i].bufptr = sc->rx_data[i].paddr;
514 		rx_desc[i].length = 0;
515 		rx_desc[i].flags = TSEC_RXBD_E | TSEC_RXBD_I |
516 		    ((i == TSEC_RX_NUM_DESC - 1) ? TSEC_RXBD_W : 0);
517 	}
518 	bus_dmamap_sync(sc->tsec_rx_dtag, sc->tsec_rx_dmap,
519 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
520 
521 	/* Step 18: Initialize the maximum receive buffer length */
522 	TSEC_WRITE(sc, TSEC_REG_MRBLR, MCLBYTES);
523 
524 	/* Step 19: Configure ethernet frame sizes */
525 	TSEC_WRITE(sc, TSEC_REG_MINFLR, TSEC_MIN_FRAME_SIZE);
526 	tsec_set_mtu(sc, ifp->if_mtu);
527 
528 	/* Step 20: Enable Rx and RxBD sdata snooping */
529 	TSEC_WRITE(sc, TSEC_REG_ATTR, TSEC_ATTR_RDSEN | TSEC_ATTR_RBDSEN);
530 	TSEC_WRITE(sc, TSEC_REG_ATTRELI, 0);
531 
532 	/* Step 21: Reset collision counters in hardware */
533 	TSEC_WRITE(sc, TSEC_REG_MON_TSCL, 0);
534 	TSEC_WRITE(sc, TSEC_REG_MON_TMCL, 0);
535 	TSEC_WRITE(sc, TSEC_REG_MON_TLCL, 0);
536 	TSEC_WRITE(sc, TSEC_REG_MON_TXCL, 0);
537 	TSEC_WRITE(sc, TSEC_REG_MON_TNCL, 0);
538 
539 	/* Step 22: Mask all CAM interrupts */
540 	TSEC_WRITE(sc, TSEC_REG_MON_CAM1, 0xffffffff);
541 	TSEC_WRITE(sc, TSEC_REG_MON_CAM2, 0xffffffff);
542 
543 	/* Step 23: Enable Rx and Tx */
544 	val = TSEC_READ(sc, TSEC_REG_MACCFG1);
545 	val |= (TSEC_MACCFG1_RX_EN | TSEC_MACCFG1_TX_EN);
546 	TSEC_WRITE(sc, TSEC_REG_MACCFG1, val);
547 
548 	/* Step 24: Reset TSEC counters for Tx and Rx rings */
549 	TSEC_TX_RX_COUNTERS_INIT(sc);
550 
551 	/* Step 25: Setup TCP/IP Off-Load engine */
552 	if (sc->is_etsec)
553 		tsec_offload_setup(sc);
554 
555 	/* Step 26: Setup multicast filters */
556 	tsec_setup_multicast(sc);
557 
558 	/* Step 27: Activate network interface */
559 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
560 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
561 	sc->tsec_if_flags = ifp->if_flags;
562 	sc->tsec_watchdog = 0;
563 
564 	/* Schedule watchdog timeout */
565 	callout_reset(&sc->tsec_callout, hz, tsec_tick, sc);
566 }
567 
568 static void
569 tsec_set_mac_address(struct tsec_softc *sc)
570 {
571 	uint32_t macbuf[2] = { 0, 0 };
572 	char *macbufp, *curmac;
573 	int i;
574 
575 	TSEC_GLOBAL_LOCK_ASSERT(sc);
576 
577 	KASSERT((ETHER_ADDR_LEN <= sizeof(macbuf)),
578 	    ("tsec_set_mac_address: (%d <= %zd", ETHER_ADDR_LEN,
579 	    sizeof(macbuf)));
580 
581 	macbufp = (char *)macbuf;
582 	curmac = (char *)IF_LLADDR(sc->tsec_ifp);
583 
584 	/* Correct order of MAC address bytes */
585 	for (i = 1; i <= ETHER_ADDR_LEN; i++)
586 		macbufp[ETHER_ADDR_LEN-i] = curmac[i-1];
587 
588 	/* Initialize MAC station address MACSTNADDR2 and MACSTNADDR1 */
589 	TSEC_WRITE(sc, TSEC_REG_MACSTNADDR2, macbuf[1]);
590 	TSEC_WRITE(sc, TSEC_REG_MACSTNADDR1, macbuf[0]);
591 }
592 
593 /*
594  * DMA control function, if argument state is:
595  * 0 - DMA engine will be disabled
596  * 1 - DMA engine will be enabled
597  */
598 static void
599 tsec_dma_ctl(struct tsec_softc *sc, int state)
600 {
601 	device_t dev;
602 	uint32_t dma_flags, timeout;
603 
604 	dev = sc->dev;
605 
606 	dma_flags = TSEC_READ(sc, TSEC_REG_DMACTRL);
607 
608 	switch (state) {
609 	case 0:
610 		/* Temporarily clear stop graceful stop bits. */
611 		tsec_dma_ctl(sc, 1000);
612 
613 		/* Set it again */
614 		dma_flags |= (TSEC_DMACTRL_GRS | TSEC_DMACTRL_GTS);
615 		break;
616 	case 1000:
617 	case 1:
618 		/* Set write with response (WWR), wait (WOP) and snoop bits */
619 		dma_flags |= (TSEC_DMACTRL_TDSEN | TSEC_DMACTRL_TBDSEN |
620 		    DMACTRL_WWR | DMACTRL_WOP);
621 
622 		/* Clear graceful stop bits */
623 		dma_flags &= ~(TSEC_DMACTRL_GRS | TSEC_DMACTRL_GTS);
624 		break;
625 	default:
626 		device_printf(dev, "tsec_dma_ctl(): unknown state value: %d\n",
627 		    state);
628 	}
629 
630 	TSEC_WRITE(sc, TSEC_REG_DMACTRL, dma_flags);
631 
632 	switch (state) {
633 	case 0:
634 		/* Wait for DMA stop */
635 		timeout = TSEC_READ_RETRY;
636 		while (--timeout && (!(TSEC_READ(sc, TSEC_REG_IEVENT) &
637 		    (TSEC_IEVENT_GRSC | TSEC_IEVENT_GTSC))))
638 			DELAY(TSEC_READ_DELAY);
639 
640 		if (timeout == 0)
641 			device_printf(dev, "tsec_dma_ctl(): timeout!\n");
642 		break;
643 	case 1:
644 		/* Restart transmission function */
645 		TSEC_WRITE(sc, TSEC_REG_TSTAT, TSEC_TSTAT_THLT);
646 	}
647 }
648 
649 /*
650  * Interrupts control function, if argument state is:
651  * 0 - all TSEC interrupts will be masked
652  * 1 - all TSEC interrupts will be unmasked
653  */
654 static void
655 tsec_intrs_ctl(struct tsec_softc *sc, int state)
656 {
657 	device_t dev;
658 
659 	dev = sc->dev;
660 
661 	switch (state) {
662 	case 0:
663 		TSEC_WRITE(sc, TSEC_REG_IMASK, 0);
664 		break;
665 	case 1:
666 		TSEC_WRITE(sc, TSEC_REG_IMASK, TSEC_IMASK_BREN |
667 		    TSEC_IMASK_RXCEN | TSEC_IMASK_BSYEN | TSEC_IMASK_EBERREN |
668 		    TSEC_IMASK_BTEN | TSEC_IMASK_TXEEN | TSEC_IMASK_TXBEN |
669 		    TSEC_IMASK_TXFEN | TSEC_IMASK_XFUNEN | TSEC_IMASK_RXFEN);
670 		break;
671 	default:
672 		device_printf(dev, "tsec_intrs_ctl(): unknown state value: %d\n",
673 		    state);
674 	}
675 }
676 
677 static void
678 tsec_reset_mac(struct tsec_softc *sc)
679 {
680 	uint32_t maccfg1_flags;
681 
682 	/* Set soft reset bit */
683 	maccfg1_flags = TSEC_READ(sc, TSEC_REG_MACCFG1);
684 	maccfg1_flags |= TSEC_MACCFG1_SOFT_RESET;
685 	TSEC_WRITE(sc, TSEC_REG_MACCFG1, maccfg1_flags);
686 
687 	/* Clear soft reset bit */
688 	maccfg1_flags = TSEC_READ(sc, TSEC_REG_MACCFG1);
689 	maccfg1_flags &= ~TSEC_MACCFG1_SOFT_RESET;
690 	TSEC_WRITE(sc, TSEC_REG_MACCFG1, maccfg1_flags);
691 }
692 
693 static void
694 tsec_watchdog(struct tsec_softc *sc)
695 {
696 	struct ifnet *ifp;
697 
698 	TSEC_GLOBAL_LOCK_ASSERT(sc);
699 
700 	if (sc->tsec_watchdog == 0 || --sc->tsec_watchdog > 0)
701 		return;
702 
703 	ifp = sc->tsec_ifp;
704 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
705 	if_printf(ifp, "watchdog timeout\n");
706 
707 	tsec_stop(sc);
708 	tsec_init_locked(sc);
709 }
710 
711 static void
712 tsec_start(struct ifnet *ifp)
713 {
714 	struct tsec_softc *sc = ifp->if_softc;
715 
716 	TSEC_TRANSMIT_LOCK(sc);
717 	tsec_start_locked(ifp);
718 	TSEC_TRANSMIT_UNLOCK(sc);
719 }
720 
721 static void
722 tsec_start_locked(struct ifnet *ifp)
723 {
724 	struct tsec_softc *sc;
725 	struct mbuf *m0;
726 	struct tsec_tx_fcb *tx_fcb;
727 	int csum_flags;
728 	int start_tx;
729 	uint16_t fcb_flags;
730 
731 	sc = ifp->if_softc;
732 	start_tx = 0;
733 
734 	TSEC_TRANSMIT_LOCK_ASSERT(sc);
735 
736 	if (sc->tsec_link == 0)
737 		return;
738 
739 	bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
740 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
741 
742 	for (;;) {
743 		if (TSEC_FREE_TX_DESC(sc) < TSEC_TX_MAX_DMA_SEGS) {
744 			/* No free descriptors */
745 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
746 			break;
747 		}
748 
749 		/* Get packet from the queue */
750 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
751 		if (m0 == NULL)
752 			break;
753 
754 		/* Insert TCP/IP Off-load frame control block */
755 		fcb_flags = 0;
756 		csum_flags = m0->m_pkthdr.csum_flags;
757 		if (csum_flags) {
758 			M_PREPEND(m0, sizeof(struct tsec_tx_fcb), M_NOWAIT);
759 			if (m0 == NULL)
760 				break;
761 
762 			if (csum_flags & CSUM_IP)
763 				fcb_flags |= TSEC_TX_FCB_IP4 |
764 				    TSEC_TX_FCB_CSUM_IP;
765 
766 			if (csum_flags & CSUM_TCP)
767 				fcb_flags |= TSEC_TX_FCB_TCP |
768 				    TSEC_TX_FCB_CSUM_TCP_UDP;
769 
770 			if (csum_flags & CSUM_UDP)
771 				fcb_flags |= TSEC_TX_FCB_UDP |
772 				    TSEC_TX_FCB_CSUM_TCP_UDP;
773 
774 			tx_fcb = mtod(m0, struct tsec_tx_fcb *);
775 			tx_fcb->flags = fcb_flags;
776 			tx_fcb->l3_offset = ETHER_HDR_LEN;
777 			tx_fcb->l4_offset = sizeof(struct ip);
778 		}
779 
780 		tsec_encap(ifp, sc, m0, fcb_flags, &start_tx);
781 	}
782 	bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
783 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
784 
785 	if (start_tx) {
786 		/* Enable transmitter and watchdog timer */
787 		TSEC_WRITE(sc, TSEC_REG_TSTAT, TSEC_TSTAT_THLT);
788 		sc->tsec_watchdog = 5;
789 	}
790 }
791 
792 static void
793 tsec_encap(struct ifnet *ifp, struct tsec_softc *sc, struct mbuf *m0,
794     uint16_t fcb_flags, int *start_tx)
795 {
796 	bus_dma_segment_t segs[TSEC_TX_MAX_DMA_SEGS];
797 	int error, i, nsegs;
798 	struct tsec_bufmap *tx_bufmap;
799 	uint32_t tx_idx;
800 	uint16_t flags;
801 
802 	TSEC_TRANSMIT_LOCK_ASSERT(sc);
803 
804 	tx_idx = sc->tx_idx_head;
805 	tx_bufmap = &sc->tx_bufmap[tx_idx];
806 
807 	/* Create mapping in DMA memory */
808 	error = bus_dmamap_load_mbuf_sg(sc->tsec_tx_mtag, tx_bufmap->map, m0,
809 	    segs, &nsegs, BUS_DMA_NOWAIT);
810 	if (error == EFBIG) {
811 		/* Too many segments!  Defrag and try again. */
812 		struct mbuf *m = m_defrag(m0, M_NOWAIT);
813 
814 		if (m == NULL) {
815 			m_freem(m0);
816 			return;
817 		}
818 		m0 = m;
819 		error = bus_dmamap_load_mbuf_sg(sc->tsec_tx_mtag,
820 		    tx_bufmap->map, m0, segs, &nsegs, BUS_DMA_NOWAIT);
821 	}
822 	if (error != 0) {
823 		/* Give up. */
824 		m_freem(m0);
825 		return;
826 	}
827 
828 	bus_dmamap_sync(sc->tsec_tx_mtag, tx_bufmap->map,
829 	    BUS_DMASYNC_PREWRITE);
830 	tx_bufmap->mbuf = m0;
831 
832 	/*
833 	 * Fill in the TX descriptors back to front so that READY bit in first
834 	 * descriptor is set last.
835 	 */
836 	tx_idx = (tx_idx + (uint32_t)nsegs) & (TSEC_TX_NUM_DESC - 1);
837 	sc->tx_idx_head = tx_idx;
838 	flags = TSEC_TXBD_L | TSEC_TXBD_I | TSEC_TXBD_R | TSEC_TXBD_TC;
839 	for (i = nsegs - 1; i >= 0; i--) {
840 		struct tsec_desc *tx_desc;
841 
842 		tx_idx = (tx_idx - 1) & (TSEC_TX_NUM_DESC - 1);
843 		tx_desc = &sc->tsec_tx_vaddr[tx_idx];
844 		tx_desc->length = segs[i].ds_len;
845 		tx_desc->bufptr = segs[i].ds_addr;
846 
847 		if (i == 0) {
848 			wmb();
849 
850 			if (fcb_flags != 0)
851 				flags |= TSEC_TXBD_TOE;
852 		}
853 
854 		/*
855 		 * Set flags:
856 		 *   - wrap
857 		 *   - checksum
858 		 *   - ready to send
859 		 *   - transmit the CRC sequence after the last data byte
860 		 *   - interrupt after the last buffer
861 		 */
862 		tx_desc->flags = (tx_idx == (TSEC_TX_NUM_DESC - 1) ?
863 		    TSEC_TXBD_W : 0) | flags;
864 
865 		flags &= ~(TSEC_TXBD_L | TSEC_TXBD_I);
866 	}
867 
868 	BPF_MTAP(ifp, m0);
869 	*start_tx = 1;
870 }
871 
872 static void
873 tsec_setfilter(struct tsec_softc *sc)
874 {
875 	struct ifnet *ifp;
876 	uint32_t flags;
877 
878 	ifp = sc->tsec_ifp;
879 	flags = TSEC_READ(sc, TSEC_REG_RCTRL);
880 
881 	/* Promiscuous mode */
882 	if (ifp->if_flags & IFF_PROMISC)
883 		flags |= TSEC_RCTRL_PROM;
884 	else
885 		flags &= ~TSEC_RCTRL_PROM;
886 
887 	TSEC_WRITE(sc, TSEC_REG_RCTRL, flags);
888 }
889 
890 #ifdef DEVICE_POLLING
891 static poll_handler_t tsec_poll;
892 
893 static int
894 tsec_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
895 {
896 	uint32_t ie;
897 	struct tsec_softc *sc = ifp->if_softc;
898 	int rx_npkts;
899 
900 	rx_npkts = 0;
901 
902 	TSEC_GLOBAL_LOCK(sc);
903 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
904 		TSEC_GLOBAL_UNLOCK(sc);
905 		return (rx_npkts);
906 	}
907 
908 	if (cmd == POLL_AND_CHECK_STATUS) {
909 		tsec_error_intr_locked(sc, count);
910 
911 		/* Clear all events reported */
912 		ie = TSEC_READ(sc, TSEC_REG_IEVENT);
913 		TSEC_WRITE(sc, TSEC_REG_IEVENT, ie);
914 	}
915 
916 	tsec_transmit_intr_locked(sc);
917 
918 	TSEC_GLOBAL_TO_RECEIVE_LOCK(sc);
919 
920 	rx_npkts = tsec_receive_intr_locked(sc, count);
921 
922 	TSEC_RECEIVE_UNLOCK(sc);
923 
924 	return (rx_npkts);
925 }
926 #endif /* DEVICE_POLLING */
927 
928 static int
929 tsec_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
930 {
931 	struct tsec_softc *sc = ifp->if_softc;
932 	struct ifreq *ifr = (struct ifreq *)data;
933 	int mask, error = 0;
934 
935 	switch (command) {
936 	case SIOCSIFMTU:
937 		TSEC_GLOBAL_LOCK(sc);
938 		if (tsec_set_mtu(sc, ifr->ifr_mtu))
939 			ifp->if_mtu = ifr->ifr_mtu;
940 		else
941 			error = EINVAL;
942 		TSEC_GLOBAL_UNLOCK(sc);
943 		break;
944 	case SIOCSIFFLAGS:
945 		TSEC_GLOBAL_LOCK(sc);
946 		if (ifp->if_flags & IFF_UP) {
947 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
948 				if ((sc->tsec_if_flags ^ ifp->if_flags) &
949 				    IFF_PROMISC)
950 					tsec_setfilter(sc);
951 
952 				if ((sc->tsec_if_flags ^ ifp->if_flags) &
953 				    IFF_ALLMULTI)
954 					tsec_setup_multicast(sc);
955 			} else
956 				tsec_init_locked(sc);
957 		} else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
958 			tsec_stop(sc);
959 
960 		sc->tsec_if_flags = ifp->if_flags;
961 		TSEC_GLOBAL_UNLOCK(sc);
962 		break;
963 	case SIOCADDMULTI:
964 	case SIOCDELMULTI:
965 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
966 			TSEC_GLOBAL_LOCK(sc);
967 			tsec_setup_multicast(sc);
968 			TSEC_GLOBAL_UNLOCK(sc);
969 		}
970 	case SIOCGIFMEDIA:
971 	case SIOCSIFMEDIA:
972 		error = ifmedia_ioctl(ifp, ifr, &sc->tsec_mii->mii_media,
973 		    command);
974 		break;
975 	case SIOCSIFCAP:
976 		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
977 		if ((mask & IFCAP_HWCSUM) && sc->is_etsec) {
978 			TSEC_GLOBAL_LOCK(sc);
979 			ifp->if_capenable &= ~IFCAP_HWCSUM;
980 			ifp->if_capenable |= IFCAP_HWCSUM & ifr->ifr_reqcap;
981 			tsec_offload_setup(sc);
982 			TSEC_GLOBAL_UNLOCK(sc);
983 		}
984 #ifdef DEVICE_POLLING
985 		if (mask & IFCAP_POLLING) {
986 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
987 				error = ether_poll_register(tsec_poll, ifp);
988 				if (error)
989 					return (error);
990 
991 				TSEC_GLOBAL_LOCK(sc);
992 				/* Disable interrupts */
993 				tsec_intrs_ctl(sc, 0);
994 				ifp->if_capenable |= IFCAP_POLLING;
995 				TSEC_GLOBAL_UNLOCK(sc);
996 			} else {
997 				error = ether_poll_deregister(ifp);
998 				TSEC_GLOBAL_LOCK(sc);
999 				/* Enable interrupts */
1000 				tsec_intrs_ctl(sc, 1);
1001 				ifp->if_capenable &= ~IFCAP_POLLING;
1002 				TSEC_GLOBAL_UNLOCK(sc);
1003 			}
1004 		}
1005 #endif
1006 		break;
1007 
1008 	default:
1009 		error = ether_ioctl(ifp, command, data);
1010 	}
1011 
1012 	/* Flush buffers if not empty */
1013 	if (ifp->if_flags & IFF_UP)
1014 		tsec_start(ifp);
1015 	return (error);
1016 }
1017 
1018 static int
1019 tsec_ifmedia_upd(struct ifnet *ifp)
1020 {
1021 	struct tsec_softc *sc = ifp->if_softc;
1022 	struct mii_data *mii;
1023 
1024 	TSEC_TRANSMIT_LOCK(sc);
1025 
1026 	mii = sc->tsec_mii;
1027 	mii_mediachg(mii);
1028 
1029 	TSEC_TRANSMIT_UNLOCK(sc);
1030 	return (0);
1031 }
1032 
1033 static void
1034 tsec_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1035 {
1036 	struct tsec_softc *sc = ifp->if_softc;
1037 	struct mii_data *mii;
1038 
1039 	TSEC_TRANSMIT_LOCK(sc);
1040 
1041 	mii = sc->tsec_mii;
1042 	mii_pollstat(mii);
1043 
1044 	ifmr->ifm_active = mii->mii_media_active;
1045 	ifmr->ifm_status = mii->mii_media_status;
1046 
1047 	TSEC_TRANSMIT_UNLOCK(sc);
1048 }
1049 
1050 static int
1051 tsec_new_rxbuf(bus_dma_tag_t tag, bus_dmamap_t map, struct mbuf **mbufp,
1052     uint32_t *paddr)
1053 {
1054 	struct mbuf *new_mbuf;
1055 	bus_dma_segment_t seg[1];
1056 	int error, nsegs;
1057 
1058 	KASSERT(mbufp != NULL, ("NULL mbuf pointer!"));
1059 
1060 	new_mbuf = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MCLBYTES);
1061 	if (new_mbuf == NULL)
1062 		return (ENOBUFS);
1063 	new_mbuf->m_len = new_mbuf->m_pkthdr.len = new_mbuf->m_ext.ext_size;
1064 
1065 	if (*mbufp) {
1066 		bus_dmamap_sync(tag, map, BUS_DMASYNC_POSTREAD);
1067 		bus_dmamap_unload(tag, map);
1068 	}
1069 
1070 	error = bus_dmamap_load_mbuf_sg(tag, map, new_mbuf, seg, &nsegs,
1071 	    BUS_DMA_NOWAIT);
1072 	KASSERT(nsegs == 1, ("Too many segments returned!"));
1073 	if (nsegs != 1 || error)
1074 		panic("tsec_new_rxbuf(): nsegs(%d), error(%d)", nsegs, error);
1075 
1076 #if 0
1077 	if (error) {
1078 		printf("tsec: bus_dmamap_load_mbuf_sg() returned: %d!\n",
1079 			error);
1080 		m_freem(new_mbuf);
1081 		return (ENOBUFS);
1082 	}
1083 #endif
1084 
1085 #if 0
1086 	KASSERT(((seg->ds_addr) & (TSEC_RXBUFFER_ALIGNMENT-1)) == 0,
1087 		("Wrong alignment of RX buffer!"));
1088 #endif
1089 	bus_dmamap_sync(tag, map, BUS_DMASYNC_PREREAD);
1090 
1091 	(*mbufp) = new_mbuf;
1092 	(*paddr) = seg->ds_addr;
1093 	return (0);
1094 }
1095 
1096 static void
1097 tsec_map_dma_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1098 {
1099 	u_int32_t *paddr;
1100 
1101 	KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
1102 	paddr = arg;
1103 	*paddr = segs->ds_addr;
1104 }
1105 
1106 static int
1107 tsec_alloc_dma_desc(device_t dev, bus_dma_tag_t *dtag, bus_dmamap_t *dmap,
1108     bus_size_t dsize, void **vaddr, void *raddr, const char *dname)
1109 {
1110 	int error;
1111 
1112 	/* Allocate a busdma tag and DMA safe memory for TX/RX descriptors. */
1113 	error = bus_dma_tag_create(NULL,	/* parent */
1114 	    PAGE_SIZE, 0,			/* alignment, boundary */
1115 	    BUS_SPACE_MAXADDR_32BIT,		/* lowaddr */
1116 	    BUS_SPACE_MAXADDR,			/* highaddr */
1117 	    NULL, NULL,				/* filtfunc, filtfuncarg */
1118 	    dsize, 1,				/* maxsize, nsegments */
1119 	    dsize, 0,				/* maxsegsz, flags */
1120 	    NULL, NULL,				/* lockfunc, lockfuncarg */
1121 	    dtag);				/* dmat */
1122 
1123 	if (error) {
1124 		device_printf(dev, "failed to allocate busdma %s tag\n",
1125 		    dname);
1126 		(*vaddr) = NULL;
1127 		return (ENXIO);
1128 	}
1129 
1130 	error = bus_dmamem_alloc(*dtag, vaddr, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1131 	    dmap);
1132 	if (error) {
1133 		device_printf(dev, "failed to allocate %s DMA safe memory\n",
1134 		    dname);
1135 		bus_dma_tag_destroy(*dtag);
1136 		(*vaddr) = NULL;
1137 		return (ENXIO);
1138 	}
1139 
1140 	error = bus_dmamap_load(*dtag, *dmap, *vaddr, dsize,
1141 	    tsec_map_dma_addr, raddr, BUS_DMA_NOWAIT);
1142 	if (error) {
1143 		device_printf(dev, "cannot get address of the %s "
1144 		    "descriptors\n", dname);
1145 		bus_dmamem_free(*dtag, *vaddr, *dmap);
1146 		bus_dma_tag_destroy(*dtag);
1147 		(*vaddr) = NULL;
1148 		return (ENXIO);
1149 	}
1150 
1151 	return (0);
1152 }
1153 
1154 static void
1155 tsec_free_dma_desc(bus_dma_tag_t dtag, bus_dmamap_t dmap, void *vaddr)
1156 {
1157 
1158 	if (vaddr == NULL)
1159 		return;
1160 
1161 	/* Unmap descriptors from DMA memory */
1162 	bus_dmamap_sync(dtag, dmap, BUS_DMASYNC_POSTREAD |
1163 	    BUS_DMASYNC_POSTWRITE);
1164 	bus_dmamap_unload(dtag, dmap);
1165 
1166 	/* Free descriptors memory */
1167 	bus_dmamem_free(dtag, vaddr, dmap);
1168 
1169 	/* Destroy descriptors tag */
1170 	bus_dma_tag_destroy(dtag);
1171 }
1172 
1173 static void
1174 tsec_free_dma(struct tsec_softc *sc)
1175 {
1176 	int i;
1177 
1178 	/* Free TX maps */
1179 	for (i = 0; i < TSEC_TX_NUM_DESC; i++)
1180 		if (sc->tx_bufmap[i].map_initialized)
1181 			bus_dmamap_destroy(sc->tsec_tx_mtag,
1182 			    sc->tx_bufmap[i].map);
1183 	/* Destroy tag for TX mbufs */
1184 	bus_dma_tag_destroy(sc->tsec_tx_mtag);
1185 
1186 	/* Free RX mbufs and maps */
1187 	for (i = 0; i < TSEC_RX_NUM_DESC; i++) {
1188 		if (sc->rx_data[i].mbuf) {
1189 			/* Unload buffer from DMA */
1190 			bus_dmamap_sync(sc->tsec_rx_mtag, sc->rx_data[i].map,
1191 			    BUS_DMASYNC_POSTREAD);
1192 			bus_dmamap_unload(sc->tsec_rx_mtag,
1193 			    sc->rx_data[i].map);
1194 
1195 			/* Free buffer */
1196 			m_freem(sc->rx_data[i].mbuf);
1197 		}
1198 		/* Destroy map for this buffer */
1199 		if (sc->rx_data[i].map != NULL)
1200 			bus_dmamap_destroy(sc->tsec_rx_mtag,
1201 			    sc->rx_data[i].map);
1202 	}
1203 	/* Destroy tag for RX mbufs */
1204 	bus_dma_tag_destroy(sc->tsec_rx_mtag);
1205 
1206 	/* Unload TX/RX descriptors */
1207 	tsec_free_dma_desc(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
1208 	    sc->tsec_tx_vaddr);
1209 	tsec_free_dma_desc(sc->tsec_rx_dtag, sc->tsec_rx_dmap,
1210 	    sc->tsec_rx_vaddr);
1211 }
1212 
1213 static void
1214 tsec_stop(struct tsec_softc *sc)
1215 {
1216 	struct ifnet *ifp;
1217 	uint32_t tmpval;
1218 
1219 	TSEC_GLOBAL_LOCK_ASSERT(sc);
1220 
1221 	ifp = sc->tsec_ifp;
1222 
1223 	/* Disable interface and watchdog timer */
1224 	callout_stop(&sc->tsec_callout);
1225 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1226 	sc->tsec_watchdog = 0;
1227 
1228 	/* Disable all interrupts and stop DMA */
1229 	tsec_intrs_ctl(sc, 0);
1230 	tsec_dma_ctl(sc, 0);
1231 
1232 	/* Remove pending data from TX queue */
1233 	while (sc->tx_idx_tail != sc->tx_idx_head) {
1234 		bus_dmamap_sync(sc->tsec_tx_mtag,
1235 		    sc->tx_bufmap[sc->tx_idx_tail].map,
1236 		    BUS_DMASYNC_POSTWRITE);
1237 		bus_dmamap_unload(sc->tsec_tx_mtag,
1238 		    sc->tx_bufmap[sc->tx_idx_tail].map);
1239 		m_freem(sc->tx_bufmap[sc->tx_idx_tail].mbuf);
1240 		sc->tx_idx_tail = (sc->tx_idx_tail + 1)
1241 		    & (TSEC_TX_NUM_DESC - 1);
1242 	}
1243 
1244 	/* Disable RX and TX */
1245 	tmpval = TSEC_READ(sc, TSEC_REG_MACCFG1);
1246 	tmpval &= ~(TSEC_MACCFG1_RX_EN | TSEC_MACCFG1_TX_EN);
1247 	TSEC_WRITE(sc, TSEC_REG_MACCFG1, tmpval);
1248 	DELAY(10);
1249 }
1250 
1251 static void
1252 tsec_tick(void *arg)
1253 {
1254 	struct tsec_softc *sc = arg;
1255 	struct ifnet *ifp;
1256 	int link;
1257 
1258 	TSEC_GLOBAL_LOCK(sc);
1259 
1260 	tsec_watchdog(sc);
1261 
1262 	ifp = sc->tsec_ifp;
1263 	link = sc->tsec_link;
1264 
1265 	mii_tick(sc->tsec_mii);
1266 
1267 	if (link == 0 && sc->tsec_link == 1 &&
1268 	    (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)))
1269 		tsec_start_locked(ifp);
1270 
1271 	/* Schedule another timeout one second from now. */
1272 	callout_reset(&sc->tsec_callout, hz, tsec_tick, sc);
1273 
1274 	TSEC_GLOBAL_UNLOCK(sc);
1275 }
1276 
1277 /*
1278  *  This is the core RX routine. It replenishes mbufs in the descriptor and
1279  *  sends data which have been dma'ed into host memory to upper layer.
1280  *
1281  *  Loops at most count times if count is > 0, or until done if count < 0.
1282  */
1283 static int
1284 tsec_receive_intr_locked(struct tsec_softc *sc, int count)
1285 {
1286 	struct tsec_desc *rx_desc;
1287 	struct ifnet *ifp;
1288 	struct rx_data_type *rx_data;
1289 	struct mbuf *m;
1290 	uint32_t i;
1291 	int c, rx_npkts;
1292 	uint16_t flags;
1293 
1294 	TSEC_RECEIVE_LOCK_ASSERT(sc);
1295 
1296 	ifp = sc->tsec_ifp;
1297 	rx_data = sc->rx_data;
1298 	rx_npkts = 0;
1299 
1300 	bus_dmamap_sync(sc->tsec_rx_dtag, sc->tsec_rx_dmap,
1301 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1302 
1303 	for (c = 0; ; c++) {
1304 		if (count >= 0 && count-- == 0)
1305 			break;
1306 
1307 		rx_desc = TSEC_GET_CUR_RX_DESC(sc);
1308 		flags = rx_desc->flags;
1309 
1310 		/* Check if there is anything to receive */
1311 		if ((flags & TSEC_RXBD_E) || (c >= TSEC_RX_NUM_DESC)) {
1312 			/*
1313 			 * Avoid generating another interrupt
1314 			 */
1315 			if (flags & TSEC_RXBD_E)
1316 				TSEC_WRITE(sc, TSEC_REG_IEVENT,
1317 				    TSEC_IEVENT_RXB | TSEC_IEVENT_RXF);
1318 			/*
1319 			 * We didn't consume current descriptor and have to
1320 			 * return it to the queue
1321 			 */
1322 			TSEC_BACK_CUR_RX_DESC(sc);
1323 			break;
1324 		}
1325 
1326 		if (flags & (TSEC_RXBD_LG | TSEC_RXBD_SH | TSEC_RXBD_NO |
1327 		    TSEC_RXBD_CR | TSEC_RXBD_OV | TSEC_RXBD_TR)) {
1328 			rx_desc->length = 0;
1329 			rx_desc->flags = (rx_desc->flags &
1330 			    ~TSEC_RXBD_ZEROONINIT) | TSEC_RXBD_E | TSEC_RXBD_I;
1331 
1332 			if (sc->frame != NULL) {
1333 				m_free(sc->frame);
1334 				sc->frame = NULL;
1335 			}
1336 
1337 			continue;
1338 		}
1339 
1340 		/* Ok... process frame */
1341 		i = TSEC_GET_CUR_RX_DESC_CNT(sc);
1342 		m = rx_data[i].mbuf;
1343 		m->m_len = rx_desc->length;
1344 
1345 		if (sc->frame != NULL) {
1346 			if ((flags & TSEC_RXBD_L) != 0)
1347 				m->m_len -= m_length(sc->frame, NULL);
1348 
1349 			m->m_flags &= ~M_PKTHDR;
1350 			m_cat(sc->frame, m);
1351 		} else {
1352 			sc->frame = m;
1353 		}
1354 
1355 		m = NULL;
1356 
1357 		if ((flags & TSEC_RXBD_L) != 0) {
1358 			m = sc->frame;
1359 			sc->frame = NULL;
1360 		}
1361 
1362 		if (tsec_new_rxbuf(sc->tsec_rx_mtag, rx_data[i].map,
1363 		    &rx_data[i].mbuf, &rx_data[i].paddr)) {
1364 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1365 			/*
1366 			 * We ran out of mbufs; didn't consume current
1367 			 * descriptor and have to return it to the queue.
1368 			 */
1369 			TSEC_BACK_CUR_RX_DESC(sc);
1370 			break;
1371 		}
1372 
1373 		/* Attach new buffer to descriptor and clear flags */
1374 		rx_desc->bufptr = rx_data[i].paddr;
1375 		rx_desc->length = 0;
1376 		rx_desc->flags = (rx_desc->flags & ~TSEC_RXBD_ZEROONINIT) |
1377 		    TSEC_RXBD_E | TSEC_RXBD_I;
1378 
1379 		if (m != NULL) {
1380 			m->m_pkthdr.rcvif = ifp;
1381 
1382 			m_fixhdr(m);
1383 			m_adj(m, -ETHER_CRC_LEN);
1384 
1385 			if (sc->is_etsec)
1386 				tsec_offload_process_frame(sc, m);
1387 
1388 			TSEC_RECEIVE_UNLOCK(sc);
1389 			(*ifp->if_input)(ifp, m);
1390 			TSEC_RECEIVE_LOCK(sc);
1391 			rx_npkts++;
1392 		}
1393 	}
1394 
1395 	bus_dmamap_sync(sc->tsec_rx_dtag, sc->tsec_rx_dmap,
1396 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1397 
1398 	/*
1399 	 * Make sure TSEC receiver is not halted.
1400 	 *
1401 	 * Various conditions can stop the TSEC receiver, but not all are
1402 	 * signaled and handled by error interrupt, so make sure the receiver
1403 	 * is running. Writing to TSEC_REG_RSTAT restarts the receiver when
1404 	 * halted, and is harmless if already running.
1405 	 */
1406 	TSEC_WRITE(sc, TSEC_REG_RSTAT, TSEC_RSTAT_QHLT);
1407 	return (rx_npkts);
1408 }
1409 
1410 void
1411 tsec_receive_intr(void *arg)
1412 {
1413 	struct tsec_softc *sc = arg;
1414 
1415 	TSEC_RECEIVE_LOCK(sc);
1416 
1417 #ifdef DEVICE_POLLING
1418 	if (sc->tsec_ifp->if_capenable & IFCAP_POLLING) {
1419 		TSEC_RECEIVE_UNLOCK(sc);
1420 		return;
1421 	}
1422 #endif
1423 
1424 	/* Confirm the interrupt was received by driver */
1425 	TSEC_WRITE(sc, TSEC_REG_IEVENT, TSEC_IEVENT_RXB | TSEC_IEVENT_RXF);
1426 	tsec_receive_intr_locked(sc, -1);
1427 
1428 	TSEC_RECEIVE_UNLOCK(sc);
1429 }
1430 
1431 static void
1432 tsec_transmit_intr_locked(struct tsec_softc *sc)
1433 {
1434 	struct ifnet *ifp;
1435 	uint32_t tx_idx;
1436 
1437 	TSEC_TRANSMIT_LOCK_ASSERT(sc);
1438 
1439 	ifp = sc->tsec_ifp;
1440 
1441 	/* Update collision statistics */
1442 	if_inc_counter(ifp, IFCOUNTER_COLLISIONS, TSEC_READ(sc, TSEC_REG_MON_TNCL));
1443 
1444 	/* Reset collision counters in hardware */
1445 	TSEC_WRITE(sc, TSEC_REG_MON_TSCL, 0);
1446 	TSEC_WRITE(sc, TSEC_REG_MON_TMCL, 0);
1447 	TSEC_WRITE(sc, TSEC_REG_MON_TLCL, 0);
1448 	TSEC_WRITE(sc, TSEC_REG_MON_TXCL, 0);
1449 	TSEC_WRITE(sc, TSEC_REG_MON_TNCL, 0);
1450 
1451 	bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
1452 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1453 
1454 	tx_idx = sc->tx_idx_tail;
1455 	while (tx_idx != sc->tx_idx_head) {
1456 		struct tsec_desc *tx_desc;
1457 		struct tsec_bufmap *tx_bufmap;
1458 
1459 		tx_desc = &sc->tsec_tx_vaddr[tx_idx];
1460 		if (tx_desc->flags & TSEC_TXBD_R) {
1461 			break;
1462 		}
1463 
1464 		tx_bufmap = &sc->tx_bufmap[tx_idx];
1465 		tx_idx = (tx_idx + 1) & (TSEC_TX_NUM_DESC - 1);
1466 		if (tx_bufmap->mbuf == NULL)
1467 			continue;
1468 
1469 		/*
1470 		 * This is the last buf in this packet, so unmap and free it.
1471 		 */
1472 		bus_dmamap_sync(sc->tsec_tx_mtag, tx_bufmap->map,
1473 		    BUS_DMASYNC_POSTWRITE);
1474 		bus_dmamap_unload(sc->tsec_tx_mtag, tx_bufmap->map);
1475 		m_freem(tx_bufmap->mbuf);
1476 		tx_bufmap->mbuf = NULL;
1477 
1478 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1479 	}
1480 	sc->tx_idx_tail = tx_idx;
1481 	bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
1482 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1483 
1484 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1485 	tsec_start_locked(ifp);
1486 
1487 	if (sc->tx_idx_tail == sc->tx_idx_head)
1488 		sc->tsec_watchdog = 0;
1489 }
1490 
1491 void
1492 tsec_transmit_intr(void *arg)
1493 {
1494 	struct tsec_softc *sc = arg;
1495 
1496 	TSEC_TRANSMIT_LOCK(sc);
1497 
1498 #ifdef DEVICE_POLLING
1499 	if (sc->tsec_ifp->if_capenable & IFCAP_POLLING) {
1500 		TSEC_TRANSMIT_UNLOCK(sc);
1501 		return;
1502 	}
1503 #endif
1504 	/* Confirm the interrupt was received by driver */
1505 	TSEC_WRITE(sc, TSEC_REG_IEVENT, TSEC_IEVENT_TXB | TSEC_IEVENT_TXF);
1506 	tsec_transmit_intr_locked(sc);
1507 
1508 	TSEC_TRANSMIT_UNLOCK(sc);
1509 }
1510 
1511 static void
1512 tsec_error_intr_locked(struct tsec_softc *sc, int count)
1513 {
1514 	struct ifnet *ifp;
1515 	uint32_t eflags;
1516 
1517 	TSEC_GLOBAL_LOCK_ASSERT(sc);
1518 
1519 	ifp = sc->tsec_ifp;
1520 
1521 	eflags = TSEC_READ(sc, TSEC_REG_IEVENT);
1522 
1523 	/* Clear events bits in hardware */
1524 	TSEC_WRITE(sc, TSEC_REG_IEVENT, TSEC_IEVENT_RXC | TSEC_IEVENT_BSY |
1525 	    TSEC_IEVENT_EBERR | TSEC_IEVENT_MSRO | TSEC_IEVENT_BABT |
1526 	    TSEC_IEVENT_TXC | TSEC_IEVENT_TXE | TSEC_IEVENT_LC |
1527 	    TSEC_IEVENT_CRL | TSEC_IEVENT_XFUN);
1528 
1529 	/* Check transmitter errors */
1530 	if (eflags & TSEC_IEVENT_TXE) {
1531 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1532 
1533 		if (eflags & TSEC_IEVENT_LC)
1534 			if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
1535 
1536 		TSEC_WRITE(sc, TSEC_REG_TSTAT, TSEC_TSTAT_THLT);
1537 	}
1538 
1539 	/* Check for discarded frame due to a lack of buffers */
1540 	if (eflags & TSEC_IEVENT_BSY) {
1541 		if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1542 	}
1543 
1544 	if (ifp->if_flags & IFF_DEBUG)
1545 		if_printf(ifp, "tsec_error_intr(): event flags: 0x%x\n",
1546 		    eflags);
1547 
1548 	if (eflags & TSEC_IEVENT_EBERR) {
1549 		if_printf(ifp, "System bus error occurred during"
1550 		    "DMA transaction (flags: 0x%x)\n", eflags);
1551 		tsec_init_locked(sc);
1552 	}
1553 
1554 	if (eflags & TSEC_IEVENT_BABT)
1555 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1556 
1557 	if (eflags & TSEC_IEVENT_BABR)
1558 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1559 }
1560 
1561 void
1562 tsec_error_intr(void *arg)
1563 {
1564 	struct tsec_softc *sc = arg;
1565 
1566 	TSEC_GLOBAL_LOCK(sc);
1567 	tsec_error_intr_locked(sc, -1);
1568 	TSEC_GLOBAL_UNLOCK(sc);
1569 }
1570 
1571 int
1572 tsec_miibus_readreg(device_t dev, int phy, int reg)
1573 {
1574 	struct tsec_softc *sc;
1575 	int timeout;
1576 	int rv;
1577 
1578 	sc = device_get_softc(dev);
1579 
1580 	TSEC_PHY_LOCK();
1581 	TSEC_PHY_WRITE(sc, TSEC_REG_MIIMADD, (phy << 8) | reg);
1582 	TSEC_PHY_WRITE(sc, TSEC_REG_MIIMCOM, 0);
1583 	TSEC_PHY_WRITE(sc, TSEC_REG_MIIMCOM, TSEC_MIIMCOM_READCYCLE);
1584 
1585 	timeout = tsec_mii_wait(sc, TSEC_MIIMIND_NOTVALID | TSEC_MIIMIND_BUSY);
1586 	rv = TSEC_PHY_READ(sc, TSEC_REG_MIIMSTAT);
1587 	TSEC_PHY_UNLOCK();
1588 
1589 	if (timeout)
1590 		device_printf(dev, "Timeout while reading from PHY!\n");
1591 
1592 	return (rv);
1593 }
1594 
1595 int
1596 tsec_miibus_writereg(device_t dev, int phy, int reg, int value)
1597 {
1598 	struct tsec_softc *sc;
1599 	int timeout;
1600 
1601 	sc = device_get_softc(dev);
1602 
1603 	TSEC_PHY_LOCK();
1604 	TSEC_PHY_WRITE(sc, TSEC_REG_MIIMADD, (phy << 8) | reg);
1605 	TSEC_PHY_WRITE(sc, TSEC_REG_MIIMCON, value);
1606 	timeout = tsec_mii_wait(sc, TSEC_MIIMIND_BUSY);
1607 	TSEC_PHY_UNLOCK();
1608 
1609 	if (timeout)
1610 		device_printf(dev, "Timeout while writing to PHY!\n");
1611 
1612 	return (0);
1613 }
1614 
1615 void
1616 tsec_miibus_statchg(device_t dev)
1617 {
1618 	struct tsec_softc *sc;
1619 	struct mii_data *mii;
1620 	uint32_t ecntrl, id, tmp;
1621 	int link;
1622 
1623 	sc = device_get_softc(dev);
1624 	mii = sc->tsec_mii;
1625 	link = ((mii->mii_media_status & IFM_ACTIVE) ? 1 : 0);
1626 
1627 	tmp = TSEC_READ(sc, TSEC_REG_MACCFG2) & ~TSEC_MACCFG2_IF;
1628 
1629 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
1630 		tmp |= TSEC_MACCFG2_FULLDUPLEX;
1631 	else
1632 		tmp &= ~TSEC_MACCFG2_FULLDUPLEX;
1633 
1634 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1635 	case IFM_1000_T:
1636 	case IFM_1000_SX:
1637 		tmp |= TSEC_MACCFG2_GMII;
1638 		sc->tsec_link = link;
1639 		break;
1640 	case IFM_100_TX:
1641 	case IFM_10_T:
1642 		tmp |= TSEC_MACCFG2_MII;
1643 		sc->tsec_link = link;
1644 		break;
1645 	case IFM_NONE:
1646 		if (link)
1647 			device_printf(dev, "No speed selected but link "
1648 			    "active!\n");
1649 		sc->tsec_link = 0;
1650 		return;
1651 	default:
1652 		sc->tsec_link = 0;
1653 		device_printf(dev, "Unknown speed (%d), link %s!\n",
1654 		    IFM_SUBTYPE(mii->mii_media_active),
1655 		        ((link) ? "up" : "down"));
1656 		return;
1657 	}
1658 	TSEC_WRITE(sc, TSEC_REG_MACCFG2, tmp);
1659 
1660 	/* XXX kludge - use circumstantial evidence for reduced mode. */
1661 	id = TSEC_READ(sc, TSEC_REG_ID2);
1662 	if (id & 0xffff) {
1663 		ecntrl = TSEC_READ(sc, TSEC_REG_ECNTRL) & ~TSEC_ECNTRL_R100M;
1664 		ecntrl |= (tmp & TSEC_MACCFG2_MII) ? TSEC_ECNTRL_R100M : 0;
1665 		TSEC_WRITE(sc, TSEC_REG_ECNTRL, ecntrl);
1666 	}
1667 }
1668 
1669 static void
1670 tsec_add_sysctls(struct tsec_softc *sc)
1671 {
1672 	struct sysctl_ctx_list *ctx;
1673 	struct sysctl_oid_list *children;
1674 	struct sysctl_oid *tree;
1675 
1676 	ctx = device_get_sysctl_ctx(sc->dev);
1677 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
1678 	tree = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "int_coal",
1679 	    CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "TSEC Interrupts coalescing");
1680 	children = SYSCTL_CHILDREN(tree);
1681 
1682 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_time",
1683 	    CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, TSEC_IC_RX,
1684 	    tsec_sysctl_ic_time, "I", "IC RX time threshold (0-65535)");
1685 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_count",
1686 	    CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, TSEC_IC_RX,
1687 	    tsec_sysctl_ic_count, "I", "IC RX frame count threshold (0-255)");
1688 
1689 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_time",
1690 	    CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, TSEC_IC_TX,
1691 	    tsec_sysctl_ic_time, "I", "IC TX time threshold (0-65535)");
1692 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_count",
1693 	    CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, TSEC_IC_TX,
1694 	    tsec_sysctl_ic_count, "I", "IC TX frame count threshold (0-255)");
1695 }
1696 
1697 /*
1698  * With Interrupt Coalescing (IC) active, a transmit/receive frame
1699  * interrupt is raised either upon:
1700  *
1701  * - threshold-defined period of time elapsed, or
1702  * - threshold-defined number of frames is received/transmitted,
1703  *   whichever occurs first.
1704  *
1705  * The following sysctls regulate IC behaviour (for TX/RX separately):
1706  *
1707  * dev.tsec.<unit>.int_coal.rx_time
1708  * dev.tsec.<unit>.int_coal.rx_count
1709  * dev.tsec.<unit>.int_coal.tx_time
1710  * dev.tsec.<unit>.int_coal.tx_count
1711  *
1712  * Values:
1713  *
1714  * - 0 for either time or count disables IC on the given TX/RX path
1715  *
1716  * - count: 1-255 (expresses frame count number; note that value of 1 is
1717  *   effectively IC off)
1718  *
1719  * - time: 1-65535 (value corresponds to a real time period and is
1720  *   expressed in units equivalent to 64 TSEC interface clocks, i.e. one timer
1721  *   threshold unit is 26.5 us, 2.56 us, or 512 ns, corresponding to 10 Mbps,
1722  *   100 Mbps, or 1Gbps, respectively. For detailed discussion consult the
1723  *   TSEC reference manual.
1724  */
1725 static int
1726 tsec_sysctl_ic_time(SYSCTL_HANDLER_ARGS)
1727 {
1728 	int error;
1729 	uint32_t time;
1730 	struct tsec_softc *sc = (struct tsec_softc *)arg1;
1731 
1732 	time = (arg2 == TSEC_IC_RX) ? sc->rx_ic_time : sc->tx_ic_time;
1733 
1734 	error = sysctl_handle_int(oidp, &time, 0, req);
1735 	if (error != 0)
1736 		return (error);
1737 
1738 	if (time > 65535)
1739 		return (EINVAL);
1740 
1741 	TSEC_IC_LOCK(sc);
1742 	if (arg2 == TSEC_IC_RX) {
1743 		sc->rx_ic_time = time;
1744 		tsec_set_rxic(sc);
1745 	} else {
1746 		sc->tx_ic_time = time;
1747 		tsec_set_txic(sc);
1748 	}
1749 	TSEC_IC_UNLOCK(sc);
1750 
1751 	return (0);
1752 }
1753 
1754 static int
1755 tsec_sysctl_ic_count(SYSCTL_HANDLER_ARGS)
1756 {
1757 	int error;
1758 	uint32_t count;
1759 	struct tsec_softc *sc = (struct tsec_softc *)arg1;
1760 
1761 	count = (arg2 == TSEC_IC_RX) ? sc->rx_ic_count : sc->tx_ic_count;
1762 
1763 	error = sysctl_handle_int(oidp, &count, 0, req);
1764 	if (error != 0)
1765 		return (error);
1766 
1767 	if (count > 255)
1768 		return (EINVAL);
1769 
1770 	TSEC_IC_LOCK(sc);
1771 	if (arg2 == TSEC_IC_RX) {
1772 		sc->rx_ic_count = count;
1773 		tsec_set_rxic(sc);
1774 	} else {
1775 		sc->tx_ic_count = count;
1776 		tsec_set_txic(sc);
1777 	}
1778 	TSEC_IC_UNLOCK(sc);
1779 
1780 	return (0);
1781 }
1782 
1783 static void
1784 tsec_set_rxic(struct tsec_softc *sc)
1785 {
1786 	uint32_t rxic_val;
1787 
1788 	if (sc->rx_ic_count == 0 || sc->rx_ic_time == 0)
1789 		/* Disable RX IC */
1790 		rxic_val = 0;
1791 	else {
1792 		rxic_val = 0x80000000;
1793 		rxic_val |= (sc->rx_ic_count << 21);
1794 		rxic_val |= sc->rx_ic_time;
1795 	}
1796 
1797 	TSEC_WRITE(sc, TSEC_REG_RXIC, rxic_val);
1798 }
1799 
1800 static void
1801 tsec_set_txic(struct tsec_softc *sc)
1802 {
1803 	uint32_t txic_val;
1804 
1805 	if (sc->tx_ic_count == 0 || sc->tx_ic_time == 0)
1806 		/* Disable TX IC */
1807 		txic_val = 0;
1808 	else {
1809 		txic_val = 0x80000000;
1810 		txic_val |= (sc->tx_ic_count << 21);
1811 		txic_val |= sc->tx_ic_time;
1812 	}
1813 
1814 	TSEC_WRITE(sc, TSEC_REG_TXIC, txic_val);
1815 }
1816 
1817 static void
1818 tsec_offload_setup(struct tsec_softc *sc)
1819 {
1820 	struct ifnet *ifp = sc->tsec_ifp;
1821 	uint32_t reg;
1822 
1823 	TSEC_GLOBAL_LOCK_ASSERT(sc);
1824 
1825 	reg = TSEC_READ(sc, TSEC_REG_TCTRL);
1826 	reg |= TSEC_TCTRL_IPCSEN | TSEC_TCTRL_TUCSEN;
1827 
1828 	if (ifp->if_capenable & IFCAP_TXCSUM)
1829 		ifp->if_hwassist = TSEC_CHECKSUM_FEATURES;
1830 	else
1831 		ifp->if_hwassist = 0;
1832 
1833 	TSEC_WRITE(sc, TSEC_REG_TCTRL, reg);
1834 
1835 	reg = TSEC_READ(sc, TSEC_REG_RCTRL);
1836 	reg &= ~(TSEC_RCTRL_IPCSEN | TSEC_RCTRL_TUCSEN | TSEC_RCTRL_PRSDEP);
1837 	reg |= TSEC_RCTRL_PRSDEP_PARSE_L2 | TSEC_RCTRL_VLEX;
1838 
1839 	if (ifp->if_capenable & IFCAP_RXCSUM)
1840 		reg |= TSEC_RCTRL_IPCSEN | TSEC_RCTRL_TUCSEN |
1841 		    TSEC_RCTRL_PRSDEP_PARSE_L234;
1842 
1843 	TSEC_WRITE(sc, TSEC_REG_RCTRL, reg);
1844 }
1845 
1846 static void
1847 tsec_offload_process_frame(struct tsec_softc *sc, struct mbuf *m)
1848 {
1849 	struct tsec_rx_fcb rx_fcb;
1850 	int csum_flags = 0;
1851 	int protocol, flags;
1852 
1853 	TSEC_RECEIVE_LOCK_ASSERT(sc);
1854 
1855 	m_copydata(m, 0, sizeof(struct tsec_rx_fcb), (caddr_t)(&rx_fcb));
1856 	flags = rx_fcb.flags;
1857 	protocol = rx_fcb.protocol;
1858 
1859 	if (TSEC_RX_FCB_IP_CSUM_CHECKED(flags)) {
1860 		csum_flags |= CSUM_IP_CHECKED;
1861 
1862 		if ((flags & TSEC_RX_FCB_IP_CSUM_ERROR) == 0)
1863 			csum_flags |= CSUM_IP_VALID;
1864 	}
1865 
1866 	if ((protocol == IPPROTO_TCP || protocol == IPPROTO_UDP) &&
1867 	    TSEC_RX_FCB_TCP_UDP_CSUM_CHECKED(flags) &&
1868 	    (flags & TSEC_RX_FCB_TCP_UDP_CSUM_ERROR) == 0) {
1869 		csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1870 		m->m_pkthdr.csum_data = 0xFFFF;
1871 	}
1872 
1873 	m->m_pkthdr.csum_flags = csum_flags;
1874 
1875 	if (flags & TSEC_RX_FCB_VLAN) {
1876 		m->m_pkthdr.ether_vtag = rx_fcb.vlan;
1877 		m->m_flags |= M_VLANTAG;
1878 	}
1879 
1880 	m_adj(m, sizeof(struct tsec_rx_fcb));
1881 }
1882 
1883 static u_int
1884 tsec_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
1885 {
1886 	uint32_t h, *hashtable = arg;
1887 
1888 	h = (ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN) >> 24) & 0xFF;
1889 	hashtable[(h >> 5)] |= 1 << (0x1F - (h & 0x1F));
1890 
1891 	return (1);
1892 }
1893 
1894 static void
1895 tsec_setup_multicast(struct tsec_softc *sc)
1896 {
1897 	uint32_t hashtable[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
1898 	struct ifnet *ifp = sc->tsec_ifp;
1899 	int i;
1900 
1901 	TSEC_GLOBAL_LOCK_ASSERT(sc);
1902 
1903 	if (ifp->if_flags & IFF_ALLMULTI) {
1904 		for (i = 0; i < 8; i++)
1905 			TSEC_WRITE(sc, TSEC_REG_GADDR(i), 0xFFFFFFFF);
1906 
1907 		return;
1908 	}
1909 
1910 	if_foreach_llmaddr(ifp, tsec_hash_maddr, &hashtable);
1911 
1912 	for (i = 0; i < 8; i++)
1913 		TSEC_WRITE(sc, TSEC_REG_GADDR(i), hashtable[i]);
1914 }
1915 
1916 static int
1917 tsec_set_mtu(struct tsec_softc *sc, unsigned int mtu)
1918 {
1919 
1920 	mtu += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
1921 
1922 	TSEC_GLOBAL_LOCK_ASSERT(sc);
1923 
1924 	if (mtu >= TSEC_MIN_FRAME_SIZE && mtu <= TSEC_MAX_FRAME_SIZE) {
1925 		TSEC_WRITE(sc, TSEC_REG_MAXFRM, mtu);
1926 		return (mtu);
1927 	}
1928 
1929 	return (0);
1930 }
1931