xref: /freebsd/sys/dev/tsec/if_tsec.c (revision 535af610)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (C) 2007-2008 Semihalf, Rafal Jaworowski
5  * Copyright (C) 2006-2007 Semihalf, Piotr Kruszynski
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
20  * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
22  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
23  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
24  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
25  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
26  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /*
30  * Freescale integrated Three-Speed Ethernet Controller (TSEC) driver.
31  */
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #ifdef HAVE_KERNEL_OPTION_HEADERS
36 #include "opt_device_polling.h"
37 #endif
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/bus.h>
42 #include <sys/endian.h>
43 #include <sys/mbuf.h>
44 #include <sys/kernel.h>
45 #include <sys/module.h>
46 #include <sys/socket.h>
47 #include <sys/sockio.h>
48 #include <sys/sysctl.h>
49 
50 #include <net/bpf.h>
51 #include <net/ethernet.h>
52 #include <net/if.h>
53 #include <net/if_var.h>
54 #include <net/if_arp.h>
55 #include <net/if_dl.h>
56 #include <net/if_media.h>
57 #include <net/if_types.h>
58 #include <net/if_vlan_var.h>
59 
60 #include <netinet/in_systm.h>
61 #include <netinet/in.h>
62 #include <netinet/ip.h>
63 
64 #include <machine/bus.h>
65 
66 #include <dev/mii/mii.h>
67 #include <dev/mii/miivar.h>
68 
69 #include <dev/tsec/if_tsec.h>
70 #include <dev/tsec/if_tsecreg.h>
71 
72 static int	tsec_alloc_dma_desc(device_t dev, bus_dma_tag_t *dtag,
73     bus_dmamap_t *dmap, bus_size_t dsize, void **vaddr, void *raddr,
74     const char *dname);
75 static void	tsec_dma_ctl(struct tsec_softc *sc, int state);
76 static void	 tsec_encap(if_t ifp, struct tsec_softc *sc,
77     struct mbuf *m0, uint16_t fcb_flags, int *start_tx);
78 static void	tsec_free_dma(struct tsec_softc *sc);
79 static void	tsec_free_dma_desc(bus_dma_tag_t dtag, bus_dmamap_t dmap, void *vaddr);
80 static int	tsec_ifmedia_upd(if_t ifp);
81 static void	tsec_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr);
82 static int	tsec_new_rxbuf(bus_dma_tag_t tag, bus_dmamap_t map,
83     struct mbuf **mbufp, uint32_t *paddr);
84 static void	tsec_map_dma_addr(void *arg, bus_dma_segment_t *segs,
85     int nseg, int error);
86 static void	tsec_intrs_ctl(struct tsec_softc *sc, int state);
87 static void	tsec_init(void *xsc);
88 static void	tsec_init_locked(struct tsec_softc *sc);
89 static int	tsec_ioctl(if_t ifp, u_long command, caddr_t data);
90 static void	tsec_reset_mac(struct tsec_softc *sc);
91 static void	tsec_setfilter(struct tsec_softc *sc);
92 static void	tsec_set_mac_address(struct tsec_softc *sc);
93 static void	tsec_start(if_t ifp);
94 static void	tsec_start_locked(if_t ifp);
95 static void	tsec_stop(struct tsec_softc *sc);
96 static void	tsec_tick(void *arg);
97 static void	tsec_watchdog(struct tsec_softc *sc);
98 static void	tsec_add_sysctls(struct tsec_softc *sc);
99 static int	tsec_sysctl_ic_time(SYSCTL_HANDLER_ARGS);
100 static int	tsec_sysctl_ic_count(SYSCTL_HANDLER_ARGS);
101 static void	tsec_set_rxic(struct tsec_softc *sc);
102 static void	tsec_set_txic(struct tsec_softc *sc);
103 static int	tsec_receive_intr_locked(struct tsec_softc *sc, int count);
104 static void	tsec_transmit_intr_locked(struct tsec_softc *sc);
105 static void	tsec_error_intr_locked(struct tsec_softc *sc, int count);
106 static void	tsec_offload_setup(struct tsec_softc *sc);
107 static void	tsec_offload_process_frame(struct tsec_softc *sc,
108     struct mbuf *m);
109 static void	tsec_setup_multicast(struct tsec_softc *sc);
110 static int	tsec_set_mtu(struct tsec_softc *sc, unsigned int mtu);
111 
112 DRIVER_MODULE(miibus, tsec, miibus_driver, 0, 0);
113 MODULE_DEPEND(tsec, ether, 1, 1, 1);
114 MODULE_DEPEND(tsec, miibus, 1, 1, 1);
115 
116 struct mtx tsec_phy_mtx;
117 
118 int
119 tsec_attach(struct tsec_softc *sc)
120 {
121 	uint8_t hwaddr[ETHER_ADDR_LEN];
122 	if_t ifp;
123 	int error = 0;
124 	int i;
125 
126 	/* Initialize global (because potentially shared) MII lock */
127 	if (!mtx_initialized(&tsec_phy_mtx))
128 		mtx_init(&tsec_phy_mtx, "tsec mii", NULL, MTX_DEF);
129 
130 	/* Reset all TSEC counters */
131 	TSEC_TX_RX_COUNTERS_INIT(sc);
132 
133 	/* Stop DMA engine if enabled by firmware */
134 	tsec_dma_ctl(sc, 0);
135 
136 	/* Reset MAC */
137 	tsec_reset_mac(sc);
138 
139 	/* Disable interrupts for now */
140 	tsec_intrs_ctl(sc, 0);
141 
142 	/* Configure defaults for interrupts coalescing */
143 	sc->rx_ic_time = 768;
144 	sc->rx_ic_count = 16;
145 	sc->tx_ic_time = 768;
146 	sc->tx_ic_count = 16;
147 	tsec_set_rxic(sc);
148 	tsec_set_txic(sc);
149 	tsec_add_sysctls(sc);
150 
151 	/* Allocate a busdma tag and DMA safe memory for TX descriptors. */
152 	error = tsec_alloc_dma_desc(sc->dev, &sc->tsec_tx_dtag,
153 	    &sc->tsec_tx_dmap, sizeof(*sc->tsec_tx_vaddr) * TSEC_TX_NUM_DESC,
154 	    (void **)&sc->tsec_tx_vaddr, &sc->tsec_tx_raddr, "TX");
155 
156 	if (error) {
157 		tsec_detach(sc);
158 		return (ENXIO);
159 	}
160 
161 	/* Allocate a busdma tag and DMA safe memory for RX descriptors. */
162 	error = tsec_alloc_dma_desc(sc->dev, &sc->tsec_rx_dtag,
163 	    &sc->tsec_rx_dmap, sizeof(*sc->tsec_rx_vaddr) * TSEC_RX_NUM_DESC,
164 	    (void **)&sc->tsec_rx_vaddr, &sc->tsec_rx_raddr, "RX");
165 	if (error) {
166 		tsec_detach(sc);
167 		return (ENXIO);
168 	}
169 
170 	/* Allocate a busdma tag for TX mbufs. */
171 	error = bus_dma_tag_create(NULL,	/* parent */
172 	    TSEC_TXBUFFER_ALIGNMENT, 0,		/* alignment, boundary */
173 	    BUS_SPACE_MAXADDR_32BIT,		/* lowaddr */
174 	    BUS_SPACE_MAXADDR,			/* highaddr */
175 	    NULL, NULL,				/* filtfunc, filtfuncarg */
176 	    MCLBYTES * (TSEC_TX_NUM_DESC - 1),	/* maxsize */
177 	    TSEC_TX_MAX_DMA_SEGS,		/* nsegments */
178 	    MCLBYTES, 0,			/* maxsegsz, flags */
179 	    NULL, NULL,				/* lockfunc, lockfuncarg */
180 	    &sc->tsec_tx_mtag);			/* dmat */
181 	if (error) {
182 		device_printf(sc->dev, "failed to allocate busdma tag "
183 		    "(tx mbufs)\n");
184 		tsec_detach(sc);
185 		return (ENXIO);
186 	}
187 
188 	/* Allocate a busdma tag for RX mbufs. */
189 	error = bus_dma_tag_create(NULL,	/* parent */
190 	    TSEC_RXBUFFER_ALIGNMENT, 0,		/* alignment, boundary */
191 	    BUS_SPACE_MAXADDR_32BIT,		/* lowaddr */
192 	    BUS_SPACE_MAXADDR,			/* highaddr */
193 	    NULL, NULL,				/* filtfunc, filtfuncarg */
194 	    MCLBYTES,				/* maxsize */
195 	    1,					/* nsegments */
196 	    MCLBYTES, 0,			/* maxsegsz, flags */
197 	    NULL, NULL,				/* lockfunc, lockfuncarg */
198 	    &sc->tsec_rx_mtag);			/* dmat */
199 	if (error) {
200 		device_printf(sc->dev, "failed to allocate busdma tag "
201 		    "(rx mbufs)\n");
202 		tsec_detach(sc);
203 		return (ENXIO);
204 	}
205 
206 	/* Create TX busdma maps */
207 	for (i = 0; i < TSEC_TX_NUM_DESC; i++) {
208 		error = bus_dmamap_create(sc->tsec_tx_mtag, 0,
209 		   &sc->tx_bufmap[i].map);
210 		if (error) {
211 			device_printf(sc->dev, "failed to init TX ring\n");
212 			tsec_detach(sc);
213 			return (ENXIO);
214 		}
215 		sc->tx_bufmap[i].map_initialized = 1;
216 	}
217 
218 	/* Create RX busdma maps and zero mbuf handlers */
219 	for (i = 0; i < TSEC_RX_NUM_DESC; i++) {
220 		error = bus_dmamap_create(sc->tsec_rx_mtag, 0,
221 		    &sc->rx_data[i].map);
222 		if (error) {
223 			device_printf(sc->dev, "failed to init RX ring\n");
224 			tsec_detach(sc);
225 			return (ENXIO);
226 		}
227 		sc->rx_data[i].mbuf = NULL;
228 	}
229 
230 	/* Create mbufs for RX buffers */
231 	for (i = 0; i < TSEC_RX_NUM_DESC; i++) {
232 		error = tsec_new_rxbuf(sc->tsec_rx_mtag, sc->rx_data[i].map,
233 		    &sc->rx_data[i].mbuf, &sc->rx_data[i].paddr);
234 		if (error) {
235 			device_printf(sc->dev, "can't load rx DMA map %d, "
236 			    "error = %d\n", i, error);
237 			tsec_detach(sc);
238 			return (error);
239 		}
240 	}
241 
242 	/* Create network interface for upper layers */
243 	ifp = sc->tsec_ifp = if_alloc(IFT_ETHER);
244 	if (ifp == NULL) {
245 		device_printf(sc->dev, "if_alloc() failed\n");
246 		tsec_detach(sc);
247 		return (ENOMEM);
248 	}
249 
250 	if_setsoftc(ifp, sc);
251 	if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev));
252 	if_setflags(ifp, IFF_SIMPLEX | IFF_MULTICAST | IFF_BROADCAST);
253 	if_setinitfn(ifp, tsec_init);
254 	if_setstartfn(ifp, tsec_start);
255 	if_setioctlfn(ifp, tsec_ioctl);
256 
257 	if_setsendqlen(ifp, TSEC_TX_NUM_DESC - 1);
258 	if_setsendqready(ifp);
259 
260 	if_setcapabilities(ifp, IFCAP_VLAN_MTU);
261 	if (sc->is_etsec)
262 		if_setcapabilitiesbit(ifp, IFCAP_HWCSUM, 0);
263 
264 	if_setcapenable(ifp, if_getcapabilities(ifp));
265 
266 #ifdef DEVICE_POLLING
267 	/* Advertise that polling is supported */
268 	if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0);
269 #endif
270 
271 	/* Attach PHY(s) */
272 	error = mii_attach(sc->dev, &sc->tsec_miibus, ifp, tsec_ifmedia_upd,
273 	    tsec_ifmedia_sts, BMSR_DEFCAPMASK, sc->phyaddr, MII_OFFSET_ANY,
274 	    0);
275 	if (error) {
276 		device_printf(sc->dev, "attaching PHYs failed\n");
277 		if_free(ifp);
278 		sc->tsec_ifp = NULL;
279 		tsec_detach(sc);
280 		return (error);
281 	}
282 	sc->tsec_mii = device_get_softc(sc->tsec_miibus);
283 
284 	/* Set MAC address */
285 	tsec_get_hwaddr(sc, hwaddr);
286 	ether_ifattach(ifp, hwaddr);
287 
288 	return (0);
289 }
290 
291 int
292 tsec_detach(struct tsec_softc *sc)
293 {
294 
295 	if (sc->tsec_ifp != NULL) {
296 #ifdef DEVICE_POLLING
297 		if (if_getcapenable(sc->tsec_ifp) & IFCAP_POLLING)
298 			ether_poll_deregister(sc->tsec_ifp);
299 #endif
300 
301 		/* Stop TSEC controller and free TX queue */
302 		if (sc->sc_rres)
303 			tsec_shutdown(sc->dev);
304 
305 		/* Detach network interface */
306 		ether_ifdetach(sc->tsec_ifp);
307 		if_free(sc->tsec_ifp);
308 		sc->tsec_ifp = NULL;
309 	}
310 
311 	/* Free DMA resources */
312 	tsec_free_dma(sc);
313 
314 	return (0);
315 }
316 
317 int
318 tsec_shutdown(device_t dev)
319 {
320 	struct tsec_softc *sc;
321 
322 	sc = device_get_softc(dev);
323 
324 	TSEC_GLOBAL_LOCK(sc);
325 	tsec_stop(sc);
326 	TSEC_GLOBAL_UNLOCK(sc);
327 	return (0);
328 }
329 
330 int
331 tsec_suspend(device_t dev)
332 {
333 
334 	/* TODO not implemented! */
335 	return (0);
336 }
337 
338 int
339 tsec_resume(device_t dev)
340 {
341 
342 	/* TODO not implemented! */
343 	return (0);
344 }
345 
346 static void
347 tsec_init(void *xsc)
348 {
349 	struct tsec_softc *sc = xsc;
350 
351 	TSEC_GLOBAL_LOCK(sc);
352 	tsec_init_locked(sc);
353 	TSEC_GLOBAL_UNLOCK(sc);
354 }
355 
356 static int
357 tsec_mii_wait(struct tsec_softc *sc, uint32_t flags)
358 {
359 	int timeout;
360 
361 	/*
362 	 * The status indicators are not set immediately after a command.
363 	 * Discard the first value.
364 	 */
365 	TSEC_PHY_READ(sc, TSEC_REG_MIIMIND);
366 
367 	timeout = TSEC_READ_RETRY;
368 	while ((TSEC_PHY_READ(sc, TSEC_REG_MIIMIND) & flags) && --timeout)
369 		DELAY(TSEC_READ_DELAY);
370 
371 	return (timeout == 0);
372 }
373 
374 static void
375 tsec_init_locked(struct tsec_softc *sc)
376 {
377 	struct tsec_desc *tx_desc = sc->tsec_tx_vaddr;
378 	struct tsec_desc *rx_desc = sc->tsec_rx_vaddr;
379 	if_t ifp = sc->tsec_ifp;
380 	uint32_t val, i;
381 	int timeout;
382 
383 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
384 		return;
385 
386 	TSEC_GLOBAL_LOCK_ASSERT(sc);
387 	tsec_stop(sc);
388 
389 	/*
390 	 * These steps are according to the MPC8555E PowerQUICCIII RM:
391 	 * 14.7 Initialization/Application Information
392 	 */
393 
394 	/* Step 1: soft reset MAC */
395 	tsec_reset_mac(sc);
396 
397 	/* Step 2: Initialize MACCFG2 */
398 	TSEC_WRITE(sc, TSEC_REG_MACCFG2,
399 	    TSEC_MACCFG2_FULLDUPLEX |	/* Full Duplex = 1 */
400 	    TSEC_MACCFG2_PADCRC |	/* PAD/CRC append */
401 	    TSEC_MACCFG2_GMII |		/* I/F Mode bit */
402 	    TSEC_MACCFG2_PRECNT		/* Preamble count = 7 */
403 	);
404 
405 	/* Step 3: Initialize ECNTRL
406 	 * While the documentation states that R100M is ignored if RPM is
407 	 * not set, it does seem to be needed to get the orange boxes to
408 	 * work (which have a Marvell 88E1111 PHY). Go figure.
409 	 */
410 
411 	/*
412 	 * XXX kludge - use circumstancial evidence to program ECNTRL
413 	 * correctly. Ideally we need some board information to guide
414 	 * us here.
415 	 */
416 	i = TSEC_READ(sc, TSEC_REG_ID2);
417 	val = (i & 0xffff)
418 	    ? (TSEC_ECNTRL_TBIM | TSEC_ECNTRL_SGMIIM)	/* Sumatra */
419 	    : TSEC_ECNTRL_R100M;			/* Orange + CDS */
420 	TSEC_WRITE(sc, TSEC_REG_ECNTRL, TSEC_ECNTRL_STEN | val);
421 
422 	/* Step 4: Initialize MAC station address */
423 	tsec_set_mac_address(sc);
424 
425 	/*
426 	 * Step 5: Assign a Physical address to the TBI so as to not conflict
427 	 * with the external PHY physical address
428 	 */
429 	TSEC_WRITE(sc, TSEC_REG_TBIPA, 5);
430 
431 	TSEC_PHY_LOCK(sc);
432 
433 	/* Step 6: Reset the management interface */
434 	TSEC_PHY_WRITE(sc, TSEC_REG_MIIMCFG, TSEC_MIIMCFG_RESETMGMT);
435 
436 	/* Step 7: Setup the MII Mgmt clock speed */
437 	TSEC_PHY_WRITE(sc, TSEC_REG_MIIMCFG, TSEC_MIIMCFG_CLKDIV28);
438 
439 	/* Step 8: Read MII Mgmt indicator register and check for Busy = 0 */
440 	timeout = tsec_mii_wait(sc, TSEC_MIIMIND_BUSY);
441 
442 	TSEC_PHY_UNLOCK(sc);
443 	if (timeout) {
444 		if_printf(ifp, "tsec_init_locked(): Mgmt busy timeout\n");
445 		return;
446 	}
447 
448 	/* Step 9: Setup the MII Mgmt */
449 	mii_mediachg(sc->tsec_mii);
450 
451 	/* Step 10: Clear IEVENT register */
452 	TSEC_WRITE(sc, TSEC_REG_IEVENT, 0xffffffff);
453 
454 	/* Step 11: Enable interrupts */
455 #ifdef DEVICE_POLLING
456 	/*
457 	 * ...only if polling is not turned on. Disable interrupts explicitly
458 	 * if polling is enabled.
459 	 */
460 	if (if_getcapenable(ifp) & IFCAP_POLLING )
461 		tsec_intrs_ctl(sc, 0);
462 	else
463 #endif /* DEVICE_POLLING */
464 	tsec_intrs_ctl(sc, 1);
465 
466 	/* Step 12: Initialize IADDRn */
467 	TSEC_WRITE(sc, TSEC_REG_IADDR0, 0);
468 	TSEC_WRITE(sc, TSEC_REG_IADDR1, 0);
469 	TSEC_WRITE(sc, TSEC_REG_IADDR2, 0);
470 	TSEC_WRITE(sc, TSEC_REG_IADDR3, 0);
471 	TSEC_WRITE(sc, TSEC_REG_IADDR4, 0);
472 	TSEC_WRITE(sc, TSEC_REG_IADDR5, 0);
473 	TSEC_WRITE(sc, TSEC_REG_IADDR6, 0);
474 	TSEC_WRITE(sc, TSEC_REG_IADDR7, 0);
475 
476 	/* Step 13: Initialize GADDRn */
477 	TSEC_WRITE(sc, TSEC_REG_GADDR0, 0);
478 	TSEC_WRITE(sc, TSEC_REG_GADDR1, 0);
479 	TSEC_WRITE(sc, TSEC_REG_GADDR2, 0);
480 	TSEC_WRITE(sc, TSEC_REG_GADDR3, 0);
481 	TSEC_WRITE(sc, TSEC_REG_GADDR4, 0);
482 	TSEC_WRITE(sc, TSEC_REG_GADDR5, 0);
483 	TSEC_WRITE(sc, TSEC_REG_GADDR6, 0);
484 	TSEC_WRITE(sc, TSEC_REG_GADDR7, 0);
485 
486 	/* Step 14: Initialize RCTRL */
487 	TSEC_WRITE(sc, TSEC_REG_RCTRL, 0);
488 
489 	/* Step 15: Initialize DMACTRL */
490 	tsec_dma_ctl(sc, 1);
491 
492 	/* Step 16: Initialize FIFO_PAUSE_CTRL */
493 	TSEC_WRITE(sc, TSEC_REG_FIFO_PAUSE_CTRL, TSEC_FIFO_PAUSE_CTRL_EN);
494 
495 	/*
496 	 * Step 17: Initialize transmit/receive descriptor rings.
497 	 * Initialize TBASE and RBASE.
498 	 */
499 	TSEC_WRITE(sc, TSEC_REG_TBASE, sc->tsec_tx_raddr);
500 	TSEC_WRITE(sc, TSEC_REG_RBASE, sc->tsec_rx_raddr);
501 
502 	for (i = 0; i < TSEC_TX_NUM_DESC; i++) {
503 		tx_desc[i].bufptr = 0;
504 		tx_desc[i].length = 0;
505 		tx_desc[i].flags = ((i == TSEC_TX_NUM_DESC - 1) ?
506 		    TSEC_TXBD_W : 0);
507 	}
508 	bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
509 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
510 
511 	for (i = 0; i < TSEC_RX_NUM_DESC; i++) {
512 		rx_desc[i].bufptr = sc->rx_data[i].paddr;
513 		rx_desc[i].length = 0;
514 		rx_desc[i].flags = TSEC_RXBD_E | TSEC_RXBD_I |
515 		    ((i == TSEC_RX_NUM_DESC - 1) ? TSEC_RXBD_W : 0);
516 	}
517 	bus_dmamap_sync(sc->tsec_rx_dtag, sc->tsec_rx_dmap,
518 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
519 
520 	/* Step 18: Initialize the maximum receive buffer length */
521 	TSEC_WRITE(sc, TSEC_REG_MRBLR, MCLBYTES);
522 
523 	/* Step 19: Configure ethernet frame sizes */
524 	TSEC_WRITE(sc, TSEC_REG_MINFLR, TSEC_MIN_FRAME_SIZE);
525 	tsec_set_mtu(sc, if_getmtu(ifp));
526 
527 	/* Step 20: Enable Rx and RxBD sdata snooping */
528 	TSEC_WRITE(sc, TSEC_REG_ATTR, TSEC_ATTR_RDSEN | TSEC_ATTR_RBDSEN);
529 	TSEC_WRITE(sc, TSEC_REG_ATTRELI, 0);
530 
531 	/* Step 21: Reset collision counters in hardware */
532 	TSEC_WRITE(sc, TSEC_REG_MON_TSCL, 0);
533 	TSEC_WRITE(sc, TSEC_REG_MON_TMCL, 0);
534 	TSEC_WRITE(sc, TSEC_REG_MON_TLCL, 0);
535 	TSEC_WRITE(sc, TSEC_REG_MON_TXCL, 0);
536 	TSEC_WRITE(sc, TSEC_REG_MON_TNCL, 0);
537 
538 	/* Step 22: Mask all CAM interrupts */
539 	TSEC_WRITE(sc, TSEC_REG_MON_CAM1, 0xffffffff);
540 	TSEC_WRITE(sc, TSEC_REG_MON_CAM2, 0xffffffff);
541 
542 	/* Step 23: Enable Rx and Tx */
543 	val = TSEC_READ(sc, TSEC_REG_MACCFG1);
544 	val |= (TSEC_MACCFG1_RX_EN | TSEC_MACCFG1_TX_EN);
545 	TSEC_WRITE(sc, TSEC_REG_MACCFG1, val);
546 
547 	/* Step 24: Reset TSEC counters for Tx and Rx rings */
548 	TSEC_TX_RX_COUNTERS_INIT(sc);
549 
550 	/* Step 25: Setup TCP/IP Off-Load engine */
551 	if (sc->is_etsec)
552 		tsec_offload_setup(sc);
553 
554 	/* Step 26: Setup multicast filters */
555 	tsec_setup_multicast(sc);
556 
557 	/* Step 27: Activate network interface */
558 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
559 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
560 	sc->tsec_if_flags = if_getflags(ifp);
561 	sc->tsec_watchdog = 0;
562 
563 	/* Schedule watchdog timeout */
564 	callout_reset(&sc->tsec_callout, hz, tsec_tick, sc);
565 }
566 
567 static void
568 tsec_set_mac_address(struct tsec_softc *sc)
569 {
570 	uint32_t macbuf[2] = { 0, 0 };
571 	char *macbufp, *curmac;
572 	int i;
573 
574 	TSEC_GLOBAL_LOCK_ASSERT(sc);
575 
576 	KASSERT((ETHER_ADDR_LEN <= sizeof(macbuf)),
577 	    ("tsec_set_mac_address: (%d <= %zd", ETHER_ADDR_LEN,
578 	    sizeof(macbuf)));
579 
580 	macbufp = (char *)macbuf;
581 	curmac = (char *)if_getlladdr(sc->tsec_ifp);
582 
583 	/* Correct order of MAC address bytes */
584 	for (i = 1; i <= ETHER_ADDR_LEN; i++)
585 		macbufp[ETHER_ADDR_LEN-i] = curmac[i-1];
586 
587 	/* Initialize MAC station address MACSTNADDR2 and MACSTNADDR1 */
588 	TSEC_WRITE(sc, TSEC_REG_MACSTNADDR2, macbuf[1]);
589 	TSEC_WRITE(sc, TSEC_REG_MACSTNADDR1, macbuf[0]);
590 }
591 
592 /*
593  * DMA control function, if argument state is:
594  * 0 - DMA engine will be disabled
595  * 1 - DMA engine will be enabled
596  */
597 static void
598 tsec_dma_ctl(struct tsec_softc *sc, int state)
599 {
600 	device_t dev;
601 	uint32_t dma_flags, timeout;
602 
603 	dev = sc->dev;
604 
605 	dma_flags = TSEC_READ(sc, TSEC_REG_DMACTRL);
606 
607 	switch (state) {
608 	case 0:
609 		/* Temporarily clear stop graceful stop bits. */
610 		tsec_dma_ctl(sc, 1000);
611 
612 		/* Set it again */
613 		dma_flags |= (TSEC_DMACTRL_GRS | TSEC_DMACTRL_GTS);
614 		break;
615 	case 1000:
616 	case 1:
617 		/* Set write with response (WWR), wait (WOP) and snoop bits */
618 		dma_flags |= (TSEC_DMACTRL_TDSEN | TSEC_DMACTRL_TBDSEN |
619 		    DMACTRL_WWR | DMACTRL_WOP);
620 
621 		/* Clear graceful stop bits */
622 		dma_flags &= ~(TSEC_DMACTRL_GRS | TSEC_DMACTRL_GTS);
623 		break;
624 	default:
625 		device_printf(dev, "tsec_dma_ctl(): unknown state value: %d\n",
626 		    state);
627 	}
628 
629 	TSEC_WRITE(sc, TSEC_REG_DMACTRL, dma_flags);
630 
631 	switch (state) {
632 	case 0:
633 		/* Wait for DMA stop */
634 		timeout = TSEC_READ_RETRY;
635 		while (--timeout && (!(TSEC_READ(sc, TSEC_REG_IEVENT) &
636 		    (TSEC_IEVENT_GRSC | TSEC_IEVENT_GTSC))))
637 			DELAY(TSEC_READ_DELAY);
638 
639 		if (timeout == 0)
640 			device_printf(dev, "tsec_dma_ctl(): timeout!\n");
641 		break;
642 	case 1:
643 		/* Restart transmission function */
644 		TSEC_WRITE(sc, TSEC_REG_TSTAT, TSEC_TSTAT_THLT);
645 	}
646 }
647 
648 /*
649  * Interrupts control function, if argument state is:
650  * 0 - all TSEC interrupts will be masked
651  * 1 - all TSEC interrupts will be unmasked
652  */
653 static void
654 tsec_intrs_ctl(struct tsec_softc *sc, int state)
655 {
656 	device_t dev;
657 
658 	dev = sc->dev;
659 
660 	switch (state) {
661 	case 0:
662 		TSEC_WRITE(sc, TSEC_REG_IMASK, 0);
663 		break;
664 	case 1:
665 		TSEC_WRITE(sc, TSEC_REG_IMASK, TSEC_IMASK_BREN |
666 		    TSEC_IMASK_RXCEN | TSEC_IMASK_BSYEN | TSEC_IMASK_EBERREN |
667 		    TSEC_IMASK_BTEN | TSEC_IMASK_TXEEN | TSEC_IMASK_TXBEN |
668 		    TSEC_IMASK_TXFEN | TSEC_IMASK_XFUNEN | TSEC_IMASK_RXFEN);
669 		break;
670 	default:
671 		device_printf(dev, "tsec_intrs_ctl(): unknown state value: %d\n",
672 		    state);
673 	}
674 }
675 
676 static void
677 tsec_reset_mac(struct tsec_softc *sc)
678 {
679 	uint32_t maccfg1_flags;
680 
681 	/* Set soft reset bit */
682 	maccfg1_flags = TSEC_READ(sc, TSEC_REG_MACCFG1);
683 	maccfg1_flags |= TSEC_MACCFG1_SOFT_RESET;
684 	TSEC_WRITE(sc, TSEC_REG_MACCFG1, maccfg1_flags);
685 
686 	/* Clear soft reset bit */
687 	maccfg1_flags = TSEC_READ(sc, TSEC_REG_MACCFG1);
688 	maccfg1_flags &= ~TSEC_MACCFG1_SOFT_RESET;
689 	TSEC_WRITE(sc, TSEC_REG_MACCFG1, maccfg1_flags);
690 }
691 
692 static void
693 tsec_watchdog(struct tsec_softc *sc)
694 {
695 	if_t ifp;
696 
697 	TSEC_GLOBAL_LOCK_ASSERT(sc);
698 
699 	if (sc->tsec_watchdog == 0 || --sc->tsec_watchdog > 0)
700 		return;
701 
702 	ifp = sc->tsec_ifp;
703 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
704 	if_printf(ifp, "watchdog timeout\n");
705 
706 	tsec_stop(sc);
707 	tsec_init_locked(sc);
708 }
709 
710 static void
711 tsec_start(if_t ifp)
712 {
713 	struct tsec_softc *sc = if_getsoftc(ifp);
714 
715 	TSEC_TRANSMIT_LOCK(sc);
716 	tsec_start_locked(ifp);
717 	TSEC_TRANSMIT_UNLOCK(sc);
718 }
719 
720 static void
721 tsec_start_locked(if_t ifp)
722 {
723 	struct tsec_softc *sc;
724 	struct mbuf *m0;
725 	struct tsec_tx_fcb *tx_fcb;
726 	int csum_flags;
727 	int start_tx;
728 	uint16_t fcb_flags;
729 
730 	sc = if_getsoftc(ifp);
731 	start_tx = 0;
732 
733 	TSEC_TRANSMIT_LOCK_ASSERT(sc);
734 
735 	if (sc->tsec_link == 0)
736 		return;
737 
738 	bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
739 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
740 
741 	for (;;) {
742 		if (TSEC_FREE_TX_DESC(sc) < TSEC_TX_MAX_DMA_SEGS) {
743 			/* No free descriptors */
744 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
745 			break;
746 		}
747 
748 		/* Get packet from the queue */
749 		m0 = if_dequeue(ifp);
750 		if (m0 == NULL)
751 			break;
752 
753 		/* Insert TCP/IP Off-load frame control block */
754 		fcb_flags = 0;
755 		csum_flags = m0->m_pkthdr.csum_flags;
756 		if (csum_flags) {
757 			M_PREPEND(m0, sizeof(struct tsec_tx_fcb), M_NOWAIT);
758 			if (m0 == NULL)
759 				break;
760 
761 			if (csum_flags & CSUM_IP)
762 				fcb_flags |= TSEC_TX_FCB_IP4 |
763 				    TSEC_TX_FCB_CSUM_IP;
764 
765 			if (csum_flags & CSUM_TCP)
766 				fcb_flags |= TSEC_TX_FCB_TCP |
767 				    TSEC_TX_FCB_CSUM_TCP_UDP;
768 
769 			if (csum_flags & CSUM_UDP)
770 				fcb_flags |= TSEC_TX_FCB_UDP |
771 				    TSEC_TX_FCB_CSUM_TCP_UDP;
772 
773 			tx_fcb = mtod(m0, struct tsec_tx_fcb *);
774 			tx_fcb->flags = fcb_flags;
775 			tx_fcb->l3_offset = ETHER_HDR_LEN;
776 			tx_fcb->l4_offset = sizeof(struct ip);
777 		}
778 
779 		tsec_encap(ifp, sc, m0, fcb_flags, &start_tx);
780 	}
781 	bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
782 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
783 
784 	if (start_tx) {
785 		/* Enable transmitter and watchdog timer */
786 		TSEC_WRITE(sc, TSEC_REG_TSTAT, TSEC_TSTAT_THLT);
787 		sc->tsec_watchdog = 5;
788 	}
789 }
790 
791 static void
792 tsec_encap(if_t ifp, struct tsec_softc *sc, struct mbuf *m0,
793     uint16_t fcb_flags, int *start_tx)
794 {
795 	bus_dma_segment_t segs[TSEC_TX_MAX_DMA_SEGS];
796 	int error, i, nsegs;
797 	struct tsec_bufmap *tx_bufmap;
798 	uint32_t tx_idx;
799 	uint16_t flags;
800 
801 	TSEC_TRANSMIT_LOCK_ASSERT(sc);
802 
803 	tx_idx = sc->tx_idx_head;
804 	tx_bufmap = &sc->tx_bufmap[tx_idx];
805 
806 	/* Create mapping in DMA memory */
807 	error = bus_dmamap_load_mbuf_sg(sc->tsec_tx_mtag, tx_bufmap->map, m0,
808 	    segs, &nsegs, BUS_DMA_NOWAIT);
809 	if (error == EFBIG) {
810 		/* Too many segments!  Defrag and try again. */
811 		struct mbuf *m = m_defrag(m0, M_NOWAIT);
812 
813 		if (m == NULL) {
814 			m_freem(m0);
815 			return;
816 		}
817 		m0 = m;
818 		error = bus_dmamap_load_mbuf_sg(sc->tsec_tx_mtag,
819 		    tx_bufmap->map, m0, segs, &nsegs, BUS_DMA_NOWAIT);
820 	}
821 	if (error != 0) {
822 		/* Give up. */
823 		m_freem(m0);
824 		return;
825 	}
826 
827 	bus_dmamap_sync(sc->tsec_tx_mtag, tx_bufmap->map,
828 	    BUS_DMASYNC_PREWRITE);
829 	tx_bufmap->mbuf = m0;
830 
831 	/*
832 	 * Fill in the TX descriptors back to front so that READY bit in first
833 	 * descriptor is set last.
834 	 */
835 	tx_idx = (tx_idx + (uint32_t)nsegs) & (TSEC_TX_NUM_DESC - 1);
836 	sc->tx_idx_head = tx_idx;
837 	flags = TSEC_TXBD_L | TSEC_TXBD_I | TSEC_TXBD_R | TSEC_TXBD_TC;
838 	for (i = nsegs - 1; i >= 0; i--) {
839 		struct tsec_desc *tx_desc;
840 
841 		tx_idx = (tx_idx - 1) & (TSEC_TX_NUM_DESC - 1);
842 		tx_desc = &sc->tsec_tx_vaddr[tx_idx];
843 		tx_desc->length = segs[i].ds_len;
844 		tx_desc->bufptr = segs[i].ds_addr;
845 
846 		if (i == 0) {
847 			wmb();
848 
849 			if (fcb_flags != 0)
850 				flags |= TSEC_TXBD_TOE;
851 		}
852 
853 		/*
854 		 * Set flags:
855 		 *   - wrap
856 		 *   - checksum
857 		 *   - ready to send
858 		 *   - transmit the CRC sequence after the last data byte
859 		 *   - interrupt after the last buffer
860 		 */
861 		tx_desc->flags = (tx_idx == (TSEC_TX_NUM_DESC - 1) ?
862 		    TSEC_TXBD_W : 0) | flags;
863 
864 		flags &= ~(TSEC_TXBD_L | TSEC_TXBD_I);
865 	}
866 
867 	BPF_MTAP(ifp, m0);
868 	*start_tx = 1;
869 }
870 
871 static void
872 tsec_setfilter(struct tsec_softc *sc)
873 {
874 	if_t ifp;
875 	uint32_t flags;
876 
877 	ifp = sc->tsec_ifp;
878 	flags = TSEC_READ(sc, TSEC_REG_RCTRL);
879 
880 	/* Promiscuous mode */
881 	if (if_getflags(ifp) & IFF_PROMISC)
882 		flags |= TSEC_RCTRL_PROM;
883 	else
884 		flags &= ~TSEC_RCTRL_PROM;
885 
886 	TSEC_WRITE(sc, TSEC_REG_RCTRL, flags);
887 }
888 
889 #ifdef DEVICE_POLLING
890 static poll_handler_t tsec_poll;
891 
892 static int
893 tsec_poll(if_t ifp, enum poll_cmd cmd, int count)
894 {
895 	uint32_t ie;
896 	struct tsec_softc *sc = if_getsoftc(ifp);
897 	int rx_npkts;
898 
899 	rx_npkts = 0;
900 
901 	TSEC_GLOBAL_LOCK(sc);
902 	if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
903 		TSEC_GLOBAL_UNLOCK(sc);
904 		return (rx_npkts);
905 	}
906 
907 	if (cmd == POLL_AND_CHECK_STATUS) {
908 		tsec_error_intr_locked(sc, count);
909 
910 		/* Clear all events reported */
911 		ie = TSEC_READ(sc, TSEC_REG_IEVENT);
912 		TSEC_WRITE(sc, TSEC_REG_IEVENT, ie);
913 	}
914 
915 	tsec_transmit_intr_locked(sc);
916 
917 	TSEC_GLOBAL_TO_RECEIVE_LOCK(sc);
918 
919 	rx_npkts = tsec_receive_intr_locked(sc, count);
920 
921 	TSEC_RECEIVE_UNLOCK(sc);
922 
923 	return (rx_npkts);
924 }
925 #endif /* DEVICE_POLLING */
926 
927 static int
928 tsec_ioctl(if_t ifp, u_long command, caddr_t data)
929 {
930 	struct tsec_softc *sc = if_getsoftc(ifp);
931 	struct ifreq *ifr = (struct ifreq *)data;
932 	int mask, error = 0;
933 
934 	switch (command) {
935 	case SIOCSIFMTU:
936 		TSEC_GLOBAL_LOCK(sc);
937 		if (tsec_set_mtu(sc, ifr->ifr_mtu))
938 			if_setmtu(ifp, ifr->ifr_mtu);
939 		else
940 			error = EINVAL;
941 		TSEC_GLOBAL_UNLOCK(sc);
942 		break;
943 	case SIOCSIFFLAGS:
944 		TSEC_GLOBAL_LOCK(sc);
945 		if (if_getflags(ifp) & IFF_UP) {
946 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
947 				if ((sc->tsec_if_flags ^ if_getflags(ifp)) &
948 				    IFF_PROMISC)
949 					tsec_setfilter(sc);
950 
951 				if ((sc->tsec_if_flags ^ if_getflags(ifp)) &
952 				    IFF_ALLMULTI)
953 					tsec_setup_multicast(sc);
954 			} else
955 				tsec_init_locked(sc);
956 		} else if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
957 			tsec_stop(sc);
958 
959 		sc->tsec_if_flags = if_getflags(ifp);
960 		TSEC_GLOBAL_UNLOCK(sc);
961 		break;
962 	case SIOCADDMULTI:
963 	case SIOCDELMULTI:
964 		if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
965 			TSEC_GLOBAL_LOCK(sc);
966 			tsec_setup_multicast(sc);
967 			TSEC_GLOBAL_UNLOCK(sc);
968 		}
969 	case SIOCGIFMEDIA:
970 	case SIOCSIFMEDIA:
971 		error = ifmedia_ioctl(ifp, ifr, &sc->tsec_mii->mii_media,
972 		    command);
973 		break;
974 	case SIOCSIFCAP:
975 		mask = if_getcapenable(ifp) ^ ifr->ifr_reqcap;
976 		if ((mask & IFCAP_HWCSUM) && sc->is_etsec) {
977 			TSEC_GLOBAL_LOCK(sc);
978 			if_setcapenablebit(ifp, 0, IFCAP_HWCSUM);
979 			if_setcapenablebit(ifp, IFCAP_HWCSUM & ifr->ifr_reqcap, 0);
980 			tsec_offload_setup(sc);
981 			TSEC_GLOBAL_UNLOCK(sc);
982 		}
983 #ifdef DEVICE_POLLING
984 		if (mask & IFCAP_POLLING) {
985 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
986 				error = ether_poll_register(tsec_poll, ifp);
987 				if (error)
988 					return (error);
989 
990 				TSEC_GLOBAL_LOCK(sc);
991 				/* Disable interrupts */
992 				tsec_intrs_ctl(sc, 0);
993 				if_setcapenablebit(ifp, IFCAP_POLLING, 0);
994 				TSEC_GLOBAL_UNLOCK(sc);
995 			} else {
996 				error = ether_poll_deregister(ifp);
997 				TSEC_GLOBAL_LOCK(sc);
998 				/* Enable interrupts */
999 				tsec_intrs_ctl(sc, 1);
1000 				if_setcapenablebit(ifp, 0, IFCAP_POLLING);
1001 				TSEC_GLOBAL_UNLOCK(sc);
1002 			}
1003 		}
1004 #endif
1005 		break;
1006 
1007 	default:
1008 		error = ether_ioctl(ifp, command, data);
1009 	}
1010 
1011 	/* Flush buffers if not empty */
1012 	if (if_getflags(ifp) & IFF_UP)
1013 		tsec_start(ifp);
1014 	return (error);
1015 }
1016 
1017 static int
1018 tsec_ifmedia_upd(if_t ifp)
1019 {
1020 	struct tsec_softc *sc = if_getsoftc(ifp);
1021 	struct mii_data *mii;
1022 
1023 	TSEC_TRANSMIT_LOCK(sc);
1024 
1025 	mii = sc->tsec_mii;
1026 	mii_mediachg(mii);
1027 
1028 	TSEC_TRANSMIT_UNLOCK(sc);
1029 	return (0);
1030 }
1031 
1032 static void
1033 tsec_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
1034 {
1035 	struct tsec_softc *sc = if_getsoftc(ifp);
1036 	struct mii_data *mii;
1037 
1038 	TSEC_TRANSMIT_LOCK(sc);
1039 
1040 	mii = sc->tsec_mii;
1041 	mii_pollstat(mii);
1042 
1043 	ifmr->ifm_active = mii->mii_media_active;
1044 	ifmr->ifm_status = mii->mii_media_status;
1045 
1046 	TSEC_TRANSMIT_UNLOCK(sc);
1047 }
1048 
1049 static int
1050 tsec_new_rxbuf(bus_dma_tag_t tag, bus_dmamap_t map, struct mbuf **mbufp,
1051     uint32_t *paddr)
1052 {
1053 	struct mbuf *new_mbuf;
1054 	bus_dma_segment_t seg[1];
1055 	int error, nsegs;
1056 
1057 	KASSERT(mbufp != NULL, ("NULL mbuf pointer!"));
1058 
1059 	new_mbuf = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MCLBYTES);
1060 	if (new_mbuf == NULL)
1061 		return (ENOBUFS);
1062 	new_mbuf->m_len = new_mbuf->m_pkthdr.len = new_mbuf->m_ext.ext_size;
1063 
1064 	if (*mbufp) {
1065 		bus_dmamap_sync(tag, map, BUS_DMASYNC_POSTREAD);
1066 		bus_dmamap_unload(tag, map);
1067 	}
1068 
1069 	error = bus_dmamap_load_mbuf_sg(tag, map, new_mbuf, seg, &nsegs,
1070 	    BUS_DMA_NOWAIT);
1071 	KASSERT(nsegs == 1, ("Too many segments returned!"));
1072 	if (nsegs != 1 || error)
1073 		panic("tsec_new_rxbuf(): nsegs(%d), error(%d)", nsegs, error);
1074 
1075 #if 0
1076 	if (error) {
1077 		printf("tsec: bus_dmamap_load_mbuf_sg() returned: %d!\n",
1078 			error);
1079 		m_freem(new_mbuf);
1080 		return (ENOBUFS);
1081 	}
1082 #endif
1083 
1084 #if 0
1085 	KASSERT(((seg->ds_addr) & (TSEC_RXBUFFER_ALIGNMENT-1)) == 0,
1086 		("Wrong alignment of RX buffer!"));
1087 #endif
1088 	bus_dmamap_sync(tag, map, BUS_DMASYNC_PREREAD);
1089 
1090 	(*mbufp) = new_mbuf;
1091 	(*paddr) = seg->ds_addr;
1092 	return (0);
1093 }
1094 
1095 static void
1096 tsec_map_dma_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1097 {
1098 	u_int32_t *paddr;
1099 
1100 	KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
1101 	paddr = arg;
1102 	*paddr = segs->ds_addr;
1103 }
1104 
1105 static int
1106 tsec_alloc_dma_desc(device_t dev, bus_dma_tag_t *dtag, bus_dmamap_t *dmap,
1107     bus_size_t dsize, void **vaddr, void *raddr, const char *dname)
1108 {
1109 	int error;
1110 
1111 	/* Allocate a busdma tag and DMA safe memory for TX/RX descriptors. */
1112 	error = bus_dma_tag_create(NULL,	/* parent */
1113 	    PAGE_SIZE, 0,			/* alignment, boundary */
1114 	    BUS_SPACE_MAXADDR_32BIT,		/* lowaddr */
1115 	    BUS_SPACE_MAXADDR,			/* highaddr */
1116 	    NULL, NULL,				/* filtfunc, filtfuncarg */
1117 	    dsize, 1,				/* maxsize, nsegments */
1118 	    dsize, 0,				/* maxsegsz, flags */
1119 	    NULL, NULL,				/* lockfunc, lockfuncarg */
1120 	    dtag);				/* dmat */
1121 
1122 	if (error) {
1123 		device_printf(dev, "failed to allocate busdma %s tag\n",
1124 		    dname);
1125 		(*vaddr) = NULL;
1126 		return (ENXIO);
1127 	}
1128 
1129 	error = bus_dmamem_alloc(*dtag, vaddr, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1130 	    dmap);
1131 	if (error) {
1132 		device_printf(dev, "failed to allocate %s DMA safe memory\n",
1133 		    dname);
1134 		bus_dma_tag_destroy(*dtag);
1135 		(*vaddr) = NULL;
1136 		return (ENXIO);
1137 	}
1138 
1139 	error = bus_dmamap_load(*dtag, *dmap, *vaddr, dsize,
1140 	    tsec_map_dma_addr, raddr, BUS_DMA_NOWAIT);
1141 	if (error) {
1142 		device_printf(dev, "cannot get address of the %s "
1143 		    "descriptors\n", dname);
1144 		bus_dmamem_free(*dtag, *vaddr, *dmap);
1145 		bus_dma_tag_destroy(*dtag);
1146 		(*vaddr) = NULL;
1147 		return (ENXIO);
1148 	}
1149 
1150 	return (0);
1151 }
1152 
1153 static void
1154 tsec_free_dma_desc(bus_dma_tag_t dtag, bus_dmamap_t dmap, void *vaddr)
1155 {
1156 
1157 	if (vaddr == NULL)
1158 		return;
1159 
1160 	/* Unmap descriptors from DMA memory */
1161 	bus_dmamap_sync(dtag, dmap, BUS_DMASYNC_POSTREAD |
1162 	    BUS_DMASYNC_POSTWRITE);
1163 	bus_dmamap_unload(dtag, dmap);
1164 
1165 	/* Free descriptors memory */
1166 	bus_dmamem_free(dtag, vaddr, dmap);
1167 
1168 	/* Destroy descriptors tag */
1169 	bus_dma_tag_destroy(dtag);
1170 }
1171 
1172 static void
1173 tsec_free_dma(struct tsec_softc *sc)
1174 {
1175 	int i;
1176 
1177 	/* Free TX maps */
1178 	for (i = 0; i < TSEC_TX_NUM_DESC; i++)
1179 		if (sc->tx_bufmap[i].map_initialized)
1180 			bus_dmamap_destroy(sc->tsec_tx_mtag,
1181 			    sc->tx_bufmap[i].map);
1182 	/* Destroy tag for TX mbufs */
1183 	bus_dma_tag_destroy(sc->tsec_tx_mtag);
1184 
1185 	/* Free RX mbufs and maps */
1186 	for (i = 0; i < TSEC_RX_NUM_DESC; i++) {
1187 		if (sc->rx_data[i].mbuf) {
1188 			/* Unload buffer from DMA */
1189 			bus_dmamap_sync(sc->tsec_rx_mtag, sc->rx_data[i].map,
1190 			    BUS_DMASYNC_POSTREAD);
1191 			bus_dmamap_unload(sc->tsec_rx_mtag,
1192 			    sc->rx_data[i].map);
1193 
1194 			/* Free buffer */
1195 			m_freem(sc->rx_data[i].mbuf);
1196 		}
1197 		/* Destroy map for this buffer */
1198 		if (sc->rx_data[i].map != NULL)
1199 			bus_dmamap_destroy(sc->tsec_rx_mtag,
1200 			    sc->rx_data[i].map);
1201 	}
1202 	/* Destroy tag for RX mbufs */
1203 	bus_dma_tag_destroy(sc->tsec_rx_mtag);
1204 
1205 	/* Unload TX/RX descriptors */
1206 	tsec_free_dma_desc(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
1207 	    sc->tsec_tx_vaddr);
1208 	tsec_free_dma_desc(sc->tsec_rx_dtag, sc->tsec_rx_dmap,
1209 	    sc->tsec_rx_vaddr);
1210 }
1211 
1212 static void
1213 tsec_stop(struct tsec_softc *sc)
1214 {
1215 	if_t ifp;
1216 	uint32_t tmpval;
1217 
1218 	TSEC_GLOBAL_LOCK_ASSERT(sc);
1219 
1220 	ifp = sc->tsec_ifp;
1221 
1222 	/* Disable interface and watchdog timer */
1223 	callout_stop(&sc->tsec_callout);
1224 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
1225 	sc->tsec_watchdog = 0;
1226 
1227 	/* Disable all interrupts and stop DMA */
1228 	tsec_intrs_ctl(sc, 0);
1229 	tsec_dma_ctl(sc, 0);
1230 
1231 	/* Remove pending data from TX queue */
1232 	while (sc->tx_idx_tail != sc->tx_idx_head) {
1233 		bus_dmamap_sync(sc->tsec_tx_mtag,
1234 		    sc->tx_bufmap[sc->tx_idx_tail].map,
1235 		    BUS_DMASYNC_POSTWRITE);
1236 		bus_dmamap_unload(sc->tsec_tx_mtag,
1237 		    sc->tx_bufmap[sc->tx_idx_tail].map);
1238 		m_freem(sc->tx_bufmap[sc->tx_idx_tail].mbuf);
1239 		sc->tx_idx_tail = (sc->tx_idx_tail + 1)
1240 		    & (TSEC_TX_NUM_DESC - 1);
1241 	}
1242 
1243 	/* Disable RX and TX */
1244 	tmpval = TSEC_READ(sc, TSEC_REG_MACCFG1);
1245 	tmpval &= ~(TSEC_MACCFG1_RX_EN | TSEC_MACCFG1_TX_EN);
1246 	TSEC_WRITE(sc, TSEC_REG_MACCFG1, tmpval);
1247 	DELAY(10);
1248 }
1249 
1250 static void
1251 tsec_tick(void *arg)
1252 {
1253 	struct tsec_softc *sc = arg;
1254 	if_t ifp;
1255 	int link;
1256 
1257 	TSEC_GLOBAL_LOCK(sc);
1258 
1259 	tsec_watchdog(sc);
1260 
1261 	ifp = sc->tsec_ifp;
1262 	link = sc->tsec_link;
1263 
1264 	mii_tick(sc->tsec_mii);
1265 
1266 	if (link == 0 && sc->tsec_link == 1 &&
1267 	    (!if_sendq_empty(ifp)))
1268 		tsec_start_locked(ifp);
1269 
1270 	/* Schedule another timeout one second from now. */
1271 	callout_reset(&sc->tsec_callout, hz, tsec_tick, sc);
1272 
1273 	TSEC_GLOBAL_UNLOCK(sc);
1274 }
1275 
1276 /*
1277  *  This is the core RX routine. It replenishes mbufs in the descriptor and
1278  *  sends data which have been dma'ed into host memory to upper layer.
1279  *
1280  *  Loops at most count times if count is > 0, or until done if count < 0.
1281  */
1282 static int
1283 tsec_receive_intr_locked(struct tsec_softc *sc, int count)
1284 {
1285 	struct tsec_desc *rx_desc;
1286 	if_t ifp;
1287 	struct rx_data_type *rx_data;
1288 	struct mbuf *m;
1289 	uint32_t i;
1290 	int c, rx_npkts;
1291 	uint16_t flags;
1292 
1293 	TSEC_RECEIVE_LOCK_ASSERT(sc);
1294 
1295 	ifp = sc->tsec_ifp;
1296 	rx_data = sc->rx_data;
1297 	rx_npkts = 0;
1298 
1299 	bus_dmamap_sync(sc->tsec_rx_dtag, sc->tsec_rx_dmap,
1300 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1301 
1302 	for (c = 0; ; c++) {
1303 		if (count >= 0 && count-- == 0)
1304 			break;
1305 
1306 		rx_desc = TSEC_GET_CUR_RX_DESC(sc);
1307 		flags = rx_desc->flags;
1308 
1309 		/* Check if there is anything to receive */
1310 		if ((flags & TSEC_RXBD_E) || (c >= TSEC_RX_NUM_DESC)) {
1311 			/*
1312 			 * Avoid generating another interrupt
1313 			 */
1314 			if (flags & TSEC_RXBD_E)
1315 				TSEC_WRITE(sc, TSEC_REG_IEVENT,
1316 				    TSEC_IEVENT_RXB | TSEC_IEVENT_RXF);
1317 			/*
1318 			 * We didn't consume current descriptor and have to
1319 			 * return it to the queue
1320 			 */
1321 			TSEC_BACK_CUR_RX_DESC(sc);
1322 			break;
1323 		}
1324 
1325 		if (flags & (TSEC_RXBD_LG | TSEC_RXBD_SH | TSEC_RXBD_NO |
1326 		    TSEC_RXBD_CR | TSEC_RXBD_OV | TSEC_RXBD_TR)) {
1327 			rx_desc->length = 0;
1328 			rx_desc->flags = (rx_desc->flags &
1329 			    ~TSEC_RXBD_ZEROONINIT) | TSEC_RXBD_E | TSEC_RXBD_I;
1330 
1331 			if (sc->frame != NULL) {
1332 				m_free(sc->frame);
1333 				sc->frame = NULL;
1334 			}
1335 
1336 			continue;
1337 		}
1338 
1339 		/* Ok... process frame */
1340 		i = TSEC_GET_CUR_RX_DESC_CNT(sc);
1341 		m = rx_data[i].mbuf;
1342 		m->m_len = rx_desc->length;
1343 
1344 		if (sc->frame != NULL) {
1345 			if ((flags & TSEC_RXBD_L) != 0)
1346 				m->m_len -= m_length(sc->frame, NULL);
1347 
1348 			m->m_flags &= ~M_PKTHDR;
1349 			m_cat(sc->frame, m);
1350 		} else {
1351 			sc->frame = m;
1352 		}
1353 
1354 		m = NULL;
1355 
1356 		if ((flags & TSEC_RXBD_L) != 0) {
1357 			m = sc->frame;
1358 			sc->frame = NULL;
1359 		}
1360 
1361 		if (tsec_new_rxbuf(sc->tsec_rx_mtag, rx_data[i].map,
1362 		    &rx_data[i].mbuf, &rx_data[i].paddr)) {
1363 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1364 			/*
1365 			 * We ran out of mbufs; didn't consume current
1366 			 * descriptor and have to return it to the queue.
1367 			 */
1368 			TSEC_BACK_CUR_RX_DESC(sc);
1369 			break;
1370 		}
1371 
1372 		/* Attach new buffer to descriptor and clear flags */
1373 		rx_desc->bufptr = rx_data[i].paddr;
1374 		rx_desc->length = 0;
1375 		rx_desc->flags = (rx_desc->flags & ~TSEC_RXBD_ZEROONINIT) |
1376 		    TSEC_RXBD_E | TSEC_RXBD_I;
1377 
1378 		if (m != NULL) {
1379 			m->m_pkthdr.rcvif = ifp;
1380 
1381 			m_fixhdr(m);
1382 			m_adj(m, -ETHER_CRC_LEN);
1383 
1384 			if (sc->is_etsec)
1385 				tsec_offload_process_frame(sc, m);
1386 
1387 			TSEC_RECEIVE_UNLOCK(sc);
1388 			if_input(ifp, m);
1389 			TSEC_RECEIVE_LOCK(sc);
1390 			rx_npkts++;
1391 		}
1392 	}
1393 
1394 	bus_dmamap_sync(sc->tsec_rx_dtag, sc->tsec_rx_dmap,
1395 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1396 
1397 	/*
1398 	 * Make sure TSEC receiver is not halted.
1399 	 *
1400 	 * Various conditions can stop the TSEC receiver, but not all are
1401 	 * signaled and handled by error interrupt, so make sure the receiver
1402 	 * is running. Writing to TSEC_REG_RSTAT restarts the receiver when
1403 	 * halted, and is harmless if already running.
1404 	 */
1405 	TSEC_WRITE(sc, TSEC_REG_RSTAT, TSEC_RSTAT_QHLT);
1406 	return (rx_npkts);
1407 }
1408 
1409 void
1410 tsec_receive_intr(void *arg)
1411 {
1412 	struct tsec_softc *sc = arg;
1413 
1414 	TSEC_RECEIVE_LOCK(sc);
1415 
1416 #ifdef DEVICE_POLLING
1417 	if (if_getcapenable(sc->tsec_ifp) & IFCAP_POLLING) {
1418 		TSEC_RECEIVE_UNLOCK(sc);
1419 		return;
1420 	}
1421 #endif
1422 
1423 	/* Confirm the interrupt was received by driver */
1424 	TSEC_WRITE(sc, TSEC_REG_IEVENT, TSEC_IEVENT_RXB | TSEC_IEVENT_RXF);
1425 	tsec_receive_intr_locked(sc, -1);
1426 
1427 	TSEC_RECEIVE_UNLOCK(sc);
1428 }
1429 
1430 static void
1431 tsec_transmit_intr_locked(struct tsec_softc *sc)
1432 {
1433 	if_t ifp;
1434 	uint32_t tx_idx;
1435 
1436 	TSEC_TRANSMIT_LOCK_ASSERT(sc);
1437 
1438 	ifp = sc->tsec_ifp;
1439 
1440 	/* Update collision statistics */
1441 	if_inc_counter(ifp, IFCOUNTER_COLLISIONS, TSEC_READ(sc, TSEC_REG_MON_TNCL));
1442 
1443 	/* Reset collision counters in hardware */
1444 	TSEC_WRITE(sc, TSEC_REG_MON_TSCL, 0);
1445 	TSEC_WRITE(sc, TSEC_REG_MON_TMCL, 0);
1446 	TSEC_WRITE(sc, TSEC_REG_MON_TLCL, 0);
1447 	TSEC_WRITE(sc, TSEC_REG_MON_TXCL, 0);
1448 	TSEC_WRITE(sc, TSEC_REG_MON_TNCL, 0);
1449 
1450 	bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
1451 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1452 
1453 	tx_idx = sc->tx_idx_tail;
1454 	while (tx_idx != sc->tx_idx_head) {
1455 		struct tsec_desc *tx_desc;
1456 		struct tsec_bufmap *tx_bufmap;
1457 
1458 		tx_desc = &sc->tsec_tx_vaddr[tx_idx];
1459 		if (tx_desc->flags & TSEC_TXBD_R) {
1460 			break;
1461 		}
1462 
1463 		tx_bufmap = &sc->tx_bufmap[tx_idx];
1464 		tx_idx = (tx_idx + 1) & (TSEC_TX_NUM_DESC - 1);
1465 		if (tx_bufmap->mbuf == NULL)
1466 			continue;
1467 
1468 		/*
1469 		 * This is the last buf in this packet, so unmap and free it.
1470 		 */
1471 		bus_dmamap_sync(sc->tsec_tx_mtag, tx_bufmap->map,
1472 		    BUS_DMASYNC_POSTWRITE);
1473 		bus_dmamap_unload(sc->tsec_tx_mtag, tx_bufmap->map);
1474 		m_freem(tx_bufmap->mbuf);
1475 		tx_bufmap->mbuf = NULL;
1476 
1477 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1478 	}
1479 	sc->tx_idx_tail = tx_idx;
1480 	bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
1481 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1482 
1483 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1484 	tsec_start_locked(ifp);
1485 
1486 	if (sc->tx_idx_tail == sc->tx_idx_head)
1487 		sc->tsec_watchdog = 0;
1488 }
1489 
1490 void
1491 tsec_transmit_intr(void *arg)
1492 {
1493 	struct tsec_softc *sc = arg;
1494 
1495 	TSEC_TRANSMIT_LOCK(sc);
1496 
1497 #ifdef DEVICE_POLLING
1498 	if (if_getcapenable(sc->tsec_ifp) & IFCAP_POLLING) {
1499 		TSEC_TRANSMIT_UNLOCK(sc);
1500 		return;
1501 	}
1502 #endif
1503 	/* Confirm the interrupt was received by driver */
1504 	TSEC_WRITE(sc, TSEC_REG_IEVENT, TSEC_IEVENT_TXB | TSEC_IEVENT_TXF);
1505 	tsec_transmit_intr_locked(sc);
1506 
1507 	TSEC_TRANSMIT_UNLOCK(sc);
1508 }
1509 
1510 static void
1511 tsec_error_intr_locked(struct tsec_softc *sc, int count)
1512 {
1513 	if_t ifp;
1514 	uint32_t eflags;
1515 
1516 	TSEC_GLOBAL_LOCK_ASSERT(sc);
1517 
1518 	ifp = sc->tsec_ifp;
1519 
1520 	eflags = TSEC_READ(sc, TSEC_REG_IEVENT);
1521 
1522 	/* Clear events bits in hardware */
1523 	TSEC_WRITE(sc, TSEC_REG_IEVENT, TSEC_IEVENT_RXC | TSEC_IEVENT_BSY |
1524 	    TSEC_IEVENT_EBERR | TSEC_IEVENT_MSRO | TSEC_IEVENT_BABT |
1525 	    TSEC_IEVENT_TXC | TSEC_IEVENT_TXE | TSEC_IEVENT_LC |
1526 	    TSEC_IEVENT_CRL | TSEC_IEVENT_XFUN);
1527 
1528 	/* Check transmitter errors */
1529 	if (eflags & TSEC_IEVENT_TXE) {
1530 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1531 
1532 		if (eflags & TSEC_IEVENT_LC)
1533 			if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
1534 
1535 		TSEC_WRITE(sc, TSEC_REG_TSTAT, TSEC_TSTAT_THLT);
1536 	}
1537 
1538 	/* Check for discarded frame due to a lack of buffers */
1539 	if (eflags & TSEC_IEVENT_BSY) {
1540 		if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1541 	}
1542 
1543 	if (if_getflags(ifp) & IFF_DEBUG)
1544 		if_printf(ifp, "tsec_error_intr(): event flags: 0x%x\n",
1545 		    eflags);
1546 
1547 	if (eflags & TSEC_IEVENT_EBERR) {
1548 		if_printf(ifp, "System bus error occurred during"
1549 		    "DMA transaction (flags: 0x%x)\n", eflags);
1550 		tsec_init_locked(sc);
1551 	}
1552 
1553 	if (eflags & TSEC_IEVENT_BABT)
1554 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1555 
1556 	if (eflags & TSEC_IEVENT_BABR)
1557 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1558 }
1559 
1560 void
1561 tsec_error_intr(void *arg)
1562 {
1563 	struct tsec_softc *sc = arg;
1564 
1565 	TSEC_GLOBAL_LOCK(sc);
1566 	tsec_error_intr_locked(sc, -1);
1567 	TSEC_GLOBAL_UNLOCK(sc);
1568 }
1569 
1570 int
1571 tsec_miibus_readreg(device_t dev, int phy, int reg)
1572 {
1573 	struct tsec_softc *sc;
1574 	int timeout;
1575 	int rv;
1576 
1577 	sc = device_get_softc(dev);
1578 
1579 	TSEC_PHY_LOCK();
1580 	TSEC_PHY_WRITE(sc, TSEC_REG_MIIMADD, (phy << 8) | reg);
1581 	TSEC_PHY_WRITE(sc, TSEC_REG_MIIMCOM, 0);
1582 	TSEC_PHY_WRITE(sc, TSEC_REG_MIIMCOM, TSEC_MIIMCOM_READCYCLE);
1583 
1584 	timeout = tsec_mii_wait(sc, TSEC_MIIMIND_NOTVALID | TSEC_MIIMIND_BUSY);
1585 	rv = TSEC_PHY_READ(sc, TSEC_REG_MIIMSTAT);
1586 	TSEC_PHY_UNLOCK();
1587 
1588 	if (timeout)
1589 		device_printf(dev, "Timeout while reading from PHY!\n");
1590 
1591 	return (rv);
1592 }
1593 
1594 int
1595 tsec_miibus_writereg(device_t dev, int phy, int reg, int value)
1596 {
1597 	struct tsec_softc *sc;
1598 	int timeout;
1599 
1600 	sc = device_get_softc(dev);
1601 
1602 	TSEC_PHY_LOCK();
1603 	TSEC_PHY_WRITE(sc, TSEC_REG_MIIMADD, (phy << 8) | reg);
1604 	TSEC_PHY_WRITE(sc, TSEC_REG_MIIMCON, value);
1605 	timeout = tsec_mii_wait(sc, TSEC_MIIMIND_BUSY);
1606 	TSEC_PHY_UNLOCK();
1607 
1608 	if (timeout)
1609 		device_printf(dev, "Timeout while writing to PHY!\n");
1610 
1611 	return (0);
1612 }
1613 
1614 void
1615 tsec_miibus_statchg(device_t dev)
1616 {
1617 	struct tsec_softc *sc;
1618 	struct mii_data *mii;
1619 	uint32_t ecntrl, id, tmp;
1620 	int link;
1621 
1622 	sc = device_get_softc(dev);
1623 	mii = sc->tsec_mii;
1624 	link = ((mii->mii_media_status & IFM_ACTIVE) ? 1 : 0);
1625 
1626 	tmp = TSEC_READ(sc, TSEC_REG_MACCFG2) & ~TSEC_MACCFG2_IF;
1627 
1628 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
1629 		tmp |= TSEC_MACCFG2_FULLDUPLEX;
1630 	else
1631 		tmp &= ~TSEC_MACCFG2_FULLDUPLEX;
1632 
1633 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1634 	case IFM_1000_T:
1635 	case IFM_1000_SX:
1636 		tmp |= TSEC_MACCFG2_GMII;
1637 		sc->tsec_link = link;
1638 		break;
1639 	case IFM_100_TX:
1640 	case IFM_10_T:
1641 		tmp |= TSEC_MACCFG2_MII;
1642 		sc->tsec_link = link;
1643 		break;
1644 	case IFM_NONE:
1645 		if (link)
1646 			device_printf(dev, "No speed selected but link "
1647 			    "active!\n");
1648 		sc->tsec_link = 0;
1649 		return;
1650 	default:
1651 		sc->tsec_link = 0;
1652 		device_printf(dev, "Unknown speed (%d), link %s!\n",
1653 		    IFM_SUBTYPE(mii->mii_media_active),
1654 		        ((link) ? "up" : "down"));
1655 		return;
1656 	}
1657 	TSEC_WRITE(sc, TSEC_REG_MACCFG2, tmp);
1658 
1659 	/* XXX kludge - use circumstantial evidence for reduced mode. */
1660 	id = TSEC_READ(sc, TSEC_REG_ID2);
1661 	if (id & 0xffff) {
1662 		ecntrl = TSEC_READ(sc, TSEC_REG_ECNTRL) & ~TSEC_ECNTRL_R100M;
1663 		ecntrl |= (tmp & TSEC_MACCFG2_MII) ? TSEC_ECNTRL_R100M : 0;
1664 		TSEC_WRITE(sc, TSEC_REG_ECNTRL, ecntrl);
1665 	}
1666 }
1667 
1668 static void
1669 tsec_add_sysctls(struct tsec_softc *sc)
1670 {
1671 	struct sysctl_ctx_list *ctx;
1672 	struct sysctl_oid_list *children;
1673 	struct sysctl_oid *tree;
1674 
1675 	ctx = device_get_sysctl_ctx(sc->dev);
1676 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
1677 	tree = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "int_coal",
1678 	    CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "TSEC Interrupts coalescing");
1679 	children = SYSCTL_CHILDREN(tree);
1680 
1681 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_time",
1682 	    CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, TSEC_IC_RX,
1683 	    tsec_sysctl_ic_time, "I", "IC RX time threshold (0-65535)");
1684 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_count",
1685 	    CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, TSEC_IC_RX,
1686 	    tsec_sysctl_ic_count, "I", "IC RX frame count threshold (0-255)");
1687 
1688 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_time",
1689 	    CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, TSEC_IC_TX,
1690 	    tsec_sysctl_ic_time, "I", "IC TX time threshold (0-65535)");
1691 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_count",
1692 	    CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, TSEC_IC_TX,
1693 	    tsec_sysctl_ic_count, "I", "IC TX frame count threshold (0-255)");
1694 }
1695 
1696 /*
1697  * With Interrupt Coalescing (IC) active, a transmit/receive frame
1698  * interrupt is raised either upon:
1699  *
1700  * - threshold-defined period of time elapsed, or
1701  * - threshold-defined number of frames is received/transmitted,
1702  *   whichever occurs first.
1703  *
1704  * The following sysctls regulate IC behaviour (for TX/RX separately):
1705  *
1706  * dev.tsec.<unit>.int_coal.rx_time
1707  * dev.tsec.<unit>.int_coal.rx_count
1708  * dev.tsec.<unit>.int_coal.tx_time
1709  * dev.tsec.<unit>.int_coal.tx_count
1710  *
1711  * Values:
1712  *
1713  * - 0 for either time or count disables IC on the given TX/RX path
1714  *
1715  * - count: 1-255 (expresses frame count number; note that value of 1 is
1716  *   effectively IC off)
1717  *
1718  * - time: 1-65535 (value corresponds to a real time period and is
1719  *   expressed in units equivalent to 64 TSEC interface clocks, i.e. one timer
1720  *   threshold unit is 26.5 us, 2.56 us, or 512 ns, corresponding to 10 Mbps,
1721  *   100 Mbps, or 1Gbps, respectively. For detailed discussion consult the
1722  *   TSEC reference manual.
1723  */
1724 static int
1725 tsec_sysctl_ic_time(SYSCTL_HANDLER_ARGS)
1726 {
1727 	int error;
1728 	uint32_t time;
1729 	struct tsec_softc *sc = (struct tsec_softc *)arg1;
1730 
1731 	time = (arg2 == TSEC_IC_RX) ? sc->rx_ic_time : sc->tx_ic_time;
1732 
1733 	error = sysctl_handle_int(oidp, &time, 0, req);
1734 	if (error != 0)
1735 		return (error);
1736 
1737 	if (time > 65535)
1738 		return (EINVAL);
1739 
1740 	TSEC_IC_LOCK(sc);
1741 	if (arg2 == TSEC_IC_RX) {
1742 		sc->rx_ic_time = time;
1743 		tsec_set_rxic(sc);
1744 	} else {
1745 		sc->tx_ic_time = time;
1746 		tsec_set_txic(sc);
1747 	}
1748 	TSEC_IC_UNLOCK(sc);
1749 
1750 	return (0);
1751 }
1752 
1753 static int
1754 tsec_sysctl_ic_count(SYSCTL_HANDLER_ARGS)
1755 {
1756 	int error;
1757 	uint32_t count;
1758 	struct tsec_softc *sc = (struct tsec_softc *)arg1;
1759 
1760 	count = (arg2 == TSEC_IC_RX) ? sc->rx_ic_count : sc->tx_ic_count;
1761 
1762 	error = sysctl_handle_int(oidp, &count, 0, req);
1763 	if (error != 0)
1764 		return (error);
1765 
1766 	if (count > 255)
1767 		return (EINVAL);
1768 
1769 	TSEC_IC_LOCK(sc);
1770 	if (arg2 == TSEC_IC_RX) {
1771 		sc->rx_ic_count = count;
1772 		tsec_set_rxic(sc);
1773 	} else {
1774 		sc->tx_ic_count = count;
1775 		tsec_set_txic(sc);
1776 	}
1777 	TSEC_IC_UNLOCK(sc);
1778 
1779 	return (0);
1780 }
1781 
1782 static void
1783 tsec_set_rxic(struct tsec_softc *sc)
1784 {
1785 	uint32_t rxic_val;
1786 
1787 	if (sc->rx_ic_count == 0 || sc->rx_ic_time == 0)
1788 		/* Disable RX IC */
1789 		rxic_val = 0;
1790 	else {
1791 		rxic_val = 0x80000000;
1792 		rxic_val |= (sc->rx_ic_count << 21);
1793 		rxic_val |= sc->rx_ic_time;
1794 	}
1795 
1796 	TSEC_WRITE(sc, TSEC_REG_RXIC, rxic_val);
1797 }
1798 
1799 static void
1800 tsec_set_txic(struct tsec_softc *sc)
1801 {
1802 	uint32_t txic_val;
1803 
1804 	if (sc->tx_ic_count == 0 || sc->tx_ic_time == 0)
1805 		/* Disable TX IC */
1806 		txic_val = 0;
1807 	else {
1808 		txic_val = 0x80000000;
1809 		txic_val |= (sc->tx_ic_count << 21);
1810 		txic_val |= sc->tx_ic_time;
1811 	}
1812 
1813 	TSEC_WRITE(sc, TSEC_REG_TXIC, txic_val);
1814 }
1815 
1816 static void
1817 tsec_offload_setup(struct tsec_softc *sc)
1818 {
1819 	if_t ifp = sc->tsec_ifp;
1820 	uint32_t reg;
1821 
1822 	TSEC_GLOBAL_LOCK_ASSERT(sc);
1823 
1824 	reg = TSEC_READ(sc, TSEC_REG_TCTRL);
1825 	reg |= TSEC_TCTRL_IPCSEN | TSEC_TCTRL_TUCSEN;
1826 
1827 	if (if_getcapenable(ifp) & IFCAP_TXCSUM)
1828 		if_sethwassist(ifp, TSEC_CHECKSUM_FEATURES);
1829 	else
1830 		if_sethwassist(ifp, 0);
1831 
1832 	TSEC_WRITE(sc, TSEC_REG_TCTRL, reg);
1833 
1834 	reg = TSEC_READ(sc, TSEC_REG_RCTRL);
1835 	reg &= ~(TSEC_RCTRL_IPCSEN | TSEC_RCTRL_TUCSEN | TSEC_RCTRL_PRSDEP);
1836 	reg |= TSEC_RCTRL_PRSDEP_PARSE_L2 | TSEC_RCTRL_VLEX;
1837 
1838 	if (if_getcapenable(ifp) & IFCAP_RXCSUM)
1839 		reg |= TSEC_RCTRL_IPCSEN | TSEC_RCTRL_TUCSEN |
1840 		    TSEC_RCTRL_PRSDEP_PARSE_L234;
1841 
1842 	TSEC_WRITE(sc, TSEC_REG_RCTRL, reg);
1843 }
1844 
1845 static void
1846 tsec_offload_process_frame(struct tsec_softc *sc, struct mbuf *m)
1847 {
1848 	struct tsec_rx_fcb rx_fcb;
1849 	int csum_flags = 0;
1850 	int protocol, flags;
1851 
1852 	TSEC_RECEIVE_LOCK_ASSERT(sc);
1853 
1854 	m_copydata(m, 0, sizeof(struct tsec_rx_fcb), (caddr_t)(&rx_fcb));
1855 	flags = rx_fcb.flags;
1856 	protocol = rx_fcb.protocol;
1857 
1858 	if (TSEC_RX_FCB_IP_CSUM_CHECKED(flags)) {
1859 		csum_flags |= CSUM_IP_CHECKED;
1860 
1861 		if ((flags & TSEC_RX_FCB_IP_CSUM_ERROR) == 0)
1862 			csum_flags |= CSUM_IP_VALID;
1863 	}
1864 
1865 	if ((protocol == IPPROTO_TCP || protocol == IPPROTO_UDP) &&
1866 	    TSEC_RX_FCB_TCP_UDP_CSUM_CHECKED(flags) &&
1867 	    (flags & TSEC_RX_FCB_TCP_UDP_CSUM_ERROR) == 0) {
1868 		csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1869 		m->m_pkthdr.csum_data = 0xFFFF;
1870 	}
1871 
1872 	m->m_pkthdr.csum_flags = csum_flags;
1873 
1874 	if (flags & TSEC_RX_FCB_VLAN) {
1875 		m->m_pkthdr.ether_vtag = rx_fcb.vlan;
1876 		m->m_flags |= M_VLANTAG;
1877 	}
1878 
1879 	m_adj(m, sizeof(struct tsec_rx_fcb));
1880 }
1881 
1882 static u_int
1883 tsec_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
1884 {
1885 	uint32_t h, *hashtable = arg;
1886 
1887 	h = (ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN) >> 24) & 0xFF;
1888 	hashtable[(h >> 5)] |= 1 << (0x1F - (h & 0x1F));
1889 
1890 	return (1);
1891 }
1892 
1893 static void
1894 tsec_setup_multicast(struct tsec_softc *sc)
1895 {
1896 	uint32_t hashtable[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
1897 	if_t ifp = sc->tsec_ifp;
1898 	int i;
1899 
1900 	TSEC_GLOBAL_LOCK_ASSERT(sc);
1901 
1902 	if (if_getflags(ifp) & IFF_ALLMULTI) {
1903 		for (i = 0; i < 8; i++)
1904 			TSEC_WRITE(sc, TSEC_REG_GADDR(i), 0xFFFFFFFF);
1905 
1906 		return;
1907 	}
1908 
1909 	if_foreach_llmaddr(ifp, tsec_hash_maddr, &hashtable);
1910 
1911 	for (i = 0; i < 8; i++)
1912 		TSEC_WRITE(sc, TSEC_REG_GADDR(i), hashtable[i]);
1913 }
1914 
1915 static int
1916 tsec_set_mtu(struct tsec_softc *sc, unsigned int mtu)
1917 {
1918 
1919 	mtu += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
1920 
1921 	TSEC_GLOBAL_LOCK_ASSERT(sc);
1922 
1923 	if (mtu >= TSEC_MIN_FRAME_SIZE && mtu <= TSEC_MAX_FRAME_SIZE) {
1924 		TSEC_WRITE(sc, TSEC_REG_MAXFRM, mtu);
1925 		return (mtu);
1926 	}
1927 
1928 	return (0);
1929 }
1930