xref: /freebsd/sys/dev/usb/wlan/if_rum.c (revision 2f513db7)
1 /*	$FreeBSD$	*/
2 
3 /*-
4  * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr>
5  * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org>
6  * Copyright (c) 2007-2008 Hans Petter Selasky <hselasky@FreeBSD.org>
7  * Copyright (c) 2015 Andriy Voskoboinyk <avos@FreeBSD.org>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  */
21 
22 #include <sys/cdefs.h>
23 __FBSDID("$FreeBSD$");
24 
25 /*-
26  * Ralink Technology RT2501USB/RT2601USB chipset driver
27  * http://www.ralinktech.com.tw/
28  */
29 
30 #include "opt_wlan.h"
31 
32 #include <sys/param.h>
33 #include <sys/sockio.h>
34 #include <sys/sysctl.h>
35 #include <sys/lock.h>
36 #include <sys/mutex.h>
37 #include <sys/mbuf.h>
38 #include <sys/kernel.h>
39 #include <sys/socket.h>
40 #include <sys/systm.h>
41 #include <sys/malloc.h>
42 #include <sys/module.h>
43 #include <sys/bus.h>
44 #include <sys/endian.h>
45 #include <sys/kdb.h>
46 
47 #include <net/bpf.h>
48 #include <net/if.h>
49 #include <net/if_var.h>
50 #include <net/if_arp.h>
51 #include <net/ethernet.h>
52 #include <net/if_dl.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55 
56 #ifdef INET
57 #include <netinet/in.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/in_var.h>
60 #include <netinet/if_ether.h>
61 #include <netinet/ip.h>
62 #endif
63 
64 #include <net80211/ieee80211_var.h>
65 #include <net80211/ieee80211_regdomain.h>
66 #include <net80211/ieee80211_radiotap.h>
67 #include <net80211/ieee80211_ratectl.h>
68 
69 #include <dev/usb/usb.h>
70 #include <dev/usb/usbdi.h>
71 #include "usbdevs.h"
72 
73 #define	USB_DEBUG_VAR rum_debug
74 #include <dev/usb/usb_debug.h>
75 
76 #include <dev/usb/wlan/if_rumreg.h>
77 #include <dev/usb/wlan/if_rumvar.h>
78 #include <dev/usb/wlan/if_rumfw.h>
79 
80 #ifdef USB_DEBUG
81 static int rum_debug = 0;
82 
83 static SYSCTL_NODE(_hw_usb, OID_AUTO, rum, CTLFLAG_RW, 0, "USB rum");
84 SYSCTL_INT(_hw_usb_rum, OID_AUTO, debug, CTLFLAG_RWTUN, &rum_debug, 0,
85     "Debug level");
86 #endif
87 
88 static const STRUCT_USB_HOST_ID rum_devs[] = {
89 #define	RUM_DEV(v,p)  { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) }
90     RUM_DEV(ABOCOM, HWU54DM),
91     RUM_DEV(ABOCOM, RT2573_2),
92     RUM_DEV(ABOCOM, RT2573_3),
93     RUM_DEV(ABOCOM, RT2573_4),
94     RUM_DEV(ABOCOM, WUG2700),
95     RUM_DEV(AMIT, CGWLUSB2GO),
96     RUM_DEV(ASUS, RT2573_1),
97     RUM_DEV(ASUS, RT2573_2),
98     RUM_DEV(BELKIN, F5D7050A),
99     RUM_DEV(BELKIN, F5D9050V3),
100     RUM_DEV(CISCOLINKSYS, WUSB54GC),
101     RUM_DEV(CISCOLINKSYS, WUSB54GR),
102     RUM_DEV(CONCEPTRONIC2, C54RU2),
103     RUM_DEV(COREGA, CGWLUSB2GL),
104     RUM_DEV(COREGA, CGWLUSB2GPX),
105     RUM_DEV(DICKSMITH, CWD854F),
106     RUM_DEV(DICKSMITH, RT2573),
107     RUM_DEV(EDIMAX, EW7318USG),
108     RUM_DEV(DLINK2, DWLG122C1),
109     RUM_DEV(DLINK2, WUA1340),
110     RUM_DEV(DLINK2, DWA111),
111     RUM_DEV(DLINK2, DWA110),
112     RUM_DEV(GIGABYTE, GNWB01GS),
113     RUM_DEV(GIGABYTE, GNWI05GS),
114     RUM_DEV(GIGASET, RT2573),
115     RUM_DEV(GOODWAY, RT2573),
116     RUM_DEV(GUILLEMOT, HWGUSB254LB),
117     RUM_DEV(GUILLEMOT, HWGUSB254V2AP),
118     RUM_DEV(HUAWEI3COM, WUB320G),
119     RUM_DEV(MELCO, G54HP),
120     RUM_DEV(MELCO, SG54HP),
121     RUM_DEV(MELCO, SG54HG),
122     RUM_DEV(MELCO, WLIUCG),
123     RUM_DEV(MELCO, WLRUCG),
124     RUM_DEV(MELCO, WLRUCGAOSS),
125     RUM_DEV(MSI, RT2573_1),
126     RUM_DEV(MSI, RT2573_2),
127     RUM_DEV(MSI, RT2573_3),
128     RUM_DEV(MSI, RT2573_4),
129     RUM_DEV(NOVATECH, RT2573),
130     RUM_DEV(PLANEX2, GWUS54HP),
131     RUM_DEV(PLANEX2, GWUS54MINI2),
132     RUM_DEV(PLANEX2, GWUSMM),
133     RUM_DEV(QCOM, RT2573),
134     RUM_DEV(QCOM, RT2573_2),
135     RUM_DEV(QCOM, RT2573_3),
136     RUM_DEV(RALINK, RT2573),
137     RUM_DEV(RALINK, RT2573_2),
138     RUM_DEV(RALINK, RT2671),
139     RUM_DEV(SITECOMEU, WL113R2),
140     RUM_DEV(SITECOMEU, WL172),
141     RUM_DEV(SPARKLAN, RT2573),
142     RUM_DEV(SURECOM, RT2573),
143 #undef RUM_DEV
144 };
145 
146 static device_probe_t rum_match;
147 static device_attach_t rum_attach;
148 static device_detach_t rum_detach;
149 
150 static usb_callback_t rum_bulk_read_callback;
151 static usb_callback_t rum_bulk_write_callback;
152 
153 static usb_error_t	rum_do_request(struct rum_softc *sc,
154 			    struct usb_device_request *req, void *data);
155 static usb_error_t	rum_do_mcu_request(struct rum_softc *sc, int);
156 static struct ieee80211vap *rum_vap_create(struct ieee80211com *,
157 			    const char [IFNAMSIZ], int, enum ieee80211_opmode,
158 			    int, const uint8_t [IEEE80211_ADDR_LEN],
159 			    const uint8_t [IEEE80211_ADDR_LEN]);
160 static void		rum_vap_delete(struct ieee80211vap *);
161 static void		rum_cmdq_cb(void *, int);
162 static int		rum_cmd_sleepable(struct rum_softc *, const void *,
163 			    size_t, uint8_t, CMD_FUNC_PROTO);
164 static void		rum_tx_free(struct rum_tx_data *, int);
165 static void		rum_setup_tx_list(struct rum_softc *);
166 static void		rum_reset_tx_list(struct rum_softc *,
167 			    struct ieee80211vap *);
168 static void		rum_unsetup_tx_list(struct rum_softc *);
169 static void		rum_beacon_miss(struct ieee80211vap *);
170 static void		rum_sta_recv_mgmt(struct ieee80211_node *,
171 			    struct mbuf *, int,
172 			    const struct ieee80211_rx_stats *, int, int);
173 static int		rum_set_power_state(struct rum_softc *, int);
174 static int		rum_newstate(struct ieee80211vap *,
175 			    enum ieee80211_state, int);
176 static uint8_t		rum_crypto_mode(struct rum_softc *, u_int, int);
177 static void		rum_setup_tx_desc(struct rum_softc *,
178 			    struct rum_tx_desc *, struct ieee80211_key *,
179 			    uint32_t, uint8_t, uint8_t, int, int, int);
180 static uint32_t		rum_tx_crypto_flags(struct rum_softc *,
181 			    struct ieee80211_node *,
182 			    const struct ieee80211_key *);
183 static int		rum_tx_mgt(struct rum_softc *, struct mbuf *,
184 			    struct ieee80211_node *);
185 static int		rum_tx_raw(struct rum_softc *, struct mbuf *,
186 			    struct ieee80211_node *,
187 			    const struct ieee80211_bpf_params *);
188 static int		rum_tx_data(struct rum_softc *, struct mbuf *,
189 			    struct ieee80211_node *);
190 static int		rum_transmit(struct ieee80211com *, struct mbuf *);
191 static void		rum_start(struct rum_softc *);
192 static void		rum_parent(struct ieee80211com *);
193 static void		rum_eeprom_read(struct rum_softc *, uint16_t, void *,
194 			    int);
195 static uint32_t		rum_read(struct rum_softc *, uint16_t);
196 static void		rum_read_multi(struct rum_softc *, uint16_t, void *,
197 			    int);
198 static usb_error_t	rum_write(struct rum_softc *, uint16_t, uint32_t);
199 static usb_error_t	rum_write_multi(struct rum_softc *, uint16_t, void *,
200 			    size_t);
201 static usb_error_t	rum_setbits(struct rum_softc *, uint16_t, uint32_t);
202 static usb_error_t	rum_clrbits(struct rum_softc *, uint16_t, uint32_t);
203 static usb_error_t	rum_modbits(struct rum_softc *, uint16_t, uint32_t,
204 			    uint32_t);
205 static int		rum_bbp_busy(struct rum_softc *);
206 static void		rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
207 static uint8_t		rum_bbp_read(struct rum_softc *, uint8_t);
208 static void		rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
209 static void		rum_select_antenna(struct rum_softc *);
210 static void		rum_enable_mrr(struct rum_softc *);
211 static void		rum_set_txpreamble(struct rum_softc *);
212 static void		rum_set_basicrates(struct rum_softc *);
213 static void		rum_select_band(struct rum_softc *,
214 			    struct ieee80211_channel *);
215 static void		rum_set_chan(struct rum_softc *,
216 			    struct ieee80211_channel *);
217 static void		rum_set_maxretry(struct rum_softc *,
218 			    struct ieee80211vap *);
219 static int		rum_enable_tsf_sync(struct rum_softc *);
220 static void		rum_enable_tsf(struct rum_softc *);
221 static void		rum_abort_tsf_sync(struct rum_softc *);
222 static void		rum_get_tsf(struct rum_softc *, uint64_t *);
223 static void		rum_update_slot_cb(struct rum_softc *,
224 			    union sec_param *, uint8_t);
225 static void		rum_update_slot(struct ieee80211com *);
226 static int		rum_wme_update(struct ieee80211com *);
227 static void		rum_set_bssid(struct rum_softc *, const uint8_t *);
228 static void		rum_set_macaddr(struct rum_softc *, const uint8_t *);
229 static void		rum_update_mcast(struct ieee80211com *);
230 static void		rum_update_promisc(struct ieee80211com *);
231 static void		rum_setpromisc(struct rum_softc *);
232 static const char	*rum_get_rf(int);
233 static void		rum_read_eeprom(struct rum_softc *);
234 static int		rum_bbp_wakeup(struct rum_softc *);
235 static int		rum_bbp_init(struct rum_softc *);
236 static void		rum_clr_shkey_regs(struct rum_softc *);
237 static int		rum_init(struct rum_softc *);
238 static void		rum_stop(struct rum_softc *);
239 static void		rum_load_microcode(struct rum_softc *, const uint8_t *,
240 			    size_t);
241 static int		rum_set_sleep_time(struct rum_softc *, uint16_t);
242 static int		rum_reset(struct ieee80211vap *, u_long);
243 static int		rum_set_beacon(struct rum_softc *,
244 			    struct ieee80211vap *);
245 static int		rum_alloc_beacon(struct rum_softc *,
246 			    struct ieee80211vap *);
247 static void		rum_update_beacon_cb(struct rum_softc *,
248 			    union sec_param *, uint8_t);
249 static void		rum_update_beacon(struct ieee80211vap *, int);
250 static int		rum_common_key_set(struct rum_softc *,
251 			    struct ieee80211_key *, uint16_t);
252 static void		rum_group_key_set_cb(struct rum_softc *,
253 			    union sec_param *, uint8_t);
254 static void		rum_group_key_del_cb(struct rum_softc *,
255 			    union sec_param *, uint8_t);
256 static void		rum_pair_key_set_cb(struct rum_softc *,
257 			    union sec_param *, uint8_t);
258 static void		rum_pair_key_del_cb(struct rum_softc *,
259 			    union sec_param *, uint8_t);
260 static int		rum_key_alloc(struct ieee80211vap *,
261 			    struct ieee80211_key *, ieee80211_keyix *,
262 			    ieee80211_keyix *);
263 static int		rum_key_set(struct ieee80211vap *,
264 			    const struct ieee80211_key *);
265 static int		rum_key_delete(struct ieee80211vap *,
266 			    const struct ieee80211_key *);
267 static int		rum_raw_xmit(struct ieee80211_node *, struct mbuf *,
268 			    const struct ieee80211_bpf_params *);
269 static void		rum_scan_start(struct ieee80211com *);
270 static void		rum_scan_end(struct ieee80211com *);
271 static void		rum_set_channel(struct ieee80211com *);
272 static void		rum_getradiocaps(struct ieee80211com *, int, int *,
273 			    struct ieee80211_channel[]);
274 static int		rum_get_rssi(struct rum_softc *, uint8_t);
275 static void		rum_ratectl_start(struct rum_softc *,
276 			    struct ieee80211_node *);
277 static void		rum_ratectl_timeout(void *);
278 static void		rum_ratectl_task(void *, int);
279 static int		rum_pause(struct rum_softc *, int);
280 
281 static const struct {
282 	uint32_t	reg;
283 	uint32_t	val;
284 } rum_def_mac[] = {
285 	{ RT2573_TXRX_CSR0,  0x025fb032 },
286 	{ RT2573_TXRX_CSR1,  0x9eaa9eaf },
287 	{ RT2573_TXRX_CSR2,  0x8a8b8c8d },
288 	{ RT2573_TXRX_CSR3,  0x00858687 },
289 	{ RT2573_TXRX_CSR7,  0x2e31353b },
290 	{ RT2573_TXRX_CSR8,  0x2a2a2a2c },
291 	{ RT2573_TXRX_CSR15, 0x0000000f },
292 	{ RT2573_MAC_CSR6,   0x00000fff },
293 	{ RT2573_MAC_CSR8,   0x016c030a },
294 	{ RT2573_MAC_CSR10,  0x00000718 },
295 	{ RT2573_MAC_CSR12,  0x00000004 },
296 	{ RT2573_MAC_CSR13,  0x00007f00 },
297 	{ RT2573_SEC_CSR2,   0x00000000 },
298 	{ RT2573_SEC_CSR3,   0x00000000 },
299 	{ RT2573_SEC_CSR4,   0x00000000 },
300 	{ RT2573_PHY_CSR1,   0x000023b0 },
301 	{ RT2573_PHY_CSR5,   0x00040a06 },
302 	{ RT2573_PHY_CSR6,   0x00080606 },
303 	{ RT2573_PHY_CSR7,   0x00000408 },
304 	{ RT2573_AIFSN_CSR,  0x00002273 },
305 	{ RT2573_CWMIN_CSR,  0x00002344 },
306 	{ RT2573_CWMAX_CSR,  0x000034aa }
307 };
308 
309 static const struct {
310 	uint8_t	reg;
311 	uint8_t	val;
312 } rum_def_bbp[] = {
313 	{   3, 0x80 },
314 	{  15, 0x30 },
315 	{  17, 0x20 },
316 	{  21, 0xc8 },
317 	{  22, 0x38 },
318 	{  23, 0x06 },
319 	{  24, 0xfe },
320 	{  25, 0x0a },
321 	{  26, 0x0d },
322 	{  32, 0x0b },
323 	{  34, 0x12 },
324 	{  37, 0x07 },
325 	{  39, 0xf8 },
326 	{  41, 0x60 },
327 	{  53, 0x10 },
328 	{  54, 0x18 },
329 	{  60, 0x10 },
330 	{  61, 0x04 },
331 	{  62, 0x04 },
332 	{  75, 0xfe },
333 	{  86, 0xfe },
334 	{  88, 0xfe },
335 	{  90, 0x0f },
336 	{  99, 0x00 },
337 	{ 102, 0x16 },
338 	{ 107, 0x04 }
339 };
340 
341 static const uint8_t rum_chan_5ghz[] =
342 	{ 34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64,
343 	  100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140,
344 	  149, 153, 157, 161, 165 };
345 
346 static const struct rfprog {
347 	uint8_t		chan;
348 	uint32_t	r1, r2, r3, r4;
349 }  rum_rf5226[] = {
350 	{   1, 0x00b03, 0x001e1, 0x1a014, 0x30282 },
351 	{   2, 0x00b03, 0x001e1, 0x1a014, 0x30287 },
352 	{   3, 0x00b03, 0x001e2, 0x1a014, 0x30282 },
353 	{   4, 0x00b03, 0x001e2, 0x1a014, 0x30287 },
354 	{   5, 0x00b03, 0x001e3, 0x1a014, 0x30282 },
355 	{   6, 0x00b03, 0x001e3, 0x1a014, 0x30287 },
356 	{   7, 0x00b03, 0x001e4, 0x1a014, 0x30282 },
357 	{   8, 0x00b03, 0x001e4, 0x1a014, 0x30287 },
358 	{   9, 0x00b03, 0x001e5, 0x1a014, 0x30282 },
359 	{  10, 0x00b03, 0x001e5, 0x1a014, 0x30287 },
360 	{  11, 0x00b03, 0x001e6, 0x1a014, 0x30282 },
361 	{  12, 0x00b03, 0x001e6, 0x1a014, 0x30287 },
362 	{  13, 0x00b03, 0x001e7, 0x1a014, 0x30282 },
363 	{  14, 0x00b03, 0x001e8, 0x1a014, 0x30284 },
364 
365 	{  34, 0x00b03, 0x20266, 0x36014, 0x30282 },
366 	{  38, 0x00b03, 0x20267, 0x36014, 0x30284 },
367 	{  42, 0x00b03, 0x20268, 0x36014, 0x30286 },
368 	{  46, 0x00b03, 0x20269, 0x36014, 0x30288 },
369 
370 	{  36, 0x00b03, 0x00266, 0x26014, 0x30288 },
371 	{  40, 0x00b03, 0x00268, 0x26014, 0x30280 },
372 	{  44, 0x00b03, 0x00269, 0x26014, 0x30282 },
373 	{  48, 0x00b03, 0x0026a, 0x26014, 0x30284 },
374 	{  52, 0x00b03, 0x0026b, 0x26014, 0x30286 },
375 	{  56, 0x00b03, 0x0026c, 0x26014, 0x30288 },
376 	{  60, 0x00b03, 0x0026e, 0x26014, 0x30280 },
377 	{  64, 0x00b03, 0x0026f, 0x26014, 0x30282 },
378 
379 	{ 100, 0x00b03, 0x0028a, 0x2e014, 0x30280 },
380 	{ 104, 0x00b03, 0x0028b, 0x2e014, 0x30282 },
381 	{ 108, 0x00b03, 0x0028c, 0x2e014, 0x30284 },
382 	{ 112, 0x00b03, 0x0028d, 0x2e014, 0x30286 },
383 	{ 116, 0x00b03, 0x0028e, 0x2e014, 0x30288 },
384 	{ 120, 0x00b03, 0x002a0, 0x2e014, 0x30280 },
385 	{ 124, 0x00b03, 0x002a1, 0x2e014, 0x30282 },
386 	{ 128, 0x00b03, 0x002a2, 0x2e014, 0x30284 },
387 	{ 132, 0x00b03, 0x002a3, 0x2e014, 0x30286 },
388 	{ 136, 0x00b03, 0x002a4, 0x2e014, 0x30288 },
389 	{ 140, 0x00b03, 0x002a6, 0x2e014, 0x30280 },
390 
391 	{ 149, 0x00b03, 0x002a8, 0x2e014, 0x30287 },
392 	{ 153, 0x00b03, 0x002a9, 0x2e014, 0x30289 },
393 	{ 157, 0x00b03, 0x002ab, 0x2e014, 0x30281 },
394 	{ 161, 0x00b03, 0x002ac, 0x2e014, 0x30283 },
395 	{ 165, 0x00b03, 0x002ad, 0x2e014, 0x30285 }
396 }, rum_rf5225[] = {
397 	{   1, 0x00b33, 0x011e1, 0x1a014, 0x30282 },
398 	{   2, 0x00b33, 0x011e1, 0x1a014, 0x30287 },
399 	{   3, 0x00b33, 0x011e2, 0x1a014, 0x30282 },
400 	{   4, 0x00b33, 0x011e2, 0x1a014, 0x30287 },
401 	{   5, 0x00b33, 0x011e3, 0x1a014, 0x30282 },
402 	{   6, 0x00b33, 0x011e3, 0x1a014, 0x30287 },
403 	{   7, 0x00b33, 0x011e4, 0x1a014, 0x30282 },
404 	{   8, 0x00b33, 0x011e4, 0x1a014, 0x30287 },
405 	{   9, 0x00b33, 0x011e5, 0x1a014, 0x30282 },
406 	{  10, 0x00b33, 0x011e5, 0x1a014, 0x30287 },
407 	{  11, 0x00b33, 0x011e6, 0x1a014, 0x30282 },
408 	{  12, 0x00b33, 0x011e6, 0x1a014, 0x30287 },
409 	{  13, 0x00b33, 0x011e7, 0x1a014, 0x30282 },
410 	{  14, 0x00b33, 0x011e8, 0x1a014, 0x30284 },
411 
412 	{  34, 0x00b33, 0x01266, 0x26014, 0x30282 },
413 	{  38, 0x00b33, 0x01267, 0x26014, 0x30284 },
414 	{  42, 0x00b33, 0x01268, 0x26014, 0x30286 },
415 	{  46, 0x00b33, 0x01269, 0x26014, 0x30288 },
416 
417 	{  36, 0x00b33, 0x01266, 0x26014, 0x30288 },
418 	{  40, 0x00b33, 0x01268, 0x26014, 0x30280 },
419 	{  44, 0x00b33, 0x01269, 0x26014, 0x30282 },
420 	{  48, 0x00b33, 0x0126a, 0x26014, 0x30284 },
421 	{  52, 0x00b33, 0x0126b, 0x26014, 0x30286 },
422 	{  56, 0x00b33, 0x0126c, 0x26014, 0x30288 },
423 	{  60, 0x00b33, 0x0126e, 0x26014, 0x30280 },
424 	{  64, 0x00b33, 0x0126f, 0x26014, 0x30282 },
425 
426 	{ 100, 0x00b33, 0x0128a, 0x2e014, 0x30280 },
427 	{ 104, 0x00b33, 0x0128b, 0x2e014, 0x30282 },
428 	{ 108, 0x00b33, 0x0128c, 0x2e014, 0x30284 },
429 	{ 112, 0x00b33, 0x0128d, 0x2e014, 0x30286 },
430 	{ 116, 0x00b33, 0x0128e, 0x2e014, 0x30288 },
431 	{ 120, 0x00b33, 0x012a0, 0x2e014, 0x30280 },
432 	{ 124, 0x00b33, 0x012a1, 0x2e014, 0x30282 },
433 	{ 128, 0x00b33, 0x012a2, 0x2e014, 0x30284 },
434 	{ 132, 0x00b33, 0x012a3, 0x2e014, 0x30286 },
435 	{ 136, 0x00b33, 0x012a4, 0x2e014, 0x30288 },
436 	{ 140, 0x00b33, 0x012a6, 0x2e014, 0x30280 },
437 
438 	{ 149, 0x00b33, 0x012a8, 0x2e014, 0x30287 },
439 	{ 153, 0x00b33, 0x012a9, 0x2e014, 0x30289 },
440 	{ 157, 0x00b33, 0x012ab, 0x2e014, 0x30281 },
441 	{ 161, 0x00b33, 0x012ac, 0x2e014, 0x30283 },
442 	{ 165, 0x00b33, 0x012ad, 0x2e014, 0x30285 }
443 };
444 
445 static const struct usb_config rum_config[RUM_N_TRANSFER] = {
446 	[RUM_BULK_WR] = {
447 		.type = UE_BULK,
448 		.endpoint = UE_ADDR_ANY,
449 		.direction = UE_DIR_OUT,
450 		.bufsize = (MCLBYTES + RT2573_TX_DESC_SIZE + 8),
451 		.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
452 		.callback = rum_bulk_write_callback,
453 		.timeout = 5000,	/* ms */
454 	},
455 	[RUM_BULK_RD] = {
456 		.type = UE_BULK,
457 		.endpoint = UE_ADDR_ANY,
458 		.direction = UE_DIR_IN,
459 		.bufsize = (MCLBYTES + RT2573_RX_DESC_SIZE),
460 		.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
461 		.callback = rum_bulk_read_callback,
462 	},
463 };
464 
465 static int
466 rum_match(device_t self)
467 {
468 	struct usb_attach_arg *uaa = device_get_ivars(self);
469 
470 	if (uaa->usb_mode != USB_MODE_HOST)
471 		return (ENXIO);
472 	if (uaa->info.bConfigIndex != 0)
473 		return (ENXIO);
474 	if (uaa->info.bIfaceIndex != RT2573_IFACE_INDEX)
475 		return (ENXIO);
476 
477 	return (usbd_lookup_id_by_uaa(rum_devs, sizeof(rum_devs), uaa));
478 }
479 
480 static int
481 rum_attach(device_t self)
482 {
483 	struct usb_attach_arg *uaa = device_get_ivars(self);
484 	struct rum_softc *sc = device_get_softc(self);
485 	struct ieee80211com *ic = &sc->sc_ic;
486 	uint32_t tmp;
487 	uint8_t iface_index;
488 	int error, ntries;
489 
490 	device_set_usb_desc(self);
491 	sc->sc_udev = uaa->device;
492 	sc->sc_dev = self;
493 
494 	RUM_LOCK_INIT(sc);
495 	RUM_CMDQ_LOCK_INIT(sc);
496 	mbufq_init(&sc->sc_snd, ifqmaxlen);
497 
498 	iface_index = RT2573_IFACE_INDEX;
499 	error = usbd_transfer_setup(uaa->device, &iface_index,
500 	    sc->sc_xfer, rum_config, RUM_N_TRANSFER, sc, &sc->sc_mtx);
501 	if (error) {
502 		device_printf(self, "could not allocate USB transfers, "
503 		    "err=%s\n", usbd_errstr(error));
504 		goto detach;
505 	}
506 
507 	RUM_LOCK(sc);
508 	/* retrieve RT2573 rev. no */
509 	for (ntries = 0; ntries < 100; ntries++) {
510 		if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
511 			break;
512 		if (rum_pause(sc, hz / 100))
513 			break;
514 	}
515 	if (ntries == 100) {
516 		device_printf(sc->sc_dev, "timeout waiting for chip to settle\n");
517 		RUM_UNLOCK(sc);
518 		goto detach;
519 	}
520 
521 	/* retrieve MAC address and various other things from EEPROM */
522 	rum_read_eeprom(sc);
523 
524 	device_printf(sc->sc_dev, "MAC/BBP RT2573 (rev 0x%05x), RF %s\n",
525 	    tmp, rum_get_rf(sc->rf_rev));
526 
527 	rum_load_microcode(sc, rt2573_ucode, sizeof(rt2573_ucode));
528 	RUM_UNLOCK(sc);
529 
530 	ic->ic_softc = sc;
531 	ic->ic_name = device_get_nameunit(self);
532 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
533 
534 	/* set device capabilities */
535 	ic->ic_caps =
536 	      IEEE80211_C_STA		/* station mode supported */
537 	    | IEEE80211_C_IBSS		/* IBSS mode supported */
538 	    | IEEE80211_C_MONITOR	/* monitor mode supported */
539 	    | IEEE80211_C_HOSTAP	/* HostAp mode supported */
540 	    | IEEE80211_C_AHDEMO	/* adhoc demo mode */
541 	    | IEEE80211_C_TXPMGT	/* tx power management */
542 	    | IEEE80211_C_SHPREAMBLE	/* short preamble supported */
543 	    | IEEE80211_C_SHSLOT	/* short slot time supported */
544 	    | IEEE80211_C_BGSCAN	/* bg scanning supported */
545 	    | IEEE80211_C_WPA		/* 802.11i */
546 	    | IEEE80211_C_WME		/* 802.11e */
547 	    | IEEE80211_C_PMGT		/* Station-side power mgmt */
548 	    | IEEE80211_C_SWSLEEP	/* net80211 managed power mgmt */
549 	    ;
550 
551 	ic->ic_cryptocaps =
552 	    IEEE80211_CRYPTO_WEP |
553 	    IEEE80211_CRYPTO_AES_CCM |
554 	    IEEE80211_CRYPTO_TKIPMIC |
555 	    IEEE80211_CRYPTO_TKIP;
556 
557 	rum_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans,
558 	    ic->ic_channels);
559 
560 	ieee80211_ifattach(ic);
561 	ic->ic_update_promisc = rum_update_promisc;
562 	ic->ic_raw_xmit = rum_raw_xmit;
563 	ic->ic_scan_start = rum_scan_start;
564 	ic->ic_scan_end = rum_scan_end;
565 	ic->ic_set_channel = rum_set_channel;
566 	ic->ic_getradiocaps = rum_getradiocaps;
567 	ic->ic_transmit = rum_transmit;
568 	ic->ic_parent = rum_parent;
569 	ic->ic_vap_create = rum_vap_create;
570 	ic->ic_vap_delete = rum_vap_delete;
571 	ic->ic_updateslot = rum_update_slot;
572 	ic->ic_wme.wme_update = rum_wme_update;
573 	ic->ic_update_mcast = rum_update_mcast;
574 
575 	ieee80211_radiotap_attach(ic,
576 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
577 		RT2573_TX_RADIOTAP_PRESENT,
578 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
579 		RT2573_RX_RADIOTAP_PRESENT);
580 
581 	TASK_INIT(&sc->cmdq_task, 0, rum_cmdq_cb, sc);
582 
583 	if (bootverbose)
584 		ieee80211_announce(ic);
585 
586 	return (0);
587 
588 detach:
589 	rum_detach(self);
590 	return (ENXIO);			/* failure */
591 }
592 
593 static int
594 rum_detach(device_t self)
595 {
596 	struct rum_softc *sc = device_get_softc(self);
597 	struct ieee80211com *ic = &sc->sc_ic;
598 
599 	/* Prevent further ioctls */
600 	RUM_LOCK(sc);
601 	sc->sc_detached = 1;
602 	RUM_UNLOCK(sc);
603 
604 	/* stop all USB transfers */
605 	usbd_transfer_unsetup(sc->sc_xfer, RUM_N_TRANSFER);
606 
607 	/* free TX list, if any */
608 	RUM_LOCK(sc);
609 	rum_unsetup_tx_list(sc);
610 	RUM_UNLOCK(sc);
611 
612 	if (ic->ic_softc == sc) {
613 		ieee80211_draintask(ic, &sc->cmdq_task);
614 		ieee80211_ifdetach(ic);
615 	}
616 
617 	mbufq_drain(&sc->sc_snd);
618 	RUM_CMDQ_LOCK_DESTROY(sc);
619 	RUM_LOCK_DESTROY(sc);
620 
621 	return (0);
622 }
623 
624 static usb_error_t
625 rum_do_request(struct rum_softc *sc,
626     struct usb_device_request *req, void *data)
627 {
628 	usb_error_t err;
629 	int ntries = 10;
630 
631 	while (ntries--) {
632 		err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx,
633 		    req, data, 0, NULL, 250 /* ms */);
634 		if (err == 0)
635 			break;
636 
637 		DPRINTFN(1, "Control request failed, %s (retrying)\n",
638 		    usbd_errstr(err));
639 		if (rum_pause(sc, hz / 100))
640 			break;
641 	}
642 	return (err);
643 }
644 
645 static usb_error_t
646 rum_do_mcu_request(struct rum_softc *sc, int request)
647 {
648 	struct usb_device_request req;
649 
650 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
651 	req.bRequest = RT2573_MCU_CNTL;
652 	USETW(req.wValue, request);
653 	USETW(req.wIndex, 0);
654 	USETW(req.wLength, 0);
655 
656 	return (rum_do_request(sc, &req, NULL));
657 }
658 
659 static struct ieee80211vap *
660 rum_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
661     enum ieee80211_opmode opmode, int flags,
662     const uint8_t bssid[IEEE80211_ADDR_LEN],
663     const uint8_t mac[IEEE80211_ADDR_LEN])
664 {
665 	struct rum_softc *sc = ic->ic_softc;
666 	struct rum_vap *rvp;
667 	struct ieee80211vap *vap;
668 
669 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
670 		return NULL;
671 	rvp = malloc(sizeof(struct rum_vap), M_80211_VAP, M_WAITOK | M_ZERO);
672 	vap = &rvp->vap;
673 	/* enable s/w bmiss handling for sta mode */
674 
675 	if (ieee80211_vap_setup(ic, vap, name, unit, opmode,
676 	    flags | IEEE80211_CLONE_NOBEACONS, bssid) != 0) {
677 		/* out of memory */
678 		free(rvp, M_80211_VAP);
679 		return (NULL);
680 	}
681 
682 	/* override state transition machine */
683 	rvp->newstate = vap->iv_newstate;
684 	vap->iv_newstate = rum_newstate;
685 	vap->iv_key_alloc = rum_key_alloc;
686 	vap->iv_key_set = rum_key_set;
687 	vap->iv_key_delete = rum_key_delete;
688 	vap->iv_update_beacon = rum_update_beacon;
689 	vap->iv_reset = rum_reset;
690 	vap->iv_max_aid = RT2573_ADDR_MAX;
691 
692 	if (opmode == IEEE80211_M_STA) {
693 		/*
694 		 * Move device to the sleep state when
695 		 * beacon is received and there is no data for us.
696 		 *
697 		 * Used only for IEEE80211_S_SLEEP state.
698 		 */
699 		rvp->recv_mgmt = vap->iv_recv_mgmt;
700 		vap->iv_recv_mgmt = rum_sta_recv_mgmt;
701 
702 		/* Ignored while sleeping. */
703 		rvp->bmiss = vap->iv_bmiss;
704 		vap->iv_bmiss = rum_beacon_miss;
705 	}
706 
707 	usb_callout_init_mtx(&rvp->ratectl_ch, &sc->sc_mtx, 0);
708 	TASK_INIT(&rvp->ratectl_task, 0, rum_ratectl_task, rvp);
709 	ieee80211_ratectl_init(vap);
710 	ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */);
711 	/* complete setup */
712 	ieee80211_vap_attach(vap, ieee80211_media_change,
713 	    ieee80211_media_status, mac);
714 	ic->ic_opmode = opmode;
715 	return vap;
716 }
717 
718 static void
719 rum_vap_delete(struct ieee80211vap *vap)
720 {
721 	struct rum_vap *rvp = RUM_VAP(vap);
722 	struct ieee80211com *ic = vap->iv_ic;
723 	struct rum_softc *sc = ic->ic_softc;
724 
725 	/* Put vap into INIT state. */
726 	ieee80211_new_state(vap, IEEE80211_S_INIT, -1);
727 	ieee80211_draintask(ic, &vap->iv_nstate_task);
728 
729 	RUM_LOCK(sc);
730 	/* Cancel any unfinished Tx. */
731 	rum_reset_tx_list(sc, vap);
732 	RUM_UNLOCK(sc);
733 
734 	usb_callout_drain(&rvp->ratectl_ch);
735 	ieee80211_draintask(ic, &rvp->ratectl_task);
736 	ieee80211_ratectl_deinit(vap);
737 	ieee80211_vap_detach(vap);
738 	m_freem(rvp->bcn_mbuf);
739 	free(rvp, M_80211_VAP);
740 }
741 
742 static void
743 rum_cmdq_cb(void *arg, int pending)
744 {
745 	struct rum_softc *sc = arg;
746 	struct rum_cmdq *rc;
747 
748 	RUM_CMDQ_LOCK(sc);
749 	while (sc->cmdq[sc->cmdq_first].func != NULL) {
750 		rc = &sc->cmdq[sc->cmdq_first];
751 		RUM_CMDQ_UNLOCK(sc);
752 
753 		RUM_LOCK(sc);
754 		rc->func(sc, &rc->data, rc->rvp_id);
755 		RUM_UNLOCK(sc);
756 
757 		RUM_CMDQ_LOCK(sc);
758 		memset(rc, 0, sizeof (*rc));
759 		sc->cmdq_first = (sc->cmdq_first + 1) % RUM_CMDQ_SIZE;
760 	}
761 	RUM_CMDQ_UNLOCK(sc);
762 }
763 
764 static int
765 rum_cmd_sleepable(struct rum_softc *sc, const void *ptr, size_t len,
766     uint8_t rvp_id, CMD_FUNC_PROTO)
767 {
768 	struct ieee80211com *ic = &sc->sc_ic;
769 
770 	KASSERT(len <= sizeof(union sec_param), ("buffer overflow"));
771 
772 	RUM_CMDQ_LOCK(sc);
773 	if (sc->cmdq[sc->cmdq_last].func != NULL) {
774 		device_printf(sc->sc_dev, "%s: cmdq overflow\n", __func__);
775 		RUM_CMDQ_UNLOCK(sc);
776 
777 		return EAGAIN;
778 	}
779 
780 	if (ptr != NULL)
781 		memcpy(&sc->cmdq[sc->cmdq_last].data, ptr, len);
782 	sc->cmdq[sc->cmdq_last].rvp_id = rvp_id;
783 	sc->cmdq[sc->cmdq_last].func = func;
784 	sc->cmdq_last = (sc->cmdq_last + 1) % RUM_CMDQ_SIZE;
785 	RUM_CMDQ_UNLOCK(sc);
786 
787 	ieee80211_runtask(ic, &sc->cmdq_task);
788 
789 	return 0;
790 }
791 
792 static void
793 rum_tx_free(struct rum_tx_data *data, int txerr)
794 {
795 	struct rum_softc *sc = data->sc;
796 
797 	if (data->m != NULL) {
798 		ieee80211_tx_complete(data->ni, data->m, txerr);
799 		data->m = NULL;
800 		data->ni = NULL;
801 	}
802 	STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
803 	sc->tx_nfree++;
804 }
805 
806 static void
807 rum_setup_tx_list(struct rum_softc *sc)
808 {
809 	struct rum_tx_data *data;
810 	int i;
811 
812 	sc->tx_nfree = 0;
813 	STAILQ_INIT(&sc->tx_q);
814 	STAILQ_INIT(&sc->tx_free);
815 
816 	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
817 		data = &sc->tx_data[i];
818 
819 		data->sc = sc;
820 		STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
821 		sc->tx_nfree++;
822 	}
823 }
824 
825 static void
826 rum_reset_tx_list(struct rum_softc *sc, struct ieee80211vap *vap)
827 {
828 	struct rum_tx_data *data, *tmp;
829 
830 	KASSERT(vap != NULL, ("%s: vap is NULL\n", __func__));
831 
832 	STAILQ_FOREACH_SAFE(data, &sc->tx_q, next, tmp) {
833 		if (data->ni != NULL && data->ni->ni_vap == vap) {
834 			ieee80211_free_node(data->ni);
835 			data->ni = NULL;
836 
837 			KASSERT(data->m != NULL, ("%s: m is NULL\n",
838 			    __func__));
839 			m_freem(data->m);
840 			data->m = NULL;
841 
842 			STAILQ_REMOVE(&sc->tx_q, data, rum_tx_data, next);
843 			STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
844 			sc->tx_nfree++;
845 		}
846 	}
847 }
848 
849 static void
850 rum_unsetup_tx_list(struct rum_softc *sc)
851 {
852 	struct rum_tx_data *data;
853 	int i;
854 
855 	/* make sure any subsequent use of the queues will fail */
856 	sc->tx_nfree = 0;
857 	STAILQ_INIT(&sc->tx_q);
858 	STAILQ_INIT(&sc->tx_free);
859 
860 	/* free up all node references and mbufs */
861 	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
862 		data = &sc->tx_data[i];
863 
864 		if (data->m != NULL) {
865 			m_freem(data->m);
866 			data->m = NULL;
867 		}
868 		if (data->ni != NULL) {
869 			ieee80211_free_node(data->ni);
870 			data->ni = NULL;
871 		}
872 	}
873 }
874 
875 static void
876 rum_beacon_miss(struct ieee80211vap *vap)
877 {
878 	struct ieee80211com *ic = vap->iv_ic;
879 	struct rum_softc *sc = ic->ic_softc;
880 	struct rum_vap *rvp = RUM_VAP(vap);
881 	int sleep;
882 
883 	RUM_LOCK(sc);
884 	if (sc->sc_sleeping && sc->sc_sleep_end < ticks) {
885 		DPRINTFN(12, "dropping 'sleeping' bit, "
886 		    "device must be awake now\n");
887 
888 		sc->sc_sleeping = 0;
889 	}
890 
891 	sleep = sc->sc_sleeping;
892 	RUM_UNLOCK(sc);
893 
894 	if (!sleep)
895 		rvp->bmiss(vap);
896 #ifdef USB_DEBUG
897 	else
898 		DPRINTFN(13, "bmiss event is ignored whilst sleeping\n");
899 #endif
900 }
901 
902 static void
903 rum_sta_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, int subtype,
904     const struct ieee80211_rx_stats *rxs,
905     int rssi, int nf)
906 {
907 	struct ieee80211vap *vap = ni->ni_vap;
908 	struct rum_softc *sc = vap->iv_ic->ic_softc;
909 	struct rum_vap *rvp = RUM_VAP(vap);
910 
911 	if (vap->iv_state == IEEE80211_S_SLEEP &&
912 	    subtype == IEEE80211_FC0_SUBTYPE_BEACON) {
913 		RUM_LOCK(sc);
914 		DPRINTFN(12, "beacon, mybss %d (flags %02X)\n",
915 		    !!(sc->last_rx_flags & RT2573_RX_MYBSS),
916 		    sc->last_rx_flags);
917 
918 		if ((sc->last_rx_flags & (RT2573_RX_MYBSS | RT2573_RX_BC)) ==
919 		    (RT2573_RX_MYBSS | RT2573_RX_BC)) {
920 			/*
921 			 * Put it to sleep here; in case if there is a data
922 			 * for us, iv_recv_mgmt() will wakeup the device via
923 			 * SLEEP -> RUN state transition.
924 			 */
925 			rum_set_power_state(sc, 1);
926 		}
927 		RUM_UNLOCK(sc);
928 	}
929 
930 	rvp->recv_mgmt(ni, m, subtype, rxs, rssi, nf);
931 }
932 
933 static int
934 rum_set_power_state(struct rum_softc *sc, int sleep)
935 {
936 	usb_error_t uerror;
937 
938 	RUM_LOCK_ASSERT(sc);
939 
940 	DPRINTFN(12, "moving to %s state (sleep time %u)\n",
941 	    sleep ? "sleep" : "awake", sc->sc_sleep_time);
942 
943 	uerror = rum_do_mcu_request(sc,
944 	    sleep ? RT2573_MCU_SLEEP : RT2573_MCU_WAKEUP);
945 	if (uerror != USB_ERR_NORMAL_COMPLETION) {
946 		device_printf(sc->sc_dev,
947 		    "%s: could not change power state: %s\n",
948 		    __func__, usbd_errstr(uerror));
949 		return (EIO);
950 	}
951 
952 	sc->sc_sleeping = !!sleep;
953 	sc->sc_sleep_end = sleep ? ticks + sc->sc_sleep_time : 0;
954 
955 	return (0);
956 }
957 
958 static int
959 rum_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
960 {
961 	struct rum_vap *rvp = RUM_VAP(vap);
962 	struct ieee80211com *ic = vap->iv_ic;
963 	struct rum_softc *sc = ic->ic_softc;
964 	const struct ieee80211_txparam *tp;
965 	enum ieee80211_state ostate;
966 	struct ieee80211_node *ni;
967 	usb_error_t uerror;
968 	int ret = 0;
969 
970 	ostate = vap->iv_state;
971 	DPRINTF("%s -> %s\n",
972 		ieee80211_state_name[ostate],
973 		ieee80211_state_name[nstate]);
974 
975 	IEEE80211_UNLOCK(ic);
976 	RUM_LOCK(sc);
977 	usb_callout_stop(&rvp->ratectl_ch);
978 
979 	if (ostate == IEEE80211_S_SLEEP && vap->iv_opmode == IEEE80211_M_STA) {
980 		rum_clrbits(sc, RT2573_TXRX_CSR4, RT2573_ACKCTS_PWRMGT);
981 		rum_clrbits(sc, RT2573_MAC_CSR11, RT2573_AUTO_WAKEUP);
982 
983 		/*
984 		 * Ignore any errors;
985 		 * any subsequent TX will wakeup it anyway
986 		 */
987 		(void) rum_set_power_state(sc, 0);
988 	}
989 
990 	switch (nstate) {
991 	case IEEE80211_S_INIT:
992 		if (ostate == IEEE80211_S_RUN)
993 			rum_abort_tsf_sync(sc);
994 
995 		break;
996 
997 	case IEEE80211_S_RUN:
998 		if (ostate == IEEE80211_S_SLEEP)
999 			break;		/* already handled */
1000 
1001 		ni = ieee80211_ref_node(vap->iv_bss);
1002 
1003 		if (vap->iv_opmode != IEEE80211_M_MONITOR) {
1004 			if (ic->ic_bsschan == IEEE80211_CHAN_ANYC ||
1005 			    ni->ni_chan == IEEE80211_CHAN_ANYC) {
1006 				ret = EINVAL;
1007 				goto run_fail;
1008 			}
1009 			rum_update_slot_cb(sc, NULL, 0);
1010 			rum_enable_mrr(sc);
1011 			rum_set_txpreamble(sc);
1012 			rum_set_basicrates(sc);
1013 			rum_set_maxretry(sc, vap);
1014 			IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid);
1015 			rum_set_bssid(sc, sc->sc_bssid);
1016 		}
1017 
1018 		if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1019 		    vap->iv_opmode == IEEE80211_M_IBSS) {
1020 			if ((ret = rum_alloc_beacon(sc, vap)) != 0)
1021 				goto run_fail;
1022 		}
1023 
1024 		if (vap->iv_opmode != IEEE80211_M_MONITOR &&
1025 		    vap->iv_opmode != IEEE80211_M_AHDEMO) {
1026 			if ((ret = rum_enable_tsf_sync(sc)) != 0)
1027 				goto run_fail;
1028 		} else
1029 			rum_enable_tsf(sc);
1030 
1031 		/* enable automatic rate adaptation */
1032 		tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
1033 		if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE)
1034 			rum_ratectl_start(sc, ni);
1035 run_fail:
1036 		ieee80211_free_node(ni);
1037 		break;
1038 	case IEEE80211_S_SLEEP:
1039 		/* Implemented for STA mode only. */
1040 		if (vap->iv_opmode != IEEE80211_M_STA)
1041 			break;
1042 
1043 		uerror = rum_setbits(sc, RT2573_MAC_CSR11, RT2573_AUTO_WAKEUP);
1044 		if (uerror != USB_ERR_NORMAL_COMPLETION) {
1045 			ret = EIO;
1046 			break;
1047 		}
1048 
1049 		uerror = rum_setbits(sc, RT2573_TXRX_CSR4, RT2573_ACKCTS_PWRMGT);
1050 		if (uerror != USB_ERR_NORMAL_COMPLETION) {
1051 			ret = EIO;
1052 			break;
1053 		}
1054 
1055 		ret = rum_set_power_state(sc, 1);
1056 		if (ret != 0) {
1057 			device_printf(sc->sc_dev,
1058 			    "%s: could not move to the SLEEP state: %s\n",
1059 			    __func__, usbd_errstr(uerror));
1060 		}
1061 		break;
1062 	default:
1063 		break;
1064 	}
1065 	RUM_UNLOCK(sc);
1066 	IEEE80211_LOCK(ic);
1067 	return (ret == 0 ? rvp->newstate(vap, nstate, arg) : ret);
1068 }
1069 
1070 static void
1071 rum_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error)
1072 {
1073 	struct rum_softc *sc = usbd_xfer_softc(xfer);
1074 	struct ieee80211vap *vap;
1075 	struct rum_tx_data *data;
1076 	struct mbuf *m;
1077 	struct usb_page_cache *pc;
1078 	unsigned int len;
1079 	int actlen, sumlen;
1080 
1081 	usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL);
1082 
1083 	switch (USB_GET_STATE(xfer)) {
1084 	case USB_ST_TRANSFERRED:
1085 		DPRINTFN(11, "transfer complete, %d bytes\n", actlen);
1086 
1087 		/* free resources */
1088 		data = usbd_xfer_get_priv(xfer);
1089 		rum_tx_free(data, 0);
1090 		usbd_xfer_set_priv(xfer, NULL);
1091 
1092 		/* FALLTHROUGH */
1093 	case USB_ST_SETUP:
1094 tr_setup:
1095 		data = STAILQ_FIRST(&sc->tx_q);
1096 		if (data) {
1097 			STAILQ_REMOVE_HEAD(&sc->tx_q, next);
1098 			m = data->m;
1099 
1100 			if (m->m_pkthdr.len > (int)(MCLBYTES + RT2573_TX_DESC_SIZE)) {
1101 				DPRINTFN(0, "data overflow, %u bytes\n",
1102 				    m->m_pkthdr.len);
1103 				m->m_pkthdr.len = (MCLBYTES + RT2573_TX_DESC_SIZE);
1104 			}
1105 			pc = usbd_xfer_get_frame(xfer, 0);
1106 			usbd_copy_in(pc, 0, &data->desc, RT2573_TX_DESC_SIZE);
1107 			usbd_m_copy_in(pc, RT2573_TX_DESC_SIZE, m, 0,
1108 			    m->m_pkthdr.len);
1109 
1110 			vap = data->ni->ni_vap;
1111 			if (ieee80211_radiotap_active_vap(vap)) {
1112 				struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1113 
1114 				tap->wt_flags = 0;
1115 				tap->wt_rate = data->rate;
1116 				tap->wt_antenna = sc->tx_ant;
1117 
1118 				ieee80211_radiotap_tx(vap, m);
1119 			}
1120 
1121 			/* align end on a 4-bytes boundary */
1122 			len = (RT2573_TX_DESC_SIZE + m->m_pkthdr.len + 3) & ~3;
1123 			if ((len % 64) == 0)
1124 				len += 4;
1125 
1126 			DPRINTFN(11, "sending frame len=%u xferlen=%u\n",
1127 			    m->m_pkthdr.len, len);
1128 
1129 			usbd_xfer_set_frame_len(xfer, 0, len);
1130 			usbd_xfer_set_priv(xfer, data);
1131 
1132 			usbd_transfer_submit(xfer);
1133 		}
1134 		rum_start(sc);
1135 		break;
1136 
1137 	default:			/* Error */
1138 		DPRINTFN(11, "transfer error, %s\n",
1139 		    usbd_errstr(error));
1140 
1141 		counter_u64_add(sc->sc_ic.ic_oerrors, 1);
1142 		data = usbd_xfer_get_priv(xfer);
1143 		if (data != NULL) {
1144 			rum_tx_free(data, error);
1145 			usbd_xfer_set_priv(xfer, NULL);
1146 		}
1147 
1148 		if (error != USB_ERR_CANCELLED) {
1149 			if (error == USB_ERR_TIMEOUT)
1150 				device_printf(sc->sc_dev, "device timeout\n");
1151 
1152 			/*
1153 			 * Try to clear stall first, also if other
1154 			 * errors occur, hence clearing stall
1155 			 * introduces a 50 ms delay:
1156 			 */
1157 			usbd_xfer_set_stall(xfer);
1158 			goto tr_setup;
1159 		}
1160 		break;
1161 	}
1162 }
1163 
1164 static void
1165 rum_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error)
1166 {
1167 	struct rum_softc *sc = usbd_xfer_softc(xfer);
1168 	struct ieee80211com *ic = &sc->sc_ic;
1169 	struct ieee80211_frame_min *wh;
1170 	struct ieee80211_node *ni;
1171 	struct epoch_tracker et;
1172 	struct mbuf *m = NULL;
1173 	struct usb_page_cache *pc;
1174 	uint32_t flags;
1175 	uint8_t rssi = 0;
1176 	int len;
1177 
1178 	usbd_xfer_status(xfer, &len, NULL, NULL, NULL);
1179 
1180 	switch (USB_GET_STATE(xfer)) {
1181 	case USB_ST_TRANSFERRED:
1182 
1183 		DPRINTFN(15, "rx done, actlen=%d\n", len);
1184 
1185 		if (len < RT2573_RX_DESC_SIZE) {
1186 			DPRINTF("%s: xfer too short %d\n",
1187 			    device_get_nameunit(sc->sc_dev), len);
1188 			counter_u64_add(ic->ic_ierrors, 1);
1189 			goto tr_setup;
1190 		}
1191 
1192 		len -= RT2573_RX_DESC_SIZE;
1193 		pc = usbd_xfer_get_frame(xfer, 0);
1194 		usbd_copy_out(pc, 0, &sc->sc_rx_desc, RT2573_RX_DESC_SIZE);
1195 
1196 		rssi = rum_get_rssi(sc, sc->sc_rx_desc.rssi);
1197 		flags = le32toh(sc->sc_rx_desc.flags);
1198 		sc->last_rx_flags = flags;
1199 		if (len < ((flags >> 16) & 0xfff)) {
1200 			DPRINTFN(5, "%s: frame is truncated from %d to %d "
1201 			    "bytes\n", device_get_nameunit(sc->sc_dev),
1202 			    (flags >> 16) & 0xfff, len);
1203 			counter_u64_add(ic->ic_ierrors, 1);
1204 			goto tr_setup;
1205 		}
1206 		len = (flags >> 16) & 0xfff;
1207 		if (len < sizeof(struct ieee80211_frame_ack)) {
1208 			DPRINTFN(5, "%s: frame too short %d\n",
1209 			    device_get_nameunit(sc->sc_dev), len);
1210 			counter_u64_add(ic->ic_ierrors, 1);
1211 			goto tr_setup;
1212 		}
1213 		if (flags & RT2573_RX_CRC_ERROR) {
1214 			/*
1215 		         * This should not happen since we did not
1216 		         * request to receive those frames when we
1217 		         * filled RUM_TXRX_CSR2:
1218 		         */
1219 			DPRINTFN(5, "PHY or CRC error\n");
1220 			counter_u64_add(ic->ic_ierrors, 1);
1221 			goto tr_setup;
1222 		}
1223 		if ((flags & RT2573_RX_DEC_MASK) != RT2573_RX_DEC_OK) {
1224 			switch (flags & RT2573_RX_DEC_MASK) {
1225 			case RT2573_RX_IV_ERROR:
1226 				DPRINTFN(5, "IV/EIV error\n");
1227 				break;
1228 			case RT2573_RX_MIC_ERROR:
1229 				DPRINTFN(5, "MIC error\n");
1230 				break;
1231 			case RT2573_RX_KEY_ERROR:
1232 				DPRINTFN(5, "Key error\n");
1233 				break;
1234 			}
1235 			counter_u64_add(ic->ic_ierrors, 1);
1236 			goto tr_setup;
1237 		}
1238 
1239 		m = m_get2(len, M_NOWAIT, MT_DATA, M_PKTHDR);
1240 		if (m == NULL) {
1241 			DPRINTF("could not allocate mbuf\n");
1242 			counter_u64_add(ic->ic_ierrors, 1);
1243 			goto tr_setup;
1244 		}
1245 		usbd_copy_out(pc, RT2573_RX_DESC_SIZE,
1246 		    mtod(m, uint8_t *), len);
1247 
1248 		wh = mtod(m, struct ieee80211_frame_min *);
1249 
1250 		if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) &&
1251 		    (flags & RT2573_RX_CIP_MASK) !=
1252 		     RT2573_RX_CIP_MODE(RT2573_MODE_NOSEC)) {
1253 			wh->i_fc[1] &= ~IEEE80211_FC1_PROTECTED;
1254 			m->m_flags |= M_WEP;
1255 		}
1256 
1257 		/* finalize mbuf */
1258 		m->m_pkthdr.len = m->m_len = len;
1259 
1260 		if (ieee80211_radiotap_active(ic)) {
1261 			struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
1262 
1263 			tap->wr_flags = 0;
1264 			tap->wr_rate = ieee80211_plcp2rate(sc->sc_rx_desc.rate,
1265 			    (flags & RT2573_RX_OFDM) ?
1266 			    IEEE80211_T_OFDM : IEEE80211_T_CCK);
1267 			rum_get_tsf(sc, &tap->wr_tsf);
1268 			tap->wr_antsignal = RT2573_NOISE_FLOOR + rssi;
1269 			tap->wr_antnoise = RT2573_NOISE_FLOOR;
1270 			tap->wr_antenna = sc->rx_ant;
1271 		}
1272 		/* FALLTHROUGH */
1273 	case USB_ST_SETUP:
1274 tr_setup:
1275 		usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer));
1276 		usbd_transfer_submit(xfer);
1277 
1278 		/*
1279 		 * At the end of a USB callback it is always safe to unlock
1280 		 * the private mutex of a device! That is why we do the
1281 		 * "ieee80211_input" here, and not some lines up!
1282 		 */
1283 		RUM_UNLOCK(sc);
1284 		if (m) {
1285 			if (m->m_len >= sizeof(struct ieee80211_frame_min))
1286 				ni = ieee80211_find_rxnode(ic, wh);
1287 			else
1288 				ni = NULL;
1289 
1290 			NET_EPOCH_ENTER(et);
1291 			if (ni != NULL) {
1292 				(void) ieee80211_input(ni, m, rssi,
1293 				    RT2573_NOISE_FLOOR);
1294 				ieee80211_free_node(ni);
1295 			} else
1296 				(void) ieee80211_input_all(ic, m, rssi,
1297 				    RT2573_NOISE_FLOOR);
1298 			NET_EPOCH_EXIT(et);
1299 		}
1300 		RUM_LOCK(sc);
1301 		rum_start(sc);
1302 		return;
1303 
1304 	default:			/* Error */
1305 		if (error != USB_ERR_CANCELLED) {
1306 			/* try to clear stall first */
1307 			usbd_xfer_set_stall(xfer);
1308 			goto tr_setup;
1309 		}
1310 		return;
1311 	}
1312 }
1313 
1314 static uint8_t
1315 rum_plcp_signal(int rate)
1316 {
1317 	switch (rate) {
1318 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1319 	case 12:	return 0xb;
1320 	case 18:	return 0xf;
1321 	case 24:	return 0xa;
1322 	case 36:	return 0xe;
1323 	case 48:	return 0x9;
1324 	case 72:	return 0xd;
1325 	case 96:	return 0x8;
1326 	case 108:	return 0xc;
1327 
1328 	/* CCK rates (NB: not IEEE std, device-specific) */
1329 	case 2:		return 0x0;
1330 	case 4:		return 0x1;
1331 	case 11:	return 0x2;
1332 	case 22:	return 0x3;
1333 	}
1334 	return 0xff;		/* XXX unsupported/unknown rate */
1335 }
1336 
1337 /*
1338  * Map net80211 cipher to RT2573 security mode.
1339  */
1340 static uint8_t
1341 rum_crypto_mode(struct rum_softc *sc, u_int cipher, int keylen)
1342 {
1343 	switch (cipher) {
1344 	case IEEE80211_CIPHER_WEP:
1345 		return (keylen < 8 ? RT2573_MODE_WEP40 : RT2573_MODE_WEP104);
1346 	case IEEE80211_CIPHER_TKIP:
1347 		return RT2573_MODE_TKIP;
1348 	case IEEE80211_CIPHER_AES_CCM:
1349 		return RT2573_MODE_AES_CCMP;
1350 	default:
1351 		device_printf(sc->sc_dev, "unknown cipher %d\n", cipher);
1352 		return 0;
1353 	}
1354 }
1355 
1356 static void
1357 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
1358     struct ieee80211_key *k, uint32_t flags, uint8_t xflags, uint8_t qid,
1359     int hdrlen, int len, int rate)
1360 {
1361 	struct ieee80211com *ic = &sc->sc_ic;
1362 	struct wmeParams *wmep = &sc->wme_params[qid];
1363 	uint16_t plcp_length;
1364 	int remainder;
1365 
1366 	flags |= RT2573_TX_VALID;
1367 	flags |= len << 16;
1368 
1369 	if (k != NULL && !(k->wk_flags & IEEE80211_KEY_SWCRYPT)) {
1370 		const struct ieee80211_cipher *cip = k->wk_cipher;
1371 
1372 		len += cip->ic_header + cip->ic_trailer + cip->ic_miclen;
1373 
1374 		desc->eiv = 0;		/* for WEP */
1375 		cip->ic_setiv(k, (uint8_t *)&desc->iv);
1376 	}
1377 
1378 	/* setup PLCP fields */
1379 	desc->plcp_signal  = rum_plcp_signal(rate);
1380 	desc->plcp_service = 4;
1381 
1382 	len += IEEE80211_CRC_LEN;
1383 	if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) {
1384 		flags |= RT2573_TX_OFDM;
1385 
1386 		plcp_length = len & 0xfff;
1387 		desc->plcp_length_hi = plcp_length >> 6;
1388 		desc->plcp_length_lo = plcp_length & 0x3f;
1389 	} else {
1390 		if (rate == 0)
1391 			rate = 2;	/* avoid division by zero */
1392 		plcp_length = howmany(16 * len, rate);
1393 		if (rate == 22) {
1394 			remainder = (16 * len) % 22;
1395 			if (remainder != 0 && remainder < 7)
1396 				desc->plcp_service |= RT2573_PLCP_LENGEXT;
1397 		}
1398 		desc->plcp_length_hi = plcp_length >> 8;
1399 		desc->plcp_length_lo = plcp_length & 0xff;
1400 
1401 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1402 			desc->plcp_signal |= 0x08;
1403 	}
1404 
1405 	desc->flags = htole32(flags);
1406 	desc->hdrlen = hdrlen;
1407 	desc->xflags = xflags;
1408 
1409 	desc->wme = htole16(RT2573_QID(qid) |
1410 	    RT2573_AIFSN(wmep->wmep_aifsn) |
1411 	    RT2573_LOGCWMIN(wmep->wmep_logcwmin) |
1412 	    RT2573_LOGCWMAX(wmep->wmep_logcwmax));
1413 }
1414 
1415 static int
1416 rum_sendprot(struct rum_softc *sc,
1417     const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate)
1418 {
1419 	struct ieee80211com *ic = ni->ni_ic;
1420 	struct rum_tx_data *data;
1421 	struct mbuf *mprot;
1422 	int protrate, flags;
1423 
1424 	RUM_LOCK_ASSERT(sc);
1425 
1426 	mprot = ieee80211_alloc_prot(ni, m, rate, prot);
1427 	if (mprot == NULL) {
1428 		if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1);
1429 		device_printf(sc->sc_dev,
1430 		    "could not allocate mbuf for protection mode %d\n", prot);
1431 		return (ENOBUFS);
1432 	}
1433 
1434 	protrate = ieee80211_ctl_rate(ic->ic_rt, rate);
1435 	flags = 0;
1436 	if (prot == IEEE80211_PROT_RTSCTS)
1437 		flags |= RT2573_TX_NEED_ACK;
1438 
1439 	data = STAILQ_FIRST(&sc->tx_free);
1440 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1441 	sc->tx_nfree--;
1442 
1443 	data->m = mprot;
1444 	data->ni = ieee80211_ref_node(ni);
1445 	data->rate = protrate;
1446 	rum_setup_tx_desc(sc, &data->desc, NULL, flags, 0, 0, 0,
1447 	    mprot->m_pkthdr.len, protrate);
1448 
1449 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1450 	usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]);
1451 
1452 	return 0;
1453 }
1454 
1455 static uint32_t
1456 rum_tx_crypto_flags(struct rum_softc *sc, struct ieee80211_node *ni,
1457     const struct ieee80211_key *k)
1458 {
1459 	struct ieee80211vap *vap = ni->ni_vap;
1460 	u_int cipher;
1461 	uint32_t flags = 0;
1462 	uint8_t mode, pos;
1463 
1464 	if (!(k->wk_flags & IEEE80211_KEY_SWCRYPT)) {
1465 		cipher = k->wk_cipher->ic_cipher;
1466 		pos = k->wk_keyix;
1467 		mode = rum_crypto_mode(sc, cipher, k->wk_keylen);
1468 		if (mode == 0)
1469 			return 0;
1470 
1471 		flags |= RT2573_TX_CIP_MODE(mode);
1472 
1473 		/* Do not trust GROUP flag */
1474 		if (!(k >= &vap->iv_nw_keys[0] &&
1475 		      k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]))
1476 			flags |= RT2573_TX_KEY_PAIR;
1477 		else
1478 			pos += 0 * RT2573_SKEY_MAX;	/* vap id */
1479 
1480 		flags |= RT2573_TX_KEY_ID(pos);
1481 
1482 		if (cipher == IEEE80211_CIPHER_TKIP)
1483 			flags |= RT2573_TX_TKIPMIC;
1484 	}
1485 
1486 	return flags;
1487 }
1488 
1489 static int
1490 rum_tx_mgt(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1491 {
1492 	const struct ieee80211_txparam *tp = ni->ni_txparms;
1493 	struct ieee80211com *ic = &sc->sc_ic;
1494 	struct rum_tx_data *data;
1495 	struct ieee80211_frame *wh;
1496 	struct ieee80211_key *k = NULL;
1497 	uint32_t flags = 0;
1498 	uint16_t dur;
1499 	uint8_t ac, type, xflags = 0;
1500 	int hdrlen;
1501 
1502 	RUM_LOCK_ASSERT(sc);
1503 
1504 	data = STAILQ_FIRST(&sc->tx_free);
1505 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1506 	sc->tx_nfree--;
1507 
1508 	wh = mtod(m0, struct ieee80211_frame *);
1509 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
1510 	hdrlen = ieee80211_anyhdrsize(wh);
1511 	ac = M_WME_GETAC(m0);
1512 
1513 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1514 		k = ieee80211_crypto_get_txkey(ni, m0);
1515 		if (k == NULL)
1516 			return (ENOENT);
1517 
1518 		if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) &&
1519 		    !k->wk_cipher->ic_encap(k, m0))
1520 			return (ENOBUFS);
1521 
1522 		wh = mtod(m0, struct ieee80211_frame *);
1523 	}
1524 
1525 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1526 		flags |= RT2573_TX_NEED_ACK;
1527 
1528 		dur = ieee80211_ack_duration(ic->ic_rt, tp->mgmtrate,
1529 		    ic->ic_flags & IEEE80211_F_SHPREAMBLE);
1530 		USETW(wh->i_dur, dur);
1531 
1532 		/* tell hardware to add timestamp for probe responses */
1533 		if (type == IEEE80211_FC0_TYPE_MGT &&
1534 		    (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1535 		    IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1536 			flags |= RT2573_TX_TIMESTAMP;
1537 	}
1538 
1539 	if (type != IEEE80211_FC0_TYPE_CTL && !IEEE80211_QOS_HAS_SEQ(wh))
1540 		xflags |= RT2573_TX_HWSEQ;
1541 
1542 	if (k != NULL)
1543 		flags |= rum_tx_crypto_flags(sc, ni, k);
1544 
1545 	data->m = m0;
1546 	data->ni = ni;
1547 	data->rate = tp->mgmtrate;
1548 
1549 	rum_setup_tx_desc(sc, &data->desc, k, flags, xflags, ac, hdrlen,
1550 	    m0->m_pkthdr.len, tp->mgmtrate);
1551 
1552 	DPRINTFN(10, "sending mgt frame len=%d rate=%d\n",
1553 	    m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, tp->mgmtrate);
1554 
1555 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1556 	usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]);
1557 
1558 	return (0);
1559 }
1560 
1561 static int
1562 rum_tx_raw(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1563     const struct ieee80211_bpf_params *params)
1564 {
1565 	struct ieee80211com *ic = ni->ni_ic;
1566 	struct ieee80211_frame *wh;
1567 	struct rum_tx_data *data;
1568 	uint32_t flags;
1569 	uint8_t ac, type, xflags = 0;
1570 	int rate, error;
1571 
1572 	RUM_LOCK_ASSERT(sc);
1573 
1574 	wh = mtod(m0, struct ieee80211_frame *);
1575 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
1576 
1577 	ac = params->ibp_pri & 3;
1578 
1579 	rate = params->ibp_rate0;
1580 	if (!ieee80211_isratevalid(ic->ic_rt, rate))
1581 		return (EINVAL);
1582 
1583 	flags = 0;
1584 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
1585 		flags |= RT2573_TX_NEED_ACK;
1586 	if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) {
1587 		error = rum_sendprot(sc, m0, ni,
1588 		    params->ibp_flags & IEEE80211_BPF_RTS ?
1589 			 IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY,
1590 		    rate);
1591 		if (error || sc->tx_nfree == 0)
1592 			return (ENOBUFS);
1593 
1594 		flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS;
1595 	}
1596 
1597 	if (type != IEEE80211_FC0_TYPE_CTL && !IEEE80211_QOS_HAS_SEQ(wh))
1598 		xflags |= RT2573_TX_HWSEQ;
1599 
1600 	data = STAILQ_FIRST(&sc->tx_free);
1601 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1602 	sc->tx_nfree--;
1603 
1604 	data->m = m0;
1605 	data->ni = ni;
1606 	data->rate = rate;
1607 
1608 	/* XXX need to setup descriptor ourself */
1609 	rum_setup_tx_desc(sc, &data->desc, NULL, flags, xflags, ac, 0,
1610 	    m0->m_pkthdr.len, rate);
1611 
1612 	DPRINTFN(10, "sending raw frame len=%u rate=%u\n",
1613 	    m0->m_pkthdr.len, rate);
1614 
1615 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1616 	usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]);
1617 
1618 	return 0;
1619 }
1620 
1621 static int
1622 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1623 {
1624 	struct ieee80211vap *vap = ni->ni_vap;
1625 	struct ieee80211com *ic = &sc->sc_ic;
1626 	struct rum_tx_data *data;
1627 	struct ieee80211_frame *wh;
1628 	const struct ieee80211_txparam *tp = ni->ni_txparms;
1629 	struct ieee80211_key *k = NULL;
1630 	uint32_t flags = 0;
1631 	uint16_t dur;
1632 	uint8_t ac, type, qos, xflags = 0;
1633 	int error, hdrlen, rate;
1634 
1635 	RUM_LOCK_ASSERT(sc);
1636 
1637 	wh = mtod(m0, struct ieee80211_frame *);
1638 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
1639 	hdrlen = ieee80211_anyhdrsize(wh);
1640 
1641 	if (IEEE80211_QOS_HAS_SEQ(wh))
1642 		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
1643 	else
1644 		qos = 0;
1645 	ac = M_WME_GETAC(m0);
1646 
1647 	if (m0->m_flags & M_EAPOL)
1648 		rate = tp->mgmtrate;
1649 	else if (IEEE80211_IS_MULTICAST(wh->i_addr1))
1650 		rate = tp->mcastrate;
1651 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
1652 		rate = tp->ucastrate;
1653 	else {
1654 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
1655 		rate = ni->ni_txrate;
1656 	}
1657 
1658 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1659 		k = ieee80211_crypto_get_txkey(ni, m0);
1660 		if (k == NULL) {
1661 			m_freem(m0);
1662 			return (ENOENT);
1663 		}
1664 		if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) &&
1665 		    !k->wk_cipher->ic_encap(k, m0)) {
1666 			m_freem(m0);
1667 			return (ENOBUFS);
1668 		}
1669 
1670 		/* packet header may have moved, reset our local pointer */
1671 		wh = mtod(m0, struct ieee80211_frame *);
1672 	}
1673 
1674 	if (type != IEEE80211_FC0_TYPE_CTL && !IEEE80211_QOS_HAS_SEQ(wh))
1675 		xflags |= RT2573_TX_HWSEQ;
1676 
1677 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1678 		int prot = IEEE80211_PROT_NONE;
1679 		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold)
1680 			prot = IEEE80211_PROT_RTSCTS;
1681 		else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1682 		    ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM)
1683 			prot = ic->ic_protmode;
1684 		if (prot != IEEE80211_PROT_NONE) {
1685 			error = rum_sendprot(sc, m0, ni, prot, rate);
1686 			if (error || sc->tx_nfree == 0) {
1687 				m_freem(m0);
1688 				return ENOBUFS;
1689 			}
1690 			flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS;
1691 		}
1692 	}
1693 
1694 	if (k != NULL)
1695 		flags |= rum_tx_crypto_flags(sc, ni, k);
1696 
1697 	data = STAILQ_FIRST(&sc->tx_free);
1698 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1699 	sc->tx_nfree--;
1700 
1701 	data->m = m0;
1702 	data->ni = ni;
1703 	data->rate = rate;
1704 
1705 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1706 		/* Unicast frame, check if an ACK is expected. */
1707 		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
1708 		    IEEE80211_QOS_ACKPOLICY_NOACK)
1709 			flags |= RT2573_TX_NEED_ACK;
1710 
1711 		dur = ieee80211_ack_duration(ic->ic_rt, rate,
1712 		    ic->ic_flags & IEEE80211_F_SHPREAMBLE);
1713 		USETW(wh->i_dur, dur);
1714 	}
1715 
1716 	rum_setup_tx_desc(sc, &data->desc, k, flags, xflags, ac, hdrlen,
1717 	    m0->m_pkthdr.len, rate);
1718 
1719 	DPRINTFN(10, "sending frame len=%d rate=%d\n",
1720 	    m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, rate);
1721 
1722 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1723 	usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]);
1724 
1725 	return 0;
1726 }
1727 
1728 static int
1729 rum_transmit(struct ieee80211com *ic, struct mbuf *m)
1730 {
1731 	struct rum_softc *sc = ic->ic_softc;
1732 	int error;
1733 
1734 	RUM_LOCK(sc);
1735 	if (!sc->sc_running) {
1736 		RUM_UNLOCK(sc);
1737 		return (ENXIO);
1738 	}
1739 	error = mbufq_enqueue(&sc->sc_snd, m);
1740 	if (error) {
1741 		RUM_UNLOCK(sc);
1742 		return (error);
1743 	}
1744 	rum_start(sc);
1745 	RUM_UNLOCK(sc);
1746 
1747 	return (0);
1748 }
1749 
1750 static void
1751 rum_start(struct rum_softc *sc)
1752 {
1753 	struct ieee80211_node *ni;
1754 	struct mbuf *m;
1755 
1756 	RUM_LOCK_ASSERT(sc);
1757 
1758 	if (!sc->sc_running)
1759 		return;
1760 
1761 	while (sc->tx_nfree >= RUM_TX_MINFREE &&
1762 	    (m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
1763 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1764 		if (rum_tx_data(sc, m, ni) != 0) {
1765 			if_inc_counter(ni->ni_vap->iv_ifp,
1766 			    IFCOUNTER_OERRORS, 1);
1767 			ieee80211_free_node(ni);
1768 			break;
1769 		}
1770 	}
1771 }
1772 
1773 static void
1774 rum_parent(struct ieee80211com *ic)
1775 {
1776 	struct rum_softc *sc = ic->ic_softc;
1777 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1778 
1779 	RUM_LOCK(sc);
1780 	if (sc->sc_detached) {
1781 		RUM_UNLOCK(sc);
1782 		return;
1783 	}
1784 	RUM_UNLOCK(sc);
1785 
1786 	if (ic->ic_nrunning > 0) {
1787 		if (rum_init(sc) == 0)
1788 			ieee80211_start_all(ic);
1789 		else
1790 			ieee80211_stop(vap);
1791 	} else
1792 		rum_stop(sc);
1793 }
1794 
1795 static void
1796 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1797 {
1798 	struct usb_device_request req;
1799 	usb_error_t error;
1800 
1801 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1802 	req.bRequest = RT2573_READ_EEPROM;
1803 	USETW(req.wValue, 0);
1804 	USETW(req.wIndex, addr);
1805 	USETW(req.wLength, len);
1806 
1807 	error = rum_do_request(sc, &req, buf);
1808 	if (error != 0) {
1809 		device_printf(sc->sc_dev, "could not read EEPROM: %s\n",
1810 		    usbd_errstr(error));
1811 	}
1812 }
1813 
1814 static uint32_t
1815 rum_read(struct rum_softc *sc, uint16_t reg)
1816 {
1817 	uint32_t val;
1818 
1819 	rum_read_multi(sc, reg, &val, sizeof val);
1820 
1821 	return le32toh(val);
1822 }
1823 
1824 static void
1825 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1826 {
1827 	struct usb_device_request req;
1828 	usb_error_t error;
1829 
1830 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1831 	req.bRequest = RT2573_READ_MULTI_MAC;
1832 	USETW(req.wValue, 0);
1833 	USETW(req.wIndex, reg);
1834 	USETW(req.wLength, len);
1835 
1836 	error = rum_do_request(sc, &req, buf);
1837 	if (error != 0) {
1838 		device_printf(sc->sc_dev,
1839 		    "could not multi read MAC register: %s\n",
1840 		    usbd_errstr(error));
1841 	}
1842 }
1843 
1844 static usb_error_t
1845 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1846 {
1847 	uint32_t tmp = htole32(val);
1848 
1849 	return (rum_write_multi(sc, reg, &tmp, sizeof tmp));
1850 }
1851 
1852 static usb_error_t
1853 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1854 {
1855 	struct usb_device_request req;
1856 	usb_error_t error;
1857 	size_t offset;
1858 
1859 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1860 	req.bRequest = RT2573_WRITE_MULTI_MAC;
1861 	USETW(req.wValue, 0);
1862 
1863 	/* write at most 64 bytes at a time */
1864 	for (offset = 0; offset < len; offset += 64) {
1865 		USETW(req.wIndex, reg + offset);
1866 		USETW(req.wLength, MIN(len - offset, 64));
1867 
1868 		error = rum_do_request(sc, &req, (char *)buf + offset);
1869 		if (error != 0) {
1870 			device_printf(sc->sc_dev,
1871 			    "could not multi write MAC register: %s\n",
1872 			    usbd_errstr(error));
1873 			return (error);
1874 		}
1875 	}
1876 
1877 	return (USB_ERR_NORMAL_COMPLETION);
1878 }
1879 
1880 static usb_error_t
1881 rum_setbits(struct rum_softc *sc, uint16_t reg, uint32_t mask)
1882 {
1883 	return (rum_write(sc, reg, rum_read(sc, reg) | mask));
1884 }
1885 
1886 static usb_error_t
1887 rum_clrbits(struct rum_softc *sc, uint16_t reg, uint32_t mask)
1888 {
1889 	return (rum_write(sc, reg, rum_read(sc, reg) & ~mask));
1890 }
1891 
1892 static usb_error_t
1893 rum_modbits(struct rum_softc *sc, uint16_t reg, uint32_t set, uint32_t unset)
1894 {
1895 	return (rum_write(sc, reg, (rum_read(sc, reg) & ~unset) | set));
1896 }
1897 
1898 static int
1899 rum_bbp_busy(struct rum_softc *sc)
1900 {
1901 	int ntries;
1902 
1903 	for (ntries = 0; ntries < 100; ntries++) {
1904 		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1905 			break;
1906 		if (rum_pause(sc, hz / 100))
1907 			break;
1908 	}
1909 	if (ntries == 100)
1910 		return (ETIMEDOUT);
1911 
1912 	return (0);
1913 }
1914 
1915 static void
1916 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1917 {
1918 	uint32_t tmp;
1919 
1920 	DPRINTFN(2, "reg=0x%08x\n", reg);
1921 
1922 	if (rum_bbp_busy(sc) != 0) {
1923 		device_printf(sc->sc_dev, "could not write to BBP\n");
1924 		return;
1925 	}
1926 
1927 	tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1928 	rum_write(sc, RT2573_PHY_CSR3, tmp);
1929 }
1930 
1931 static uint8_t
1932 rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1933 {
1934 	uint32_t val;
1935 	int ntries;
1936 
1937 	DPRINTFN(2, "reg=0x%08x\n", reg);
1938 
1939 	if (rum_bbp_busy(sc) != 0) {
1940 		device_printf(sc->sc_dev, "could not read BBP\n");
1941 		return 0;
1942 	}
1943 
1944 	val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1945 	rum_write(sc, RT2573_PHY_CSR3, val);
1946 
1947 	for (ntries = 0; ntries < 100; ntries++) {
1948 		val = rum_read(sc, RT2573_PHY_CSR3);
1949 		if (!(val & RT2573_BBP_BUSY))
1950 			return val & 0xff;
1951 		if (rum_pause(sc, hz / 100))
1952 			break;
1953 	}
1954 
1955 	device_printf(sc->sc_dev, "could not read BBP\n");
1956 	return 0;
1957 }
1958 
1959 static void
1960 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1961 {
1962 	uint32_t tmp;
1963 	int ntries;
1964 
1965 	for (ntries = 0; ntries < 100; ntries++) {
1966 		if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1967 			break;
1968 		if (rum_pause(sc, hz / 100))
1969 			break;
1970 	}
1971 	if (ntries == 100) {
1972 		device_printf(sc->sc_dev, "could not write to RF\n");
1973 		return;
1974 	}
1975 
1976 	tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1977 	    (reg & 3);
1978 	rum_write(sc, RT2573_PHY_CSR4, tmp);
1979 
1980 	/* remember last written value in sc */
1981 	sc->rf_regs[reg] = val;
1982 
1983 	DPRINTFN(15, "RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff);
1984 }
1985 
1986 static void
1987 rum_select_antenna(struct rum_softc *sc)
1988 {
1989 	uint8_t bbp4, bbp77;
1990 	uint32_t tmp;
1991 
1992 	bbp4  = rum_bbp_read(sc, 4);
1993 	bbp77 = rum_bbp_read(sc, 77);
1994 
1995 	/* TBD */
1996 
1997 	/* make sure Rx is disabled before switching antenna */
1998 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
1999 	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
2000 
2001 	rum_bbp_write(sc,  4, bbp4);
2002 	rum_bbp_write(sc, 77, bbp77);
2003 
2004 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
2005 }
2006 
2007 /*
2008  * Enable multi-rate retries for frames sent at OFDM rates.
2009  * In 802.11b/g mode, allow fallback to CCK rates.
2010  */
2011 static void
2012 rum_enable_mrr(struct rum_softc *sc)
2013 {
2014 	struct ieee80211com *ic = &sc->sc_ic;
2015 
2016 	if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan)) {
2017 		rum_setbits(sc, RT2573_TXRX_CSR4,
2018 		    RT2573_MRR_ENABLED | RT2573_MRR_CCK_FALLBACK);
2019 	} else {
2020 		rum_modbits(sc, RT2573_TXRX_CSR4,
2021 		    RT2573_MRR_ENABLED, RT2573_MRR_CCK_FALLBACK);
2022 	}
2023 }
2024 
2025 static void
2026 rum_set_txpreamble(struct rum_softc *sc)
2027 {
2028 	struct ieee80211com *ic = &sc->sc_ic;
2029 
2030 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2031 		rum_setbits(sc, RT2573_TXRX_CSR4, RT2573_SHORT_PREAMBLE);
2032 	else
2033 		rum_clrbits(sc, RT2573_TXRX_CSR4, RT2573_SHORT_PREAMBLE);
2034 }
2035 
2036 static void
2037 rum_set_basicrates(struct rum_softc *sc)
2038 {
2039 	struct ieee80211com *ic = &sc->sc_ic;
2040 
2041 	/* update basic rate set */
2042 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
2043 		/* 11b basic rates: 1, 2Mbps */
2044 		rum_write(sc, RT2573_TXRX_CSR5, 0x3);
2045 	} else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan)) {
2046 		/* 11a basic rates: 6, 12, 24Mbps */
2047 		rum_write(sc, RT2573_TXRX_CSR5, 0x150);
2048 	} else {
2049 		/* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
2050 		rum_write(sc, RT2573_TXRX_CSR5, 0xf);
2051 	}
2052 }
2053 
2054 /*
2055  * Reprogram MAC/BBP to switch to a new band.  Values taken from the reference
2056  * driver.
2057  */
2058 static void
2059 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
2060 {
2061 	uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
2062 
2063 	/* update all BBP registers that depend on the band */
2064 	bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
2065 	bbp35 = 0x50; bbp97 = 0x48; bbp98  = 0x48;
2066 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2067 		bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
2068 		bbp35 += 0x10; bbp97 += 0x10; bbp98  += 0x10;
2069 	}
2070 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
2071 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
2072 		bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
2073 	}
2074 
2075 	sc->bbp17 = bbp17;
2076 	rum_bbp_write(sc,  17, bbp17);
2077 	rum_bbp_write(sc,  96, bbp96);
2078 	rum_bbp_write(sc, 104, bbp104);
2079 
2080 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
2081 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
2082 		rum_bbp_write(sc, 75, 0x80);
2083 		rum_bbp_write(sc, 86, 0x80);
2084 		rum_bbp_write(sc, 88, 0x80);
2085 	}
2086 
2087 	rum_bbp_write(sc, 35, bbp35);
2088 	rum_bbp_write(sc, 97, bbp97);
2089 	rum_bbp_write(sc, 98, bbp98);
2090 
2091 	if (IEEE80211_IS_CHAN_2GHZ(c)) {
2092 		rum_modbits(sc, RT2573_PHY_CSR0, RT2573_PA_PE_2GHZ,
2093 		    RT2573_PA_PE_5GHZ);
2094 	} else {
2095 		rum_modbits(sc, RT2573_PHY_CSR0, RT2573_PA_PE_5GHZ,
2096 		    RT2573_PA_PE_2GHZ);
2097 	}
2098 }
2099 
2100 static void
2101 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
2102 {
2103 	struct ieee80211com *ic = &sc->sc_ic;
2104 	const struct rfprog *rfprog;
2105 	uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
2106 	int8_t power;
2107 	int i, chan;
2108 
2109 	chan = ieee80211_chan2ieee(ic, c);
2110 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
2111 		return;
2112 
2113 	/* select the appropriate RF settings based on what EEPROM says */
2114 	rfprog = (sc->rf_rev == RT2573_RF_5225 ||
2115 		  sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
2116 
2117 	/* find the settings for this channel (we know it exists) */
2118 	for (i = 0; rfprog[i].chan != chan; i++);
2119 
2120 	power = sc->txpow[i];
2121 	if (power < 0) {
2122 		bbp94 += power;
2123 		power = 0;
2124 	} else if (power > 31) {
2125 		bbp94 += power - 31;
2126 		power = 31;
2127 	}
2128 
2129 	/*
2130 	 * If we are switching from the 2GHz band to the 5GHz band or
2131 	 * vice-versa, BBP registers need to be reprogrammed.
2132 	 */
2133 	if (c->ic_flags != ic->ic_curchan->ic_flags) {
2134 		rum_select_band(sc, c);
2135 		rum_select_antenna(sc);
2136 	}
2137 	ic->ic_curchan = c;
2138 
2139 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
2140 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
2141 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
2142 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
2143 
2144 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
2145 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
2146 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
2147 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
2148 
2149 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
2150 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
2151 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
2152 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
2153 
2154 	rum_pause(sc, hz / 100);
2155 
2156 	/* enable smart mode for MIMO-capable RFs */
2157 	bbp3 = rum_bbp_read(sc, 3);
2158 
2159 	bbp3 &= ~RT2573_SMART_MODE;
2160 	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
2161 		bbp3 |= RT2573_SMART_MODE;
2162 
2163 	rum_bbp_write(sc, 3, bbp3);
2164 
2165 	if (bbp94 != RT2573_BBPR94_DEFAULT)
2166 		rum_bbp_write(sc, 94, bbp94);
2167 
2168 	/* give the chip some extra time to do the switchover */
2169 	rum_pause(sc, hz / 100);
2170 }
2171 
2172 static void
2173 rum_set_maxretry(struct rum_softc *sc, struct ieee80211vap *vap)
2174 {
2175 	struct ieee80211_node *ni = vap->iv_bss;
2176 	const struct ieee80211_txparam *tp = ni->ni_txparms;
2177 	struct rum_vap *rvp = RUM_VAP(vap);
2178 
2179 	rvp->maxretry = MIN(tp->maxretry, 0xf);
2180 
2181 	rum_modbits(sc, RT2573_TXRX_CSR4, RT2573_SHORT_RETRY(rvp->maxretry) |
2182 	    RT2573_LONG_RETRY(rvp->maxretry),
2183 	    RT2573_SHORT_RETRY_MASK | RT2573_LONG_RETRY_MASK);
2184 }
2185 
2186 /*
2187  * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
2188  * and HostAP operating modes.
2189  */
2190 static int
2191 rum_enable_tsf_sync(struct rum_softc *sc)
2192 {
2193 	struct ieee80211com *ic = &sc->sc_ic;
2194 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2195 	uint32_t tmp;
2196 	uint16_t bintval;
2197 
2198 	if (vap->iv_opmode != IEEE80211_M_STA) {
2199 		/*
2200 		 * Change default 16ms TBTT adjustment to 8ms.
2201 		 * Must be done before enabling beacon generation.
2202 		 */
2203 		if (rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8) != 0)
2204 			return EIO;
2205 	}
2206 
2207 	tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
2208 
2209 	/* set beacon interval (in 1/16ms unit) */
2210 	bintval = vap->iv_bss->ni_intval;
2211 	tmp |= bintval * 16;
2212 	tmp |= RT2573_TSF_TIMER_EN | RT2573_TBTT_TIMER_EN;
2213 
2214 	switch (vap->iv_opmode) {
2215 	case IEEE80211_M_STA:
2216 		/*
2217 		 * Local TSF is always updated with remote TSF on beacon
2218 		 * reception.
2219 		 */
2220 		tmp |= RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_STA);
2221 		break;
2222 	case IEEE80211_M_IBSS:
2223 		/*
2224 		 * Local TSF is updated with remote TSF on beacon reception
2225 		 * only if the remote TSF is greater than local TSF.
2226 		 */
2227 		tmp |= RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_IBSS);
2228 		tmp |= RT2573_BCN_TX_EN;
2229 		break;
2230 	case IEEE80211_M_HOSTAP:
2231 		/* SYNC with nobody */
2232 		tmp |= RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_HOSTAP);
2233 		tmp |= RT2573_BCN_TX_EN;
2234 		break;
2235 	default:
2236 		device_printf(sc->sc_dev,
2237 		    "Enabling TSF failed. undefined opmode %d\n",
2238 		    vap->iv_opmode);
2239 		return EINVAL;
2240 	}
2241 
2242 	if (rum_write(sc, RT2573_TXRX_CSR9, tmp) != 0)
2243 		return EIO;
2244 
2245 	/* refresh current sleep time */
2246 	return (rum_set_sleep_time(sc, bintval));
2247 }
2248 
2249 static void
2250 rum_enable_tsf(struct rum_softc *sc)
2251 {
2252 	rum_modbits(sc, RT2573_TXRX_CSR9, RT2573_TSF_TIMER_EN |
2253 	    RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_DIS), 0x00ffffff);
2254 }
2255 
2256 static void
2257 rum_abort_tsf_sync(struct rum_softc *sc)
2258 {
2259 	rum_clrbits(sc, RT2573_TXRX_CSR9, 0x00ffffff);
2260 }
2261 
2262 static void
2263 rum_get_tsf(struct rum_softc *sc, uint64_t *buf)
2264 {
2265 	rum_read_multi(sc, RT2573_TXRX_CSR12, buf, sizeof (*buf));
2266 }
2267 
2268 static void
2269 rum_update_slot_cb(struct rum_softc *sc, union sec_param *data, uint8_t rvp_id)
2270 {
2271 	struct ieee80211com *ic = &sc->sc_ic;
2272 	uint8_t slottime;
2273 
2274 	slottime = IEEE80211_GET_SLOTTIME(ic);
2275 
2276 	rum_modbits(sc, RT2573_MAC_CSR9, slottime, 0xff);
2277 
2278 	DPRINTF("setting slot time to %uus\n", slottime);
2279 }
2280 
2281 static void
2282 rum_update_slot(struct ieee80211com *ic)
2283 {
2284 	rum_cmd_sleepable(ic->ic_softc, NULL, 0, 0, rum_update_slot_cb);
2285 }
2286 
2287 static int
2288 rum_wme_update(struct ieee80211com *ic)
2289 {
2290 	struct chanAccParams chp;
2291 	const struct wmeParams *chanp;
2292 	struct rum_softc *sc = ic->ic_softc;
2293 	int error = 0;
2294 
2295 	ieee80211_wme_ic_getparams(ic, &chp);
2296 	chanp = chp.cap_wmeParams;
2297 
2298 	RUM_LOCK(sc);
2299 	error = rum_write(sc, RT2573_AIFSN_CSR,
2300 	    chanp[WME_AC_VO].wmep_aifsn  << 12 |
2301 	    chanp[WME_AC_VI].wmep_aifsn  <<  8 |
2302 	    chanp[WME_AC_BK].wmep_aifsn  <<  4 |
2303 	    chanp[WME_AC_BE].wmep_aifsn);
2304 	if (error)
2305 		goto print_err;
2306 	error = rum_write(sc, RT2573_CWMIN_CSR,
2307 	    chanp[WME_AC_VO].wmep_logcwmin << 12 |
2308 	    chanp[WME_AC_VI].wmep_logcwmin <<  8 |
2309 	    chanp[WME_AC_BK].wmep_logcwmin <<  4 |
2310 	    chanp[WME_AC_BE].wmep_logcwmin);
2311 	if (error)
2312 		goto print_err;
2313 	error = rum_write(sc, RT2573_CWMAX_CSR,
2314 	    chanp[WME_AC_VO].wmep_logcwmax << 12 |
2315 	    chanp[WME_AC_VI].wmep_logcwmax <<  8 |
2316 	    chanp[WME_AC_BK].wmep_logcwmax <<  4 |
2317 	    chanp[WME_AC_BE].wmep_logcwmax);
2318 	if (error)
2319 		goto print_err;
2320 	error = rum_write(sc, RT2573_TXOP01_CSR,
2321 	    chanp[WME_AC_BK].wmep_txopLimit << 16 |
2322 	    chanp[WME_AC_BE].wmep_txopLimit);
2323 	if (error)
2324 		goto print_err;
2325 	error = rum_write(sc, RT2573_TXOP23_CSR,
2326 	    chanp[WME_AC_VO].wmep_txopLimit << 16 |
2327 	    chanp[WME_AC_VI].wmep_txopLimit);
2328 	if (error)
2329 		goto print_err;
2330 
2331 	memcpy(sc->wme_params, chanp, sizeof(*chanp) * WME_NUM_AC);
2332 
2333 print_err:
2334 	RUM_UNLOCK(sc);
2335 	if (error != 0) {
2336 		device_printf(sc->sc_dev, "%s: WME update failed, error %d\n",
2337 		    __func__, error);
2338 	}
2339 
2340 	return (error);
2341 }
2342 
2343 static void
2344 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
2345 {
2346 
2347 	rum_write(sc, RT2573_MAC_CSR4,
2348 	    bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24);
2349 	rum_write(sc, RT2573_MAC_CSR5,
2350 	    bssid[4] | bssid[5] << 8 | RT2573_NUM_BSSID_MSK(1));
2351 }
2352 
2353 static void
2354 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
2355 {
2356 
2357 	rum_write(sc, RT2573_MAC_CSR2,
2358 	    addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24);
2359 	rum_write(sc, RT2573_MAC_CSR3,
2360 	    addr[4] | addr[5] << 8 | 0xff << 16);
2361 }
2362 
2363 static void
2364 rum_setpromisc(struct rum_softc *sc)
2365 {
2366 	struct ieee80211com *ic = &sc->sc_ic;
2367 
2368 	if (ic->ic_promisc == 0)
2369 		rum_setbits(sc, RT2573_TXRX_CSR0, RT2573_DROP_NOT_TO_ME);
2370 	else
2371 		rum_clrbits(sc, RT2573_TXRX_CSR0, RT2573_DROP_NOT_TO_ME);
2372 
2373 	DPRINTF("%s promiscuous mode\n", ic->ic_promisc > 0 ?
2374 	    "entering" : "leaving");
2375 }
2376 
2377 static void
2378 rum_update_promisc(struct ieee80211com *ic)
2379 {
2380 	struct rum_softc *sc = ic->ic_softc;
2381 
2382 	RUM_LOCK(sc);
2383 	if (sc->sc_running)
2384 		rum_setpromisc(sc);
2385 	RUM_UNLOCK(sc);
2386 }
2387 
2388 static void
2389 rum_update_mcast(struct ieee80211com *ic)
2390 {
2391 	/* Ignore. */
2392 }
2393 
2394 static const char *
2395 rum_get_rf(int rev)
2396 {
2397 	switch (rev) {
2398 	case RT2573_RF_2527:	return "RT2527 (MIMO XR)";
2399 	case RT2573_RF_2528:	return "RT2528";
2400 	case RT2573_RF_5225:	return "RT5225 (MIMO XR)";
2401 	case RT2573_RF_5226:	return "RT5226";
2402 	default:		return "unknown";
2403 	}
2404 }
2405 
2406 static void
2407 rum_read_eeprom(struct rum_softc *sc)
2408 {
2409 	uint16_t val;
2410 #ifdef RUM_DEBUG
2411 	int i;
2412 #endif
2413 
2414 	/* read MAC address */
2415 	rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, sc->sc_ic.ic_macaddr, 6);
2416 
2417 	rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
2418 	val = le16toh(val);
2419 	sc->rf_rev =   (val >> 11) & 0x1f;
2420 	sc->hw_radio = (val >> 10) & 0x1;
2421 	sc->rx_ant =   (val >> 4)  & 0x3;
2422 	sc->tx_ant =   (val >> 2)  & 0x3;
2423 	sc->nb_ant =   val & 0x3;
2424 
2425 	DPRINTF("RF revision=%d\n", sc->rf_rev);
2426 
2427 	rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
2428 	val = le16toh(val);
2429 	sc->ext_5ghz_lna = (val >> 6) & 0x1;
2430 	sc->ext_2ghz_lna = (val >> 4) & 0x1;
2431 
2432 	DPRINTF("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
2433 	    sc->ext_2ghz_lna, sc->ext_5ghz_lna);
2434 
2435 	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
2436 	val = le16toh(val);
2437 	if ((val & 0xff) != 0xff)
2438 		sc->rssi_2ghz_corr = (int8_t)(val & 0xff);	/* signed */
2439 
2440 	/* Only [-10, 10] is valid */
2441 	if (sc->rssi_2ghz_corr < -10 || sc->rssi_2ghz_corr > 10)
2442 		sc->rssi_2ghz_corr = 0;
2443 
2444 	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
2445 	val = le16toh(val);
2446 	if ((val & 0xff) != 0xff)
2447 		sc->rssi_5ghz_corr = (int8_t)(val & 0xff);	/* signed */
2448 
2449 	/* Only [-10, 10] is valid */
2450 	if (sc->rssi_5ghz_corr < -10 || sc->rssi_5ghz_corr > 10)
2451 		sc->rssi_5ghz_corr = 0;
2452 
2453 	if (sc->ext_2ghz_lna)
2454 		sc->rssi_2ghz_corr -= 14;
2455 	if (sc->ext_5ghz_lna)
2456 		sc->rssi_5ghz_corr -= 14;
2457 
2458 	DPRINTF("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
2459 	    sc->rssi_2ghz_corr, sc->rssi_5ghz_corr);
2460 
2461 	rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
2462 	val = le16toh(val);
2463 	if ((val & 0xff) != 0xff)
2464 		sc->rffreq = val & 0xff;
2465 
2466 	DPRINTF("RF freq=%d\n", sc->rffreq);
2467 
2468 	/* read Tx power for all a/b/g channels */
2469 	rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
2470 	/* XXX default Tx power for 802.11a channels */
2471 	memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14);
2472 #ifdef RUM_DEBUG
2473 	for (i = 0; i < 14; i++)
2474 		DPRINTF("Channel=%d Tx power=%d\n", i + 1,  sc->txpow[i]);
2475 #endif
2476 
2477 	/* read default values for BBP registers */
2478 	rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
2479 #ifdef RUM_DEBUG
2480 	for (i = 0; i < 14; i++) {
2481 		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
2482 			continue;
2483 		DPRINTF("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
2484 		    sc->bbp_prom[i].val);
2485 	}
2486 #endif
2487 }
2488 
2489 static int
2490 rum_bbp_wakeup(struct rum_softc *sc)
2491 {
2492 	unsigned int ntries;
2493 
2494 	for (ntries = 0; ntries < 100; ntries++) {
2495 		if (rum_read(sc, RT2573_MAC_CSR12) & 8)
2496 			break;
2497 		rum_write(sc, RT2573_MAC_CSR12, 4);	/* force wakeup */
2498 		if (rum_pause(sc, hz / 100))
2499 			break;
2500 	}
2501 	if (ntries == 100) {
2502 		device_printf(sc->sc_dev,
2503 		    "timeout waiting for BBP/RF to wakeup\n");
2504 		return (ETIMEDOUT);
2505 	}
2506 
2507 	return (0);
2508 }
2509 
2510 static int
2511 rum_bbp_init(struct rum_softc *sc)
2512 {
2513 	int i, ntries;
2514 
2515 	/* wait for BBP to be ready */
2516 	for (ntries = 0; ntries < 100; ntries++) {
2517 		const uint8_t val = rum_bbp_read(sc, 0);
2518 		if (val != 0 && val != 0xff)
2519 			break;
2520 		if (rum_pause(sc, hz / 100))
2521 			break;
2522 	}
2523 	if (ntries == 100) {
2524 		device_printf(sc->sc_dev, "timeout waiting for BBP\n");
2525 		return EIO;
2526 	}
2527 
2528 	/* initialize BBP registers to default values */
2529 	for (i = 0; i < nitems(rum_def_bbp); i++)
2530 		rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
2531 
2532 	/* write vendor-specific BBP values (from EEPROM) */
2533 	for (i = 0; i < 16; i++) {
2534 		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
2535 			continue;
2536 		rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2537 	}
2538 
2539 	return 0;
2540 }
2541 
2542 static void
2543 rum_clr_shkey_regs(struct rum_softc *sc)
2544 {
2545 	rum_write(sc, RT2573_SEC_CSR0, 0);
2546 	rum_write(sc, RT2573_SEC_CSR1, 0);
2547 	rum_write(sc, RT2573_SEC_CSR5, 0);
2548 }
2549 
2550 static int
2551 rum_init(struct rum_softc *sc)
2552 {
2553 	struct ieee80211com *ic = &sc->sc_ic;
2554 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2555 	uint32_t tmp;
2556 	int i, ret;
2557 
2558 	RUM_LOCK(sc);
2559 	if (sc->sc_running) {
2560 		ret = 0;
2561 		goto end;
2562 	}
2563 
2564 	/* initialize MAC registers to default values */
2565 	for (i = 0; i < nitems(rum_def_mac); i++)
2566 		rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
2567 
2568 	/* reset some WME parameters to default values */
2569 	sc->wme_params[0].wmep_aifsn = 2;
2570 	sc->wme_params[0].wmep_logcwmin = 4;
2571 	sc->wme_params[0].wmep_logcwmax = 10;
2572 
2573 	/* set host ready */
2574 	rum_write(sc, RT2573_MAC_CSR1, RT2573_RESET_ASIC | RT2573_RESET_BBP);
2575 	rum_write(sc, RT2573_MAC_CSR1, 0);
2576 
2577 	/* wait for BBP/RF to wakeup */
2578 	if ((ret = rum_bbp_wakeup(sc)) != 0)
2579 		goto end;
2580 
2581 	if ((ret = rum_bbp_init(sc)) != 0)
2582 		goto end;
2583 
2584 	/* select default channel */
2585 	rum_select_band(sc, ic->ic_curchan);
2586 	rum_select_antenna(sc);
2587 	rum_set_chan(sc, ic->ic_curchan);
2588 
2589 	/* clear STA registers */
2590 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2591 
2592 	/* clear security registers (if required) */
2593 	if (sc->sc_clr_shkeys == 0) {
2594 		rum_clr_shkey_regs(sc);
2595 		sc->sc_clr_shkeys = 1;
2596 	}
2597 
2598 	rum_set_macaddr(sc, vap ? vap->iv_myaddr : ic->ic_macaddr);
2599 
2600 	/* initialize ASIC */
2601 	rum_write(sc, RT2573_MAC_CSR1, RT2573_HOST_READY);
2602 
2603 	/*
2604 	 * Allocate Tx and Rx xfer queues.
2605 	 */
2606 	rum_setup_tx_list(sc);
2607 
2608 	/* update Rx filter */
2609 	tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
2610 
2611 	tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
2612 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2613 		tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
2614 		       RT2573_DROP_ACKCTS;
2615 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2616 			tmp |= RT2573_DROP_TODS;
2617 		if (ic->ic_promisc == 0)
2618 			tmp |= RT2573_DROP_NOT_TO_ME;
2619 	}
2620 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
2621 
2622 	sc->sc_running = 1;
2623 	usbd_xfer_set_stall(sc->sc_xfer[RUM_BULK_WR]);
2624 	usbd_transfer_start(sc->sc_xfer[RUM_BULK_RD]);
2625 
2626 end:	RUM_UNLOCK(sc);
2627 
2628 	if (ret != 0)
2629 		rum_stop(sc);
2630 
2631 	return ret;
2632 }
2633 
2634 static void
2635 rum_stop(struct rum_softc *sc)
2636 {
2637 
2638 	RUM_LOCK(sc);
2639 	if (!sc->sc_running) {
2640 		RUM_UNLOCK(sc);
2641 		return;
2642 	}
2643 	sc->sc_running = 0;
2644 	RUM_UNLOCK(sc);
2645 
2646 	/*
2647 	 * Drain the USB transfers, if not already drained:
2648 	 */
2649 	usbd_transfer_drain(sc->sc_xfer[RUM_BULK_WR]);
2650 	usbd_transfer_drain(sc->sc_xfer[RUM_BULK_RD]);
2651 
2652 	RUM_LOCK(sc);
2653 	rum_unsetup_tx_list(sc);
2654 
2655 	/* disable Rx */
2656 	rum_setbits(sc, RT2573_TXRX_CSR0, RT2573_DISABLE_RX);
2657 
2658 	/* reset ASIC */
2659 	rum_write(sc, RT2573_MAC_CSR1, RT2573_RESET_ASIC | RT2573_RESET_BBP);
2660 	rum_write(sc, RT2573_MAC_CSR1, 0);
2661 	RUM_UNLOCK(sc);
2662 }
2663 
2664 static void
2665 rum_load_microcode(struct rum_softc *sc, const uint8_t *ucode, size_t size)
2666 {
2667 	uint16_t reg = RT2573_MCU_CODE_BASE;
2668 	usb_error_t err;
2669 
2670 	/* copy firmware image into NIC */
2671 	for (; size >= 4; reg += 4, ucode += 4, size -= 4) {
2672 		err = rum_write(sc, reg, UGETDW(ucode));
2673 		if (err) {
2674 			/* firmware already loaded ? */
2675 			device_printf(sc->sc_dev, "Firmware load "
2676 			    "failure! (ignored)\n");
2677 			break;
2678 		}
2679 	}
2680 
2681 	err = rum_do_mcu_request(sc, RT2573_MCU_RUN);
2682 	if (err != USB_ERR_NORMAL_COMPLETION) {
2683 		device_printf(sc->sc_dev, "could not run firmware: %s\n",
2684 		    usbd_errstr(err));
2685 	}
2686 
2687 	/* give the chip some time to boot */
2688 	rum_pause(sc, hz / 8);
2689 }
2690 
2691 static int
2692 rum_set_sleep_time(struct rum_softc *sc, uint16_t bintval)
2693 {
2694 	struct ieee80211com *ic = &sc->sc_ic;
2695 	usb_error_t uerror;
2696 	int exp, delay;
2697 
2698 	RUM_LOCK_ASSERT(sc);
2699 
2700 	exp = ic->ic_lintval / bintval;
2701 	delay = ic->ic_lintval % bintval;
2702 
2703 	if (exp > RT2573_TBCN_EXP_MAX)
2704 		exp = RT2573_TBCN_EXP_MAX;
2705 	if (delay > RT2573_TBCN_DELAY_MAX)
2706 		delay = RT2573_TBCN_DELAY_MAX;
2707 
2708 	uerror = rum_modbits(sc, RT2573_MAC_CSR11,
2709 	    RT2573_TBCN_EXP(exp) |
2710 	    RT2573_TBCN_DELAY(delay),
2711 	    RT2573_TBCN_EXP(RT2573_TBCN_EXP_MAX) |
2712 	    RT2573_TBCN_DELAY(RT2573_TBCN_DELAY_MAX));
2713 
2714 	if (uerror != USB_ERR_NORMAL_COMPLETION)
2715 		return (EIO);
2716 
2717 	sc->sc_sleep_time = IEEE80211_TU_TO_TICKS(exp * bintval + delay);
2718 
2719 	return (0);
2720 }
2721 
2722 static int
2723 rum_reset(struct ieee80211vap *vap, u_long cmd)
2724 {
2725 	struct ieee80211com *ic = vap->iv_ic;
2726 	struct ieee80211_node *ni;
2727 	struct rum_softc *sc = ic->ic_softc;
2728 	int error;
2729 
2730 	switch (cmd) {
2731 	case IEEE80211_IOC_POWERSAVE:
2732 	case IEEE80211_IOC_PROTMODE:
2733 	case IEEE80211_IOC_RTSTHRESHOLD:
2734 		error = 0;
2735 		break;
2736 	case IEEE80211_IOC_POWERSAVESLEEP:
2737 		ni = ieee80211_ref_node(vap->iv_bss);
2738 
2739 		RUM_LOCK(sc);
2740 		error = rum_set_sleep_time(sc, ni->ni_intval);
2741 		if (vap->iv_state == IEEE80211_S_SLEEP) {
2742 			/* Use new values for wakeup timer. */
2743 			rum_clrbits(sc, RT2573_MAC_CSR11, RT2573_AUTO_WAKEUP);
2744 			rum_setbits(sc, RT2573_MAC_CSR11, RT2573_AUTO_WAKEUP);
2745 		}
2746 		/* XXX send reassoc */
2747 		RUM_UNLOCK(sc);
2748 
2749 		ieee80211_free_node(ni);
2750 		break;
2751 	default:
2752 		error = ENETRESET;
2753 		break;
2754 	}
2755 
2756 	return (error);
2757 }
2758 
2759 static int
2760 rum_set_beacon(struct rum_softc *sc, struct ieee80211vap *vap)
2761 {
2762 	struct ieee80211com *ic = vap->iv_ic;
2763 	struct rum_vap *rvp = RUM_VAP(vap);
2764 	struct mbuf *m = rvp->bcn_mbuf;
2765 	const struct ieee80211_txparam *tp;
2766 	struct rum_tx_desc desc;
2767 
2768 	RUM_LOCK_ASSERT(sc);
2769 
2770 	if (m == NULL)
2771 		return EINVAL;
2772 	if (ic->ic_bsschan == IEEE80211_CHAN_ANYC)
2773 		return EINVAL;
2774 
2775 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_bsschan)];
2776 	rum_setup_tx_desc(sc, &desc, NULL, RT2573_TX_TIMESTAMP,
2777 	    RT2573_TX_HWSEQ, 0, 0, m->m_pkthdr.len, tp->mgmtrate);
2778 
2779 	/* copy the Tx descriptor into NIC memory */
2780 	if (rum_write_multi(sc, RT2573_HW_BCN_BASE(0), (uint8_t *)&desc,
2781 	    RT2573_TX_DESC_SIZE) != 0)
2782 		return EIO;
2783 
2784 	/* copy beacon header and payload into NIC memory */
2785 	if (rum_write_multi(sc, RT2573_HW_BCN_BASE(0) + RT2573_TX_DESC_SIZE,
2786 	    mtod(m, uint8_t *), m->m_pkthdr.len) != 0)
2787 		return EIO;
2788 
2789 	return 0;
2790 }
2791 
2792 static int
2793 rum_alloc_beacon(struct rum_softc *sc, struct ieee80211vap *vap)
2794 {
2795 	struct rum_vap *rvp = RUM_VAP(vap);
2796 	struct ieee80211_node *ni = vap->iv_bss;
2797 	struct mbuf *m;
2798 
2799 	if (ni->ni_chan == IEEE80211_CHAN_ANYC)
2800 		return EINVAL;
2801 
2802 	m = ieee80211_beacon_alloc(ni);
2803 	if (m == NULL)
2804 		return ENOMEM;
2805 
2806 	if (rvp->bcn_mbuf != NULL)
2807 		m_freem(rvp->bcn_mbuf);
2808 
2809 	rvp->bcn_mbuf = m;
2810 
2811 	return (rum_set_beacon(sc, vap));
2812 }
2813 
2814 static void
2815 rum_update_beacon_cb(struct rum_softc *sc, union sec_param *data,
2816     uint8_t rvp_id)
2817 {
2818 	struct ieee80211vap *vap = data->vap;
2819 
2820 	rum_set_beacon(sc, vap);
2821 }
2822 
2823 static void
2824 rum_update_beacon(struct ieee80211vap *vap, int item)
2825 {
2826 	struct ieee80211com *ic = vap->iv_ic;
2827 	struct rum_softc *sc = ic->ic_softc;
2828 	struct rum_vap *rvp = RUM_VAP(vap);
2829 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
2830 	struct ieee80211_node *ni = vap->iv_bss;
2831 	struct mbuf *m = rvp->bcn_mbuf;
2832 	int mcast = 0;
2833 
2834 	RUM_LOCK(sc);
2835 	if (m == NULL) {
2836 		m = ieee80211_beacon_alloc(ni);
2837 		if (m == NULL) {
2838 			device_printf(sc->sc_dev,
2839 			    "%s: could not allocate beacon frame\n", __func__);
2840 			RUM_UNLOCK(sc);
2841 			return;
2842 		}
2843 		rvp->bcn_mbuf = m;
2844 	}
2845 
2846 	switch (item) {
2847 	case IEEE80211_BEACON_ERP:
2848 		rum_update_slot(ic);
2849 		break;
2850 	case IEEE80211_BEACON_TIM:
2851 		mcast = 1;	/*TODO*/
2852 		break;
2853 	default:
2854 		break;
2855 	}
2856 	RUM_UNLOCK(sc);
2857 
2858 	setbit(bo->bo_flags, item);
2859 	ieee80211_beacon_update(ni, m, mcast);
2860 
2861 	rum_cmd_sleepable(sc, &vap, sizeof(vap), 0, rum_update_beacon_cb);
2862 }
2863 
2864 static int
2865 rum_common_key_set(struct rum_softc *sc, struct ieee80211_key *k,
2866     uint16_t base)
2867 {
2868 
2869 	if (rum_write_multi(sc, base, k->wk_key, k->wk_keylen))
2870 		return EIO;
2871 
2872 	if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP) {
2873 		if (rum_write_multi(sc, base + IEEE80211_KEYBUF_SIZE,
2874 		    k->wk_txmic, 8))
2875 			return EIO;
2876 		if (rum_write_multi(sc, base + IEEE80211_KEYBUF_SIZE + 8,
2877 		    k->wk_rxmic, 8))
2878 			return EIO;
2879 	}
2880 
2881 	return 0;
2882 }
2883 
2884 static void
2885 rum_group_key_set_cb(struct rum_softc *sc, union sec_param *data,
2886     uint8_t rvp_id)
2887 {
2888 	struct ieee80211_key *k = &data->key;
2889 	uint8_t mode;
2890 
2891 	if (sc->sc_clr_shkeys == 0) {
2892 		rum_clr_shkey_regs(sc);
2893 		sc->sc_clr_shkeys = 1;
2894 	}
2895 
2896 	mode = rum_crypto_mode(sc, k->wk_cipher->ic_cipher, k->wk_keylen);
2897 	if (mode == 0)
2898 		goto print_err;
2899 
2900 	DPRINTFN(1, "setting group key %d for vap %d, mode %d "
2901 	    "(tx %s, rx %s)\n", k->wk_keyix, rvp_id, mode,
2902 	    (k->wk_flags & IEEE80211_KEY_XMIT) ? "on" : "off",
2903 	    (k->wk_flags & IEEE80211_KEY_RECV) ? "on" : "off");
2904 
2905 	/* Install the key. */
2906 	if (rum_common_key_set(sc, k, RT2573_SKEY(rvp_id, k->wk_keyix)) != 0)
2907 		goto print_err;
2908 
2909 	/* Set cipher mode. */
2910 	if (rum_modbits(sc, rvp_id < 2 ? RT2573_SEC_CSR1 : RT2573_SEC_CSR5,
2911 	      mode << (rvp_id % 2 + k->wk_keyix) * RT2573_SKEY_MAX,
2912 	      RT2573_MODE_MASK << (rvp_id % 2 + k->wk_keyix) * RT2573_SKEY_MAX)
2913 	    != 0)
2914 		goto print_err;
2915 
2916 	/* Mark this key as valid. */
2917 	if (rum_setbits(sc, RT2573_SEC_CSR0,
2918 	      1 << (rvp_id * RT2573_SKEY_MAX + k->wk_keyix)) != 0)
2919 		goto print_err;
2920 
2921 	return;
2922 
2923 print_err:
2924 	device_printf(sc->sc_dev, "%s: cannot set group key %d for vap %d\n",
2925 	    __func__, k->wk_keyix, rvp_id);
2926 }
2927 
2928 static void
2929 rum_group_key_del_cb(struct rum_softc *sc, union sec_param *data,
2930     uint8_t rvp_id)
2931 {
2932 	struct ieee80211_key *k = &data->key;
2933 
2934 	DPRINTF("%s: removing group key %d for vap %d\n", __func__,
2935 	    k->wk_keyix, rvp_id);
2936 	rum_clrbits(sc,
2937 	    rvp_id < 2 ? RT2573_SEC_CSR1 : RT2573_SEC_CSR5,
2938 	    RT2573_MODE_MASK << (rvp_id % 2 + k->wk_keyix) * RT2573_SKEY_MAX);
2939 	rum_clrbits(sc, RT2573_SEC_CSR0,
2940 	    rvp_id * RT2573_SKEY_MAX + k->wk_keyix);
2941 }
2942 
2943 static void
2944 rum_pair_key_set_cb(struct rum_softc *sc, union sec_param *data,
2945     uint8_t rvp_id)
2946 {
2947 	struct ieee80211_key *k = &data->key;
2948 	uint8_t buf[IEEE80211_ADDR_LEN + 1];
2949 	uint8_t mode;
2950 
2951 	mode = rum_crypto_mode(sc, k->wk_cipher->ic_cipher, k->wk_keylen);
2952 	if (mode == 0)
2953 		goto print_err;
2954 
2955 	DPRINTFN(1, "setting pairwise key %d for vap %d, mode %d "
2956 	    "(tx %s, rx %s)\n", k->wk_keyix, rvp_id, mode,
2957 	    (k->wk_flags & IEEE80211_KEY_XMIT) ? "on" : "off",
2958 	    (k->wk_flags & IEEE80211_KEY_RECV) ? "on" : "off");
2959 
2960 	/* Install the key. */
2961 	if (rum_common_key_set(sc, k, RT2573_PKEY(k->wk_keyix)) != 0)
2962 		goto print_err;
2963 
2964 	IEEE80211_ADDR_COPY(buf, k->wk_macaddr);
2965 	buf[IEEE80211_ADDR_LEN] = mode;
2966 
2967 	/* Set transmitter address and cipher mode. */
2968 	if (rum_write_multi(sc, RT2573_ADDR_ENTRY(k->wk_keyix),
2969 	      buf, sizeof buf) != 0)
2970 		goto print_err;
2971 
2972 	/* Enable key table lookup for this vap. */
2973 	if (sc->vap_key_count[rvp_id]++ == 0)
2974 		if (rum_setbits(sc, RT2573_SEC_CSR4, 1 << rvp_id) != 0)
2975 			goto print_err;
2976 
2977 	/* Mark this key as valid. */
2978 	if (rum_setbits(sc,
2979 	      k->wk_keyix < 32 ? RT2573_SEC_CSR2 : RT2573_SEC_CSR3,
2980 	      1 << (k->wk_keyix % 32)) != 0)
2981 		goto print_err;
2982 
2983 	return;
2984 
2985 print_err:
2986 	device_printf(sc->sc_dev,
2987 	    "%s: cannot set pairwise key %d, vap %d\n", __func__, k->wk_keyix,
2988 	    rvp_id);
2989 }
2990 
2991 static void
2992 rum_pair_key_del_cb(struct rum_softc *sc, union sec_param *data,
2993     uint8_t rvp_id)
2994 {
2995 	struct ieee80211_key *k = &data->key;
2996 
2997 	DPRINTF("%s: removing key %d\n", __func__, k->wk_keyix);
2998 	rum_clrbits(sc, (k->wk_keyix < 32) ? RT2573_SEC_CSR2 : RT2573_SEC_CSR3,
2999 	    1 << (k->wk_keyix % 32));
3000 	sc->keys_bmap &= ~(1ULL << k->wk_keyix);
3001 	if (--sc->vap_key_count[rvp_id] == 0)
3002 		rum_clrbits(sc, RT2573_SEC_CSR4, 1 << rvp_id);
3003 }
3004 
3005 static int
3006 rum_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k,
3007     ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
3008 {
3009 	struct rum_softc *sc = vap->iv_ic->ic_softc;
3010 	uint8_t i;
3011 
3012 	if (!(&vap->iv_nw_keys[0] <= k &&
3013 	     k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) {
3014 		if (!(k->wk_flags & IEEE80211_KEY_SWCRYPT)) {
3015 			RUM_LOCK(sc);
3016 			for (i = 0; i < RT2573_ADDR_MAX; i++) {
3017 				if ((sc->keys_bmap & (1ULL << i)) == 0) {
3018 					sc->keys_bmap |= (1ULL << i);
3019 					*keyix = i;
3020 					break;
3021 				}
3022 			}
3023 			RUM_UNLOCK(sc);
3024 			if (i == RT2573_ADDR_MAX) {
3025 				device_printf(sc->sc_dev,
3026 				    "%s: no free space in the key table\n",
3027 				    __func__);
3028 				return 0;
3029 			}
3030 		} else
3031 			*keyix = 0;
3032 	} else {
3033 		*keyix = ieee80211_crypto_get_key_wepidx(vap, k);
3034 	}
3035 	*rxkeyix = *keyix;
3036 	return 1;
3037 }
3038 
3039 static int
3040 rum_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k)
3041 {
3042 	struct rum_softc *sc = vap->iv_ic->ic_softc;
3043 	int group;
3044 
3045 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
3046 		/* Not for us. */
3047 		return 1;
3048 	}
3049 
3050 	group = k >= &vap->iv_nw_keys[0] && k < &vap->iv_nw_keys[IEEE80211_WEP_NKID];
3051 
3052 	return !rum_cmd_sleepable(sc, k, sizeof(*k), 0,
3053 		   group ? rum_group_key_set_cb : rum_pair_key_set_cb);
3054 }
3055 
3056 static int
3057 rum_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
3058 {
3059 	struct rum_softc *sc = vap->iv_ic->ic_softc;
3060 	int group;
3061 
3062 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
3063 		/* Not for us. */
3064 		return 1;
3065 	}
3066 
3067 	group = k >= &vap->iv_nw_keys[0] && k < &vap->iv_nw_keys[IEEE80211_WEP_NKID];
3068 
3069 	return !rum_cmd_sleepable(sc, k, sizeof(*k), 0,
3070 		   group ? rum_group_key_del_cb : rum_pair_key_del_cb);
3071 }
3072 
3073 static int
3074 rum_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
3075     const struct ieee80211_bpf_params *params)
3076 {
3077 	struct rum_softc *sc = ni->ni_ic->ic_softc;
3078 	int ret;
3079 
3080 	RUM_LOCK(sc);
3081 	/* prevent management frames from being sent if we're not ready */
3082 	if (!sc->sc_running) {
3083 		ret = ENETDOWN;
3084 		goto bad;
3085 	}
3086 	if (sc->tx_nfree < RUM_TX_MINFREE) {
3087 		ret = EIO;
3088 		goto bad;
3089 	}
3090 
3091 	if (params == NULL) {
3092 		/*
3093 		 * Legacy path; interpret frame contents to decide
3094 		 * precisely how to send the frame.
3095 		 */
3096 		if ((ret = rum_tx_mgt(sc, m, ni)) != 0)
3097 			goto bad;
3098 	} else {
3099 		/*
3100 		 * Caller supplied explicit parameters to use in
3101 		 * sending the frame.
3102 		 */
3103 		if ((ret = rum_tx_raw(sc, m, ni, params)) != 0)
3104 			goto bad;
3105 	}
3106 	RUM_UNLOCK(sc);
3107 
3108 	return 0;
3109 bad:
3110 	RUM_UNLOCK(sc);
3111 	m_freem(m);
3112 	return ret;
3113 }
3114 
3115 static void
3116 rum_ratectl_start(struct rum_softc *sc, struct ieee80211_node *ni)
3117 {
3118 	struct ieee80211vap *vap = ni->ni_vap;
3119 	struct rum_vap *rvp = RUM_VAP(vap);
3120 
3121 	/* clear statistic registers (STA_CSR0 to STA_CSR5) */
3122 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
3123 
3124 	usb_callout_reset(&rvp->ratectl_ch, hz, rum_ratectl_timeout, rvp);
3125 }
3126 
3127 static void
3128 rum_ratectl_timeout(void *arg)
3129 {
3130 	struct rum_vap *rvp = arg;
3131 	struct ieee80211vap *vap = &rvp->vap;
3132 	struct ieee80211com *ic = vap->iv_ic;
3133 
3134 	ieee80211_runtask(ic, &rvp->ratectl_task);
3135 }
3136 
3137 static void
3138 rum_ratectl_task(void *arg, int pending)
3139 {
3140 	struct rum_vap *rvp = arg;
3141 	struct ieee80211vap *vap = &rvp->vap;
3142 	struct rum_softc *sc = vap->iv_ic->ic_softc;
3143 	struct ieee80211_ratectl_tx_stats *txs = &sc->sc_txs;
3144 	int ok[3], fail;
3145 
3146 	RUM_LOCK(sc);
3147 	/* read and clear statistic registers (STA_CSR0 to STA_CSR5) */
3148 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta));
3149 
3150 	ok[0] = (le32toh(sc->sta[4]) & 0xffff);	/* TX ok w/o retry */
3151 	ok[1] = (le32toh(sc->sta[4]) >> 16);	/* TX ok w/ one retry */
3152 	ok[2] = (le32toh(sc->sta[5]) & 0xffff);	/* TX ok w/ multiple retries */
3153 	fail =  (le32toh(sc->sta[5]) >> 16);	/* TX retry-fail count */
3154 
3155 	txs->flags = IEEE80211_RATECTL_TX_STATS_RETRIES;
3156 	txs->nframes = ok[0] + ok[1] + ok[2] + fail;
3157 	txs->nsuccess = txs->nframes - fail;
3158 	/* XXX at least */
3159 	txs->nretries = ok[1] + ok[2] * 2 + fail * (rvp->maxretry + 1);
3160 
3161 	if (txs->nframes != 0)
3162 		ieee80211_ratectl_tx_update(vap, txs);
3163 
3164 	/* count TX retry-fail as Tx errors */
3165 	if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, fail);
3166 
3167 	usb_callout_reset(&rvp->ratectl_ch, hz, rum_ratectl_timeout, rvp);
3168 	RUM_UNLOCK(sc);
3169 }
3170 
3171 static void
3172 rum_scan_start(struct ieee80211com *ic)
3173 {
3174 	struct rum_softc *sc = ic->ic_softc;
3175 
3176 	RUM_LOCK(sc);
3177 	rum_abort_tsf_sync(sc);
3178 	rum_set_bssid(sc, ieee80211broadcastaddr);
3179 	RUM_UNLOCK(sc);
3180 
3181 }
3182 
3183 static void
3184 rum_scan_end(struct ieee80211com *ic)
3185 {
3186 	struct rum_softc *sc = ic->ic_softc;
3187 
3188 	if (ic->ic_flags_ext & IEEE80211_FEXT_BGSCAN) {
3189 		RUM_LOCK(sc);
3190 		if (ic->ic_opmode != IEEE80211_M_AHDEMO)
3191 			rum_enable_tsf_sync(sc);
3192 		else
3193 			rum_enable_tsf(sc);
3194 		rum_set_bssid(sc, sc->sc_bssid);
3195 		RUM_UNLOCK(sc);
3196 	}
3197 }
3198 
3199 static void
3200 rum_set_channel(struct ieee80211com *ic)
3201 {
3202 	struct rum_softc *sc = ic->ic_softc;
3203 
3204 	RUM_LOCK(sc);
3205 	rum_set_chan(sc, ic->ic_curchan);
3206 	RUM_UNLOCK(sc);
3207 }
3208 
3209 static void
3210 rum_getradiocaps(struct ieee80211com *ic,
3211     int maxchans, int *nchans, struct ieee80211_channel chans[])
3212 {
3213 	struct rum_softc *sc = ic->ic_softc;
3214 	uint8_t bands[IEEE80211_MODE_BYTES];
3215 
3216 	memset(bands, 0, sizeof(bands));
3217 	setbit(bands, IEEE80211_MODE_11B);
3218 	setbit(bands, IEEE80211_MODE_11G);
3219 	ieee80211_add_channels_default_2ghz(chans, maxchans, nchans, bands, 0);
3220 
3221 	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
3222 		setbit(bands, IEEE80211_MODE_11A);
3223 		ieee80211_add_channel_list_5ghz(chans, maxchans, nchans,
3224 		    rum_chan_5ghz, nitems(rum_chan_5ghz), bands, 0);
3225 	}
3226 }
3227 
3228 static int
3229 rum_get_rssi(struct rum_softc *sc, uint8_t raw)
3230 {
3231 	struct ieee80211com *ic = &sc->sc_ic;
3232 	int lna, agc, rssi;
3233 
3234 	lna = (raw >> 5) & 0x3;
3235 	agc = raw & 0x1f;
3236 
3237 	if (lna == 0) {
3238 		/*
3239 		 * No RSSI mapping
3240 		 *
3241 		 * NB: Since RSSI is relative to noise floor, -1 is
3242 		 *     adequate for caller to know error happened.
3243 		 */
3244 		return -1;
3245 	}
3246 
3247 	rssi = (2 * agc) - RT2573_NOISE_FLOOR;
3248 
3249 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
3250 		rssi += sc->rssi_2ghz_corr;
3251 
3252 		if (lna == 1)
3253 			rssi -= 64;
3254 		else if (lna == 2)
3255 			rssi -= 74;
3256 		else if (lna == 3)
3257 			rssi -= 90;
3258 	} else {
3259 		rssi += sc->rssi_5ghz_corr;
3260 
3261 		if (!sc->ext_5ghz_lna && lna != 1)
3262 			rssi += 4;
3263 
3264 		if (lna == 1)
3265 			rssi -= 64;
3266 		else if (lna == 2)
3267 			rssi -= 86;
3268 		else if (lna == 3)
3269 			rssi -= 100;
3270 	}
3271 	return rssi;
3272 }
3273 
3274 static int
3275 rum_pause(struct rum_softc *sc, int timeout)
3276 {
3277 
3278 	usb_pause_mtx(&sc->sc_mtx, timeout);
3279 	return (0);
3280 }
3281 
3282 static device_method_t rum_methods[] = {
3283 	/* Device interface */
3284 	DEVMETHOD(device_probe,		rum_match),
3285 	DEVMETHOD(device_attach,	rum_attach),
3286 	DEVMETHOD(device_detach,	rum_detach),
3287 	DEVMETHOD_END
3288 };
3289 
3290 static driver_t rum_driver = {
3291 	.name = "rum",
3292 	.methods = rum_methods,
3293 	.size = sizeof(struct rum_softc),
3294 };
3295 
3296 static devclass_t rum_devclass;
3297 
3298 DRIVER_MODULE(rum, uhub, rum_driver, rum_devclass, NULL, 0);
3299 MODULE_DEPEND(rum, wlan, 1, 1, 1);
3300 MODULE_DEPEND(rum, usb, 1, 1, 1);
3301 MODULE_VERSION(rum, 1);
3302 USB_PNP_HOST_INFO(rum_devs);
3303